TU/e

Project FINGERPAINT
SCMP-1.0

Software Configuration Management Plan

Authors: Junior Management:
Tessa Belder (0739377) Simon Burg
Lasse Blaauwbroek (0749928) Areti Paziourou
Thom Castermans (0739808) Luc de Smet
Roel van Happen (0751614)

Benjamin van der Hoeven (0758975) Senior Management:
Femke Jansen (0741948) Mark van den Brand, MF 7.096
Hugo Snel (0657700) Lou Somers, MF 7.145

Technical Advisor:
Ton Barosan, MF 7.082

Customer:
Patrick Anderson, GEM-Z 4.137

Eindhoven - June 23, 2013

Abstract

This document is the Software Configuration Management Plan (SCMP) of the FINGERPAINT
project. This project is part of the Software Engineering Project (2IP35) and is one of the
assignments at Eindhoven University of Technology. The document complies with the SCMP
from the Software Engineering Standard, as set by the European Space Agency [1]. This
document contains information on the standards to be used for writing the documentation
required for this project, as well as information about the processing and storage of these
documents.

Contents

1 Introduction 5
1.1 Purpose e 5
1.2 Scope e 5
1.3 List of definitions 6
1.4 List of references 6

2 Management 7
2.1 Organisation e 7
2.2 Responsibilities 7
2.3 Interface Management 8
2.4 SCMP Implementation 8
2.5 Applicable Procedures 8

3 Configuration Identification 10
3.1 Naming Conventions 10
3.2 Baselines e e 10

4 Configuration Control 11
4.1 Library Control e 11

4.1.1 Development Library 11
4.1.2 Master Library 12
4.1.3 Archive Library 12
4.2 Media Control e 13
4.3 Change Control 13
4.3.1 Development Library L. 13
4.3.2 Master Library oo 13
4.3.3 Archive Libraryo 14

5 Status Accounting 15

6 Tools, Techniques and Methods 16
6.1 Tools e e 16

6.1.1 Git 16
6.1.2 GitHub 16
6.1.3 Google Web Toolkit (GWT) 17
6.1.4 Selenium 17
6.1.5 SEIVEIS . . . v v i e e e e e e 18

FINGERPAINT

CONTENTS

6.1.6 Jetty
6.1.7 KEIEX
6.2 Techniques and Methods
6.2.1 Committing
6.2.2 Tags and Branches

7 Supplier Control

8 Records Collection and Retention

Document Status Sheet

Document Status Overview

General

Document title: Software Configuration Management Plan
Identification: SCMP-1.0

Author: Thom Castermans

Document status: Externally approved

Document History

Version Date Author Reason of change

0.0 02-May-2013 Thom Castermans Initial version.
1.0 21-June-2013 - Externally approved.

Document Change Records Since Previous Issue

General

Date: 21-June-2013
Document title: Software Configuration Management Plan
Identification: SCMP-1.0

Changes

Page Paragraph Reason to change

- - Externally approved.

Chapter 1

Introduction

This chapter explains the purpose of this document as well as what the scope of this document
is, that is, how it is related to other documents in the project.

1.1 Purpose

The purpose of this document is to set rules and guidelines to which all project members
should adhere. This concerns the versioning, identification and layout of all documents that
are created for this project. All major documents should adhere to strict rules, while for other
documents, such as files containing code, guidelines are set that are more loose.

This document should be read as a reference. It can be used when a developer or project
member is not sure about how to do something as a mainstay.

1.2 Scope
In this project, the following configuration items (CIs) will be produced:
e Architectural Design Document (ADD);
e Detailed Design Document (DDD);
e Software Configuration Management Plan (SCMP);
e Software Project Management Plan (SPMP);
e Software Quality Assurance Plan (SQAP);
e Software Requirements Document (SRD);
e Software Transfer Document (STD);
e Software User Manual (SUM);
e Software Verification and Validation Plan (SVVP);
e User Requirements Document (URD);
e Code;

CHAPTER 1. INTRODUCTION

FINGERPAINT

e Te

e Pr

st plans for a number of phases. In particular:

— Unit Test Plan (UTP);
— Integration Test Plan (ITP);
— Acceptance Test Plan (ATP).

oduct Backlog.

The ESA standard mentions a System Test Plan (STP) as well, but in our case this can be

omitted.

1.3 List of definitions

21P35
ADD
ATP
BCF
CI
CM
DDD
ITP
SEP
SCMP
SPMP
SQAP
SRD
STD
STP
SUM
SVVP
TU/e
QM
URD
UTP

The Software Engineering Project
Architectural Design Document
Acceptance Test Plan

Bureau for Computer Facilities
Configuration Item

Configuration Manager

Detailed Design Document
Integration Test Plan

Software Engineering Project
Software Configuration Management Plan
Software Project Management Plan
Software Quality Assurance Plan
Software Requirements Document
Software Transfer Document
System Test Plan

Software User Manual

Software Verification and Validation Plan
FEindhoven University of Technology
Quality Manager

User Requirements Document

Unit Test Plan

1.4 List of references

[1] ESA, ESA Software Engineering Standards. ESA, March 1995.

[2] Group Fingerpaint, “Software project management plan,” SEP, 2013.

[3] Group Fingerpaint, “Software quality assurance plan,” SEP, 2013.

[4] Group Fingerpaint, “Software validation and verification plan,” SEP, 2013.

Chapter 2

Management

This chapter specifies which project members are involved in configuration management. Also,
the responsibility a team member has in a function involved with configuration management
is explained. Then, some general responsibilities are explained. Finally, a template for the
creation of documents is given and some conventions are set about document creation, to
ensure a consistent layout.

2.1 Organisation

The team members involved in configuration management are the configuration manager
(CM) and vice CM. The project members that have volunteered to fulfil these roles are
named in the SPMP [2].

Other group members should always assist the CM and vice CM.

2.2 Responsibilities

The CM and vice CM are responsible for copying documents to the master and archive
library at the right moments, as mentioned in chapter 4. They are in general responsible
for the contents of the master and archive library. Another task for them is creating and
updating document templates, although this task can be delegated.

The CM is primarily responsible for configuration management, although he or she can
delegate tasks to the vice CM, in which case the vice CM is responsible. Whenever the CM
is (temporarily) not available, the vice CM should take over the tasks of the CM, including
the responsibility for these tasks.

Finally, all project members are responsible for the documents they work on. This means
that they update the document status sheet and make sure the latest version of the document
they work(ed) on is available in the development repository (refer to chapter 4, section 4.1.1).
When multiple group members work on the same document, they share the responsibility
and additionally are responsible for the combined consistency of the document. Also, they
should make sure that the repository remains in a “workable” state. That is, they should
solve possible merge conflicts together.

CHAPTER 2. MANAGEMENT FINGERPAINT

2.3 Interface Management

The FINGERPAINT application will be developed using an external virtual server provided by
the BCF. In case of failure of this server, the CM will contact BCF and let them resolve the
issue. BCF is in this case supposed to have expert knowledge and have the means to resolve
issues.

In general, the CM can help other project members when they have trouble with some
software that is used (refer to chapter 6). However, the CM may delegate this task to other
group members who have more expertise on the subject.

2.4 SCMP Implementation

In this project, we will have only one SCMP document, contrary to what is described in the
ESA standard [1]. Thus, this document will not contain a planning for every phase of the
project. Instead, refer to the SPMP for the planning of the phases.

2.5 Applicable Procedures

Every non-code document has to be created using INTEX and should use the fingerpaint.cls
document class by declaring the following in the beginning of the document (with other values
for the options of course):

\documentclass[Y
pathtobase=..,%
titlefull={Full Document Titlel},%
titleabbr=FDT,Y%
version=0.1]{fingerpaint}

Every document should start with a \maketitle{} call, followed by an abstract and then the
\tableofcontents. This to ensure a consistent style among all documents.

Each document should have a “main” .tex-file that \inputs separate .tex-files that each
contain a chapter (or appendix). This enables project members to work on the same document
more efficiently, as working on different chapters will not cause any merge conflicts.

So, a standard “main” .tex-file should look like as is shown in figure 2.1.

As noted in section 2.3, the CM can assist when project members experience problems
with IXTEX.

Finally, all documents are subject to the standards described in the ESA standard [1] and
must also adhere to the requirements as described in the SQAP [3] and the SVVP [4].

FINGERPAINT CHAPTER 2. MANAGEMENT

\documentclass[%
pathtobase=..,%
titlefull={Full Document Titlel},%
titleabbr=FDT,Y
version=0.1]{fingerpaint}
\begin{document}
\maketitle{}
\begin{abstract}...\end{abstract}
\tableofcontents
\input{history.tex}

\input{chapterl.tex}
\input{chapter2.tex}

\end{document}

Figure 2.1: Example of how a document that uses the fingerpaint.cls
document class should look like.

Chapter 3

Configuration Identification

In this chapter, a versioning scheme is set. All documents created for the FINGERPAINT
project should adhere to this scheme.

3.1 Naming Conventions

All documents have a unique identifier. This identifier is title abbreviation-version, for
example URD-0.1. The initial version of every document is 0.0. Then, after every formal
review, the version number is bumped up with 0.1. A document that has been reviewed
three times thus has version number 0.3. Only when the client or management has approved
a document, the version number is bumped up to 1.0. Basically, the version number will
not change after that, but it is theoretically possible that after that, some more changes
are required and versions 1.x are created. After a second final approval (note that the fact
that there is a secondary approval that is final already indicates that this is an exceptional
situation), the version will become 2.0, et cetera.

Changes noted in the document status sheet in every document only mention changes since
the last version. Older versions of the document can be found in the master (and archive)
library (which will be discussed in more detail in chapter 4), so all changes leading to the
current version of a document can at all times be retrieved. In practice, even between-version
changes can be retrieved from the development library, but this functionality will probably
not be needed.

3.2 Baselines

A baseline is a document that has been reviewed and approved externally. Baselines are
stored in the master (and archive) library, as discussed in chapter 4. As described in the
ESA standard [1], the CM makes sure that any version of every document can be directly
downloaded from or rebuilt from the various libraries.

The ESA standard prescribes that new versions of management documents need to be
created for every phase of the project. However, as the FINGERPAINT project is a relatively
small project, we will have only one version of every document, including management doc-
uments, for the complete project. Phase-specific information will be added in the form of
appendices to documents if needed.

10

Chapter 4

Configuration Control

This chapter describes how we handle different versions of Cls and where they are stored: we
introduce the concept of libraries. Moreover, we describe how different libraries interact and
what the role of the CM is in the management of these libraries.

4.1 Library Control

All CIs that are created for the FINGERPAINT project have to be stored somewhere. We call a
place where Cls are stored a library. There are three libraries, that will be discussed in more
detail in this section.

4.1.1 Development Library

The development library is the library where all Cls are stored initially. Documents in this
library are generally under construction and can thus change a lot. From the development
library, all versions of a CI that are stored in it can be retrieved and thus, every modification
to a CI can be undone at any time.

In practice, the development library is split up in multiple Git repositories. Git is discussed
in more detail in chapter 6. We have the following repositories:

e project-code: This repository contains all code that makes up the FINGERPAINT ap-
plication.

e project-docs: This repository contains all documentation that is potentially relevant
for the client. That is, all Cls that are related to the FINGERPAINT application and not
to the SEP that led to the creation of that application are stored here.

e sep-docs: This repository contains all documentation that is strictly relevant to SEP.
That includes the roles that project members fulfil, testing plans, this CI and the SQAP
for example.

The idea of this split is that we have the possibility to hand over the software to the client
by simply providing the first two repositories in the above list. These repositories will then
be “clean” in the sense that they only contain the code and its documentation, nothing that
is purely SEP-related.

All repositories are stored on and accessible through GitHub (discussed in section 4.2 and
chapter 6).

11

CHAPTER 4. CONFIGURATION CONTROL FINGERPAINT

4.1.2 Master Library

In the master library, Cls that are externally approved are stored. It may of course be the
case that a CI is stored in the development library, but not in the master library, when there
is no externally approved version (yet). In practice, this library is a folder on the website
of the FINGERPAINT application!. Contrary to the development library, that only contains
code and .tex-files that can be compiled to PDF files not present in the library, the master
library only contains code and PDF files that are the result of running ITEX on files from
the development library.

The master library also contains a page that presents an overview of all documentation-
related Cls stored in it. Furthermore, there will be a link to the development library at that
version, so that the source files of CIs in the master library are easily accessible as well. Code
is accessible through a link to the development version.

A CI can be placed in the master library only with permission of the CM and only after
the CI has been reviewed and approved externally. Documents in the master library can
be downloaded freely: this is the reason why the master library is accessible on a website.
However, putting CIs in the master library is, again, something that can happen only with
permission of the CM.

CIs cannot be deleted from the master library, but can be replaced with a newer version.
In that case, the older version is moved to the archive library.

4.1.3 Archive Library

Like the master library, the archive library is a folder on the website of the FINGERPAINT
application. Thus, this library is accessible through the same website as the master library.
A main difference with the master library is that documents are stored in a folder one level
deeper, in a folder with the name of the version. Thus, the structure in the archive library
will be similar to what is shown below:

e Code

- 0.1
- 0.2

e Documentation

— URD
- 0.1
- 0.2

— SRD

- 0.1
- 0.2

"http://fingerpaint.github.io/

12

http://fingerpaint.github.io/

FINGERPAINT CHAPTER 4. CONFIGURATION CONTROL

The structure of the master library resembles the one of the archive library, but does not
have (and does not need) the version folders. This is because the master library only contains
the latest externally accepted version of every CI.

CIs may only be added to this directory after they have been externally reviewed and
approved, as described in the SQAP [3] and SVVP [4].

4.2 Media Control

The libraries mentioned in section 4.1 are, as also mentioned there, stored on GitHub. GitHub
is a commercial service that can be used freely as long as the repositories hosted by them
are publicly accessible. They have offline encrypted backups of all repositories, that can be
used in case of complete failure. Also, because of the distributed nature of Git, every project
member has a local copy of every library on his/her computer.

Refer to chapter 6 for more information about GitHub and how the libraries can be
accessed through it.

4.3 Change Control

In this section, we discuss who can change the contents of the various libraries.

4.3.1 Development Library

Every group member is allowed to change any CI in the development library. This means
that any group member can create new files, edit existing files and delete files from the
development library. There are two reasons why we allow this: first of all, the size of this
project is relatively small. The entire group is working in the same room, so consultation can
be done efficiently. Secondly, when a project member makes an error, this can be restored
at any time because we use Git. Git also handles conflicts that may occur when two team
members change the same file.

The general structure of the development library can however not be changed by group
members: this is something the CM is responsible for. This is fair, as the CM is chosen by
all group members.

4.3.2 Master Library

Files in the master library can only be changed by the CM, thus there is no need for version
control. When a team member wants to change something to a CI in the master library,
he/she has to contact the QM. The QM can then call up a review meeting, in which the
proposed changes are discussed and either approved or rejected. More information on this
can be found in the SVVP [4]. When changes to the CI under discussion are approved, the
CM will copy the new version to the master library from the development library. The old
version in the master library is then moved to the archive library. Note that in this procedure,
the version number of the CI is bumped with 1.0.

13

CHAPTER 4. CONFIGURATION CONTROL FINGERPAINT

There is an exception possible to the above situation: if the only changes to a CI are non-
fundamental layout changes, then the CM can simply update the document in the master
library. This includes changing the font, changing the display style of the project name, et
cetera. Note that these should not occur normally, as the layout is decided on at the start of
the project.

4.3.3 Archive Library

Files in the archive library cannot be changed, only new files can be added, as described in the
SVVP [4]. The only person allowed to do this is the CM. Thus, no change control is needed
here. Note that files that are added to this library should come from the master library. The
files in the master library should at that point be replaced by a newer version, that has been
approved externally.

14

Chapter 5

Status Accounting

In this chapter, we discuss how the configuration status of Cls is documented and reported
in a clear way to group members and management.

As described in chapter 4, there are three libraries in which a CI can reside. The CM
is responsible for moving files from one library to another, thereby following strict rules. To
report the status of all Cls, the CM will maintain a page on the website of the FINGERPAINT
application. This page will list all CIs and for every CI a table indicating its status. Such a
status could look as follows:

Version Library Date into master Comments

current Development - -

0.3 Master 07-May-2013 -
0.2 Archive 03-May-2013 -
0.1 Archive 25-Apr-2013 -

Note here that the top line will always be present, even when for instance in above example,
the current version is version 0.3. This is because changes in the development library are not
tracked, but we want to make it explicit that there is a version sitting there, for completeness.

15

Chapter 6

Tools, Techniques and Methods

In this chapter, the various tools are discussed that are used in the FINGERPAINT project.
Also, some methods to keep the various libraries tidy are discussed.

6.1 Tools

The FINGERPAINT application is a web application that runs locally in the browser. The
client has indicated it should be implemented in HTML5. At the moment, HTMLS5 is a sort
of “umbrella definition” for a lot of technologies. In practice, what we will do is implement
the application in JavaScript, making heavy use of the canvas element and everything it
supports. Note that currently, the canvas element supports quite a lot of features: simple
things like drawing rectangles, but also drawing curves and more complex shapes (polygons)
is supported. Even creating effects like blur or inverting colours belongs to the possibilities.
Finally, 3D-drawing is supported. We will not make use of the latter, but the idea is clear: a
canvas is the right basis to build the FINGERPAINT application on.

To make developing the software easier, we use a couple of frameworks. This enables us to
document the code more easily and more clearly (including generating documentation from
the comments in the code). Additionally, it enables automated testing. This is explained
below.

6.1.1 Git

All code and documentation is stored in Git repositories. Git is a distributed, lightweight
version control system. It enables all team members to work efficiently in parallel on the same
documents/code base, even to some extent on the same file. Apart from enabling working in
parallel, it also provides an implicit backup system, as every team member has a local copy
of a repository.

6.1.2 GitHub

Git is a distributed system in which a central server is needed. This is the “main” repository,
to which a number of project members can connect (this is called cloning, every project
member has a clone of the “main” repository on his/her machine). GitHub is a (commercial)
service that can host the “main” repository for us. As long as the repository is public, the
service is free to use. The client has expressed that the project can be public, so we can use

16

FINGERPAINT CHAPTER 6. TOOLS, TECHNIQUES AND METHODS

this free service from GitHub. Apart from providing “simple” hosting, GitHub also comes
with a nice-looking web interface with which anyone can browse the repository. Also, there is
a Wiki and bug-tracking system. Finally, GitHub provides a mechanism for hosting a website
by means of creating a repository with a special name. We use this to build a website on
which we can present some progress information to the client and maybe documentation or
other project-related things.

6.1.3 Google Web Toolkit (GWT)

The GWT! is a toolkit that provides two important things for us:
e possibility to develop (complex) browser-based applications productively;

e optimised JavaScript generated by the GW'T provides the user with a high-performance
end product.

A great advantage of the GWT to us is that it enables developers to create web applica-
tions without requiring the developer to be an expert in browser quirks or JavaScript. A
developer simply needs to know Java (which is well-known and easy to learn) to understand
the code of the application. The heart of the GWT, namely, is a compiler that can convert
(GWT-enabled) Java code into JavaScript. The GWT even generates different versions of the
JavaScript for the five most widely used browsers?, optimising performance and preventing
browser quirks from having effect on the application.

Finally, the GWT includes a plug-in for Eclipse and an extension for Chrome to profile
the application, which makes developing again more productive. When using the plug-in, it
is possible to deploy the web application on a local server, keeping the developing cycle very
short. If a new feature is implemented, a “production version” of the web application can be
uploaded to a server.

6.1.4 Selenium

From the start of the project, we want to be able to test the software automatically. As we
are developing a web application here, an important part is user experience. Of course, one
of the most important facets of the user experience is the visual facet: what does it look
like? However, it is very labour intensive to test this manually: that would require a tester
to open the application in a number of browsers and perform the same sequence of actions
in every browser. Still, probably just a subset of all available browsers will be tested. It
is simply impossible to test the application in all browsers on desktop Windows, Mac and
Linux machines and on mobile iOS and Android machines - which are not even all platforms
available on the market.

Selenium? is a library that can aid here. It is available in multiple programming languages.
We use the Java-variant. Selenium provides a means of creating and executing tests in a lot
of browsers, including mobile browsers for iPhone and Android. A test in this context is
literally a sequence of actions as the user could perform them. It is possible to click elements,
type text, submit forms, drag-and-drop, simulate clicks, et cetera.

!The homepage of the GWT can be found at https://developers.google.com/web-toolkit/.
2Internet Explorer, Chrome, Firefox, Safari and Opera.
3The homepage of Selenium can be found at http://docs.seleniumhq.org/.

17

https://developers.google.com/web-toolkit/
http://docs.seleniumhq.org/

CHAPTER 6. TOOLS, TECHNIQUES AND METHODS FINGERPAINT

The code base of Selenium also includes a server. This server can be used to run actual
tests on a remote machine, while the program that is issuing the tests runs on a local machine.
Commands/actions are sent to the server through a tunnel, the server executes those actions
in a browser of choice and returns the results to the local machine, when asked for. This
functionality is used by us to be able to run tests from any machine on a number of different
platforms.

6.1.5 Servers

The above described Selenium server will run on a virtual server provided by BCF. This
server runs on Microsoft Windows 7. Apart from testing, we also run our application on a
server. This will be a different server, that will be provided by the client. The application is
deployed on a Jetty server (see section 6.1.6), that listens on port 80, the default HT'TP port.
This implies that our application can be reached directly via the browser on its IP-address or
on its domain name, if that is configured correctly by the client.

6.1.6 Jetty

Jetty* is a web server and javax.servlet container that runs on Java. It supports web
sockets, is open source and used to power the Google AppEngine. When using the Eclipse
GWT plug-in, you can run develop mode, in which case a Jetty server is run locally to quickly
deploy your code. Using Jetty from the range of servers available was a logical choice for us:
if everything works when run locally on Jetty, it will work on another Jetty server as well (if
the server on which Jetty runs is configured correctly of course).

6.1.7 BTEX

All documents will be generated from IATEX source files. IATRX is a tool to create professionally
typeset documents. We use it for a couple of reasons. First of all, the source files are plain
text. This allows us to have good version control of the source. Secondly, we like to have
good-looking documents, which we can create without expert knowledge about typesetting
using WTEX. Lastly, W TEX allows us to use a single file that defines the style for all documents.
This ensures a consistent layout across all documents.

6.2 Techniques and Methods

In this section, we will discuss some methods we apply to keep the Git repositories tidy and
the project manageable.

6.2.1 Committing

Committing changes is something that developers do a lot, so the conventions are simple,
because a developer does not want to do something complex a lot. With this in mind, we
have come to the following list of recommendations:

e Make every relevant change to a repository a single commit. Do not combine multiple
changes in a commit. This makes reverting changes easier.

4The homepage of Jetty can be found at http://www.eclipse.org/jetty/.

18

http://www.eclipse.org/jetty/

FINGERPAINT CHAPTER 6. TOOLS, TECHNIQUES AND METHODS

Example A commit wherein both a document and the general layout are changed, is
not allowed. These should be two separate commits.

e Always write a concise yet descriptive commit message for every commit. This makes
it easier to read through the commit history and find relevant commits. Note that
“concise” does not mean “at most two sentences”. You can definitely explain in some
detail what you did. Just do not repeat the code you added, because it will be visible
what you changed in your commit when looking at it in detail.

e Refrain from committing binary files. These files will change a lot (probably) with every
change, which does not work well in general.

6.2.2 Tags and Branches

In Git, it is possible to tag a repository at any moment. A tag is simply a reference to the
repository at a certain point in time, with a label. You can list all tags that are present in
a repository and easily revert to the point in time the tag was made. GitHub even shows
all tags in a drop down menu on the website, so browsing the repository at the time a tag
was created is easy. We use this feature to tag the repository whenever a new version of a
CI is created. The tag should then have the identifier of that CI as a label, if the CI has a
label. For example: URD-0.3. The code in the repositories does not have an explicit identifier.
When the code reaches a stable state, which should be at the end of each sprint, a tag with
label v[version] should be created, for example v0.1. After each sprint, the version will be
bumped with 0.1. After the last sprint of the project, the version will be bumped to v1.0.
Since we have separate repositories, the above strategy will result in the following:

e The repository project-code will only contain code, no documentation and thus only
tags of the form v[version];

e The repository project-docs will only contain documentation and thus only tags of
the form [title abbreviation]-[version];

e The repository sep-docs will only contain documentation and thus only tags of the
form [title abbreviation]-[version].

19

Chapter 7

Supplier Control

The tools listed in 6.1 are all supplied by external suppliers, in some way or another. Tech-
nically, Git is an open source project and thus not really supplied by anyone, but let us call
that external as well, as no project member worked on Git.

We can then make the following overview:

Tool Discussed in Section Supplier

Git 6.1.1 Public Domain
http://git-scm.com/

GitHub 6.1.2 GitHub
https://github.com/about

GWT 6.1.3 Google
https://developers.google.com/web-toolkit/
Selenium 6.1.4 Various Contributors
http://docs.seleniumhq.org/about/contributors. jsp
Server 6.1.5 BCF
http://www.win.tue.nl/bcf/

Jetty 6.1.6 Eclipse Foundation
http://www.eclipse.org/org/

KTEX 6.1.7 Leslie Lamport/CTAN

http://www.ctan.org/

The above suppliers are all trusted by us, either because we have previous experience with
software from the supplier or because we have tested the software in the research phase of
the project and found that the software does what we want.

In general, when we consider using software from a supplier we trust, we just use the
software. When we do not know the supplier, we test the software and if the software satisfies
our tests and needs, only then we will use the software.

20

http://git-scm.com/
https://github.com/about
https://developers.google.com/web-toolkit/
http://docs.seleniumhq.org/about/contributors.jsp
http://www.win.tue.nl/bcf/
http://www.eclipse.org/org/
http://www.ctan.org/

Chapter 8

Records Collection and Retention

In the development version, files can be deleted by any group member. Of course, all members
need to agree on this decision, but theoretically, anyone can delete any file. Git retains files
even after they are deleted, so files can be recovered at any time if needed.

Files in the master library can only be replaced with a newer version. At the same time,
the old version will move to the archive library, where files cannot be removed. So, files placed
there will be retained for the entire project.

21

	Introduction
	Purpose
	Scope
	List of definitions
	List of references

	Management
	Organisation
	Responsibilities
	Interface Management
	SCMP Implementation
	Applicable Procedures

	Configuration Identification
	Naming Conventions
	Baselines

	Configuration Control
	Library Control
	Development Library
	Master Library
	Archive Library

	Media Control
	Change Control
	Development Library
	Master Library
	Archive Library

	Status Accounting
	Tools, Techniques and Methods
	Tools
	Git
	GitHub
	Google Web Toolkit (GWT)
	Selenium
	Servers
	Jetty
	LaTeX

	Techniques and Methods
	Committing
	Tags and Branches

	Supplier Control
	Records Collection and Retention

