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Abstract

We investigate the sensitivity of the Colley Matrix (CM) rankings---one of six computer
rankings used by the Bowl Championship Series---to (hypothetical) changes in the outcomes of
(actual) games. Specifically, we measure the shift in the rankings of the top 25 teams when the
win-loss outcome of], say, a single game between two teams, each with winning percentages below
30%, is hypothetically switched. Using data from 2006--2011, we discover that the CM rankings
are quite sensitive to such changes. To alleviate this sensitivity, we propose a robust variant of
the rankings based on solving a mixed-integer nonlinear program, which requires about a minute
of computation time. We then confirm empirically that our rankings are considerably more robust
than the basic CM rankings. As far as we are aware, our study is the first explicit attempt to make
football rankings robust. Furthermore, our methodology can be applied in other sports settings and
can accommodate different concepts of robustness besides the specific one introduced here.
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1 Introduction

College football has been played in the United States since the 1860s and enjoys
enormous popularity today. Colleges and universities of all sizes across the country
sponsor teams that play each year (or season) within numerous conferences and
leagues. We focus our attention on teams in the Football Bowl Subdivision (FBS).
Roughly speaking, the FBS includes the largest and most competitive collegiate
football programs in the country. In 2011, there were 120 teams in the FBS, each
of which typically played 12 games per season (not including post-season games).

For historical reasons, the FBS teams do not organize themselves into an
elimination tournament at the end of a season to determine the best team (or national
champion). Instead, the most successful teams from the regular season are paired
for a group of extra games, called bowl games. In particular, every FBS team plays
in at most one bowl game. Ostensibly, the bowl games serve to determine the
national champion—especially if the bowl match ups are chosen well. However,
there has always been considerable debate over how to choose the bowl match ups.

Prior to the year 1998, the bowl match ups were made in a less formal man-
ner than today. One of the most important factors for determining the match ups
were the human-poll rankings, such as the AP Poll provided by the Associated
Press. As a result, the poll rankings have long had considerable influence in college
football. (Although computer-generated rankings existed at the time, they were not
used with any consequence.) In fact, prior to 1998, the national champion was gen-
erally considered to be the team ranked highest in the polls after completion of the
bowl games. However, even this simple rule was problematic because the final polls
could disagree on the top-ranked team. This occurred, for example, after the 1990
season.

Since 1998, the Bowl Championship Series (BCS) has been implemented
to alleviate the ambiguity of determining the national champion in college football
[1]. The BCS procedure is essentially as follows. At the end of the regular season,
multiple human-poll and computer rankings are combined using a simple mathe-
matical formula to determine a BCS score for each FBS team. The FBS teams are
then sorted according to BCS score, which determines the BCS rankings. Then, fol-
lowing a set of pre-determined rules and policies, ten of the top teams according to
the BCS rankings are matched into 5 bowl games. In particular, the top-2 teams are
matched head-to-head in a single game, so that the winner of that game can reliably
be called the national champion.

Even with the BCS now in place, there is still considerable reliance on rank-
ings (human and now also computer). It is clear that quality rankings are necessary
for the BCS to function properly, i.e., to reliably setup the game that will determine
the national champion and to setup other quality games.
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However, it can be quite challenging to determine accurate rankings, espe-
cially in college football. Intuitively, good sports rankings are easy to determine
when one has data on many head-to-head matchups, which allow the direct com-
parison of many pairs of teams. This happens, for example, in Major League Base-
ball, where many pairs of teams play each other often, and thus a team’s winning
percentage is a good proxy for its ranking. In college football, the large number
of teams and relatively short playing season makes such head-to-head information
scarce. For example, for 120 FBS teams each playing 12 games against other FBS
teams, only 720 games are played out of 7140 = (130) possible pairings. In reality,
even less information is available because FBS teams often play non-FBS teams
and because conference teams mainly play teams in the same conference (making
it hard to compare across conferences).

Nevertheless, there are many ranking systems for college football that per-
form well in practice. One such method, which is one of six computer rankings
used by the BCS and which we will investigate in this paper, is the Colley Matrix
(CM) method [12]. For a given schedule of games involving n teams, this method
sets up a system Cr = b of n equations in n unknowns, where the n X n matrix
C depends only on the schedule of games and the n-vector b depends only on the
win-loss outcomes of those games. In particular, b does not depend in any way on
the points scored in the games. The solution 7 is called the ratings vector, and it
can be shown mathematically to be the unique solution of C'r = b. To determine
the rankings of the n teams, the entries of r are sorted, with more positive entries
of r indicating better ranks. The CM method shares similarities with other ranking
systems; see, for example, [17, 18, 14].

In this paper, we investigate whether computer ranking systems can be im-
proved, and we focus in particular on improving the CM method. We do not mean
to presume or imply that the CM method needs improvement while the other five
BCS computer rankings do not, but the CM method is the only one of the six that is
published fully in the open literature and hence can be systematically investigated
[6].

We are especially interested in the robustness of the CM rankings, and our
research was in part motivated by a situation that arose at the end of the 2010 regular
season (i.e., immediately before the bowl match ups were to be determined):

The final BCS ratings show LSU ranked 10th and Boise State 11th. But
... Wes Colley’s final rankings, as submitted to the BCS, were incorrect.
The Appalachian State-Western Illinois FCS playoff game was missing
from his data set . .. the net result of that omission in Colley’s rankings
is that LSU, which he ranked ninth, and his No. 10, Boise State, should
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be switched. Alabama and Nebraska, which he had 17th and 18th,
would also be swapped. ...LSU and Boise State are so close in the
overall BCS rankings (.0063) that this one error switches the order.
Boise State should be 10th in the overall BCS rankings and LSU should
be No. 11. [5]

In other words, the CM rankings—and hence the BCS rankings—proved quite sen-
sitive to the outcome (or rather, the omission) of a single game. Moreover, this
game was played between two FCS (Football Championship Subdivision) teams,
and FCS teams are generally considered to be much less competitive than the top-
ranked FBS teams and play relatively few games against the FBS teams.

We are also motivated by a recent work of Chartier et al. [9] that investigates
the sensitivity of the Colley Matrix rankings (and other types of rankings) under
perturbations to a hypothetical “perfect” season in which all teams play one another
and the correct rankings are clear (i.e., the top team wins all its games, the second
team beats all other teams except the top team, etc). In this specialized setting,
the authors conclude that the Colley Matrix rankings are stable but also present a
real-world example where the rankings are unstable.

We propose that the top rankings provided by computer systems should be
more robust against the outcomes of inconsequential games, that is, games between
teams that should clearly not be top ranked. Of course, the top rankings should still
be sensitive to important games played between top contenders or even to games
played between one top contender and one non-contender.

To this end, we develop a modification of the CM method that protects
against modest (hypothetical) changes in the win-loss outcomes of (actual) incon-
sequential games. We do not handle the case of omitted games (as exemplified in
the quote above) since, in principle, accidental omission can be prevented by more
careful data handling. Rather, our goal is to devise a ranking system whose top
rankings are stable even if a “far away,” inconsequential game happens to have a
different outcome. This is our choice of what it means for rankings to be robust.
While there certainly may be other valid definitions of robustness, we believe our
approach addresses a limitation of computer rankings and could also be easily mod-
ified for other definitions. Our approach also depends on the definition of “incon-
sequential,” but this can be adjusted easily to the preferences of the user, too. We
also remark that, since our approach considers only win-loss outcomes, it naturally
incorporates other notions of robustness that strive to produce similar rankings even
when a game’s point margin of victory is (hypothetically) perturbed.

We stress our point of view that one should protect against modest changes
to the inconsequential games. As an entire collection, the inconsequential games are
probably of great consequence to the top-ranked teams, and so we do not propose,

Brought to you by | University of lowa Libraries Serials Acquisitions (University of lowa Libraries Serials Acquisitions)
Authenticated | 172.16.1.226
Download Date | 6/15/12 4:41 PM



Submission to Journal of Quantitative Analysisin Sports

say, simply deleting the inconsequential games from consideration before calculat-
ing the rankings. Rather, our approach asks, “Suppose the outcomes of just a few of
the inconsequential games switched, but we do not necessarily know which ones.
Can we devise a ranking that is robust to these hypothesized switches?”

Our approach is derived from the fields of robust optimization [7] and ro-
bust systems of equations [13]. Ultimately, this leads to a mixed-integer nonlinear
programming (MINLP) model, which serves as the robust version of the system
Cr = b. Solving this MINLP provides a robust ratings vector 7, which is then
sorted to obtain the final robust rankings just as in the CM method. We remark
that there exist other ranking methods that utilize optimization; see, for example,
[10, 11, 15].

Our method depends on a user-supplied integer I' > 0, which is the number
of switched inconsequential games to protect against. In this way, the parameter I'
signifies the conservatism of the user, mimicking the robust approach of [8]. For
example, if the user is not worried about inconsequential games affecting the top
rankings at all, then he/she can simply set I' = 0 (protect against no games chang-
ing), and then the ratings vector r is simply the usual CM ratings. On the other
hand, choosing I' = 10 means the user wants robust rankings that take into account
the possibility that up to 10 inconsequential games happen to switch. It should be
pointed out that there is no best a priori choice of I'; rather, it will usually depend
on the user’s experience and conservatism.

It is important to point out that our approach is not stochastic. For example,
we do not make any assumptions about the distributions of switched inconsequential
games, and we do not study average rankings. Rather, we calculate a single set of
rankings that intelligently takes into account the possibility of I' switched games—
but without knowing anything else about the switched games. This is characteristic
of robust optimization approaches, which differentiates them from stochastic ones.

This paper is organized as follows. Section 2 reviews the CM method and
discusses the data we use in the paper. We also describe our focus on FBS rankings
even though our data contains non-FBS data as well. Section 3 then empirically
investigates the sensitivity of the top rankings in the CM method to modest changes
in the win-loss outcomes of games between teams with losing records. In Section 4,
we propose and study the MINLP, which we solve to make the CM method robust to
modest changes in the data. In Section 5, we provide several examples and repeat
the experiments of Section 3 except with our own robust rankings. We conclude
that our rankings are significantly less sensitive than the CM rankings. Finally, we
conclude the paper with a few final thoughts in Section 6.
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2 The Colley Matrix Method and Our Data

Colley proposed the following method for ranking teams, called the Colley Matrix
(CM) method [12]. The CM method uses only win-loss information (as required
by the BCS system) and automatically adjusts for the quality of a team’s opponent
(also called the team’s strength of schedule). We refer the reader to Colley’s paper
for a full description; we only summarize it here.

Let [n] := {1,...,n} be a set of teams, which have played a collection of
games in pairs such that each game has resulted in a winner and a loser (i.e., no
ties). Define the matrix W € R"*" via

Wi; := number of times team ¢ has beaten team j.

In particular, W;; = W;;, = 0 if 7 has not played j, and W;; = 0 for all 7. Note
that ij-th entry of W + W7 encodes the number of times that i and j have played
each other, and letting e be the all-ones vector, the i-th entries of (W + W7 )e and
(W — WT)e give the total number of games played by 7 and its win-loss spread,
respectively. With [ the identity matrix, also define

C := 21 + Diag((W + W7)e) — (W + W) (1)
bi=e+ (W —WT)e, (2)

where Diag(-) places its vector argument into a diagonal matrix. Colley shows that
C' is diagonally dominant and hence positive definite, which implies in particular
that C~! exists. He then defines the ratings vector r to be the unique solution of the
linear system

Cr=b,

or equivalently, r := C~1b. Then Colley sorts 7 in descending order, i.e., determines
a permutation 7 of [n] such that the vector (r,,,...,7,, )T is sorted in descending
order. Then the rankings vector is precisely 7; that is, the ranking of team 7 is ;. If
any of r’s entries are equal, one can easily adjust the rankings to exhibit ties, but this
is unlikely to occur in practice. In the following section, we will provide a specific
example of the CM rankings.

We now discuss the data used throughout the paper. We downloaded foot-
ball data from the website [4] for the 2006-2011 regular seasons. (This website
appears to be an archive of Wolfe’s website [3].) In particular, no post-season data
is included. For each regular season, the data contains the outcomes of all col-
lege football games played in the United States, but we limit our focus to just FBS
teams. For example, consider the 2010 college football season, which included
3,960 games played between 730 teams around the country. Of the 730 teams, 120
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were FBS teams, and of the 3,960 games, 772 involved at least one FBS team. We
focus our attention on these 772 games since they contain all data directly related
to FBS teams. In the case of 2010, these 772 games yield n = 195 because the
FBS teams played 75 outside teams. Throughout this paper, ratings will be done for
all n teams in a given season, but only ratings and rankings for FBS teams will be
discussed since our interest is in ranking these teams. Specifically, we will rate all
n teams using the vector r, but prior to computing the FBS rankings, we will delete
the non-FBS teams from 7 before sorting and ranking. In this way, the FBS rank-
ings are computed using all available FBS data, but we focus our rankings on just
the FBS teams. (Colley handles non-FBS teams in a more involved pre-processing
step, but he likewise maintains a focus on FBS teams [2].)

3 Sensitivity of the Colley Matrix Method

In this section, we empirically investigate the sensitivity of the Colley Matrix (CM)
rankings to modest changes in the win-loss outcomes of “inconsequential” games.
We specifically focus on the sensitivity of the rankings of the top teams.

Given the win matrix W, let 7 be the permutation vector encoding the CM
rankings for W. Given an integer ¢ € [n], define

T:={i€n]:m <t}

to be the index set of the top ¢ teams (ranks between 1 and ¢). In contrast, let
w € [0, 1] be given and define

. Z?:l VVZ‘J’
B := {2 € [n]: ST (W 150 < w}

to be the bottom teams (winning percentages less than w). As long as ¢ is relatively
small and w is relatively close to 0, it is highly likely that 7" and B are disjoint. For
example, in all experiments, we take ¢ = 25 and w = 0.3 and find that, for the years
2006-2011, T" and B never intersect. Note that B does not depend on the rankings
7, whereas 1" does. We call a game inconsequential if it has occurred between two
bottom teams 7, j € B, and we define

IZZ{(i,j)GBXBZi<j, VVZJ—FW]Z>O}

to be the set of all pairs playing inconsequential games. Note that, to remove redun-
dancy, (7, j) € Z implies i < j by definition.

We wish to examine the sensitivity of the CM rankings of teams in 7' to
modest changes in the win-loss outcomes of games between pairs (i, j) € Z. For

6
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this, we define perturbations W’ := W + A of the win matrix W that switch the
outcomes of a few inconsequential games. Formally, define

Aij =Aji =0 V(i,j) €T
D= Aecz™": AZ]“—AWZO V(’L,j)EI
Wiy <Ay <Wy V(i,j) el

The condition A;; = Aj; = 0 for all (¢, j) ¢ Z guarantees that only inconsequential
games are switched, and the equations A;; + A;; = 0 for all (¢, j) € Z ensure that
any switch is mathematically consistent between (4, j) and (j, 7). For example, if we
wish to switch a game having WW;; = 0 and W;; = 1, then we need to perturb ;; by
+1 and Wj; by —1. Finally, the inequalities —W;; < A;; < Wj; limit the number
of switched games for (i, j) € Z. For example, in case W;; = 1 and W}; = 2, it is
clear that we logically need —W;; = —1 < A;; <2 =W,

We also define a convenient restriction of D. Given A € D, the quantity
> _i<j |Aij] equals the number of games switched by A. For any integer limit L > 0,

we define
D(L) := {A €D: ) |Ayl < L}
1<J

to be those perturbations that switch no more than L inconsequential games. For
example, D(0) = {0}, and D(1) consists of all perturbations changing exactly 1
or 0 games. Letting N := Z(i’j)ez(vvij + W), one can see that the number of
perturbations in D(L) equals >, (})-

For any A € D, define W’ := W + A and consider the CM rankings =’
based on WW’. We investigate the differences between the rankings 7 and 7’ of the
teams in 7' via the measure

(W, W' = Z | — 7] .
ieT

Alternatively, (W, W’) is the 1-norm of the sub-vector indexed by 7" of the differ-
ence m — 7’. We call 6 (W, W’) the switch measure. For example, if the top 2 teams
switch places but no other ranks change, then §(W, W’) = 2; if the first and third
teams switch places but no other ranks change, then the switch measure is 4; and
if the top team drops to fourth place but otherwise the orderings remain the same,
then 0(W, W') = 6. If all teams in 7" remain in the top ¢ of 7/, then §(W, W) is an
even number, but it can be odd if some team drops out of the top t.

For each football year y = 2006, ...,2011 and each L = 1,2, we examine
the distribution of switch measures

ik = oy VRS

A € D(L)
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where ¢ = 25 and w = 0.3. This involves enumerating all A € D(L) and cal-
culating 6(W, W’) for each. Computationally, calculating (W, W’) is quick, and
enumeration of each A € D(L) is reasonable for L < 2.

It turns out that, with L fixed, the distributions (L, y) of the switch mea-
sure behave similarly irrespective of the year y, and so to save space, we merge
H(L,2006),..., H(L,2011) into a single histogram for each L = 1,2. The result-
ing two histograms are shown in Figure 1 with basic summary statistics.

One Game Switched (L=1)

50% |

40% mean =5.1
? median = 4
o 30% min =
: pe—
S max =20
C 20% stdev =49

10%

||

0% ' —
0 2 4 6 8 10121416 18 20 22 24 26 28 30

Switch Measure

Two Games Switched (L=2)

50% |

40% mean =6.5
? median = 4
o 30% min =0
1 max =28
= 20% stdev =6.3

10%

0%
0 2 4 6 8 10121416 18 20 22 24 26 28 30

Switch Measure

Figure 1: Histograms for the switch measure 6(W, W’) for L = 1,2 switched
games, each over the years 2006-2011. This illustrates the sensitivity of the Colley
Matrix rankings of the top teams to modest changes in the win-loss outcomes of
inconsequential games.

One can see from Figure 1 that the CM rankings of the top ¢ = 25 teams
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are quite sensitive to changes in just a few inconsequential games. For L. = 1, the
mean of 6(W, W) is 5.1, and the maximum (or worst case) is 20, and both of these
statistics increase noticeably for L = 2. The standard deviation is also relatively
large and increases between L = 1 and L = 2. In our opinion, such sensitivity is an
undesirable property of the CM rankings, especially since rankings are relied upon
so heavily in college football.

In Table 1, we provide an illustrative (albeit worst-case) example of how
the CM rankings can change when the outcome of a single inconsequential game
is switched. The first column of teams contains the top-25 CM rankings for 2007.
These teams comprise 7" in our experiments. The second column shows the per-
turbed rankings when the result of the inconsequential game between Marshall and
Rice is switched. Note that, in 2007, both Marshall and Rice had winning per-
centages below 30%, and Marshall beat Rice in real life. In both columns, a bold
typeface indicates a ranking that changes. For this example, §(W, W') = 20, and
one can see quite plainly that there is a significant amount of shuffling in the rank-
ings. Some of the shuffling is logical. For example, West Virginia beat Marshall
in real-life, and when Marshall loses to Rice hypothetically, West Virginia then be-
comes a weaker team with a lower ranking. What is unclear, however, is why West
Virginia drops four spots, which in our opinion seems excessive.

1 Virginia Tech LSU
2 LSU Virginia Tech
3 Missouri Missouri
4 Ohio State Georgia
5  Georgia Ohio State
6 Oklahoma Oklahoma
7  West Virginia Florida
8  Florida Hawaii
9 Hawaii Kansas
10  Kansas Arizona St
11 Arizona St West Virginia
12 Boston College  Boston College
13 Southern Cal Southern Cal
14 South Florida South Florida
15  Clemson Clemson
16 ~ Brigham Young  Brigham Young
17 Illinois Illinois
18  Tennessee Tennessee
19  Cincinnati Virginia
20  Virginia Cincinnati
21 Connecticut Auburn
22 Auburn Connecticut
23 Wisconsin Texas
24 Oregon Wisconsin
25  Texas Oregon

Table 1: Comparison of the 2007 Colley Matrix rankings before (left) and af-
ter (right) the result of the inconsequential game between Marshall and Rice is
switched.
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4 The Robust Method

The basic idea of our robust method is to calculate a ratings vector r that works
well even if the win matrix is modestly perturbed from its real-life value 11". Robust
rankings will then be determined by sorting r in descending order just as with the
regular Colley Matrix (CM) method. We call our method the Colley Matrix Plus
(CM+) method.

Recall the CM system of equations C'r = b for the win matrix WW. For a
user-specified integer I' > 0, we consider perturbations W' := W + A for A €
D(T") as introduced in the preceding section, and we analyze the perturbed system
C'r = UV for W/, where C’ and b’ are given by (1)—(2) except that W' takes the
place of W. (Note that I' plays essentially the same role as L in Section 3, but
we will actually use the two parameters [' and L in slightly different ways for our
experiments in Section 5. To facilitate the discussion therein, we introduce and use
I in this section.) Using properties of A, it holds that A + AT = 0, which implies

C" = 2I + Diag((W' + W'T)e) — (W + W)
= 21 + Diag((W + A) + (W + A)T)e) — (W + A) + (W +A)T)
= C' + Diag((A + AT)e) — (A + AT)
= C,

i.e., the perturbation A does not alter the matrix C'. This makes sense because C
depends only on the schedule of games, which is not changed by A. On the other
hand, it holds that

V' =b+1(A—AT)e, 3)

and so b’ changes linearly with A. In total, we are faced with perturbed systems
Cr =V, where A ranges over D(I').

Because C' is invertible, there is clearly no single r that solves Cr = ¥ for
all A € D(I') except in the special case when I' equals 0. A standard idea from
robust optimization and the study of robust systems of equations is to search for an
7 that minimizes the worst-possible violation of Cr = b’ over all A € D(I'), i.e., to
solve the optimization problem

min max [|Cr — b’ 4
in max [Cr ¥, @
where || - ||, is a user-specified vector p-norm. It is not immediately clear that (4)

can be solved in a tractable manner (either practically or theoretically). We focus
on the case p = 2! and argue next that, even though (4) is a mixed-integer nonlinear

'In the first version of this paper, we focused on the case p = oo for which (4) can be solved as a

10
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program that appears to be NP-hard, we can devise an exact solution procedure
that works well in practice (at least for relatively small numbers of inconsequential
games and relatively small values of I").

So fix p = 2. We first transform (4) by minimizing the maximum squared
norm and separating the objective function via (3):

min (HCT —b]” + max (b—Cr)"(A—AT)e+ 1|(A - AT)6H2) NG))
r AeD(T)

By introducing an auxiliary variable ¢, we can rewrite the inner maximization using

a set of explicit linear constraints:

mitn |Cr —b||* + ¢ (6)
s.t. (b—Cr)"(A=ANe+L|(A-AT)e|* <t VAeDD).

It is important to note that A is no longer a variable. Rather, there is one linear
constraint in (r,t) for each specific A € D(T'). As such, (6) is a strictly convex
quadratic program with a unique optimal solution that can in principle be solved by
CPLEX, for example.

There is still one challenge, however. Since D(I") contains Zgzo (]g ) ele-
ments, where NNV is the total number of inconsequential games, for most combina-
tions of NV and I' we cannot simply list and solve over all linear constraints; the
number of such constraints is simply too large. So instead we adopt the following
strategy. First, we solve (6) over a limited subset of constraints to generate an ap-
proximate solution (7, t) of (6). Then we solve the following subproblem over the
variable A:

AT A AT 1 ATV T
Arélg(}%)(b Cr) (A —A%)e+ ;||(A— A el —t

Let A be an optimal solution. If the optimal value of the subproblem is positive,
then we have determined a violated constraint of (6), and this constraint is added
to the approximate model and the process is repeated. On the other hand, if the
optimal value is nonnegative, then we have proved that the current (7, ¢) is optimal
for (6), and hence 7 is the robust ratings vector.

Solving the subproblem for A is actually a difficult problem in theory, but
CPLEX is able to solve it quickly as long as N and I' are not too large. In all
instances of this paper, solving (4) via (6) and the procedure just outlined requires

polynomial-time LP. However, in this case, there were many alternative optima r, which introduced
considerable ambiguity in the resultant rankings. We thank the anonymous referees for suggesting
and encouraging a switch to a different p-norm.

11
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less than a minute using CPLEX 12.2 [16] within Matlab R2010b [19] on an Intel
Core 2 Quad CPU running at 2.4 GHz with 4 GB RAM under the Linux operating
system. However, larger values of NV and I' may lead to solve times that take a few
minutes or even a few hours.

5 Behavior of the Robust Method

In this section, we examine the behavior of our Colley Matrix Plus (CM+) method
in practice on the football data from 2006-2011.

5.1 Variation as [ increases

Figure 2 presents the top-25 CM+ rankings for the 2008 football season for eleven
choices of I': I' = 0,1,...,10. Note that I' = 0 yields the regular CM rankings
(though keep in mind that these do not necessarily match the rankings on Colley’s
website [12] due to our different handling of non-FBS data as mentioned at the end
of Section 2). The figure includes both a text table and a graphical chart. Each line
in the chart depicts the rank trend of a particular team. For example, Oklahoma is
ranked 1 for all I', and this corresponds to the top-most, flat line. In contrast, the
rank line for Virginia Tech starts at 18 and ends at 16.

When examining Figure 2 on its own, it is difficult to make and support
claims such as: “The rankings for I' = 8 are better than the rankings for I' = 3.”
Of course, we would say that I' = 8 is more robust than I' = 3 by construction (and
we investigate this empirically in the next subsection), but in the absence of further
analysis, we believe it can be challenging to compare any two rankings objectively.
So here we would simply like to point out some observations that we believe are
relevant concerning the robust rankings as I' changes.

First, as I' increases, the rankings are sensible compared to I' = (0. For
example, we do not see teams making huge jumps in the rankings. In fact, the
ranking of each team moves by at most two positions over all I' < 10.

Second, the changes in the rankings appear to involve several separate groups
of closely ranked teams, and each group switches ranks among itself only. For ex-
ample, Utah and Texas Tech switch places, while Brigham Young, Missouri, and
North Carolina adjust to accommodate a decline in the rank of Brigham Young. Two
additional groups are Oklahoma St/Florida St/Virginia Tech and Michigan St/Ball
St/Boston College.

Third, the rank trends are not necessarily monotonic, i.e., a team’s rank can
increase and then decrease (or decrease and then increase) as I" increases. However,
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Rank | I'=0 =1 I'=2 I'=3,4,5 I'=6 I'=17,8,9,10
1 | Oklahoma Oklahoma Oklahoma Oklahoma Oklahoma Oklahoma
2 | Florida Florida Florida Florida Florida Florida
3 | Texas Texas Texas Texas Texas Texas
4 | Utah Texas Tech Texas Tech Texas Tech Texas Tech Texas Tech
5 | Texas Tech Utah Utah Utah Utah Utah
6 | Alabama Alabama Alabama Alabama Alabama Alabama
7 | Penn State Penn State Penn State Penn State Penn State Penn State
8 | Boise St Boise St Boise St Boise St Boise St Boise St
9 | Southern Cal Southern Cal Southern Cal Southern Cal Southern Cal Southern Cal
10 | Ohio State Ohio State Ohio State Ohio State Ohio State Ohio State
11 | Cincinnati Cincinnati Cincinnati Cincinnati Cincinnati Cincinnati
12 | Georgia Tech Georgia Tech Georgia Tech Georgia Tech Georgia Tech Georgia Tech
13 | Georgia Georgia Georgia Georgia Georgia Georgia
14 | TCU TCU TCU TCU TCU TCU
15 | Pittsburgh Pittsburgh Pittsburgh Pittsburgh Pittsburgh Pittsburgh
16 | Oklahoma St Oklahoma St Oklahoma St Oklahoma St Oklahoma St Virginia Tech
17 | Florida St Florida St Florida St Florida St Florida St Florida St
18 | Virginia Tech Virginia Tech Virginia Tech Virginia Tech Virginia Tech Oklahoma St
19 | Michigan St Michigan St Ball St Michigan St Ball St Ball St
20 | Ball St Ball St Michigan St Ball St Michigan St Boston College
21 | Boston College | Boston College | Boston College | Boston College | Boston College | Michigan St
22 | Brigham Young | Brigham Young | Brigham Young | Missouri Missouri Missouri
23 | Missouri Missouri Missouri Brigham Young | Brigham Young | North Carolina
24 | North Carolina North Carolina North Carolina North Carolina North Carolina Brigham Young
25 | Nebraska Nebraska Nebraska Nebraska Nebraska Nebraska
Or
5P<<
10
4
[
@©
@
15
N
/\\
oo << ><__
>
>
25 ) ) ) ) )
1 3 5 7 9

r

Figure 2: Colley Matrix Plus rankings with 0 < I' < 10 for the 2008 football
season. Note that I' = 0 yields the regular CM rankings (though these do not nec-
essarily match the rankings on Colley’s website [12] due to the different handling
of non-FBS data as described at the end of Section 2).
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the ranks appear to stabilize for larger I'. For Figure 2, in particular, all ranks are
stable for 7 < I' < 10.

Finally, the I'-rankings confirm the robustness of the top-3 teams since they
each retain their rank as I' increases. This could be interpreted as an affirmation
of the CM rankings (I' = 0) for these top teams in 2008. In a similar manner, the
top-15 CM rankings are confirmed to be mostly robust (with the exception of Utah
and Texas Tech).

In Figure 3, we show similar charts for the remaining years 2006-07 and
2009-2011. These depict very similar trends as 2008.

5.2 Sensitivity of the robust rankings

In Section 3, we investigated the sensitivity of the CM method when the rankings
are recalculated after L games are manually switched. We now conduct the same
experiment except this time with our robust rankings. Our goal is to verify that our
rankings are indeed less sensitive than the CM rankings, at least for certain values
of I'.

In this section, it is important to keep in mind the different roles played
by L and I'. The parameter L determines the number of games that switch before
recalculating the robust rankings, whereas I' is the user-supplied parameter that
controls the conservatism of the rankings. In particular, the two parameters are set
independently.

We first describe two important properties of the robust rankings that typify
extreme cases. First, when ' = 0, the robust rankings are clearly as sensitive as
the CM rankings since they are exactly the CM rankings. Second, we claim that,
when I' is sufficiently large, the robust rankings are completely insensitive to L
switches. Said differently, for very large I, the I'-robust rankings cannot change
upon recalculation after any number of manual switches. To see this, let the win
matrix W be given, and suppose I' > N, where N := Z(i,j)el(Wij + Wj;) is the
total number of inconsequential games. Then the I'-robust rankings 7 based on W
take into account the possibility that a/l inconsequential games might switch. Next,
let W' = W + A be any perturbed win matrix with A € D(L), and calculate the
robust ['-rankings 7’ based on W’. Because 7’ is also calculated allowing that all
games might switch, it must hold that 7 = #’. More precisely, the set of scenarios
b' optimized over in problem (4) is the same for both W and W’ because I' is so
large, and so ™ = 7.

Between the two extremes I' = 0 (as sensitive as CM) and I' > N (com-
pletely insensitive), it is reasonable to expect the ['-rankings will become less sen-
sitive as I" increases, and we now exhibit this at the intermediate, fixed value of
I' = 5. So let 7 be the I'-robust rankings determined by the original 1/, and let T°
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Figure 3: Colley Matrix Plus rankings versus I for all years except 2008.
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be the index of the top ¢t = 25 teams under 7. Also let 7’ be the ['-robust rankings
determined by W' := W + A, where A € D(L) for some L. As in Section 3, we
investigate the distributions of the top-team switch measures

H(L,y) = {(S(W, W

W' =W+A
A eD(L) ’

for each football year y = 2006, ...,2011 and each L. = 1,2. As in Section 3, we
then actually combine H(L, 2006),. .., H(L, 2011) into a single histogram for each

L, the results of which are shown in Figure 4.
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50%

40%

Frequency
w
<
>

20%

10%

0%

mean = 2.5
mediarr 2
min =0
max =14
stdev = 2.8

0 2 4 6 8 101214 16 18 20 22 24 26 28 30
Switch Measure

Figure 4: Histograms illustrating the sensitivity of the CM+ rankings of the top

teams to modest changes in the win-loss outcomes of inconsequential games.

We can compare Figure 4 directly with Figure 1 of Section 3. Note in partic-
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ular that all histograms are plotted on the same scale. Looking at both the plots and
summary statistics, we see very clearly that the distributions in Figure 4 are con-
siderably lower than those in Figure 1. This demonstrates that, indeed, our CM+
rankings are less sensitive than the CM rankings under the same number of switches
(L =1 or L = 2), and higher values of I" will further stabilize the robust rankings.

We conduct one last set of experiments to compare directly the sensitivity
of the CM and CM+ rankings. Again, we fix I' = 5 and take L = 1,2. For each
L, the histogram corresponding to L in Figure 4 is based on all possible switches
of L games. For each of these same switches, we also calculate the switch measure
for the regular CM rankings just as in Section 3. In Figure 5, we then plot the point
(x,y), where x is the CM switch measure for that instance and y is the CM+ switch
measure for the same instance. Then, over all switches, to show the frequency for
various (z, y) pairs, we use a bubble chart, where the area of a bubble is proportional
to the frequency of its (x, y) center. Please also note that the line “x = y” is plotted
for reference.

L=1 for =5 L=2 for=5
25 2 25 2
20 3 20 7
15 a 15 /s

10

Robust Switch Measure
SN

Robust Switch Measure
AN

0 10 20 20
Colley Switch Measure Colley Switch Measure

Figure 5: Bubble plots of CM+ versus CM switch measures. CM+ has I' = 5 in
both plots. Also, L = 1,2, and the instances are all switches of L inconsequential
games. The line “z = y” is plotted for reference.

Figure 5 shows clearly that the CM+ rankings are much less sensitive than
the CM rankings on the same instances. Specifically, the fact that most bubbles are
below the z = y line illustrates that, on any given instance, the switch measure for
CM+ is less than that of CM. We also note that the CM+ rankings are particularly
successful at lessening the sensitivity of the worst-case switch measures for CM
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(approximately 15-20 for L = 1 and 20-25 for L = 2).

6 Conclusion

In recent years, the desire to develop robust analytical models has emerged in many
fields, including finance, medicine, and transportation, and we believe that com-
puter sports rankings can also benefit from increased robustness. This paper has
introduced a particular concept of robustness for college football rankings via the
Colley Matrix method. Through experimentation, we have shown that our concept
of robustness is consistent and more robust to modest changes in the data. In addi-
tion, the time needed to compute the robust rankings (typically less than a minute)
is not an obstacle since rankings would be recalculated about once per week in
practice.

Our approach can be extended in a number of ways. First, just as the Colley
Matrix method can be applied to many sports beyond football, so can ours. This
opens the way to robust basketball rankings, chess rankings, etc. In addition, our
notion of robustness can be modified to the user’s liking. For example, simple
changes could be to alter the parameter w € [0, 1] (the winning percentage defining
the bottom teams) or to include FCS games in the inconsequential set Z. One could
also manually choose a completely different inconsequential set Z; the analysis
and the methodology of the paper will go through unchanged. For example, one
may wish to protect the rankings against games that were very close, e.g., where
the winner was determined by less than 3 points. Z could then be constructed to
contain just pairs of close games.

References

[1] Bowl Championship Series Official Website. http://www.bcsfootball.org/ .
Accessed October 4, 2011.

[2] FCS Grouping System. http://colleyrankings.com/iaagroups.html. Accessed
October 4, 2011.

[3] Peter wolfe’s college football website. http://prwolfe.bol.ucla.edu/cfootball/.
Accessed October 4, 2011.

[4] Wilson performance ratings. http://homepages.cae.wisc.edu/~dwilson/ . Ac-
cessed October 4, 2011.

18

Brought to you by | University of lowa Libraries Serials Acquisitions (University of lowa Libraries Serials Acquisitions)
Authenticated | 172.16.1.226
Download Date | 6/15/12 4:41 PM



Burer: Robust Rankings

[5] Glitch in the (Colley) Matrix puts Boise State at #10, LSU #11 in
BCS standings. http://www.sports-ratings.com/college_football/2010/12/
glitch-in-the-colley-matrix-puts-boise-state-at-10-1su-11-in-bcs-standings.
html, December 2010. Accessed October 4, 2011.

[6] Wes Colley, Alabama-Huntsville researcher, talks about his BCS error. http:
/lwww.al.com/sports/index.ssf/2010/12/wes_colley_alabama-huntsville.html,
December 2010. Accessed October 4, 2011.

[7] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Prince-
ton Series in Applied Mathematics. Princeton University Press, Princeton, NJ,
20009.

[8] D. Bertsimas and M. Sim. The price of robustness. Operations Research,
52(1):35-53, 2004.

[9] T. P. Chartier, E. Kreutzer, A. N. Langville, and K. E. Pedings. Sensitivity and
stability of ranking vectors. SIAM J. Sci. Comput., 33(3):1077-1102, 2011.

[10] B.J. Coleman. Minimizing game score violations in college football rankings.
Interfaces, 35(6):483-497, 2005.

[11] B. J. Coleman. Ranking sports teams: A customizable quadratic assignment
approach. Interfaces, 35(6):497-510, 2005.

[12] W. N. Colley. Colley’s bias free college football ranking method: The Colley
Matrix explained. Manuscript, 2002. Available at http://www.colleyrankings.
com/.

[13] L. El Ghaoui and H. Lebret. Robust solutions to least-squares problems with
uncertain data. SIAM J. Matrix Anal. Appl., 18(4):1035-1064, 1997.

[14] A.Y. Govan, A. N. Langyville, and C. D. Meyer. Offense-defense approach to
ranking team sports. J. Quant. Anal. Sports, 5(1):Art. 4, 19, 2009.

[15] D. S. Hochbaum. Ranking sports teams and the inverse equal paths problem.
In Proceedings of the Second International Workshop on Internet and Network
Economics (WINE-2006), Lecture Notes in Computer Sciences, volume 4286,
pages 307-318, 2006.

[16] ILOG, Inc. ILOG CPLEX 12.2, User Manual, 2011.

[17] J. P. Keener. The Perron-Frobenius theorem and the ranking of football teams.
SIAM Rev., 35(1):80-93, 1993.

19

Brought to you by | University of lowa Libraries Serials Acquisitions (University of lowa Libraries Serials Acquisitions)
Authenticated | 172.16.1.226
Download Date | 6/15/12 4:41 PM



Submission to Journal of Quantitative Analysisin Sports
[18] K. Massey. Statistical models applied to the rating of sports teams. Master’s
thesis, Bluefield College.

[19] MATLAB. version 7.11.0 (R2010b). The MathWorks Inc., Natick, Mas-
sachusetts, 2010.

20

Brought to you by | University of lowa Libraries Serials Acquisitions (University of lowa Libraries Serials Acquisitions)
Authenticated | 172.16.1.226
Download Date | 6/15/12 4:41 PM



	Journal of Quantitative Analysis in Sports
	Robust Rankings for College Football
	Robust Rankings for College Football
	Abstract


