
V

Programming Guide

irtual Infrastructure SDK

V E R S I O N 1 . 4

VMware, Inc.

3145 Porter Drive
Palo Alto, CA 94304
www.vmware.com

Please note that you will always find the most up-to-date technical documen-
tation on our Web site at http://www.vmware.com/support/.

The VMware Web site also provides the latest product updates.
Copyright © 1998-2006 VMware, Inc. All rights reserved. Protected by one or more of U.S. Patent Nos. 6,397,242,
6,496,847, 6,704,925, 6,711,672, 6,725,289, 6,735,601, 6,785,886, 6,789,156, 6,795,966, 6,880,022, 6,961,941,
6,961,806 and 6,944,699; patents pending. VMware, the VMware “boxes” logo and design, Virtual SMP and
VMotion are registered trademarks or trademarks of VMware, Inc. in the United States and/or other
jurisdictions. All other marks and names mentioned herein may be trademarks of their respective companies.
Revision 20060602 Version 1.4 Item: VC-ENG-Q206-231

Table of Contents
Introducing the Programming Guide _____________________________ 11
Using This Programming Guide ____________________________________13

Intended Audience ___13
Related VMware Products ___14

VMware VirtualCenter ___14
VMware ESX Server ___14
VMware GSX Server ___14

VMware SDK Architecture ___15
VMware VirtualCenter Web Service _______________________________15
VMware SDK Package ___19
Web Service Standards and the VMware SDK _______________________19

Technical Support Resources ______________________________________20

VMware SDK Key Concepts _____________________________________ 21
Path Hierarchy ___23

Escaped Characters in the VMware VirtualCenter Web Service __________25
Understanding VMware SDK Terminology ____________________________26

Object, Item, Path, Handle, and vHandle ___________________________26
Commonly Used VMware SDK Operations _________________________29

Client-Web Service Interactions ____________________________________30
Virtual Machine Identification ______________________________________32
Host Identification __33
Session Management __34
Security Model ___35
Datastores ___36

VMware SDK Management Concepts _____________________________ 37
Managing Hosts and Virtual Machines _______________________________38

Managing Hosts __38
Managing Virtual Machines _____________________________________38

Life Cycle Operations __39
Events __40
Scheduled Tasks __41
Performance Monitoring ___42
Migrating and Moving Virtual Machines ______________________________43

Migrating a Virtual Machine _____________________________________43
3

4

Moving a Virtual Machine ______________________________________43
Provisioning a Virtual Machine _____________________________________44

Developing Client Applications _________________________________ 45
Connecting to the VMware VirtualCenter Web Service __________________46
Reviewing the Web Services Description Language ____________________47

<types> Element ___47
<message> Element __47
<portType> Element __47
<binding> Element ___48
<service> Element __48

Selecting a Development Environment ______________________________49
Generating the Stub Files ___50
Communicating Securely ___51

Enabling Java Client SSL Connections _____________________________51
Creating a Simple Client __52

Simple Client Program in Java ___________________________________52
Simple Client Program in Perl ___________________________________53

Compiling the Java Client Application _______________________________57
Running the Client Application ____________________________________58

Core Client Programming Concepts for Java Programmers ___________ 59
Logging into the Web Service _____________________________________61
Permissions __62
Getting Basic Information about an Object ___________________________63
Object Inventory __64

Using GetContents to Obtain Information About Hosts and Virtual Machines
64
Using GetContents to Obtain Information About Individual Hosts and Virtual
Machines ___65

The Basic Data Synchronization Loop ________________________________66
Versions and Handles __67
Calling the GetUpdates Operation __________________________________68
Applying Changes to the Client Data ________________________________70

The Change Object ___70
Processing the Various Kinds of Change ___________________________72

Indexed and Key-based Arrays _____________________________________77
Indexed Arrays ___77
Key-based Arrays ___78
www.vmware.com

Calling the PutUpdates Operation __________________________________80
Using the PutUpdates Operation to Update the Memory Setting for a Virtual
Machine __80
Using the PutUpdates Operation to Make Changes to Array Elements ____81
Using the PutUpdates Operation to Specify a CustomProperty __________82

Running the Sample Code __83
Handling Exceptions in the Data Synchronization Loop __________________84
Testing ___85
Complete Code Listing ___86

Advanced Client Concepts for Java Programmers __________________ 87
Virtual Machine Power Operations __________________________________89

Starting or Resuming a Virtual Machine ____________________________89
Stopping or Suspending a Virtual Machine _________________________89
Boolean Flags in the VirtualMachineTools Datatype __________________90
Resetting a Virtual Machine _____________________________________91

Host Operations __92
Enabling a Host __92
Disabling a Host __92
Stopping or Restarting a Host ___________________________________93

Creating and Deleting Objects _____________________________________94
Creating an Object __94
Deleting an Object __95

Creating and Configuring a Virtual Machine ___________________________96
Creating a Virtual Machine ______________________________________96
Adding a Virtual Disk to a Virtual Machine __________________________96

Responding to Virtual Machine Questions ____________________________98
Cloning a Virtual Machine __100

Customizing a Virtual Machine _________________________________100
CloneVM Sample __103

Creating a Template __104
Specifying a Datastore __104

Renaming an Object __106
Moving Virtual Machines __107

Migrating a Virtual Machine ____________________________________107
Moving a Virtual Machine’s Virtual Disks __________________________108

Monitoring Events ___110
Event Declarations ___110
5

6

Event Logs ___110
Creating an Event Collector ____________________________________112

Task Scheduling and Monitoring __________________________________114
Active Tasks and Scheduled Tasks _______________________________114
Monitoring Tasks __114
Creating New Scheduled Tasks _________________________________116
Running a Scheduled Task _____________________________________118
Ending a Task ___118

Collecting Performance Data _____________________________________119
VirtualCenter Perf Collector ____________________________________119
Filtered Perf Collectors __120
Comparing VirtualCenter and Filtered Perf Collectors ________________121
Performance Metric Data Model ________________________________121
Creating a VirtualCenter Perf Collector ___________________________122
Creating a Filtered Perf Collector ________________________________122
Collecting Current Performance Data ____________________________123
Collecting Historical Data ______________________________________125

Changing Permissions __127
Taking a Snapshot of a Virtual Machine _____________________________128
Exception Handling and Faults ____________________________________129

Core Client Concepts for Perl Programmers ______________________ 133
Using SOAP::LITE with VMware SDK ________________________________135
Creating a SOAP::LITE Object _____________________________________136

SOAP::Lite Deserializer __136
Logging into the Web Service ____________________________________138
Permissions ___139
Retrieving the Handle for an Object ________________________________140
Getting Basic Information about an Object __________________________141
Object Inventory ___142

Handling Complex Objects in SOAP::Lite __________________________142
Using GetContents to Obtain Information About Hosts and Virtual Machines
143
Using GetContents to Obtain Information About Individual Hosts and Virtual
Machines __143
www.vmware.com

The Basic Data Synchronization Loop _______________________________150
Versions and Handles ___151
Calling the GetUpdates Operation _________________________________152
Applying Changes to the Client Data _______________________________155

The Change Object __155
Processing the Various Kinds of Change __________________________156

Indexed and Key-based Arrays ____________________________________163
Indexed Arrays __163
Key-based Arrays __163
Determining the Array Category ________________________________164

Calling the PutUpdates Operation _________________________________166
Using the PutUpdates Operation to Update the Memory Setting for a Virtual
Machine ___166
Using the PutUpdates Operation to Make Changes to Array Elements ___167

Running the Sample Code _______________________________________169
Fault Handling in SOAP::Lite ______________________________________170
Testing __171
Complete Code Listing __172

Advanced Client Concepts for Perl Programmers __________________ 173
Virtual Machine Power Operations _________________________________175

Starting or Resuming a Virtual Machine ___________________________175
Stopping or Suspending a Virtual Machine ________________________176
Boolean Flags in the VirtualMachineTools Datatype _________________177
Resetting a Virtual Machine ____________________________________178

Host Operations ___179
Enabling a Host ___179
Disabling a Host ___180
Stopping or Restarting a Host __________________________________180

Creating and Deleting Objects ____________________________________182
Creating an Object ___182
Deleting an Object ___185

Creating and Configuring a Virtual Machine __________________________187
Creating a Virtual Machine _____________________________________187
Adding a Virtual Disk to a Virtual Machine _________________________188

Responding to Virtual Machine Questions ___________________________191
Cloning a Virtual Machine __195

Customizing a Virtual Machine _________________________________195
7

8

CloneVM Sample __198
Creating a Template __199

Specifying a Datastore __200
Renaming an Object __202
Moving Virtual Machines __204

Migrating a Virtual Machine ____________________________________205
Moving a Virtual Machine’s Virtual Disks __________________________207

Monitoring Events ___208
Event Declarations ___208
Event Logs ___208
Creating an Event Collector ____________________________________211

Task Scheduling and Monitoring __________________________________214
Active Tasks and Scheduled Tasks _______________________________214
Monitoring Tasks __214
Creating New Scheduled Tasks _________________________________218
Running a Scheduled Task _____________________________________222
Ending a Task ___222

Collecting Performance Data _____________________________________224
VirtualCenter Perf Collector ____________________________________224
Filtered Perf Collectors __225
Comparing VirtualCenter and Filtered Perf Collectors ________________226
Performance Metric Data Model ________________________________227
Creating a VirtualCenter Perf Collector ___________________________227
Creating a Filtered Perf Collector ________________________________228
Collecting Current Performance Data ____________________________230
Collecting Historical Data ______________________________________233

Changing Permissions __237
Taking a Snapshot of a Virtual Machine _____________________________239

Sample Applications ___ 241
Proxy Layer Abstraction ___243

VMAKit Public Interface _______________________________________243
VmaProxy Object __243

Web-based Monitoring and Management Application _________________246
Web Application Architecture __________________________________246
Using the Web-based Monitoring and Management Application _______248
www.vmware.com

Inventory and Virtual Machine Provisioning Application ________________250
Alerts Application __252

Building and Running the Alerts Application _______________________252
Alerts Application Source Files __________________________________253

VMA Viewer Application ___254
Building the VMA Viewer Application ____________________________254
VMA Viewer Application Source Files _____________________________255

PerfMon Application (C#) __256
WS-I Test Application ___258

WS-I Test Application Source Files _______________________________258
Running the WS-I Test Application ______________________________258

SimpleListing Application __259
Building and Running the SimpleListing Application ________________259
SimpleListing Application Source Files ___________________________259

VMPowerOps Application __261
Building and Running the VMPowerOps Application ________________261
VMPowerOps Application Source Files ___________________________261

PerfMon Application (Visual Basic) _________________________________263
TestOps Application __265

TestOps Application Source Files ________________________________265
Running the TestOps Application _______________________________265

Client Development Environments _____________________________ 267
Selecting a Development Environment _____________________________268
IBM Websphere Software Developer Kit _____________________________269

Installing the IBM Websphere Software Developer Kit ________________269
Sample Application Developed by Using the IBM Websphere Software
Developer Kit ___269
Running the MoveVM Java Sample with the IBM Websphere Software
Developer Kit ___269

Microsoft Visual Studio .NET and .NET Framework _____________________271
VMware SDK Applications Developed with .NET ____________________271

Apache Axis __273
SOAP::LITE for Perl __274

Testing a SOAP::Lite Installation _________________________________274
9

10
Troubleshooting ___ 275
Troubleshooting the VMware SDK _________________________________276
Problems Connecting to VMware VirtualCenter _______________________279

Client Can’t Connect to the Web Service __________________________279
Web Service Can’t Connect to VirtualCenter _______________________279

Viewing the Dump File __281
Customizing the Dump File ____________________________________281

Glossary __ 283

Revision History ___ 287

Index __ 289
www.vmware.com

C H A P T E R 1

Introducing the Programming Guide
The purpose of this programming guide is to help you develop a client application that you can
use to connect to the VMware VirtualCenter Web Service. Developers who use this manual should
be familiar with the operation and management of VMware® VirtualCenter, VMware® ESX Server™,
VMware® GSX Server™, and other VMware products.

We discuss the following topics in this programming guide:

• VMware SDK Key Concepts on page 21

This chapter introduces you to the key concepts you should know before building a client
application.

• VMware SDK Management Concepts on page 37

This chapter describes the different management tasks you can perform on both hosts and
virtual machines with the VMware SDK product.

• Developing Client Applications on page 45

This chapter provides an overview of the steps you should consider when building your
client application.
11

Virtual Infrastructure SDK Programming Guide
• Core Client Programming Concepts for Java Programmers on page 59

This chapter summarizes best practices in building a client application in Java.

• Advanced Client Concepts for Java Programmers on page 87

This chapter provides additional programming concepts that build upon the basic concepts
described in the preceding chapter.

• Core Client Concepts for Perl Programmers on page 133

This chapter summarizes best practices in building a client application in SOAP::LITE for Perl.

• Advanced Client Concepts for Perl Programmers on page 173

This chapter provides additional programming concepts that build upon the basic concepts
described in the preceding chapter.

• Sample Applications on page 241

This chapter provides examples of client applications that perform particular tasks. It includes
a description of how the sample applications were conceived and designed.

• Client Development Environments on page 267

This chapter describes the different development environments you can use to develop your
client application.

• Troubleshooting on page 275

This chapter describes some troubleshooting tips if you have difficulties with the VMware
VirtualCenter Web Service.
www.vmware.com
12

C H A P T E R 1 Introducing the Programming Guide
Using This Programming Guide
This Virtual Infrastructure SDK Programming Guide is a companion book to the Virtual Infrastructure
SDK Reference Guide.

The Virtual Infrastructure SDK Programming Guide includes a detailed description of VMware Virtual
Infrastructure SDK (VMware SDK) concepts and how clients interact with the VMware VirtualCenter
Web Service. We discuss how to create a simple client application, then discuss basic and
advanced programming concepts to help you build your client application. Finally, we discuss the
different developer environments you may use, followed by a description of the sample and
reference applications supplied in the VMware SDK package.

The Virtual Infrastructure SDK Reference Guide contains a description of the data models, or logical
structure of the VMware VirtualCenter Web Service. This is followed by a list of the datatypes
present in vma.wsdl. Finally, this guide contains a comprehensive list of all the Web service
operations, including its input message, its output message, and any Faults.

Note: Be sure to read this programming guide before using the VMware SDK. The programming
guide contains information that helps you understand this product, and enhances your use of the
VMware SDK.

Intended Audience
This programming guide is written for programmers that are familiar with Web services concepts
and principles. Readers of this manual should be comfortable with developing system
administration and system monitoring programs and be familiar with general debugging
techniques. In addition, developers who use this manual should be familiar with the operation and
management of VMware VirtualCenter, VMware ESX Server and other VMware products.
13

Virtual Infrastructure SDK Programming Guide
Related VMware Products
Note: In this release, the VMware SDK supports VMware VirtualCenter 1.2, ESX Server 2.0.1 2.1.x,
and 2.5, and GSX Server 3.1.

VMware VirtualCenter
VMware VirtualCenter is a software solution for deploying and managing virtual machines across
multiple server machines running ESX Server and GSX Server™ hosts. It enables customers to
manage a distributed, heterogeneous computing environment as a single pool of computing
resources. VirtualCenter includes a new technology called VMotion™ that enables the seamless
migration of running virtual machines across hosts with no service interruption.

VirtualCenter provides virtual infrastructure services and functionality in five areas:

• Centralized management of large virtual machine environments through a single user
interface

• Automated virtual machine provisioning

• Virtual machine performance and workload analysis

• Virtual machine migration, including VMotion

• Secure access control that integrates into existing Microsoft® Windows® user management
systems

VMware ESX Server
VMware ESX Server is virtual infrastructure software for partitioning, consolidating and managing
systems in mission-critical environments. ESX Server and VMware Virtual Infrastructure Nodes
provide a highly scalable virtual machine platform with advanced resource management
capabilities, which can be managed by VMware VirtualCenter.

VMware GSX Server
VMware GSX Server is an enterprise-class virtual infrastructure software for x86-based servers. It is
used for server consolidation, disaster recovery and streamlining software development processes.
Tight integration with VMware VirtualCenter enables GSX Server to deliver exceptional
manageability and scalability.

Note: VMotion is not supported with GSX Server in this release.
www.vmware.com
14

C H A P T E R 1 Introducing the Programming Guide
VMware SDK Architecture
The VMware SDK comprises two components.

• VMware VirtualCenter Web Service — Includes the file, vma.exe (starts the Web service
manually), vmaConfig.xml (Web service configuration file) and other associated files.

• VMware SDK package — SDK documentation, including the sample code and a README file.

VMware VirtualCenter Web Service
The VMware VirtualCenter Web Service is installed as part of the VMware VirtualCenter installation.
Refer to the VirtualCenter documentation for complete information on installing and verifying the
installation of this Web service.

The VMware VirtualCenter Web Service architecture is displayed in the following diagram:

The VMware VirtualCenter Web Service provides a Web services interface to ISV Management
Servers. These servers may also receive information directly from ISV Agents that exist on the
virtual machines, using their own proprietary protocol.

The Web service manages a collection of objects that represent tasks, schedules, events,
performance collectors, virtual machines, Farms, Farm groups, virtual machine groups, and hosts.
The objects are organized in a hierarchy, and are identified by using the full path name in the
hierarchy. A path is like the full path name of a file (for example, /vcenter/farm1/host2) and
an object is described by an XML document that is the value of the object. We provide more
details of paths, objects, and related terms in the next chapter.

VMware VirtualCenter
Client GUI

VMware
Proprietary
Protocol

VMware VirtualCenter
Web
Services
Interface

VirtualCenter DB

SOAP/HTTPS

VMware Agent

ISV
Management

Server

Management
Server DB

ESX01.vmware.com

ESX02.vmware.com

ESX03.vmware.com

VMware
Proprietary
Protocol
15

Virtual Infrastructure SDK Programming Guide
vma.exe Program
You can use the vma.exe command-line program to start the Web service manually. Execute this
program on the command line. Type C:\Program Files\VMware\VMware
VirtualCenter \vma.exe -help for a list of the options for this command. Refer to the
section titled “Changing VMware Web Service Options After Installation” in the VMware
VirtualCenter User’s Manual for complete information about this program.

vmaConfig.xml File
The vmaConfig.xml file configures the VMware VirtualCenter Web Service. Here is an example
of this file:

<vma>
<service>
<wsdl>vma.wsdl</wsdl>
<eventlog rollover="true" level="info" file="vma" console="true" />
<sslport>8443</sslport>
<externalSchemas>
<schema>autoprep-types.xsd</schema>

</externalSchemas>
<sslCert>C:\Documents and Settings\All Users\Application
Data\VMware\VMware VirtualCenter\VMA\server.pem</sslCert>

<sslCAChain>C:\Documents and Settings\All Users\Application
Data\VMware\VMware VirtualCenter\VMA\root.pem</sslCAChain>

</service>
<subjects>
<subject>
<implementation>VCenter 1.1</implementation>
<path>/vcenter</path>
<hostname>VC-Hostname</hostname>
<port>905</port>
<eventlog level="info" />
<ssl>true</ssl>
<preload>true</preload>
<index>
<defaultFarm>Default Farm</defaultFarm>

</index>
</subject>

</subjects>
</vma>

This file comprises three sections:

• service

• externalSchemas

• subjects
www.vmware.com
16

C H A P T E R 1 Introducing the Programming Guide
service — The service section includes information on how to configure the Web service.
You can configure the elements in this section by editing vmaConfig.xml (eventlog element)
and running the vma command (all other elements in this section). For an example of using the
vma command, see the example following this table. For a complete list of vma options, refer to
the section titled “Changing VMware Web Service Options After Installation” in the VMware
VirtualCenter User’s Manual.

Element Description

eventlog Specifies event logging. You may update the values for this element by editing
vmaConfig.xml.

• rollover — Specifies whether or not the event log is a rollover log. If “true” (the default value),
then the event log comprises rollover log files. There are 10 event log files, by default. When

each log file reaches its maximum size, then logging starts in a new log file. For example, if
vma-0.txt reaches 1000KB, then new logging information is written to vma-1.txt.

When the 10th log file reaches 1000KB, then vma-0.txt is overwritten with the new
information.

• level — Level of information contained in the basic event log file. The default value is “info”.

However, you may change the log level to “verbose” for additional information.

• file — Name of the event log file. The default name is “vma”.

• console — Applicable when the Web service (vma.exe) is running on a command line in a

console (or terminal) window. Acceptable values are “true” or “false”. If “true”, then the event
log is printed to the console window as well as the event log file.

• fsizeLimit — Maximum log file size, in KB, before the log rolls over to the next file. The default

size is 1000KB.

• fcountLimit — Maximum number of files in the event rollover logs. The default number is 10.

For example, if the log file name is vma, then the first log file is vma-0.txt, the second log
file is vma-1.txt, and so on.

sslport The SSL port number at which the Web service listens. Clients should use the HTTPS protocol to
send requests to this port. You may update the value for this element by running the vma

command with the -VMAport option.

sslCert Certificate file in Privacy Enhanced Mail (PEM) format. You may update the value for this

element by running the vma command with the -sslCert option.

sslCAChain Certificate CA chain file in PEM format. You may update the value for this element by running

the vma command with the -sslCAChain option.

sslPrivateKey (Encrypted and stored in the Windows registry.) Private key file in PEM format. You may update

the value for this element by running the vma command with the -sslPrivateKey option.
17

Virtual Infrastructure SDK Programming Guide
For example, if you want to update the SSL security information, then complete the following:

1. Stop the Web service. Refer to section titled “Changing VMware Web Service Options After
Installation” in the VMware VirtualCenter User’s Manual.

2. Execute the vma command with the -update option on the command line:

cd C:\Documents and Settings\All Users\Application
Data\VMware\VMware\VirtualCenter\VMA

C:\Program Files\VMware\VMware VirtualCenter \vma.exe -update
-sslCert server.pem -sslCAChain root.pem -sslPrivateKey server.pem
-sslPassphrase password

3. Restart the Web service.

externalSchemas — The externalSchemas section lists all .xsd files that must be
publicly accessible along with vma.wsdl. autoprep-types.xsd is the customization
schema used to customize the guest operating system in a virtual machine. See Customizing a
Virtual Machine on page 100.

Note: Do not edit the externalSchemas section.

subjects — The Web service is configured to interface with multiple sources of information and
display the information from each source in a client view. Each configuration is called a subject. In
this release, only a single subject is supported. The current subject is a VirtualCenter
implementation.

Note: Do not edit the subjects section unless asked to do so by Support.

sslPassphrase Passphrase for the private key. It is used only once to decrypt the Private key. The decrypted
private key is stored in the Windows Registry with the Windows encryption method. You may

update the value for this element by running the vma command with the -sslPassphrase
option.

Element Description

implementation Name of the subject; in this case, VirtualCenter.

path Path to the contents of the subject; in this case, the /vcenter directory.

hostname Host name where VirtualCenter is running.

port Port number at which VirtualCenter listens; by default, this is 905. Do not change this port

number unless you have already changed the default port number for VirtualCenter.

eventlog level Specifies the amount of detail in the advanced debugging event log file. The default value

is “info”.

Element Description
www.vmware.com
18

C H A P T E R 1 Introducing the Programming Guide
VMware SDK Package
Obtain the VMware SDK package on the Web at www.vmware.com/support/developer/vc-sdk. This
page includes information on what is contained in the package and the instructions for
downloading this package.

Web Service Standards and the VMware SDK
• VMware SDK strives to conform to the Web Services Interoperability organization (WS-I) Basic

Profile 1.0. The WS-I organization has a wide industry following with 127 members (see
www.ws-i.org.

The mission of WS-I is to promote interoperability of Web services across platforms, operating
systems, and programming languages. By conforming to the WS-I Basic Profile, we ensure that the
VMware SDK can be used from within the widest range of development environments.

A WS-I profile is a prescription for the use of a set of existing standards at specific versions. For
example, the WS-I Basic Profile 1.0 covers XML Schema 1.0, SOAP 1.1, WSDL 1.1, and UDDI 2.0. In
addition to prescribing these standards, the profile also narrows these standards by specifying best
practices, and excluding optional or loosely specified features.

The WS-I basic profile is expressed as a set of assertions about the format, and sometimes the
interpretation of SOAP messages and the WSDL document. The verification of most of these
assertions can be done automatically by examining artifacts (SOAP messages and the WSDL file)
exchanged between a Web service client and server. The WS-I organization has published tools
that do this automatic verification. VMware, Inc. uses these tools on a regular basis to test the
conformance of the VMware SDK to the WS-I Basic Profile 1.0.

In addition to WS-I, VMware, Inc. also actively monitors the evolution of other Web Services
standards that may be relevant to its domain.

• DMTF — www.dmtf.org

• W3C — www.w3.org

ssl Specifies whether or not SSL should be used for communicating between the Web service
and VirtualCenter. If true, SSL is used. If false, a non-SSL port is used.

preload By setting this element to true, the VirtualCenter information is loaded immediately upon
startup of the Web service, rather than upon the first request from a Web service client.

defaultFarm Name of a Farm in the /vcenter hierarchy. The default value for this element is “Default
Farm” that corresponds to the /vcenter/Default Farm directory.

Element Description
19

http://www.ws-i.org
http://www.vmware.com/support/developer/vc-sdk
http://www.dmtf.org
http://www.w3.org

Virtual Infrastructure SDK Programming Guide
Technical Support Resources
Refer to the following for additional information.

• VMware SDK — www.vmware.com/support/developer/vc-sdk

• VMware ESX Server — www.vmware.com/products/server/esx_features.html

• VMware GSX Server — www.vmware.com/products/server/gsx_features.html

• VMware VirtualCenter — www.vmware.com/products/vmanage/vc_features.html

• W3C SOAP 1.1 Specifications — www.w3.org/TR/SOAP/

• XML Schema — www.w3.org/2001/XMLSchema

• HTTPS (SSL v3) — wp.netscape.com/eng/ssl3/ssl-toc.html

• WSDL 1.1 — www.w3.org/TR/wsdl

• HTTP 1.1 — www.ietf.org/rfc/rfc2616.txt

• XML 1.0 — www.w3.org/TR/REC-xml

• Perl — www.cpan.org
www.vmware.com
20

http://www.vmware.com/products/server/esx_features.html
http://www.vmware.com/support/developer/vc-sdk
http://www.vmware.com/products/vmanage/vc_features.html
http://www.w3.org/TR/SOAP/
http://www.w3.org/2001/XMLSchema
http://wp.netscape.com/eng/ssl3/ssl-toc.html
http://www.w3.org/TR/wsdl
http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/TR/REC-xml
http://www.cpan.org
http://www.vmware.com/products/server/gsx_features.html

C H A P T E R 2

VMware SDK Key Concepts
To use the VMware VirtualCenter Web Service efficiently, you first need to understand the
terminology associated with this product. In this section, we’ll describe VMware VirtualCenter
terminology and its association with the VMware SDK.

VirtualCenter Term SDK Term Possible Paths to the Object

Server Farm Container /vcenter, represents the highest level in the VirtualCenter hierarchy

(Server Farm). It is a logical group that acts as a Container. All farm groups,
Farms, hosts, virtual machine groups, and virtual machines belong to the

/vcenter hierarchy.

Farm Group Container A Farm group is also a logical group that acts as a Container. It belongs to

the /vcenter hierarchy, and contains other Farm groups and Farms. For
example:

• /vcenter/<Farm_Group>

• /vcenter/<Farm_Group>/<Farm_Group>
21

Virtual Infrastructure SDK Programming Guide
Farm Farm A Farm in the VMware SDK represents the same entity in VirtualCenter. It
also belongs to the /vcenter hierarchy, and contains hosts, virtual

machines, and virtual machine groups. For example:

• /vcenter/<Farm_Group>/<Farm>

• /vcenter/<Farm>

Host Host A host in the VMware SDK represents the same entity in VirtualCenter. It
also belongs to the /vcenter hierarchy, and is a member of a Farm.

The SDK also has a special view, /host, that contains all hosts. When

performing an operation on a host, you can use either the /host
hierarchy, or the /vcenter hierarchy. For example:

• /vcenter/<Farm_Group>/<Farm>/<host>

• /vcenter/<Farm>/<host>

• /host/<host>

Virtual Machine

Group

Virtual Machine

Group

A virtual machine group in the VMware SDK represents the same entity in

VirtualCenter. It also belongs to the /vcenter hierarchy, and contains
virtual machines and virtual machine groups. For example:

• /vcenter/<Farm_Group>/<Farm>/

<Virtual_Machine_Group>

• /vcenter/<Farm>/<Virtual_Machine_Group>

Virtual machine Virtual machine A virtual machine in the VMware SDK represents the same entity in
VirtualCenter. It also belongs to the /vcenter hierarchy, and is a member

of a virtual machine group.

Like /host, the SDK also has a special view, /vm, that contains all virtual

machines. When performing an operation on a virtual machine, you can
specify a path in either the /vm hierarchy, or the /vcenter hierarchy. For

example:

• /vcenter/<Farm_Group>/<Farm>/

<Virtual_Machine_Group>/<Virtual_machine>

• /vcenter/<Farm_Group>/<Farm>/<Virtual_machine>

• /vcenter/<Farm>/<Virtual_Machine_Group>/

<Virtual_Machine>

• /vm/<Virtual_Machine>

VirtualCenter Term SDK Term Possible Paths to the Object
www.vmware.com
22

C H A P T E R 2 VMware SDK Key Concepts
Path Hierarchy
The VMware VirtualCenter Web Service exports the following predefined paths.

Note: Do not attempt to rename any of these predefined paths. If you do so, the Web service may
stop abruptly.

host

/

vm

datastore

task

vcenter

event

schedule

template

webservice

perf

customProperty

unknownVM
23

Virtual Infrastructure SDK Programming Guide
The following table describes these predefined paths:

Path Description

customProperty Lists the names of all defined customProperties. This list is also available by using
the customPropertyDef handle in the HostInfo or VirtualMachineInfo datatypes.

This is an array of type Property where:

• key is the index of the custom property.

• val is the name of the custom property.

Clients may update the existing values by using the PutUpdates operation and

can add new properties only through the use of VirtualCenter.

/datastore Lists the datastores that are accessible. A datastore indicates a storage location

where a virtual machine may place its virtual disk(s) and associated files. The
Web service exports the path /datastore that identifies an object of type

DatastoreInfoList, containing information about all the datastores
known by the Web service.

/event List of all events and event declarations.

/host The Web service provides a flat name space for all the host machines under

management in /host. A host is referenced both in the /host and in the
/vcenter directories. Each name in the /host directory is represented as a

string that is a Fully Qualified Domain Name (FQDN); for example,
esx1.vmware.com.

/host enables client programs to reference a host machine without knowing
the exact location of the host in the /vcenter hierarchy.

/perf Lists all objects that collect performance statistics at various interval rates.

/schedule Lists tasks that are scheduled for the future. Each task runs at its scheduled time.

/task Lists tasks that are currently running or recently finished.

/template Lists all of the templates that an Administrator may make available to clients for

cloning operations.

/unknownVM Lists any running virtual machines that have a duplicate UUID. As soon as the

virtual machine is powered off, VirtualCenter assigns it a UUID and the Web
service removes this virtual machine from the /unknownVM directory and

places it in the /vm directory.

/vcenter Reflects the hierarchy that is present in VirtualCenter. See the VirtualCenter

documentation for additional information on Farm groups, Farms, and Virtual
machine groups.
www.vmware.com
24

C H A P T E R 2 VMware SDK Key Concepts
Escaped Characters in the VMware VirtualCenter Web Service
Clients need to escape the % (percent) character (unless it is being used to start an escape
sequence) and the / (slash) character (unless it is being used as a path separator) in the path
parameter to the ResolvePath operation and in the name parameter to the Create and Rename
operations. For example, clients must send the % character as %25.

Similarly, the % and / characters are escaped in the name parameter in an Item datatype or the
path parameter in a Host or VirtualMachine datatype.

Note: Clients can choose to escape any additional characters in these parameters.

/vm The Web service provides a flat name space for all the virtual machines under
management in /vm. Virtual machines are referenced both in the/vm and in the

/vcenter hierarchies. Each name in /vm is presented as a string that is a
hexadecimal (HEX) representation of the UUID (Universally Unique Identifier); for

example, f81d4fae-7dec-11d0-a765-00a0c91e6bf6.

/vm enables client programs to reference a virtual machine without knowing

exactly where the virtual machine is located in the /vcenter hierarchy.

/webservice Provides information about the VMware VirtualCenter Web Service.

Path Description
25

Virtual Infrastructure SDK Programming Guide
Understanding VMware SDK Terminology
The concepts defined in this section are used throughout this guide and the Virtual Infrastructure
SDK Reference Guide. Familiarize yourself with this terminology to enhance your use of the VMware
SDK.

Object, Item, Path, Handle, and vHandle
This section includes descriptions for the different types of objects and Items (that describe child
objects) as well as paths (that identify objects), and handles and vHandles to an object.

Object
The VMware VirtualCenter Web Service interface provides operations to manage a collection of
objects. This is a complete list of objects managed by the Web service:

• Container

• Farm

• VirtualMachineGroup

• Host

• VirtualMachine

• Task

• TaskSchedule

• EventDeclList

• EventCollection

• PerfFilter

• PerfCollection

• Template

See the GetContents operation in the Virtual Infrastructure SDK Reference Guide to see where in the
hierarchy the various objects appear.

An object has a type associated with it and is described by an XML document, that is the value of
the object. If you use the file system analogy, Container, Farm, and VirtualMachineGroup are
comparable to directories in a file system while all the other objects are comparable to individual
files in a file system.

Nodes of the XML document that represent the object are also referred to as “interior nodes” of the
object. For example, the “hardware” node of a VirtualMachine object is considered an interior node
of the virtual machine object.
www.vmware.com
26

C H A P T E R 2 VMware SDK Key Concepts
Item
An Item is a special element of the Container, Farm and VirtualMachineGroup objects. It provides
information about a child object contained in the parent object. An Item has a key, a name, type,
and access control list (ACL) associated with it. The path of the parent object may be concatenated
with the name of an Item, to form a new path. This new path points to an object whose type is
defined by the Item.

The key value is the handle to the object identified by this new path. Clients may pass the handle
(key value) as a parameter to the GetContents operation. A ResolvePath operation on the new path
returns the same value as the key value, as long as the object identified by the path still exists and
is the same object.

For example, executing the GetContents operation on the handle for /vcenter returns an
object of type Container, that contains an array of Items. Suppose that one of the Items in the array
has the name farm1. The path /vcenter/farm1 constitutes a new path and the value for
Item.key is the handle to this new path.

Container
A Container is an object that comprises an array of Items. See the GetContents section in the
Virtual Infrastructure SDK Reference Guide to see the list of possible nodes (in the hierarchy exported
by the Web service) that can be of type Container and also the type of Items that can be in a
Container.

For example, Containers represent VirtualCenter Farm groups in /vcenter. We also use
Containers in the /host and /vm hierarchies (containing hosts and virtual machines,
respectively).

Farm
A Farm is an object that comprises an array of Items. We use it to represent VMware VirtualCenter
Farms and it appears as nodes in the /vcenter hierarchy. Farms may contain only Items of type
VirtualMachineGroup, VirtualMachine or Host.

VirtualMachineGroup
A VirtualMachineGroup is an object that comprises an array of Items. We use it to represent
VMware VirtualCenter Virtual machine groups and it appears as nodes in the /vcenter hierarchy.
VirtualMachineGroups may only contain Items of type VirtualMachineGroup and VirtualMachine.

Path
A path is a string that names an object in the Web service hierarchy just like a full path name
names a file in a file system. For example, /vcenter/FarmGroup/Farm/VMGroup/
Win2000 is a path that identifies a virtual machine object while /vcenter/FarmGroup/
Farm/esx01.vmware.com identifies a host object.
27

Virtual Infrastructure SDK Programming Guide
Paths that do not name an object are not valid.

Clients traverse the hierarchy by starting with the / directory or with one of the predefined paths
exposed by the Web service. (The list of predefined paths is listed in the preceding section.) The
ResolvePath operation takes a path as its only input parameter and returns a handle to the object
that is referenced by the path. A GetContents operation on the handle returns the object specified
by the handle.

VMware VirtualCenter Web Service paths and names follow the syntactic rules for abs_path and
path_segments as described in section 3 of RFC2396 at www.ietf.org/rfc/rfc2396.txt. All paths
and names that are communicated between clients and the Web service have reserved characters
that are escaped.

See Item on page 27 to learn how to generate new paths and traverse the hierarchy.

Handle
A handle is a temporary token used by a Web service client to invoke Web service operations that
require a reference to an object. An object handle is analogous to a file handle (descriptor)
returned by a operating system. This is similar to UNIX, when a file is opened using the “open”
system call. Like a file handle, an object handle is a temporary handle that always refers to the same
object.

However, unlike files, “opening” a Web service object and holding its handle does not prevent the
object from being deleted. In this regard, object handles are more similar to socket handles than to
file handles. The object handle remains unchanged, even if the object is renamed or is moved to a
different part of the path hierarchy. A handle is a useful, path-independent way to reference an
object.

Handles always provide a unique reference to a given object. There can never be more than one
valid handle that refers to the same object in a single session. You may compare handles for
equality and check if they denote the same underlying object.

Handles are valid only for the login session. They expire once the session expires. Clients should not
store handles and expect to use them at a later date if the session has expired.

vHandle
Objects may change over a period of time; for example, users can add a new disk to a virtual
machine, the name of a FarmGroup may change, and so on. A vHandle is an object handle that
refers to the specific memory state of an object at a certain point in time, and has a version number
associated with it. The version number determines the specific memory state.

Versioned handles allow a client application to invoke a GetUpdates operation and retrieve
updates that are more recent (newer) than the version number of the versioned handle. Similarly,
clients can pass a versioned handle to the PutUpdates operation to perform version checking in
www.vmware.com
28

http://www.ietf.org/rfc/rfc2396.txt

C H A P T E R 2 VMware SDK Key Concepts
the Web service when updating object values. However, clients should not try to interpret
vHandles.

Because clients provide vHandles as arguments to the GetUpdates operation, the Web service
doesn’t need to send all of the data constituting an object whenever the object changes. Instead,
the Web service can send changes to the object, relative to the client-specific vHandle specified in
the GetUpdates operation. Two vHandles match if they refer to the exact same version of the same
object.

Handles and vHandles may become invalid at any time. For example, this can happen if the
underlying object is deleted by another client, or if the Web service is restarted. A client must keep
a mapping of the object’s path to handles and vHandles. If a Web service operation returns a
FaultKind of BadVersion, then the client must try to get a fresh vHandle by using the ResolvePath
operation.

Commonly Used VMware SDK Operations
This section gives a brief overview of three of the most common operations.

GetContents
A client executes the GetContents operation, passing in a handle as a parameter, in order to
retrieve an XML document that describes the object identified by the handle. The XML document
is the value of the object. For example, executing the GetContents operation on the handle for
/vm/<UUID> returns the handle, a vHandle, and an XML document describing the virtual
machine object.

GetUpdates
A client executes the GetUpdates operation, passing in one or more vHandles as a parameter, in
order to retrieve the change(s) in the object identified by the vHandle. Only the change(s), or the
“delta” is returned as a diff of the current XML document. The change(s) reflect the difference
between the object as is currently maintained by the Web service, compared with the original XML
document initially received by the client as part of the GetContents or GetUpdates operation that
returned the specified vHandle.

PutUpdates
A client executes the PutUpdates operation, passing in a vHandle or a handle and an XML
document diff (showing only changes) to the object referred to by the vHandle. Clients should
not pass in the complete XML document describing the updated object. By passing in only the
diff (the changes), the client minimizes the amount of data that it must send to the Web service.

Clients can use a handle instead of a vHandle when the client wants to update an object value,
regardless of any other updates that might have occurred concurrently. Clients should use a
29

Virtual Infrastructure SDK Programming Guide
vHandle when it wishes to update an object handle, but only if the object has not been changed
since the version represented by the vHandle.

Client-Web Service Interactions
The primary interaction between the client and the Web service involves obtaining handles to
objects identified by paths, getting XML documents that describe these objects, and then
managing these objects by receiving updates when their values change, by making changes to
the objects, by committing these changes to the Web service, or by invoking operations on these
objects.

By managing these objects, the clients can implement various kinds of application functionality
based on VMware virtual machine technology.

• Obtaining the values of objects

An object is described by an XML document that constitutes the value of the object. Clients
either have the handle to the object or get the handle by using the ResolvePath operation.
Clients then obtain the values of an object by issuing the GetContents call to the Web service
passing the handle as a parameter.

• Obtaining updates for an object

After a client has the value for an object by using the GetContents operation, it may ask for
updates or changes to that object by using the GetUpdates operation. A vHandle to that
object is passed as a parameter to the GetUpdates operation. The updates are returned as
change objects that describe only the changes to the object, thus avoiding the need to
return the entire new object to the client.

• Sending updates of values

Clients can decide to make changes to objects and then send these changes, as change
objects to the Web service, by issuing the PutUpdates operation. The change objects
describe only the changes to the object, thus avoiding the need to send the entire object to
the Web service. The vHandle or handle to the object is passed as a parameter to the
PutUpdates operation.

There are some interesting points to remember about the preceding operations.

• Only the latest updates are returned to the client from a GetUpdates call

All intermediate updates are lost. For example, if one application changes the memory size of
a virtual machine from 1GB to 2GB, and then immediately changes it back to 1GB, it is
possible that another application may never realize that this change occurred.
www.vmware.com
30

C H A P T E R 2 VMware SDK Key Concepts
• Versioning

For change objects to have a meaning, the Web service must have the vHandle of the object
on the client. For this reason, all calls to GetContents returns a vHandle for each object. All
calls to GetUpdates are required to send a vHandle (not a path or handle), as a parameter that
returns a fresh vHandle along with the updates. All calls to PutUpdates are required to send
either a handle or a vHandle.

The client is free to discard vHandles, but it then has to call GetContents each time it wants
the latest value of the object, rather than just requesting the changes through GetUpdates.
This action has the effect of increasing network traffic.
31

Virtual Infrastructure SDK Programming Guide
Virtual Machine Identification
All virtual machines are listed in the /vm directory and have a universally unique identifier (UUID)
that specifies the virtual machine during its lifetime, regardless of the host where the virtual
machine runs. The UUID does not depend upon the host machine that the virtual machine runs
on. The UUID is a 128-bit number represented in hexadecimal, with hyphens as recommended by
ISO-11578; for example, f81d4fae-7dec-11d0-a765-00a0c91e6bf6.

All virtual machines created by the Web services API or by VirtualCenter are always assigned a
UUID. However, virtual machines created by the VMware Management Interface do not have a
UUID.

The VirtualCenter product handles this case in the following manner, depending on whether or
not VirtualCenter was managing the host when the management interface created the virtual
machine.

• Case 1 — VirtualCenter is managing the host:

• When the management interface creates a virtual machine, the virtual machine is
discovered immediately.

• If the virtual machine is in the powered-off state, then it is assigned a UUID. However, if the
virtual machine is powered on or suspended, then it is assigned a UUID when it is next
powered off.

• Case 2 — VirtualCenter was not managing the host when the management interface created
the virtual machine:

• When the virtual machine is brought under management of VirtualCenter, the virtual
machine is immediately discovered.

• If the virtual machine is in the powered-off state, then it is assigned a UUID. However, if the
virtual machine is powered on or suspended, then it is assigned a UUID when it is next
powered off.

A running virtual machine with a duplicate UUID is placed in a special directory, /unknownVM.
For more information on this situation, refer to the EnableHost operation in the Virtual Infrastructure
SDK Reference Guide.
www.vmware.com
32

C H A P T E R 2 VMware SDK Key Concepts
Host Identification
Many Virtual Computing operations take a host as a parameter. The client programs may specify a
host by using any one of the following:

• Fully Qualified Domain Name (FQDN); for example, esx1.vmware.com

• IP address; for example, 172.10.20.24

• Network node name; for example, esx1

Ideally, client programs will use a FQDN to specify a host. If a node name is used, the Web service
attempts to look up the node name and convert it into a FQDN. If this succeeds, the Web service
returns the FQDN, as part of the GetContents operation and other requests. If the lookup does not
return the FQDN, then the node name is used without any changes. However, the Web service
continues to accept client requests that use just the node name.
33

Virtual Infrastructure SDK Programming Guide
Session Management
The Web service maintains session state for a client by using a special token in the HTTP header to
identify the session. A session token is an identifier given to a Web service client upon login. This
identifier is used by the client to invoke operations over multiple connections since with every
connection, the identifier must be passed in the HTTP header, over any connection.

Session tokens can be passed across multiple connections to the Web service. A session token
expires after a period of inactivity, and may expire after a certain period of time, even if it is actively
being used.

By default, there is a SSL connection from the Web service client to the Web service. Although the
default SSL port is set to 8443, you had an option to override this port during installation.

If you want to use the non-SSL port 8080 instead, add the following entry to the
vmaConfig.xml file, located in C:\Documents And Settings\All
Users\Application Data\VMware\VMware VirtualCenter\VMA.

1. Open vmaConfig.xml and look for the <service> element.

2. Add the 8080 port number.

<port>8080</port>

Note: You must restart the Web service for any changes to vmaConfig.xml to take effect.
www.vmware.com
34

C H A P T E R 2 VMware SDK Key Concepts
Security Model
The VMware VirtualCenter Web Service provides a Login call for clients to authenticate themselves
and obtain access privileges. Other Web service operations may only be called after a successful
call to Login. The client and Web service use the HTTPS protocol to secure all communication.

The Web service does not manage or expose the directory of users and groups. Instead, it relies on
a user directory provided by the host platform.

All Web service paths that identify objects have an access control list (ACL) that defines the users
and groups that have the right to perform operations on the identified objects. Each entry in the
list is of the form <user/group,rights>, where user/group specifies either a user or a group, and
rights is a set of {Browse, Interact, Configure, Administer} flags.

• Browse rights allow a user or group to get the value, but not change the value of an object;
for example, the ability to discover and monitor a virtual machine. We grant Browse
permission to all users and groups, to all top level directories listed in / other than
/vcenter.

• Interact rights allow a user or group to perform operations that change the state of a virtual
machine, or connect and disconnect removable devices. These rights are analogous to
Execute rights in file systems; for example, powering on or powering off a virtual machine.

• Configure rights allow a user or group to create virtual machine, change resource
management settings and add or remove virtual hardware. These rights are analogous to the
ability to write to a file; for example, add a new virtual disk or create a new virtual machine.

• Administer rights allow a user or group to change the permissions for an object.

Access privileges are inherited by nested paths. For example, if user A has Interact rights for the
path /vcenter, then this user also automatically gets Interact rights for the path, /vcenter/
farm1. Note that nested paths can increase access privileges, but cannot decrease them. In this
example, the path /vcenter/farm1 can increase the inherited privileges by setting the rights
explicitly to Configure.

Note: ACL checking is on by default.

You can turn this off by adding the following entry to the vmaConfig.xml file, located in
C:\Documents And Settings\All Users\Application

Data\VMware\VMware VirtualCenter\VMA.

1. Open vmaConfig.xml and look for the <subject> element.

2. (Optional) Add the following and change the authorization to false.

<authorizationEnable>false</authorizationEnable>

Note: You must restart the Web service for any changes to vmaConfig.xml to take effect.
35

Virtual Infrastructure SDK Programming Guide
Datastores
A datastore is a storage location for virtual machines. All the files constituting the virtual machine
configuration and disks are located in a datastore. On an ESX Server host, each VMFS volume is
represented as a datastore. The name of the datastore is the VMFS label.

A datastore path is a generalization of a file path that allows locating virtual machines and virtual
disks inside a datastore. It is used as the dataLocator parameter in the VirtualDiskInfo datatype
when clients create virtual disks. Similarly, a datastore path is also used as the file parameter in the
VirtualMachineSpec datatype, and as the dataLocator parameter in the MoveVM and MigrateVM
operations.

The datastore path syntax is:

datastore_path ::= <datastore> <filepath>

datastore ::= empty

'[' <name> ']'

Note the following:

• Datastore paths always use the / separator. (The \ separator is converted on Windows
systems).

• The [<host>//] notation is used to denote the special non-VMFS location used to store
the .vmx configuration file and log files of a virtual machine.

• When creating a virtual machine or virtual disk, clients can specify just the datastore.
VirtualCenter automatically assigns the file path, based on a standard file-naming convention.

• If the datastore portion is empty, ‘[]’, then the file is not located on a datastore, and the
Web service shows the host-local path. (This typically only happens for a virtual machine that
has an invalid configuration.)

Here are a few examples to illustrate the datastore name format:

[QA-SAN] X.vmdk # The X.vmdk disk on the shared QA-SAN
[AB14-DS] home/abc/Y.vmdk # Disk Y.vmdk on home/abc relative to AB14-DS shared datastore
[QA-SAN] # Root directory of the QA-SAN shared datastore
[]/path/to/x.vmdk # A host local path
[]g:/path/to/x.vmdk # Another host local path
[aarhus//] x/x.vmx # A VMX file stored in the defaultVmDir on an ESX Server host
x.vmdk # Disk x.vmdk relative to the virtual machine's configuration file
[] x.vmdk # Disk x.vmdk relative to the virtual machine's configuration file
[] [] # A relative filename []
www.vmware.com
36

C H A P T E R 3

VMware SDK Management Concepts
This chapter describes the following topics:

• Managing Hosts and Virtual Machines on page 38

• Life Cycle Operations on page 39

• Events on page 40

• Scheduled Tasks on page 41

• Performance Monitoring on page 42

• Migrating and Moving Virtual Machines on page 43

• Provisioning a Virtual Machine on page 44
37

Virtual Infrastructure SDK Programming Guide
Managing Hosts and Virtual Machines
VMware SDK enables you to monitor and manage your hosts and virtual machines.

Managing Hosts
You can use the VMware SDK to accomplish the following:

• Shut down or restart a host.

• Enable or disable a host for virtual machine operations — When the host is enabled, a client
can perform virtual machine operations on the host. When the host is disabled, a client
cannot monitor or manage any of the virtual machines on the host through VirtualCenter or
the VMware SDK.

• Obtain performance data for the host — CPU, memory, disk I/O, and network utilization.

• Obtain the status of a host.

Managing Virtual Machines
You can use the VMware SDK to accomplish the following:

• Perform power operations on virtual machines — Power on, power off, suspend, or resume
virtual machines.

• Create virtual machines — Create a new virtual machine and specify its name.

• Configure virtual machines — Configure the virtual machine’s virtual CPU, memory, disk,
network, and hardware.

• Obtain performance data for the virtual machine host — Obtain virtual CPU, memory, disk,
and network utilization.

• Monitor virtual machine events — Monitor addition or removal of virtual hardware
components, virtual machine creation or deletion, or changes in a virtual machine’s power
state.

• VMotion™ — Migrate a running virtual machine to a specific host (ESX Server only).

• Deploy templates — Deploy a virtual machine from a template.

• Create templates — Create a template from a virtual machine.
www.vmware.com
38

C H A P T E R 3 VMware SDK Management Concepts
Life Cycle Operations
These operations are used in the life cycle of hosts and virtual machines.

• Create

• Rename

• Delete

Clients can manipulate the path hierarchy by operating on Containers, Farms and
VirtualMachineGroups. Clients may also use the Create operation to bring hosts under
management of the Web service and to create new virtual machines.

For more information on these operations, see Creating and Deleting Objects on page 94 and
Renaming an Object on page 106.
39

Virtual Infrastructure SDK Programming Guide
Events
The VMware VirtualCenter Web Service records and keeps track of important events (up to 1000
events) that occur in VMware VirtualCenter. Clients can collect events on hosts or on virtual
machines, such as changes in power operations or device status (connected, disconnected, or
busy). In addition, clients can receive updates when alarms occur; for example, when memory or
CPU usage, or virtual machine heartbeat is either above or below normal.

There are five types of events:

• alert — Indicates a problem that requires attention (for example, out of memory errors,
hardware failures, and so on)

• error — Indicates an erroneous condition (for example, a system error)

• warning — Indicates a potential problem (for example, CPU utilization is at 95 percent)

• info — Indicates an event occurred; however, no action is required

• user — Indicates a user-event (for example, a user suspended a virtual machine)

Each event comprises two parts: a declaration (the type of event), and the actual event (an event
log). For more information on events, see Monitoring Events on page 110.
www.vmware.com
40

C H A P T E R 3 VMware SDK Management Concepts
Scheduled Tasks
Clients may use the Create operation to create a new task that is scheduled to run at some point in
the future. Clients can only schedule the following operations:

• Power operations — StopVM, StartVM, and ResetVM.

• PutUpdates — Changing the resource settings of a virtual machine.

• MigrateVM — Migrates a virtual machine from one host, to another host, without any
changes to the location of its virtual disk(s).

• MoveVM — Moves a virtual machine’s virtual disk(s) to a different location. Clients may
(optionally) also use this operation to move the virtual machine to a different host.

• CloneVM — Creates a new virtual machine by using as its source, an existing virtual machine
or a template.

• CreateTemplate — Creates a new template from an existing virtual machine.

You may schedule a task as a single task that runs only once, hourly, daily, weekly, or monthly.

Each task is in one of the following categories:

• scheduled

• starting

• running

• completed

• failed

• killed

We have two terms associated with a task:

• Schedule — Specifies when the task runs.

• Event — A task always generates an event when the task is complete. The task may also
generate additional events as it runs.

For more information on tasks, see Task Scheduling and Monitoring on page 114.
41

Virtual Infrastructure SDK Programming Guide
Performance Monitoring
Clients can collect performance data on hosts or on virtual machines, including CPU and memory
utilization, network and disk performance data, and floppy and CD-ROM drive performance, and so
on. You can specify the frequency of updates (polling period), the number of samples in each
update, and the performance data of interest to the client. In addition, you can retain a history for
the performance data.

Clients obtain performance statistics through a performance collector. A performance collector,
also known as a perf collector, is an object that collects a certain set of statistics at a specified
interval frequency.

Use the GetContents and GetUpdates operations to obtain current performance statistics, for a
performance monitoring/graphing tool, or similar application. Similarly, use the QueryPerfData
operation to obtain historical performance statistics.

For more information on performance monitoring, see Collecting Performance Data on page 119.
www.vmware.com
42

C H A P T E R 3 VMware SDK Management Concepts
Migrating and Moving Virtual Machines
The VMware SDK differentiates between migrating a virtual machine and moving a virtual
machine.

• MigrateVM operation — The MigrateVM operation migrates a virtual machine (its .vmx
configuration file) from one host to another host, without moving its virtual disk file(s). In this
release, the virtual machine must be in the poweredOn state for the MigrateVM operation to
succeed.

Note: The MigrateVM operation is not supported for GSX Server in this release.

• MoveVM operation — The MoveVM operation moves a virtual machine’s disk file(s) to a
different location. It also optionally moves the virtual machine’s configuration file (.vmx).

Migrating a Virtual Machine
To migrate a virtual machine, clients must know the handle to the virtual machine that is being
moved, and the handle to the destination host. If the dataLocator parameter, describing the
location of the virtual machine configuration file on the destination host, is used, then the
operation places the .vmx file where requested. Otherwise, the system determines the location of
the configuration file.

Clients can determine if the migration is successful by monitoring the ViewContents of the task
performing the migration or by monitoring the virtual machine state (the detail or host fields). If
the virtual machine has been successfully migrated, then the host field should contain the target
host handle. For more information, see Migrating a Virtual Machine on page 107.

Moving a Virtual Machine
To move a virtual machine’s disk(s), the virtual machine must be powered off and the client must
know the handle to the virtual machine. If the host parameter, providing the handle to the
destination host, is added, then both the virtual machine (its .vmx configuration file) and its
virtual disk(s) are moved.

For example, virtual machine A belongs to host A, that has its VMFS volumes on disk 1. You are
planning to move virtual machine A to host B, that has its VMFS volumes on disk 2. If you decide to
move virtual machine A’s virtual disk(s) to disk 2, then you must also move virtual machine A to
host B. If you do not move virtual machine A to host B, it has no access to its virtual disk(s). (Virtual
machine A on host A only has access to disk1, and not disk 2.)

Similar to the MigrateVM operation, the client can optionally specify the destination for the virtual
disk(s) and if moved, the virtual machine configuration file. If the client does not specify the
destination, then the system determines the destination.

Note: In this release, the host parameter is required and the dataLocator parameter is ignored.
43

Virtual Infrastructure SDK Programming Guide
For more information, see Moving a Virtual Machine’s Virtual Disks on page 108.

Provisioning a Virtual Machine
By provisioning a virtual machine, we are referring to the process of creating a functioning virtual
machine by assigning resources such as CPU, memory, and virtual hardware, and then deploying a
system image. Traditionally, users need to install the guest operating system and applications
manually. However, by using the VirtualCenter user interface or the VMware SDK, users can now
create a new virtual machine by cloning an existing one, or by deploying a new virtual machine
from a template.

The CloneVM operation creates a new virtual machine by using as its source, an existing virtual
machine or a template. Clients can choose to customize a cloned virtual machine by specifying the
right parameters. Clients can configure the guest operating system as part of the CloneVM
operation by passing in this customization from generated stub classes.

Typically, you provision a new virtual machine from an existing virtual machine that is similar to the
new one you are creating. For example, you have a virtual machine A that has Windows 2000 as its
operating system, plus a database application. You are interested in creating virtual machine B, also
with the Windows 2000 operating system, and the same database application installed in virtual
machine A, and an additional backup application.

To create virtual machine B, you have two choices:

• Use the Create operation to create a new virtual machine, then install Windows 2000 and the
two applications manually.

• Use the CloneVM operation to copy and customize, resulting in virtual machine B. By using
the CloneVM operation, you don’t need to perform a manual installation of Windows 2000
and the database application in the new virtual machine.

Clients may also use the CreateTemplate operation to create a template out of an existing virtual
machine. (A template is a golden image of a virtual machine, that can include an installed guest
operating system and a set of applications). Clients can use this template as a starting point for the
creation of new virtual machines by using the CloneVM operation.

For more information, see Cloning a Virtual Machine on page 100.
www.vmware.com
44

C H A P T E R 4

Developing Client Applications
This chapter contains the following sections:

• Reviewing the Web Services Description Language on page 47

• Selecting a Development Environment on page 49

• Generating the Stub Files on page 50

• Communicating Securely on page 51

• Creating a Simple Client on page 52

• Compiling the Java Client Application on page 57

• Running the Client Application on page 58

Note: The sample code in this chapter, and the following chapters, represents a small portion of
code and is designed only to show the basic logic and programming constructs needed to use the
VMware SDK effectively. A complete listing of samples is contained in the in
\SDK\WebService\samples directory.
45

Virtual Infrastructure SDK Programming Guide
Connecting to the VMware VirtualCenter Web
Service
In order to connect to the VMware VirtualCenter Web Service, a client application needs to know
how to send and receive data from the Web service. In particular, the client needs to know about
the Web service’s data types, its parameters, return types, location, and transmission details of the
VMware VirtualCenter Web Service. The Web Services Description Language (WSDL) is an XML-
based language that describes these Web service interface details. The WDSL also describes how
the interface is tied to a transport protocol (in this case, secure HTTP) and encoding (in this case,
SOAP). From the WSDL, you can generate a stub.

At a high level, the client uses the VMware VirtualCenter Web Service to connect to the Web
service as shown in the following diagram.

1. The client invokes a method on a stub (a proxy object) to perform a task. The stub acts as a
proxy for the Web service.

2. The development runtime environment (see Client Development Environments on
page 267) converts the invocation into a SOAP message. This SOAP message is then
transmitted over HTTP/S to the Web service.

In general, you need to complete the following steps to create a Web service client. Perform these
steps, or a variation of these steps, depending upon the development environment you select.

1. Obtain the interface details of the VMware VirtualCenter Web Service in vma.wsdl.

2. Generate a stub to invoke vma.wsdl.

3. Write the client application. See Core Client Programming Concepts for Java Programmers on
page 59.

4. Run the client application.

Client Web
serviceStub Development

runtime
environment

HTTP/S
www.vmware.com
46

C H A P T E R 4 Developing Client Applications
Reviewing the Web Services Description
Language
This section is only intended to provide a brief overview of WSDL concepts. If you need more
detailed information, refer to the Web sites listed in Technical Support Resources on page 20.

In general, a WDSL file includes these elements:

• Datatypes of the Web service interface, comprising its parameters and return types

• Messages, that group data type variables together

• <portType> elements, that group incoming, outgoing, and fault messages into logical
operations

• Bindings, that describe how a <portType> element is mapped to a specific transport
protocol

• Services, that describe the connection information for a specific binding

<types> Element
The <types> element allows you to define the data types that are required by the Web service
when exchanging messages. Usually, this element also includes a schema element that defines
various datatypes.

<message> Element
The <message> element describes the logical content of a message that is communicated
between two processes. This logical content comprises logical part(s), defined by the <part>
element. Each <part> element includes both name and type attributes, that specify the message
part name and its datatype.

<portType> Element
The <portType> element groups <message> elements into logical operations that a process
can execute. Each operation can contain <input>, <output> and <fault> elements,
corresponding to incoming, outgoing, and fault messages. The <input> element comprises the
requirements for a client transmission request to the Web service. Similarly, the <output>
element declares the contents of the response from the Web service. The <fault> element
describes exceptions that have occurred as the Web service responds to the client’s request.

Process 1

Message

Process 2
xsd:string, xsd:int,
xsd:simpleType,
and so on
47

Virtual Infrastructure SDK Programming Guide
<binding> Element
The <binding> element in the WSDL describes a supported protocol. Similar to the
<portType> element, the <binding> element includes supported operations, as well as the
input>, <output> and <fault> elements, for each operation. The bindings specify the
protocol that is being used, the data transport method, and the location of the Web service.

The <binding> element includes both a name attribute and a type attribute that references the
<portType> element. The name attribute provides a unique name for this binding. The type
attribute identifies the port type that it binds. (The port type is defined in the <portType>
element.

<service> Element
The <service> element defines a service (a group of related ports), that are supported by the
Web service. There is one port element for each of the supported transmission protocols.

Each <service> element identifies the related ports by using the <port> child element to
identify each port. The <port> element has name and binding attributes and one child element,
the <soap:address> element that provides the address of the Web service’s SOAP request
handler.

Process 1

Message 1

Process 2Message 2

Operation
www.vmware.com
48

C H A P T E R 4 Developing Client Applications
Selecting a Development Environment
A Web service development environment facilitates the building of Web service servers and
clients. For more information on selecting a development environment, see Client Development
Environments on page 267.

Note: The examples in this chapter are written in Java and Perl. The Java samples are based on a
specific developer environment, the Websphere Software Developer Kit (WSDK) for Web services.
You may use a different developer environment and language to build your client program. Adjust
the examples accordingly for your developer environment.
49

Virtual Infrastructure SDK Programming Guide
Generating the Stub Files
This section shows you how to use the WSDK to perform a set of one-time operations to prepare
yourself to build client applications.

Note: The following is written in Java and is intended solely as an example.

1. Include the following .jar files from the WSDK directory, appserver/lib to your
CLASSPATH variable:

webservices.jar
commons-logging-api.jar
j2ee.jar
qname.jar

2. Generate the stub files by typing:

WSDL2Client -NStoPkg urn:vma1=com.vmware.vma -project . vma.wsdl

The first argument to WSDL2Client (-NStoPkg urn:vma1=com.vmware.vma)
specifies a namespace translation from the Web service namespace to the Java namespace.
Essentially, all the stub code classes are generated into the package, com.vmware.vma.

The second argument (-project .) specifies where the stub code is generated (into the
current directory). Specifically, the stubs are generated into the directory ./client-
side/com/vmware/vma.

The third argument (vma.wsdl) is the name of the WSDL file we provide. We assume this
file is also present in the current directory, otherwise you should type the complete path to
this file.

If this command works correctly, you should see a large number of Java files in the directory,
./client-side/com/vmware/vma.

3. Add the directory ./client-side to your CLASSPATH variable and compile (using
javac) all the files in the directory ./client-side/com/vmware/vma.

We are now ready to build our clients.
www.vmware.com
50

C H A P T E R 4 Developing Client Applications
Communicating Securely
All communication between the client program and the Web service occurs over SSL. During the
establishment of the SSL connection, the Web service submits its digital certificate to the client.
The client program must have loaded the root certificate in order to authenticate the Web service.

Enabling Java Client SSL Connections
Complete the following setup before communicating with the Web service.

1. Create a directory to store the SSL certificates; for example, the C:\sslCert directory.

2. Copy the root certificate to the directory created in the previous step. In a terminal window,
type the following at the command line. If you saved the SSL certificates in another directory,
substitute that directory location for the C:\sslCert directory.

copy "C:\Documents And Settings\All Users\Application
Data\VMware\VMware VirtualCenter\VMA\root.pem" " C:\sslCert"

3. Import the root certificate. JDK 1.4.1 supplies a tool called keytool, that you may use to import
the root certificate. For example:

keytool.exe -import -storepass <password> -keystore C:\sslCert\client.keystore
-alias rootCert -file C:\sslCert\root.pem

4. The keytool prompts you, Trust the certificate? Type yes.

5. The following Java sample code snippets for the IBM Websphere and Apache Axis
environments illustrate how to specify the location of the key material for the TrustManager.
This overrides the default cacerts file in the (Java Runtime Environment) JRE lib
directory.

IBM Websphere
if (args.length > 3)
{
 // Specify the location of where to find key material for the TrustManager.
 // This overrides the default cacerts file in the JRE lib directory.
 System.setProperty("javax.net.ssl.trustStore", args[3]);
}
System.setProperty("java.protocol.handler.pkgs", "com.ibm.net.ssl.www.protocol");

Apache Axis
if (args.length > 3)
{
 // Specify the location of where to find key material for the TrustManager.
 // This overrides the default cacerts file in the JRE lib directory.
 System.setProperty("javax.net.ssl.trustStore", args[3]);
}

51

Virtual Infrastructure SDK Programming Guide
Creating a Simple Client
We are now ready to create our first SDK client. This client requests the list of all virtual machines
known to the Web service server by making a call to GetContents with /vm as the argument. The
client code is shown below. This Java code is also present as part of the sample code shipped with
the SDK.

First, this program connects to the Web service server and makes the connection persistent (to
maintain sessions). Then the client logs into the Web service server, followed by a call to the Web
service operation, ResolvePath. This returns a handle for the /vm Container. The client then passes
this handle to the GetContents operation to retrieve the contents of the /vm Container.

The Container has an array of Items. Each Item contains the UUIDs of each virtual machine. Finally,
there is the loop that prints out all the virtual machine UUIDs. Finally, log out of the Web service
server.

Simple Client Program in Java
package com.vmware.sample.Simple;

import java.net.*;
import com.vmware.vma.*;
import javax.xml.rpc.*;

public class SimpleClient
{
 /**
 * This main program takes 3 arguments - the web service URL, the
 * user name and password. It then connects to the Web service server at
 * the URL using the provided user name and password. Finally it
 * does a GetContents on /vm and prints out the UUIDs of the VMs.
 */
 public static void main(String[] args)
 throws Exception
 {
 if (args.length != 3)
 {
 System.out.println("Usage: java " +
 "com.vmware.sample.Simple.SimpleClient " +
 "<webserviceurl> <userid> <password>");
 System.exit(0);
 }

 // Initialize the connection to the server with a persistent
 // connection.
www.vmware.com
52

C H A P T E R 4 Developing Client Applications
 VmaService vmaservice = new VmaServiceLocator();
VmaPortType serviceConnection = new VmaBindingStub(new URL(args[0]), vmaservice);

 ((Stub)vmaPort)._setProperty(Stub.SESSION_MAINTAIN_PROPERTY,
 Boolean.TRUE);

 // Logs in to the server.

 serviceConnection.login(args[1], args[2]);

 // Get handle for /vm
 String handle = serviceConnection.resolvePath("/vm");

 // Now calls GetContents on /vm.
 ViewContents vc = serviceConnection.getContents(handle);

 // Print the uuid's of all virtual machines.

 Container vmlist = (Container)(vc.getBody());
 Item[] vms = vmlist.getItem();
 if (vms == null)
 {
 System.out.println("There are no VMs");
 }
 else
 {
 System.out.println("The uuid's of the VMs are:");
 for (int i = 0; i < vms.length; i++)
 {
 System.out.println(" " + vms[i].getName());
 // vms[i].getKey() is the handle for this VM
 }
 }

 // Now log out.
 serviceConnection.logout();
 }

}

Simple Client Program in Perl
You can find the complete sample program at /SDK/WebService/samples/perl/
SimpleClient.pl.

#!/usr/bin/perl -w

use HTTP::Cookies;
53

Virtual Infrastructure SDK Programming Guide
use SOAP::Lite;
use Tie::IxHash;

sub Usage
{
 print "\nUsage:perl SimpleClient.pl <webserviceurl> <userid>";
 print " <password> [<wsdl>]\n";
 print "\nNOTE: Special characters like \$ should be escaped.\n";
}

sub PrintUUID
{
 my $result = shift;

 #
 # Extract the list of names of the VMs from the result
 # and display
 #

 my @names = $result->valueof('//name');

 foreach my $name (@names){
 print "\n$name";
 }

 return;
}

sub FaultHandler
{
 my($soapErr, $resultErr) = @_;

 die ref $resultErr ?
 "\nFault: ".$resultErr->faultdetail->{'FaultInfo'}->{'kind'}."\n".
 $resultErr->faultdetail->{'FaultInfo'}->{'info'} :
 "\nFault: ".$soapErr->transport->status, "\n";
}

###
#
Main program --
#
###
www.vmware.com
54

C H A P T E R 4 Developing Client Applications
if ($#ARGV+1 < 3 || $#ARGV+1 > 4){
 Usage();
 exit;
}

my ($webserviceURL, $userID, $password, $vmaWSDL) =@ARGV;

if (!defined($vmaWSDL)){
 $vmaWSDL = $webserviceURL."?wsdl";
}

#
Create SOAP::Lite object by specifying location of vma.wsdl and the URL
of the web service. Session information is automatically maintained by
enabling cookies. A fault handler is also defined to handle SOAP
faults as well as transport errors.
#

my $service =
 SOAP::Lite
 -> service($vmaWSDL)
 -> proxy($webserviceURL,
 cookie_jar => HTTP::Cookies->new(ignore_discard => 1))
 -> on_fault(sub{FaultHandler(@_);});

my ($method, @params);

#
Setup & call the Login method
#

$method = SOAP::Data->name('Login')
 ->attr({xmlns => 'urn:vma1'});

@params = (
SOAP::Data->name(userName => $userID),
SOAP::Data->name(password => $password)
);

$service->call($method => @params)->result;

#
Setup & call the ResolvePath method
55

Virtual Infrastructure SDK Programming Guide
#

$method = SOAP::Data->name('ResolvePath')
 ->attr({xmlns => 'urn:vma1'});

@params = (SOAP::Data->name(path => '/vm'));

$handle = $service->call($method => @params)->result;

#
Setup and call the GetContents method
#

$method = SOAP::Data->name('GetContents')
 ->attr({xmlns => 'urn:vma1'});

@params = (SOAP::Data->name(handle => $handle));

my $result = $service->call($method => @params);

print "\nUUIDs of the Virtual Machines are:\n";

PrintUUID($result);

#
Setup & call the Logout method
#

$method = SOAP::Data->name('Logout')
 ->attr({xmlns => 'urn:vma1'});

$service->call($method);
www.vmware.com
56

C H A P T E R 4 Developing Client Applications
Compiling the Java Client Application
To compile the client, add the directory containing SimpleClient.java to the CLASSPATH
variable, and then compile SimpleClient.java using javac.
57

Virtual Infrastructure SDK Programming Guide
Running the Client Application
This client application returns a list of all the virtual machines. If there are no virtual machines, then
use the VMware VirtualCenter interface to create some.

Be sure the Web service server is running. Refer to the VirtualCenter documentation for
instructions on how to start this server.

For the Java sample, type:

java SimpleClient <webserviceurl> <username> <password>

For the Perl sample, type:

perl SimpleClient.pl <WebService_URL> <username> <password> <wsdl>

where <WebServer_URL> is the VirtualCenter URL, <username> is the user ID for logging
into VirtualCenter, <password> is the corresponding password for <username>, and <wsdl>
is an optional parameter that specifies the location of the vma.wsdl file.

The client should print out a list similar to the following:

 The uuid’s of the VMs are:
564d08e5-6253-7e43-7740-774b3dc0cfd2
564d3040-b31a-cb26-6a7d-989550c5bd7a

If you do not see a listing of virtual machines, then see Troubleshooting on page 275.
www.vmware.com
58

C H A P T E R 5

Core Client Programming Concepts for
Java Programmers
This chapter shows you how to write a good client application. The previous chapter introduced a
very simple application that performed a GetContents operation.

Note: Similar to the previous chapter, the examples in this chapter are written in Java, and are
based on a specific developer environment, the Websphere Software Developer Kit (WSDK) for
Web services. See IBM Websphere Software Developer Kit on page 269.

If you are interested in Perl samples, see Core Client Concepts for Perl Programmers on page 133.

Note: You may use a different developer environment and language to build your client program.
Adjust the examples accordingly for your developer environment.

This chapter covers the following topics:

• Logging into the Web Service on page 61

• Permissions on page 62

• Getting Basic Information about an Object on page 63

• Object Inventory on page 64

• The Basic Data Synchronization Loop on page 66

• Versions and Handles on page 67
59

Virtual Infrastructure SDK Programming Guide
• Applying Changes to the Client Data on page 70

• Indexed and Key-based Arrays on page 77

• Calling the PutUpdates Operation on page 80

• Running the Sample Code on page 83

• Handling Exceptions in the Data Synchronization Loop on page 84

• Testing on page 85

• Complete Code Listing on page 86
www.vmware.com
60

C H A P T E R 5 Core Client Programming Concepts for Java Programmers
Logging into the Web Service
The following sample illustrates how to log into the Web service using the WSDK.

// Initialize connection and login to the Web service.
String userId = "Administrator";
String password = "password";
java.net.URL serviceURL = new java.net.URL("http://<hostname>:8080");
VmaService vmaservice = new VmaServiceLocator();
VmaPortType serviceConnection = new VmaBindingStub(serviceURL, vmaservice);
((Stub)vmaPort)._setProperty(Stub.SESSION_MAINTAIN_PROPERTY, Boolean.TRUE);

// Logs in to the server.
serviceConnection.login(userId, password);
61

Virtual Infrastructure SDK Programming Guide
Permissions
The client must have the right set of permissions on the object being updated or retrieved in order
to invoke the different operations. For example, the client must have Browse rights for the
GetContents operation, Interact rights for the GetUpdates operation, Configure rights for the
PutUpdates operation, and Administer rights for the ChangePermissions operation. Refer to the
Virtual Infrastructure SDK Reference Guide for the required permission for each operation. Also, see
Changing Permissions on page 127 for an example of changing the permission of an object.
www.vmware.com
62

C H A P T E R 5 Core Client Programming Concepts for Java Programmers
Getting Basic Information about an Object
Client applications can use the GetInfo operation to retrieve information about an object. This
operation takes one argument, the handle of the object of interest. The return value is a ViewInfo
object that contains the handle of the parent Container of this object, the name of the object, the
type of the object, and the list of permissions on the object.

The following code snippet demonstrates how to invoke the GetInfo operation and retrieve the
result.

String handle = serviceConnection.resolvePath("/vcenter/MyFarmGroup/Farm/myVM");
ViewInfo info = serviceConnection.getInfo(handle);
String parentHandle = info.getParent();
String name = info.getName();
String type = info.getType();
Permission[] perms = info.getPerm();
if (perms == null) {

// no perms
} else {

for (int i = 0; i < perms.length; i++) {
String rights = perms[i].getRights();
String userName = perms[i].getKey();

}
}

63

Virtual Infrastructure SDK Programming Guide
Object Inventory
You can write a client application to obtain a list of hosts or virtual machines available to you. Once
you obtain these lists, you can request for information about a specific host or virtual machine.
Then, you can request updates when they occur.

Clients use the GetContents operation to return information about the following objects, provided
you have Browse access to these objects.

• Containers (Server Farms and Farm groups)

• Farm

• Host

• Virtual machine group

• Virtual machines

Using GetContents to Obtain Information About Hosts and Virtual
Machines
For example, if you wanted to obtain a list of all the hosts, you can issue a GetContents request on
/host. Similarly, if you wanted to obtain a list of all virtual machines, for all hosts, you can issue a
GetContents request on /vm, as illustrated in Creating a Simple Client on page 52.

For example, if you have Browse rights on two virtual machines, identified by UUIDs 000111 and
000112, then the XML document returned from the GetContents request for /vm is:

<handle>vma-0000-0000-0006</handle>
<vHandle>vma-0000-0000-0006@fbc7b64959000002</vHandle>
<body xsi:type="Container">

<item xsi:type="Item">
 <key>vma-vm-00000000001</key>
 <name>000111 </name>
 <type>VirtualMachine</type>

</item>
<item xsi:type="Item">

 <key>vma-vm-00000000001</key>
 <name>000112</name>
 <type>VirtualMachine</type>

</item>
</body>
www.vmware.com
64

C H A P T E R 5 Core Client Programming Concepts for Java Programmers
Using GetContents to Obtain Information About Individual Hosts and
Virtual Machines
Once you obtain the list of hosts (virtual machines), you can use the GetContents operation to
obtain detailed information about an individual host machine or virtual machine. For example, by
issuing a GetContents request on a specific host, you can see information about its hardware,
status, resource allocations, networking devices, and so on, as indicated by the Host Machine data
model in the Virtual Infrastructure SDK Reference Guide.

Similarly, by issuing a GetContents request on a specific virtual machine, you can see information
about its virtual hardware, status, resource allocations, virtual networking, guest operating system,
and so on, as indicated by the Virtual Machine data model in the Virtual Infrastructure SDK Reference
Guide.

The following sample illustrates how to use the GetContents operation for a host view. Clients can
obtain the host handle by calling the ResolvePath operation on either its nested path under the
/vcenter hierarchy or by using its FQDN (Fully qualified domain name) under /host. The
example below uses the host’s nested path in the /vcenter hierarchy.

// Get Contents for /vcenter/New Farm Group/New Farm/<Fully qualified hostname>
// Alternate path for host could be /host/<mytesthost.mydomain.com>
String path = "/vcenter/<New Farm Group>/<New Farm>/<Fully qualified hostname>"
ViewContents vc = null;
try {
 // serviceConnection is com.vmware.vma.VmaPortType
 String hostHandle = serviceConnection.resolvePath(path);
 vc = serviceConnection.getContents(hostHandle);
}
catch (Exception ex) {
 System.out.println("Got Exception calling getContents : " +
 ex.getMessage());
 ex.printStackTrace(System.out);
 throw ex;
}

//This can be used in a subsequent call to getUpdates()
String vHandle = vc.getVHandle();

// The xml document representation describing this host object
Object bean = vc.getBody();
65

Virtual Infrastructure SDK Programming Guide
The Basic Data Synchronization Loop
In the previous chapter, we developed an example to perform the GetContents operation on the
/vm view. (See Creating a Simple Client on page 52.) The operation returns a data structure
containing the list of the available virtual machines. This list contains handles that refer to the XML
documents corresponding to each virtual machine.

We’ll start with building the data synchronization loop for a single virtual machine; for example,
/vm/564d08e5-6253-7e43-7740-774b3dc0cfd2. The Java code below replaces the
portion of the code between the calls to login and logout in Creating a Simple Client on
page 52.

For now, let us start with a simple first version that simply calls GetContents repeatedly:

com.vmware.vma.VirtualMachine clientData;
com.vmware.vma.ViewContents vc;
String handle = serviceConnection.resolvePath("/vm/564d08e5-6253-7e43-7740-774b3dc0cfd2");

while (true) {
 vc = serviceConnection.getContents(handle);
 clientData = (VirtualMachine) (vc.getBody());
 Thread.sleep(10000);
}

This code polls the Web service server every 10 seconds to obtain a fresh copy of the data
corresponding to a specific virtual machine. The preceding code may work for a simple
application, but it will not scale to a system that is managing a large number of virtual machines
and other entities, due to the large amount of network traffic it generates.
www.vmware.com
66

C H A P T E R 5 Core Client Programming Concepts for Java Programmers
Versions and Handles
In this section, we provide a brief description of versions, handles, and vHandles. For complete
information on handles, version numbers, paths, and the GetContents and GetUpdates operations,
see Understanding VMware SDK Terminology on page 26.

A handle is a temporary token, used by a Web service client, to invoke Web service operations that
require a reference to an object. An object handle is somewhat analogous to a file handle
(descriptor) returned by a operating system similar to UNIX, when a file is opened using the “open”
system call. Like a file handle, an object handle is a temporary handle that always refers to the same
object.

A vHandle is a versioned handle that acts as a reference to the specific memory state of an object
at a certain point in time. That is, a vHandle is an object handle that has a version number
associated with it. The version number determines the specific memory state. Each version
identifier corresponds to a different point in time.

The path resembles a full path name of a file, which identifies an object in the Web service
hierarchy. Its value is an XML document in the Web services world. This value is different in other
worlds. (For example, in the Java world, the value is a Java object derived from the Web service
document.)

A client executes the GetContents operation, passing in a handle (to an object) as a parameter and
retrieving an XML document that describes the object identified by the handle. The XML
document is the value of the object and is associated with a handle and a vHandle that are
returned by the GetContents operation.

A client executes the GetUpdates operation, passing in a vHandle as a parameter and retrieving
the change(s) in the object identified by the vHandle. Only the change(s), or the “delta” is returned
as a diff of the current XML document that describes the object as currently maintained by the
Web service, compared with the original XML document as identified by the vHandle that was
passed to the GetUpdates operation. The GetUpdates operation also returns an updated vHandle,
identifying the latest version of the object that was returned to the client.

For additional information on handles, version numbers, paths, and the GetContents and
GetUpdates operations, refer to the Virtual Infrastructure SDK Reference Guide.
67

Virtual Infrastructure SDK Programming Guide
Calling the GetUpdates Operation
In order to keep data on the client side up-to-date with data on the server side, you can combine
the use of the GetContents operation with GetUpdates.

• The GetContents operation provides all the information for a particular object at the time of
the request.

• The GetUpdates operation returns incremental changes to the data, that can be patched
onto the existing data on the client. Theoretically, one can call GetContents repeatedly, but
this causes excessive network traffic.

For example, you have issued a GetContents request on a specific virtual machine. The response is
a list of the information specified by the Virtual Machine data model. Someone, with Interact rights
on this virtual machine, changes the memory shares. If your client then issues a GetUpdates
request, you can see the updated memory shares and any other changes that have occurred since
the original GetContents request.

The first refinement is to replace the repeated calls to GetContents with calls to GetUpdates. By
using GetUpdates instead, the server only returns the changes within the VirtualMachine data
structure, and not the entire new version of the VirtualMachine object.

ViewContents vc = serviceConnection.resolvePath("/vm/564d5a05-29a7-b09b-d576-9cb8a719d940");

VirtualMachine clientData = (VirtualMachine) (vc.getBody());
boolean wait = true;
while (true)
{

VHandleList vHandleList = new VHandleList();
vHandleList.setVHandle(new String[] { vc.getVHandle() });
UpdateList updateList = serviceConnection.getUpdates(vHandleList, wait);
Update [] updates = updateList.getUpdate();
// Since we've requested updates only on 1 vHandle, updates.length will be 1
for (int i = 0; i < updates.length; i++)
{

String handle = updates[i].getHandle();
Change[] changes = updates[i].getChange();
for (int j = 0; j < changes.length; j++)
{

//… apply change to client data …
processChange(handle, changes[j]);

}
vc.setVHandle(updates[i].getVHandle());

}
}

www.vmware.com
68

C H A P T E R 5 Core Client Programming Concepts for Java Programmers
Note the following comments regarding the preceding code:

• We are not handling any exceptions; these are covered later.

• We have not shown how to apply changes to the client data; this is covered in the next
section.

• The call to GetUpdates blocks indefinitely, until there is some change that causes the server
to send back a response. In some circumstances, particularly in the presence of
intermediaries (such as proxies), the client and server can get disconnected with the client
remaining blocked on the GetUpdates call. A lower layer disconnection mechanism, such as
TCP timeout, is required to handle this case.

If the second parameter to the GetUpdates call is set to false, then the call doesn’t block
indefinitely. The call returns immediately with any available updates. (This is useful if the client
needs to check for any immediate changes.) Most client applications use the blocking version
of the GetUpdates call to receive updates from the Web service.

• When a client calls GetContents, it receives the value of the object identified by the handle,
along with a vHandle. Then, when the client makes calls to GetUpdates, it sends the vHandle
to the Web service. The Web service returns a set of changes made to the object identified by
the vHandle, and an updated vHandle, identifying the latest version of the object. See
Versions and Handles on page 67.

In this example, we are working with one particular view. Therefore, the parameter to
GetUpdates is a list containing a single vHandle object. However, clients can also send a list of
multiple vHandles to GetUpdates.

• GetUpdates returns a list of Update objects, with one object per vHandle.

In this case, the return value of GetUpdates can either contain an empty list (if no changes
occurred at the time of return) or a list with a single Update object. The list cannot contain
more than one Update object because the parameter to GetUpdates contained only a single
vHandle.
69

Virtual Infrastructure SDK Programming Guide
Applying Changes to the Client Data
In the following sections, we expand on the following piece of code left out of the previous
section:

...apply change to clientData...;

This change is presented as an object of type Change. Change objects are quite complex, as there
are many kinds of changes and we attempt to provide changes in increments as small as possible.
We first present a high-level overview of the Change object, and then cover the various kinds of
changes on a case-by-case basis.

The Change Object
Each field of the Change object is described briefly in this section.

op Field
The primary field of the Change object is op, obtained by calling getOp(). This field describes
the kind of change.

The kind of change is one of the following:

• ins — Describes the insertion of new data at the location specified by the target field.

• del — Describes the deletion of existing data at the location specified by the target field.

• repl — Describes the replacement of existing data at the location specified by the target
field. You can consider a repl operation as a combination of a del operation, followed by
an ins operation.

• edit — Describes a change to existing data. Portions of the data can be changed, while
leaving other portions unchanged. This edit change applies only to primitives and objects of
type xsd:string and xsd:dateTime.

• move — Describes a change where the Web service indicates a move of an object from one
(source) Container to a (destination) Container. This is similar to the cut and paste operation.
In the cut and paste operation, two move changes are received for the object. The parent of
the object that is cut receives one move change and the recipient of the paste operation
receives the second move change.

target Field
The target field, obtained by calling getTarget(), describes the location where the change
applies within the View object The target is specified as a list of identifiers separated by slashes,
that indicate how to navigate within the data structure to reach the desired field. For more
information on the data structure, see the data models in the Virtual Infrastructure SDK Reference
Guide.
www.vmware.com
70

C H A P T E R 5 Core Client Programming Concepts for Java Programmers
There are two broad categories of targets that clients can use to communicate changes by using
the Change datatype: leaf values and composites.

• Leaf value — An example of a leaf value is the value “My Great Virtual Machine” for the “name”
field of the VirtualMachineInfo datatype. Leaf values correspond to text nodes within an XML
document. This includes xsd:string, xsd:int, xsd:long and other similar primitive datatypes.

• Composites — A composite or aggregate is an entire object such as an object of type Item,
Host, or VirtualMachine, or an interior node of such an object such as the
VirtualNetworkAdapter inside the VirtualMachine datatype.

For example, if the target is hardware/memory/sizeMb (within a VirtualMachine object),
then the corresponding field within the client data structure is obtained by calling:

clientData.getHardware().getMemory().getSizeMb()

and this field is set to a new value by calling:

clientData.getHardware().getMemory().setSizeMb(newValue)

To perform these operations on the specified path, we need to use the reflection capabilities of
Java. The library classes java.beans.Expression and java.beans.Statement greatly
facilitate performing these operations. These classes are available only from Java Development Kit
(JDK) version 1.4. For earlier JDK versions, you need to code the functionality within these library
classes.

The target field may also contain array indexing; for example, hardware/disk[1]/
controllerId. If the location of the change is an array element, then the target ends with an
array index; for example, hardware/disk[2].

Refer to keyed arrays by using the key of the array element, instead of the array index; for example,
hardware/net/adapter[“_nic001”] or hardware/net/adapter[“_nic001”]/
name. The string enclosed by the quotes within the square brackets is the key of the array
element; for example, _nic001 is the key in the preceding example.

For more information on arrays, see Indexed and Key-based Arrays on page 77.

val Field
The Change object field val, obtained by calling getVal(), specifies the new leaf value or
composite of the field specified in the target field. In some cases (such as del changes), this field is
not relevant and you can ignore it.

inserted, deleted and editPos Fields
There are three more fields in the Change object:

• inserted — For ins and repl changes, this field specifies the number of characters that
are inserted. For move changes, this identifies the paste operation with inserted = 1.
71

Virtual Infrastructure SDK Programming Guide
• deleted — For repl and del changes, this field specifies the number of characters that
are deleted. For move changes, this identifies the cut operation with deleted = 1.

• editPos — This field is valid only for edit changes of string values. It specifies the location
in the string where the edit starts.

Processing the Various Kinds of Change
The following sections explain the various kinds of changes and how to process them:

• Insert Change on page 73

• Delete Change on page 74

• Replace Change on page 74

• Edit Change on page 74

• Move Change on page 76

Insert, Delete, or Replace (ins, del, or repl) Change Operations
Clients can send these change operations for composites, for both arrays and non-arrays. The
usage of Change fields for ins, del, or repl is:

• target — Composite that is being inserted, deleted, or replaced. An example is
hardware/net/adapter["#_nic0"] where the network adapter with key
“#_nic0” is either being inserted, deleted, or replaced.

• editPos — Not Applicable.

• deleted — Number of composite nodes being deleted.

• inserted — Number of composite nodes being inserted.

• val — Contains the new composite or set of composites being inserted or replaced. When
the change operation is delete, this field is NULL.

As an example, a single replace change can replace one #_nic0 adapter with two adapters
#_nic1 and #_nic2. In this case, the changeOp is repl, the target is hardware/net/
adapter["#_nic0"], deleted is 1, inserted is 2, and val contains an array of the two
new adapters #_nic1 and #_nic2. Note that the keys are assigned by the Web service.

• When the array is an indexed array, the target contains the index of the array element before
or at the location where the operation occurs. For example, if target is vm[1], deleted
is 0, inserted is 2, and val contains two new vm array elements, then the new array
elements are inserted before the existing vm[1]. The first of these new elements becomes
vm[1], the second new element becomes vm[2] and the old vm[1] is now vm[3]. In
this same example, if deleted is also set to 1, then the old vm[1] gets deleted and the
two new elements are inserted in its place as vm[1] and vm[2].
www.vmware.com
72

C H A P T E R 5 Core Client Programming Concepts for Java Programmers
Insert Change
The insert change may be a change within an object, or it can be an insertion of a new top-level
object. For example, if the client is querying for updates on an top-level Container such as
/vm, then the client gets notified about new virtual machines. Similarly, querying for updates on
/vcenter, the Web service can notify the client of new Farms, Farm groups, virtual machines,
virtual machine groups, hosts, and so on.

The code snippet below illustrates how to process these changes.

String target = change.getTarget();
 if (target.startsWith("item[\""))
 …insert new top level object…
 else
 …insert into existing object…

For top-level object insertions, the Web service sends the handle of the new object. The client
must call getContents on this handle to obtain the contents of this new object.

 String target = change.getTarget();
 Item item = (Item) change.getVal();
 String handleBeingInserted= item.getKey();
 // call getContents() on this handle now

Insertions into existing objects can either be insertions of new objects or insertions of new array
elements.

We use reflection to access the object being changed, as identified in the change target. By using
reflection, we get the field Type of the object being changed and use this to determine if it’s a
change to an array.

Object body = viewContents.getBody();
Object toBeChanged = SampleUtil.findObject(body, change.getTarget());
ChangeData changeData = SampleUtil.createChangeData(toBeChanged, change.getTarget());

if (changeData.getFieldType().isArray())
SampleUtil.insertArrayEntries(changeData, change.getInserted(), change);

else
changeData.setFieldValue(change.getVal());

The findObject(), getFieldType(), and setFieldValue() methods used in the
preceding code fragment are straightforward uses of Java’s reflection mechanism. We include
complete code for these methods, along with the complete code for the Discovery example in the
samples directory downloaded in the SDK package.
73

Virtual Infrastructure SDK Programming Guide
Delete Change
A delete change is analogous to the insert change described previously. Delete changes can either
be deletions of top-level objects or deletions within existing objects.

String target = change.getTarget();
if (target.startsWith("item[\""))

int startIndex = "item[\"".length();
String handleBeingDeleted = target.substring(startIndex,target.length() - 2);
…delete top level object…

else
…delete from existing object…

Delete changes from existing objects can be either deletions of whole objects, or deletions of array
elements.

 if (changeData.getFieldType().isArray())
 SampleUtil.deleteArrayEntries(changeData, change.getDeleted());
 else
 changeData.setFieldValue(null);

Replace Change
The replace change is a combination of the insert and delete changes and is processed as such by
the Web service.

 public void processReplace(String handle, Change change)
 throws Exception
 {
 processDelete(handle, change);
 processInsert(handle, change);
 }

Edit Change
The client may send an edit change operation only when changing leaf values. Similarly the Web
service will send the edit change operation only when changing leaf values. We can further
categorize leaf values as string values or non-string values.

String Values — These are values of type xsd:string. The following fields of Change are relevant
when string values are edited. The usage of these fields is identical for the GetUpdates and
PutUpdates operations.

• target — Interior node whose value is being edited. An example is Item[“xxx”]/
name when the value for the interior ‘name’ node is being edited for an Item whose handle is
“xxx”.
www.vmware.com
74

C H A P T E R 5 Core Client Programming Concepts for Java Programmers
• editPos — For deletions, this specifies the starting position of the substring being deleted.
For insertions, this is the character position before which a substring is inserted. If this field is
NULL, it must be interpreted as 0 (zero).

• deleted — Number of characters being deleted starting at editPos. If this field is NULL, it
must be interpreted as 0 (zero).

• inserted — Number of characters being inserted before the editPos character. If this field
is NULL, it must be interpreted as 0 (zero).

• val — this contains the substring to be inserted if the ‘inserted’ field is non-zero.

If an entire string is being replaced by using the edit operation, then editPos is 0 (zero),
deleted is the length of the old string, inserted is the length of the new string, and val
contains the new string. This is a common case where the edit operation is used to replace an
entire string.

Non-string values — These are leaf values not of type xsd:string. The edit operation for such
values always replaces the existing value with a new value. The client can ignore the editPos,
inserted, and deleted fields of Change. Similarly, when doing a PutUpdates operation, the
Web service ignores these fields for non-string values. The usage of Change fields for edit for non-
string values is:

• target — Interior node whose value is being edited. An example is hardware/cpu/
controls/shares where the value for the shares node is being replaced for a virtual
machine.

• editPos — Not Applicable.

• deleted — Not Applicable.

• inserted — Not Applicable.

• val — Contains the new value that replaces the old value on the target.

The following code fragment illustrates how to apply changes to string values:

 Class fieldClass = changeData.getFieldType();
 if (fieldClass.equals(String.class))
 {
 int editIndex = 0;
 if (change.getEditPos() != null)
 editIndex = change.getEditPos().intValue();

 // Retrieve the string value that is currently set in the object
 // Edit the string and set the new string into the object
 String string = (String) changeData.getFieldValue();
 int numInserted = change.getInserted().intValue();
75

Virtual Infrastructure SDK Programming Guide
 int numDeleted = change.getDeleted().intValue();
 StringBuffer sb = new StringBuffer(string);
 sb.delete(editIndex, editIndex + numDeleted);
 sb.insert(editIndex, change.getVal());
 changeData.setFieldValue(sb.toString());
 }

The following code fragment illustrates how to apply edit changes to other non-String objects.

 if (fieldClass.isPrimitive() || fieldClass.equals(Calendar.class))
 changeData.setFieldValue(change.getVal());

Move Change
The Web service uses this change operation to indicate a move of an object from one Container to
another. This operation can never be used from a client to the Web service in a PutUpdates call. To
move objects, clients must instead use the Rename operation.

The cut operation is identified as a move operation with change.deleted = 1, and the
corresponding paste operation is received from the Web service along with the move change and
change.inserted = 1.

The value in the change object hasn’t changed as part of the move operation and is therefore
considered uninteresting from the move operation’s perspective.

 int numInserted = change.getInserted().intValue();
 int numDeleted = change.getDeleted().intValue();

 String target = change.getTarget();
 int startIndex = "item[\"".length();
 String handleBeingMoved = target.substring(startIndex, target.length() - 2);

 if (numInserted == 0 && numDeleted == 1)
 {
 // Cut operation
 …adjust the client data structure
 }
 else if (numInserted == 1 && numDeleted == 0)
 {
 // Paste operation
 …adjust the client data structure
 }
www.vmware.com
76

C H A P T E R 5 Core Client Programming Concepts for Java Programmers
Indexed and Key-based Arrays
Some elements in the VMware VirtualCenter Web Service data models (described in the Virtual
Infrastructure SDK Reference Guide) can occur multiple times (for example, multiple NICs). In these
cases, these fields have the minoccurs attribute set to 0 and the maxoccurs attribute set to
unbounded. When the maxoccurs attribute is not 1, the field is represented in the Java
bindings as an array. The Web service data structures have two categories of arrays; indexed arrays
and key-based arrays. Indexed arrays are only used for arrays of basic types; for example, /host/
vm[] and host/info/datastore[]. All other arrays are key-based arrays.

Indexed arrays are accessed by an index (the usual manner of accessing arrays). Key-based arrays
are accessed by keys that are strings. The component type of the array must have a string field
called key, in order to be a key-based array. The value of this field is unique across all the
components of an array, and is the key of the array component. See Key-based Arrays on page 78.

Indexed Arrays
Some examples of indexed arrays are:

host/vm[1]

The target in the Change object for indexed arrays always ends with the name of the array field,
followed by the index where the change is to occur (...arrayName[index]).

The kind of change is one of the following:

• ins — The inserted field specifies the number of array elements that are being inserted
at the location specified by the target. You must ignore the editPos and deleted fields.
The val field is an array component if inserted is 1, otherwise the val field is an array
with inserted elements.

• del — The deleted field specifies the number of array elements that are to be deleted
starting at the location specified by the target. You must ignore the editPos, inserted,
and val fields.

• repl — The repl field is a combination of a del operation followed by an ins operation.
You must ignore the editPos field. All the other fields have the same meaning as previously
specified.

The following code fragment illustrates how indexed arrays are handled:

if (changeData.getFieldType().isArray()) {
 // snippet from insertArrayEntries() referred to above
 int numInserted = numInsertedInt.intValue();
 Object array = changeData.getFieldValue();
 Class arrayFieldType = changeData.getFieldType().getComponentType();

77

Virtual Infrastructure SDK Programming Guide
 int newLength = currentLength + numInserted; // use numDeleted incase of delete op
 Object newArray = Array.newInstance(arrayFieldType, newLength);
 if (changeData.isIndexedArray()) {
 int index = changeData.getArrayIndex();
 // ... insert or delete Entries into newArray depending on the change Op
 }
 // Set this new array into the bean
 changeData.setFieldValue(newArray);
}

Key-based Arrays
Key-based arrays are very similar to indexed arrays except the key is a string, and not an index.
Some examples of key-based arrays are:

hardware/net/adapter[“_nic001”]

The only difference between key-based arrays and indexed arrays in the Change objects is that
each array component must be deleted individually, because there is no ordering concept for
key-based array components. Therefore, you must ignore the deleted field in the Change
object.

You can insert multiple components into a key-based array at one time. Array keys are generated
by the Web service, and are not specifiable by the programmer when the component is inserted
for the first time. Each component in a single array will have a unique key.

The following code fragment illustrates how to create a new key-based array element; in this case,
VirtualNetworkAdapter.

VirtualNetworkAdapter adapter = new VirtualNetworkAdapter();
adapter.setMode(VirtualNetworkMode.monitor);
adapter.setNetwork("Internal Network");
// fill in other fields for adapter...

Change chng = new Change();
chng.setOp(ChangeOp.ins);

// Note : do not specify array key.
// this is generated, and not user setable
chng.setTarget("/hardware/net/adapter");

chng.setVal(adapter);
chng.setInserted(new Integer(1));

ChangeReq upd = new ChangeReq();
upd.setChange(new Change[] { chng });
upd.setHandle(vhandle);
www.vmware.com
78

C H A P T E R 5 Core Client Programming Concepts for Java Programmers
The following code fragment illustrates how to handle key-based arrays:

if (changeData.getFieldType().isArray()) {
 Object array = changeData.getFieldValue();
 Class arrayFieldType = changeData.getFieldType().getComponentType();
 //determine new Length by looking at the deleted/inserted field based on the changeOp

 Object newArray = Array.newInstance(arrayFieldType, newLength);
 if (changeData.isKeyedArray()) {
 if insert change (insert or repl with inserted > 0)
 {
 if (numInserted == 1)
 // append the new value at the end
 Array.set(newArray, currentLength, val);
 else
 // append new elements to array
 System.arraycopy(val, 0, newArray, currentLength, numInserted);
 }
 else if delete change or repl with deleted > 0
 {
 // Loop thru each element in the existing array looking for key match
 // If key didnt match, insert the array element into new array
 int curIndex = 0;
 for (int i = 0; i < currentLength; i++)
 {
 String key = getArrayElementKey(array,i);
 if (!key.equals(changeData.getArrayKey()))
 {
 // Key didnt match - copy this element to new array
 Array.set(newArray, curIndex, element);
 curIndex++;
 }
 // else key matched - ignore this since this is getting deleted
 }
 }
 // Set this new array into the bean
 changeData.setFieldValue(newArray);
 }
79

Virtual Infrastructure SDK Programming Guide
Calling the PutUpdates Operation
The client uses the PutUpdates operation to perform updates to the Web service not performed
by the other API operations in the VMware SDK. The argument to PutUpdates is a ChangeReqList
that contains an array of ChangeReqs. Each ChangeReq has a handle, and a list of Change objects
describing various changes that are being applied to the object being identified by the handle.
The format of the Change object is exactly as it is in the GetUpdates operation.

The purpose of the PutUpdates operation is to make the changes, specified in the Change objects,
to the Web service. There are two forms of PutUpdates: “last one wins” and “versioned”.

• Last one wins (unversioned PutUpdates call) — Changes are applied to the Web service
object referred to by the handle. The order in which the changes from multiple clients are
applied is unspecified and it is possible for another client’s changes to override this client’s
changes and vice versa.

• Versioned — Rather than providing a handle, clients give a versioned handle, or vHandle, to
the PutUpdates operation. In this case, the operation is performed only if the Web service’s
version of the object matches that of the client. Otherwise a version mismatch occurs and
the call fails.

The value returned by the PutUpdates operation is exactly the same as the value returned by the
GetUpdates operation for the changes on the vHandles passed to PutUpdates. It is as if the
updates have been made and the client has called a GetUpdates operation with the same set of
vHandles. If an unversioned PutUpdates call is made (on handles), then no updates are returned in
the response.

Note: It is possible to obtain a change list from the PutUpdates operation that is greater than the
your list of changes, if another client is also making changes to the same object at the same time.

Using the PutUpdates Operation to Update the Memory Setting for a
Virtual Machine
The following code fragment illustrates the use of PutUpdates. It shows how a client can update
the memory setting for a virtual machine. Because the sizeMb field is an integer, we use an edit
operation in the change object.

1. Create the change object.

 String target = "hardware/memory/sizeMb";
 Integer newSize = getMemorySize();

 Change change = new Change();
 change.setOp(ChangeOp.edit);
 change.setTarget(target);
 change.setVal(newSize);
www.vmware.com
80

C H A P T E R 5 Core Client Programming Concepts for Java Programmers
 Change [] changes = new Change[] { change };

2. By using the ResolvePath and GetContents operations, obtain the handle for the virtual
machine to which the change is being applied.

String handle = serviceConnection.resolvePath(viewPath);
ViewContents viewContents = serviceConnection.getContents(handle);

3. Call the PutUpdates operation with this change.

 ChangeReqList changeList = new ChangeReqList();
 ChangeReq changeReq = new ChangeReq();
 // For un-versioned putUpdates, send the un-versioned handle
 changeReq.setHandle(handle);

 // For versioned putUpdates set the versioned handle here:
 // changeReq.setHandle(viewContents.getVHandle());

 changeReq.setChange(changes);
 ChangeReq[] changeReqs = new ChangeReq[] { changeReq };
 changeList.setReq(changeReqs);
 UpdateList updateList = serviceConnection.putUpdates(changeList);

Using the PutUpdates Operation to Make Changes to Array Elements
To insert elements into an array, the client should not specify the index or key (keyed arrays) in the
change target. For example, to insert a new network adapter into a virtual machine, the change
target is hardware/net/adapter, without any square brackets.

To delete an array item, specify the index of the array element. Alternately, if the client is updating a
keyed array, then specify the key for the element (that will be deleted) in the change target. Clients
can use standard reflection APIs to look inside the object and retrieve all the keys of an array in
order to determine which element to delete.

For example, to delete a network adapter with key nic001, the change object is:

 String target = “hardware/net/adapter[“nic001”]”;
 Change change = new Change();
 change.setOp(ChangeOp.del);
 change.setTarget(target);
 change.setVal(null);
 Change [] changes = new Change[] { change };

Read /SDK/SDK-README.html. It has a link to the complete code listing for the PutUpdates
operation.
81

Virtual Infrastructure SDK Programming Guide
Using the PutUpdates Operation to Specify a CustomProperty
A customProperty is a user-defined property created through VirtualCenter. It is an array of type
Property where:

• key is the index of the custom property.

• val is the name of the custom property.

Clients may update the existing values by using the PutUpdates operation and can add new
properties through the use of VirtualCenter.

The following code fragment illustrates specifying a value of a customProperty for a host or a
virtual machine:

Specifying a value of a Custom Property for a host :
// Create change object and set target as "info/customProperty"
// The val for this must be specified as a Property object as below
change ch = new Change();
ch.setTarget("info/customProperty");

// set other change object fields

// The key is the same as the key of the custom property name
// in the Property array in /customProperty
Property p = new Property();
p.setKey("#key From Property.getKey() for single custom property");
p.setVal("a new value for the property for host or VM");

ch.setVal(p);

// this change object may now be used to PutUpdate a value for a host or VM
www.vmware.com
82

C H A P T E R 5 Core Client Programming Concepts for Java Programmers
Running the Sample Code
The sample code discussed in this document is included with this distribution. Read /SDK/SDK-
README.html for a link to the instructions on how to run the sample code. See Client
Development Environments on page 267 for complete information on how to set up your client
development environment.
83

Virtual Infrastructure SDK Programming Guide
Handling Exceptions in the Data
Synchronization Loop
Exceptions can occur when any Web service method is called. These exceptions can occur during
initialization (such as calling the VmaServiceLocator constructor), or during calls to Web
service operations (such as ResolvePath, GetContents and GetUpdates).

One class of exceptions that requires handling is the standard Java exceptions that arise due to
remote communication. This class includes some of the exceptions in the packages, java.net
and java.rmi. There is nothing special regarding the handling of these exceptions for the Web
service. Instead, it is simply how the client application recovers from the exception situations.

The other class are exceptions that show up as the Java exception,
com.vmware.vma.FaultInfo.

For more information, see Exception Handling and Faults on page 129.
www.vmware.com
84

C H A P T E R 5 Core Client Programming Concepts for Java Programmers
Testing
To test your client applications, complete the following.

1. If VirtualCenter is not running, then start this application.

2. Start the Web service.

3. Run your test programs.

a. Make changes in the VirtualCenter application and see if your client application
responds appropriately.

b. Make changes using your client application and see if VirtualCenter reflects your
changes.

Note: You can also test the sample code that is provided with this distribution in a similar manner.

For more information on testing your client applications, see Troubleshooting on page 275.
85

Virtual Infrastructure SDK Programming Guide
Complete Code Listing
You can find the complete code for this simple application in your VMware SDK package.
www.vmware.com
86

C H A P T E R 6

Advanced Client Concepts for Java
Programmers
This chapter provides examples of client applications that you can create, to perform the following
tasks. For complete information on the syntax for these client applications, refer to the Virtual
Infrastructure SDK Reference Guide.

Note: The examples in this chapter are written in Java, and are based on a specific developer
environment, the Websphere Software Developer Kit (WSDK) for Web services. If you are interested
in Perl samples, see Advanced Client Concepts for Perl Programmers on page 173. You may use a
different developer environment and language to build your client program. Adjust the examples
accordingly for your developer environment.

• Virtual Machine Power Operations on page 89

• Host Operations on page 92

• Creating and Deleting Objects on page 94

• Creating and Configuring a Virtual Machine on page 96

• Responding to Virtual Machine Questions on page 98

• Cloning a Virtual Machine on page 100

• Creating a Template on page 104
87

Virtual Infrastructure SDK Programming Guide
• Renaming an Object on page 106

• Moving Virtual Machines on page 107

• Monitoring Events on page 110

• Task Scheduling and Monitoring on page 114

• Collecting Performance Data on page 119

• Changing Permissions on page 127

• Taking a Snapshot of a Virtual Machine on page 128

• Exception Handling and Faults on page 129
www.vmware.com
88

C H A P T E R 6 Advanced Client Concepts for Java Programmers
Virtual Machine Power Operations
Client applications can perform the following power operations:

• Power on (start) or resume a virtual machine

• Power off (stop) or suspend a virtual machine

• Reset a virtual machine

Note: For all these applications, the client must have Interact rights on the Server Farm, Farm
group, Farm, and host that contains the virtual machine. If the client has only Browse rights, then
the client can view information about these objects (GetContents and GetUpdates requests), but
cannot issue any power operations.

If the client is listening for updates on this virtual machine and the operation succeeds, then the
client will see updates to the VirtualMachine state.

In addition, a task is initiated on the Web service for each of these operations. The XML document
describing that task is returned to the client. The client can monitor the progress of this task and
check for errors, status, and so on. For sample code on how to monitor the progress of a task, see
Task Scheduling and Monitoring on page 114.

Starting or Resuming a Virtual Machine
The StartVM operation initiates the process of starting a virtual machine or resuming a suspended
a virtual machine. If you have already configured a script or any other application to run during the
power-on (resume) operation, the script (or other application) will run.

It takes one argument, the handle of the virtual machine that is to be started. The return value is
the handle to the task created to start this virtual machine. If the virtual machine that is to be
started is currently suspended, then this virtual machine is resumed.

The following code fragment illustrates how clients call the StartVM operation, then how the client
can monitor the resulting task to determine when the operation completes.

 String vmPath = "/vm/564d5a05-29a7-b09b-d576-9cb8a719d940)";
 String vmHandle = serviceConnection.resolvePath(vmPath);
 ViewContents task = serviceConnection.startVM(vmHandle);

Stopping or Suspending a Virtual Machine
The StopVM operation initiates the process of stopping or suspending a powered-on virtual
machine.

If you have already configured a script or any other application to run during the power-off
(suspend) operation, the script (or other application) will run. It takes three arguments: the handle
of the virtual machine that is to be stopped, whether the virtual machine should be suspended or
89

Virtual Infrastructure SDK Programming Guide
powered off, and whether or not stopping the virtual machine is a “soft “power off operation. The
return value is the handle to the task that represents the task created to power off this virtual
machine.

The following code fragment illustrates how clients call the StopVM operation, then how the client
can monitor the resulting task to determine when the operation completes.

 String vmPath = "/vm/564d5a05-29a7-b09b-d576-9cb8a719d940)";
 String vmHandle = serviceConnection.resolvePath(vmPath);
 ViewContents task = null;

 // Determine what operation to perform
 if (operation.equals("stop"))
 {
 boolean suspend = false;
 boolean gracefulShutdown = true;
 task = serviceConnection.stopVM(vmHandle, suspend, gracefulShutdown);
 }
 else if (operation.equals("suspend"))
 {
 boolean suspend = true;
 boolean enterStandbyMode = true;
 task = serviceConnection.stopVM(vmHandle, suspend, enterStandbyMode);
 }

Boolean Flags in the VirtualMachineTools Datatype
The VirtualMachineTools datatype includes four Boolean flags that clients may use to determine
whether or not scripts execute in the guest operating system when a virtual machine’s power state
changes through the StartVM or StopVM operations.

• afterPowerOn — Flag determines whether or not scripts should run after the virtual machine
is powered on. If this boolean is set to true, then custom startup scripts (if there are any) run
on the guest operating system after the virtual machine powers on.

• afterResume — Flag determines whether or not scripts should run after the virtual machine is
resumed. If this boolean is set to true, then custom startup scripts (if there are any) run on the
guest operating system after the virtual machine resumes.

• beforeSuspend — Flag determines whether or not scripts should run before the virtual
machine is suspended. If this boolean is set to true, then custom startup scripts (if there are
any) run on the guest operating system before the virtual machine is suspended, regardless
of whether the soft flag is specified during the StopVM operation.

• beforePowerOff — Flag determines whether or not scripts should run before the virtual
machine is powered off. If this boolean is set to true, then custom startup scripts (if there are
www.vmware.com
90

C H A P T E R 6 Advanced Client Concepts for Java Programmers
any) run on the guest operating system before the virtual machine powers off, regardless of
whether the soft flag is specified during the StopVM operation.

Note: If one of these Boolean flags is set, then the scripts will run, regardless of the soft flag
setting in the StopVM operation.

Resetting a Virtual Machine
The ResetVM operation initiates the process of resetting a virtual machine, which also resets the
virtual hardware. (A reset operation is equivalent to pushing the Reset button on a physical
machine.)

The ResetVM operation first attempts to shut down the guest operating system before resetting
the virtual machine. This is similar to selecting Restart on a Windows operating system, where
Windows gracefully shuts down, then starts up again. If you have already configured a script or any
other application to run during the reset operation (during the shutdown or startup of the guest
operating system), the script (or other application) will run.

If this attempt fails, then the ResetVM operation looks into the virtual machine’s configuration file.
By default, a virtual machine’s configuration file setting for a reset is a “hard” reset where the virtual
machine immediately powers off, regardless of what is occurring in the guest operating system.
This is similar to pressing and holding the power button on a physical machine until it powers off,
then restarting the physical machine.

The ResetVM operation takes one argument, the handle of the virtual machine that is to be reset.
The return value is the handle to the task that represents the task created to reset this virtual
machine.

The following code fragment illustrates how clients call the ResetVM operation, then how the
client can monitor the resulting task to determine when the operation completes.

 String vmPath = "/vm/564d5a05-29a7-b09b-d576-9cb8a719d940)";
 String vmHandle = serviceConnection.resolvePath(vmPath);
 ViewContents task = serviceConnection.resetVM(vmHandle);
91

Virtual Infrastructure SDK Programming Guide
Host Operations
Clients can enable (connect) or disable (disconnect) hosts. Clients can also shut down a host
provided the host is ESX Server 2.1 or higher. The client must have Configure rights on the Farm
that contains the host, in order for the operations to succeed. These operations return an empty
response.

Enabling a Host
Clients may enable a host in the Disabled state by using the EnableHost operation. When a host is
“created”, and a user name and password are supplied during the host creation, then the host is
automatically enabled for virtual machine operations. In the Enabled state, clients can perform
virtual machine operations and discover new virtual machines. The EnableHost operation takes
one mandatory argument, the handle to the host that will be enabled. There are two optional
arguments: the user name and password that VirtualCenter uses to connect to the host specified
by the handle.

Upon success, an empty response message is returned.

String handle = serviceConnection.resolvePath("/host/myhost.mydomain.com");
String userName = getUserName(); // optional parameter, null if not supplied
String password = getPassword(); // optional parameter, null if not supplied
serviceConnection.enableHost(handle, userName, password);

Disabling a Host
Clients may disable the host from virtual machine operations by using the DisableHost operation.
By using the Create operation without supplying the user name and password, clients may add a
host to the Web service inventory in the Disabled state. When a host is disabled, clients are unable
to perform any virtual machine operations.

The DisableHost operation takes one argument, the handle to the host that will be disabled. Upon
success, an empty response message is returned.

Note: The DisableHost operation does not remove the host name from the Farm. Clients must
remove the host by using the Delete operation. These two operations are separate, so that
disabled hosts can continue to be managed without having to remove them.

String handle = serviceConnection.resolvePath("/host/myhost.mydomain.com");
serviceConnection.disableHost(handle);
www.vmware.com
92

C H A P T E R 6 Advanced Client Concepts for Java Programmers
Stopping or Restarting a Host
The StopHost operation permits the client to shut down or restart the host. It takes four arguments:
the handle of the host that is to be stopped, whether the host should be gracefully shut down
(soft) or immediately powered off (hard), whether or not to restart the host, and a reason string.

String reason = “User initiated action”;
 String handle = serviceConnection.resolvePath("/host/myhost.mydomain.com");
 if (operation.equals("shutdown"))
 {
 boolean suspend = false;
 boolean restart = false;
 serviceConnection.stopHost(handle, suspend, restart, reason);
 }
 else if (operation.equals("restart"))
 {
 boolean suspend = false;
 boolean restart = true;
 serviceConnection.stopHost(handle, suspend, restart, reason);
 }
93

Virtual Infrastructure SDK Programming Guide
Creating and Deleting Objects
Clients can create or delete top-level objects on the Web service server by using the Create and
Delete operations, respectively. The client must have Configure rights on the Container of the new
object being created or deleted.

Creating an Object
The Create operation takes three mandatory arguments: the handle of the Container for the new
object, the name of the new object, and the type of the new object. There is also a fourth optional
argument, that is an initial XML document providing additional information to create the object.
Upon success, the handle to the newly created object is returned.

Clients may create the following objects with this Create operation:

• VirtualMachine

• Host

• Container, Farm, or VirtualMachineGroup

• TaskSchedule

• PerfCollector

• Event collector

The sample code in this section illustrates how to create new hosts, Farms, Containers and
VirtualMachineGroups, but not virtual machines, tasks, or performance collectors. For more
information on creating these objects see:

• Creating and Configuring a Virtual Machine on page 96 for information on creating a virtual
machine.

• Task Scheduling and Monitoring on page 114 for information on how to create new
scheduled tasks.

• Collecting Performance Data on page 119 for information on how to create new
performance collectors.

If the client is creating a host and the parent Container is the /host handle, then the new host is
placed in the default Farm in the /vcenter hierarchy, /vcenter/Default Farm. The initial
value of the host object is specified by a HostSpec, as shown in the following sample.

 if (type.equals("Container"))
 initVal = (Object) new com.vmware.vma.Container();
 else if (type.equals("Farm"))
 initVal = (Object) new com.vmware.vma.Farm();
 else if (type.equals("VirtualMachineGroup"))
 initVal = (Object) new com.vmware.vma.VirtualMachineGroup();
www.vmware.com
94

C H A P T E R 6 Advanced Client Concepts for Java Programmers
 else if (type.equals("Host"))
 {
 HostSpec hostSpec = new com.vmware.vma.HostSpec();
 // Prompt user for username & password for this host
 String userName = getUserName();
 String password = getPassword();
 Integer port = getPort();

 hostSpec.setPort(port);
 hostSpec.setUserName(userName);
 hostSpec.setPassword(password);
 initVal = hostSpec;
 }

Deleting an Object
The following sample illustrates how to delete an object, such as a Container, Farm,
VirtualMachineGroup, host, or a virtual machine. The Delete operation takes one argument, the
handle of the object that will be deleted. When deleting a virtual machine, the Delete operation
removes the virtual machine’s configuration file and any other associated files, including the virtual
disk file.

Container, Farm and VirtualMachineGroup objects are not required to be empty before they can be
deleted.

Note: When a client deletes a top-level object (that contains other objects), then a delete change
is only shown for the top-level object. For example, if a client deletes a Farm, then the client sees a
delete change on the Farm, but not on any hosts in the Farm, or any virtual machines on the hosts.

Similarly, a virtual machine must be powered off (stopped) or suspended, and cannot be
migrating, for the Delete operation to succeed. If a client wants to delete a virtual machine but not
its virtual disk, then the client must do the following steps:

1. Stop the virtual machine

2. Using the PutUpdates operation, disconnect the virtual disk(s) of the virtual machine

3. Delete the virtual machine

The client must have Configure rights for both the object being deleted and the Container that has
the object. Upon success, an empty response message is returned. The following sample illustrates
how to delete an object.

String path = “/vm/564d5a05-29a7-b09b-d576-9cb8a719d940”;
String handle = serviceConnection.resolvePath(path);
serviceConnection.delete(handle);
95

Virtual Infrastructure SDK Programming Guide
Creating and Configuring a Virtual Machine
In this section, we describe first how to create a virtual machine, then how to configure it by
adding virtual disks.

Creating a Virtual Machine
The following sample illustrates how to create a virtual machine. A virtual machine must always
reside in a Farm or VirtualMachineGroup in the /vcenter hierarchy. If such an array is not
identified for the virtual machine, then the operation places the newly created virtual machine in a
special Farm /vcenter/Default Farm.

The client must have Configure rights on the Container where the virtual machine is being created.
VirutalMachineSpec object specifies the initial value of a new virtual machine. The virtual
machine’s hardware configuration must be specified in this initial value.

The following sample illustrates how to initialize the VirutalMachineSpec object and invoke the
Create operation. See the full code listing included with this distribution in the /SDK/
WebService/samples directory for complete information on how to create a virtual
machine’s hardware.

VirtualMachineSpec vmSpec = new VirtualMachineSpec();
VirtualHardware hardware = createHardware();
vmSpec.setHost(hostHandle);
vmSpec.setGuestOS(guestOS);
vmSpec.setHardware(hardware);

String hostHandle = serviceConnection.resolvePath(/host/<fully qualified hostname>);
VirtualMachineSpec vmSpec = createVMSpec(guestOS, hostHandle);
String parentHandle = serviceConnection.resolvePath(parentPath);
String vmHandle = serviceConnection.create(parentHandle, name,

"VirtualMachine", vmSpec);

Adding a Virtual Disk to a Virtual Machine
Now that we’ve created a virtual machine, we can add a disk to it. The CreateVirtualDisk operation
requests the creation of a virtual disk for a virtual machine. It takes two arguments: the handle
specifying the target virtual machine and the XML document (DiskInfo) specifying the properties
of the new virtual disk.

Note: If a client attempts to create a virtual disk that already exists, the operation returns a
successful task. It does not fail and does not return a fault. However, another virtual disk is not
created.
www.vmware.com
96

C H A P T E R 6 Advanced Client Concepts for Java Programmers
The client must have Configure rights on the virtual machine where the disk is being created, in
order for this operation to succeed.

Once the operation has been initiated, the Web service initiates a task for the CreateVirtualDisk
operation. The XML document describing that task is returned to the client. The client can monitor
the progress of this task and check for errors, status, and so on.

See Task Scheduling and Monitoring on page 114 for sample code on how to monitor the progress
of a task.

VirtualDiskInfo diskInfo = new VirtualDiskInfo();
diskInfo.setControllerType(DiskControllerType.scsi);
diskInfo.setDeviceNumber(1);
diskInfo.setControllerId(0);
diskInfo.setAdapterType(DiskAdapterType.busLogic);

DiskType diskType = new DiskType();
diskType.setDiskKind(DiskKind.file);
DiskFileInfo diskFileInfo = new DiskFileInfo();
diskFileInfo.setSize(size);
diskFileInfo.setPreAllocated(new Boolean(false));
diskFileInfo.setFlat(new Boolean(false));
diskType.setDiskFileInfo(diskFileInfo);

diskInfo.setDiskType(diskType);
diskInfo.setMode(VirtualDiskMode.persistent);
diskInfo.setRemovable(null);

String vmHandle = serviceConnection.resolvePath("/vm/5038d66d-ed8b-2d32-8fdb-4a5e090715f7");

serviceConnection.createVirtualDisk(vmHandle, diskInfo);
97

Virtual Infrastructure SDK Programming Guide
Responding to Virtual Machine Questions
A running virtual machine can generate a question that requires input from a user before the
virtual machine can proceed. For example, if a virtual machine with an undoable disk is powered
off, the virtual machine asks the user whether or not to discard the changes to the virtual disk.

The SDK provides a mechanism for users to handle this case programmatically. The question,
generated by the virtual machine, appears in the virtual machine’s state as a msgWaiting object.
Clients will see this object when they are listening for updates on the virtual machine (through the
GetUpdates operation), or if they call the GetContents operation on the virtual machine (which is
blocked on the question).

The msgWaiting object has the following fields:

• msg — Question posed by the virtual machine.

• id — Internal server ID for the message.

• choice — List of possible answers, presented as an array of key-value pairs.

• defaultChoiceIndex — Default choice for this question, if there is one. This is the integer index
of the default choice in the choices array. If this value does not exist, then the defaultChoice is
0 (zero).

The client can respond to this question by using the AnswerVM operation. The AnswerVM
operation takes 3 arguments: the handle of the virtual machine that is blocked (and waiting for an
answer), the choice (a key-value pair), and the ID of the message that requires a response.

The following sample code illustrates how to invoke the AnswerVM operation.

for (;;) {
 .. getUpdates on the vHandle of the virtualMachine
 .. applyUpdates to the VirtualMachine object
 // check to see if there is a message waiting
 MsgWaiting msgWaiting = vm.getState().getMsgWaiting();
 if (msgWaiting != null && msgWaiting.getMsg() != null) {
 MsgWaiting msgWaiting = vm.getState().getMsgWaiting();
 String question = msgWaiting.getMsg();
 KeyedValue[] choices = msgWaiting.getChoice();
 for (int i = 0; i < choices.length; i++) {
 System.out.println(choices[i].getKey() + " " + choices[i].getVal() + " [" + i + "]");
 }
 int defaultChoice = 0;
 if (msgWaiting.getDefaultChoiceIndex() != null) {
 defaultChoice = msgWaiting.getDefaultChoiceIndex().intValue();
 }
www.vmware.com
98

C H A P T E R 6 Advanced Client Concepts for Java Programmers

 ... prompt user with question and choices. Get user's selection

 serviceConnection.answerVM(handle, choices[index], msgWaiting.getId());
 break;
 }
}

99

Virtual Infrastructure SDK Programming Guide
Cloning a Virtual Machine
The CloneVM operation creates a new virtual machine by using as its source, an existing virtual
machine or a template. It takes five mandatory arguments:

• Handle to the (source) virtual machine or template that will be cloned.

• Handle to the VirtualMachineGroup or Farm in which the cloned virtual machine will reside
(the parent handle).

• Handle to the host where the new virtual machine will reside.

• Name of the newly cloned virtual machine.

• Location on the destination host where the cloned virtual machine’s configuration files and
virtual disks will reside.

There are two optional arguments:

• customization of the guest operating system for the newly cloned virtual machine. See the
next section for additional details.

• flag that determines whether or not the newly cloned virtual machine will automatically
power on once the cloning operation is complete.

Virtual machines must be powered off or suspended in order for the CloneVM operation to
succeed. If the source is a template located on a host’s datastore, then the newly cloned virtual
machine must also reside on the same host where the datastore is located. Alternately, if hosts are
on the same SAN and share the same datastore, then the CloneVM operation (from a template)
may be done across these hosts.

If the source is a virtual machine, then the client must have Configure rights on that virtual
machine and on the Farm of its host. If the newly cloned virtual machine will reside on a different
host, then the client must have Configure rights on the destination host of this new virtual
machine.

Once the operation has been initiated, the request returns a task handle to the client. The client
may monitor the task for the progress of the operation.

Customizing a Virtual Machine
The schema for the customization specification has been incorporated into vma.wsdl. When a
client generates stub files, a class (structure) is created that represents the customization
parameters.

Clients can customize both Windows and Linux guest operating systems. For more information on
customizing a guest operating system, refer to the section titled “Preparing for Guest
Customization” in the VMware VirtualCenter User’s Manual.
www.vmware.com
100

C H A P T E R 6 Advanced Client Concepts for Java Programmers
Customizing a Windows Guest Operating System
If you plan to customize a Windows guest operating system, then you must first install the
Microsoft Sysprep tools package on the VirtualCenter server machine. Follow the procedure in the
section titled “Preparing for Guest Customization” in the VMware VirtualCenter User’s Manual.

For example, clients can customize the following:

• Registration information — User’s full name and organization.

• Computer name — Computer or host name, used for identifying this virtual machine on a
network.

• Administrator password — Password for the Administrative user.

• Timezone — Time zone for the virtual machine.

• AutoLogon — Enables the virtual machine to log on automatically to the Administrator
account the first time the machine boots.

• Product ID — Product ID (license key) for the guest operating system

• Network settings — DHCP or static IP address.

The following is a customization code example for a Windows guest operating system:

public static Autoprep getCustomizationSettings()
{

Autoprep autoprep = new Autoprep();

Sysprep sysprep = new Sysprep();
autoprep.setSysprep(sysprep);

GuiUnattended guiUnattended = new GuiUnattended();
sysprep.setGuiUnattended(guiUnattended);

Password password = new Password();
password.setPlainText(true);
password.setValue("admin_password");
guiUnattended.setAdminPassword(password);
guiUnattended.setTimeZone("004");
guiUnattended.setAutoLogon(Boolean.TRUE);
guiUnattended.setAutoLogonCount(new BigInteger("1000"));

UserData userdata = new UserData();
sysprep.setUserData(userdata);

userdata.setFullName("John Doe");
userdata.setOrgName("ACME Corp.");
userdata.setComputerName("John Doe Win2000");

101

Virtual Infrastructure SDK Programming Guide
Identification id = new Identification();
sysprep.setIdentification(id);
id.setJoinWorkgroup("Marketing workgroup");

Adapters adapters = new Adapters();
Adapter[] tmp = new Adapter[1];
tmp[0] = new Adapter();
tmp[0].setMACAddress("MAC00");
tmp[0].setUseDHCP(Boolean.TRUE);
tmp[0].setDNSFromDHCP(Boolean.TRUE);
tmp[0].setNetBIOS(NetBIOSEnum.EnableNetBIOS);
adapters.setAdapter(tmp);

autoprep.setAdapters(adapters);

return autoprep;
}

Customizing a Linux Guest Operating System
If you plan to customize a Linux guest operating system, then you must first install the VMware
Open Source components on the VirtualCenter server machine. Click on the download link for
Open Sources at www.vmware.com/download and follow the procedure in the section titled
“Preparing for Guest Customization” in the VMware VirtualCenter User’s Manual.

For example, clients can customize the following:

• Computer name — Computer or host name, used for identifying this virtual machine on a
network.

• Network settings — DHCP or static IP address.

public static Autoprep getCustomizationSettings()
{
 Autoprep autoPrep = new Autoprep();

 Options options = new Options();
 autoPrep.setOptions(options);

 LinuxGlobal linuxGlobal = new LinuxGlobal();
 linuxGlobal.setComputerName("LinuxCustomVM");
 linuxGlobal.setDomain("ACMEcorp.com");
 autoPrep.setLinuxGlobal(linuxGlobal);

 Adapters adapters = new Adapters();
www.vmware.com
102

http://www.vmware.com/download

C H A P T E R 6 Advanced Client Concepts for Java Programmers
 Adapter[] adapt = new Adapter[1];

 adapt[0] = new Adapter();
 adapt[0].setMACAddress("MAC00");
 adapt[0].setUseDHCP(Boolean.TRUE);
 adapt[0].setDNSFromDHCP(Boolean.TRUE);
 adapt[0].setNetBIOS(NetBIOSEnum.EnableNetBIOS);
 adapters.setAdapter(adapt);

 autoPrep.setAdapters(adapters);
 return autoPrep;
}

Calling the CloneVM Operation
Before calling the CloneVM operation, the client first needs to instantiate an object of type
Autoprep, and set the various parameters in this object. Then the client can pass this object as an
additional argument to the CloneVM operation.

Caution: Be sure that the Microsoft Sysprep tools (Windows guest operating system) or the
VMware Open Source components (Linux guest operating system) is installed in the VirtualCenter
server machine before starting the CloneVM operation. Otherwise, the CloneVM operation will fail
at the end of this operation.

CloneVM Sample
This sample illustrates the CloneVM operation, but does not include customization. If
customization were included, then null, in the sixth argument, is replaced with the passing in of
the autoprep object.

String parentHandle = serviceConnection.resolvePath("/vcenter/MyFarmGroup/
Farm/MyVMGroup");

// Now clone the VM
ViewContents task =

serviceConnection.cloneVM(
srcHandle, // handle to a template or a VM
parentHandle,
hostHandle, // host where this new VM will reside
"myNewClonedVM",
datastore,
null,
Boolean.TRUE);
103

Virtual Infrastructure SDK Programming Guide
Creating a Template
Clients can specify a handle to a template as the first argument of the CloneVM operation. Clients
can create this template by using the CreateTemplate operation. The CreateTemplate operation
takes two arguments, the handle of the source virtual machine being used to create the template,
and an XML document describing a TemplateSpec.

The TemplateSpec specifies attributes of the new template such as its name, the datastore that
contains the template’s configuration file, the location of the virtual disk(s) for this template, and a
user description for this template. If no datastore is specified in the XML document, then the
configuration file and virtual disks for this template are placed in a local template upload directory
on VirtualCenter.

The client must have Configure rights on the source virtual machine.

A task is initiated on the Web service for the CreateTemplate operation. The XML document
describing that task is returned to the client. The client can monitor the progress of this task and
check for errors, status and so on.

See Task Scheduling and Monitoring on page 114 for sample code on how to monitor the progress
of a task.

/** vmPath is the path of the VM that the template is being created for */
String srcVMHandle = serviceConnection.resolvePath(vmPath);
TemplateSpec templateSpec = new TemplateSpec();
String name = "my new template";
String description = "Test template";
templateSpec.setName("VM1-template");
templateSpec.setDatastore(datastores[0]);
templateSpec.setDescription("Test template from VM1");
ViewContents task = serviceConnection.createTemplate(srcVMHandle, templateSpec);

Specifying a Datastore
Clients must specify a datastore in TemplateSpec. Clients can obtain the datastore from the Host
object, once the host for a virtual machine has been determined. Alternatively, clients can obtain a
list of all the available datastores by calling a ResolvePath, then a GetContents operation on the
/datastore path. The following sample code illustrates how to correlate the datastore
information obtained from the Host object with the datastore information from the /datastore
path.

 /** Obtaining a datastore from a host */
 ViewContents hostView = serviceConnection.getContents(hostHandle);
www.vmware.com
104

C H A P T E R 6 Advanced Client Concepts for Java Programmers
 Host host = (Host) hostView.getBody();
 // get the names of the datastores on this host
 String[] datastores = host.getInfo().getDatastore();

 // get all datastores
 String datastoreRootHandle = serviceConnection.resolvePath("/datastore");
 ViewContents dsView = serviceConnection.getContents(datastoreRootHandle);
 DatastoreInfoList dsList = (DatastoreInfoList) dsView.getBody();
 DatastoreInfo[] ds = dsList.getDatastore();

 // The key in the DatastoreInfo object is the name of the datastore
 // ds[0].getKey() -- name of the datastore
 // ds[0].getCapacityMB() - capacity in MB of this datastore
 // ds[0].getFreeSpaceMB() - available space in MB on this datastore
105

Virtual Infrastructure SDK Programming Guide
Renaming an Object
The Rename operation requests a change to the name of an existing object and optionally moves
it in the /vcenter hierarchy. Clients can rename Containers, Farms, virtual machine groups and
virtual machines. However, clients cannot use the Rename operation to migrate a virtual machine
and move it from one host to another.

Note: You can only move a virtual machine or VirtualMachineGroup to a new
VirtualMachineGroup. Similarly, you can only move a Farm or a Farm group (Container) to a new
Farm group. You cannot move a VirtualMachineGroup to a new Farm and you cannot move
objects across Farms.

The Rename operation takes two mandatory arguments: the handle of the existing object that is
to be renamed and the new name of the object. If a name change is not desired, then pass in the
current name of the object. It has one optional argument, the new destination for the object being
moved. If this parameter is not specified, then the object is not moved, but is simply renamed in its
current location.

Note: The destination object, pointed to by destHandle, must be capable of holding the type of
object specified by the handle parameter or an error is returned.

The client must have Browse and Configure rights for both the current and new Container for the
object. Upon success, an empty response message is returned.

The following sample illustrates renaming an object.

String sourcePath;
String destPath;
String renameTo; // This can be null if the name of the object isnt being changed

String srcHandle = serviceConnection.resolvePath(sourcePath);
String destHandle = serviceConnection.resolvePath(destPath);
serviceConnection.rename(srcHandle, destHandle, renameTo);
www.vmware.com
106

C H A P T E R 6 Advanced Client Concepts for Java Programmers
Moving Virtual Machines
VMware SDK provides two operations to move virtual machines across hosts, MigrateVM and
MoveVM. Clients should use MigrateVM when the virtual machine is being moved to a new host
without moving its virtual disk(s). This operation is applicable when both the original host and the
destination host share a SAN. By contrast, clients should use the MoveVM operation to move a
virtual machine‘s disk to the destination host.

A task is initiated on the Web service for the MigrateVM and MoveVM operations. The XML
document describing that task is returned to the client. The client can monitor the progress of this
task and check for errors, status, and so on. See Task Scheduling and Monitoring on page 114 for
sample code on how to monitor the progress of a task.

If the virtual machine is being moved and the client is monitoring it for updates, then the client will
receive updates on the VirtualMachineState (on the host and the details fields). The host field in the
VirtualMachineState is updated with the destination host name once the migration successfully
completes.

The following sample illustrates moving a virtual machine’s disks:

String vmPath = "/vm/564d5a05-29a7-b09b-d576-9cb8a719d940";
String hostPath = "/host/myhost.mydomain.com";
String vmHandle = serviceConnection.resolvePath(vmPath);
String hostHandle = serviceConnection.resolvePath(host);
String diskKey = null;
String dataLocator = null;

VirtualDiskDestination diskToMove = new VirtualDiskDestination();
diskToMove.setKey(diskKey);
diskToMove.setDataLocator("[" + dataStoreName + "]");
VirtualDiskDestination[] disks = new VirtualDiskDestination[] { diskToMove };

ViewContents task = serviceConnection.moveVM(vmHandle, hostHandle,
 dataLocator, disks);

// monitor this task handle for completion/errors
monitorTask(task, serviceConnection);

Migrating a Virtual Machine
The MigrateVM operation starts the process of migrating a virtual machine to a specific host,
without moving the virtual disk(s). In this release, the virtual machine must be in the poweredOn
state. This operation never moves the virtual machine’s disks from its current location.
107

Virtual Infrastructure SDK Programming Guide
Note: The MigrateVM operation is not supported for a GSX Server host.

This operation takes two mandatory arguments: the handle to the virtual machine that will be
migrated, and the handle to the destination (target) host. There are two optional arguments:
priority (determines whether or not resources are preallocated before migration starts) and the
path describing the location of the virtual machine configuration file.

The client must have Configure rights on the virtual machine and on the Farm.

The request returns once the MigrateVM operation has been initiated by returning a task handle
back to the client. You can determine whether the migration is successful, by separately
monitoring the task that is performing the migration or by monitoring the virtual machine state
(specifically the detail or host fields in VirtualMachineState). If the virtual machine has been
successfully migrated, then the host field should contain the target host handle.

The following sample illustrates how to migrate a virtual machine:

 String vmPath = "/vm/564d5a05-29a7-b09b-d576-9cb8a719d940";
 String hostPath = "/host/myhost.mydomain.com";
 String vmHandle = serviceConnection.resolvePath(vmPath);
 String hostHandle = serviceConnection.resolvePath(host);

 com.vmware.vma.Level priority = null;
 String dataLocator = null;
 ViewContents task = serviceConnection.migrateVM(vmHandle, hostHandle,
 priority, dataLocator);

 // monitor this task handle for completion/errors
 monitorTask(task, serviceConnection);

Moving a Virtual Machine’s Virtual Disks
The MoveVM operation moves a virtual machine’s virtual disk(s) to a different location. You may
(optionally) also use this operation to move the virtual machine to a different host. You must
perform this operation on a virtual machine while it is in the poweredOff state.

The MoveVM operation takes one mandatory argument, the handle to the virtual machine that will
be enabled. There are three optional arguments: the handle to the destination host (if both the
virtual machine and its virtual disk(s) are moved), the dataLocator parameter (path) describing the
location of the virtual machine configuration file, and the destination for all disks in the virtual
machine.

The client must have Configure rights on the virtual machine and on the Farm of its host. If you are
also planning to move this virtual machine to a different host, then the client must also have
Configure rights on the target (destination) host.
www.vmware.com
108

C H A P T E R 6 Advanced Client Concepts for Java Programmers
The request returns once the operation has been initiated by returning a task handle back to the
client. The client may monitor the task for progress of the operation.
109

Virtual Infrastructure SDK Programming Guide
Monitoring Events
The client can obtain events information, as specified by the Event data model, described in the
Virtual Infrastructure SDK Reference Guide.

Clients can collect events on hosts or on virtual machines, including informational, warning, or
error messages such as changes in power operations or device status (connected, disconnected, or
busy). In addition, clients can receive updates when alarms occur; for example, when memory or
CPU usage, or virtual machine heartbeat is either above or below normal.

Each event comprises two parts: a declaration (the type of event), and the actual event (an event
log).

Clients can access all information related to events by calling GetContents on the /event handle.
This returns a Container with two Items:

• Handle for all event declarations under /event/decls

• Handle for all events under /event/all

Event Declarations
The view, /event/decls, represents all the event declarations. This view is an EventDeclList
object, that contains a single array field called “decl”. Each entry is this array is a separate EventDecl
(event declaration). By calling GetContents on /event/decls, the client can obtain all the
known event declarations in the system. The event declarations are a set of pre-defined event
types that do not get updated. Therefore, clients do not need to call GetUpdates on the handle for
/event/decls.

Each event declaration has the following attributes:

• key — String that is the ID of this event declaration.

• kind — Type of event, that is one of the following: “alert”, “error”, “warning”, “info”, or “user”.

• msgFmt — Array of format strings that describes how the event message is rendered; for
example, “Task%0 created on %1”.

• schedule — (Optional) Handle of the schedule (if any) that caused this event.

Event Logs
The view, /event/all, represents all the available events. This view is an EventCollector
Container that has 2 Items: /event/all/filter, which is an EventFilter and /event/all/
events, which is of type EventCollection.

The EventFilter object describes how all the events listed under EventCollection are grouped
together. The EventCollection contains a single array field called log. Each entry in this array is a
separate Event object. Each Event object describes a unique event that occurred in the system.
www.vmware.com
110

C H A P T E R 6 Advanced Client Concepts for Java Programmers
In the case of /event/all, no filtering is done and all events are listed under /event/all/
events; the filter under /event/all/filter is empty. EventFilter objects have the following
attributes, indicating the attribute used to group the events:

• parent — (Optional) ID of the parent event that generated the events in this filter. (If this
attribute is set, then the events in this event collector are grouped by the generating parent
event.)

• schedule — (Optional) ID of the scheduled task that generated this event. (If this attribute is
set, then the events in this event collector are all the events generated by this task schedule.)

• kind — String indicating the event kind. Events of the same kind are grouped together.

• startTime — Collects events that occurred after this start time.

• end time — Collects events that occurred before this end time.

• farm — (Optional) Collects events that occurred under this Farm.

• vm — (Optional) Collects events that occurred on this virtual machine.

• host — (Optional) Collects events that occurred on this host.

• declId — (Optional) Collects events that have this declaration ID.

• totalEvents — (Optional) Collects this number of events in the event collector, giving priority
to more recent events.

Event objects have the following attributes:

• key — String that is the ID of the event.

• decl — Declaration ID corresponding to this event.

• arg — Array of name-value pairs that holds the value for the parameters in the message
format string. Each entry in this array corresponds to a matching entry in the argType[] array
in this event’s declaration.

• parent — String that is the event ID of the parent event that caused this event.

• timestamp— Date and time when this event occurred.

• userDesc — (Optional) String that is the user description of this event.

• vm — (Optional) Handle of the virtual machine that owns this event.

• host — (Optional) Handle of the host that owns this event.

• farm — (Optional) Handle of the Farm that owns this event.

Clients that are interested in gathering event information should first call GetContents on the
handle for /event/decl and /event/all/events. The declaration data that is received
111

Virtual Infrastructure SDK Programming Guide
should be cached by the client. The client can then call GetUpdates on /event/all/events
to be notified of events, as they occur.

The following sample illustrates how clients can monitor events as they occur.

 String handle = serviceConnection.resolvePath("/event/all/events");
 ViewContents vc = serviceConnection.getContents(handle);
 EventCollection eventList = (EventCollection)(vc.getBody());
 Event[] eventItems = eventList.getLog();
 if (eventItems == null)
 {
 System.out.println("There are no Events");
 return;
 }
 for (int i = 0; i < eventItems.length; i++)
 {
 ...process event...
 }

Creating an Event Collector
Clients can create an event collector to filter events on the following attributes:

• kind — Filters by the type of event; for example, alert, info, warning, and so on.

• declId — Filters an event specified by its VirtualCenter event declaration ID

• startTime — Filters any events that occurred before the specified start time.

• endTime — Filters any events that occurred after the specified end time.

• parent event — Filters any events with the specified parent event.

• schedule — Filters any events that are caused by the specified schedule

• host, vm, or farm — Filters for events associated with the specified host, virtual machine, or
Farm.

Once it has been created, this event collector is only accessible by the handle returned by the
Create operation. Clients cannot view this event collector in the /event view hierarchy.

For example, a client may create an event collector if it is interested in only “error” events from a
particular host or virtual machine. The newly created event collector only shows these events.

The following sample code illustrates the creation of a filtered event collector:

EventFilter eventFil = new EventFilter();
String srcHandle = serviceConnection.resolvePath(srcpath);
eventFil.setHost(srcHandle);
eventFil.setKind(EventKind.error);
www.vmware.com
112

C H A P T E R 6 Advanced Client Concepts for Java Programmers
String eventParent = serviceConnection.resolvePath("/event");
EventCollector eventCol = new EventCollector();
eventCol.setFilter(eventFil);
String eventColHandle =
 serviceConnection.create(eventParent, "Errors", "EventCollector", eventCol);

The following code sample shows how to extract the list of events from this event collector:

ViewContents eventColView = serviceConnection.getContents(eventColHandle);
Container c = (Container) eventColView.getBody();
Item[] items = c.getItem();
String eventCollectionHandle = null;
for (int i = 0; i < items.length; i++) {
 if (items[i].getType().equals("EventCollection")) {
 eventCollectionHandle = items[i].getKey();
 break;
 }
}

ViewContents eventListView =
serviceConnection.getContents(eventCollectionHandle);
EventCollection eventList = (EventCollection) eventListView.getBody();

// display the events here. Monitor the EventCollection for new events...
// See code sample for full listing on how to do this.
113

Virtual Infrastructure SDK Programming Guide
Task Scheduling and Monitoring
Clients create tasks on the Web service in order to execute API operations.

Active Tasks and Scheduled Tasks
There are two types of tasks: active tasks and scheduled tasks. Active tasks are tasks that are
currently running on the Web service. Scheduled tasks are tasks that will be run on a pre-defined,
and possibly a recurring, schedule. When a scheduled task runs, a new active task is created in the
Web service.

Clients can obtain information about all currently active tasks by calling GetContents on the
/task handle. Similarly, clients can obtain information about all scheduled tasks that currently
exist on the Web service, by calling GetContents on the /schedule handle.

The Web service can create tasks in response to certain long-running operations. The Web service
initiates such operations as a task. The Web service returns control to the client without waiting for
the task or operation to complete. The response contains information about the task that was
created on the Web service for that operation. Some examples of long running tasks include
StartVM, StopVM, ResetVM, MigrateVM, and so on. Clients can access information about the task to
determine its status and its progress as described in the next few sections.

Clients can also create scheduled tasks directly on the Web service. Clients identify the operation,
then specify a schedule for running the task. The Web service uses this schedule to determine
when to run the task. See Creating New Scheduled Tasks on page 116.

Monitoring Tasks
Clients can monitor for new tasks as they occur by calling GetUpdates on the /task handle.
Clients can receive notifications on new scheduled tasks as they are created on the Web service by
calling GetUpdates on the /schedule handle.

The GetUpdates operation on the /schedule or the /task handle returns a Container of Items.
Each Item has a handle to a Task object. Each Task object has the attributes listed in the following
table.

Task Object Attribute Description

operationName String identifying the operation that this task is running.

cause String identifying the agent that caused this task’s creation.

schedule String identifying the handle for the scheduled task that created this

task, if applicable.
www.vmware.com
114

C H A P T E R 6 Advanced Client Concepts for Java Programmers
The following sample illustrates how the client can stay informed of all new tasks in the system.

// Replace /task with /schedule to get all scheduled tasks in the system
String handle = serviceConnection.resolvePath("/task");
ViewContents vc = serviceConnection.getContents(handle);
tasks.setTaskRoot(vc);
Container taskList = (Container)(vc.getBody());
Item[] taskItems = taskList.getItem();
if (taskItems == null)
{

System.out.println("There are no Active tasks");
}
else
{

for (int i = 0; i < taskItems.length; i++)
{

// get the details on the task
ViewContents taskVC = serviceConnection.getContents(taskItems[i].getKey());
Task task = (Task) taskVC.getBody();

}
}

Clients can monitor a task for its progress by calling GetUpdates on the handle for the task of
interest. The client can look at the task’s current run state and percentCompleted values to chart a
task’s progress and determine when it completes. The following sample illustrates this concept.

// taskHandles is a VHandleList of all the vHandles of the tasks

entity String identifying the handle for the object that this task is operating
on.

eventCollector Handle of the EventCollector that contains all events associated with
this task.

currentState TaskRunState, an object that indicates this task’s current status (running,
failed, completed, and so on).

percentCompleted Float indicating the percentage of the task that has completed.

normalReturn Object that contains the return value from the operation that the task

executed.

faultReturn FaultInfo object that captures any errors or exceptions encountered by

the operation that this task was executing.

allowCancel Boolean indicating if this running task can be cancelled

queueTime Date and time this task was created.

Task Object Attribute Description
115

Virtual Infrastructure SDK Programming Guide
// the client wants to get notified of updates on
UpdateList updateList = serviceConnection.getUpdates(taskHandles, true);
Update[] updates = updateList.getUpdate();

for (int i = 0; i < updates.length; i++)
{

Change[] changes = updates[i].getChange();
for (int j = 0; j < changes.length; j++)
{

Change change = changes[i];
String target = change.getTarget();
if (!target.startsWith("item[\""))
{

// updates to the /task or /schedule container
// add new task on if ins op
// delete completed task if del op
processTasks(changes);
// update the client vhandle for /task or /schedule container

}
else
{

// update to an existing task. Apply updates to task
applyUpdates(task, change);
// update the task's VHandle
// display task's updated progress (runState, percentCompleted)

}
}

}

Creating New Scheduled Tasks
Clients can create new scheduled tasks on the Web service. The following operations can be
scheduled as a task:

• Power operations — StopVM, StartVM, and ResetVM.

• PutUpdates — changing the resource settings of a virtual machine. Clients must pass a
handle (and not a vHandle) for a scheduled PutUpdates operation.

• MigrateVM

• MoveVM

• CloneVM

• CreateTemplate
www.vmware.com
116

C H A P T E R 6 Advanced Client Concepts for Java Programmers
To create a task schedule, clients need four parameters, as specified by the TaskScheduleSpec
datatype:

• name — Name of the task schedule.

• operationName — Name of the scheduled API operation.

• parameter — Parameters for the operation. If the operation requires no parameters, then this
field is not required.

• recurrence — Recurrence of this task schedule.

Once a task schedule is created, there are additional parameters that define the task schedule.
Refer to the description for the TaskSchedule datatype in the Virtual Infrastructure SDK Reference
Guide.

The following sample code illustrates creating a scheduled task that performs the power-on
operation.

KeyedValue [] args = getArgs(operationName, vmHandle);
Object recurrence = getRecurrence();
TaskScheduleSpec task = new TaskScheduleSpec();
task.setName("powerOnVMTask");
task.setOperationName("StartVM");
task.setParameters(args);
task.setRecurrence(recurrence);

// Get the handle for /schedule
String parentHandle = serviceConnection.resolvePath("/schedule");

// Create this task on the server
String taskHandle = serviceConnection.create(parentHandle, name,
"TaskSchedule", taskSchedule);
return taskHandle; // handle of newly created task

In the preceding sample, the args array is an array of KeyedValue objects that represent the input
parameters for the operation.

The operation name specified in the TaskScheduleSpec datatype must match exactly the
operation name specified in the WSDL; for example, when setting up a task to clone a virtual
machine, the operation name should be CloneVM. Similarly, the parameter names should exactly
match the parameter names for that operation as specified in the WSDL. The following sample
code illustrates the parameters for the StartVM operation.

KeyedValue[] args = new KeyedValue[2];
117

Virtual Infrastructure SDK Programming Guide
args = new KeyedValue[1];
args[0] = new KeyedValue();
args[0].setKey("vm");
args[0].setVal(vmHandle);

The recurrence for a scheduled task is an object as specified in the preceding table. Each object has
a set of parameters that specify when to run the task. For example, clients can specify a weekly task:

 WeeklyTask weekly = new WeeklyTask();
 // What time of the day this task should fire
 weekly.setHours(6);
 weekly.setMinutes(5);
 // Run this task every xx weeks
 weekly.setInterval(2);
 // On which days of the week should this fire
 Weekday weekdays [] = new Weekday[2];
 weekdays[0] = Weekday.thursday;
 weekdays[1] = Weekday.sunday;
 weekly.setDayOfWeek(weekdays);

 task.setRecurrence(weekly);

Running a Scheduled Task
Clients can run a scheduled task on the Web service by calling the RunTask operation. This
operation takes one argument, the handle of the task. The client must have Interact rights for the
specified task.

Upon success, an empty response message is returned.

String taskHandle; // handle of task to run
serviceConnection.runTask(taskHandle);

Ending a Task
Clients can stop a running task, or cancel a task that has not yet been started on the Web service
by calling the EndTask operation. This operation takes one argument, the handle of the task. The
client must have Interact rights for the specified task.

Upon success, an empty response message is returned.

String taskHandle; // handle of task to cancel
serviceConnection.endTask(taskHandle);
www.vmware.com
118

C H A P T E R 6 Advanced Client Concepts for Java Programmers
Collecting Performance Data
The client can obtain performance data, as specified by the Performance Metric data model,
described in the Virtual Infrastructure SDK Reference Guide. Clients can collect performance data on
hosts or on virtual machines, including CPU and memory utilization, network and disk
performance data, and floppy and CD-ROM drive performance, and so on.

Clients obtain performance statistics through a performance collector. A performance collector,
also known as a perf collector, is an object that collects a certain set of statistics at a specified
interval frequency.

The view, /perf, is a container for all the performance collectors. There are two types of
performance collectors:

• VirtualCenter perf collectors — VirtualCenter perf collectors specify a sampling interval and
are visible in the VMware VirtualCenter application.

• Filtered perf collector — Filtered perf collectors (children) are filtered from an existing
VirtualCenter perf collector (parent) and are not visible in the VirtualCenter application.

Clients can create both types of performance collectors by using the Create operation.

• A new VirtualCenter perf collector with a different sampling interval from any other
VirtualCenter perf collectors.

• A perf collector that filters the statistics of an existing VirtualCenter perf collector.

VirtualCenter Perf Collector
VirtualCenter performance collectors are named according to their sampling interval. They have
only a sampling interval and no default filter. There are four default VirtualCenter perf collectors:

• Five minutes — /perf/0000000300. Historical samples are retained for a day.

• One hour — /perf/0000003600. Historical samples are retained for a week.

• Six hours — /perf/0000021600. Historical samples are retained for a month.

• One day — /perf/0000086400. Historical samples are retained for a year.

Clients can also create a VirtualCenter perf collector by using the Create operation. When doing so,
specify only the name and the sampling interval (initial parameter comprising XML document of
type PerfCollector). See Creating a VirtualCenter Perf Collector on page 122.

Note: When creating a VirtualCenter perf collector, the user-friendly name does not appear in the
/perf directory. Instead, the newly created VirtualCenter perf collector appears as its sampling
interval. However, the user-friendly name appears in the VirtualCenter application.
119

Virtual Infrastructure SDK Programming Guide
For example, if you create a new VirtualCenter perf Collector called “Every Minute” with a sampling
interval of 60 seconds, it appears in the VirtualCenter application as “Every Minute” but appears as
its sampling interval, /perf/0000000060.

Because VirtualCenter perf collectors only have a sampling interval, they collect statistics on all
virtual machines and all hosts. Because updating the contents of these VirtualCenter performance
collectors for each sampling interval would generate much communication traffic; by default, the
contents of VirtualCenter performance collectors do not keep current data.

If you want the contents of VirtualCenter perf collectors to be up-to-date, then change the default
behavior by setting the periodicPerfRefreshEnable config variable to TRUE in the Web
service configuration file (vmaConfig.xml). If this variable is set to TRUE, then the contents of all
VirtualCenter perf collectors are also kept up-to-date.

Filtered Perf Collectors
Filtered perf collectors are “children” derived from a VirtualCenter perf collector. Each VirtualCenter
perf collector can have multiple “children” filtered perf collectors. However, a filtered per collector
cannot be used to create additional “children” filtered perf collectors.

As discussed in the previous section, VirtualCenter perf collectors have only a sampling interval,
and therefore, collect statistics on all virtual machines and all hosts. Since it is impractical to collect
all this performance data, clients should create “filtered perf collectors” to monitor the current
values of particular performance statistics. Unlike VirtualCenter perf collectors, the contents of
filtered perf collectors are kept up-to-date.

Filtered perf collectors typically specify a source (host or virtual machine) and the performance
statistics of interest. For example, a default VirtualCenter perf collector has a sampling interval of
five minutes. By filtering this VirtualCenter perf collector, clients can create a filtered perf collector
collecting performance statistics every five minutes on “host A”, another that collects memory
statistics every five minutes on “John’s virtual machine”, and so on.

Clients also create a filtered perf collector by using the Create operation. See Creating a Filtered
Perf Collector on page 122. When doing so, specify the name and the filter (initial parameter
comprising XML document of type PerfCollector). This XML document must include the handle to
the parent VirtualCenter perf collector. The filter should also include the source (host or virtual
machine being queried), the samples, and the performance statistics of interest.

Note: Do not specify the sampling interval. The filtered perf collector has the same sampling
interval as its parent VirtualCenter perf collector. The WSDL stubs insert a value of zero (0) that is
ignored by the Web service.

Note: If clients leave the spec field uninitialized (or NULL), then all performance statistics from the
source are returned.
www.vmware.com
120

C H A P T E R 6 Advanced Client Concepts for Java Programmers
Note: Unlike VirtualCenter perf collectors, the user-friendly name selected for the filtered perf
collector appears in the /perf directory, but does not appear in the VirtualCenter application.

Comparing VirtualCenter and Filtered Perf Collectors
The following table summarizes the differences between VirtualCenter and filtered perf collectors.

Performance Metric Data Model
A diagram of the Performance Metric data model is included in the Virtual Infrastructure SDK
Reference Guide. Here, we provide a brief summary of this model.

Characteristic VirtualCenter Perf Collector Filtered Perf Collector

What does it specify? Specifies a unique sampling interval. Does
not specify any other filter.

Specifies the source (of the performance
statistics) and defines the performance

statistics (CPU, memory, and so on).

Uses the same sampling interval as its

“parent” VirtualCenter perf collector.

Can be created? Yes. Use the Create operation and specify a

name, sampling interval, and total number
of samples.

Yes. Use the Create operation and specify a

name, a parent VirtualCenter perf collector,
and a filter.

Can be deleted? Yes. Use the Delete operation. Yes. Use the Delete operation.

Life expectancy. Persists until deleted. Persists until deleted or the Web service is

stopped. When the Web service is restarted,
filtered perf collectors no longer exist.

Filters an existing perf
collector?

No. VirtualCenter perf collectors have only a
name and a sampling interval.

Yes. Filtered perf collectors filter an existing
VirtualCenter perf collector.

Gets current
performance statistics?

No, unless the
periodicPerfRefreshEnable

config variable is set to TRUE. This is set to
FALSE by default.

Yes. Filtered perf collectors can get current
statistics through the GetContents and

GetUpdates operations.

Used to create filtered
perf collectors?

Yes. Clients can create filtered perf
collectors from a VirtualCenter perf

collector.

No. Clients cannot “filter” a filtered perf
collector.

Query historical

performance statistics?

Yes. Use the QueryPerfData and

QueryPerfData2 operations. Specify the
handle of the perf collector and optionally,

a filter.

Yes. Use the QueryPerfData and

QueryPerfData2 operations. Specify the
handle of the perf collector. Do not specify

a filter.
121

Virtual Infrastructure SDK Programming Guide
A PerfCollector is a collector of performance statistics. Each Perf Collector includes a filter
(specifying the sample interval and the performance statistics that are collected) and stats,
referring to the actual performance statistics that are collected (a PerfCollection).

Each PerfCollection has an array of statistics from various sources, either hosts or virtual machines.
Each PerfSource has an array of samples for that source. Each PerfSample has an array of statistics
for the sample from that source. Each stat is a PerfStat, and can have a type specified by
PerfStatType, that describes the type of performance statistic: cpu, net, disk, floppy, and so on.

The actual statistics are in the data field of the PerfStat, and comprise many different datatypes:
CPUPerf, MemoryPerf, NetPerf, and so on.

Creating a VirtualCenter Perf Collector
Clients use the Create operation to create a new VirtualCenter perf collector, as shown in the
following sample.

// Creates a New Virtual Center Perf Collector.
// serviceConnection is a reference to vmaBindingStub

String pcName = "MyPerfCollector";

String parentHandle = serviceConnection.resolvePath("/perf");
PerfCollector p = new PerfCollector();
PerfFilter f = new PerfFilter();
f.setInterval(180);
f.setSamples(new Integer(2));
pc.setFilter(f);

String handle =
 serviceConnection.create(parentHandle, pcName, "PerfCollector", pc);

Creating a Filtered Perf Collector
This sample illustrates creating a filtered perf collector, from the parent VirtualCenter perf collector
created in the preceding section.

// Creates a Filtered Perf Collector for a Host.
// serviceConnection is a reference to vmaBindingStub

String src1path = "/vcenter/Farm/yourhostnamehere";
String filteredColName = "MyFilteredCollector";

PerfFilter f = new PerfFilter();
f.setSpec(new PerfSourceType[2]);
www.vmware.com
122

C H A P T E R 6 Advanced Client Concepts for Java Programmers
f.setHandle(serviceConnection.resolvePath("/perf/0000000300"));

int samples = 1;
f.setSamples(new Integer(samples));
p.setFilter(f);

PerfSourceType s = new PerfSourceType();
f.setSpec(0, s);
s.setKey(serviceConnection.resolvePath(src1path));
s.setSample(new PerfType[1]);
// Add more sources here as needed...

PerfType t = new PerfType();
s.setSample(0, t);
t.setType(PerfStatType.cpu);
t.setDevice("0");

//Add more stats here as needed.
String perfParentHandle = serviceConnection.resolvePath("/perf");

String handle =
 serviceConnection.create(perfParentHandle, filteredColName,
 "PerfCollector", p);

ViewContents pcContents = serviceConnection.getContents(handle);
// Now call getUpdates on the stats object of this collector...

Collecting Current Performance Data
We then call the GetContents operation on the newly created filtered perfCollector (by calling
GetContents on the perfCollector handle returned from the Create operation).

This operation returns a perfCollector Container that contains two Items, the PerfFilter and
PerfCollection (statistics) datatypes. Each Item contains a key, that is the handle to the Item. To get
the latest statistics, clients should use the handle to the PerfCollection object and first call the
GetContents operation, then the GetUpdates operation on this PerfCollection object.

The following sample illustrates this concept.

ViewContents pcContents =
serviceConnection.getContents(filteredperfcollectorhandle);

Container filtPerfCollector = (Container)pcContents.body;

// get the filter item and stats collection item.
Item filterItem = filtPerfCollector.item[0];
123

Virtual Infrastructure SDK Programming Guide
Item statsItem = filtPerfCollector.item[1];
if (statsItem.type.equals("PerfFilter")) {
 statsItem = filtPerfCollector.item[0];
 filterItem = filtPerfCollector.item[1];
}

// call getcontents with these item's handles to get
// the PerfFilter and PerfCollection Objects.

ViewContents filterContents = serviceConnection.getContents(filterItem.key);
ViewContents statsContents = serviceConnection.getContents(statsItem.key);

PerfCollection stats = statsContent.body;
// use this PerfCollection to get statistics for.

The following sample code illustrates how to extract the appropriate statistic from the
PerfCollection object:

// serviceConnection is a reference to vmaBindingStub
 // Assumes you have already got the PerfCollection Object.
 // stats is of type PerfCollection
 PerfSource[] source = stats.getSource();
 // Sources from where statistics has been pulled (hosts/VMs)
 for (int i = 0; i < source.length; i++) {
 ViewContents vc = serviceConnection.getContents(source[i].getKey());
 if (vc.getBody() instanceof Host) {
 Host host = (Host) vc.getBody();
 String hostName = host.getInfo().getHostname();
 System.out.println("Stats for host:" + hostName);
 PerfSample[] sample = source[i].getSample();
 for (int j = 0; j < sample.length; j++) {
 PerfStat[] statsSample = sample[j].getStat();
 for (int k = 0; k < statsSample.length; k++) {
 PerfStat stat = statsSample[k];
 PerfStatType statType = stat.getType();
 // The app should allow the user to pick
 // the device to show data for.
 // Here we are showing CPU data only
 if (statType == PerfStatType.cpu) {
 CPUPerf data = (CPUPerf) stat.getData();
 // display the CPUPerf data
 }
 }
 }
 }
 }
www.vmware.com
124

C H A P T E R 6 Advanced Client Concepts for Java Programmers
Collecting Historical Data
Similarly, clients can use the QueryPerfData and QueryPerfData2 operations on both VirtualCenter
and filtered performance collectors to obtain historical performance data, for any specified time
period. The time period may be completely in the past, or it may be specified to extend up to, and
including, the most recent update.

When using the QueryPerfData and QueryPerfData2 operations, clients must specify the handle to
the perf collector. Specify the filter parameter only when querying a VirtualCenter perf collector.

Note: Do not use the filter parameter only when querying a filtered perf collector (as it is already
“filtered”). If the filter parameter is specified for a filtered perf collector, the operation returns an
error.

Note: If you see output similar to /vpx/vm/#000512 or /vpx/host/#000a376 for the
PerfSourceType “key” field in the PerfCollection object, then the specified virtual machine or host
has been deleted.

The following sample illustrates how a client calls the QueryPerfData operation.

/*
 * specify the source for which to collect stats for
 * Here we specify the 1st CPU of the host specified in
 * the command line parameters.
 */

// serviceConnection is a reference to vmaBindingStub

String hostPath = "/vcenter/Farm/yourhostnamehere";
String fromDateTime = "07/10/2004 1:00, PDT";

PerfFilter sourceFilter = new PerfFilter();
sourceFilter.setSpec(new PerfSourceType[1]);
PerfSourceType s = new PerfSourceType();
sourceFilter.setSpec(0, s);
s.setKey(serviceConnection.resolvePath(hostPath));
s.setSample(new PerfType[1]);

PerfType t = new PerfType();
s.setSample(0, t);
t.setType(PerfStatType.cpu);
t.setDevice("0");

DateFormat df = new SimpleDateFormat("MM/dd/yyyy HH:mm, z");
Date chgDate = df.parse(fromDateTime);
Calendar calDate = Calendar.getInstance();
calDate.setTime(chgDate);
125

Virtual Infrastructure SDK Programming Guide
PerfCollector col =
 serviceConnection.queryPerfData(handle, calDate, 1, sourceFilter);

Clients call the QueryPerfData2 operation exactly as they call the QueryPerfData operation.
However, the QueryPerfData2 operation returns the new CPUPerf2, MemoryPerf2, and
VirtualMachineMemoryPerf2 datatypes whereas the QueryPerfData operation returns the CPUPerf,
MemoryPerf, and VirtualMachineMemoryPerf datatypes. These new datatypes contain additional
statistics for ESX Server hosts and virtual machines on ESX Server.

Note: Clients can only obtain the statistics from the CPUPerf2, MemoryPerf2, and
VirtualMachineMemoryPerf2 datatypes through the QueryPerfData2 operation. If you are already
calling the GetUpdates operation on the PerfCollection object, then be sure to call the
QueryPerfData2 operation to obtain these extra statistics.

This next sample shows how to display the statistics from CPUPerf2, returned after calling the
QueryPerfData2 operation.

CPUPerf2 data = (CPUPerf2) stat.getData();
Integer pcpu = data.getPcpu();
Long system = data.getSystem();
Long ready = data.getReady();
Long wait = data.getWait();
Long used = data.getUsed();

if (used != null) {
 System.out.println("CPU used: " + used);
}
if (system != null) {
 System.out.println("CPU System time: " + system);
}
if (ready != null) {
 System.out.println("CPU Ready time: " + ready);
}
if (wait != null) {
 System.out.println("CPU Wait time: " + wait);
}
if (pcpu != null) {
 System.out.println("CPU PCPU: " + pcpu);
}
www.vmware.com
126

C H A P T E R 6 Advanced Client Concepts for Java Programmers
Changing Permissions
Clients can view and change permissions on any object by using the VMware SDK. To view the
current permissions, clients either call the GetInfo operation on the object or call the GetContents
operation on the parent Container of the object. Each Item that is returned in the Container’s Item
list contains the permissions associated with that Item.

The permissions are returned in an array of Permission objects. Each permission object has two
String fields: the key field (identifies the user with the assigned permissions) and the rights field
(indicates the permissions granted to the user).

Once the current permissions are known, clients can modify these permissions by using the
ChangePermissions operation. The ChangePermissions operation takes two arguments: the
vHandle (versioned identifier of the object) and a PermissionList (encapsulates the new
Permissions array).

By using the ChangePermissions operation, clients can add new permissions, or delete or modify
existing permissions. To add new permissions, clients should add a new Permission entry to the
Permissions array, then send the new Permissions array to the ChangePermissions operation.

Similarly, clients can delete permissions by removing the desired entries from the Permissions
array.

Clients can modify permissions by modifying the permission object in the Permissions array, then
sending the updated Permissions array to the ChangePermissions operation.

Note: The new PermissionList that is specified in the ChangePermissions operation replaces all
the existing permissions on the object. If you don’t want to delete any existing entries, then the
client must also send back all the existing entries to the ChangePermissions operation.

The following code sample illustrates how to invoke the ChangePermissions operation.

 String handle =
 serviceConnection.resolvePath(
 "/vcenter/MyFarmGroup/Farm/myVirtualMachine");
 ViewContents vc = serviceConnection.getContents(handle);
 ViewInfo info = serviceConnection.getInfo(handle);
 Permission[] perms = info.getPerm();

 ...edit permissions here (add / delete / modify perms array)
 PermissionList permList = new PermissionList();
 permList.setPerm(perms);
 serviceConnection.changePermissions(vHandle, permList);
127

Virtual Infrastructure SDK Programming Guide
Taking a Snapshot of a Virtual Machine
The following code sample illustrates using the new snapshot operations. The first, SnapshotVM,
takes a “snapshot” (picture) of a virtual machine at a particular point in time. The second, RevertVM,
discards any existing snapshot and returns the virtual machine to its state preceding the snapshot.
The third, ConsolidateVM, commits the changes contained in the snapshot, to the base virtual
disk(s).

String vmHandle = serviceConnection.resolvePath(args[3]);
if (args[4].equals("snapshot")) {
 task = serviceConnection.snapshotVM(vmHandle);
} else if (args[4].equals("revert")) {
 task = serviceConnection.revertVM(vmHandle);
} else if (args[4].equals("consolidate")) {
 task = serviceConnection.consolidateVM(vmHandle);

// Monitor task here...
www.vmware.com
128

C H A P T E R 6 Advanced Client Concepts for Java Programmers
Exception Handling and Faults
The Web service can encounter an exception or error (also referred to as a fault) while executing an
operation. We previously described how these exceptions can occur (Handling Exceptions in the
Data Synchronization Loop on page 84). Details about these errors is encapsulated in the FaultInfo
object. This object extends the java.lang.Exception class and contains specific details on
the exception that occurred. The FaultInfo object has three attributes:

• FaultKind — Kind of fault occurred

• Code associated with the fault, classified like the HTTP error codes

• Value that contains additional information on the fault, if applicable.

The following table lists the various faults and the values that are present in the FaultInfo object, if
applicable.

FaultKind Description FaultInfo.info FaultInfo.val

AlreadyExists String, with the remainder of the

path where the exception
occurred.

Not applicable.

BadName String, with the remainder of the
path where the exception

occurred.

Not applicable.

NotDirectory String, with the remainder of the

path where the exception
occurred.

Not applicable.

NotFound String, with the remainder of the
path where the exception

occurred.

Not applicable.

PermissionDenied String, with the remainder of the

path where the exception
occurred.

Not applicable.

HandleFault HandleFaultList with at least
one HandleFaultInfo

containing specific data.

NotApplicable Handle that is the incorrect type;

for example, a non-virtual
machine handle specified to the

StartVM operation.
129

Virtual Infrastructure SDK Programming Guide
The following sample shows how to handle some of the faults listed in the preceding table. Refer
to the Virtual Infrastructure SDK Reference Guide to see the faults thrown by each API operation.

try
{

// Initialize connection to Web service and login
// some VMA operation invoked here e.g. resolvePath/getContents/StartVM etc.
// Log out

}
catch (FaultInfo faultInfo)
{

handleExceptions(faultInfo);
}
catch (Exception ex)
{

// some other exception
ex.printStackTrace(System.out)

}

The following sample illustrates retrieving the fault information from the Exception (FaultInfo)
object:

FaultKind faultKind = faultInfo.getKind();
System.out.println("Got Fault:" + faultKind.toString());
if (faultKind.equals(FaultKind.AlreadyExists))
{

// thrown from Create, CreateVirtualDisk
System.out.println("The target name is already defined at path:" +

faultInfo.getInfo());
}
else if (faultKind.equals(FaultKind.HandleFault))
{

HandleFaultList handleFaultList = (HandleFaultList) faultInfo.getVal();
processHandleFault(handleFaultList);

ChangeConflict Not yet thrown. String with target expression
that failed.

NoResources Not yet thrown.

BadState Not yet thrown. String describing the state of the

virtual machine when the
exception occurred.

Interrupted No additional data is provided. No additional data is provided.

BadRequest Text from input that caused the

error.

FaultKind Description FaultInfo.info FaultInfo.val
www.vmware.com
130

C H A P T E R 6 Advanced Client Concepts for Java Programmers
} // other exceptions handled similarly

The following sample illustrates processing the HandleFault exception:

HandleFaultInfo [] handles = handleList.getInfo();
for (int i = 0; i < handles.length; i++)
{

HandleFaultKind faultKind = handles[i].getKind();
if (faultKind.equals(HandleFaultKind.ObsoleteHandle))
{

// delete handle from client's data structure
}
else if (faultKind.equals(HandleFaultKind.BadHandle))
{

System.out.println("Not a recognized handle:" + handles[i].getHandle());
}
else if (faultKind.equals(HandleFaultKind.BadVersion))
{

System.out.println("Bad versioned handle. Versioned handle :" +
"not recognized:" + handles[i].getHandle());

}
else if (faultKind.equals(HandleFaultKind.Unauthorized))
{

System.out.println("Unauthorized access. Client does not have access " +
" to perform the operation on:" + handles[i].getHandle());

}
}

131

Virtual Infrastructure SDK Programming Guide
www.vmware.com
132

C H A P T E R 7

Core Client Concepts for Perl
Programmers
This chapter shows you how to write a good client application in Perl using SOAP::LITE. See
SOAP::LITE for Perl on page 274.

The two previous chapters contained the same information, written in Java. You may use a
different developer environment and language to build your client program. Adjust the examples
accordingly for your developer environment.

Note: All the code samples in this chapter, are located in their entirety in
\SDK\WebService\samples\perl\sampleapp.

This chapter covers the following topics:

• Using SOAP::LITE with VMware SDK on page 135

• Creating a SOAP::LITE Object on page 136

• Logging into the Web Service on page 138

• Permissions on page 139

• Getting Basic Information about an Object on page 141

• Object Inventory on page 142

• The Basic Data Synchronization Loop on page 150
133

Virtual Infrastructure SDK Programming Guide
• Versions and Handles on page 151

• Applying Changes to the Client Data on page 155

• Indexed and Key-based Arrays on page 163

• Calling the PutUpdates Operation on page 166

• Running the Sample Code on page 169

• Fault Handling in SOAP::Lite on page 170

• Testing on page 171

• Complete Code Listing on page 172
www.vmware.com
134

C H A P T E R 7 Core Client Concepts for Perl Programmers
Using SOAP::LITE with VMware SDK
SOAP::Lite is an open source collection of Perl modules that provides a simple and lightweight
interface to SOAP and is currently the standard for designing Perl-based Web service applications.
SOAP::Lite is limited in its support for WSDL schemas. By default, it supports the RPC/Literal schema
whereas our vma.wsdl uses the Document/Literal schema.

To get around this issue, all SOAP messages are slightly modified to adhere to the Doc/Literal
schema before transmission. We build a wrapper around all SDK method calls, specifying the
namespace and providing a mapping between argument names and their respective values. With
this modification, SOAP::Lite works with our Web service and can support the full complement of
SDK operations.

For example:

$soap->Login(‘Administrator’,’foobar’);

We use:

my $method = SOAP::Data->name('Login')
->attr({xmlns => 'urn:vma1'});

my @params = (
SOAP::Data->name(userName => 'Administrator'),
SOAP::Data->name(password => ‘foobar’)
);

$service->call($method => @params)->result;

The syntax for running the Perl sample applications is:

perl <ScriptName>.pl <WebService_URL> <username> <password> <other parameters>

where <WebService_URL> is the VMware VirtualCenter Web Service URL, <username> is
the user name used to log into VMware VirtualCenter, and <password> is the password you
would for the VirtualCenter user. <other_parameters> represents any other parameters that
you may specify, when running a specific operation.
135

Virtual Infrastructure SDK Programming Guide
Creating a SOAP::LITE Object
The following code sample demonstrates how to create a SOAP::Lite object by specifying the URL
of the VMware VirtualCenter Web Service. The SOAP::Lite object is configured to maintain cookies
and also includes a custom deserializer (SdkDeserializer) for parsing internal VMA datatypes. It also
includes a fault handler for handling SOAP faults and transport errors. This SOAP::Lite object is then
used to call all SDK methods.

my $webserviceURL = 'http://localhost:8080'; # URL of web service

my $vmaWSDL = $webserviceURL.'?wsdl'; # Location of vma.wsdl

my $service =

 SOAP::Lite

 -> service($vmaWSDL)

 -> proxy($webserviceURL,
cookie_jar => HTTP::Cookies->new(ignore_discard => 1), timeout => 0)

 -> deserializer(SdkDeserializer->new)

 -> on_fault(sub{FaultHandler(@_);});

SOAP::Lite Deserializer
SOAP::Lite lacks support for handling WSDL-specified custom datatypes. While complex types are
handled by returning a nested structure of hashes, this is a problem for simple types that appear as
leaf elements in a SOAP message. When such simple types are encountered, SOAP::Lite fails to
recognize the type and throws a fault. To avoid problem, we override the typecast() method
in the SOAP::Deserializer package by defining the following custom deserializer.

###
#
SdkDeserializer --
#
SdkDeserializer is a subclass of the default SOAP::Deserializer
and overrides the typecast() method of the deserializer to
handle VMA types.
#

www.vmware.com
136

C H A P T E R 7 Core Client Concepts for Perl Programmers
Results:
Returns the value for custom types defined under the urn:vma1
namespace.
#
Side effects:
None.
#
###

BEGIN {
 package SdkDeserializer;
 @SdkDeserializer::ISA = 'SOAP::Deserializer';

 #
 # Overriding typecast() method of SOAP::Deserializer to return
 # value of VMA types
 #

 sub typecast
 {

my $self = shift;
my ($value, $name, $attrs, $children, $type) = @_;

if ($type){
if(rindex ($type,"urn:vma1") != -1){

return $value;
}

}
return undef;

 }
}

137

Virtual Infrastructure SDK Programming Guide
Logging into the Web Service
The following sample illustrates how to log into the Web service using the WSDK.

my $method = SOAP::Data->name('Login')
->attr({xmlns => 'urn:vma1'});

my @params = (
SOAP::Data->name(userName => 'Administrator'),
SOAP::Data->name(password => 'MyPasword')

);

$service->call($method => @params)->result;
www.vmware.com
138

C H A P T E R 7 Core Client Concepts for Perl Programmers
Permissions
The client must have the right set of permissions on the object being updated or retrieved in order
to invoke the different operations. For example, the client must have Browse rights for the
GetContents operation, Interact rights for the GetUpdates operation, Configure rights for the
PutUpdates operation, and Administer rights for the ChangePermissions operation. Refer to the
Virtual Infrastructure SDK Reference Guide for the required permission for each operation. Also, see
Changing Permissions on page 127 for an example of changing the permission of an object.
139

Virtual Infrastructure SDK Programming Guide
Retrieving the Handle for an Object
Many of the Perl samples in these next two chapters include a ResolvePath operation. This
operation takes a path as its input parameter and returns a handle to the object referenced by the
path.This handle is then used by other SDK operations.

#
Setup & call the ResolvePath method
#

my $method = SOAP::Data->name('ResolvePath')
 ->attr({xmlns => 'urn:vma1'});

my @params = (SOAP::Data->name(path => '/vm'));

my $handle = $service->call($method => @params)->result;
www.vmware.com
140

C H A P T E R 7 Core Client Concepts for Perl Programmers
Getting Basic Information about an Object
Client applications can use the GetInfo operation to retrieve information about an object. This
operation takes one argument, the handle of the object of interest. The return value is a ViewInfo
object that contains the handle of the parent Container of this object, the name of the object, the
type of the object, and the list of permissions on the object.

The following sample code demonstrates how to invoke the GetInfo operation and retrieve the
result.

#
Setup and call the GetInfo method
#

my $method = SOAP::Data->name('GetInfo')
 ->attr({xmlns => 'urn:vma1'});

my @params = (SOAP::Data->name(handle => $handle));

my $result = $service->call($method => @params)->result;

Display information
#

print "\nParent : $result->{parent}";
print "\nName : $result->{name}";
print "\nType : $result->{type}";
141

Virtual Infrastructure SDK Programming Guide
Object Inventory
You can write a client application to obtain a list of hosts or virtual machines available to you. Once
you obtain these lists, you can request for information about a specific host or virtual machine.
Then, you can request updates when they occur.

Clients use the GetContents operation to return information about the following objects, provided
you have Browse access to these objects.

• Containers (Server Farms and Farm groups)

• Farm

• Host

• Virtual machine group

• Virtual machines

Handling Complex Objects in SOAP::Lite
SOAP::Lite deals with complex objects by parsing them into a nested structure of hashes and
returning a hash reference. As a result, when there are arrays of complex objects returned (for
example, arrays of Item or Change objects), then the array elements are overwritten in the hash
and only the last Item in the array can be retrieved. To prevent this, we avoid calling the default
result method to retrieve SOAP responses and instead retrieve the top-level envelope object.
This object can be manually traversed and parsed to retrieve the individual array elements as
defined in the PrintContents method.

Tie::IxHash
In SOAP::Lite, the concept of constructing complex objects to pass as parameters for methods,
follows the same principles as retrieving these objects; we construct a hash to represent the
object. To ensure ordering of elements in the hash, we use the Tie::IxHash module. The syntax for
its usage is:

tie %$<hash-name>, "Tie::IxHash";

This binding must be repeated for each nested level in the hash, when ordering must be
maintained. When an object contains nested arrays, it needs to be handled differently as illustrated
in StartVM Operation Parameters on page 220, but in most cases, an ordered hash is sufficient to
represent complex objects.
www.vmware.com
142

C H A P T E R 7 Core Client Concepts for Perl Programmers
Using GetContents to Obtain Information About Hosts and Virtual
Machines
For example, if you wanted to obtain a list of all the hosts, you can issue a GetContents request on
/host. Similarly, if you wanted to obtain a list of all virtual machines, for all hosts, you can issue a
GetContents request on /vm, as illustrated in Simple Client Program in Perl on page 53.

For example, if you have Browse rights on two virtual machines, then the output returned from the
GetContents request for /vm is:

handle vma-domain-00000000001
vHandle vma-domain-00000000001@fe11fe5439000
body
 item
 key vma-host-00000000001
 name user-dev.vmware.com
 type Host
 item
 key vma-vmgroup-00000000002
 name Discovered VMs
 type VirtualMachineGroup
 item
 key vma-vm-00000000027
 name clonetest3
 type VirtualMachine
 perm
 key user
 rights Interact

Using GetContents to Obtain Information About Individual Hosts and
Virtual Machines
Once you obtain the list of hosts (virtual machines), you can use the GetContents operation to
obtain detailed information about an individual host machine or virtual machine. For example, by
issuing a GetContents request on a specific host, you can see information about its hardware,
status, resource allocations, networking devices, and so on, as indicated by the Host Machine data
model in the Virtual Infrastructure SDK Reference Guide.

Similarly, by issuing a GetContents request on a specific virtual machine, you can see information
about its virtual hardware, status, resource allocations, virtual networking, guest operating system,
and so on, as indicated by the Virtual Machine data model in the Virtual Infrastructure SDK Reference
Guide.
143

Virtual Infrastructure SDK Programming Guide
The following sample illustrates how to use the GetContents operation for a host view. Clients can
obtain the host handle by calling the ResolvePath operation on either its nested path under the
/vcenter hierarchy or by using its FQDN (Fully qualified domain name) under /host. The
example below uses the host’s nested path in the /vcenter hierarchy.

#
Get Contents for /vcenter/New Farm Group/New Farm/<Fully qualified hostname>
Alternate path for host could be /host/<mytesthost.mydomain.com>
#

$path = '/vcenter/<New Farm Group>/<New Farm>/<Fully qualified hostname>';

#
Setup & call the ResolvePath method
#

my $method = SOAP::Data->name('ResolvePath')
 ->attr({xmlns => 'urn:vma1'});

my @params = (SOAP::Data->name(path => $path));

my $handle = $service->call($method => @params)->result;

#
Setup and call the GetContents method.
#

$method = SOAP::Data->name('GetContents')
 ->attr({xmlns => 'urn:vma1'});

@params = (SOAP::Data->name(handle => $handle));

#
Avoid calling result() method on SOAP response to prevent
overwriting of arrays
#

my $result = $service->call($method => @params);

PrintContents($result);

###
#

www.vmware.com
144

C H A P T E R 7 Core Client Concepts for Perl Programmers
PrintContents --
#
Display subroutine that accepts a reference to an envelope
object and recursively parses the structure to display the
contents.

Results:
Displays contents of an envelope object.
#
Side effects:
None.
#
###

sub PrintContents
{

my ($result, $path, $tab) = @_;

#
Define the path for the outermost object of interest
#

if (!defined $match) {
$match = "//returnval/*";

}

#
Set initial offset to zero
#

if (!defined $tab){
$tab = 0;

}

Iterate through each element in the current object
and check to see if it contains a text value or a
child object
#

my $i =0;
foreach my $element ($result->dataof($match)) {

$i++;
print "\n". " " x $tab.$element->name." ";

#
Element contains child object. Adjust path for the
145

Virtual Infrastructure SDK Programming Guide
new object and recursively call subroutine to parse
the child object
#

if (ref $element->value) {
$newMatch = $match;
chop ($newMatch);
$newMatch = $newMatch."[$i]/*";
PrintContents ($result, $newMatch, $tab+1);

} else {

#
Element contains text value
#

print $element->value;
}

}
}

This results in sample output similar to the following:

handle vma-host-00000000008
vHandle vma-host-00000000008@fe96a2e1c4000003
body

info
uuid 44 45 4c 4c 47 00 10 34-80 53 b4 c0 4f 36 34 31
hostname myhost.mydomain.com
port 902
system

name VMware ESX Server
type esx-server
version 2.5.0
build build-9746

datastore [Local]
datastore [Shared]
network

key Adapter0 Network
network

key Internal Network
configLimits

maxAudio 1
maxFloppy 2
maxNet 4
maxParallel 3
maxSerial 4
www.vmware.com
146

C H A P T E R 7 Core Client Concepts for Perl Programmers
maxUSBController 1
ideLimits

maxControllers 2
maxDevicesPerController 2

scsiLimits
maxControllers 4
maxDevicesPerController 16

guestOS
key other
label Other
supported false
maxCpu 1
defaultDiskSize 4294967296
defaultColorDepth 16
defaultDiskControllerType ide
defaultSCSIAdapterType lsiLogic
memory

minHostMb 1
minMb 32
maxMb 1390
defaultMb 256

guestOS
key netware6
label NetWare 6
supported true
maxCpu 1
defaultDiskSize 4294967296
defaultColorDepth 8
defaultDiskControllerType scsi
defaultSCSIAdapterType lsiLogic
memory

minHostMb 1
minMb 512
maxMb 1390
defaultMb 512

guestOS
key linux
label Linux
supported true
maxCpu 1
defaultDiskSize 4294967296
defaultColorDepth 16
defaultDiskControllerType scsi
defaultSCSIAdapterType lsiLogic
memory

minHostMb 1
minMb 32
147

Virtual Infrastructure SDK Programming Guide
maxMb 1390
defaultMb 256

guestOS
key winNetEnterprise
label Windows Server 2003 Enterprise Edition
supported true
maxCpu 1
defaultDiskSize 4294967296
defaultColorDepth 8
defaultDiskControllerType scsi
defaultSCSIAdapterType lsiLogic
memory

minHostMb 1
minMb 128
maxMb 1390
defaultMb 384

guestOS
key win2000AdvServ
label Windows 2000 Advanced Server
supported true
maxCpu 1
defaultDiskSize 4294967296
defaultColorDepth 8
defaultDiskControllerType scsi
defaultSCSIAdapterType lsiLogic
memory

minHostMb 1
minMb 128
maxMb 1390
defaultMb 384

vmLimit
key #1
cpuCount 1
maxMb 1672

migrationEnabled false
migrationInfo
customPropertyDef vma-global-conf

hardware
cpu

key #00000001
description Intel(R) Xeon(TM) CPU 2.80GHz
family 15
features -1075053569
id 1
mhz 2784
model 2
stepping 9
www.vmware.com
148

C H A P T E R 7 Core Client Concepts for Perl Programmers
type 0
vendor intel

cpu
key #00000000
description Intel(R) Xeon(TM) CPU 2.80GHz
family 15
features -1075053569
id 0
mhz 2784
model 2
stepping 9
type 0
vendor intel

memory
sizeMb 2034

state
status enabled
detail connected
connected true
bootTime 1969-12-31T16:00:00-08:00
eventCollector vma-0000-0000-000a

vm vma-vm-00000000061
vm vma-vm-00000000062
.
.
.vm vma-vm-00000000066
path /vcenter/farm/myhost.mydomain.com
149

Virtual Infrastructure SDK Programming Guide
The Basic Data Synchronization Loop
In Developing Client Applications on page 45, we developed a Java example to perform the
GetContents operation on the /vm view. (See Creating a Simple Client on page 52.) The operation
returns a data structure containing the list of the available virtual machines. This list contains
handles that refer to the XML documents corresponding to each virtual machine.

We’ll start with building the data synchronization loop for a single virtual machine; for example,
/vm/564d08e5-6253-7e43-7740-774b3dc0cfd2.

For now, let us start with a simple first version that simply calls GetContents repeatedly:

#
Setup & call the ResolvePath method
#

my $method = SOAP::Data->name('ResolvePath')
 ->attr({xmlns => 'urn:vma1'});

my @params = (SOAP::Data->name(path => '/vm/564d08e5-6253-7e43-7740-774b3dc0cfd2'));

my $handle = $service->call($method => @params)->result;

#
Setup and call the GetContents method repeatedly
#

$method = SOAP::Data->name('GetContents')
 ->attr({xmlns => 'urn:vma1'});

@params = (SOAP::Data->name(handle => $handle));

while (1) {

$result = $service->call($method => @params);
PrintContents($result);
sleep(10);

}

This code polls the Web service server every 10 seconds to obtain a fresh copy of the data
corresponding to a specific virtual machine. The preceding code may work for a simple
application, but it will not scale to a system that is managing a large number of virtual machines
and other entities, due to the large amount of network traffic it generates.
www.vmware.com
150

C H A P T E R 7 Core Client Concepts for Perl Programmers
Versions and Handles
In this section, we provide a brief description of versions, handles, and vHandles. For complete
information on handles, version numbers, paths, and the GetContents and GetUpdates operations,
see Understanding VMware SDK Terminology on page 26.

A handle is a temporary token, used by a Web service client, to invoke Web service operations that
require a reference to an object. An object handle is somewhat analogous to a file handle
(descriptor) returned by a operating system similar to UNIX, when a file is opened using the “open”
system call. Like a file handle, an object handle is a temporary handle that always refers to the same
object.

A vHandle is a versioned handle that acts as a reference to the specific memory state of an object
at a certain point in time. That is, a vHandle is an object handle that has a version number
associated with it. The version number determines the specific memory state. Each version
identifier corresponds to a different point in time.

The path resembles a full path name of a file, which identifies an object in the Web service
hierarchy. Its value is an XML document in the Web services world. This value is different in other
worlds.

A client executes the GetContents operation, passing in a handle (to an object) as a parameter and
retrieving an XML document that describes the object identified by the handle. The XML
document is the value of the object and is associated with a handle and a vHandle that are
returned by the GetContents operation.

A client executes the GetUpdates operation, passing in a vHandle as a parameter and retrieving
the change(s) in the object identified by the vHandle. Only the change(s), or the “delta” is returned
as a diff of the current XML document that describes the object as currently maintained by the
Web service, compared with the original XML document as identified by the vHandle that was
passed to the GetUpdates operation. The GetUpdates operation also returns an updated vHandle,
identifying the latest version of the object that was returned to the client.

For additional information on handles, version numbers, paths, and the GetContents and
GetUpdates operations, refer to the Virtual Infrastructure SDK Reference Guide.
151

Virtual Infrastructure SDK Programming Guide
Calling the GetUpdates Operation
In order to keep data on the client side up-to-date with data on the server side, you can combine
the use of the GetContents operation with GetUpdates.

• The GetContents operation provides all the information for a particular object at the time of
the request.

• The GetUpdates operation returns incremental changes to the data, that can be patched
onto the existing data on the client. Theoretically, one can call GetContents repeatedly, but
this causes excessive network traffic.

For example, you have issued a GetContents request on a specific virtual machine. The response is
a list of the information specified by the Virtual Machine data model. Someone, with Interact rights
on this virtual machine, changes the memory shares. If your client then issues a GetUpdates
request, you can see the updated memory shares and any other changes that have occurred since
the original GetContents request.

The first refinement is to replace the repeated calls to GetContents with calls to GetUpdates. By
using GetUpdates instead, the server only returns the changes within the VirtualMachine data
structure, and not the entire new version of the VirtualMachine object.

#
Setup & call the ResolvePath method
#

my $method = SOAP::Data->name('ResolvePath')
 ->attr({xmlns => 'urn:vma1'});

my @params = (SOAP::Data->name(path => '/vm/564d08e5-6253-7e43-7740-774b3dc0cfd2'));

my $handle = $service->call($method => @params)->result;

#
Setup and call the GetContents method to get the vHandle
#

$method = SOAP::Data->name('GetContents')
 ->attr({xmlns => 'urn:vma1'});

@params = (SOAP::Data->name(handle => $handle));

#
OK to call result() here since we only need the vHandle of the object
#

www.vmware.com
152

C H A P T E R 7 Core Client Concepts for Perl Programmers
my $result = $service->call($method => @params)->result;
my $vHandle = $result->{ vHandle };

#
Setup the call to the GetUpdates method
#

$method = SOAP::Data->name('GetUpdates')
->attr({xmlns => 'urn:vma1'});

while (1) {

#
Update the vHandle list
#

my $vHandleList->{ 'vHandle' } = $vHandle;

@params = (
SOAP::Data->name(vHandleList => $vHandleList),
SOAP::Data->type('xsd:boolean')->name(wait => 'true')
);

#
Call GetUpdates
#

$result = $service->call($method => @params);
PrintContents($result);

#
Obtain new vHandle
#

$vHandle = $result->result>{ 'update' }->{ 'vHandle' };
}

Note the following comments regarding the preceding code:

• Exceptions are handled by a top-level fault handler, described later.

• We are not processing any updates; this is covered in the next section.

• The call to GetUpdates blocks indefinitely, until there is some change that causes the server
to send back a response. In some circumstances, particularly in the presence of
intermediaries (such as proxies), the client and server can get disconnected with the client
153

Virtual Infrastructure SDK Programming Guide
remaining blocked on the GetUpdates call. A lower layer disconnection mechanism, such as
TCP timeout, is required to handle this case.

The timeout period can also be set in the SOAP::Lite object by using the proxy() method
at the time of object creation as shown in the following code sample:

my $service =
 SOAP::Lite
 -> service($vmaWSDL)
 -> proxy($webserviceURL,

cookie_jar => HTTP::Cookies->new(ignore_discard => 1), timeout => 0)
 -> deserializer(SdkDeserializer->new)
 -> on_fault(sub{FaultHandler(@_);});

A timeout value of 0 (zero) implies no timeout from the client side. Therefore, a client that is
blocked on a GetUpdates call will continue to wait indefinitely until the call returns.
Alternatively, this value can be set to a positive integer to indicate a timeout period, in
seconds.

• When a client calls GetContents, it receives the value of the object identified by the handle,
along with a vHandle. Then, when the client makes calls to GetUpdates, it sends the vHandle
to the Web service. The Web service returns a set of changes made to the object identified by
the vHandle, and an updated vHandle, identifying the latest version of the object. See
Versions and Handles on page 151.

In this example, we are working with one particular view. Therefore, the parameter to
GetUpdates is a list containing a single vHandle object. However, clients can also send a list of
multiple vHandles to GetUpdates.

• GetUpdates returns a list of Update objects, with one object per vHandle.

In this case, the return value of GetUpdates can either contain an empty list (if no changes
occurred at the time of return) or a list with a single Update object. The list cannot contain
more than one Update object because the parameter to GetUpdates contained only a single
vHandle.
www.vmware.com
154

C H A P T E R 7 Core Client Concepts for Perl Programmers
Applying Changes to the Client Data
Each change is presented as an object of type Change. Change objects are quite complex, as there
are many kinds of changes and we attempt to provide changes in increments as small as possible.
We first present a high-level overview of the Change object, and then cover the various kinds of
changes on a case-by-case basis. If state is being maintained on the client side, then these changes
can be applied to the client-side objects on an incremental basis.

The Change Object
Each field of the Change object is described briefly in this section.

op Field
The primary field of the Change object is op, obtained by calling $change->{Op}, where
$change represents a Change object. This field describes the kind of change.

The kind of change is one of the following:

• ins — Describes the insertion of new data at the location specified by the target field.

• del — Describes the deletion of existing data at the location specified by the target field.

• repl — Describes the replacement of existing data at the location specified by the target
field. You can consider a repl operation as a combination of a del operation, followed by
an ins operation.

• edit — Describes a change to existing data. Portions of the data can be changed, while
leaving other portions unchanged. This edit change applies only to primitives and objects of
type xsd:string and xsd:dateTime.

• move — Describes a change where the Web service indicates a move of an object from one
(source) Container to a (destination) Container. This is similar to the cut and paste operation.
In the cut and paste operation, two move changes are received for the object. The parent of
the object that is cut receives one move change and the recipient of the paste operation
receives the second move change.

target Field
The target field is obtained by the reference to $change->{target}, where $change
represents a Change object. It describes the location where the change applies within the View
object The target is specified as a list of identifiers separated by slashes, that indicate how to
navigate within the data structure to reach the desired field. For more information on the data
structure, see the data models in the Virtual Infrastructure SDK Reference Guide.

There are two broad categories of targets that clients can use to communicate changes by using
the Change datatype: leaf values and composites.
155

Virtual Infrastructure SDK Programming Guide
• Leaf value — An example of a leaf value is the value “My Great Virtual Machine” for the “name”
field of the VirtualMachineInfo datatype. Leaf values correspond to text nodes within an XML
document. This includes xsd:string, xsd:int, xsd:long and other similar primitive datatypes.

• Composites — A composite or aggregate is an entire object such as an object of type Item,
Host, or VirtualMachine, or an interior node of such an object such as the
VirtualNetworkAdapter inside the VirtualMachine datatype.

For example, if the target is hardware/memory/sizeMb (within a VirtualMachine object) and
the virtual machine contents have been stored in $vmContents, then the corresponding field
within the client data structure is obtained by calling:

$vmContents->{body}->{hardware}->{memory}->{sizeMb}

Alternatively, client-side classes and objects can be defined to maintain state information. If these
objects are being maintained, each Change object must be processed and the change that is
defined, must be applied to the client object.

Although we do not demonstrate the use of these objects in the sample applications, the next
section discusses how these changes can be applied to objects.

val Field
The Change object field val, obtained by the reference to $change->{Val}, specifies the new
leaf value or composite of the field specified in the target field. In some cases (such as del
changes), this field is not relevant and you can ignore it.

inserted, deleted and editPos Fields
There are three more fields in the Change object:

• inserted — For ins and repl changes, this field specifies the number of characters that
are inserted. For move changes, this identifies the paste operation with inserted = 1.

• deleted — For repl and del changes, this field specifies the number of characters that
are deleted. For move changes, this identifies the cut operation with deleted = 1.

• editPos — This field is valid only for edit changes of string values. It specifies the location
in the string where the edit starts.

Processing the Various Kinds of Change
The following sections explain the various kinds of changes and how to process them:

• Insert Change on page 157

• Delete Change on page 158

• Replace Change on page 160

• Edit Change on page 160
www.vmware.com
156

C H A P T E R 7 Core Client Concepts for Perl Programmers
• Move Change on page 161

Insert, Delete, or Replace (ins, del, or repl) Change Operations
Clients can send these change operations for composites, for both arrays and non-arrays. The
usage of Change fields for ins, del, or repl is:

• target — Composite that is being inserted, deleted, or replaced. An example is
hardware/net/adapter["#_nic0"] where the network adapter with key
“#_nic0” is either being inserted, deleted, or replaced.

• editPos — Not Applicable.

• deleted — Number of composite nodes being deleted.

• inserted — Number of composite nodes being inserted.

• val — Contains the new composite or set of composites being inserted or replaced. When
the change operation is delete, this field is NULL.

As an example, a single replace change can replace one #_nic0 adapter with two adapters
#_nic1 and #_nic2. In this case, the changeOp is repl, the target is hardware/net/
adapter["#_nic0"], deleted is 1, inserted is 2, and val contains an array of the two
new adapters #_nic1 and #_nic2. Note that the keys are assigned by the Web service.

• When the array is an indexed array, the target contains the index of the array element before
or at the location where the operation occurs. For example, if target is vm[1], deleted
is 0, inserted is 2, and val contains two new vm array elements, then the new array
elements are inserted before the existing vm[1]. The first of these new elements becomes
vm[1], the second new element becomes vm[2] and the old vm[1] is now vm[3]. In
this same example, if deleted is also set to 1, then the old vm[1] gets deleted and the
two new elements are inserted in its place as vm[1] and vm[2].

Insert Change
The insert change may be a change within an object, or it can be an insertion of a new top-level
object. For example, if the client is querying for updates on an top-level Container such as
/vm, then the client gets notified about new virtual machines. Similarly, querying for updates on
/vcenter, the Web service can notify the client of new Farms, Farm groups, virtual machines,
virtual machine groups, hosts, and so on.

The following sample code illustrates how to process these changes.

Call to GetUpdates
my $result = $service->call($method => @params);

Extract the list of changes
@changes = $somObj->valueof('//change');
157

Virtual Infrastructure SDK Programming Guide
Process each change
foreach $change (@changes) {

$op = $change->{ op };
$target = $change->{ target };
$val = $change->{ val };

insert operation
if ($op eq "ins") {

if ($target =~ /^item/) {
...insert new top level object

} else {
...insert into existing object ...

}
}

}

For top-level object insertions, the Web service sends the handle of the new object. The client
must call getContents on this handle to obtain the contents of this new object.

if ($op eq "ins") {
if ($target =~ /^item/) {

Extract the handle of the new object

@handle_split = split (/\"/, $target);
$new_handle = $handle_split[1];

Call GetContents on the new object

$method = SOAP::Data->name('GetContents')
->attr({xmlns => 'urn:vma1'});

@params = (SOAP::Data->name(handle => $new_handle));
$result = $service->call($method => @params)->result;

....obtain vHandle of new object and add it to list of current vHandles
}

}

Delete Change
A delete change is analogous to the insert change described previously. Delete changes can either
be deletions of top-level objects or deletions within existing objects.
www.vmware.com
158

C H A P T E R 7 Core Client Concepts for Perl Programmers
Call to GetUpdates
my $result = $service->call($method => @params);

Extract the list of changes
@changes = $somObj->valueof('//change');

Process each change
foreach $change (@changes) {

$op = $change->{ op };
$target = $change->{ target };
$val = $change->{ val };

insert operation
if ($op eq "del") {

if ($target =~ /^item/) {
...delete existing object

} else {
...delete from existing object ...

}
}

}

For top-level object deletions, the Web service sends the handle of the deleted object. The client
must remove the vHandle of this object from the list of currently watched vHandles for the
GetUpdates operation.

if ($op eq "del") {
if ($target =~ /^item/) {

Extract the handle of the deleted object

@handle_split = split (/\"/, $target);
$del_handle = $handle_split[1];

Delete the vHandle from the current list
for(my $counter = 0; $counter <= $#vHandleList; $counter++) {

if ($vHandleList[$counter] =~ /$del_handle/) {
splice (@vHandleList, $counter, 1);
last;

}
}

}
}

159

Virtual Infrastructure SDK Programming Guide
Replace Change
The replace change is a combination of the insert and delete changes and is processed as such by
the Web service.

sub processReplace
 {

my ($service, $change) = @_;
processDelete($service, $change);
processInsert($service, $change);

 }

Edit Change
The client may send an edit change operation only when changing leaf values. Similarly the Web
service will send the edit change operation only when changing leaf values. We can further
categorize leaf values as string values or non-string values.

String Values — These are values of type xsd:string. The following fields of Change are relevant
when string values are edited. The usage of these fields is identical for the GetUpdates and
PutUpdates operations.

• target — Interior node whose value is being edited. An example is Item[“xxx”]/
name when the value for the interior ‘name’ node is being edited for an Item whose handle is
“xxx”.

• editPos — For deletions, this specifies the starting position of the substring being deleted.
For insertions, this is the character position before which a substring is inserted. If this field is
NULL, it must be interpreted as 0 (zero).

• deleted — Number of characters being deleted starting at editPos. If this field is NULL, it
must be interpreted as 0 (zero).

• inserted — Number of characters being inserted before the editPos character. If this field
is NULL, it must be interpreted as 0 (zero).

• val — this contains the substring to be inserted if the ‘inserted’ field is non-zero.

If an entire string is being replaced by using the edit operation, then editPos is 0 (zero),
deleted is the length of the old string, inserted is the length of the new string, and val
contains the new string. This is a common case where the edit operation is used to replace an
entire string.

Non-string values — These are leaf values not of type xsd:string. The edit operation for such
values always replaces the existing value with a new value. The client can ignore the editPos,
inserted, and deleted fields of Change. Similarly, when doing a PutUpdates operation, the
www.vmware.com
160

C H A P T E R 7 Core Client Concepts for Perl Programmers
Web service ignores these fields for non-string values. The usage of Change fields for edit for non-
string values is:

• target — Interior node whose value is being edited. An example is hardware/cpu/
controls/shares where the value for the shares node is being replaced for a virtual
machine.

• editPos — Not Applicable.

• deleted — Not Applicable.

• inserted — Not Applicable.

• val — Contains the new value that replaces the old value on the target.

The following code fragment illustrates how to apply an edit change to the name of an object.

if ($op eq "edit" && $target =~ /$name/){

Renaming of a vcenter object - update hash
#

@handle_split = split (/\"/, $target);
$handle = $handle_split[1];

$handleList is a hash maintaining a handle=>name mapping for all objects
if (! ref $val){

$handleList->{ $handle } = $val;
}

}

Move Change
The Web service uses this change operation to indicate a move of an object from one Container to
another. This operation can never be used from a client to the Web service in a PutUpdates call. To
move objects, clients must instead use the Rename operation.

The cut operation is identified as a move operation with $change->{deleted} = 1, and the
corresponding paste operation is received from the Web service along with the move change and
$change->{inserted} = 1.

The value in the change object hasn’t changed as part of the move operation and is therefore
considered uninteresting from the move operation’s perspective.

if ($op eq "move") {
if ($target =~ /^item/) {
161

Virtual Infrastructure SDK Programming Guide
$numInserted = $change->{inserted};
$numDeleted = $change->{deleted};

Extract the handle of the moved object

@handle_split = split (/\"/, $target);
$moved_handle = $handle_split[1];

if ($numInserted == 0 && $numDeleted == 1) {
// Cut operation
...adjust the client data structure
} elsif ($numInserted == 1 && $numDeleted == 0) {

// Paste operation
...adjust the client data structure
}

}
}

www.vmware.com
162

C H A P T E R 7 Core Client Concepts for Perl Programmers
Indexed and Key-based Arrays
Some elements in the VMware VirtualCenter Web Service data models (described in the Virtual
Infrastructure SDK Reference Guide) can occur multiple times (for example, multiple NICs). In these
cases, these fields have the minoccurs attribute set to 0 and the maxoccurs attribute set to
unbounded. When the maxoccurs attribute is not 1, the field is treated as an array, provided
that it is accessed directly by using the valueof() or dataof() methods from the envelope
object. The Web service data structures have two categories of arrays: indexed arrays and
key-based arrays. Indexed arrays are only used for arrays of basic types; for example, /host/vm[]
and host/info/datastore[]. All other arrays are key-based arrays.

Indexed arrays are accessed by an index (the usual manner of accessing arrays). Key-based arrays
are accessed by keys that are strings. The component type of the array must have a string field
called key, in order to be a key-based array. The value of this field is unique across all the
components of an array, and is the key of the array component. See Key-based Arrays on page 163.

Indexed Arrays
Some examples of indexed arrays are:

host/vm[1]

The target in the Change object for indexed arrays always ends with the name of the array field,
followed by the index where the change is to occur (...arrayName[index]).

The kind of change is one of the following:

• ins — The inserted field specifies the number of array elements that are being inserted
at the location specified by the target. You must ignore the editPos and deleted fields.
The val field is an array component if inserted is 1, otherwise the val field is an array
with inserted elements.

• del — The deleted field specifies the number of array elements that are to be deleted
starting at the location specified by the target. You must ignore the editPos, inserted,
and val fields.

• repl — The repl field is a combination of a del operation followed by an ins operation.
You must ignore the editPos field. All the other fields have the same meaning as previously
specified.

Key-based Arrays
Key-based arrays are very similar to indexed arrays except the key is a string, and not an index.
Some examples of key-based arrays are:

hardware/net/adapter[“_nic001”]
163

Virtual Infrastructure SDK Programming Guide
The only difference between key-based arrays and indexed arrays in the Change objects is that
each array component must be deleted individually, because there is no ordering concept for
key-based array components. Therefore, you must ignore the deleted field in the Change
object.

You can insert multiple components into a key-based array at one time. Array keys are generated
by the Web service, and are not specifiable by the programmer when the component is inserted
for the first time. Each component in a single array will have a unique key.

The following code fragment illustrates how to create a new key-based array element; in this case,
VirtualNetworkAdapter.

 // create the adapter structure
 my %val = SOAP::Data ->type('VirtualNetworkAdapter');
 tie %$val, "Tie::IxHash";
 $val->{ 'mode' } = 'monitor';
 $val->{ 'network' } = 'Internal Network';

 // setup the change to do a PutUpdates
 $changeRef->{ 'req' }->{ 'handle' } = $handle;
 $changeRef->{ 'req' }->{ 'change' }->{ 'op' } = 'ins';
 // Note : do not specify array key.
 // this is generated, and not user setable
 $changeRef->{ 'req' }->{ 'change' }
 ->{ 'target' } = 'hardware/net/adapter';
 $changeRef->{ 'req' }->{ 'change' }->{ 'deleted' } = 0;
 $changeRef->{ 'req' }->{ 'change' }->{ 'inserted' } = 1;

 $changeRef->{ 'req' }->{ 'change' }->{ 'val' } = $val;

Determining the Array Category
The following sample code illustrates how to determine if the Change object is referring to an
indexed array or a key-based array.

#
Extract the list of changes from a GetUpdates response
#
@changes = $result->valueof('//change');

foreach my $change (@changes) {

my $target = $change->{ target } ;

 #
 #Extract the index portion of the target
www.vmware.com
164

C H A P T E R 7 Core Client Concepts for Perl Programmers
 #

 my @components = split (/\[/ , $target);
 my @indices = split (/\]/, $components[1]);

 # Check if index is numeric

 if ($indices[0] =~ /\d/) {
... Indexed Array

 } else {
...Key-based Array

 }
 }
165

Virtual Infrastructure SDK Programming Guide
Calling the PutUpdates Operation
The client uses the PutUpdates operation to perform updates to the Web service not performed
by the other API operations in the VMware SDK. The argument to PutUpdates is a ChangeReqList
that contains an array of ChangeReqs. Each ChangeReq has a handle, and a list of Change objects
describing various changes that are being applied to the object being identified by the handle.
The format of the Change object is exactly as it is in the GetUpdates operation.

The purpose of the PutUpdates operation is to make the changes, specified in the Change objects,
to the Web service. There are two forms of PutUpdates: “last one wins” and “versioned”.

• Last one wins (unversioned PutUpdates call) — Changes are applied to the Web service
object referred to by the handle. The order in which the changes from multiple clients are
applied is unspecified and it is possible for another client’s changes to override this client’s
changes and vice versa.

• Versioned — Rather than providing a handle, clients give a versioned handle, or vHandle, to
the PutUpdates operation. In this case, the operation is performed only if the Web service’s
version of the object matches that of the client. Otherwise a version mismatch occurs and
the call fails.

The value returned by the PutUpdates operation is exactly the same as the value returned by the
GetUpdates operation for the changes on the vHandles passed to PutUpdates. It is as if the
updates have been made and the client has called a GetUpdates operation with the same set of
vHandles. If an unversioned PutUpdates call is made (on handles), then no updates are returned in
the response.

Note: It is possible to obtain a change list from the PutUpdates operation that is greater than the
your list of changes, if another client is also making changes to the same object at the same time.

Using the PutUpdates Operation to Update the Memory Setting for a
Virtual Machine
The following code fragment illustrates the use of PutUpdates. It shows how a client can update
the memory setting for a virtual machine. Because the sizeMb field is an integer, we use an edit
operation in the change object.

1. By using the ResolvePath operation, obtain the handle for the virtual machine to which the
change is being applied.

$method = SOAP::Data->name('ResolvePath')
 ->attr({xmlns => 'urn:vma1'});

@params = (SOAP::Data->name(path => $path));
www.vmware.com
166

C H A P T E R 7 Core Client Concepts for Perl Programmers
$handle = $service->call($method => @params)->result;

2. Create the change object.

my %changeRef = ();

#
 # Use Tie::IxHash package to ensure ordering in the hash
 #

 tie %{$changeRef->{ 'req' }}, "Tie::IxHash";
 tie %{$changeRef->{ 'req' }->{ 'change' }}, "Tie::IxHash";

 #
 # Construct change object to edit memory
 #

 $changeRef->{ 'req' }->{ 'handle' } = $handle;
 $changeRef->{ 'req' }->{ 'change' }->{ 'op' } = 'edit';
 $changeRef->{ 'req' }->{ 'change' }
 ->{ 'target' } = 'hardware/memory/sizeMb';
 $changeRef->{ 'req' }->{ 'change' }->{ 'val' } = $newMemorySize;

3. Call the PutUpdates operation with this change.

my $method = SOAP::Data->name('PutUpdates')
->attr({xmlns => 'urn:vma1'});

 my @params = (SOAP::Data->name(req => $changeRef));

 my $result = $service->call($method => @params)->result;

Using the PutUpdates Operation to Make Changes to Array Elements
To insert elements into an array, the client should not specify the index or key (keyed arrays) in the
change target. For example, to insert a new network adapter into a virtual machine, the change
target is hardware/net/adapter, without any square brackets.

To delete an array item, specify the index of the array element. Alternately, if the client is updating a
keyed array, then specify the key for the element (that will be deleted) in the change target. Clients
can use standard reflection APIs to look inside the object and retrieve all the keys of an array in
order to determine which element to delete.

For example, to delete a network adapter with key nic001, the change object is:
167

Virtual Infrastructure SDK Programming Guide
#
Construct change object to delete a network adapter
#

%changeRef = ();

The Tie::IxHash module is used to ensure ordering in a hash
tie %$changeRef, "Tie::IxHash";
$changeRef->{ 'req' }->{ 'handle' } = $handle;
$changeRef->{ 'req' }->{ 'change' }->{ 'op' } = 'del';
$changeRef->{ 'req' }->{ 'change' }->{ 'target' }
= "hardware/net/adapter[\"".$adapter->{ key }."\"]";
$changeRef->{ 'req' }->{ 'change' }->{ 'deleted' } = 1;
$changeRef->{ 'req' }->{ 'change' }->{ 'inserted' } = 0;

#
Call PutUpdates
#

$method = SOAP::Data->name('PutUpdates')
->attr({xmlns => 'urn:vma1'});

@params = (SOAP::Data->name(req => $changeRef));
$service->call($method => @params);
print "\nOperation Successful \n";

Read /SDK/SDK-README.html. It has a link to the complete code listing for the PutUpdates
operation.
www.vmware.com
168

C H A P T E R 7 Core Client Concepts for Perl Programmers
Running the Sample Code
The sample code discussed in this document is included with this distribution. Read /SDK/SDK-
README.html for a link to the instructions on how to run the sample code. See Client
Development Environments on page 267 for complete information on how to set up your client
development environment.
169

Virtual Infrastructure SDK Programming Guide
Fault Handling in SOAP::Lite
Transport errors and SOAP::Faults returned by the Web service can be handled either at the
top-level SOAP::Lite object or individually for each SOAP response. The following method describes
a generic fault handler that traps both kinds of faults and displays an error message.

###
#
FaultHandler --
#
Subroutine that handles SOAP faults as well as transport
errors.

Results:
Displays fault information and terminates the program.
#
Side effects:
None.
#
###

sub FaultHandler
{
 my($transportFault, $soapFault) = @_;

 die ref $soapFault ?
 "\nFault: ".$soapFault->faultdetail->{'FaultInfo'}->{'kind'}."\n".

$soapFault->faultdetail->{'FaultInfo'}->{'info'} :
"\nFault: ".$transportFault->transport->status, "\n";

}

By linking the preceding method to the SOAP::Lite object, it is automatically called when a fault
occurs:

my $service =
SOAP::Lite

-> service($vmaWSDL)
-> proxy($webserviceURL,

cookie_jar => HTTP::Cookies->new(ignore_discard => 1), timeout => 0)
-> deserializer(SdkDeserializer->new)
-> on_fault(sub

{
FaultHandler(@_);

}
);
www.vmware.com
170

C H A P T E R 7 Core Client Concepts for Perl Programmers
Testing
To test your client applications, complete the following.

1. Be sure that SOAP::Lite and other required modules have been installed properly.

2. If VirtualCenter is not running, then start this application.

3. Start the Web service.

4. Run your test programs.

a. Make changes in the VirtualCenter application and see if your client application
responds appropriately.

b. Make changes using your client application and see if VirtualCenter reflects your
changes.

Note: You can also test the sample code that is provided with this distribution in a similar manner.

For more information on testing your client applications, see Troubleshooting on page 275.
171

Virtual Infrastructure SDK Programming Guide
Complete Code Listing
You can find the complete code for this simple application in your VMware SDK package.
www.vmware.com
172

C H A P T E R 8

Advanced Client Concepts for Perl
Programmers
This chapter provides examples of client applications that you can create, to perform the following
tasks. For complete information on the syntax for these client applications, refer to the Virtual
Infrastructure SDK Reference Guide.

Note: The examples in this chapter are written in Perl using SOAP::LITE. If you are interested in
Java samples, see Advanced Client Concepts for Java Programmers on page 87. All the code
samples in this chapter, are located in their entirety in
\SDK\WebService\samples\perl\sampleapp.

Note: You may use a different developer environment and language to build your client program.
Adjust the examples accordingly for your developer environment.

• Virtual Machine Power Operations on page 175

• Host Operations on page 179

• Creating and Deleting Objects on page 182

• Creating and Configuring a Virtual Machine on page 187

• Responding to Virtual Machine Questions on page 191

• Cloning a Virtual Machine on page 195
173

Virtual Infrastructure SDK Programming Guide
• Creating a Template on page 199

• Renaming an Object on page 202

• Moving Virtual Machines on page 204

• Monitoring Events on page 208

• Task Scheduling and Monitoring on page 214

• Collecting Performance Data on page 224

• Changing Permissions on page 237

• Taking a Snapshot of a Virtual Machine on page 239
www.vmware.com
174

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
Virtual Machine Power Operations
Client applications can perform the following power operations:

• Power on (start) or resume a virtual machine

• Power off (stop) or suspend a virtual machine

• Reset a virtual machine

Note: For all these applications, the client must have Interact rights on the Server Farm, Farm
group, Farm, and host that contains the virtual machine. If the client has only Browse rights, then
the client can view information about these objects (GetContents and GetUpdates requests), but
cannot issue any power operations.

If the client is listening for updates on this virtual machine and the operation succeeds, then the
client will see updates to the VirtualMachine state.

In addition, a task is initiated on the Web service for each of these operations. The XML document
describing that task is returned to the client. The client can monitor the progress of this task and
check for errors, status, and so on. For sample code on how to monitor the progress of a task, see
Task Scheduling and Monitoring on page 214.

Starting or Resuming a Virtual Machine
The StartVM operation initiates the process of starting a virtual machine or resuming a suspended
a virtual machine. If you have already configured a script or any other application to run during the
power-on (resume) operation, the script (or other application) will run.

It takes one argument, the handle of the virtual machine that is to be started. The return value is
the handle to the task created to start this virtual machine. If the virtual machine that is to be
started is currently suspended, then this virtual machine is resumed.

The following code fragment illustrates how clients call the StartVM operation, then how the client
can monitor the resulting task to determine when the operation completes.

#
Setup & call the ResolvePath method to obtain a handle for the VM
#

my $method = SOAP::Data->name('ResolvePath')
 ->attr({xmlns => 'urn:vma1'});

my @params = (
SOAP::Data->name(path => '/vm/564d5a05-29a7-b09b-d576-9cb8a719d940')
);
175

Virtual Infrastructure SDK Programming Guide
my $handle = $service->call($method => @params)->result;

#
Call to StartVM

$method = SOAP::Data->name('StartVM')
 ->attr({xmlns => 'urn:vma1'});
@params = (SOAP::Data->name(vm => $handle));

my $task = $service->call($method => @params)->result;

#
Task handle returned - monitor the returned task to check
progress
#

MonitorTask ($service, $task);

Stopping or Suspending a Virtual Machine
The StopVM operation initiates the process of stopping or suspending a powered-on virtual
machine.

If you have already configured a script or any other application to run during the power-off
(suspend) operation, the script (or other application) will run. It takes three arguments: the handle
of the virtual machine that is to be stopped, whether the virtual machine should be suspended or
powered off, and whether or not stopping the virtual machine is a “soft “power off operation. The
return value is the handle to the task that represents the task created to power off this virtual
machine.

The following code fragment illustrates how clients call the StopVM operation, then how the client
can monitor the resulting task to determine when the operation completes.

if ($op eq 'stop'){

 $method = SOAP::Data->name('StopVM')
 ->attr({xmlns => 'urn:vma1'});
 @params = (

SOAP::Data->name(vm => $handle),
SOAP::Data->name(suspend => 0),
SOAP::Data->name(soft => 1)
);
www.vmware.com
176

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
}elsif ($op eq 'suspend'){

 $method = SOAP::Data->name('StopVM')
 ->attr({xmlns => 'urn:vma1'});

 @params = (
SOAP::Data->name(vm => $handle),
SOAP::Data->name(suspend => 1),
SOAP::Data->name(soft => 1)
);

}

my $task = $service->call($method => @params)->result;

#
Task handle returned - monitor the returned task to check
progress
#

MonitorTask ($service, $task);

Boolean Flags in the VirtualMachineTools Datatype
The VirtualMachineTools datatype includes four Boolean flags that clients may use to determine
whether or not scripts execute in the guest operating system when a virtual machine’s power state
changes through the StartVM or StopVM operations.

• afterPowerOn — Flag determines whether or not scripts should run after the virtual machine
is powered on. If this boolean is set to true, then custom startup scripts (if there are any) run
on the guest operating system after the virtual machine powers on.

• afterResume — Flag determines whether or not scripts should run after the virtual machine is
resumed. If this boolean is set to true, then custom startup scripts (if there are any) run on the
guest operating system after the virtual machine resumes.

• beforeSuspend — Flag determines whether or not scripts should run before the virtual
machine is suspended. If this boolean is set to true, then custom startup scripts (if there are
any) run on the guest operating system before the virtual machine is suspended, regardless
of whether the soft flag is specified during the StopVM operation.

• beforePowerOff — Flag determines whether or not scripts should run before the virtual
machine is powered off. If this boolean is set to true, then custom startup scripts (if there are
any) run on the guest operating system before the virtual machine powers off, regardless of
whether the soft flag is specified during the StopVM operation.
177

Virtual Infrastructure SDK Programming Guide
Note: If one of these Boolean flags is set, then the scripts will run, regardless of the soft flag
setting in the StopVM operation.

Resetting a Virtual Machine
The ResetVM operation initiates the process of resetting a virtual machine, which also resets the
virtual hardware. (A reset operation is equivalent to pushing the Reset button on a physical
machine.)

The ResetVM operation first attempts to shut down the guest operating system before resetting
the virtual machine. This is similar to selecting Restart on a Windows operating system, where
Windows gracefully shuts down, then starts up again. If you have already configured a script or any
other application to run during the reset operation (during the shutdown or startup of the guest
operating system), the script (or other application) will run.

If this attempt fails, then the ResetVM operation looks into the virtual machine’s configuration file.
By default, a virtual machine’s configuration file setting for a reset is a “hard” reset where the virtual
machine immediately powers off, regardless of what is occurring in the guest operating system.
This is similar to pressing and holding the power button on a physical machine until it powers off,
then restarting the physical machine.

The ResetVM operation takes one argument, the handle of the virtual machine that is to be reset.
The return value is the handle to the task that represents the task created to reset this virtual
machine.

The following code fragment illustrates how clients call the ResetVM operation, then how the
client can monitor the resulting task to determine when the operation completes.

$method = SOAP::Data->name('ResetVM')
 ->attr({xmlns => 'urn:vma1'});
@params = (SOAP::Data->name(vm => $handle));

my $task = $service->call($method => @params)->result;

#
Task handle returned - monitor the returned task to check
progress
#

MonitorTask ($service, $task);
www.vmware.com
178

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
Host Operations
Clients can enable (connect) or disable (disconnect) hosts. Clients can also shut down a host
provided the host is ESX Server 2.1 or higher. The client must have Configure rights on the Farm
that contains the host, in order for the operations to succeed. These operations return an empty
response.

Enabling a Host
Clients may enable a host in the Disabled state by using the EnableHost operation. When a host is
“created”, and a user name and password are supplied during the host creation, then the host is
automatically enabled for virtual machine operations. In the Enabled state, clients can perform
virtual machine operations and discover new virtual machines. The EnableHost operation takes
one mandatory argument, the handle to the host that will be enabled. There are two optional
arguments: the user name and password that VirtualCenter uses to connect to the host specified
by the handle.

Upon success, an empty response message is returned.

#
Obtain host handle
#

$method = SOAP::Data->name('ResolvePath')
 ->attr({xmlns => 'urn:vma1'});

@params = (SOAP::Data->name(path => '/host/myhost.mydomain.com'));

$handle = $service->call($method => @params)->result;

#
Setup and call EnableHost
#

#optional parameters
my $hostUserName = 'yourusername';
my $hostPassword = 'yourpassword';

$method = SOAP::Data->name('EnableHost')
 ->attr({xmlns => 'urn:vma1'});

@params = (
SOAP::Data->type('xsd:string')->name(host => $handle),
SOAP::Data->type('xsd:string')->name(userName => $hostUserName),
SOAP::Data->type('xsd:string')->name(password => $hostPassword)
179

Virtual Infrastructure SDK Programming Guide
);

$service->call($method => @params);

Disabling a Host
Clients may disable the host from virtual machine operations by using the DisableHost operation.
By using the Create operation without supplying the user name and password, clients may add a
host to the Web service inventory in the Disabled state. When a host is disabled, clients are unable
to perform any virtual machine operations.

The DisableHost operation takes one argument, the handle to the host that will be disabled. Upon
success, an empty response message is returned.

Note: The DisableHost operation does not remove the host name from the Farm. Clients must
remove the host by using the Delete operation. These two operations are separate, so that
disabled hosts can continue to be managed without having to remove them.

#
Disable Host

$method = SOAP::Data->name('DisableHost')
 ->attr({xmlns => 'urn:vma1'});
@params = (SOAP::Data->name(host => $handle));

$service->call($method => @params);

Stopping or Restarting a Host
The StopHost operation permits the client to shut down or restart the host. It takes four arguments:
the handle of the host that is to be stopped, whether the host should be gracefully shut down
(soft) or immediately powered off (hard), whether or not to restart the host, and a reason string.

#
Stop Host -- need input as to whether host should be shutdown
gracefully or restarted and optionally, the reason for
the shutdown.
#

$method = SOAP::Data->name('StopHost')
 ->attr({xmlns => 'urn:vma1'});
www.vmware.com
180

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
print "\nSoft shutdown ? (y/n): ";
my $soft = <STDIN>;
$soft = ($soft =~ /y|Y/)? 1 : 0;

print "\nRestart host ? (y/n): ";
my $restart = <STDIN>;
$restart = ($restart =~ /y|Y/)? 1 : 0;

print "\nReason for shutdown : ";
my $reason = <STDIN>;

@params = (
SOAP::Data->type('xsd:string')->name(host => $handle),
SOAP::Data->name(soft => $soft),
SOAP::Data->name(restart => $restart),
SOAP::Data->type('xsd:string')->name(reason => $reason)

);

$service->call($method => @params);
181

Virtual Infrastructure SDK Programming Guide
Creating and Deleting Objects
Clients can create or delete top-level objects on the Web service server by using the Create and
Delete operations, respectively. The client must have Configure rights on the Container of the new
object being created or deleted.

Creating an Object
The Create operation takes three mandatory arguments: the handle of the Container for the new
object, the name of the new object, and the type of the new object. There is also a fourth optional
argument, that is an initial XML document providing additional information to create the object.
Upon success, the handle to the newly created object is returned.

Clients may create the following objects with this Create operation:

• VirtualMachine

• Host

• Container, Farm, or VirtualMachineGroup

• TaskSchedule

• PerfCollector

The sample code in this section illustrates how to create new hosts, Farms, Containers and
VirtualMachineGroups, but not virtual machines, tasks, or performance collectors. For more
information on creating these objects see:

• Creating and Configuring a Virtual Machine on page 187 for information on creating a virtual
machine.

• Task Scheduling and Monitoring on page 214 for information on how to create new
scheduled tasks.

• Collecting Performance Data on page 224 for information on how to create new
performance collectors.

If the client is creating a host and the parent Container is the /host handle, then the new host is
placed in the default Farm in the /vcenter hierarchy, /vcenter/Default Farm. The initial
value of the host object is specified by a HostSpec, as shown in the following sample.

#
Call the appropriate subroutine depending on the object
to be created
#

if ($type =~ /^(Container|Farm|VirtualMachineGroup)$/) {
www.vmware.com
182

C H A P T E R 8 Advanced Client Concepts for Perl Programmers

 CreateDomain($service, $handle, $name, $type);

} elsif ($type =~ /Host/) {

 CreateHost($service, $handle, $name);

}

###
#
CreateHost --
#
This subroutine accepts user input to create the Host Spec
and creates a Host.
#
Results:
Calls Create to create a Host after obtaining host
specifications from the user.
#
Side effects:
None.
#
###

sub CreateHost
{
 my ($service, $handle, $name) = @_;

 #
 # Create an ordered hash for storing host specifications
 #

 my %hostSpec = ();
 tie %$hostSpec, "Tie::IxHash";

 #
 # Accept user input for port number, username and password
 # for the host
 #

 print "\nEnter port number to connect to : ";
 chomp ($hostSpec->{ 'port' } = <STDIN>);
 print "\nEnter username for host : ";
 chomp ($hostSpec->{ 'userName' } = <STDIN>);
183

Virtual Infrastructure SDK Programming Guide
 print "\nEnter password for host : ";
 chomp ($hostSpec->{ 'password' } = <STDIN>);

 #
 # Setup and call Create
 #

 my $method = SOAP::Data->name('Create')
 ->attr({xmlns => 'urn:vma1'});
 my @params = (SOAP::Data->name(handle => $handle),

SOAP::Data->name(name => $name),
SOAP::Data->name(type => 'Host'),
SOAP::Data->type('HostSpec')->name(initial => $hostSpec)
);

 print "\nHandle for new object : ".$service->call($method => @params)->result;
 return;
}

###
#
CreateDomain --
#
This subroutine creates a Container, Farm or Virtual
machine group.
#
Results:
Calls Create to create a Container, Farm or Virtual Machine
Group.
#
Side effects:
None.
#
###

sub CreateDomain
{
 #
 # Setup and call the Create method
 #

 my ($service, $handle, $name, $type) = @_;
 my $method = SOAP::Data->name('Create')
 ->attr({xmlns => 'urn:vma1'});
 my @params = (SOAP::Data->name(handle => $handle),
www.vmware.com
184

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
SOAP::Data->name(name => $name),
SOAP::Data->name(type => $type)
);

 print "\nHandle for new object : ".$service->call($method => @params)->result;
 return;
}

Deleting an Object
The following sample illustrates how to delete an object, such as a Container, Farm,
VirtualMachineGroup, host, or a virtual machine. The Delete operation takes one argument, the
handle of the object that will be deleted. When deleting a virtual machine, the Delete operation
removes the virtual machine’s configuration file and any other associated files, including the virtual
disk file.

Container, Farm and VirtualMachineGroup objects are not required to be empty before they can be
deleted.

Note: When a client deletes a top-level object (that contains other objects), then a delete change
is only shown for the top-level object. For example, if a client deletes a Farm, then the client sees a
delete change on the Farm, but not on any hosts in the Farm, or any virtual machines on the hosts.

Similarly, a virtual machine must be powered off (stopped) or suspended, and cannot be
migrating, for the Delete operation to succeed. If a client wants to delete a virtual machine but not
its virtual disk, then the client must do the following steps:

1. Stop the virtual machine

2. Using the PutUpdates operation, disconnect the virtual disk(s) of the virtual machine

3. Delete the virtual machine

The client must have Configure rights for both the object being deleted and the Container that has
the object. Upon success, an empty response message is returned. The following sample illustrates
how to delete an object.

#
Setup & call the ResolvePath method to obtain handle of
object to be deleted
#

$method = SOAP::Data->name('ResolvePath')
 ->attr({xmlns => 'urn:vma1'});

@params = (SOAP::Data
->type('xsd:string')
185

Virtual Infrastructure SDK Programming Guide
->name(path => '//vm/564d5a05-29a7-b09b-d576-9cb8a719d940')
);

$handle = $service->call($method => @params)->result;

#
Setup and call the Delete method.
#

$method = SOAP::Data->name('Delete')
 ->attr({xmlns => 'urn:vma1'});

@params = (SOAP::Data->name(handle => $handle));

$service->call($method => @params);
www.vmware.com
186

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
Creating and Configuring a Virtual Machine
In this section, we describe first how to create a virtual machine, then how to configure it by
adding virtual disks.

Creating a Virtual Machine
The following sample illustrates how to create a virtual machine. A virtual machine must always
reside in a Farm or VirtualMachineGroup in the /vcenter hierarchy. If such an array is not
identified for the virtual machine, then the operation places the newly created virtual machine in a
special Farm /vcenter/Default Farm.

The client must have Configure rights on the Container where the virtual machine is being created.
VirutalMachineSpec object specifies the initial value of a new virtual machine. The virtual
machine’s hardware configuration must be specified in this initial value.

The following sample illustrates how to initialize the VirutalMachineSpec object and invoke the
Create operation. See the full code listing included with this distribution in the /SDK/
WebService/samples directory for complete information on how to create a virtual
machine’s hardware.

#
Create an ordered hash to store VM specs -- see full code
listing for more details
#

my %vmSpec = ();
tie %$vmSpec, "Tie::IxHash";

$vmSpec->{ 'host' } = $host_handle;
$vmSpec->{ 'guestOS' } = $guestOS;
$vmSpec->{ 'hardware' } = GetHardwareDetails () ;

#
Setup & call the ResolvePath method to
obtain parent handle
#

$method = SOAP::Data->name('ResolvePath')
 ->attr({xmlns => 'urn:vma1'});
187

Virtual Infrastructure SDK Programming Guide
@params = (SOAP::Data
->type('xsd:string')
->name(path => '/host/myhost.mydomain.com')

);

$handle = $service->call($method => @params)->result;

#
Setup and call the Create method
#

$method = SOAP::Data->name('Create')
->attr({xmlns => 'urn:vma1'});

@params = (
SOAP::Data->name(handle => $handle),
SOAP::Data->name(name => 'newVM'),
SOAP::Data->name(type => 'VirtualMachine'),
SOAP::Data->type('VirtualMachineSpec')->name(initial => $vmSpec)
);

my $vm_handle = $service->call($method => @params)->result;

Adding a Virtual Disk to a Virtual Machine
Now that we’ve created a virtual machine, we can add a disk to it. The CreateVirtualDisk operation
requests the creation of a virtual disk for a virtual machine. It takes two arguments: the handle
specifying the target virtual machine and the XML document (DiskInfo) specifying the properties
of the new virtual disk.

Note: If a client attempts to create a virtual disk that already exists, the operation returns a
successful task. It does not fail and does not return a fault. However, another virtual disk is not
created.

The client must have Configure rights on the virtual machine where the disk is being created, in
order for this operation to succeed.

Once the operation has been initiated, the Web service initiates a task for the CreateVirtualDisk
operation. The XML document describing that task is returned to the client. The client can monitor
the progress of this task and check for errors, status, and so on.

See Task Scheduling and Monitoring on page 214 for sample code on how to monitor the progress
of a task.
www.vmware.com
188

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
#
Construct ordered hash to store disk info --- refer to full code
listing for the complete subroutine
#

my %diskInfo = ();

#
Obtain guest OS supported disk info
#

$defaultDiskSize = $guestOS->{ 'defaultDiskSize' };
$defaultDiskSize = $defaultDiskSize/(1024 * 1024);

#
Obtain and validate user input for disk size
#

print "\nEnter Disk Size [Default : ".$defaultDiskSize." MB] : ";
chomp ($diskSize = <STDIN>);
if (!$diskSize){

$diskSize = $defaultDiskSize;
}

#
Construct Virtual Disk info specs
#

tie %$diskInfo, "Tie::IxHash";
$diskInfo->{ 'key' } = '';
$diskInfo->{ 'name' } = 'Sample Disk Creation';
$diskInfo->{ 'controllerType' } = $guestOS->{ 'defaultDiskControllerType' };
$diskInfo->{ 'controllerId' } = 0;
$diskInfo->{ 'deviceNumber' } = 1;
$diskInfo->{ 'adapterType' } = $guestOS->{ 'defaultSCSIAdapterType' };

tie %{$diskInfo->{ 'diskType'}}, "Tie::IxHash";
$diskInfo->{ 'diskType' }->{ 'diskKind' } = 'file';
$diskInfo->{ 'diskType' }->{ 'diskFileInfo' }->{ 'sizeMb' } = $diskSize;
$diskInfo->{ 'mode' } = 'persistent';

#
Setup and call CreateVirtualDisk
#

 $method = SOAP::Data->name('CreateVirtualDisk')
->attr({xmlns => 'urn:vma1'});
189

Virtual Infrastructure SDK Programming Guide
@params = (
SOAP::Data->name(vm => $handle),
SOAP::Data->name(diskInfo => $diskInfo)
);

$task = $service->call($method => @params)->result;

#
Task returned -- monitor task
#

MonitorTask ($service, $task);
www.vmware.com
190

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
Responding to Virtual Machine Questions
A running virtual machine can generate a question that requires input from a user before the
virtual machine can proceed. For example, if a virtual machine with an undoable disk is powered
off, the virtual machine asks the user whether or not to discard the changes to the virtual disk.

The SDK provides a mechanism for users to handle this case programmatically. The question,
generated by the virtual machine, appears in the virtual machine’s state as a msgWaiting object.
Clients will see this object when they are listening for updates on the virtual machine (through the
GetUpdates operation), or if they call the GetContents operation on the virtual machine (which is
blocked on the question).

The msgWaiting object has the following fields:

• msg — Question posed by the virtual machine.

• id — Internal server ID for the message.

• choice — List of possible answers, presented as an array of key-value pairs.

• defaultChoiceIndex — Default choice for this question, if there is one. This is the integer index
of the default choice in the choices array. If this value does not exist, then the defaultChoice is
0 (zero).

The client can respond to this question by using the AnswerVM operation. The AnswerVM
operation takes 3 arguments: the handle of the virtual machine that is blocked (and waiting for an
answer), the choice (a key-value pair), and the ID of the message that requires a response.

The following sample code illustrates how to invoke the AnswerVM operation.

#
Call GetContents to obtain initial state of the VM and get
the vHandle for the VM. Call GetUpdates repeatedly to monitor
the state of the VM
#

$method = SOAP::Data->name('GetUpdates')
->attr({xmlns => 'urn:vma1'});

 while (!$questionFound){

 #
 # Setup and call GetUpdates
 #

 $vHandleList->{ 'vHandle' } = $vHandle;
191

Virtual Infrastructure SDK Programming Guide
 @params = (
SOAP::Data->name(vHandleList => $vHandleList),
SOAP::Data->type('xsd:boolean')->name(wait => 'true')
);

 $taskObj = $service->call($method => @params);

 @changes = $taskObj->valueof('//change');

 #
 # Check the list of changes for a pending question
 #

 $counter = 0;
 foreach $change (@changes){

 $target = $change->{ 'target' };
 if ($target =~ /msgWaiting/) {
 $questionFound = 1;
 $questionObj = $change->{ 'val' };

 print "\nQuestion :\n".$questionObj->{ 'msg' }."\n";

 #
 # Extract and display the list of choices
 #

 $taskObj->match('//choice');
 @choices = $taskObj->valueof();

 for ($i = 0; $i <= $#choices; $i++){
 print "\n[".($i+1)."] ".$choices[$i]->{ 'val' };
 }

 #
 # Accept user input for choice
 #

 print "\n\nEnter a choice [default: 1] : ";
 chomp ($res = <STDIN>);

AnswerVM ($service, $handle, $choices[$res],
$questionObj->{ 'id' });

 last;

 }
 $counter++;
www.vmware.com
192

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
 }

 #
 # Obtain the latest vHandle
 #

 $vHandle = $taskObj->valueof('//vHandle');
 }

###
#
AnswerVM --
#
Sets up and calls the AnswerVM method with the appropriate
parameters.
#
Results:
Calls AnswerVM
#
Side effects:
None.
#
###

sub AnswerVM
{

 my ($service, $handle, $choice, $id) = @_;

 #
 # Construct an ordered hash for the choice of answer
 #

 tie %$choiceSpec, "Tie::IxHash";
 $choiceSpec->{ 'key' } = $choice->{ 'key' };
 $choiceSpec->{ 'val' } = $choice->{ 'val' };

 #
 # Setup and call AnswerVM
 #
193

Virtual Infrastructure SDK Programming Guide
 my $method = SOAP::Data->name('AnswerVM')
 ->attr({xmlns => 'urn:vma1'});

 @params = (
SOAP::Data->name(vm => $handle),
SOAP::Data->type('KeyedValue')->name(choice => $choiceSpec),
OAP::Data->name(id => $id)
);

 $service->call($method => @params);

}

www.vmware.com
194

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
Cloning a Virtual Machine
The CloneVM operation creates a new virtual machine by using as its source, an existing virtual
machine or a template. It takes five mandatory arguments:

• Handle to the (source) virtual machine or template that will be cloned.

• Handle to the VirtualMachineGroup or Farm in which the cloned virtual machine will reside
(the parent handle).

• Handle to the host where the new virtual machine will reside.

• Name of the newly cloned virtual machine.

• Location on the destination host where the cloned virtual machine’s configuration files and
virtual disks will reside.

There are two optional arguments:

• customization of the guest operating system for the newly cloned virtual machine. See the
next section for additional details.

• flag that determines whether or not the newly cloned virtual machine will automatically
power on once the cloning operation is complete.

Virtual machines must be powered off in order for the CloneVM operation to succeed. If the source
is a template located on a host’s datastore, then the newly cloned virtual machine must also reside
on the same host where the datastore is located. However, if hosts are on the same SAN and share
the same datastore, then the CloneVM operation (from a template) may be done across these
hosts.

If the source is a virtual machine, then the client must have Configure rights on that virtual
machine and on the Farm of its host. If the newly cloned virtual machine will reside on a different
host, then the client must have Configure rights on the destination host of this new virtual
machine.

Once the operation has been initiated, the request returns a task handle to the client. The client
may monitor the task for the progress of the operation.

Customizing a Virtual Machine
The schema for the customization specification has been incorporated into vma.wsdl. When a
client generates stub files, a class (structure) is created that represents the customization
parameters.

Clients can customize both Windows and Linux guest operating systems. For more information on
customizing a guest operating system, refer to the section titled “Preparing for Guest
Customization” in the VMware VirtualCenter User’s Manual.
195

Virtual Infrastructure SDK Programming Guide
Customizing a Windows Guest Operating System
If you plan to customize a Windows guest operating system, then you must first install the
Microsoft Sysprep tools package on the VirtualCenter server machine. Follow the procedure in the
section titled “Preparing for Guest Customization” in the VMware VirtualCenter User’s Manual.

For example, clients can customize the following:

• Registration information — User’s full name and organization.

• Computer name — Computer or host name, used for identifying this virtual machine on a
network.

• Administrator password — Password for the Administrative user.

• Timezone — Time zone for the virtual machine.

• AutoLogon — Enables the virtual machine to log on automatically to the Administrator
account the first time the machine boots.

• Product ID — Product ID (license key) for the guest operating system

• Network settings — DHCP or static IP address.

For example, here’s a customization code example for a Windows guest operating system:

sub GetCustomizationSettings
{

my %custSpec = ();
tie %$custSpec, "Tie::IxHash";

tie %{$custSpec->{sysprep}}, "Tie::IxHash";
tie %{$custSpec->{sysprep}->{GuiUnattended}}, "Tie::IxHash";
print "\nEnter Windows administrator password : ";
chomp($custSpec->{sysprep}->{GuiUnattended}->{AdminPassword} = <STDIN>);
$custSpec->{sysprep}->{GuiUnattended}->{TimeZone} = '004';
$custSpec->{sysprep}->{GuiUnattended}->{AutoLogon} = 'true';
$custSpec->{sysprep}->{GuiUnattended}->{AutoLogonCount} = 1000;

tie %{$custSpec->{sysprep}->{UserData}}, "Tie::IxHash";
print "\nEnter user name : ";
chomp($custSpec->{sysprep}->{UserData}->{FullName} = <STDIN>);
print "\nEnter organization name : ";
chomp($custSpec->{sysprep}->{UserData}->{OrgName} = <STDIN>);
print "\nEnter computer name : ";
chomp($custSpec->{sysprep}->{UserData}->{ComputerName} = <STDIN>);

print "\nEnter workgroup name : ";
chomp($custSpec->{sysprep}->{Identification}->{JoinWorkgroup} = <STDIN>);
www.vmware.com
196

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
tie %{$custSpec->{adapters}->{adapter}}, "Tie::IxHash";
$custSpec->{adapters}->{adapter}->{MACAddress} = 'MAC00';
$custSpec->{adapters}->{adapter}->{UseDHCP} = 'true';
$custSpec->{adapters}->{adapter}->{DNSFromDHCP} = 'true';
$custSpec->{adapters}->{adapter}->{NetBIOS} = 'EnableNetBIOS';

return $custSpec;
}

Customizing a Linux Guest Operating System
If you plan to customize a Linux guest operating system, then you must first install the VMware
Open Source components on the VirtualCenter server machine. Click on the download link for
Open Sources at www.vmware.com/download and follow the procedure in the section titled
“Preparing for Guest Customization” in the VMware VirtualCenter User’s Manual.

For example, clients can customize the following:

• Computer name — Computer or host name, used for identifying this virtual machine on a
network.

• Network settings — DHCP or static IP address.

sub GetCustomizationSettings
{
 my %custSpec = ();
 tie %$custSpec, "Tie::IxHash";

 tie %{$custSpec->{linux-global}}, "Tie::IxHash";
 $custSpec->{linux-global}->{ComputerName} = 'LinuxCustomVM';
 $custSpec->{linux-global}->{Domain} = 'mydomain.com';

 tie %{$custSpec->{linux-global}->{DNS}}, "Tie::IxHash";
 $custSpec->{linux-global}->{DNS}->{PrimaryDNS} = 'xx.xx.xx.x';
 $custSpec->{linux-global}->{DNS}->{SecondaryDNS} = 'xx.xx.xx.x';
 $custSpec->{linux-global}->{DNS}->{DNSSearchPaths}
 ->{DNSSearchPath} = 'mydomain.com';

 tie %{$custSpec->{adapters}->{adapter}}, "Tie::IxHash";
 $custSpec->{adapters}->{adapter}->{MACAddress} = 'MAC00';
 $custSpec->{adapters}->{adapter}->{UseDHCP} = 'true';
 $custSpec->{adapters}->{adapter}->{DNSFromDHCP} = 'true';
 $custSpec->{adapters}->{adapter}->{NetBIOS} = 'EnableNetBIOS';

 return $custSpec;
}

197

http://www.vmware.com/download

Virtual Infrastructure SDK Programming Guide
Calling the CloneVM Operation
Before calling the CloneVM operation, the client first needs to instantiate an object of type
Autoprep, and set the various parameters in this object. Then the client can pass this object as an
additional argument to the CloneVM operation.

Caution: Be sure that the Microsoft Sysprep tools (Windows guest operating system) or the
VMware Open Source components (Linux guest operating system) is installed in the VirtualCenter
server machine before starting the CloneVM operation. Otherwise, the CloneVM operation will fail
at the end of this operation.

CloneVM Sample
This sample illustrates the CloneVM operation:

#
Setup and call the CloneVM method after obtaining the necessary
handles
#

#
$srcHandle -- handle to a template or a source VM
$dstPathHandle -- handle to the parent where the new VM will reside
$dstHostHandle -- handle to the destination host
$dataStore -- label of the datastore where the new VM will reside
#

$method = SOAP::Data->name('CloneVM')
 ->attr({xmlns => 'urn:vma1'});

@params = (
SOAP::Data->name(srcHandle => $srcHandle),
SOAP::Data->name(parentHandle => $dstPathHandle),
SOAP::Data->name(destHostHandle => $dstHostHandle),
SOAP::Data->name(name => 'newVM'),
SOAP::Data->name(datastore => $dataStore),
SOAP::Data->type('xsd:boolean')->name(autopoweron => 1)
);

$task = $service->call($method => @params)->result;

MonitorTask ($service, $task);
www.vmware.com
198

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
Creating a Template
Clients can specify a handle to a template as the first argument of the CloneVM operation. Clients
can create this template by using the CreateTemplate operation. The CreateTemplate operation
takes two arguments, the handle of the source virtual machine being used to create the template,
and an XML document describing a TemplateSpec.

The TemplateSpec specifies attributes of the new template such as its name, the datastore that
contains the template’s configuration file, the location of the virtual disk(s) for this template, and a
user description for this template. If no datastore is specified in the XML document, then the
configuration file and virtual disks for this template are placed in a local template upload directory
on VirtualCenter.

The client must have Configure rights on the source virtual machine.

A task is initiated on the Web service for the CreateTemplate operation. The XML document
describing that task is returned to the client. The client can monitor the progress of this task and
check for errors, status and so on.

See Task Scheduling and Monitoring on page 214 for sample code on how to monitor the progress
of a task.

#
Create TemplateSpec structure
#

my %templateSpec = ();
tie %$templateSpec, "Tie::IxHash";

#
Call ResolvePath to obtain the handle of source VM
#

$method = SOAP::Data->name('ResolvePath')
->attr({xmlns => 'urn:vma1'});

@params = (
SOAP::Data
->type('xsd:string')
->name(path => '/vm/5038d66d-ed8b-2d32-8fdb-4a5e090715f7')
);

$srcHandle = $service->call($method => @params)->result;

#
Populate the TemplateSpec
#

199

Virtual Infrastructure SDK Programming Guide
$templateSpec->{ 'name' } =
SOAP::Data->type('xsd:string')->name(name => 'newTemplate');

$templateSpec->{ 'description' } =
SOAP::Data->type('xsd:string')->name(description => 'none');

$templateSpec->{ 'datastore' } = $datastore_handle;

#
Setup and call CreateTemplate
#

$method = SOAP::Data->name('CreateTemplate')
->attr({xmlns => 'urn:vma1'});

@params = (
SOAP::Data->name(srcHandle => $srcHandle),
SOAP::Data->type('TemplateSpec')
->name(info => $templateSpec)
);

$task = $service->call($method => @params)->result;

#
Monitor the returned task
#

MonitorTask ($service, $task);

Specifying a Datastore
Clients must specify a datastore in TemplateSpec. Clients can obtain the datastore from the Host
object, once the host for a virtual machine has been determined. Alternatively, clients can obtain a
list of all the available datastores by calling a ResolvePath, then a GetContents operation on the
/datastore path. The following sample code illustrates how to correlate the datastore
information obtained from the Host object with the datastore information from the /datastore
path.

#
Setup and call GetContents on the host
#

$method = SOAP::Data->name('GetContents')
->attr({xmlns => 'urn:vma1'});

@params = (SOAP::Data->name(handle => $handle));
$result = $service->call($method => @params);

#
Extract & display the list of datastores available on the host
#

www.vmware.com
200

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
@dataStores = $result->valueof('//datastore');

if ($#dataStores+1 == 0){
print "\nNo datastores available. Exiting.\n";
exit;

}

#
Call ResolvePath to obtain handle for the container /datastore
#

$method = SOAP::Data->name('ResolvePath')
->attr({xmlns => 'urn:vma1'});

@params = (SOAP::Data->name(path => '/datastore'));
$datastore_handle = $service->call($method => @params)->result;

#
Obtain capacity information for the available datastores
#

$method = SOAP::Data->name('GetContents')
->attr({xmlns => 'urn:vma1'});

@params = (SOAP::Data->name(handle => $datastore_handle));
$datastore_contents = $service->call($method => @params);

@dataStoresInfo = $datastore_contents->valueof('//datastore');

#
Display datastore information
#

$counter = 0;

foreach $dataStore (@dataStores) {

print "\n\n $dataStore"." [".$counter."] ";

foreach $dataStoreInfo (@dataStoresInfo) {

if ($dataStoreInfo->{ 'key' } eq $dataStore){
print "\n\t Capacity : ".$dataStoreInfo->{ 'capacityMB' }." MB";
print "\n\t Free Space : ".$dataStoreInfo->{ 'freeSpaceMB' }." MB";

}
}
$counter++;

}
201

Virtual Infrastructure SDK Programming Guide
Renaming an Object
The Rename operation requests a change to the name of an existing object and optionally moves
it in the /vcenter hierarchy. Clients can rename Containers, Farms, virtual machine groups and
virtual machines. However, clients cannot use the Rename operation to migrate a virtual machine
and move it from one host to another.

Note: You can only move a virtual machine or VirtualMachineGroup to a new
VirtualMachineGroup. Similarly, you can only move a Farm or a Farm group (Container) to a new
Farm group. You cannot move a VirtualMachineGroup to a new Farm and you cannot move
objects across Farms.

The Rename operation takes two mandatory arguments: the handle of the existing object that is
to be renamed and the new name of the object. If a name change is not desired, then pass in the
current name of the object. It has one optional argument, the new destination for the object being
moved. If this parameter is not specified, then the object is not moved, but is simply renamed in its
current location.

Note: The destination object, pointed to by destHandle, must be capable of holding the type of
object specified by the handle parameter or an error is returned.

The client must have Browse and Configure rights for both the current and new Container for the
object. Upon success, an empty response message is returned.

The following sample illustrates renaming an object.

#
Setup & call the ResolvePath method to obtain source handle
#

$method = SOAP::Data->name('ResolvePath')
 ->attr({xmlns => 'urn:vma1'});

@params = (SOAP::Data->type('xsd:string')->name(path => $srcPath));

$srcHandle = $service->call($method => @params)->result;

#
Setup & call the ResolvePath method to obtain destination handle
#

if ($dstPath){
 $method = SOAP::Data->name('ResolvePath')
 ->attr({xmlns => 'urn:vma1'});
www.vmware.com
202

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
 @params = (SOAP::Data->type('xsd:string')->name(path => $dstPath));

 $dstHandle = $service->call($method => @params)->result;
}

#
Setup and call the Rename method
#

$method = SOAP::Data->name('Rename')
 ->attr({xmlns => 'urn:vma1'});

if ($dstHandle){

@params = (
SOAP::Data->name(handle => $srcHandle),
SOAP::Data->name(destHandle => $dstHandle),
SOAP::Data->name(name => $newName)

);

} else {

@params = (
SOAP::Data->name(handle => $srcHandle),
SOAP::Data->name(name => $newName)

);
}

$service->call($method => @params)->result;
203

Virtual Infrastructure SDK Programming Guide
Moving Virtual Machines
VMware SDK provides two operations to move virtual machines across hosts, MigrateVM and
MoveVM. Clients should use MigrateVM when the virtual machine is being moved to a new host
without moving its virtual disk(s). This operation is applicable when both the original host and the
destination host share a SAN. By contrast, clients should use the MoveVM operation to move a
virtual machine‘s disk to the destination host.

A task is initiated on the Web service for the MigrateVM and MoveVM operations. The XML
document describing that task is returned to the client. The client can monitor the progress of this
task and check for errors, status, and so on. See Task Scheduling and Monitoring on page 214 for
sample code on how to monitor the progress of a task.

If the virtual machine is being moved and the client is monitoring it for updates, then the client will
receive updates on the VirtualMachineState (on the host and the details fields). The host field in the
VirtualMachineState is updated with the destination host name once the migration successfully
completes.

The following sample illustrates moving a virtual machine’s disks:

#
Setup & call the ResolvePath to obtain vm handle and host handle
#

$method = SOAP::Data->name('ResolvePath')
 ->attr({xmlns => 'urn:vma1'});

@params = (SOAP::Data->type('xsd:string')->name(path => $vmPath));

$vmHandle = $service->call($method => @params)->result;

@params = (SOAP::Data->type('xsd:string')->name(path => '/host/'.$host));

$dstHostHandle = $service->call($method => @params)->result;

#
Setup and call MoveVM
#

$method = SOAP::Data->name('MoveVM')
 ->attr({xmlns => 'urn:vma1'});
www.vmware.com
204

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
if (defined $diskKey) {

 #
 # DiskKey defined - create parameter of type VirtualDiskDestination
 #

 my %diskInfo = ();
 tie %$diskInfo, "Tie::IxHash";

 $diskInfo->{ 'key' } = $diskKey;
 $diskInfo->{ 'dataLocator' } = '';

@params = (
SOAP::Data->name(vm => $vmHandle),
SOAP::Data->name(host => $dstHostHandle),
SOAP::Data
->type('VirtualDiskDestination')
->name(disk => $diskInfo)

);
} else {

@params = (
SOAP::Data->name(vm => $vmHandle),
SOAP::Data->name(host => $dstHostHandle),

);
}

$task = $service->call($method => @params)->result;

#
Monitor the task to determine progress
#

MonitorTask ($service, $task);

Migrating a Virtual Machine
The MigrateVM operation starts the process of migrating a virtual machine to a specific host,
without moving the virtual disk(s). In this release, the virtual machine must be in the poweredOn
state. This operation never moves the virtual machine’s disks from its current location.

Note: The MigrateVM operation is not supported for a GSX Server host.
205

Virtual Infrastructure SDK Programming Guide
This operation takes two mandatory arguments: the handle to the virtual machine that will be
migrated, and the handle to the destination (target) host. There are two optional arguments:
priority (determines whether or not resources are preallocated before migration starts) and the
path describing the location of the virtual machine configuration file.

The client must have Configure rights on the virtual machine and on the Farm.

The request returns once the MigrateVM operation has been initiated by returning a task handle
back to the client. You can determine whether the migration is successful, by separately
monitoring the task that is performing the migration or by monitoring the virtual machine state
(specifically the detail or host fields in VirtualMachineState). If the virtual machine has been
successfully migrated, then the host field should contain the target host handle.

The following sample illustrates how to migrate a virtual machine:

#
Setup & call the ResolvePath to obtain vm handle and host handle
#

$method = SOAP::Data->name('ResolvePath')
 ->attr({xmlns => 'urn:vma1'});

@params = (
SOAP::Data
->type('xsd:string')
->name(path => '/vm/564d5a05-29a7-b09b-d576-9cb8a719d940')

);

$vmHandle = $service->call($method => @params)->result;

@params = (
SOAP::Data
->type('xsd:string')
->name(path => '/host/myhost.mydomain.com')

);

$dstHostHandle = $service->call($method => @params)->result;

#
Setup and call MigrateVM
#

$method = SOAP::Data->name('MigrateVM')
 ->attr({xmlns => 'urn:vma1'});
www.vmware.com
206

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
@params = (
SOAP::Data->name(vm => $vmHandle),
SOAP::Data->name(host => $dstHostHandle),

);

$task = $service->call($method => @params)->result;

#
Monitor the task to determine progress
#

MonitorTask ($service, $task);

Moving a Virtual Machine’s Virtual Disks
The MoveVM operation moves a virtual machine’s virtual disk(s) to a different location. You may
(optionally) also use this operation to move the virtual machine to a different host. You must
perform this operation on a virtual machine while it is in the poweredOff state.

The MoveVM operation takes one mandatory argument, the handle to the virtual machine that will
be enabled. There are three optional arguments: the handle to the destination host (if both the
virtual machine and its virtual disk(s) are moved), the dataLocator parameter (path) describing the
location of the virtual machine configuration file, and the destination for all disks in the virtual
machine.

The client must have Configure rights on the virtual machine and on the Farm of its host. If you are
also planning to move this virtual machine to a different host, then the client must also have
Configure rights on the target (destination) host.

The request returns once the operation has been initiated by returning a task handle back to the
client. The client may monitor the task for progress of the operation.
207

Virtual Infrastructure SDK Programming Guide
Monitoring Events
The client can obtain events information, as specified by the Event Log data models, described in
the Virtual Infrastructure SDK Reference Guide.

Clients can collect events on hosts or on virtual machines, including informational, warning, or
error messages such as changes in power operations or device status (connected, disconnected, or
busy). In addition, clients can receive updates when alarms occur; for example, when memory or
CPU usage, or virtual machine heartbeat is either above or below normal.

Each event comprises two parts: a declaration (the type of event), and the actual event (an event
log).

Clients can access all information related to events by calling GetContents on the /event handle.
This returns a Container with two Items:

• Handle for all event declarations under /event/decls

• Handle for all events under /event/all

Event Declarations
The view, /event/decls, represents all the event declarations. This view is an EventDeclList
object, that contains a single array field called “decl”. Each entry is this array is a separate EventDecl
(event declaration). By calling GetContents on /event/decls, the client can obtain all the
known event declarations in the system. The event declarations are a set of pre-defined event
types that do not get updated. Therefore, clients do not need to call GetUpdates on the handle for
/event/decls.

Each event declaration has the following attributes:

• key — String that is the ID of this event declaration.

• kind — Type of event, that is one of the following: “alert”, “error”, “warning”, “info”, or “user”.

• msgFmt — Array of format strings that describes how the event message is rendered; for
example, “Task%0 created on %1”.

• schedule — (Optional) Handle of the schedule (if any) that caused this event.

Event Logs
The view, /event/all, represents all the available events. This view is an EventCollector
Container that has 2 Items: /event/all/filter, which is an EventFilter and /event/all/
events, which is of type EventCollection.

The EventFilter object describes how all the events listed under EventCollection are grouped
together. The EventCollection contains a single array field called log. Each entry in this array is a
separate Event object. Each Event object describes a unique event that occurred in the system.
www.vmware.com
208

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
In the case of /event/all, no filtering is done and all events are listed under /event/all/
events; the filter under /event/all/filter is empty. EventFilter objects have the following
attributes, indicating the attribute used to group the events:

• parent — (Optional) ID of the parent event that generated the events in this filter. (If this
attribute is set, then the events in this event collector are grouped by the generating parent
event.)

• schedule — (Optional) ID of the scheduled task that generated this event. (If this attribute is
set, then the events in this event collector are all the events generated by this task schedule.)

• kind — String indicating the event kind. Events of the same kind are grouped together.

• startTime — Collects events that occurred after this start time.

• end time — Collects events that occurred before this end time.

• farm — (Optional) Collects events that occurred under this Farm.

• vm — (Optional) Collects events that occurred on this virtual machine.

• host — (Optional) Collects events that occurred on this host.

• declId — (Optional) Collects events that have this declaration ID.

• totalEvents — (Optional) Collects this number of events in the event collector, giving priority
to more recent events.

Event objects have the following attributes:

• key — String that is the ID of the event.

• decl — Declaration ID corresponding to this event.

• arg — Array of name-value pairs that holds the value for the parameters in the message
format string. Each entry in this array corresponds to a matching entry in the argType[] array
in this event’s declaration.

• parent — String that is the event ID of the parent event that caused this event.

• timestamp— Date and time when this event occurred.

• userDesc — (Optional) String that is the user description of this event.

• vm — (Optional) Handle of the virtual machine that owns this event.

• host — (Optional) Handle of the host that owns this event.

• farm — (Optional) Handle of the Farm that owns this event.

Clients that are interested in gathering event information should first call GetContents on the
handle for /event/decl and /event/all/events. The declaration data that is received
209

Virtual Infrastructure SDK Programming Guide
should be cached by the client. The client can then call GetUpdates on /event/all/events
to be notified of events, as they occur.

The following sample illustrates how clients can monitor events as they occur.

#
Setup and call ResolvePath to obtain handle
#

$method = SOAP::Data->name('ResolvePath')
 ->attr({xmlns => 'urn:vma1'});
@params = (SOAP::Data->name(path => "/event/all/events"));
$eventHandle = $service->call($method => @params)->result;

#
Setup and call GetContents to get a list of all the events
#

$method = SOAP::Data->name('GetContents')
 ->attr({xmlns => 'urn:vma1'});
@params = (SOAP::Data->name(handle => $eventHandle));
$result = $service->call($method => @params);

#
Parse the list of events by traversing each element in the
body of GetContentsResponse

if (!defined $result->valueof(‘//event’)){
 print “\n There are no Events\n”;
} else {
 my $i =0;
 foreach my $obj ($result->dataof("//body/*")) {
 $i++;
 foreach my $event ($result->dataof("//body/[$i]/*")) {

...process the event...

 }

 }
}

www.vmware.com
210

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
Creating an Event Collector
Clients can create an event collector to filter events on the following attributes:

• kind — Filters by the type of event; for example, alert, info, warning, and so on.

• declId — Filters an event specified by its VirtualCenter event declaration ID

• startTime — Filters any events that occurred before the specified start time.

• endTime — Filters any events that occurred after the specified end time.

• parent event — Filters any events with the specified parent event.

• schedule — Filters any events that are caused by the specified schedule

• host, vm, or farm — Filters for events associated with the specified host, virtual machine, or
Farm.

Once it has been created, this event collector is only accessible by the handle returned by the
Create operation. Clients cannot view this event collector in the /event view hierarchy.

For example, a client may create an event collector if it is interested in only “error” events from a
particular host or virtual machine. The newly created event collector only shows these events.

The following sample code illustrates the creation of a filtered event collector:

#
Call ResolvePath to obtain top-level /event handle
and handle for the host
#

$method = SOAP::Data->name('ResolvePath')
 ->attr({xmlns => 'urn:vma1'});
@params = (SOAP::Data->name(path => "/event"));
my $eventHandle = $service->call($method => @params)->result;

@params = (SOAP::Data->name(path => '/host/myhost.mydomain.com’));
my $hostHandle = $service->call($method => @params)->result;

#
Construct event collector spec to filter the events returned
The following event collector retrieves error events associated with a
particular host
#

my %eventSpec = ();
tie %{$eventSpec->{filter}}, "Tie::IxHash";

$eventSpec->{filter}->{kind} = 'error';
211

Virtual Infrastructure SDK Programming Guide
$eventSpec->{filter}->{startTime} = '';
$eventSpec->{filter}->{endTime} = '';
$eventSpec->{filter}->{host} = $hostHandle;

#
Setup and call Create to create the EventCollector

$method = SOAP::Data->name('Create')
 ->attr({xmlns => 'urn:vma1'});

@params = (
 SOAP::Data->name(handle => $eventHandle),
 SOAP::Data->name(name => 'HostErrors'),
 SOAP::Data->name(type => 'EventCollector'),
 SOAP::Data->type('EventCollector')
 ->name(initial => $eventSpec)
);

my $handle = $service->call($method => @params)->result;

The following code sample shows how to extract the list of events from this event collector:

#
Call GetContents on the newly created EventCollector
#

$method = SOAP::Data->name('GetContents')
->attr({xmlns => 'urn:vma1'});

@params = (SOAP::Data->name(handle => $handle));
$result = $service->call($method => @params);

#
Each event collector contains 2 items - an event
filter and an Event Collection object. Obtain the
handle for the Event Collection object.
#

my @items = $result->valueof('//item');

foreach my $item (@items) {
if ($item->{type} eq 'EventCollection') {

$eventHandle = $item->{key};
last;

}
}

www.vmware.com
212

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
#
Obtain the contents of the Event Collection object
#

@params = (SOAP::Data->name(handle => $eventHandle));
$result = $service->call($method => @params);

#
Display the events
#

PrintEvents($result);

See code sample for full listing on how to do this
213

Virtual Infrastructure SDK Programming Guide
Task Scheduling and Monitoring
Clients create tasks on the Web service in order to execute API operations.

Active Tasks and Scheduled Tasks
There are two types of tasks: active tasks and scheduled tasks. Active tasks are tasks that are
currently running on the Web service. Scheduled tasks are tasks that will be run on a pre-defined,
and possibly a recurring, schedule. When a scheduled task runs, a new active task is created in the
Web service.

Clients can obtain information about all currently active tasks by calling GetContents on the
/task handle. Similarly, clients can obtain information about all scheduled tasks that currently
exist on the Web service, by calling GetContents on the /schedule handle.

The Web service can create tasks in response to certain long-running operations. The Web service
initiates such operations as a task. The Web service returns control to the client without waiting for
the task or operation to complete. The response contains information about the task that was
created on the Web service for that operation. Some examples of long running tasks include
StartVM, StopVM, ResetVM, MigrateVM, and so on. Clients can access information about the task to
determine its status and its progress as described in the next few sections.

Clients can also create scheduled tasks directly on the Web service. Clients identify the operation,
then specify a schedule for running the task. The Web service uses this schedule to determine
when to run the task. See Creating New Scheduled Tasks on page 218.

Monitoring Tasks
Clients can monitor for new tasks as they occur by calling GetUpdates on the /task handle.
Clients can receive notifications on new scheduled tasks as they are created on the Web service by
calling GetUpdates on the /schedule handle.

The GetUpdates operation on the /schedule or the /task handle returns a Container of Items.
Each Item has a handle to a Task object. Each Task object has the attributes listed in the following
table.

Task Object Attribute Description

operationName String identifying the operation that this task is running.

cause String identifying the agent that caused this task’s creation.

schedule String identifying the handle for the scheduled task that created this

task, if applicable.
www.vmware.com
214

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
The following sample illustrates how the client can stay informed of all new tasks in the system.

#
Setup & call the ResolvePath method
#

$method = SOAP::Data->name('ResolvePath')
 ->attr({xmlns => 'urn:vma1'});

@params = (SOAP::Data->name(path => '/task'));

$handle = $service->call($method => @params)->result;

#
Setup and call the GetContents method.
#

$method = SOAP::Data->name('GetContents')
 ->attr({xmlns => 'urn:vma1'});

@params = (SOAP::Data->name(handle => $handle));

$result = $service->call($method => @params);

entity String identifying the handle for the object that this task is operating
on.

eventCollector Handle of the EventCollector that contains all events associated with
this task.

currentState TaskRunState, an object that indicates this task’s current status (running,
failed, completed, and so on).

percentCompleted Float indicating the percentage of the task that has completed.

normalReturn Object that contains the return value from the operation that the task

executed.

faultReturn FaultInfo object that captures any errors or exceptions encountered by

the operation that this task was executing.

allowCancel Boolean indicating if this running task can be cancelled

queueTime Date and time this task was created.

Task Object Attribute Description
215

Virtual Infrastructure SDK Programming Guide
Extract the list of tasks

my @items = $result->valueof('//item');

if ($#items < 0) {
 print "\nThere are no Active tasks\n";
} else {

 foreach my $item (@items) {

 print "\n Key : ". $item->{key};
 print "\n Name : ". $item->{name};
 }
}

Clients can monitor a task for its progress by calling GetUpdates on the handle for the task of
interest. The client can look at the task’s current run state and percentCompleted values to chart a
task’s progress and determine when it completes. The following sample illustrates this concept.

sub MonitorTask
{
 my ($taskState, $vHandle, $method, @params, @changes, $vHandleList,
$taskObj);
 my $service = shift;
 my $taskRef = shift;

 $taskState = $taskRef->{ 'body' }->{ 'currentState' };
 $vHandle = $taskRef->{ 'vHandle' };

 #
 # Call GetUpdates repeatedly to monitor the status of the Task
 #

 $method = SOAP::Data->name('GetUpdates')
 ->attr({xmlns => 'urn:vma1'});

 print "\nTask Status : $taskState \n";

 while ($taskState ne 'completed' && $taskState ne 'failed'){

 #
 # Setup and call GetUpdates
 #

 $vHandleList->{ 'vHandle' } = $vHandle;
www.vmware.com
216

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
 @params = (
SOAP::Data->name(vHandleList => $vHandleList),
SOAP::Data->type('xsd:boolean')->name(wait => 'true')
);

 $task = $service->call($method => @params);
 @changes = $task->valueof('//change');

 #
 # Update Task status information using the list of changes
 #

 foreach $change (@changes){

 $target = $change->{ 'target' };
 $taskState = $change->{ 'val' };

 #
 # Task failed -- fault returned
 #

 if ($target eq 'faultReturn'){
 $taskState = 'failed';
 print "\n$change->{ 'val' }->{ 'kind' } : ";
 print "$change->{ 'val' }->{ 'info' }";
 last;
 }

 if ($target eq 'percentCompleted'){
 if ($taskState == 100){
 $taskState = 'completed';
 }elsif ($taskState == 0){
 $taskState = 'failed';
 }else {
 $taskState = 'running';
 }
 }

 print "\nTask Status : $taskState \n";
 }

 #
 # Obtain the latest vHandle
 #

 $vHandle = $task->valueof('//vHandle');
217

Virtual Infrastructure SDK Programming Guide
 }

 return;
}

Creating New Scheduled Tasks
Clients can create new scheduled tasks on the Web service. The following operations can be
scheduled as a task:

• Power operations — StopVM, StartVM, and ResetVM.

• PutUpdates — changing the resource settings of a virtual machine. Clients must pass a
handle (and not a vHandle) for a scheduled PutUpdates operation.

• MigrateVM

• MoveVM

• CloneVM

• CreateTemplate

To create a task schedule, clients need four parameters, as specified by the TaskScheduleSpec
datatype:

• name — Name of the task schedule.

• operationName — Name of the scheduled API operation.

• parameter — Parameters for the operation. If the operation requires no parameters, then this
field is not required.

• recurrence — Recurrence of this task schedule.

Once a task schedule is created, there are additional parameters that define the task schedule.
Refer to the description for the TaskSchedule datatype in the Virtual Infrastructure SDK Reference
Guide.

The following sample code illustrates creating a scheduled task that performs the power-on
operation.

Creating a Scheduled Task

#
Create a TaskSpec hash
#

my %taskSpec = SOAP::Data
->type('TaskScheduleSpec');
www.vmware.com
218

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
tie %$taskSpec, "Tie::IxHash";

$taskSpec->{ 'name' } = 'newTask';
$taskSpec->{ 'operationName' } = 'StartVM';

#
Set the parameter for the task
#

tie %{$taskSpec->{ 'parameter' }}, "Tie::IxHash";
$taskSpec->{ 'parameter' }->{ 'key' } = 'vm';
$taskSpec->{ 'parameter' }->{ 'val' } = $vmhandle;

#
Set task recurrence
#

my %task = ();
tie %$task, "Tie::IxHash";

#
One Time Task
#

$task->{ 'runTime' } = undef;
$taskType = SOAP::Data

->type('OneTimeTask')
->name(recurrence => $task);

$taskSpec->{ 'recurrence' } = $taskType;

#
Obtain the handle for /schedule
#

$method = SOAP::Data->name('ResolvePath')
->attr({xmlns => 'urn:vma1'});

@params = (SOAP::Data->name(path => '/schedule'));

$handle = $service->call($method => @params)->result;

#
Create the task schedule
#

$method = SOAP::Data->name('Create')
219

Virtual Infrastructure SDK Programming Guide
->attr({xmlns => 'urn:vma1'});

@params = (
SOAP::Data->name(handle => $handle),
SOAP::Data->name(name => $name),
SOAP::Data->name(type => 'TaskSchedule'),
SOAP::Data->type('TaskScheduleSpec')->name(initial => $taskSpec)
);

my $taskHandle = $service->call($method => @params)->result;

In the preceding sample, parameters for the operation are specified using KeyedValue objects
named parameter.

The operation name specified in the TaskScheduleSpec datatype must match exactly the
operation name specified in the WSDL; for example, when setting up a task to clone a virtual
machine, the operation name should be CloneVM. Similarly, the parameter names should exactly
match the parameter names for that operation as specified in the WSDL. The following sample
code illustrates the parameters for the StartVM operation.

StartVM Operation Parameters

#
Obtain the handle for the VM for which the task is scheduled
#

$method = SOAP::Data->name('ResolvePath')
->attr({xmlns => 'urn:vma1'});

@params = (SOAP::Data->name(path => $vmPath));

$vmhandle = $service->call($method => @params)->result;

#
Specify the parameter(s) for the task
#

tie %{$taskSpec->{ 'parameter' }}, "Tie::IxHash";
$taskSpec->{ 'parameter' }->{ 'key' } = 'vm';
$taskSpec->{ 'parameter' }->{ 'val' } = $vmhandle;

When multiple parameters are involved, such as in the StopVM operation, the specification must
be constructed more carefully so as to avoid overwriting of duplicate keys in a hash. This is
demonstrated in the following sample:
www.vmware.com
220

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
#
Create the task schedule
#

$method = SOAP::Data->name('Create')
->attr({xmlns => 'urn:vma1'});

@params =
(
SOAP::Data->name(handle => $handle),
SOAP::Data->name(name => $name),
SOAP::Data->name(type => 'TaskSchedule'),
SOAP::Data->type('TaskScheduleSpec')->name(initial =>

\SOAP::Data->value(
SOAP::Data->name(name => $name),
SOAP::Data->name(operationName => 'StopVM'),
SOAP::Data->name(parameter =>

\SOAP::Data->value (
SOAP::Data->name(key => 'vm'),
SOAP::Data->name(val => $vmhandle))),

SOAP::Data->name(parameter =>
\SOAP::Data->value (

SOAP::Data->name(key => 'suspend'),
SOAP::Data->name(val => 'true'))),

SOAP::Data->name(parameter =>
\SOAP::Data->value (

SOAP::Data->name(key => 'soft'),
SOAP::Data->name(val => 'true'))),

SOAP::Data->name(recurrence => $taskType)))
);

my $taskHandle = $service->call($method => @params)->result;

The recurrence for a scheduled task is an object as specified in the preceding table. Each object has
a set of parameters that specify when to run the task. For example, clients can specify a weekly task:

my %task = ();
tie %$task, "Tie::IxHash";

#
Weekly Task
#

What time of the day this task should fire
$task->{ 'hours' } = 6;
221

Virtual Infrastructure SDK Programming Guide
$task->{ 'minutes' } = 5;

#on which day(s) of the week should this fire
$task->{ 'dayOfWeek' } = 'sunday';

Run this task every xx weeks
$task->{ 'interval' } = 2;

$taskType = SOAP::Data
 ->type('WeeklyTask')
 ->name(recurrence => $task);

$taskSpec->{ 'recurrence' } = $taskType;

Running a Scheduled Task
Clients can run a scheduled task on the Web service by calling the RunTask operation. This
operation takes one argument, the handle of the task. The client must have Interact rights for the
specified task.

Upon success, an empty response message is returned.

#
Run the scheduled task
#

$method = SOAP::Data->name('RunTask')
 ->attr({xmlns => 'urn:vma1'});

@params = (SOAP::Data->name(task => $taskHandle));

Ending a Task
Clients can stop a running task, or cancel a task that has not yet been started on the Web service
by calling the EndTask operation. This operation takes one argument, the handle of the task. The
client must have Interact rights for the specified task.

Upon success, an empty response message is returned.

#
End the scheduled task
#

$method = SOAP::Data->name('EndTask')
 ->attr({xmlns => 'urn:vma1'});
www.vmware.com
222

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
@params = (SOAP::Data->name(task => $taskHandle));

$service->call($method => @params);
223

Virtual Infrastructure SDK Programming Guide
Collecting Performance Data
The client can obtain performance data, as specified by the Performance Metric data model,
described in the Virtual Infrastructure SDK Reference Guide. Clients can collect performance data on
hosts or on virtual machines, including CPU and memory utilization, network and disk
performance data, and floppy and CD-ROM drive performance, and so on.

Clients obtain performance statistics through a performance collector. A performance collector,
also known as a perf collector, is an object that collects a certain set of statistics at a specified
interval frequency.

The view, /perf, is a container for all the performance collectors. There are two types of
performance collectors:

• VirtualCenter perf collectors — VirtualCenter perf collectors specify a sampling interval and
are visible in the VMware VirtualCenter application.

• Filtered perf collector — Filtered perf collectors (children) are filtered from an existing
VirtualCenter perf collector (parent) and are not visible in the VirtualCenter application.

Clients can create both types of performance collectors by using the Create operation.

• A new VirtualCenter perf collector with a different sampling interval from any other
VirtualCenter perf collectors.

• A perf collector that filters the statistics of an existing VirtualCenter perf collector.

VirtualCenter Perf Collector
VirtualCenter performance collectors are named according to their sampling interval. They have
only a sampling interval and no default filter. There are four default VirtualCenter perf collectors:

• Five minutes — /perf/0000000300. Historical samples are retained for a day.

• One hour — /perf/0000003600. Historical samples are retained for a week.

• Six hours — /perf/0000021600. Historical samples are retained for a month.

• One day — /perf/0000086400. Historical samples are retained for a year.

Clients can also create a VirtualCenter perf collector by using the Create operation. When doing so,
specify only the name and the sampling interval (initial parameter comprising XML document of
type PerfCollector). See Creating a VirtualCenter Perf Collector on page 227.

Note: When creating a VirtualCenter perf collector, the user-friendly name does not appear in the
/perf directory. Instead, the newly created VirtualCenter perf collector appears as its sampling
interval. However, the user-friendly name appears in the VirtualCenter application.
www.vmware.com
224

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
For example, if you create a new VirtualCenter perf Collector called “Every Minute” with a sampling
interval of 60 seconds, it appears in the VirtualCenter application as “Every Minute” but appears as
its sampling interval, /perf/0000000060.

Because VirtualCenter perf collectors only have a sampling interval, they collect statistics on all
virtual machines and all hosts. Because updating the contents of these VirtualCenter performance
collectors for each sampling interval would generate much communication traffic; by default, the
contents of VirtualCenter performance collectors do not keep current data.

If you want the contents of VirtualCenter perf collectors to be up-to-date, then change the default
behavior by setting the periodicPerfRefreshEnable config variable to TRUE in the Web
service configuration file (vmaConfig.xml). If this variable is set to TRUE, then the contents of all
VirtualCenter perf collectors are also kept up-to-date.

Filtered Perf Collectors
Filtered perf collectors are “children” derived from a VirtualCenter perf collector. Each VirtualCenter
perf collector can have multiple “children” filtered perf collectors. However, a filtered per collector
cannot be used to create additional “children” filtered perf collectors.

As discussed in the previous section, VirtualCenter perf collectors have only a sampling interval,
and therefore, collect statistics on all virtual machines and all hosts. Since it is impractical to collect
all this performance data, clients should create “filtered perf collectors” to monitor the current
values of particular performance statistics. Unlike VirtualCenter perf collectors, the contents of
filtered perf collectors are kept up-to-date.

Filtered perf collectors typically specify a source (host or virtual machine) and the performance
statistics of interest. For example, a default VirtualCenter perf collector has a sampling interval of
five minutes. By filtering this VirtualCenter perf collector, clients can create a filtered perf collector
collecting performance statistics every five minutes on “host A”, another that collects memory
statistics every five minutes on “John’s virtual machine”, and so on.

Clients also create a filtered perf collector by using the Create operation. When doing so, specify
the name and the filter (initial parameter comprising XML document of type PerfCollector). This
XML document must include the handle to the parent VirtualCenter perf collector. The filter should
also include the source (host or virtual machine being queried), the samples, and the performance
statistics of interest. See Creating a Filtered Perf Collector on page 228.

Note: Do not specify the sampling interval. The filtered perf collector has the same sampling
interval as its parent VirtualCenter perf collector. The WSDL stubs insert a value of zero (0) that is
ignored by the Web service.

Note: If clients leave the spec field uninitialized (or NULL), then all performance statistics from the
source are returned.
225

Virtual Infrastructure SDK Programming Guide
Note: Unlike VirtualCenter perf collectors, the user-friendly name selected for the filtered perf
collector appears in the /perf directory, but does not appear in the VirtualCenter application.

Comparing VirtualCenter and Filtered Perf Collectors
The following table summarizes the differences between VirtualCenter and filtered perf collectors.

Characteristic VirtualCenter Perf Collector Filtered Perf Collector

What does it specify? Specifies a unique sampling interval. Does
not specify any other filter.

Specifies the source (of the performance
statistics) and defines the performance

statistics (CPU, memory, and so on).

Uses the same sampling interval as its

“parent” VirtualCenter perf collector.

Can be created? Yes. Use the Create operation and specify a

name, sampling interval, and total number
of samples.

Yes. Use the Create operation and specify a

name, a parent VirtualCenter perf collector,
and a filter.

Can be deleted? Yes. Use the Delete operation. Yes. Use the Delete operation.

Life expectancy. Persists until deleted. Persists until deleted or the Web service is

stopped. When the Web service is restarted,
filtered perf collectors no longer exist.

Filters an existing perf
collector?

No. VirtualCenter perf collectors have only a
name and a sampling interval.

Yes. Filtered perf collectors filter an existing
VirtualCenter perf collector.

Gets current
performance statistics?

No, unless the
periodicPerfRefreshEnable

config variable is set to TRUE. This is set to
FALSE by default.

Yes. Filtered perf collectors can get current
statistics through the GetContents and

GetUpdates operations.

Used to create filtered
perf collectors?

Yes. Clients can create filtered perf
collectors from a VirtualCenter perf

collector.

No. Clients cannot “filter” a filtered perf
collector.

Query historical

performance statistics?

Yes. Use the QueryPerfData and

QueryPerfData2 operations. Specify the
handle of the perf collector and optionally,

a filter.

Yes. Use the QueryPerfData and

QueryPerfData2 operations. Specify the
handle of the perf collector. Do not specify

a filter.
www.vmware.com
226

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
Performance Metric Data Model
A diagram of the Performance Metric data model is included in the Virtual Infrastructure SDK
Reference Guide. Here, we provide a brief summary of this model.

A PerfCollector is a collector of performance statistics. Each Perf Collector includes a filter
(specifying the sample interval and the performance statistics that are collected) and stats,
referring to the actual performance statistics that are collected (a PerfCollection).

Each PerfCollection has an array of statistics from various sources, either hosts or virtual machines.
Each PerfSource has an array of samples for that source. Each PerfSample has an array of statistics
for the sample from that source. Each stat is a PerfStat, and can have a type specified by
PerfStatType, that describes the type of performance statistic: cpu, net, disk, floppy, and so on.

The actual statistics are in the data field of the PerfStat, and comprise many different datatypes:
CPUPerf, MemoryPerf, NetPerf, and so on.

Creating a VirtualCenter Perf Collector
Clients use the Create operation to create a new VirtualCenter perf collector, as shown in the
following sample.

{
 my ($service, $handle, $name) = @_;

 #
 # Create an ordered hash for the PerfCollector
 #

 my %perfSpec = ();
 tie %$perfSpec, "Tie::IxHash";
 tie %{$perfSpec->{ 'filter' }}, "Tie::IxHash";

 #
 # Accepting input for Perf Collector
 # NOTE: Not all specifications are included for input.
 # Refer documentation for details on more Perf Collector specs.
 #

 Print "\nInterval (in seconds) : ";
 chomp ($perfSpec->{ 'filter' }->{ 'interval' } = <STDIN>);
 $perfSpec->{ 'filter' }->{ 'name' } = $name;
 Print "\nNumber of samples returned [optional] : ";
 chomp ($perfSpec->{ 'filter' }->{ 'samples' } = <STDIN>);

 #
 # Setup and call Create
227

Virtual Infrastructure SDK Programming Guide
 #

 my $method = SOAP::Data->name('Create')
 ->attr({xmlns => 'urn:vma1'});

my @params = (SOAP::Data->name(handle => $handle),
SOAP::Data->name(name => $name),
SOAP::Data->name(type => 'PerfCollector'),
SOAP::Data->type('PerfCollector')->name(initial => $perfSpec));

 print "\nHandle for new object : ".
 $service->call($method => @params)->result;
 Print "\n\nOperation Successful \n";
 return;
}

Creating a Filtered Perf Collector
Clients use the Create operation to create a new filtered perf collector, as shown in the following
sample.

{
 my ($service, $handle, $name) = @_;

 #
 # Create an ordered hash for the PerfCollector
 #

 my %perfSpec = ();
 tie %$perfSpec, "Tie::IxHash";
 tie %{$perfSpec->{'filter'}}, "Tie::IxHash";

 #
 # Call ResolvePath to obtain handle to the default VC Perf Collector.
 #
 $method = SOAP::Data->name('ResolvePath')
 ->attr({xmlns => 'urn:vma1'});
 @params = (SOAP::Data->name(path => "/perf/0000000300"));
 my $pcHandle = $service->call($method => @params)->result;

 #
 # Call ResolvePath to obtain handle for the host
 #
 Print "\nHost Path : ";
 my $host_path;
www.vmware.com
228

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
 chomp($host_path = <STDIN>);

 $method = SOAP::Data->name('ResolvePath')
 ->attr({xmlns => 'urn:vma1'});
 @params = (SOAP::Data->type('xsd:string')->name(path => $host_path));
 my $hostHandle = $service->call($method => @params)->result;

 #
 # Fills in filter spec to retrieve cpu0 info for host.
 #
 my %filterSpec = ();
 tie %$filterSpec, "Tie::IxHash";
 $filterSpec->{interval} = 0;
 tie %{$filterSpec->{spec}}, "Tie::IxHash";
 $filterSpec->{spec}->{key} = $hostHandle;
 tie %{$filterSpec->{spec}->{sample}}, "Tie::IxHash";
 $filterSpec->{spec}->{sample}->{key} = '';
 $filterSpec->{spec}->{sample}->{type} = 'cpu';
 $filterSpec->{spec}->{sample}->{device} = 0;

 #
 # Accepting input for Perf Collector
 # NOTE: Not all specifications are included for input.
 # Refer documentation for details on more Perf Collector specs.
 #

 $perfSpec->{'filter'}->{'spec'} = $filterSpec;
 $perfSpec->{'filter'}->{'handle'} = $pcHandle;
 Print "\nNumber of samples returned : ";
 chomp ($perfSpec->{'filter'}->{'samples'} = <STDIN>);

 #
 # Setup and call Create
 #

 my $method = SOAP::Data->name('Create')
 ->attr({xmlns => 'urn:vma1'});

my @params = (SOAP::Data->name(handle => $handle),
SOAP::Data->name(name => $name),
SOAP::Data->name(type => 'PerfCollector'),
SOAP::Data->type('PerfCollector')->name(initial => $perfSpec));

 print "\nHandle for new object : ".
 $service->call($method => @params)->result;
 Print "\n\nOperation Successful \n";
 return;
229

Virtual Infrastructure SDK Programming Guide
}

Collecting Current Performance Data
Clients can access current performance statistics by initially doing a GetContents operation on the
performance collector Container (specified by /perf/<interval>) and its sub-items.

This operation returns a perfCollector Container that contains two Items, the PerfFilter and
PerfCollection (statistics) datatypes. Each Item contains a key, that is the handle to the Item.To get
the latest statistics, clients should call the GetUpdates operation on the PerfCollection object that
holds the statistics. The following sample illustrates this concept.

#
Call ResolvePath to obtain the handle for the
parent Perf collector /perf/0000000300
#

$method = SOAP::Data->name('ResolvePath')
 ->attr({xmlns => 'urn:vma1'});
@params = (SOAP::Data->name(path => "/perf/0000000300"));

my $parentHandle = $service->call($method => @params)->result;

#
Call ResolvePath to obtain handle for the host for which
the stats are needed
#

@params = (SOAP::Data->name(path => "/host/myhost.mydomain.com"));

my $hostHandle = $service->call($method => @params)->result;

#
Create spec for filter
#

my %filterSpec = ();
tie %{$filterSpec->{filter}}, "Tie::IxHash";

$filterSpec->{filter}->{interval} = 0;
tie %{$filterSpec->{filter}->{spec}}, "Tie::IxHash";
$filterSpec->{filter}->{spec}->{key} = $hostHandle;
tie %{$filterSpec->{filter}->{spec}->{sample}}, "Tie::IxHash";
$filterSpec->{filter}->{spec}->{sample}->{key} = '';
$filterSpec->{filter}->{spec}->{sample}->{type} = 'cpu';
$filterSpec->{filter}->{spec}->{sample}->{device} = 0;
www.vmware.com
230

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
$filterSpec->{filter}->{handle} = $parentHandle;
$filterSpec->{filter}->{samples} = 2;

#
Call ResolvePath to obtain a handle to /perf
#

$method = SOAP::Data->name('ResolvePath')
 ->attr({xmlns => 'urn:vma1'});
@params = (SOAP::Data->name(path => "/perf"));
my $perfHandle = $service->call($method => @params)->result;

#
Setup and call Create
#

my $method = SOAP::Data->name('Create')
 ->attr({xmlns => 'urn:vma1'});

my @params = (
SOAP::Data->name(handle => $perfHandle),
SOAP::Data->name(name => 'newPerf'),
SOAP::Data->name(type => 'PerfCollector'),
SOAP::Data->type('PerfCollector')->name(initial => $filterSpec)

);

my $handle = $service->call($method => @params)->result;

#
Get the perf collector details using GetContents
#

$method = SOAP::Data->name('GetContents')
 ->attr({xmlns => 'urn:vma1'});
@params = (SOAP::Data->name(handle => $handle));

my $perfContents = $service->call($method => @params);

#
Now call GetUpdates on the stats object of this collector ...
#

231

Virtual Infrastructure SDK Programming Guide
The following sample code illustrates how to extract the appropriate statistic from the
PerfCollection object:

sub PrintStats
{

my ($result, $match) = @_;

#
Define the path for the outermost object of interest
#

if (!defined $match) {
$match = "//returnval/*";

}

Iterate through each element in the current object
and check to see if it contains a text value or a
child object
#

my $i =0;
foreach my $element ($result->dataof($match)) {

$i++;

#
Extract key value and display object handle
#

if ($element->name eq 'key') {
print "\n\nSamples for ".$element->value ." :\n";
next;

}

#
Check the type of stat and display if type corresponds to CPU
#

if ($element->name eq 'stat') {
if ($element->value->{type} =~ /cpu/) {

print "\nKey : ".$element->value->{key};
if (exists $element->value->{data}->{used}) {

print "\nUsed : ".$element->value->{data}->{used}." milliseconds\n";

}
}

www.vmware.com
232

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
next;
}

#
Element contains child object. Adjust path for the
new object and recursively call subroutine to parse
the child object
#

if (ref $element->value) {
$newMatch = $match;
chop ($newMatch);
$newMatch = $newMatch."[$i]/*";
PrintStats ($result, $newMatch);

}

}
}

Collecting Historical Data
Similarly, clients can use the QueryPerfData and QueryPerfData2 operations on both VirtualCenter
and filtered performance collectors to obtain historical performance data, for any specified time
period. The time period may be completely in the past, or it may be specified to extend up to, and
including, the most recent update.

When using the QueryPerfData and QueryPerfData2 operations, clients must specify the handle to
the perf collector. Specify the filter parameter only when querying a VirtualCenter perf collector.

Note: Do not use the filter parameter only when querying a filtered perf collector (as it is already
“filtered”). If the filter parameter is specified for a filtered perf collector, the operation returns an
error.

Note: If you see output similar to /vpx/vm/#000512 or /vpx/host/#000a376 for the
PerfSourceType “key” field in the PerfCollection object, then the specified virtual machine or host
has been deleted.

The following sample illustrates how a client calls the QueryPerfData operation.

#
Call ResolvePath to obtain the handle for the
default Perf collector /perf/0000000300
#

$method = SOAP::Data->name('ResolvePath')
 ->attr({xmlns => 'urn:vma1'});
233

Virtual Infrastructure SDK Programming Guide
@params = (SOAP::Data->name(path => "/perf/0000000300"));

my $handle = $service->call($method => @params)->result;

#
Call ResolvePath to obtain handle for the host for which
the stats are needed
#

@params = (SOAP::Data->name(path => "/host/myhost.mydomain.com"));

my $hostHandle = $service->call($method => @params)->result;

#
Create spec for filter
#

my %filterSpec = ();
tie %$filterSpec, "Tie::IxHash";

$filterSpec->{interval} = 0;
tie %{$filterSpec->{spec}}, "Tie::IxHash";
$filterSpec->{spec}->{key} = $hostHandle;
tie %{$filterSpec->{spec}->{sample}}, "Tie::IxHash";
$filterSpec->{spec}->{sample}->{key} = '';
$filterSpec->{spec}->{sample}->{type} = 'cpu';
$filterSpec->{spec}->{sample}->{device} = 0;

#
Format local time to obtain start time for the samples
#

my ($sec,$min,$hour,$mday,$mon,$year) = localtime(time);

my $startTime = sprintf "%4d-%02d-%02dT%02d:%02d:%02d",
 $year+1900,$mon+1,$mday,$hour,$min,$sec;

#
Setup and call QueryPerfData
#

$method = SOAP::Data->name('QueryPerfData')
 ->attr({xmlns => 'urn:vma1'});

@params = (
www.vmware.com
234

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
 SOAP::Data->name(handle => $handle),
 SOAP::Data->(name(startTime => $startTime),
 SOAP::Data->name(samples => 1),
 SOAP::Data->type('PerfFilter')->name(filter => $filterSpec)
);

my $result = $service->call($method => @params);

PrintStats ($result);

Clients call the QueryPerfData2 operation exactly as they call the QueryPerfData operation.
However, the QueryPerfData2 operation returns the new CPUPerf2, MemoryPerf2, and
VirtualMachineMemoryPerf2 datatypes whereas the QueryPerfData operation returns the CPUPerf,
MemoryPerf, and VirtualMachineMemoryPerf datatypes. These new datatypes contain additional
statistics for ESX Server hosts and virtual machines on ESX Server.

Clients can only obtain the statistics from the CPUPerf2, MemoryPerf2, and
VirtualMachineMemoryPerf2 datatypes through the QueryPerfData2 operation. If you are already
calling the GetUpdates operation on the PerfCollection object, then be sure to call the
QueryPerfData2 operation to obtain these extra statistics.

This next sample shows how to display the statistics from CPUPerf2, returned after calling the
QueryPerfData2 operation.

sub PrintStats
{

my $result = shift;

#
Display sample start time
#

my $startTime = $result->valueof('//startTime');
print "\n\nSample start time : $startTime" ;

my @stats = $result->valueof('//stat');

Iterate through each CPU stat object in the current sample and
print the key and used time
#

print "\n\nCPU stats for the host :\n";

foreach my $stat (@stats) {
235

Virtual Infrastructure SDK Programming Guide
print "\nKey: ".$stat->{key};
if (exists $stat->{data}->{used}) {

print "\nUsed time : ".$stat->{data}->{used}."
milliseconds\n";

}
if (exists $stat->{data}->{system}) {

print "\nSystem time : ".$stat->{data}->{system}."
milliseconds\n";

}
if (exists $stat->{data}->{ready}) {

print "\nReady time : ".$stat->{data}->{ready}."
milliseconds\n";

}
if (exists $stat->{data}->{wait}) {

print "\nWait time : ".$stat->{data}->{wait}."
milliseconds\n";

}
if (exists $stat->{data}->{pcpu}) {

print "\nPCPU : ".$stat->{data}->{pcpu};
}

}
}

www.vmware.com
236

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
Changing Permissions
Clients can view and change permissions on any object by using the VMware SDK. To view the
current permissions, clients either call the GetInfo operation on the object or call the GetContents
operation on the parent Container of the object. Each Item that is returned in the Container’s Item
list contains the permissions associated with that Item.

The permissions are returned in an array of Permission objects. Each permission object has two
String fields: the key field (identifies the user with the assigned permissions) and the rights field
(indicates the permissions granted to the user).

Once the current permissions are known, clients can modify these permissions by using the
ChangePermissions operation. The ChangePermissions operation takes two arguments: the
vHandle (versioned identifier of the object) and a PermissionList (encapsulates the new
Permissions array).

By using the ChangePermissions operation, clients can add new permissions, or delete or modify
existing permissions. To add new permissions, clients should add a new Permission entry to the
Permissions array, then send the new Permissions array to the ChangePermissions operation.

Similarly, clients can delete permissions by removing the desired entries from the Permissions
array.

Clients can modify permissions by modifying the permission object in the Permissions array, then
sending the updated Permissions array to the ChangePermissions operation.

Note: The new PermissionList that is specified in the ChangePermissions operation replaces all
the existing permissions on the object. If you don’t want to delete any existing entries, then the
client must also send back all the existing entries to the ChangePermissions operation.

The following code sample illustrates how to invoke the ChangePermissions operation.

#
Setup & call the ResolvePath to obtain handle of the object
#

$method = SOAP::Data->name('ResolvePath')
 ->attr({xmlns => 'urn:vma1'});

@params = (SOAP::Data->type('xsd:string')->name(path => $path));

$handle = $service->call($method => @params)->result;

#
Call GetInfo to obtain the list of current permissions on the object
#

237

Virtual Infrastructure SDK Programming Guide
$method = SOAP::Data->name('GetInfo')
->attr({xmlns => 'urn:vma1'});

@params = (SOAP::Data->name(handle => $handle));

my $infoObj = $service->call($method => @params);

@perms = $infoObj->valueof('//perm');

... edit permissions here (add / delete / modify perms array)

#
Setup and Call ChangePermissions
#

$permList = SOAP::Data->name(perm => @perms);
$soapPermList->{ 'permissions' } = $permList;

$method = SOAP::Data->name('ChangePermissions')
->attr({xmlns => 'urn:vma1'});

@params = (SOAP::Data->name(vHandle => $result->{ 'vHandle' }),
SOAP::Data
->type('PermissionList')
->name(permissions => $soapPermList)

);

$service->call($method => @params);
www.vmware.com
238

C H A P T E R 8 Advanced Client Concepts for Perl Programmers
Taking a Snapshot of a Virtual Machine
The following code sample illustrates using the new snapshot operations. The first, SnapshotVM,
takes a “snapshot” (picture) of a virtual machine at a particular point in time. The second, RevertVM,
discards any existing snapshot and returns the virtual machine to its state preceding the snapshot.
The third, ConsolidateVM, commits the changes contained in the snapshot, to the base virtual
disk(s).

#
Setup & call the ResolvePath method
#

$method = SOAP::Data->name('ResolvePath')
 ->attr({xmlns => 'urn:vma1'});

@params = (SOAP::Data->name(path => $vmPath));

my $handle = $service->call($method => @params)->result;

#
Depending on choice of snapshot operation, call the appropriate
method
#

if ($op eq 'snap'){
 $method = SOAP::Data->name('SnapshotVM')
 ->attr({xmlns => 'urn:vma1'});
} elsif ($op eq 'revert'){
 $method = SOAP::Data->name('RevertVM')
 ->attr({xmlns => 'urn:vma1'});
} else {
 $method = SOAP::Data->name('ConsolidateVM')
 ->attr({xmlns => 'urn:vma1'});
}

@params = (SOAP::Data->name(vm => $handle));

my $task = $service->call($method => @params)->result;

MonitorTask ($service, $task);
239

Virtual Infrastructure SDK Programming Guide
www.vmware.com
240

C H A P T E R 9

Sample Applications
This chapter describes the sample applications created with the VMware SDK. It also discusses the
proxy layer architecture used by two of the samples.

These sample applications, their source code, and installation instructions are contained in the
VMware SDK package. Read SDK\SDK-README.html for links to these sample applications.

In addition, read SDK\WebService\samples\README. This file contains detailed
information about each of the sample applications, and supplements the information contained in
this Virtual Infrastructure SDK Programming Guide.

The Web-based monitoring and management application and the inventory and virtual machine
provisioning applications are Java applications, while the Alerts and VMA Viewer applications are
C# applications developed with Microsoft Visual Studio® .NET. The SimpleListing, VMPowerOps,
and TestOps applications are Visual Basic (VB) applications, also developed with Visual Studio .NET.

• Proxy Layer Abstraction on page 243

• Web-based Monitoring and Management Application on page 246

• Inventory and Virtual Machine Provisioning Application on page 250

• Alerts Application on page 252
241

Virtual Infrastructure SDK Programming Guide
• VMA Viewer Application on page 254

• PerfMon Application (C#) on page 256

• WS-I Test Application on page 258

• SimpleListing Application on page 259

• VMPowerOps Application on page 261

• PerfMon Application (Visual Basic) on page 263

• TestOps Application on page 265
www.vmware.com
242

C H A P T E R 9 Sample Applications
Proxy Layer Abstraction
The Web application (Web-based Monitoring and Management Application on page 246) and the
inventory application (Inventory and Virtual Machine Provisioning Application on page 250) use a
proxy layer architecture that abstracts the Web service layer.

VMAKit Public Interface
This VMAKit class abstracts and encapsulates all access to the datatypes and operations exposed
by the VMware SDK. It acts as a client-side business abstraction that shields the presentation-tier
clients from possible volatility in the implementation of the underlying service API, thereby
potentially reducing the number of changes that must be made to the presentation-tier client
code, when the underlying service API implementation changes.

It’s primary purpose is to provide the presentation-tier clients with data aggregated and computed
from several different sources, using the VmaProxy APIs. Clients only need to focus on presenting
the information provided by the VMAKit, instead of data aggregation and computation (done by
the VMAProxy object). That is, clients are unaware of the underlying VMware SDK; they are only
aware of the VMAProxy objects.

VmaProxy Object
The VmaProxy object abstracts the underlying data source access implementation to enable
transparent access to the data source (Web service). This transparency allows the VmaProxy to
migrate to different implementations, without affecting the clients or the business components.

The VMware SDK describes a virtual machine through the various datatypes and operations in the
Web service. The proxy layer takes all this information and creates a VmaProxy object for the virtual
machine. Applications can then directly access this VmaProxy object without interfacing with the
underlying datatypes and operations. The underlying datatypes and operations in the SDK are
transparent to the application.

The VmaProxy maintains a data cache (data is cached upon request) that is kept up-to-date by the
update-listening mechanism provided by the VMware SDK. The caching mechanism is used to

VMAKit

PRO
XY

Web Service

HTTP

Application
243

Virtual Infrastructure SDK Programming Guide
reduce the network overhead that can result due to marshalling and unmarshalling of large sized
data and to eliminate the complexities involved in caching the data for business components (see
Threading Model Used in the Reference Application Service (Proxy) Layer on page 244). Business
objects can also delegate edit, virtual computing, or power operations to the VmaProxy object by
using the simpler APIs exposed by it.

Threading Model Used in the Reference Application Service (Proxy) Layer
The proxy layer creates a thread solely for listening for updates from the Web service. This
GetUpdates thread is created as part of the login operation. This thread blocks until the client
application registers objects of interest to the client by using the registerObservable() API. (The
client wants to receive update notifications on these registered objects).

The other thread running in the proxy layer is the client application thread, which invokes the
various operations on the Web service such as StartVM, PutUpdates, and so on. Once an item is
available in the proxy’s object table, the GetUpdates thread invokes the GetUpdates operation in
blocking mode, waiting for updates from the Web service.

As new objects are registered with the proxy, they are added into the proxy’s object table as
objects on which the proxy should listen for updates. However, if the GetUpdates thread is
currently blocked performing a GetUpdates operation, then the newly registered objects won’t
receive updates until the current outstanding GetUpdates request returns.

In order to get around this blocking, CancelGetUpdates is called when a new object is added. This
CancelGetUpdates operation immediately unblocks the pending GetUpdates operation. The
GetUpdates thread now repeats the blocking operation and listens for updates on all the
registered objects in the proxy.

The CancelGetUpdates operation is also called when the application exits, in order to shut down
the blocked GetUpdates thread cleanly.

As updates are received, they are applied to the client-side objects. However, the changes need to
be synchronized with the PutUpdates (client) thread in the event the client is also making changes
to the same object at the same time. The algorithm used to accomplish this is as follows:

GetUpdates Thread logic:

Lock (Proxy Object table);
VHandleList = all vHandles in proxy object table that are currently NOT being
edited by the client
Unlock(proxy object table)

Call getUpdates(Blocking mode);
Lock (proxy object table)
For each object for which an update was received: {

If (object is currently being modified by the client thread) {
www.vmware.com
244

C H A P T E R 9 Sample Applications
// Ignore this update from VMA
} else {

apply update to object
}

}
unlock (proxy object table);

PutUpdates Thread Logic:

// Client has identified object OBJ as an object on which to perform putUpdates.
Lock (proxy object table);
OBJ.editing = true; // Mark OBJ as currently being edited by client.
Unlock (proxy object table);

Create Change Req list for putUpdates call.
PutUpdates(); // non versioned put updates
GetUpdates(NON BLOCKING on OBJ only);

Lock (proxy object table);
ApplyUpdates on OBJ
OBJ.editing = false;
Unlock (proxy object table);
245

Virtual Infrastructure SDK Programming Guide
Web-based Monitoring and Management
Application
This section describes the architecture of the monitoring and management application, followed
by a brief description of the user interface.

Web Application Architecture
This web-based monitoring and management application uses the proxy layer architecture (Proxy
Layer Abstraction on page 243) that abstracts the Web service layer then presents it to the client
through JavaBeans. In this section, we describe the proxy layer and its use by the Web application,
which employs the standard Model-View-Control (MVC) design.

The architecture used in the Web application is an open framework that combines the use of
JavaServer Pages (JSP), servlets, JavaBeans, and the Web service proxy technologies. It takes
advantage of the predominant strengths of these technologies, by using JSP to generate the
presentation layer, servlets to perform process-intensive tasks, and JavaBeans to define logic.

The servlet acts as the controller and is in charge of the request processing and the creation of any
beans or objects that are used by JSP. Depending on the user's actions, the servlet also decides
which JSP page is forwarded the request.

There is no processing logic within the JSP page itself. The JSP page is simply responsible for
retrieving any objects or beans that may have been previously created by the servlet, and for
extracting the dynamic content from that servlet for insertion within static templates.

The proxy layer abstracts the Web service layer. It is responsible for interfacing with the Web
service and obtaining information from the Web service. The proxy layer takes this information and

Model
(Java Bean)

B

R

O

W

S

E

R

Controller

(Servlet)

View

(JSP)

PRO
XY

Web Service
HTTP

HTTP

Request

Response
www.vmware.com
246

C H A P T E R 9 Sample Applications
presents it to client applications through JavaBeans. The Web service is transparent to the client
applications, which sees only the proxy layer.

This architectural approach typically results in the cleanest separation of the presentation layer
from content, leading to a clear delineation of the roles and responsibilities of the developers and
page designers on your programming team.

Controller
In the Web reference application, all URL requests go through the servlet, which is known as the
Controller.

Following the Model View Control (MVC) methodology, this servlet does the following:

1. The Controller accepts HTTP requests for JSP pages.

2. The Controller next decides the eventHandler that should be called for each request,

3. The Controller then hands the request over to the eventHandler for processing,

4. If no error has occurred, the Controller lets the eventHandler forward the request to the
corresponding JSP page.

The logic behind a Controller servlet is a need for basic control over the application flow, while
sparing the JSP pages from containing the following:

• Information about which JSP pages require the submission of forms

• Java code that creates the objects needed for rendering the JSP page

Upon initialization (when the first request goes through this servlet), the Controller servlet reads a
properties file that contains a map from event names to eventHandler class definitions. The
Controller then uses reflection to create the eventHandler’s objects, and stores these in a private
hashMap.

Going forward, the Controller looks into every request that goes through it, trying to find the event
parameter and attempting to retrieve the corresponding eventHandler from the hashMap. The
Controller then calls the eventHandler’s process method, and gives it the request.

EventHandlers typically create the needed objects for the JSP target pages, and notifies the
Controller if anything goes wrong, through exceptions.

If the eventHandler’s processing throws an exception, then the Controller switches to the “error”
eventHandler. Once the processing has finished, the Controller calls upon the eventHandler’s
forward method, letting the eventHandler’s logic decide which JSP page to target.

Note: The classes mapped to event names must be made available in /webapps/[app
name]/WEB-INF/classes/...classpath in order for the corresponding eventsHandler
objects to be created.
247

Virtual Infrastructure SDK Programming Guide
Note: The Web container is instructed to route requests through the Controller servlet. You can
find these instructions in the Web container’s standard WEB-INF directory and in the standard
web.xml file.

Additional Resources
Refer to the following Web sites for additional information about JavaBeans, JavaServer Pages, and
Java servlets.

• JavaBeans — java.sun.com/products/javabeans/

• JSP — java.sun.com/products/jsp

• Servlet — java.sun.com/products/servlet/index.jsp

Using the Web-based Monitoring and Management Application
This Web-based monitoring and management application is a Java application that allows you to
create, perform power operations, edit, and clone a virtual machine through a browser interface.
Open the browser and log into the application by entering your user name, password, and Web
service URL.

In this guide, we provide a brief description of the application. Read SDK/SDK-README.html
for complete information on installing and deploying this application.

When shutting down this application, be sure to shut down the Tomcat server as well in order to
stop this sample application completely.
www.vmware.com
248

http://java.sun.com/products/javabeans/
http://java.sun.com/products/jsp
http:// java.sun.com/products/servlet/index.jsp

C H A P T E R 9 Sample Applications
The Overview page appears with the following links.

• Virtual Machines — Clicking on this link displays a page listing all the virtual machines in
VirtualCenter.

• Hosts — Clicking on this link displays a page listing all the hosts in VirtualCenter.

• Farms — Clicking on this link displays a page listing all the Farms in VirtualCenter.

In addition to providing an inventory listing, the Web-based monitoring and management
application has the following features:

• Search for virtual machines, hosts, or Farms.

• Provides details about each virtual machine and host.

• Perform power operations on virtual machines, and edit the CPU, networking, memory, and
so on.

• Create, clone, or migrate a virtual machine.

The following figure shows the details page for a virtual machine.
249

Virtual Infrastructure SDK Programming Guide
Inventory and Virtual Machine Provisioning
Application
An inventory and virtual machine provisioning GUI (VMware SDK Sample) application, built using
the Standard Widget Toolkit (SWT) classes from Eclipse, is included in the samples directory. This
Java application is also built on top of the proxy and kit layers (Proxy Layer Abstraction on
page 243) that are provided with the reference Web application (Web-based Monitoring and
Management Application on page 246).

This application includes the following features:

• Presents the /vcenter directory as a tree diagram.

• Provides basic information about each object.

• Includes a virtual machine creation wizard.

• Allows users to provision and customize a virtual machine by changing some of its
properties.

The VMware SDK Sample application opens in a two-pane window. The left pane presents a
hierarchical diagram of the /vcenter directory. The right pane (object information screen)
displays the details about the object selected in the left pane.
www.vmware.com
250

C H A P T E R 9 Sample Applications
Users can create a new virtual machine by choosing File > Create a new VM or pressing Ctrl-C as a
shortcut. Users specify the destination location, the guest operating system, the virtual machine
name, the networking, and the virtual disk size.

After obtaining this information, the virtual machine creation wizard invokes the “create virtual
machine” operation on the kit layer. The kit layer creates the VirtualMachineSpec using the
information gathered by the virtual machine creation wizard, then invokes the Create operation.
Once the virtual machine has been created, a virtual disk is added by using the settings specified
by the user in the virtual machine creation wizard.

Clients can configure virtual machines by using the Edit Properties button on the right pane
(virtual machine information screen). The Virtual Machine Control Panel window appears that lists
the various devices currently configured for the virtual machine.

Users can modify the virtual machine’s memory, networking, and virtual disk information through
the Resources tab. (The kit layer modifies this information by using the PutUpdates operation.)
Users can also add new devices or remove existing devices in the Hardware tab. Similarly, users
can rename the virtual machine through the Options tab.
251

Virtual Infrastructure SDK Programming Guide
Alerts Application
The alerts application is a C# application developed with Microsoft Visual Studio .NET. It
demonstrates how the client can listen asynchronously for notifications from the Web service
server. It allows the user to define simple alerts, that produces an event whenever the condition of
the alert is satisfied.

For example, the alert condition can be “CPU resource of host XXX is more than NN percent for
longer than MM minutes”. Another example is ”Virtual machine XXX is powered off” or “Something
in the state of virtual machine XXX changed”.

In this sample application, the generated alert event is simply recorded in a list of events. You can
imagine that a more sophisticated version of this application would allow the user to configure an
action associated with each alert event, including sending an email or paging someone, running a
script, and so on

Note: The alert events described here are not related to the event objects in the VMware SDK
event data model. The alert events, that are part of this alerts application, only exist as part of this
application.

The alerts application window comprises two tabs: an Alerts tab and an Events tab. The Alerts tab
lists the alerts that the user has defined. The Events tab displays the events that have been
generated.

If an alert is triggered, it generates an event when it is triggered. The icon of the alert changes from
green to red and the icon remains red as long as the alert condition alert is satisfied.

Building and Running the Alerts Application
The easiest way to build and run the alerts application is to open the alerts.sln file in
Microsoft Visual Studio .NET and choose Debug > Start (or press F5).
www.vmware.com
252

C H A P T E R 9 Sample Applications
Alerts Application Source Files
Here is a brief description of some of the more interesting source files:

• vmaService_proxy.cs — This file takes function calls and packages them into SOAP
messages that are sent out over the network in HTTP format. It is automatically generated by
running the wsdlProxyGen.exe tool and using the vma.wsdl file as input. See VMware
SDK Applications Developed with .NET on page 271.

This tool automatically chooses vma as the namespace for the classes that it generates. For
the sake of clarity, we have manually enclosed the vma namespace inside the VMware
namespace, by adding namespace VMware {... } around everything. This is an
optional step and it is not necessary for the code (generated by the wsdlProxyGen.exe
tool) to work.

• VmaClient.cs -— This file is a very simple wrapper for vmaService_proxy.cs. It
provides the Connect and Disconnect methods. The VmaClient.cs file is useful because
other objects can have a reference to this file instead of a direct reference to the
vmaService object, in case it is necessary to destroy the vmaService object.

• CertPolicy.cs — Implements an instance of ICertificatePolicy, which gives us control of
how we want to handle bad server-side certificates.

• ChangeListener.cs — A simple way to listen and respond to notifications from the
Web service server. The ChangeListener class maintains a hash table of handle-->object
entries. It queues a request for GetUpdates for all handles in the hash table. Whenever the
request completes, the ChangeListener code uses the handle to refetch the object for which
a change occurred. A more sophisticated implementation could use the description of the
change and apply it to the in-memory object, rather than refetching the whole object.

The ChangeListener uses the fact that the proxy class contains an asynchronous version for
each method. The GetUpdates method can be invoked asynchronously by using the
BeginGetUpdates/EndGetUpdates pairs of methods.

The BeginGetUpdates method is used to queue the request. The client code provides a
completion callback function (the .NET term is “delegate”) that is invoked when a response
has been received, or in this case, GetUpdatesDone. The completion callback then calls
EndGetUpdates to finish processing the response and then immediately queues a new
request by calling BeginGetUpdates again.

By passing true to the second argument of BeginGetUpdates, we make the GetUpdates
operation “wait” until there are changes. Effectively, this means that GetUpdatesDone is not
called until there are updates to be reported. By using the approach of asynchronous method
invocation together with making the GetUpdates method “wait”, we have effectively made
the Web service server push data to the client, instead of having the client poll for the data.
253

Virtual Infrastructure SDK Programming Guide
VMA Viewer Application
The VMA Viewer is a C# application developed with Microsoft Visual Studio .NET. It allows the user
to browse the namespace hierarchy exposed by the VMware VirtualCenter Web Service. It also
allows the user to view the data structures at each node in the hierarchy as well as invoke some of
the operations of the VMware SDK.

Although VMA Viewer is provided as a sample application, it is also useful as a way to familiarize
yourself with the SDK.

The user interface window comprises a two-pane window; a namespace tree (left pane) and a
view (right pane). Each time the user selects a node in the namespace tree, the contents of that
node are refetched and displayed in the view pane on the right. Data structures are visualized in a
generic way as a table of fields and values. Non-scalar fields are shown with a magnifying glass
icon, which indicates that users can drill down by clicking on them. Grayed-out fields indicate that
the data for these fields are not supplied.

Currently, the data is not automatically refreshed from the Web service server. The user must click
or otherwise select a node in the namespace tree to refresh the contents of that node.

Building the VMA Viewer Application
The easiest way to build and run the VMA Viewer application is to open the vmaviewer.sln file
in Microsoft Visual Studio .NET and choose Debug > Start (or press F5).
www.vmware.com
254

C H A P T E R 9 Sample Applications
VMA Viewer Application Source Files
Here is a brief description of some of the more interesting source files:

• vmaService_proxy.cs, VmaClient.cs, and CertPolicy.cs — These are the
same as the similarly named files of the Alerts application. See Alerts Application Source Files
on page 253.

• View*.cs — This set of files implements the various types of right view panes.

• PropCascade.cs and PropGrid.cs - These files are used to implement the generic
data structure viewer with drill-down ability.
255

Virtual Infrastructure SDK Programming Guide
PerfMon Application (C#)
The PerfMon application comprises four sample applications, each demonstrating an
implementation of a different aspect of monitoring performance data. These four samples are
wrapped by the command-line application PerfMon. For more information on performance
monitoring, see Collecting Performance Data on page 119 (Java samples) and Collecting
Performance Data on page 224 (Perl samples).

The four sample applications, and some of the more interesting source file, are described below:

• vmaService_proxy.cs — This is the same as the similarly named file of the Alerts
application. See Alerts Application Source Files on page 253.

• VmaClient.cs — This file is a wrapper console application for the performance
monitoring samples.

• PerfMonitor.cs — This file demonstrates using an existing VirtualCenter perf collector
with the GetContents and GetUpdates operations, to monitor performance statistics. Because
the VirtualCenter perf collector statistics are disabled by default, you must set the
periodicPerfRefreshEnable variable in the vmaConfig.xml file to TRUE for this
sample to work properly.

Run this sample by typing:

PerfMon Basic <URL> <username> <password>

• FilteredPerfMonitor.cs — This file demonstrates creating a filtered perf collector
from its parent 5-minute VirtualCenter perf collector, then using the GetContents and
GetUpdates operations to monitor performance statistics. This sample also demonstrates
how to use the QueryPerfData2 operation to get historical performance data, following a
successful GetUpdates operation. This sample demonstrates obtaining CPU statistics for the
two sources specified in the argument list (such as two virtual machines or two hosts).

Run this sample by typing:

PerfMon Filtered <URL> <username> <password> <src1path> <src2path>

• QueryPerfCollector.cs — This file demonstrates how to retrieve historical statistics
after creating a new VirtualCenter perf collector.

Run this sample by typing:

PerfMon QueryPerfData <URL> <username> <password> <name for
new collector> <hostPath> <startDate for sample collection>

• QueryPerfData2Sample.cs — This file demonstrates how to retrieve historical
statistics after creating a new VirtualCenter perf collector with extended statistics for CPU,
memory, and network usage, by using the QueryPerfData2 operation.
www.vmware.com
256

C H A P T E R 9 Sample Applications
Run this sample by typing:

PerfMon QueryPerfData2 <URL> <username> <password> <name for new
collector> <hostPath> <startDate for sample collection>

• CertPolicy.cs — Implements an instance of ICertificatePolicy, which gives us control
of how we want to handle bad server-side certificates.
257

Virtual Infrastructure SDK Programming Guide
WS-I Test Application
The WS-I test application is a command-line application that demonstrates the use of several SDK
methods such as Create, Delete, Rename, GetContents, GetInfo, and so on.

WS-I Test Application Source Files
The TestOps application’s source files are located in the
WebService\samples\vb\TestOps directory. Here is a brief description of the files:

• vmaService_proxy.cs and CertPolicy.cs — These are the same as the similarly
named files of the Alerts application. See Alerts Application Source Files on page 253.

• VmaClient.cs -— This file is a very simple test that invokes various operations such as
Login, Logout, GetContents, GetInfo, Create a virtual machine, Clone a virtual machine,
Rename a virtual machine, virtual machine power operations, and so on. By testing all these
operations, this file is a fairly comprehensive test of the VMware VirtualCenter Web Service.

Running the WS-I Test Application
You can compile this test from within Visual Studio. It needs three input parameters: the URL of the
Web service, the user name, and the password. This test assumes that there is one host connected
in VirtualCenter.
www.vmware.com
258

C H A P T E R 9 Sample Applications
SimpleListing Application
SimpleListing is a Visual Basic application developed with Microsoft Visual Studio .NET. It displays a
listing of all the virtual machines connected to VirtualCenter, along with their current states.

Building and Running the SimpleListing Application
The easiest way to build and run the SimpleListing application is to open the
SimpleListing.sln file in Microsoft Visual Studio .NET 2003 and choose Debug > Start from
the main menu (or press F5).

SimpleListing Application Source Files
The SimpleListing application’s source files are located in the
WebService\samples\vb\SimpleListing directory. Here is a brief description of some
of these files:

• Reference.vb — This file contains the VB stubs generated from vma.wsdl. It takes
function calls and packages them into SOAP messages that are sent out over the network in
HTTP format. It is automatically generated by running the wsdlProxyGen.exe tool
(included in the VMware SDK package) and using the vma.wsdl file as input.

• VmaClient.vb — This file is a very simple wrapper for the Reference.vb file. It
provides the Connect and Disconnect methods. The VmaClient.vb file is very useful
because other objects can have a reference to this file, instead of a direct reference to the
Reference.vb file.

• CertPolicy.vb — This file implements an instance of ICertificatePolicy, which gives us
control of how we want to handle bad server-side certificates.

• Main.vb — This file comprises the Main class that displays the forms and makes API calls to
retrieve information about connected virtual machines.

• Start.vb — This file represents the starting point for the SimpleListing application.
259

Virtual Infrastructure SDK Programming Guide
• frmLogin.vb — This file comprises a form that displays a login dialog box to log onto the
Web service.

• frmDisplay.vb — This file comprises a form that displays the listing of virtual machines
and their current states.
www.vmware.com
260

C H A P T E R 9 Sample Applications
VMPowerOps Application
The VMPowerOps application enables the user to start, stop, suspend, or reset any virtual machine
connected to VirtualCenter. The user’s choices depends on the current state of the virtual machine.
Users can stop, suspend, or reset a powered-on virtual machine.

However, users can only power on a powered-off virtual machine, or resume a suspended virtual
machine.

Building and Running the VMPowerOps Application
The easiest way to build and run the VMPowerOps application is to open the VMPowerOps.sln
file in Microsoft Visual Studio .NET 2003 and choose Debug > Start from the main menu (or press
F5).

VMPowerOps Application Source Files
The SimpleListing application’s source files are located in the
WebService\samples\vb\VMPowerOps directory. Here is a brief description of some of
these files:
261

Virtual Infrastructure SDK Programming Guide
• Reference.vb, VmaClient.vb, CertPolicy.vb, Main.vb, Start.vb,
frmLogin.vb — These are the same as the similarly named files of the SimpleListing
application. See SimpleListing Application Source Files on page 259.

• frmVMPowerOps — This file comprises a form that displays a choice of power operations
for the selected virtual machine. It makes a call to the respective SDK method,
depending on the chosen power operation. frmVMPowerOps also includes a subroutine
that monitors the task returned by the method, for either a successful completion or a failure.
www.vmware.com
262

C H A P T E R 9 Sample Applications
PerfMon Application (Visual Basic)
The PerfMon application comprises four sample applications, each demonstrating an
implementation of a different aspect of monitoring performance data. These four samples are
wrapped by the command-line application PerfMon. For more information on performance
monitoring, see Collecting Performance Data on page 119 (Java samples) and Collecting
Performance Data on page 224 (Perl samples).

The four sample applications, and some of the more interesting source file, are described below:

• Reference.vb, CertPolicy.vb — These are the same as the similarly named files of
the SimpleListing application. See SimpleListing Application Source Files on page 259.

• VmaClient.vb — This file is a wrapper console application for the performance
monitoring samples.

• PerfMonitor.vb — This file demonstrates using an existing VirtualCenter perf collector
with the GetContents and GetUpdates operations, to monitor performance statistics. Because
the VirtualCenter perf collector statistics are disabled by default, you must set the
periodicPerfRefreshEnable variable in the vmaConfig.xml file to TRUE for this
sample to work properly.

Run this sample by typing:

PerfMon Basic <URL> <username> <password>

• FilteredPerfMonitor.vb — This file demonstrates creating a filtered perf collector
from its parent 5-minute VirtualCenter perf collector, then using the GetContents and
GetUpdates operations to monitor performance statistics. This sample also demonstrates
how to use the QueryPerfData2 operation to get historical performance data, following a
successful GetUpdates operation. This sample demonstrates obtaining CPU statistics for the
two sources specified in the argument list (such as two virtual machines or two hosts).

Run this sample by typing:

PerfMon Filtered <URL> <username> <password> <src1path> <src2path>

• QueryPerfCollector.vb — This file demonstrates how to retrieve historical statistics
after creating a new VirtualCenter perf collector.

Run this sample by typing:

PerfMon QueryPerfData <URL> <username> <password> <name for
new collector> <hostPath> <startDate for sample collection>

• QueryPerfData2Sample.vb — This file demonstrates how to retrieve historical
statistics after creating a new VirtualCenter perf collector with extended statistics for CPU,
memory, and network usage, by using the QueryPerfData2 operation.
263

Virtual Infrastructure SDK Programming Guide
Run this sample by typing:

PerfMon QueryPerfData2 <URL> <username> <password> <name for new
collector> <hostPath> <startDate for sample collection>
www.vmware.com
264

C H A P T E R 9 Sample Applications
TestOps Application
The TestOps application is a command-line application that demonstrates the use of several SDK
methods such as Create, Delete, Rename, GetContents, GetInfo, and so on.

TestOps Application Source Files
The TestOps application’s source files are located in the
WebService\samples\vb\TestOps directory. Here is a brief description of the files:

• Reference.vb and CertPolicy.vb — These files are the same as the similarly named
files in the SimpleListing application. See SimpleListing Application Source Files on page 259.

• VmaClient.vb — This file is a very simple test that invokes various operations such as
Login, Logout, GetContents, GetInfo, Create a virtual machine, Clone a virtual machine,
Rename a virtual machine, virtual machine power operations, and so on. By testing all these
operations, this file is a fairly comprehensive test of the VMware VirtualCenter Web Service.

Running the TestOps Application
You can compile this test from within Visual Studio. It needs three input parameters: the URL of the
Web service, the user name, and the password. This test assumes that there is one host connected
in VirtualCenter.
265

Virtual Infrastructure SDK Programming Guide
www.vmware.com
266

C H A P T E R 10

Client Development Environments
This chapter describes the different development environments that you can use to develop your
client application.

• Selecting a Development Environment on page 268

• IBM Websphere Software Developer Kit on page 269

• Microsoft Visual Studio .NET and .NET Framework on page 271

• Apache Axis on page 273

• SOAP::LITE for Perl on page 274
267

Virtual Infrastructure SDK Programming Guide
Selecting a Development Environment
A Web service development environment facilitates the building of Web service servers and
clients. Two popular examples of such environments for Java are Axis from Apache and the
Websphere Software Developer Kit (WSDK) for Web services from IBM.

The Web service development environments are also integrated into the more popular integrated
development environments (IDEs); for example, Websphere WSDK is integrated into Eclipse.
Similarly, Microsoft’s Visual Studio .NET supports Web service development for its constituent
languages. The VMware SDK has been tested with all the platforms previously listed.

The Web service development environments support a variety of capabilities such as generating
server code, generating WSDL from other language APIs, generating client code, and so on. While
server side development is the typical emphasis of Web service development environments, we
require the environment simply to generate client code from the WSDL file provided in the SDK.
We provide the Web service server.

We use the development environment as follows:

1. Collect all the library files (.dll or .jar) that comprise the client-side common
infrastructure. The generated stub files and client code make calls to these libraries in order to
communicate with the server.

2. Generate stub files (for example, in Java) corresponding to the WSDL shipped with the SDK.
Compile these stubs. The interfaces of these stubs serve as the APIs you use when building
your client code.

3. Write your client code using the APIs of the generated stubs as well as the APIs of the library
files.

4. Compile your client code.
www.vmware.com
268

C H A P T E R 1 0 Client Development Environments
IBM Websphere Software Developer Kit
WebSphere is IBM’s e-business software that enables companies to develop, deploy, and integrate
e-business applications.

Installing the IBM Websphere Software Developer Kit
We use the IBM WSDK Version 5.1 for the examples in this guide. You can download the WSDK
from www-106.ibm.com/developerworks/webservices/wsdk/. This download includes IBM’s Java SDK
(version 1.3) and a test version of the Websphere application server. We recommend that you use
the Java SDK that comes with this download.

1. Install IBM WSDK on the machine you plan to use to develop client applications. Refer to the
WSDK Installation Guide at www-106.ibm.com/developerworks/webservices/wsdk/
install_guide.html.

2. After completing the installation, include the top level bin directory and the bin directory
of the Java SDK to your path.

3. To verify correct installation, type WSDL2Client.

4. Type java -version to make sure the Java SDK works and prints the IBM version
number.

Sample Application Developed by Using the IBM Websphere Software
Developer Kit
We developed the simple client application described in Creating a Simple Client on page 52 with
the IBM Websphere SDK. This section includes the sample code, as well as explaining the logic
used in creating this application.

Running the MoveVM Java Sample with the IBM Websphere Software
Developer Kit
There is an issue with running the MoveVM Java sample with stubs generated by IBM WSDK. The
stub generator generates the name of the VirtualDiskDestination parameter with the name
“VirtualDiskDestination” instead of “disk”. This error causes the conversion of the parameters to fail,
because the Web service expects “disk” and the parameter’s name is wrong. (Unbounded
elements in complexTypes that are Method parameter elements are not handled correctly.)

To fix this problem, you need to edit the VmaBindingStub.java class file.

Note: If you are using the pre-built Java stubs contained in the VMware SDK package, then we
have already edited the VmaBindingStub.java class file with this fix, and no change is
required. However, if you are regenerating these stubs yourself, then complete the following steps.
269

http://www-106.ibm.com/developerworks/webservices/wsdk/
http://www-106.ibm.com/developerworks/webservices/wsdk/install_guide.html
http://www-106.ibm.com/developerworks/webservices/wsdk/install_guide.html

Virtual Infrastructure SDK Programming Guide
1. Generate the stub files. See Generating the Stub Files on page 50.

2. Search for the term _moveVMOperation in VmaBindingStub.java in the <client
starting directory>\com\vmware\vma directory.

There should be a ParameterDesc:

new
com.ibm.ws.webservices.engine.description.ParameterDesc(com.ibm.ws.
webservices.engine.utils.QNameTable.createQName("urn:vma1",
"VirtualDiskDestination"),
com.ibm.ws.webservices.engine.description.ParameterDesc.IN,
com.ibm.ws.webservices.engine.utils.QNameTable.createQName("urn:vma
1", "VirtualDiskDestination"),
com.vmware.vma.VirtualDiskDestination[].class, false, false),

3. Change the mention of VirtualDiskDestination in the First createQName call in
this line to disk. Do not change any other occurrences of VirtualDiskDestination
in this file. This line should now resemble the following:

new
com.ibm.ws.webservices.engine.description.ParameterDesc(com.ibm.ws.
webservices.engine.utils.QNameTable.createQName("urn:vma1",
"disk"),
com.ibm.ws.webservices.engine.description.ParameterDesc.IN,
com.ibm.ws.webservices.engine.utils.QNameTable.createQName("urn:vma
1", "VirtualDiskDestination"),
com.vmware.vma.VirtualDiskDestination[].class, false, false),

4. Recompile the files without regenerating the stubs.
www.vmware.com
270

C H A P T E R 1 0 Client Development Environments
Microsoft Visual Studio .NET and .NET
Framework
The .NET framework is a runtime environment for running .NET applications. In this respect, it is
similar to the C-runtime library, although it has many more components than a single DLL. In order
to run a .NET application, you must first install the appropriate version of the .NET framework (for
VMware SDK this is version 1.1). Unlike a typical run-time library, the .NET framework is not
distributed together with the applications that use it. Instead, users must install it. The .NET
framework is available at msdn.microsoft.com/downloads/.

Microsoft Visual Studio .NET is a development environment for building a variety of Windows
applications, including .NET applications. It also includes extensive support for building .NET-based
Web Services applications, such as Web service server and Web service client applications. While
Microsoft Visual Studio .NET is necessary to develop and debug a .NET application, it is not required
to run a released version of such an application; only the .NET framework is needed. To obtain a
copy of Microsoft Visual Studio .NET, you can either purchase it directly from Microsoft or receive it
as part of the MSDN subscription.

You can obtain more information about Visual Studio and the .NET Framework by clicking on their
links in the Developer Centers section of msdn.microsoft.com.

VMware SDK Applications Developed with .NET
The C# and Visual Basic sample applications contained in the VMware SDK package are developed
using Microsoft Visual Studio .NET 2003 (Version 7.1) and version 1.1 of the .NET framework.

Note: Using earlier versions of the Microsoft Visual Studio .NET will not work for these samples.

There are four C# applications:

• Alerts — Alerts Application on page 252

• VMA Viewer — VMA Viewer Application on page 254

• Perfmon — PerfMon Application (C#) on page 256

• WS-ITest — WS-I Test Application on page 258

Similarly, there are four Visual Basic applications:

• SimpleListing — SimpleListing Application on page 259)

• VMPowerOps — VMPowerOps Application on page 261

• PerfMon — PerfMon Application (Visual Basic) on page 263

• TestOps — TestOps Application on page 265
271

http://msdn.microsoft.com
http://msdn.microsoft.com/downloads/

Virtual Infrastructure SDK Programming Guide
To develop a Web service client application using Microsoft Visual Studio.NET, you must first use a
WSDL proxy generator tool to generate proxy code based on the WSDL file. Essentially, the proxy
code exposes all Web service operations as methods of a C# or Visual Basic class. The file that
contains the proxy code is then added to the Microsoft Visual Studio.NET project, used to develop
the client application. This enables the client application code to invoke Web service operations
programatically by calling the methods of the proxy class.

Microsoft Visual Studio .NET includes a tool for generating proxy code from a WSDL file, called
wsdl.exe. This tool does not correctly generate code with some WSDL files, including our
vma.wsdl. (For more information, refer to support.microsoft.com/default.aspx?scid=kb;en-
us;326790.)

Therefore, we’ve included our own proxy code generator, wsdlProxyGen.exe in the VMware
SDK package. This tool has a simple GUI interface and clients can use wsdlProxyGen.exe to
generate stubs from the WSDL file. However, we do not guarantee that this tool works for WSDL
files other than vma.wsdl.

Read SDK/SDK-README.html in the VMware SDK package for additional information about
wsdlProxyGen.exe.
www.vmware.com
272

http://support.microsoft.com/default.aspx?scid=kb;en-us;326790
http://support.microsoft.com/default.aspx?scid=kb;en-us;326790

C H A P T E R 1 0 Client Development Environments
Apache Axis
Apache Axis is a modular, flexible, and high performing SOAP implementation designed around a
streaming model. You can obtain Apache Axis at ws.apache.org/axis. This download package
contains the Web services tool kit.

1. Install Apache Axis Web services tool kit.

2. Include the following .jar files to your classpath: axis.jar, commons-logging.jar,
commons-discovery.jar, jaxrpc.jar, wsdl4j.jar and saaj.jar.

3. Set the JAVAHOME variable to a J2SE 1.4 Java installation.

4. Generate stubs by using the Axis WSDK. For example:

java org.apache.axis.wsdl.WSDL2Java -Nurn:vma1=com.vmware.vma vma.wsdl

This command generates the stubs under com/vmware/vma.

5. Compile these stubs into vma.jar.

6. Add vma.jar to your classpath.

7. Run the sample code with the vma.jar file built against the Axis WSDK. You do not need to
make any changes to the sample code to run against Axis WSDK. The provided samples will
run, as is, against the new vma.jar and axis.jar files.

8. See Creating a Simple Client on page 52 for information on how to write a simple client
application using the VMware SDK.
273

http://ws.apache.org/axis/

Virtual Infrastructure SDK Programming Guide
SOAP::LITE for Perl
SOAP::Lite is an open source collection of Perl modules that provides a simple and lightweight
interface to the Simple Object Access Protocol (SOAP). It is currently the standard for designing
Perl-based Web service applications.

However, SOAP::Lite is limited in its support for WSDL schemas. By default, it supports the
RPC/Literal schema whereas our vma.wsdl uses the Document/Literal schema. To get around
this issue, all SOAP messages are slightly modified to adhere to the Doc/Literal schema before
transmission. With this modification, SOAP::Lite works with our Web service and can support the
full complement of SDK operations.

To run the Perl samples, you must have installed the following:

• Perl interpreter — Enables you to run your Perl program, available at www.perl.com.

• SOAP::Lite — Enables SOAP interaction, available at soaplite.com/download.

• Tie::IxHash — Enables ordering of hash elements, available at search.cpan.org.

• HTTP::Cookies — Enables session maintenance, available at search.cpan.org.

• Bundle::LWP — Enables you to define all prerequisite modules for libwww-perl, available at
search.cpan.org.

• Crypt::SSLeay — Provides SSL (https) support for Perl-based Web service clients, available at
search.cpan.org. This module is required if you want the Perl samples to work with an SSL
connection. In addition, you must have installed OpenSSL on your system (www.openssl.org).

Note: These Perl modules must be properly installed in order to run the Perl samples. Refer to the
documentation at these Web sites for instructions on installing these modules.

Testing a SOAP::Lite Installation
To verify that your installation of SOAP::Lite is correct, run the example script dynamic4.pl
available under the SOAP-Lite-0.55/examples/WSDL directory.

perl SOAP-Lite-0.55/examples/WSDL/dynamic4.pl

This script uses the publicly available StockQuote wsdl and displays a numeric value on success.

Note: If you’re working behind a proxy/firewall to reach the Web service, then include the
following line of code at the beginning of the script:

$ENV{HTTP_proxy} = "http://<proxy_server:port_number>";
www.vmware.com
274

http://search.cpan.org
http://www.openssl.org
http://www.perl.com
http://soaplite.com/download
http://search.cpan.org
http://search.cpan.org
http://search.cpan.org

C H A P T E R 11

Troubleshooting
This chapter describes some troubleshooting tips if you have difficulties with the VMware
VirtualCenter Web Service. We also describe how you can customize the location and to some
extent, the format of your dump file.

• Troubleshooting the VMware SDK on page 276

• Problems Connecting to VMware VirtualCenter on page 279

• Viewing the Dump File on page 281
275

Virtual Infrastructure SDK Programming Guide
Troubleshooting the VMware SDK
1. Reset the VMware VirtualCenter and the VMware VirtualCenter Web Service (they should

both be on the same Windows machine) by completing the following. Refer to the section
on “Finishing VirtualCenter Web Service Installation” in the VMware VirtualCenter Users’ Manual
for detailed instructions.

a. Stop the Web service.

b. Stop and restart VirtualCenter.

c. Restart the Web service.

2. Refer to your VirtualCenter documentation and verify that the Web service is running.
Perform the Web service post-installation verification steps, including connecting to the Web
service through a browser.

If you are unable to connect to the Web service, first double-check your username and
password and retry the request. If you see an XML document similar to the following, then
check the Web service log file, as described in Web Service Can’t Connect to VirtualCenter on
page 279.

- <env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
- <env:Body>
- <env:Fault>
 <env:faultcode xmlns:ns="urn:vma1">ns:FaultInfo</env:faultcode>
 <env:faultstring>Service Unavailable</env:faultstring>
 <env:faultactor>vma</env:faultactor>
- <env:detail>
- <ns:FaultInfo xmlns:ns="urn:vma1">
 <kind>BadRequest</kind>
 <code>503</code>
 <info>Service Unavailable</info>
 </ns:FaultInfo>
 </env:detail>
 </env:Fault>
 </env:Body>
 </env:Envelope>

3. If the Web service is running, but you are unable to connect to it and see a
ConnectionException, then the Web service may be busy servicing other requests. The client
should wait for a few seconds and then retry the request. Refer to the sample code below or
at /SDK/WebService/samples/java/sampleapp/src/com/vmware/
sample/ExceptionHandling (ConnectRetry) for an example of how to do this.
www.vmware.com
276

C H A P T E R 1 1 Troubleshooting
boolean success = false;
int numRetries = 0;
int maxRetries = 3;

while (!success && numRetries < maxRetries) {
try {

// connect to VMA and invoke operations
VmaService vmaservice = new VmaServiceLocator();
VmaPortType serviceConnection =

new VmaBindingStub(new URL(args[0]), vmaservice);
((Stub) serviceConnection)._setProperty(

Stub.SESSION_MAINTAIN_PROPERTY,
Boolean.TRUE);

System.out.println("Connection succeeded");
// Logs in to the server.
serviceConnection.login(args[1], args[2]);
//.. some other operations here
serviceConnection.logout();
success = true;

} catch (Exception ex) {
if (ex.getMessage().startsWith("java.net.ConnectException")) {

System.out.println("Connection to VMA failed. Retry after 3 secs");
synchronized (this) {

wait(3 * 1000);
}
numRetries++;
if (numRetries >= maxRetries) {

System.out.println("Unable to connect to WebService after 3 retries. Aborting.");
}

}
}

}

4. Start one of the SDK sample applications.

a. Go to the directory where the VMware SDK package contents were unzipped.

b. Run the following command. If it is different, then substitute the port number you chose
during the Web service installation.

./runsample.bat com.vmware.sample.Simple.SimpleClient http://
<host_name>:8080 <username> <password>

This command runs the simple client application that lists the UUIDs of all the virtual
machines in VirtualCenter.
277

Virtual Infrastructure SDK Programming Guide
5. Attempt to run the other small sample applications.

• Run the GetUpdates sample, the PutUpdates sample, and so on, contained in the SDK
package. Read SDK/SDK-README.html for more information on how to run the
various sample applications.

• Run the Web-based monitoring and management application (Web-based Monitoring
and Management Application on page 246).
www.vmware.com
278

C H A P T E R 1 1 Troubleshooting
Problems Connecting to VMware
VirtualCenter
If a client program has issues connecting to VirtualCenter, then you may not notice this problem
until the client attempts to log into the Web service and it returns a fault. When this occurs, there
are two typical causes: either the client can’t connect to the Web service, or the Web service can’t
connect to VirtualCenter.

Client Can’t Connect to the Web Service
If this is the problem, then the Web service returns a PermissionDenied fault for the Login
operation. The client is using an invalid user name or password in the Login request. Choose a valid
user name and password, and retry the Login request.

In this case, nothing is logged in the Web service log file (by default, vma.txt), unless the
/vcenter subject log level has been changed from its default value of “info” to “verbose”. (See
vmaConfig.xml File on page 16.) If the log level is “verbose”, then the following error message is
logged:

Authentication of user <username> with VirtualCenter service on
host <hostname>, port <port_number> failed: Bad username/password

Web Service Can’t Connect to VirtualCenter
If this is the problem, then the Web service returns a BadRequest fault with error code 503
(ServiceUnavailable) for the Login operation. The Web service is in a bad or disconnected state.
There are three possible causes: the Web service is unable to log into the VirtualCenter service, the
VirtualCenter service is not running, or the VirtualCenter port number is incorrect. You must
examine the Web service log file (by default, vma.txt), to determine the source of the problem.

• If the VirtualCenter service is running, but the Web service is unable to log in (as a user with
administrative privileges), then the following error message is logged.

VirtualCenter web service failed to connect to VirtualCenter
service on host <hostname>, port <port_number> as <administrator>:
Bad username/password

Configure the Web service with a valid user name and password (with administrative
privileges) for the Web service to connect to VirtualCenter. Use the vma command-line
program, as described in the section on “Changing Web Service Options After Installation” in
the VMware VirtualCenter User’s Manual.

• If the VirtualCenter service is not running, then the following error message is logged.
279

Virtual Infrastructure SDK Programming Guide
VirtualCenter web service failed to connect to VirtualCenter
service on host <hostname>, port <port_number>: Connection refused

1. Check the VirtualCenter service, and restart it.

2. Stop, then restart the Web service. Refer to section titled “Changing VMware Web Service
Options After Installation” in the VMware VirtualCenter User’s Manual for detailed instructions.

• If the Web service is using the incorrect port number to connect to VirtualCenter, then the
following error message is logged.

VirtualCenter web service failed to connect to VirtualCenter
service on host <hostname>, port <port_number> : No connection could
be made because the target machine actively refused it.

1. Stop the Web service. Refer to the section titled “Changing VMware Web Service Options
After Installation” in the VMware VirtualCenter User’s Manual for detailed instructions.

2. Edit the vmaConfig.xml file with the correct VirtualCenter port number. See
vmaConfig.xml File on page 16.

3. Restart the Web service.
www.vmware.com
280

C H A P T E R 1 1 Troubleshooting
Viewing the Dump File
If the VMware VirtualCenter Web Service crashes, a crash dump file is created. This section
describes how to find this dump file, and how to turn on detailed error logging.

When reporting a problem with the Web service, a dump file and detailed logs that you provide
may be very useful in helping VMware quickly debug the problem.

Over time, these dump files (.dmp files) may accumulate. You may to remove them to reclaim
storage space.

Customizing the Dump File
Dump files are created when an unhandled exception occurs in the Web service. By default, the
dump file is summarized as a minidump file. You have the option of customizing the minidump file
by determining its location and to some extent, by configuring its format and changing it to a full
crash dump file or by changing the logging to a verbose format.

If you want to customize the minidump files, then make your changes to the Web service
configuration file, vmaConfig.xml, located in C:\Documents And Settings\All
Users\Application Data\VMware\VMware VirtualCenter\VMA.

By default, the name for the minidump file is vma-<pid>.dmp and the format of the minidump
file is Normal+DataSegs+HandleData, which is enough for callstack lookup.

1. Open vmaConfig.xml and look for the <service> element.

2. (Optional) Change the default directory location for the minidump files. For example, typing
the following:

<coreDumpDir>c:\MyTemp</coreDumpDir>

changes the location of the minidump files to the C:\MyTemp directory. By default, the
minidump files are located in C:\Documents And Settings\All
Users\Application Data\VMware\VMware VirtualCenter\VMA.

3. (Optional) Change the format of the minidump file to a full dump file.

<coreDumpFullMemory>true</coreDumpFullMemory>

The default minidump format has less detail than a full dump, but is sufficient for debugging.

4. (Optional) Enable more verbose logging from the Web service by changing the <eventlog
level> element from “info” to “verbose”.

The resulting detailed log is saved in vma.txt, located in C:\Documents And
Settings\All Users\Application Data\VMware\VMware

VirtualCenter\VMA.
281

Virtual Infrastructure SDK Programming Guide
www.vmware.com
282

C H A P T E R 12

Glossary
Access Control List — An access control list is a set of <group, rights> pairs that defines the
access rights for an object.

Apache Axis — Apache Axis is a more modular, more flexible, and higher-performing SOAP
implementation designed around a streaming model and is a successor to Apache SOAP 2.0.

Container — A container describes an interior object in a hierarchy, such as a file system
directory or a Server Farm in VMware VirtualCenter.

Event declaration — Type of event (alert, error, warning, info, or user) along with its name,
arguments, and its message format.

Farm — A Farm is a set of host machines and VirtualMachineGroups that collectively act as a
single host. This concept is similar to a “Server Farm” in VMware VirtualCenter.

File — A file contains raw data, such as an image, or other auxiliary information.

FQDN — Fully Qualified Domain Name of a host includes both the host name and the domain
name. For example, a host named esx1 in the domain vmware.com is represented as
esx1.vmware.com.

Group — A group is a set of users and groups.
283

Virtual Infrastructure SDK Programming Guide
Host Machine — A host machine is a system capable of managing and executing virtual
machines.

IBM WebSphere — WebSphere is IBM’s e-business software that enables companies to develop,
deploy, and integrate e-business applications.

Item — An item is a <name, value> pair for an element of information about an object. An item is
normally represented as an element in XML. However, in some cases, it may be necessary to
represent a collection of Items in a single element for performance reasons.

JAX-RPC — JAX-RPC, or Java API for XML-based RPC, is an API that builds Web services and
clients that use remote procedure calls (RPC) and XML. Remote procedure calls and responses are
transmitted as SOAP messages (XML files) over HTTP (the Web).

Link — A link is a hyperlink as in HTML; that is, a path to another object. As in the Web, links may
be relative to the current object path, relative to the current server’s object root, or on a specific
server, as interpreted by the current client’s host name resolver.

Message — A message is a data element that is used by an operation to carry data. It lists the
data types exchanged between the Web service and the client.

Microsoft SOAP Toolkit — The Microsoft Simple Object Access Protocol (SOAP) Toolkit 2.0
comprises a client-side component, a server-side component and other components that
construct, transmit, read, and process SOAP messages. This toolkit also provides additional tools
that simplify application development.

Migration — Moving a powered-off virtual machine between hosts.

Name — A name is either a path that refers to an object (like an URL or URI in Web terms) or the
name of an item of information in the server.

Operation — An operation describes the interaction between a client and the Web service.

Provisioning (a virtual machine) — The process of creating a functioning virtual machine by
assigning resources such as CPU, memory, and virtual hardware, and then deploying a system
image.

Remote console — An interface to a virtual machine that provides non-exclusive access to a
virtual machine from both the server on which the virtual machine is running, and from
workstations connected to that server.

Service console — The VMware Service Console provides ESX Server system management
functions and interfaces. It is installed as the first component, and is used to bootstrap the ESX
Server installation and configuration. It also boots the system and initiates execution of the
virtualization layer and resource manager. In ESX Server, the service console is implemented by
using a modified Linux® distribution.

Service Host — The Web service executes on the service host.
www.vmware.com
284

C H A P T E R 1 2 Glossary
Session token — Upon successful login, the Web service issues a token and as part of the HTTP
header, passes it to the client in the response. Specifically the token is a cookie that should be
passed back by the client with each request. The token identifies the session to the Web service
and its format is opaque to the client. Session tokens can be passed across multiple connections to
the server. A session token expires after a period of inactivity, and may also expire after a certain
period of time, even if it is being actively used.

SOAP — Simple Object Access Protocol (SOAP) is an XML-based communication protocol and
encoding format for inter-application communication in a decentralized, distributed environment.
It specifies a standard way to encode parameters and return values in XML, and standard ways to
pass them over common network protocols like HTTP (Web) and SMTP (email). SOAP provides an
open methodology for application-to-application communication (Web services).

SOAP::LITE — SOAP::Lite is an open source collection of Perl modules that provides a simple and
lightweight interface to SOAP.

Stub — A stub is a local procedure in a remote procedure call. The client calls the stub to perform
a task, and the stub then transmits parameters over the network to the server and returns the
results to the client.

Target — A target is the object that corresponds to a request URI.

Uptime — Uptime is the total elapsed time since the host or virtual machine was last restarted.
Uptime may be computed using the last bootTime or by looking up the interval from the
cumulative PerfSample.

UUID — Universally Unique Identifier (ID). This is a 128-bit number represented in hexadecimal
(HEX) format when passed as a string; for example, f81d4fae-7dec-11d0-a765-
00a0c91e6bf6.

User — A user is a principal known to the system.

VirtualCenter — VMware VirtualCenter is a software solution for deploying and managing
virtual machines across the data center.

View — A view is an XML document that contains information about service objects, particularly
virtual machines and hosts. Use a view to access virtual machines and other top level objects
through the Web service.

View Body — The view body is the XML document that describes that object’s current state that
is obtained by using the GetContents operation.

View Definition — A view definition is an XML document that specifies the elements that
appear in a view. View definitions typically specify the items of interest in the view, but may also
include additional elements for presentation or computation, related to the items.
285

Virtual Infrastructure SDK Programming Guide
Virtual Machine — A virtual machine contains system and configuration state for a machine
and may execute on a host machine.

Virtual Machine Array — A virtual machine array is a set of virtual machines that may be
operated on collectively. This concept is currently called a “VM Group” or “VM Folder” in VMware
VirtualCenter.

VMA — The VMA is the VMware VirtualCenter Web Service, which provides a Web services
interface that client programs may use to talk, by using the SOAP protocol.

Web Service — A programming interface based on SOAP and WSDL.

WSDL — WSDL is the Web Services Description Language, an XML-based language used to
describe a Web service’s capabilities and to provide a way for individuals and businesses to access
those services electronically.

XML — XML, the Extensible Markup Language, is a text-based markup language that is especially
designed for Web documents.
www.vmware.com
286

A P P E N D I X A

Revision History
The following table lists the revision history for the Virtual Infrastructure SDK Programming Guide.

Date Description

May 11, 2006 No change in content for VirtualCenter 1.4 release.

September 22, 2005 Added mention of support for VMware VirtualCenter 1.3.

November 30, 2004 GA version of this guide.
287

Virtual Infrastructure SDK Programming Guide
www.vmware.com
288

Index
289

290
Symbols

$change 155

/datastore 24

/event 24

/host 24

/perf 24

/schedule 24

/task 24

/template 24

/unknownVM 24, 32

/vcenter 24

/vm 25

/webservice 25

<binding> element 48

<fault> element 47–48

<input> element 47–48

<message> element 47

<output> element 47–48

<part> element 47

<port> element 48

<portType> element 47–48

<service> element 48

<types> element 47

Numerics

8080 port number 34

A

Access control list. See ACL.

Access right 35

ACL 27, 35

Active task 114–118, 214–222

Administer right 35

afterPowerOn flag 90, 177

afterResume flag 90, 177

Alert event 40, 110–112, 208–213

Alerts application 252–253

AnswerVM 98, 191

Apache Axis 273

Application
sample alerts 252–253
sample inventory 250–251
sample list of virtual machines 52–
58

sample provisioning 250–251
sample VMA Viewer 254–255
sample Web-based management
and monitoring 246–249

Architecture of VMware Web Service 15

Arrays 71, 77–79, 163–165

Axis 273

B

BadVersion 29

beforePowerOff flag 90, 177

beforeSuspend flag 90, 177

Blocking virtual machine 69, 98, 154,
191, 244

Browse right 35, 64, 106, 142, 202

C

C# 252–253, 254–255, 271–272

CancelGetUpdates 244

CertPolicy.cs 253, 258

Change object 70–76, 155–161

ChangeListener.cs 253

ChangePermissions 127, 237

ChangeReqList 80, 166

Changing
data 70–76, 155–161
permissions 35, 127, 237
port number 34
resource settings 41
state of virtual machine 35

Characters, escaped 25

Child object 27

Client
compiling 57
creating 52–58
running 58

Client communication with Web ser-
vice 51

CloneVM 41, 44, 100–103, 104, 195–
198, 199

Cloning a virtual machine 41, 44, 100–
103, 195–198

Cloning a virtual machine from tem-
plate 24

Communication between client and
Web service 51
www.vmware.com

Compiling the client 57

Composite 71, 72, 156, 157

Configuration file, Web service 15

Configure right 35, 92, 94, 95, 96, 97,
100, 104, 106, 108, 179, 182, 185, 187,
188, 195, 199, 202, 206

Connect host 92, 179

Container 21, 27, 127, 237, 283

Controller 247

Create 44, 92, 94–95, 119, 180, 182–
185, 224, 251

CreateTemplate 41, 44, 104–105, 199–
201

CreateVirtualDisk 96–97, 188

Creating
data synchronization loop 66, 150
object 94–95, 182–185
virtual machine 96, 187

Custom property 82

D

Data performance 119–126, 224–236

Data synchronization loop 66, 150

dataLocator parameter 36, 43, 108,
207

Datastore 36, 104–105, 199–201

DatastoreInfoList 24

Datatype
EventCollector 110–112, 115, 208–
213, 215
EventDeclList 110, 208
EventFilter 110–112, 208–213
PerfCollection 119–126, 224–236
PerfCollector 119–126, 224–236
PerfFilter 119–126, 224–236
PermissionList 127, 237
TaskRunState 115, 215
TaskScheduleSpec 117, 218
TemplateSpec 104, 199
ViewInfo 63, 141
VirtualDiskInfo 36
VirtualMachineInfo 71, 156
VirtualMachineSpec 36, 96, 187,
251
VirtualMachineState 107–109, 204–
207
VirtualMachineTools 90, 177

Delete change 70, 72, 72–74, 155, 156,
157–159

deleted field in Change object 72, 75,
77, 156, 157, 160, 163

Deleting an object 94–95, 182–185

destHandle 106, 202

Detailed information about hosts and
virtual machines 65, 143

Development environment 49, 268

DisableHost 92, 180

Disconnect host 92, 179

Disk, virtual
adding to a virtual machine 96–97,
188
moving 41, 43, 107–109, 204–207

Dump file 281

E

Eclipse 250–251

Edit change 70, 72, 74–76, 155, 156,
160–161

editPos field in Change object 72, 75,
156, 160

EnableHost 92, 179

Environment, development 49, 268

Error 110–112, 129–131, 208–213

Error event 40

Escaped characters 25

ESX Server 14

Event 24, 40, 41, 110–112, 208–213
alerts application 252–253

Event declaration 283

EventCollection 110–112, 208–213

EventCollector datatype 110–112, 115,
208–213, 215

EventDeclList datatype 110, 208

EventFilter datatype 110–112, 208–
213

eventHandler 247

Exception 84, 129–131

Execute right 35

F

Farm 22, 27, 283

Farm group 21, 27
291

292
Fault 129–131

FaultInfo 129–131

Faults 170

findObject method 73

FQDN 24, 33, 65, 144

Fully Qualified Domain Name. See
FQDN.

G

Generating stub file 50

GetContents 26–31, 33, 42, 52–58, 64–
69, 81, 98, 104, 110–123, 142–150,
151–154, 191, 200, 208–214, 230

getFieldType method 73

GetInfo 63, 127, 141, 237

getOp 70

getTarget 70–71, 155–156

Getting information about hosts and
virtual machines 65, 143

Getting object permissions 62, 63, 139,
141

GetUpdates 28–31, 42, 67, 68–69, 74–
80, 98, 112–123, 151–154, 160–166,
191, 210, 214, 230, 244–245, 253

getVal 71–72, 156

Group right 35

Groups 35

GSX Server 14

Guest operating system scripts 89–91,
175–178

H

Handle 28–31, 43, 67, 80, 89–103, 104,
106, 108, 151, 166, 175–179, 182–
185, 188, 191, 195–199, 202, 206

HandleFault 131

History, performance data 42

Host 22, 32, 92–93, 179–180
creating 94–95, 182–185
detailed information 65, 143
identification 33
list of 64, 143
managing through SDK 38

HTTPS protocol 35

I

IBM Websphere SDK 269

ID for virtual machine 32

Indexed array 77–79, 163–165

Info event 40, 110–112, 208–213

Inherited privileges 35

Insert change 70, 71–72, 72–73, 155,
156, 157–158

inserted field in Change object 71, 72,
75, 77, 156, 157, 160, 163

Interact right 35, 89, 118, 175, 222

Interior nodes of an object 26

Inventory application 250–251

Item 27, 52–58, 127, 237, 284

J

Java 246–248

K

Key-based array 77–79, 163–165

L

Leaf value in Change object 71, 74–76,
156, 160–161

List of hosts 64, 143

List of virtual machines 52–58

Log event 110–112, 208–213

Logging into Web service 35, 61, 138

Login call 35

Loop, creating 66, 150

M

Management application 246–249

maxoccurs 77, 163

Message 110–112, 208–213

Microsoft Visual Studio .NET 252–253,
254–255, 271–272

MigrateVM 36, 41, 43, 107–109, 204–
207

Migrating virtual machine 41, 43

minoccurs 77, 163

Monitoring application 246–249

Move change 70, 71–72, 76, 155, 156,
161

MoveVM 36, 41, 43, 107–109, 204–
207

Moving virtual machine 41, 43
www.vmware.com

msgWaiting 98, 191

MVC 246–249

N

Nested path 35

Non-SSL port, using 34

O

Object 15, 26, 27, 28–31, 67, 106, 151,
202

change 70–76, 155–161
changing permissions 35, 127, 237
creating 94–95, 182–185
deleting 94–95, 182–185
permission 62, 63, 139, 141
VmaProxy 243–245
vmaService 253

object 15

Obtaining list of hosts 64, 143

op field in Change object 70, 155

Operations that can be scheduled 41

P

Parent object 27

Path 15, 27, 67, 151
/datastore 24
/event 24
/host 24
/perf 24
/schedule 24
/task 24
/template 24
/vcenter 24
/vm 25
/webservice 25
datastore 36
nested 35

PerfCollection datatype 119–126, 224–
236

PerfCollector datatype 119–126, 224–
236

PerfFilter datatype 119–126, 224–236

Performance
data 42, 119–126, 224–236
statistics 24

Performance collector 42, 119–126,
224–236

PermissionList datatype 127, 237

Permissions 35, 62, 63, 127, 139, 141,
237

Polling period for updates 42

Port number, changing 34

Power operations 38, 41, 116, 218
host 93, 180
virtual machine 89–91, 175–178

Privileges (access) 35

Property, custom 82

Provisioning 284

Provisioning application 250–251

Proxy layer 243–245, 246–249

PutUpdates 28–31, 41, 74–75, 76, 80–
82, 160–161, 166–168, 244–245, 251

Q

QueryPerfData 42, 125, 233

Question from a virtual machine 69, 98,
154, 191, 244

R

Removable devices 35

Rename 76, 106, 161, 202

renaming 106, 202

repl field in Change object 77, 163

Replace change 70, 71–72, 72–74,
155, 156, 157–160

ResetVM 91, 178

ResolvePath 27, 29, 30, 52–58, 65, 81,
104, 144, 166, 200

Resource settings, changing 41

Restarting a host 93, 180

Resuming a virtual machine 89, 175

Rights 35
administer 35
browse 35, 64, 106, 142, 202
configure 35, 92, 94, 95, 96, 97, 100,
104, 106, 108, 179, 182, 185, 187,
188, 195, 199, 202, 206
interact 35, 89, 118, 175, 222

RunTask 118, 222

S

Sample application
alerts 252–253
inventory 250–251
list of virtual machines 52–58
293

294
management 246–249
monitoring 246–249
provisioning 250–251
VMA Viewer 254–255

Samples in an update 42

Scheduled operations 41

Scheduled task 24, 114–118, 214–222

Scripts in a guest operating system 89–
91, 175–178

Secure communications between cli-
ent and Web service 51

Security for Web service 35

Server farm 21

Session token 34

setFieldValue method 73

SOAP faults 170

SSL connection 51

Starting a virtual machine 89, 175

StartVM 89, 175

Statistics, performance 24

Stopping a host 93, 180

Stopping a virtual machine 89–90, 176

StopVM 89–90, 176

Storage for a virtual machine 36

String value 74–75, 160–161

Stub 46, 285
generating 50

Stubs, generating Visual Basic 271–272

Suspending a virtual machine 89–90,
176

Syntax, datastore path 36

T

target field in Change object 70–71,
72, 74–75, 155–156, 157, 160–161

Task 24, 107–109, 114–118, 204–207,
214–222

Task schedule 24, 41

TaskRunState datatype 115, 215

TaskScheduleSpec datatype 117, 218

Template 24, 38, 41
creating 104–105, 199–201
deploying virtual machine from 44

TemplateSpec datatype 104, 199

Token, session 34

Tool, wsdlProxyGen.exe 253, 272

Troubleshooting 84, 170

U

unbounded 77, 163

Universally unique identifier. See UUID.

Updating
data 42
object 28–31

User event 40, 110–112, 208–213

User right 35

User-defined property 82

Users 35

UUID 32, 52–58

V

val field in Change object 71–72, 75,
77, 156, 157, 160, 163

Version of an object 31

vHandle 28–31, 67, 80, 127, 151, 166,
237

ViewContents 43

ViewInfo datatype 63, 141

Virtual disk 24
adding to virtual machine 96–97,
188
moving 41, 43, 107–109, 204–207

Virtual machine 22, 25, 35
adding virtual disk 96–97, 188
changing state of 35
cloning 24, 41, 44, 100–103, 195–
198
configuration file 36
creating 96, 187
detailed information 65, 143
managing through SDK 38
migrating 41, 43
moving 41, 43
power operations 116, 218
provisioning 44, 250–251
question 69, 98, 154, 191, 244
resetting 91, 178
resuming 89, 175
starting 89, 175
stopping 89–90, 176
storage 36
www.vmware.com

suspending 89–90, 176
UUID 32

Virtual machine group 22, 27

VirtualCenter 14, 24

VirtualDiskInfo datatype 36

VirtualMachineInfo datatype 71, 156

VirtualMachineSpec datatype 36, 251

VirtualMachineState datatype 107–
109, 204–207

VirtualMachineTools datatype 90, 177

VirutalMachineSpec datatype 96, 187

Visual Basic 271–272

Visual Studio .NET 252–253, 254–255,
271–272

VMA Viewer 254–255

vma.exe 15

vma.wsdl 46, 50, 253, 272

vmaClient.cs 253, 258

vmaConfig.xml 15, 34, 35, 281

VMAKit 243–245

VmaProxy object 243–245

vmaService object 253

vmaService_proxy.cs 253, 258

VMFS volume 36

VMotion 14, 38

VMware VirtualCenter. See Virtual-
Center.

W

Warning event 40, 110–112, 208–213

Web management application 246–
249

Web service 15, 25
architecture 15
logging in 61, 138
security 35

Web service communication with client
51

Web Services Description Language.
See WSDL.

Websphere SDK 269

WSDL 46–48

wsdlProxyGen.exe tool 253, 272

X

XML document 15
object 15, 26, 29, 30, 67, 151
295

296
 www.vmware.com

	Virtual Infrastructure SDK Programming Guide
	Table of Contents
	Introducing the Programming Guide
	Using This Programming Guide
	Intended Audience

	Related VMware Products
	VMware VirtualCenter
	VMware ESX Server
	VMware GSX Server

	VMware SDK Architecture
	VMware VirtualCenter Web Service
	VMware SDK Package
	Web Service Standards and the VMware SDK

	Technical Support Resources

	VMware SDK Key Concepts
	Path Hierarchy
	Escaped Characters in the VMware VirtualCenter Web Service

	Understanding VMware SDK Terminology
	Object, Item, Path, Handle, and vHandle
	Commonly Used VMware SDK Operations

	Client-Web Service Interactions
	Virtual Machine Identification
	Host Identification
	Session Management
	Security Model
	Datastores

	VMware SDK Management Concepts
	Managing Hosts and Virtual Machines
	Managing Hosts
	Managing Virtual Machines

	Life Cycle Operations
	Events
	Scheduled Tasks
	Performance Monitoring
	Migrating and Moving Virtual Machines
	Migrating a Virtual Machine
	Moving a Virtual Machine

	Provisioning a Virtual Machine

	Developing Client Applications
	Connecting to the VMware VirtualCenter Web Service
	Reviewing the Web Services Description Language
	<types> Element
	<message> Element
	<portType> Element
	<binding> Element
	<service> Element

	Selecting a Development Environment
	Generating the Stub Files
	Communicating Securely
	Enabling Java Client SSL Connections

	Creating a Simple Client
	Simple Client Program in Java
	Simple Client Program in Perl

	Compiling the Java Client Application
	Running the Client Application

	Core Client Programming Concepts for Java Programmers
	Logging into the Web Service
	Permissions
	Getting Basic Information about an Object
	Object Inventory
	Using GetContents to Obtain Information About Hosts and Virtual Machines
	Using GetContents to Obtain Information About Individual Hosts and Virtual Machines

	The Basic Data Synchronization Loop
	Versions and Handles
	Calling the GetUpdates Operation
	Applying Changes to the Client Data
	The Change Object
	Processing the Various Kinds of Change

	Indexed and Key-based Arrays
	Indexed Arrays
	Key-based Arrays

	Calling the PutUpdates Operation
	Using the PutUpdates Operation to Update the Memory Setting for a Virtual Machine
	Using the PutUpdates Operation to Make Changes to Array Elements
	Using the PutUpdates Operation to Specify a CustomProperty

	Running the Sample Code
	Handling Exceptions in the Data Synchronization Loop
	Testing
	Complete Code Listing

	Advanced Client Concepts for Java Programmers
	Virtual Machine Power Operations
	Starting or Resuming a Virtual Machine
	Stopping or Suspending a Virtual Machine
	Boolean Flags in the VirtualMachineTools Datatype
	Resetting a Virtual Machine

	Host Operations
	Enabling a Host
	Disabling a Host
	Stopping or Restarting a Host

	Creating and Deleting Objects
	Creating an Object
	Deleting an Object

	Creating and Configuring a Virtual Machine
	Creating a Virtual Machine
	Adding a Virtual Disk to a Virtual Machine

	Responding to Virtual Machine Questions
	Cloning a Virtual Machine
	Customizing a Virtual Machine
	CloneVM Sample

	Creating a Template
	Specifying a Datastore

	Renaming an Object
	Moving Virtual Machines
	Migrating a Virtual Machine
	Moving a Virtual Machine’s Virtual Disks

	Monitoring Events
	Event Declarations
	Event Logs
	Creating an Event Collector

	Task Scheduling and Monitoring
	Active Tasks and Scheduled Tasks
	Monitoring Tasks
	Creating New Scheduled Tasks
	Running a Scheduled Task
	Ending a Task

	Collecting Performance Data
	VirtualCenter Perf Collector
	Filtered Perf Collectors
	Comparing VirtualCenter and Filtered Perf Collectors
	Performance Metric Data Model
	Creating a VirtualCenter Perf Collector
	Creating a Filtered Perf Collector
	Collecting Current Performance Data
	Collecting Historical Data

	Changing Permissions
	Taking a Snapshot of a Virtual Machine
	Exception Handling and Faults

	Core Client Concepts for Perl Programmers
	Using SOAP::LITE with VMware SDK
	Creating a SOAP::LITE Object
	SOAP::Lite Deserializer

	Logging into the Web Service
	Permissions
	Retrieving the Handle for an Object
	Getting Basic Information about an Object
	Object Inventory
	Handling Complex Objects in SOAP::Lite
	Using GetContents to Obtain Information About Hosts and Virtual Machines
	Using GetContents to Obtain Information About Individual Hosts and Virtual Machines

	The Basic Data Synchronization Loop
	Versions and Handles
	Calling the GetUpdates Operation
	Applying Changes to the Client Data
	The Change Object
	Processing the Various Kinds of Change

	Indexed and Key-based Arrays
	Indexed Arrays
	Key-based Arrays
	Determining the Array Category

	Calling the PutUpdates Operation
	Using the PutUpdates Operation to Update the Memory Setting for a Virtual Machine
	Using the PutUpdates Operation to Make Changes to Array Elements

	Running the Sample Code
	Fault Handling in SOAP::Lite
	Testing
	Complete Code Listing

	Advanced Client Concepts for Perl Programmers
	Virtual Machine Power Operations
	Starting or Resuming a Virtual Machine
	Stopping or Suspending a Virtual Machine
	Boolean Flags in the VirtualMachineTools Datatype
	Resetting a Virtual Machine

	Host Operations
	Enabling a Host
	Disabling a Host
	Stopping or Restarting a Host

	Creating and Deleting Objects
	Creating an Object
	Deleting an Object

	Creating and Configuring a Virtual Machine
	Creating a Virtual Machine
	Adding a Virtual Disk to a Virtual Machine

	Responding to Virtual Machine Questions
	Cloning a Virtual Machine
	Customizing a Virtual Machine
	CloneVM Sample

	Creating a Template
	Specifying a Datastore

	Renaming an Object
	Moving Virtual Machines
	Migrating a Virtual Machine
	Moving a Virtual Machine’s Virtual Disks

	Monitoring Events
	Event Declarations
	Event Logs
	Creating an Event Collector

	Task Scheduling and Monitoring
	Active Tasks and Scheduled Tasks
	Monitoring Tasks
	Creating New Scheduled Tasks
	Running a Scheduled Task
	Ending a Task

	Collecting Performance Data
	VirtualCenter Perf Collector
	Filtered Perf Collectors
	Comparing VirtualCenter and Filtered Perf Collectors
	Performance Metric Data Model
	Creating a VirtualCenter Perf Collector
	Creating a Filtered Perf Collector
	Collecting Current Performance Data
	Collecting Historical Data

	Changing Permissions
	Taking a Snapshot of a Virtual Machine

	Sample Applications
	Proxy Layer Abstraction
	VMAKit Public Interface
	VmaProxy Object

	Web-based Monitoring and Management Application
	Web Application Architecture
	Using the Web-based Monitoring and Management Application

	Inventory and Virtual Machine Provisioning Application
	Alerts Application
	Building and Running the Alerts Application
	Alerts Application Source Files

	VMA Viewer Application
	Building the VMA Viewer Application
	VMA Viewer Application Source Files

	PerfMon Application (C#)
	WS-I Test Application
	WS-I Test Application Source Files
	Running the WS-I Test Application

	SimpleListing Application
	Building and Running the SimpleListing Application
	SimpleListing Application Source Files

	VMPowerOps Application
	Building and Running the VMPowerOps Application
	VMPowerOps Application Source Files

	PerfMon Application (Visual Basic)
	TestOps Application
	TestOps Application Source Files
	Running the TestOps Application

	Client Development Environments
	Selecting a Development Environment
	IBM Websphere Software Developer Kit
	Installing the IBM Websphere Software Developer Kit
	Sample Application Developed by Using the IBM Websphere Software Developer Kit
	Running the MoveVM Java Sample with the IBM Websphere Software Developer Kit

	Microsoft Visual Studio .NET and .NET Framework
	VMware SDK Applications Developed with .NET

	Apache Axis
	SOAP::LITE for Perl
	Testing a SOAP::Lite Installation

	Troubleshooting
	Troubleshooting the VMware SDK
	Problems Connecting to VMware VirtualCenter
	Client Can’t Connect to the Web Service
	Web Service Can’t Connect to VirtualCenter

	Viewing the Dump File
	Customizing the Dump File

	Glossary
	Revision History
	Index

