
Power Aware Simulation User’s Manual
ModelSim® SE

Software Version 10.2c

© 2010-2013 Mentor Graphics Corporation
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

U.S. GOVERNMENT LICENSE RIGHTS: The software and documentation were developed entirely at
private expense and are commercial computer software and commercial computer software
documentation within the meaning of the applicable acquisition regulations. Accordingly, pursuant to
FAR 48 CFR 12.212 and DFARS 48 CFR 227.7202, use, duplication and disclosure by or for the U.S.
Government or a U.S. Government subcontractor is subject solely to the terms and conditions set forth
in the license agreement provided with the software, except for provisions which are contrary to
applicable mandatory federal laws.

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of
Mentor Graphics Corporation or other parties. No one is permitted to use these Marks without the prior
written consent of Mentor Graphics or the owner of the Mark, as applicable. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’
trademarks may be viewed at: www.mentor.com/trademarks.

Mentor Graphics Corporation
8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777

Telephone: 503.685.7000
Toll-Free Telephone: 800.592.2210

Website: www.mentor.com
SupportNet: supportnet.mentor.com/

Send Feedback on Documentation: supportnet.mentor.com/doc_feedback_form

http://www.mentor.com/trademarks
http://www.mentor.com
http://supportnet.mentor.com/
http://supportnet.mentor.com/
http://supportnet.mentor.com/doc_feedback_form

Power Aware Simulation User’s Manual, v10.2c 3

Table of Contents

Chapter 1
Getting Started With Power Aware Simulation . 13

Where Is Power Aware in Your Design Flow? . 14
Documentation—Scope and Organization . 16
Contents of This Manual . 17
How to Use This Manual . 17

Related Documentation. 18

Chapter 2
Concepts for Using Power Aware Simulation . 19

Power Intent Specification. 19
Power Aware Modeling . 19

Modeling Corruption . 20
Corruption Values . 21
Default Corruption Semantics . 21

Modeling Isolation . 22
Modeling Retention . 22

Edge-sensitive and Level-sensitive Control of Retention Models 23
Modeling Bias. 24

Chapter 3
Power Aware Simulation . 27

Inputs Required for Power Aware Simulation. 27
Commands Used For Power Aware Simulation . 27

General Steps for Running Power Aware. 28
Power Aware Simulation Flows . 28

Using the Standard Flow. 29
Compile . 29
Optimize . 30
Simulate . 31

Using the Delayed Optimization Flow . 32
Using the No-Optimization Flow . 33

Working with Liberty Libraries . 35
Liberty Library Models. 35

Using Liberty Files with vopt. 35
Creating and Saving a Liberty Database . 36
Using a Previously Created Liberty Database . 36
Using Liberty Files Directly. 36
Updating a Liberty Database . 37
Refreshing a Liberty Database . 37

PDU-Based Simulation . 37
Power Aware Simulation Debug . 38

Table of Contents

4 Power Aware Simulation User’s Manual, v10.2c

Capturing Information for Post-simulation Debug. 38
Debugging Designs Containing Liberty Cells . 39

Applying Power Intent to the Design. 39
Detection of Gate-level Cells . 40
Detection of Power Management Cells . 40
Automatic Insertion of Power Management Cells . 42
Automatic Corruption and Retention of UDPs. 42

UDP Corruption and Retention Modes . 42

Chapter 4
Power Aware Reports. 45

Generating Reports for Power Aware . 45
How to Generate a Report with vopt -pa_genrpt . 45

UPF Reports. 46
UPF Power Intent Report . 47

Example of UPF File and Power Intent Report . 49
UPF Static Report . 51

Example of UPF Static Report File . 51
Static Checking UPF Reports . 52
Dynamic UPF Report . 53
Architecture Report. 54

Power Domain . 54
Power Switch . 55
Retention Strategy . 57
Isolation Strategy . 57
Level Shifter Strategy. 58
Power State Tables (PSTs) . 59
Sample Power Architecture Report . 60

Design Elements Report . 61
Design Element Scopes and Power Domains. 62
Corrupted Signals . 63
State Elements . 63
Retention Signals . 64
Working With A Design Element Report . 65

Behavioral Element Reporting. 67

Chapter 5
Automatic Checking . 69

Static and Dynamic Checking Overview. 69
Level Shifter Checking . 69
Isolation Checking . 70

Static Checking in Power Aware . 70
Usage Notes for Static Checking . 71
Debugging Static Checks . 71
Static Isolation Checks . 72
Static Level Shifter Checks. 74

Reporting for a Valid Level Shifter . 77
Dynamic Checking in Power Aware . 78

Table of Contents

Power Aware Simulation User’s Manual, v10.2c 5

Usage Notes . 78
Dynamic Retention Checking . 79
Dynamic Isolation Checking. 81
Dynamic Level Shifter Checking . 84

Operating Voltage for Dynamic Checking. 84
Miscellaneous Dynamic Checking . 86

Implementing Checking at Gate Level . 88
Level Shifting for Gate-Level Checking. 88
Isolation for Gate-Level Checking . 88

Quick-Reference Comparison of Static and Dynamic Check Arguments. 89

Chapter 6
Power Aware Coverage . 93

Power Aware Coverage Collection . 93
Collecting Power Aware Coverage Information on Dynamic Checks 93
Collecting Power Aware Coverage Information on States and Transitions 95

Power Aware Coverage Analysis . 96
Generating a UCDB File for Power Aware . 96
Generating Power Aware Coverage Reports . 96
Generating HTML Reports . 99
Accessing Coverage Data for Post-Simulation Analysis . 99

Power Aware Coverage Report Reference . 100
Power Aware Coverage Summary . 100
Power Aware Coverage Detailed Report . 100
Power Aware Coverage Verbose Report . 103
Power Aware Checks Coverage Summary . 103
Power Aware Checks Coverage Detailed Report . 103

Chapter 7
Visualization of Power Aware Operations . 105

UPF Object Display . 105
Visualizing UPF Objects in the GUI . 105

Power Aware Schematic Display. 107
Top-Down Debugging (From the Test Bench). 108
Bottom-Up Debugging (From the Design Under Test) . 108

Usage Notes . 109
Schematic Window Visualization for Debugging . 109

Power Aware Waveform Display . 113
Using Power Aware Highlighting. 115

Power State and Transition Display. 115
Power State and Transition Concepts . 115

DIfferences Between a Conventional RTL FSM and a PASM . 116
Visualizing Power Aware State Machines . 116

Power Aware State Machine List Window . 117
Power Aware State Machine Viewer Window. 119

Table of Contents

6 Power Aware Simulation User’s Manual, v10.2c

Appendix A
Power Aware Commands and Options. 125

ModelSim Commands Used for Power Aware . 126
Using -pa_enable and -pa_disable . 128

Additional Commands You Can Use with Power Aware . 131
Power Aware Messages . 136

Dynamic Power Aware Check Message Control . 136
Concepts of pa msg . 136
Use Model for pa msg . 137
Option Descriptions of pa msg . 138
Examples . 140

Controlling Power Aware Message Severity During vopt Stage . 141
Excluding Design Elements from Power Aware . 142
Voltage Level-Shifting (Multi-Voltage Analysis) . 145

Power State Tables . 145
Example . 145

Level Shifter Specification . 146
Reporting . 146
Threshold Control for Level Shifters . 146
Level Shifter Instances . 146

Limitations on Level Shifting . 147
Restricting Isolation and Level Shifting on a Port. 147

Isolation and Level Shifting Behavior . 147
How to Apply the -source and -sink Arguments . 148

Simulating Designs Containing Macromodels . 152
Using UPF Commands . 152
Attributes in RTL . 153
Liberty File . 154
Example of Power Intent on a Hard Macro . 154

UPF Commands . 155
RTL Attributes . 155
Liberty File Attributes . 156

Creating Feedthrough For RTL Conversion Functions . 156

Appendix B
Model Construction for Power Aware Simulation . 159

Assumptions and Advantages . 159
Basic Model Structure . 159
Named Events in Power Aware . 160

Usage Note for Sequence Requirements. 162
Attributes . 162

Retention Cells and Memories . 162
Isolation Cells . 163
Level Shifters . 163

Model Interface Ports. 164
Customizing Activity at Time Zero . 164

Example—Register Model. 165
Example—Corrupt Model . 168

Table of Contents

Power Aware Simulation User’s Manual, v10.2c 7

Appendix C
UPF Commands and Reference. 169

Unified Power Format (UPF). 169
Using a UPF File as Part of Power Aware Simulation . 170

UPF Standards . 170
Version 1.0 of the UPF Standard . 171
Version 2.0 of the UPF Standard: IEEE Std 1801-2009. 171
Syntax and Semantic Differences Between UPF 1.0 and UPF 2.0. 171

UPF 2.0 Syntax Differences . 172
UPF 2.0 Semantic Differences . 172

Supported UPF Commands . 172
add_domain_elements. 177
add_port_state . 178
add_power_state . 179
add_pst_state. 183
associate_supply_set . 184
bind_checker . 185
connect_logic_net . 188
connect_supply_net. 189
connect_supply_set . 190
create_composite_domain. 191
create_hdl2upf_vct . 197
create_logic_net . 198
create_logic_port. 199
create_power_domain . 200
create_power_switch. 202
create_pst . 203
create_supply_net . 204
create_supply_port . 205
create_supply_set . 206
create_upf2hdl_vct . 207
find_objects. 208
load_simstate_behavior. 210
load_upf . 213
load_upf_protected . 214
map_isolation_cell . 215
map_level_shifter_cell . 218
map_retention_cell . 219
name_format . 220
query_design_attributes . 221
query_port_state . 222
query_power_domain . 223
query_power_state . 224
query_power_switch . 225
query_pst. 226
query_pst_state . 227
query_supply_net . 228
query_supply_port . 229

Table of Contents

8 Power Aware Simulation User’s Manual, v10.2c

save_upf . 230
set_design_attributes. 232
set_design_top. 233
set_domain_supply_net. 234
set_isolation . 235
set_isolation_control . 239
set_level_shifter . 240
set_partial_on_translation . 243
set_pin_related_supply . 246
set_port_attributes. 247
set_power_switch . 249
set_retention . 250
set_retention_control. 252
set_scope . 253
set_simstate_behavior . 254
upf_version . 259

Supported UPF Package Functions . 259
Detailed Support for supply_net_type . 260

Accessing Generate Blocks in UPF . 261
Limitation . 261

Supported UPF Attributes . 261
Specifying Attributes . 262
Limitations . 263
Attributes in VHDL or SystemVerilog . 263
Specifying Supply Nets in UPF . 263

Format of Assigned Net Values . 264
Changing the Default Supply State Values for VHDL Models . 264

Supported UPF Extensions . 265
Using -pa_upfextensions. 265

UPF Supply Connections. 269
Implicit Connections. 269
Explicit Connections. 270

Explicit Connections to HDL Ports . 270
Examples . 270
Explicit Connections to 1-bit HDL Ports . 271
Explicit Connections to Supply Ports of Power Switch . 271

Automatic Connections. 272
Automatic Connections for Supply Nets . 272
Automatic Connections for Supply Sets. 273

Power State Composition . 275
Determining State Dependency with add_power_state Arguments 276
Power State Reporting . 278

Value Conversion Tables. 280
Using VCT Commands. 280

Examples . 280
Limitations . 281

Predefined VCTs Supported from the UPF Standard . 281
Connections Using Value Conversion Tables (VCTs) . 284
Simulation Semantics for UPF Supply Connections . 286

Table of Contents

Power Aware Simulation User’s Manual, v10.2c 9

Supply Nets . 287
Resolving Drivers on a Supply Net . 287

Example . 288
Defining Isolation . 289

Method 1: Isolation is already explicitly present . 289
Method 2: Isolation needs to be added . 289
Specifying Isolation Cells. 290
Limitations . 291

Defining Retention . 291
-retention_supply_set . 292
-no_retention. 293
-use_retention_as_primary . 295

Appendix D
Power Configuration File Reference. 299

Power Specification File . 299
Formats . 299

Using a PCF as Part of Power Aware Verification. 299
PCF Syntax and Contents . 300

Basic PCF Statement Types . 300
Statement Termination . 301

Header Statement . 301
Context Statements. 302
Scope Statement . 303
Variable Statement . 303
Include Statement . 304
Corruption Extent Statement . 304

Power Statements . 305
Region Definitions . 306
Power Model Mapping Statement . 310

Mapping Statement Precedence . 312
Specifying Default Model Mappings . 313

Retention Statement . 314
Corruption Semantics . 314
Voltage Domains . 315
Comments . 316

Regular Expressions and Variables . 316
Rule Precedence. 316

Appendix E
Supplemental Information . 319

Power Aware Verification of ARM-Based Designs . 319
Abstract . 319
Introduction. 320
Active Power Management. 320
Power Management Techniques . 320
Power Management Specification . 321
Power Management Architecture . 322

Table of Contents

10 Power Aware Simulation User’s Manual, v10.2c

Operating Modes . 322
Power Domains . 323
Power Distribution . 324
Power States . 326
Isolation and Level Shifting . 326
State Retention . 328

Power Managed Behavior. 328
Power Control Logic. 329
Power Aware Verification Flow . 329

Verifying the Power Management Architecture. 330
Verifying Power Managed Behavior . 331
Verifying Power Control Logic . 332

Summary . 332
Acknowledgements. 333
References. 333

Power Aware Simulation User’s Manual, v10.2c 11

List of Tables

Table 4-1. Generating UPF Reports for Power Aware . 46
Table 5-1. Static Isolation Checks . 72
Table 5-2. Static Level Shifter Checks . 74
Table 5-3. Dynamic Retention Checks . 79
Table 5-4. Dynamic Isolation Checks . 81
Table 5-5. Dynamic Level Shifter Checks . 85
Table 5-6. Miscellaneous Dynamic Checks . 86
Table 5-7. Static and Dynamic Checks Comparison . 89
Table 7-1. Power Aware State Machine List Window Columns . 118
Table 7-2. Power Aware State Machine List Window Popup Menu 119
Table 7-3. PA State Machines Menu . 119
Table 7-4. Power Aware State Machine Viewer Window Popup Menu 122
Table 7-5. FSM View Menu, Specific to Power Aware State Machines 122
Table A-1. Power Aware Arguments for vopt . 126
Table A-2. Power Aware Arguments for vsim . 127
Table A-3. Power Aware Actions for vopt -pa_enable and -pa_disable 128
Table C-1. List of Supported UPF Commands . 173
Table C-2. Supported UPF Package Functions for VHDL . 259
Table C-3. Supported UPF Package Functions for SystemVerilog 259
Table C-4. Supported UPF Attributes . 262
Table C-5. Power Aware Actions for vopt -pa_upfextensions . 266

List of Tables

12 Power Aware Simulation User’s Manual, v10.2c

Power Aware Simulation User’s Manual, v10.2c 13

Chapter 1
Getting Started With Power Aware

Simulation

Note
The functionality described in this chapter requires an additional license feature for
ModelSim SE. Refer to the section “License Feature Names” in the Installation and
Licensing Guide for more information, or contact your Mentor Graphics sales
representative.

Some designs require that you minimize dynamic and static power consumption. A common
low-power design technique—power gating—involves switching off certain portions of the
design when their operation is not needed and restoring power when operation is needed again.
Other low-power design techniques include the use of multi-voltage supplies, state retention,
isolation, and level shifting.

ModelSim supports Power Aware simulation for VHDL or Verilog designs that use the above
techniques in both register transfer level (PA-RTL) and gate-level (PA-GL) simulation.

To apply Power Aware simulation, you use your conventional ModelSim simulation flow,
along with some power-specific options to the vopt and vsim commands and a power intent
specification written using IEEE 1801 Unified Power Format (UFP).

With Power Aware simulation, you can perform functional verification of low power designs
together with the power management structures defined by your power intent. Different types of
power gating designmanagement structures can be verified, such as:

• Multiple switchable power domains with a single voltage

• Multiple switchable power domains with different (fixed) voltages per domain

• Power domains that can be put into bias mode for state retention with low static leakage

To verify these structures, you create a UPF Power Intent Specification that includes the
following:

• Definition of the power domains within your design and the instances that belong to
each power domain.

• Definition of the power states of those power domains, their corresponding primary
supplies, and the simstates associated with primary supply states.

Power Aware Simulation User’s Manual, v10.2c14

Getting Started With Power Aware Simulation
Where Is Power Aware in Your Design Flow?

• Definition of strategies for inserting, powering, and controlling retention cells in a
power domain, to retain state during power down.

• Definition of strategies for inserting, powering, and controlling isolation cells and level
shifter cells at power domain boundaries, to mediate interactions between power
domains in different states or at different voltage levels.

• Definition of supply networks, including supply ports, nets, and power switches
required to provide power to each domain.

Where Is Power Aware in Your Design Flow?
Before you begin to use Power Aware to perform a power aware simulation on your RTL
design, you should evaluate where you are in your overall design flow. Figure 1-1 shows an
approximation of a typical design sequence and where Power Aware might occur in that
sequence.

Before running Power Aware simulation, you should have worked through the following stages
of your design flow:

• Design creation

• RTL architecture

• Formal verification

• Definition of power intent

After running a Power Aware RTL simulation, you would typically use the results to make
appropriate topology or performance changes to your power-sensitive design blocks. After a
gate-level simulation (GLS), you would typically make library cell changes based on
performance characteristics.

The scope of Power Aware as a low-power solution spans multiple manifestations of design
architecture.

• Power Aware Simulation — Simulation that includes active power management
elements and their behavior. The power management architecture is specified in UPF;
the behavior of those elements is inferred from the UPF specification. This relates
specifically to Power Aware Simulation.

• Power Aware Verification — Collaborative usage of various products and methods for
verifying that a design operates correctly under active power management. These
include power aware simulation (for verifying the correct operation of the power
management architecture), formal verification (for verifying correct operation of power
control logic), and hardware/software co-verification (for verifying that software power
control interacts correctly with power control logic). This relates to all of the
components of the Questa Verification Platform that can be used for Power Aware

Getting Started With Power Aware Simulation
Where Is Power Aware in Your Design Flow?

Power Aware Simulation User’s Manual, v10.2c 15

Verification, including Questa PASim, Questa ADMS, Questa Formal, Questa
Codelink, and Questa VM.

• Power Efficient Design — Design of hardware that involves active power management.
This includes design decisions involved in allocating power budget, partitioning the
design into power domains, and defining the power management architecture, the power
control logic, and the power control software, as well as products used for verification
and implementation of such designs. This relates to the entire range of Mentor Graphics
products that are involved in the design, verification, and implementation of low-power
IP, chips, and systems.

Figure 1-1. Typical Location of Power Aware Simulation in Design Flow

Design Capture

RTL Architecture

Formal Verification

RTL Power Aware

Definition of
Power Intent

Layout

Design Coverage

GLS Power Aware

Synthesis

Power Aware Simulation User’s Manual, v10.2c16

Getting Started With Power Aware Simulation
Documentation—Scope and Organization

Documentation—Scope and Organization
Power Aware simulation augments normal HDL simulation capabilities with the ability to
specify, model, and simulate the effects of active power management logic that will be added to
the design during implementation.

The success of applying Power Aware features depends on understanding the structure of your
design and having the ability to run ModelSim, plus—more generally—your goals of using
simulation and verification software products.

The purpose of this manual is to provide basic usage and reference information on how to run a
Power Aware simulation in ModelSim. The primary focus is on how to define the power intent
of your design and then apply your conventional ModelSim simulation flow to verify power
gating behavior.

Note that there are some areas related to Power Aware operation that this manual is not intended
to cover:

• UPF standards — The UPF Commands and Reference appendix lists the UPF
commands and arguments that are currently supported for both v1.0 and v2.0 of the UPF
standard. However, complete usage information from those standards is not duplicated
in this manual.

• Basic and advanced ModelSim usage — Please refer to the other manuals of ModelSim
documentation for information on operations related to Power Aware simulation, such
as: command usage, the graphical user interface (GUI), design optimization, waveform
analysis, and finite state machines.

• Power design — Reporting power estimation or creating an RTL architecture for
optimized power implementation.

Specifically, the scope of this manual falls into the following broad areas:

Usage

• Terminology definitions

• Basic operating instructions for Power Aware simulation

• ModelSim commands specific to Power Aware

• Differences between RTL and GLS

• UPF commands for the power specification file

• Reporting of results

Design

• General discussion of low-power design and Power Aware simulation.

Getting Started With Power Aware Simulation
Contents of This Manual

Power Aware Simulation User’s Manual, v10.2c 17

• HDL models used for Power Aware simulation.

Flow

• General discussion of low-power analysis as part of overall design flow.

• The distinctions between RTL and gate-level simulations, and the advantages of each at
different points in the flow.

Contents of This Manual
This manual contains both an introductory overview of the Power Aware simulation capabilities
and detailed reference information about Power Aware simulation features and usage.

• Chapters 2 through 6 provide an introductory overview of basic usage.

• Appendices A through F provide more detailed reference information.

How to Use This Manual
If you are just beginning to learn about Power Aware simulation, read the following chapter:

• Concepts for Using Power Aware Simulation

If you are looking for an overview of Power Aware simulation concepts and capabilities and
how they are used, read the following chapter:

• Power Aware Simulation

If you are looking for an overview of the information provided by ModelSim during power
aware simulation, to help you understand how active power management is working in your
design, identify problem areas, and track what has been verified, read the following chapters:

• Power Aware Reports

• Automatic Checking

• Visualization of Power Aware Operations

• UPF Commands and Reference

For more detailed reference information about specific topics such as UPF and its use, Power
Aware simulation commands and flows, report formats, messages, read the appropriate
appendices of this manual.

Power Aware Simulation User’s Manual, v10.2c18

Getting Started With Power Aware Simulation
How to Use This Manual

Related Documentation
Other documents that may be useful for understanding Power Aware simulation include the
following:

• ModelSim User’s Manual

This manual explains how to use ModelSim for simulation of hardware designs. It
contains descriptions of basic ModelSim usage, especially simulation, optimization,
debugging, assertions, and GUI visualization of design source, schematics, and
waveforms.

• ModelSim Reference Manual

This manual contains a comprehensive listing and description of ModelSim commands,
arguments, and values.

• ModelSim Tutorial

This manual presents an introductory tutorial on the use of ModelSim for Power Aware
simulation. It provides a simple exercise on how to run a Power Aware simulation on
RTL design data for the Interleaver example provided as part of the ModelSim
installation. This exercise includes creating a UPF power intent specification, defining
isolation and retention for the power domain, and evaluating simulation results
(waveforms and reports).

• IEEE 1801™-2009 Standard for Design and Verification of Low Power Integrated
Circuits

This IEEE standard defines the Unified Power Format (UPF), a notation used for
specifying power intent for HDL designs.

Power Aware Simulation User’s Manual, v10.2c 19

Chapter 2
Concepts for Using Power Aware Simulation

This chapter provides a brief description of basic usage elements for running Power Aware
simulation in the following sections:

• Power Intent Specification

• Power Aware Modeling

• Modeling Corruption

• Modeling Isolation

• Modeling Retention

• Modeling Bias

Power Intent Specification
To perform Power Aware simulation, you need to provide a power intent specification that
defines the planned power management architecture for the design. A power intent specification
is written using commands defined in the IEEE 1801 Unified Power Format (UPF) standard —
For more information on this format, refer to Unified Power Format (UPF) definition.

Power Aware Modeling
Verilog and VHDL both make the fundamental assumption that all logic is powered on at the
beginning of simulation and remains powered on throughout simulation. However, this
assumption is no longer true for most complex devices being designed today. In these systems,
power is typically provided to a given portion of a chip only when that part needs to function.
This involves inclusion of additional hardware to control power, save state when power is
turned off, and mediate interactions between portions of the system that are powered differently.

Power Aware simulation makes it possible to model these power management aspects of a
system in simulation, even before the power management features have been implemented in
the design. To do so, additional logic is included in the simulation model. This additional logic
does the following:

• Defines the power management architecture to be imposed on the design

• Implements the behavior of power management elements

• Adapts the behavior of the design itself to reflect changes in power

Power Aware Simulation User’s Manual, v10.2c20

Concepts for Using Power Aware Simulation
Power Aware Modeling

To run Power Aware simulation, the normal build process for constructing the simulation model
is modified so that this additional logic can be added.

Power Aware simulation provides default Verilog models for the behavior of power
management elements and the behavior of the design under active power management. The
default models are provided in your installation directory at the following location:

<install_dir>/verilog_src/upf_pack

With the model mapping capability defined in the power intent specification, you can simulate
power on/power off and retention using a model that accurately describes the power
down/power up sequence, power down/up behavior, as well as the save and restore sequence
and behavior based on actual silicon. You can use Power Aware simulation for both Register
Transfer Level (RTL), Gate-Level (GL), and mixed RTL/GL designs.

Power aware simulation involves adding power intent to the design under test, as appropriate.
For an RTL design with no power management content, this may involve inferring power
domains, retention cells, isolation cells, level shifters, and the power supply network from the
UPF power intent specification. For a GL design that has been created by a synthesis tool that
reads and implements UPF, some of the power management content may already be present,
and therefore less of the power management content may need to be inferred from the UPF
specification.

Application of power intent to the design includes addition of functionality to model the
corruption of signal values when insufficient power is provided for normal operation. It also
includes addition of functionality to model the saving and restoring of system state that will be
performed by state retention elements in the power managed system. Addition of this
functionality is done automatically as part of the preparation for power aware simulation.

It is also possible for you to construct custom models for these behaviors. Refer to
Appendix B, Model Construction for Power Aware Simulation for more information on
Power Aware modeling.

Modeling Corruption
Corruption refers to the change of a signal from its current value to a corrupted value when a
power domain is insufficiently powered to operate correctly in a given mode.

Corruption refers to the situation where the value of a signal becomes unpredictable when the
power supply for the element driving that signal is disconnected, changes to OFF, or drops
below some threshold. Corruption of a signal is represented by assigning a particular value to
the signal. The corruption value depends upon the type of the signal and is user-definable.
Corruption is typically applied to the drivers of signals and will propagate to all sinks of the
signal that have not been isolated from their source.

Concepts for Using Power Aware Simulation
Power Aware Modeling

Power Aware Simulation User’s Manual, v10.2c 21

When a design instance is turned off, every sequential element within the powered-down
instance and every signal driven from within the powered-down instance is corrupted. As long
as the power remains off, no additional activity takes place within the powered down instance—
all processes within the powered down instance become inactive, regardless of their original
sensitivity list. Events that were scheduled before the power was turned off and whose target is
inside a powered down instance have no effect.

When a design instance is turned on (restored), corruption of sequential elements and signals
within the powered down element ends.

Continuous assignments once again become sensitive to changes to their right-hand side
expressions, and other combinational processes (such as an always_comb block in
SystemVerilog) resume their normal sensitivity list operation. All continuous assignments and
other combinational processes are evaluated at power up to ensure that constant values and
current input values are properly propagated. Sequential elements will be re-evaluated on the
next clock cycle after power up.

Corruption Values
Signals are corrupted by assigning them their default initial value (such as X for 4-state types).
Default corruption values for Verilog and SystemVerilog are:

• 4-state logic types: ‘X

• 2-state logic types: ‘0

• SystemVerilog user-defined types: SystemVerilog default value

Default corruption values for VHDL are:

• Logic types: ‘X’

• Real types: 0.0

• For any type T: T`LEFT

Default Corruption Semantics
During power aware simulation, if the driver of a net is powered down, then the driver's output
is corrupted, and this corrupted value propagates to all sinks of that net.

To understand how corruption will occur in a given design, it is necessary to understand which
elements of the design represent or contain drivers.

• In RTL code, any statements involving arithmetic or logical operations or conditional
execution are interpreted as representing drivers and cause corruption when powered
down. Unconditional assignments and Verilog buf primitives do not represent drivers

Power Aware Simulation User’s Manual, v10.2c22

Concepts for Using Power Aware Simulation
Power Aware Modeling

and therefore do not cause corruption when powered down, but they may propagate
corrupted signals from upstream drivers.

• In Gate-Level code, all cell instances are interpreted as containing drivers. As a result,
buffer cell instances in a gate level netlist will cause corruption when powered down.
Refer to the section "Detection of Gate-level Cells" for information on the detection of
any particular model as a gate-level cell.

Modeling Isolation
Isolation is used to ensure correct logical and electrical interactions between a powered down
domain that is the source of a signal and a powered up domain that is the receiver of that signal.
Isolation ensures that the receiving power domain sees a stable, known logic value, while at the
same time preventing so-called "crowbar current" due to an indeterminate source value partially
enabling both transistors of a CMOS inverter at the same time.

Note
Isolation cells themselves must be powered in order to function correctly. If the power
supply for an isolation cell is turned off, the isolation output is corrupted regardless of the
state of the source power domain.

A given power domain may be powered off while another domain is operating in normal mode.
Isolation ensures the following:

• Powered-down regions do not drive unknown values into the rest of the design (isolation
on outputs).

• The rest of the design receives values that are functionally correct (isolation on inputs).

Modeling Retention
Retention consists of saving the value of a design element in a power domain prior to switching
off the power to that element, then restoring that value after power to the element is switched
back on.

The set_retention (and in UPF 1.0 set_retention_control) UPF command determines which
registers in a power domain need to be retention registers and set the corresponding save and
restore signals for the retention registers.

In UPF, you specify a retention strategy where state preservation is required:

• Latch, flip-flop, or memory retention

• Retention power supply

• Retention controls to trigger retention

Concepts for Using Power Aware Simulation
Power Aware Modeling

Power Aware Simulation User’s Manual, v10.2c 23

The general sequence for specifying retention in UPF is:

1. Define your power domains:

create_power_domain

2. Specify the retention strategy—a set of registers in the domain requiring retention:

set_retention

3. Specify the retention control signals for the strategy:

set_retention (in UPF 2.0)
set_retention_control (in UPF 1.0)

In simulation, two additional processes are added for each register that is to be retained, to
model the retention behavior:

• One is sensitive to the save signal in accordance to the save sense

• The second is sensitive to the restore signal in accordance to the restore sense.

A retention memory is also created for each sequential element that needs to be retained.

Edge-sensitive and Level-sensitive Control of Retention Models
Power Aware simulation provides default Verilog models for retention cells that support both
edge-sensitive and level-sensitive detection of input control signals for save and restore
functions. Note that there are separate models for single and dual control signals:

• Single control signal — uses opposite (inverted) edge or level of one input signal to
initiate save and restore.

• Dual control signals — uses edge or level of two different input signals to initiate save
and restore.

Automatic Model Selection

Based on the retention control signals specified in the UPF specification, Power Aware
simulation automatically selects an edge-sensitive or level-sensitive model for retention.
Automatic selection occurs according to the following conditions:

• If both save_signal and restore_signal are level-sensitive and the same signal is used for
both, the Single control, level-sensitive model is selected.

• If both save_signal and restore_signal are level-sensitive and two different signals are
used for save and restore: the Dual control, level-sensitive model is selected.

• If any control signal (save or restore) is edge-sensitive and the same signal is used for
both save and restore, the Single control, edge-sensitive model is selected.

Power Aware Simulation User’s Manual, v10.2c24

Concepts for Using Power Aware Simulation
Power Aware Modeling

• If either save_signal or restore_signal is edge-sensitive and two different signals are
used for save and restore, the Dual control, edge-sensitive model is selected.

Level-sensitive Retention Model Protocol Example

The level-sensitive model accurately duplicates the behavior of a level-sensitive Liberty cell.
Based on the save/restore level, the retention register switches between normal and retention
operations as follows:

• When save is active, normal register behavior occurs—a balloon latch keeps latching the
output of the register.

• When save is de-asserted, a balloon latch on the register output saves the register value.

• When restore is active, the saved value is retained.

• When restore is de-asserted, the retained value is loaded into the register again.

The save or restore events are defined as trailing edge of the level-sensitive event. So, for this
command, the register output is saved when save_restore goes from high to low (the save
event), and the retained value is transferred to the register output at the low to high (the restore
event) transition of the save_restore signal.

The following is an example of the protocol followed by level-sensitive model:

• In the save phase, normal register operation happens: D - > Q at clock edges. At the save
event (defined above), the register output gets latched.

• In the restore phase, D has no effect on Q, so Q gets the retained value. At the restore
event, normal operation resumes and Q will get new value of D from next active edge of
clock.

• The register output gets corrupted when the primary power or retention power goes off.

• On primary power-up (and also if retention power is on), retention behavior or normal
behavior of the register resumes.

• Retention power off corrupts the register output and the retained value, regardless of the
primary power.

• For dual control signals, the retained value and register value both get corrupted when
save and restore signals are simultaneously active.

Modeling Bias
Power Aware simulation provides support for bias modes that allow for state retention in a
different manner. In the power intent specification, you can specify bias power states of the
primary supply of a power domain to simulate bias functionality. When you use a bias mode,
the power domain is powered on but running with reduced functionality. Depending upon the

Concepts for Using Power Aware Simulation
Power Aware Modeling

Power Aware Simulation User’s Manual, v10.2c 25

particular bias mode involved, activity inside the domain may corrupt the contents of the
domain.

Implementing a bias mode performs retention behavior without inserting explicit retention
registers. This saves in area usage and also helps to reduce the leakage power. However, the
electrical characteristics of the domain during this period prohibit normal logic functioning and
thus timing requirements may not be met.

Power Aware Simulation User’s Manual, v10.2c26

Concepts for Using Power Aware Simulation
Power Aware Modeling

Power Aware Simulation User’s Manual, v10.2c 27

Chapter 3
Power Aware Simulation

Inputs Required for Power Aware Simulation . 27

Commands Used For Power Aware Simulation . 27

Power Aware Simulation Flows . 28

Working with Liberty Libraries. 35

PDU-Based Simulation . 37

Power Aware Simulation Debug. 38

Applying Power Intent to the Design . 39

Inputs Required for Power Aware Simulation
Power aware simulation requires a complete HDL representation of the design, including
simulation models for leaf-level instances. The HDL representation may be expressed in
Verilog, SystemVerilog, or VHDL code, or any combination of these languages, and it may be
synthesizable RTL code, behavioral RTL code, Gate-Level netlist, or any combination of these
forms. Power Aware simulation supports all of the above.

For designs that are, or that include, a Gate-Level netlist, and for designs that include instances
of hard macros, a Liberty library may be available that specifies the characteristics of the
standard cells and/or hard macros used in the design. Liberty models typically include power-
related information that must be considered during power aware simulation. Power Aware
simulation reads Liberty libraries to collect this information and takes it into account in building
and executing a power aware simulation model.

Power aware simulation also requires a specification of power intent for the design to be
simulated. Power intent is specified using the IEEE 1801 Unified Power Format (UPF). Power
Aware simulation supports both UPF 1.0 and UPF 2.0.

Commands Used For Power Aware Simulation
You invoke Power Aware simulation with the same commands used for conventional
ModelSim simulation, although the optimization (vopt) and simulation (vsim) commands have
additional arguments.

For conventional ModelSim simulation, you use the following commands:

• vlog or vcom — Used to compile Verilog, SystemVerilog, or VHDL source code. For
Power Aware simulation, these commands are used in the same manner.

Power Aware Simulation User’s Manual, v10.2c28

Power Aware Simulation
Power Aware Simulation Flows

• vopt — Used to enable or disable optimization in the HDL design. For Power Aware
simulation, the vopt command also processes the UPF power intent specification.

• vsim — Used to run simulation on the HDL design. For Power Aware simulation, the
vsim command also applies Power Aware simulation semantics to the HDL design.

For a complete listing of the Power Aware arguments, beyond what is discussed in this
section, provided for these commands, refer to ModelSim Commands Used for Power
Aware.

General Steps for Running Power Aware
1. Map your libraries:

vlib <library_name>
vmap work <library_name>

2. Compile your VHDL or Verilog design files (ignore
statements within translate_off/on and synthesis_off/on
pragmas):

vcom <design_files>
vlog <design_files>

3. Elaborate your top-level design and apply the UPF power
intent to the design:

vopt <design_top> -pa_upf <upf_file> -o
<optimized_output>

There are multiple methods of using the vopt command to
prepare and optimize a Power Aware simulation..

4. Simulate the Power Aware version of your design.

vsim -pa <optimized_output>

Power Aware Simulation Flows
There are three major flows available for use with Power Aware simulation, including:

• The standard (three-step) flow, where you explicitly invoke an optimization step.

• The delayed optimization (two-step) flow, where optimization is invoked implicitly
before simulation.

• The no-optimization flow, where you do not invoke optimization either explicitly or
implicitly.

1. Map Libraries

2. Compile Design
Files

3. Elaborate Design

4. Simulate

Power Aware Simulation
Power Aware Simulation Flows

Power Aware Simulation User’s Manual, v10.2c 29

The first two flows are strongly recommended. The optimization step used in these flows,
whether invoked explicitly or implicitly, provides the following advantages for power aware
simulation:

• Dramatically better performance for Power Aware simulation of RTL designs.

• Support for Power Aware simulation of Gate-Level and Mixed RTL/Gate-Level
designs.

• More robust support for isolation of arbitrary SystemVerilog data types.

• Visualization of isolation and level-shifter cells in dataflow and schematic windows.

• Power management objects in structure, waveform, and object windows.

• Support for coverage data collection for power states and transitions and power aware
checks.

• Support for user-defined power aware assertions using the UPF bind_checker command.

• Automatic power aware testplan generation.

The no-optimization flow is not recommended, except for certain very specific applications that
do not yet support the optimized flows. One such application is the use of Power Aware
simulation together with Questa ADMS.

Using the Standard Flow
This section describes the three-step standard command flow used to perform Power Aware
simulation for RTL, Gate-level, or mixed RTL/Gate-level designs. This flow consists of the
following sequence of operations:

1. Compile

2. Optimize

3. Simulate

Compile
Compile your design by running either the vcom (for VHDL) or the vlog (for Verilog)
command as you would for any VHDL or Verilog/SystemVerilog design.

Note
Do not use the -novopt argument with either vcom or vlog when you compile for Power
Aware simulation.

For more information on using vcom, refer to “Compiling a VHDL Design—the vcom
Command” in the User’s Manual.

Power Aware Simulation User’s Manual, v10.2c30

Power Aware Simulation
Power Aware Simulation Flows

For more information on using vlog, refer to “Invoking the Verilog Compiler” in the User’s
Manual.

Usage

vcom <files>
vlog <files>

Optimize
After you compile the design, use the vopt command with the following arguments:

-pa_top (optional) Specifies the hierarchical name of the design top instance. If
unspecified, the default is the topmost instance of the design hierarchy.

-pa_upf Specifies the name of the UPF file containing the power intent specification.
Power Aware simulation reads the UPF file and generates information
required to run Power Aware simulation.

-pa_lib (optional) Specifies a destination library in which the power aware
information will be stored. Note that you must use the vlib command to
creates the library, then use the library name as the value for this argument. If
unspecified, the default is the work library.

-o Specifies the name for the resultant optimized design.

Note that you can also specify any other vopt arguments for conventional optimization to create
the optimized design. This sequence is similar to the conventional three-step optimization flow.

You can write the UPF power intent specification in one of two ways: either with respect to the
top of the design-under-test (DUT), or with respect to the top of the testbench (TB). If the UPF
specification is written with respect to the DUT top, then you must specify vopt –pa_top
<pathname> to specify the path from the top module down to and including the DUT instance.

Example 1

If the UPF specification is written with respect to the top of the design-under-test (DUT), and
this module is instantiated in the testbench top module TB as TB.dut, then you need to invoke
vopt as follows:

vopt TB –pa_top TB/dut -pa_lib work –pa_upf DUT.upf -o SimModel [other
vopt args]

where

• TB — the name of the top-level module of the test bench.

• -pa_top TB/dut — the path from the test bench top down to the design top instance.

• -pa_upf DUT.upf — the name of the UPF file written with respect to the DUT top-level
module.

Power Aware Simulation
Power Aware Simulation Flows

Power Aware Simulation User’s Manual, v10.2c 31

• -pa_lib work — the name of the destination library.

• -o SimModel — the name of the optimized output for your vsim run.

• [other args] — any other vopt arguments used to control optimization.

Example 2

If the UPF specification is written with respect to the top of the testbench (TB), then you need to
invoke vopt as follows:

vopt TB_top –pa_upf TB.upf -pa_lib work –o SimModel [other vopt args]

where

• TB_top — the name of the top-level module of the test bench.

• -pa_upf TB.upf — the name of the UPF file written with respect to TB_top.

• -pa_lib work — the name of the destination library.

• -o SimModel — the name of the simulation-ready output file to be generated.

• [other vopt args] — any other vopt arguments used to control optimization.

Usage Notes

Power Aware simulation involves register/latch detection in order to identify state elements in
the design that need to be corrupted and may need to have their state retained during power
down. However, your design may contain code that is not at the appropriate level of abstraction
for register/latch detection, so you may need to exclude such code from power intent
processing. Also, you may want to exclude parts of the design from Power Aware simulation for
other reasons (see “Excluding Design Elements from Power Aware” in Appendix A).

ModelSim provides additional vopt arguments for Power Aware simulation that you can use
when generating the optimized design. For more information on these arguments, refer to the
section “ModelSim Commands Used for Power Aware”.

A simulation model created for Power Aware simulation contains specific Power Aware
simulation artifacts and cannot be used for normal simulation.

Simulate
After you compile and optimize the design, run the vsim command on the optimized design
using the -pa argument to perform Power Aware simulation.

-pa Enables PA simulation, including features for gate-level simulation.

-pa_lib (optional) Instructs Questa SIM to load Power Aware information from the
specified library. If unspecified, defaults to the current directory.

Power Aware Simulation User’s Manual, v10.2c32

Power Aware Simulation
Power Aware Simulation Flows

Example

vsim SimModel -pa -pa_lib work [other vsim args]

where

• SimModel — the name of the simulation-ready output file generated by vopt.

• -pa — invokes simulation in Power Aware mode.

• -pa_lib work — loads power aware information from library work.

• [other vsim args] — any other vsim arguments used to control simulation.

Using the Delayed Optimization Flow
This section describes the two-step, delayed optimization command flow used to perform
Power Aware simulation for RTL, Gate-Level, or mixed RTL/Gate-Level designs. This flow
consists of the following sequence of operations:

1. Compile

2. Simulate

In conventional simulation, you can perform what is referred to as a two-step optimization flow.
In this flow, you do not use the -o argument for vopt, so that optimization is delayed until you
invoke the vsim command, at which point it is done implicitly.

Note
This delayed optimization flow is also supported for Power Aware simulation. This flow
may be useful in certain cases, such as automated scripts that assume only two steps are
involved in building and running a simulation.

Compile

Compile your design by running either the vcom (for VHDL) or the vlog (for Verilog)
command as you would for any VHDL or Verilog/SystemVerilog design.

Note
Do not use the -novopt argument with either vcom or vlog when you compile for Power
Aware simulation.

For more information on using vcom, refer to “Compiling a VHDL Design—the vcom
Command” in the User’s Manual.

For more information on using vlog, refer to “Invoking the Verilog Compiler” in the User’s
Manual.

Power Aware Simulation
Power Aware Simulation Flows

Power Aware Simulation User’s Manual, v10.2c 33

Usage

vcom <files>
vlog <files>

Simulate

To implement simulation for this flow, run the vsim command on the test bench using the -pa
argument, along with the -voptargs argument (specifying a UPF file) to invoke Power Aware
simulation. When you invoke vsim on the test bench top module, it implicitly performs UPF
processing and optimizes the design before beginning the Power Aware simulation.

Example

vsim TB_top -pa
-voptargs=”-pa_upf test.upf -pa_lib work [other vopt args]”
[other vsim args]

where

• TB_top — is the name of the top-level module of the test bench.

• -pa — invokes simulation in Power Aware mode.

• -voptargs — instructs Questa SIM to apply arguments for the vopt command. For this
flow, specify the following vopt arguments:

o -pa_upf <filename> — to cause vopt to apply the power intent specification.

o -pa_lib work — the name of the destination library.

o [other vopt args] — any other vopt arguments used to control UPF processing or
optimization.

• [other vsim args] — any other vsim arguments used to control simulation.

Using the No-Optimization Flow
In conventional simulation, you can perform simulation without optimizing the design at all.
This no-optimization flow is also supported for Power Aware simulation.

In this flow, the vopt step is still performed, but only to process the UPF specification; you do
not use the -o argument for vopt, so optimization is not performed until you invoke the vsim
command, use the -novopt argument to prevent implicit optimization from being performed for
the simulation session.

Note
This flow is not recommended for use except for certain very specific applications that
do not yet support the optimized flows. One such application is the use of Power Aware
simulation together with Questa ADMS.

Power Aware Simulation User’s Manual, v10.2c34

Power Aware Simulation
Power Aware Simulation Flows

Compile

Compile your design by running either the vcom (for VHDL) or the vlog (for Verilog)
command as you would for any VHDL or Verilog/SystemVerilog design.

For more information on using vcom, refer to “Compiling a VHDL Design—the vcom
Command” in the User’s Manual.

For more information on using vlog, refer to “Invoking the Verilog Compiler” in the User’s
Manual.

Usage

vcom <files>
vlog <files>

Process UPF

After you compile your design, run the vopt command on the test bench top with the -pa_upf
argument and TB.upf but without the -o argument, to process the UPF power intent
specification and apply it to the design. You must also specify the
-pa_enable=nonoptimizedflow option. Power Aware simulation reads and processes the UPF
file without generating an optimized output.

Example

vopt TB_top –pa_upf TB.upf -pa_lib work -pa_enable=nonoptimizedflow [other
vopt args]

where

• TB_top — the name of the top-level module of the test bench.

• -pa_upf TB.upf — the name of the UPF specification written with respect to the test
bench top-level module.

• -pa_lib work — the name of the destination library.

• -pa_enable=nonoptimizedflow — required for any flow using -novopt

• [other vopt args] — any other vopt arguments used to control UPF processing or
optimization.

Simulate

After you have compiled your design and processed the UPF file, run the vsim command on the
test bench using the -pa and -novopt arguments to invoke Power Aware simulation with no
optimization on the design.

Example

vsim TB_top -pa -novopt -pa_lib work [other vsim args]

Power Aware Simulation
Working with Liberty Libraries

Power Aware Simulation User’s Manual, v10.2c 35

where

• TB_top — is the name of the top-level module of the test bench.

• -pa — invokes simulation in Power Aware mode.

• -novopt — instructs ModelSim to disable optimization.

• -pa_lib work — the name of the destination library.

• [other vsim args] — any other vsim arguments used to control simulation.

Working with Liberty Libraries

Liberty Library Models
Liberty libraries define standard cells and macro cells that can be used in a system. Liberty
models include information that defines how power supplies provided to instances of such cells
are used to power logic receiving inputs or driving outputs of those cell instances. Liberty
models also include other information pertaining to power management cells.

The information contained in a Liberty library may be of use in both RTL and Gate-Level
simulations as well as in mixed RTL/GL simulations. For example, Liberty models of hard
macros may be of use in applying power intent to the RTL portion of a design, and information
about standard cells in a Liberty library may be of use in applying power intent to the gate-level
portion of a design.

Power Aware simulation uses the information present in the Liberty library to create proper
connection of the supplies and the control signals that are defined in the UPF power intent
specification. Power Aware simulation also uses such information to assist in automatic
recognition of power management cells that are present in a design.

Liberty libraries can be preprocessed to extract power-related information into a database that
can be used during UPF processing in preparation for power aware simulation. This
preprocessing step enables most efficient use of Liberty libraries when the same library will be
used many times. Liberty libraries can also be read directly during the UPF processing step for a
single simulation run.

Using Liberty Files with vopt
You can specify one or more Liberty files to use with the vopt command with the
-pa_libertyfiles argument. By default, using Liberty files creates an internal database in which
power-related data extracted from a Liberty library is stored.

You can control how this database is used with the following vopt arguments:

Power Aware Simulation User’s Manual, v10.2c36

Power Aware Simulation
Working with Liberty Libraries

• -pa_dumplibertydb

• -pa_libertyupdate

• -pa_libertyrefresh

• -pa_loadlibertydb

Creating and Saving a Liberty Database
Use the vopt command to parse the Liberty files and create a saved database containing
information extracted from the Liberty files that will be used in power aware simulation.

Note that you can specify multiple files with the -pa_libertyfiles argument by separating file
names with a comma.

vopt –pa_libertyfiles=a.lib,b.lib -pa_dumplibertydb=lib_db

where:

• -pa_libertyfiles — specifies the Liberty files to read.

• -pa_dumplibertydb — specifies the name of the Liberty database to be saved for future
use.

Using a Previously Created Liberty Database
Use the vopt command again with other Power Aware arguments to include information from a
previously created Liberty database in the UPF processing for a design.

vopt design_top -pa_upf compile.upf -pa_lib work -pa_loadlibertydb=lib_db
[other vopt args]

where

design_top the name of the top-level module of the test bench.

-pa_upf compile.upf the name of the UPF file written with respect to the design top
module.

-pa_lib work the name of the destination library.

-pa_loadlibertydb the name of the Liberty database from which to load
information.

Using Liberty Files Directly
Liberty files can also be read in directly when processing UPF power intent, without creating a
database first.

Power Aware Simulation
PDU-Based Simulation

Power Aware Simulation User’s Manual, v10.2c 37

The following command

vopt design_top -pa_upf compile.upf -pa_lib work -
pa_libertyfiles=a.lib,b.lib

analyzes a.lib and b.lib files and creates an internal database for these libraries. This internal
database is used for Liberty data in a Power Aware analysis; the internal database is deleted at
the end of the vopt run.

Updating a Liberty Database
If a Liberty database already exists for a Liberty library, you can replace the existing database
with a new one using the -pa_libertyupdate argument.

Assuming that a Liberty database has been created already at location /home/user/libdbs/LVT
for Liberty files a.lib, b.lib, the command:

vopt -pa_libertyfiles=a.lib,b.lib -pa_dumplibertydb=/home/user/libdbs/LVT
-pa_libertyupdate

which analyzes a.lib and b.libb files again and overwrites the previous database with a new one.
This can be used when a .lib file has been edited to correct an error and needs to be reprocessed.

Refreshing a Liberty Database
If a Liberty database has been created already with a previous version of Power Aware
simulation, the database can be modified to work with a later version of Power Aware
simulation by using the -pa_libertyrefresh argument.

vopt design_top -pa_upf compile.upf -pa_lib work -pa_loadlibertydb=lib_db
-pa_libertyrefresh [other vopt args]

This will refresh 'lib_db' to be used with current version of ModelSim.

PDU-Based Simulation
In conventional simulation, it is often desirable to optimize the design-under-test (DUT)
separately from the test bench, so that you can use the same optimized DUT model (pre-
optimized design unit, or PDU) with multiple test benches. You can also apply this approach to
run Power Aware simulation, provided that the DUT appears at the same location in each test
bench.

To use this approach, include the -pa_defertop argument on the vopt command (in the three-
step, standard flow) or in the -voptargs argument to vsim (in the two-step, delayed optimization
flow). For example,

vopt DUT_top -pa_defertop -pa_upf DUT.upf [other vopt args]

Power Aware Simulation User’s Manual, v10.2c38

Power Aware Simulation
Power Aware Simulation Debug

where

• DUT_top — specifies the name of the top-level module of the design under test.

• -pa_defertop — specifies that the location of the DUT will be defined later.

• -pa_upf DUT.upf — specifies the name of the UPF file written with respect to the DUT
top-level module.

• [other vopt args] — any other vsim arguments used to control simulation.

Then in simulation, include the -pa_top argument on the vsim command, for example:

vsim TB_top -pa_top <DUT_path> -pa [other vsim args]

where

• TB_top — is the name of the top-level module of the test bench.

• -pa_top <DUT_path> — is the path from the test bench top to the design top instance.

• -pa — invokes simulation in Power Aware mode.

• [other vsim args] — any other vsim arguments used to control simulation.

Limitations

Only one module can be specified as a PDU with -pa_top in a given simulation.

Power Aware Simulation Debug
This section provides additional information on setting up yhour Power Aware simulation for
post-sim debug.

Capturing Information for Post-simulation Debug
Power Aware simulation allows you to create a database of information that for analyzing the
results after completion of a live simulation.

This is most useful when you need to debug a power aware simulation that has been run in a
regression setup or another situation where you are not able to debug a live simulation.

The database contains information that allows you to perform supply network debugging and
information for colorizing power information in the Dataflow window.

To create the post-simulation debug database, use the -pa_enable=supplynetworkdebug
option on the vopt command (in the three-step, standard flow) or in the -voptargs argument to
the vsim command (in the two-step, delayed optimization flow), for example:

Power Aware Simulation
Applying Power Intent to the Design

Power Aware Simulation User’s Manual, v10.2c 39

vopt top –pa_upf top.upf –o DebugOut -pa_enable=supplynetworkdebug
[other vopt args]

Then, when you run simulation, add the -pa_debugdir <directory> option, which creates the
necessary debug information for you to access post-simulation, for example:

vsim -pa_debugdir padebug -pa DebugOut -do “log -r /*; run -all”

After simulation has completed, load the WLF file and debug database to perform any debug
activities on the results:

vsim -view vsim.wlf -pa_debugdir padebug -pa

Debugging Designs Containing Liberty Cells
To enable debugging of designs containing Liberty cells, you need to specify the location of the
Liberty library file(s) and you also need to specify the -debugdb argument as part of the vopt
command. For example:

vopt -libertyfiles=a.lib,b.lib -debugdb

This enables schematic viewing and causality analysis using Liberty logic cell definitions.

Note
You can also enable debugging and schematic viewing by setting the
MTI_LIBERTY_PATH environment variable to the directory location containing
Liberty library source (.lib) files prior to running the vopt step.

Applying Power Intent to the Design
When you run a mixed RTL and gate-level design through the power aware flow the following
steps are performed automatically:

1. Detect gate-level cells in the mixed netlist and perform the application of corruption
based on the corresponding UPF strategies.

2. Detect the power aware cells in the design and match them with corresponding UPF
strategies at that point in the design and run and flag power aware checks to report the
valid cases and error out for anomalous cases.

3. Insert power aware cells wherever required by the corresponding UPF strategy and not
already present in the netlist.

4. Detect UDPs and apply corruption and retention based on the corresponding UPF
strategy.

Power Aware Simulation User’s Manual, v10.2c40

Power Aware Simulation
Applying Power Intent to the Design

Detection of Gate-level Cells
Power Aware simulation automatically treats a module as a gate-level cell if either of these
conditions are satisfied:

• the module contains the `celldefine attribute

• the module contains the specify block

Corruption will only occur on the output ports of any detected gate-level cells. For RTL cells
the standard processing of driver-based corruption still occurs.

In some cases, you may not want this flow to corrupt certain cells. For example, PAD cells of
buffer cells which might be written with a `celldefine attribute in the design. There may be
other cases where you don’t want a cell to be treated as a gate-level cell, but would rather have
driver-based corruption on the modules. For these instances, you can specify the
upf_is_leaf_cell attribute along with set_design_attributes command for the specific module

Detection of Power Management Cells
Power Aware simulation automatically detects isolation, level-shifter and retention cells in the
netlist and infers them for any corresponding UPF strategies. Power Aware simulation will then
validate the cells, with respect to strategies in the UPF, and run power aware check on them.

Gate-level netlists may have some of the power management cells (isolation, level-shifter, or
retention) corresponding to the UPF strategy already instantiated in the netlist. Some of these
cells may already be specified as a value for the –instance argument of the set_isolation,
set_level_shifter, or set_retention commands of the UPF strategy in UPF file.

For the rest of the cells that are not specified in the UPF file, Power Aware simulation
automatically detects the right UPF strategy to which they belong and treats them in a similar
way to cells of that strategy specified with an -instance argument.

Auto detection of power management cells leverages the following information for:

• Liberty attributes

o is_isolation_cell

o is_level_shifter

o retention_cell

• lib_cells specified with the following UPF commands:

o map_isolation_cell

o map_level_shifter cell

• Arguments for the UPF name_format command

Power Aware Simulation
Applying Power Intent to the Design

Power Aware Simulation User’s Manual, v10.2c 41

o -level_shift_prefix

o -level_shift_suffix

o -isolation_prefix

o -isolation_suffix

• Synopsys pragmas

o isolation_upf

o retention_upf

Reports

The cells detected as an instance of some strategy are reported in report.upf.txt, for example:

Power Domain: A, File: ./src/case1/test.upf(11).
 Creation Scope: /tb/dut
 ...
 Isolation Strategy: ISO1, File: ./src/case1/test.upf(22).
 Isolation Supplies:
 power : /tb/dut/VDD_0d99
 ground : /tb/dut/VSS_0d99
 Isolation Control (/tb/dut/restore), Isolation Sense (HIGH), Clamp
Value (0), Location (fanout)
 Signals with -instance isolation cells:
 1. Signal : /tb/dut/instA/out, isolation cell :
/tb/dut/iso_1_UPF_ISO

Messages

When Power Aware simulation is unable to detect the UPF strategy of an isolation/level-shifter
cell, Power Aware simulation semantics are disabled and the cell is treated as always ON. The
following message is displayed:

** Warning: (vopt-9768) Power aware simulation semantics disabled for
’/tb/dut/instA/ls_0_UPF_LS’ as its power aware strategy could not be
identified.

For a cell identified as a retention cell, Power Aware simulation flags a warning if the cell is
also identified as a level-shifter or isolation cell. Power Aware simulation then processes it as
either a retention or an isolation/level-shifter cell, and the following message is displayed:

** Warning: UPF: (vopt-9823) Power aware cell ’/tb/dut/iso_1’ identified
as both ’isolation’ cell and ’retention’ cell. Assuming it to be a
’isolation’ cell

Power Aware Simulation User’s Manual, v10.2c42

Power Aware Simulation
Applying Power Intent to the Design

Automatic Insertion of Power Management Cells
Power Aware simulation inserts power management cells (level-shifter, isolation, and retention)
into the netlist based on UPF strategy commands. You can selectively disable each type of
insertion with the following vopt arguments:

• -pa_disable=insertiso — to disable isolation cell insertion

• -pa_disable=insertls — to disable level_shifter cell insertion

• -pa_disable=insertret — to disable retention cell insertion

For pure gate-level designs in which all isolation, level shifting, and retention cells are already
all present, and therefore none of these cells need to be inserted, the following vopt argument
can be used as a shorthand:

• -pa_gls — equivalent to:
-pa_disable=insertiso -pa_disable=insertls -pa_disable=insertret

Automatic Corruption and Retention of UDPs
Power Aware simulation detects sequential UDPs in the design and applies corruption or
retention behavior based on the corresponding UPF strategies.

This functionality is not supported in the no-optimization flow. In that flow, a warning will be
issued if there is any sequential UDP in the design.

UDP Corruption and Retention Modes
This section defines different modes of operation of the retention and corruption logic for
sequential UDPs in a gate-level or mixed RTL and gate-level simulation. These modes describe
the functionality of different sequential UDPs introduced to mimic corruption and retention
behavior.

• Save mode (single control) — Occurs when save is active.

• Save mode (dual control) — Occurs when save is active and restore is inactive.

• Restore mode (single control) — Occurs when save is inactive.

• Restore mode (dual control) — Occurs when save is inactive and restore is active.

• Error mode (dual control) —When the UPF set_retention parameter SAV_RES_COR
is true the output of the register and the retained value of the register are both corrupted
if the save and restore both are active and save_condition and restore_condition are
true. This occurs only when neither the save signal nor the restore signal are edge
sensitive.

Power Aware Simulation
Applying Power Intent to the Design

Power Aware Simulation User’s Manual, v10.2c 43

• No change mode (dual control) —Occurs when save and restore are both inactive. In
this case, the register is neither in save nor in restore mode. Therefore, the behavior
would be as if it is a normal register with no retention facility present.

Note
User defined models specified using the map_retention_cell command will not be
honored for sequential UDP retention. However the RTL portion of design will follow
the user defined model simulation semantics given with map_retention_cell command.

Limitations

• Power Aware simulation is unable to determine whether retention logic is already
present in a sequential UDP and therefore routinely inserts retention logic for such
UDPs. Use the UPF set_retention command with the -instance <inst_name> option to
avoid application of retention semantics to UDPs that already include retention logic.

• Power Aware simulation is unable to determine whether a UDP is power aware--that is,
whether the UDP references supply ports and corrupts its outputs based on the values of
those supply ports. Consequently Power Aware simulation assumes that all UDPs are
not power aware and routinely applies corruption on UDP logic.

• Power Aware simulation is unable to process sequential UDPs that involve multiple
clocks.

Power Aware Simulation User’s Manual, v10.2c44

Power Aware Simulation
Applying Power Intent to the Design

Power Aware Simulation User’s Manual, v10.2c 45

Chapter 4
Power Aware Reports

You can use the vopt and pa report commands in a two-step process to generate reports for a
Power Aware simulation run, and then examine them to validate the application of the power
intent on your design.

This flow generates power aware reports containing the following:

• The intent of the low-power defined in the power specification file.

• For UPF, either static or dynamic information on the current Power Aware simulation
(including connections to supply and ground nets). See UPF Reports.

• Any additions you may need to make to the specification file to achieve correct Power
Aware functionality. For example, certain sections of the design that are non-
synthesizable (such as a test bench) should not be inside a power domain. The report
may suggest that you put this section of the design inside an always-on power domain.

• Behavioral constructs that must be in an always-on power domain.

Generating Reports for Power Aware
You can use different values with the -pa_genrpt argument of vopt to generate a variety of
Power Aware data for the reports. Table 4-1 lists the values for -pa_genrpt and their
corresponding reports for UPF.

Power Aware reports are generated in two steps:

1. Use the vopt command with the following options:

o -pa_genrpt — generates the necessary information.

o -pa_reportdir — (optional) changes the default location of where the reports are
written.

2. Use the pa report command from the vsim prompt to write out the reports.

How to Generate a Report with vopt -pa_genrpt
Syntax

vopt -pa_genrpt=[[nv | v][+{ud | us | u}][+b][+pa][+de]]

Power Aware Simulation User’s Manual, v10.2c46

Power Aware Reports
UPF Reports

Note
For additional reference information on the -pa_genrpt argument, refer to the vopt
command in the ModelSim Reference Manual.

Description

• The -pa_genrpt argument generates data for the report files listed in Table 4-1 .

• If you do not specify a value for the -pa_genrpt argument, all data is generated.

• To specify more than one reporting value for -pa_genrpt, use the plus sign (+) operator
between values. For example:

vopt -pa_genrpt=nv+us+de

• When you execute the pa report command to write out the reports, the default location is
the current working directory. To change the location where report files are saved, add
the following argument to your vopt command:

vopt -pa_reportdir <pathname>

UPF Reports
If you are using a UPF file for your Power Aware analysis, you can generate the data for the
following reports by specifying values for vopt -pa_genrpt described in Table 4-1:

• UPF Power Intent Report (report.mpsa.txt)

• UPF Static Report (report.upf.txt)

• Static Checking UPF Reports (report.static.txt, report.nretsyncff.txt)

• Dynamic UPF Report (displayed in transcript window)

• Architecture Report (report.pa.txt)

• Design Elements Report (report.de.txt)

Table 4-1. Generating UPF Reports for Power Aware

Report Type vopt
-pa_genrpt=

Description Report Output

Power Intent:
Non-verbose
(default)

nv Displays a count of the Power Aware
elements in the design with respect to
power domains, along with additional
information on power intent. This is the
default if you do not specify nv or v.

report.mpsa.txt

Power Aware Reports
UPF Reports

Power Aware Simulation User’s Manual, v10.2c 47

UPF Power Intent Report
Report Output: report.mspa.txt

Command: vopt -pa_genrpt=nv | v

This report file contains information related to the power intent that has been applied on your
design. File contents are structured according to power domains and provide hierarchical path
names of the signals and instances that are affected by the power intent. This report also

Power Intent:
Verbose

v Displays the hierarchical path of
individual Power Aware elements.

report.mpsa.txt

Dynamic ud Includes time and polarity of controls
(such as control port of a power switch,
retention save and restore signals,
isolation enable signal), plus Power
Domain Status in the form of
<Power Domain name>,
<Strategy name>,
<Control signal names>,
<Active Sense>,
<Current polarity value>.

Transcript window
(no file)

Static us Includes power domains and their
supplies, power switches, retention,
isolation, level-shifting strategies, and
power state tables.

report.upf.txt

Dynamic and
Static

u Combined dynamic and static
reporting.

Transcript window
(dynamic)
report.upf.txt
(static)

Bitwise
expanded port
data

b Writes bitwise expanded information
for isolated and level shifted ports.

report.upf.txt

Architecture pa Lists all information related to the
Power Aware architecture in the
design.

report.pa.txt

Design
Elements

de Contains information on power design
elements in the design.

report.de.txt

Isolation Cell
Information

u+c Dumps hierarchical path of isolation
cells placed for a candidate port.

report.upf.txt

Table 4-1. Generating UPF Reports for Power Aware (cont.)

Report Type vopt
-pa_genrpt=

Description Report Output

Power Aware Simulation User’s Manual, v10.2c48

Power Aware Reports
UPF Reports

contains the count of retention and non-retention cells. The report.mspa.txt file does not report
on objects/hierarchy/instances that are excluded from Power Aware.

1 Total (tb)
2 upf_retention_ret # 2
3 NPM_FF # 1
4 NPM_LA # 3
5 OUTPUT # 3
6 pd sub_total (/tb/top_vh /tb/top_vl)
7
8 upf_retention_ret # 2
9 /tb/top_vh/q_regvh 1
10 /tb/top_vl/q_regvl 1
11
12 NPM_LA # 2
13 /tb/top_vh/q_latvh 1
14 /tb/top_vl/q_latvl 1
15
16 OUTPUT # 2
17 /tb/top_vh/q_combvh 1
18 /tb/top_vl/q_combvl 1

• Line 1 — The keyword Total followed by the top design module specified in
parentheses.

• Lines 2 - 5 — A consolidated count of all the types of cells in the design, in the format:

<CELL_TYPE> # <Count>

where CELL_TYPE could be any of the following:

o NPM_FF — Represents non-power management flip-flops or corrupt flip-flops,
which do not have retention associated with them. During simulation, they get
corrupted only when power domain is switched off.

o NPM_LA — Represents non-power management latches or corrupt latches, which
do not have retention behavior associated with them. During simulation, they get
corrupted only when power domain is switched off.

o OUTPUT — Represents combinatorial logic that belong to the power domain.
During simulation, they get corrupted only when power domain is switched off.

o USER_DEFINED — For any user-defined retention models, the names of the model
will be printed.

• Line 6 — After the consolidated counts, all the power domains are then listed in the
following format:

<PD_NAME> sub_total (<Instance hierarchial path> …)

The instance hierarchical paths indicate those instances that contain objects affected by
the current power domain.

• Line 8 — The individual CELL_TYPEs for that power domain.

Power Aware Reports
UPF Reports

Power Aware Simulation User’s Manual, v10.2c 49

• Lines 9-10 — The hierarchical paths of objects belonging to those CELL_TYPEs are
then listed with the individual count. These lines only appear in verbose mode
(-pa_genrpt=v)

Example of UPF File and Power Intent Report
Example 4-1 shows an excerpt from a UPF specification file that defines power domains,
supply ports, switching behavior, retention strategy, and isolation strategy.

Example 4-2 shows an excerpt of a power intent report.

Example 4-1. UPF File Excerpt

upf_version 1.0

set_scope tb
create_power_domain pd_aon -include_scope
create_supply_port vdd_port -domain pd_aon
create_supply_port gnd_port -domain pd_aon
create_supply_net vdd_net -domain pd_aon
create_supply_net gnd_net -domain pd_aon
connect_supply_net vdd_net -ports { vdd_port }
connect_supply_net gnd_net -ports { gnd_port }
set_domain_supply_net pd_aon -primary_power_net vdd_net -
primary_ground_net gnd_net

#####################
#pd Power Domain
#####################
create_power_domain pd -elements { top_vl top_vh }
create_supply_port V_pd_port -domain pd
create_supply_port G_pd_port -domain pd
create_supply_net V_pd_net -domain pd
create_supply_net G_pd_net -domain pd
create_supply_net pd_pwr -domain pd
######################################
connect supply ports to supply nets
######################################
connect_supply_net V_pd_net -ports { V_pd_port }
connect_supply_net G_pd_net -ports { G_pd_port }
set_domain_supply_net pd -primary_power_net pd_pwr -
primary_ground_net G_pd_net
######################################
Header switch for pd
######################################
create_power_switch pd_sw \
 -domain pd \
 -output_supply_port { out_sw_pd pd_pwr } \
 -input_supply_port { in_sw_pd V_pd_net } \
 -control_port { ctrl_sw_pd pwr } \
 -on_state { normal_working in_sw_pd { ctrl_sw_pd } } \
 -off_state { off_state {!ctrl_sw_pd} }
###############################
Retention Strategy for pd
###############################

Power Aware Simulation User’s Manual, v10.2c50

Power Aware Reports
UPF Reports

set_retention pd_retention -domain pd -retention_power_net
V_pd_net
set_retention_control pd_retention -domain pd -save_signal { ret posedge }
-restore_signal { ret negedge }
map_retention_cell pd_retention -domain pd -lib_model_name
upf_retention_ret -lib_cell_type FF_CKHI

###############################
isolation Strategy for pd
###############################
set_isolation pd_isolation -domain pd -isolation_power_net
V_pd_net -clamp_value 1 -applies_to outputs
set_isolation_control pd_isolation -domain pd -isolation_signal iso
-isolation_sense high -location parent

Example 4-2. UPF Power Intent Report

----- QuestaSim Power Aware Report File -----

Total (tb)

 upf_retention_ret # 2

 NPM_FF # 1

 NPM_LA # 3

 OUTPUT # 3

pd sub_total (/tb/top_vh /tb/top_vl)

 upf_retention_ret # 2
 /tb/top_vh/q_regvh 1
 /tb/top_vl/q_regvl 1

 NPM_LA # 2
 /tb/top_vh/q_latvh 1
 /tb/top_vl/q_latvl 1

 OUTPUT # 2
 /tb/top_vh/q_combvh 1
 /tb/top_vl/q_combvl 1

pd_aon sub_total (/tb/top_aon)

 NPM_FF # 1
 /tb/top_aon/q_regvl 1

 NPM_LA # 1
 /tb/top_aon/q_latvl 1

 OUTPUT # 1
 /tb/top_aon/q_combvl 1

Power Aware Reports
UPF Reports

Power Aware Simulation User’s Manual, v10.2c 51

-- NPM_FF => Denotes all Non Power Management Flip Flops of a Power
Domain.
-- NPM_LA => Denotes all Non Power Management Latches of a Power Domain.

UPF Static Report
Report Output: report.upf.txt

Command: vopt -pa_genrpt={us | u}[+b]

The UPF static report typically contains the information that was specified in the specification
file and how Power Aware simulation has processed that information. You can use this report to
statically validate the power intent (specified by UPF) and check whether it is properly applied.

This report file contains information regarding the power domain, power supplies, power
switches and their characteristics, retention, isolation and level-shifter strategies and
information regarding the power states and power state tables (PSTs).

Specifying a value of b writes bitwise expanded information for isolated and level-shifted ports
into this report file.

Note
The content and structure of this report is same as that of report.pa.txt and includes all
objects that are either added or modified by applying power intent to the design.

The following sections are described in the section about report.pa.txt:

• Power Domain (including supplies)

• Power Switch (including supplies)

• Retention Strategy (including supplies)

• Isolation Strategy(including supplies)

• Level Shifter Strategy

• Power State Tables (PSTs)

Example of UPF Static Report File

Example 4-3. Example File for Static UPF Reporting (report.upf.txt)

----- Questa Power Aware UPF Report File -----

Power Domain: pd, File: ./src/supply1_prefix/test.upf(7).

Creation Scope: /tb/top
Primary Supplies:

power : /tb/top/pd_pwr

Power Aware Simulation User’s Manual, v10.2c52

Power Aware Reports
UPF Reports

ground : /tb/top/G_pd_net
Power Switch: pd_sw, File: ./src/supply1_prefix/test.upf(35).

Output Supply port:
out_sw_pd(/tb/top/pd_pwr)

Input Supply ports:
1. in_sw_pd1(/tb/top/V_pd_net1)
2. in_sw_pd2(/tb/top/V_pd_net2)

Control Ports:
1. ctrl_sw_pd1(/tb/top/pwr1)
2. ctrl_sw_pd2(/tb/top/pwr2)

Switch States:
1. normal_working2(ON) : ((ctrl_sw_pd2 && !ctrl_sw_pd1))
2. normal_working1(ON) : ((ctrl_sw_pd1 && !ctrl_sw_pd2))
3. off_state(OFF) : ((!ctrl_sw_pd1 && !ctrl_sw_pd2))

Retention Strategy: pd_retention, File: ./src/supply1_prefix/test.upf(39).
Retention Supplies:

power : /tb/top/V_pd_net
ground : /tb/top/G_pd_net

Retention SAVE (/tb/top/ret), Retention Sense (posedge)
Retention RESTORE (/tb/top/ret), Retention Sense (negedge)

Isolation Strategy: pd_isolation, File: ./src/supply1_prefix/test.upf(45).
Isolation Supplies:

power : /tb/top/V_pd_net
ground : /tb/top/G_pd_net

Isolation Control (/tb/top/iso), Isolation Sense (HIGH), Clamp Value (1),
Location (parent)

Isolated Signals:
1. Signal : /tb/top/q_combvl
2. Signal : /tb/top/q_latvl
3. Signal : /tb/top/q_regvl

Level Shifter Strategy: pd_ls, File: ./src/supply1_prefix/test.upf(51).
Rule (both), Threshold (0), Applies_to (both), Location (automatic).
Level Shifted Candidate Ports:

1. Signal : /tb/top/q_combvl
2. Signal : /tb/top/q_latvl
3. Signal : /tb/top/q_regvl
4. Signal : /tb/top/set
5. Signal : /tb/top/reset
6. Signal : /tb/top/clk
7. Signal : /tb/top/d
8. Signal : /tb/top/iso
9. Signal : /tb/top/ret
10. Signal : /tb/top/pwr2
11. Signal : /tb/top/pwr1

Static Checking UPF Reports
Report Output: report.static.txt

Command: vopt -pa_checks=s

In Power Aware, you can perform a static check of the design using the power intent specified
in the UPF file.

• report.static.txt — The pa report command generates this text file if you used the
-pa_checks argument to perform static checks.

For Static checking, Power Aware simulation verifies the design for the defined power intent
without doing actual simulation. This static analysis uses the power intent definition to report
any missing power-related information or inconsistencies. Because a simulation run is not

Power Aware Reports
UPF Reports

Power Aware Simulation User’s Manual, v10.2c 53

required, you only need to run vopt to perform static checking. Results from static checking are
written to the report.static.txt report file.

Report Output: report.nretsyncff.txt

Command: vopt -pa_checks=npu

This report file is generated only when you specify vopt -pa_checks=npu. It contains a list of
hierarchical paths of those flip-flops in the design that do not have an asynchronous control
signal.

Dynamic UPF Report
Report Output: Transcript window

Command: vopt -pa_genrpt={ud | u}[+b]

Specifying a value of ud or u displays dynamic UPF information to the Transcript window.

The dynamic report display includes time and polarity of controls (such as control port of a
power switch, retention save and restore signals, isolation enable signal), plus Power Domain
Status in the form of:

<Power Domain name>, <Strategy name>, <Control signal names>, <Active Sense>,
<Current polarity value>

Specifying a value of b for this argument (vopt -pa_genrpt=ud+b) includes bitwise expanded
information for isolated and level-shifted ports.

Example of UPF Dynamic Report

** Note: (vsim-8916) MSPA_UPF_RET_CTRL_INFO: Time: 15 ns, Retention
Strategy (PD_BOT_retention), Retention SAVE (/tb/ret_bot_reg), Retention
Sense (posedge), switched to polarity (1). Power Domain: PD_BOT

** Note: (vsim-8902) MSPA_PD_STATUS_INFO: Time: 20 ns, Power domain
’PD_BOT’ is powered down.

** Note: (vsim-8913) MSPA_UPF_SWITCH_CTRL_INFO: Time: 20 ns, Power
Switch (PD_BOT_sw), Control Signal (/tb/pg_bot), switched to polarity
 (0), Power Switch state (OFF). Power Domain: PD_BOT

** Note: (vsim-8902) MSPA_PD_STATUS_INFO: Time: 35 ns, Power domain
’PD_BOT’ is powered up.

** Note: (vsim-8913) MSPA_UPF_SWITCH_CTRL_INFO: Time: 35 ns, Power
Switch (PD_BOT_sw), Control Signal (/tb/pg_bot), switched to polarity
 (1), Power Switch state (ON). Power Domain: PD_BOT

** Note: (vsim-8916) MSPA_UPF_RET_CTRL_INFO: Time: 40 ns, Retention
Strategy (PD_BOT_retention), Retention RESTORE (/tb/ret_bot_reg),
Retention Sense (negedge), switched to polarity (0). Power Domain:
PD_BOT

Power Aware Simulation User’s Manual, v10.2c54

Power Aware Reports
UPF Reports

** Note: (vsim-8914) MSPA_UPF_ISO_CTRL_INFO: Time: 65 ns, Isolation
Strategy (PD_BOT_isolation), Isolation Control (/tb/iso_bot), Isolation
Sense (HIGH), switched to polarity (1). Power Domain: PD_BOT
** Note: (vsim-8902) MSPA_PD_STATUS_INFO: Time: 70 ns, Power domain
’PD_BOT’ is powered down.

** Note: (vsim-8913) MSPA_UPF_SWITCH_CTRL_INFO: Time: 70 ns, Power
Switch (PD_BOT_sw), Control Signal (/tb/pg_bot), switched to polarity
 (0), Power Switch state (OFF). Power Domain: PD_BOT
** Note: (vsim-8902) MSPA_PD_STATUS_INFO: Time: 85 ns, Power domain
’PD_BOT’ is powered up.

** Note: (vsim-8913) MSPA_UPF_SWITCH_CTRL_INFO: Time: 85 ns, Power
Switch (PD_BOT_sw), Control Signal (/tb/pg_bot), switched to polarity
 (1), Power Switch state (ON). Power Domain: PD_BOT

** Note: (vsim-8914) MSPA_UPF_ISO_CTRL_INFO: Time: 90 ns, Isolation
Strategy (PD_BOT_isolation), Isolation Control (/tb/iso_bot), Isolation
Sense (HIGH), switched to polarity (0). Power Domain: PD_BOT

Architecture Report
Report Output: report.pa.txt

Command: vopt -pa_genrpt=pa

This report contains information related to Power Aware architecture that results from the
power intent defined in the UPF file, as applied to the design being simulated. The content and
structure of this report is same as that of report.upf.txt and includes all objects that are either
added or modified by applying power intent to the design.

This report file contains information regarding the following:

• Power Domain (including supplies)

• Power Switch (including supplies)

• Retention Strategy (including supplies)

• Isolation Strategy(including supplies)

• Level Shifter Strategy

• Power State Tables (PSTs)

Power Domain
The power domains are listed under the “Power Domain” section of the report. This section
contains the name of the power domain and the reference to the UPF file that contains the UPF
command that created the power domain. All the other characteristics are listed in the following
lines shifted by a tab space and starting with the property name (such as Creation Scope,
Primary Supplies, Retention Strategy).

Power Aware Reports
UPF Reports

Power Aware Simulation User’s Manual, v10.2c 55

UPF Command for Power Domain

create_power_domain pd -include_scope

Report File Sections and Subheadings

1 Power Domain: pd, File: ./src/supply1_prefix/test.upf(7)
2 Creation Scope: /tb/top
3 Primary Supplies:

power : /tb/top/pd_pwr
ground : /tb/top/G_pd_net

4 Supply Set handles:
1. dummy_ss_handle: < Anonymous >
2. primary: /tb/ss

Functions:
1. power : /tb/snet_pwr
2. ground : < Anonymous >

5 Supply Set handles:
1. primary: /tb/my_second_ss, Ref Gnd: /tb/gnd_net

Functions:
1. power : /tb/vdd_net

Where the sections contain the following information:

• Section 1 — Defines the power domain.

• Section 2 — Specifies the full hierarchical path of the creation scope.

• Section 3 — Specifies the primary supplies of the power domain. When a power domain
is not connected to a primary supply, a warning message, similar to the following, is
displayed and that domain is treated as always-on:

** Warning: test.upf(7): (vopt-9665) Power domain: 'pd' created in
scope '/top_vl' doesn't have a primary power/ground supply. Ignoring
it.

• Section 4 — Specifies supply set handles associated with the power domain. This
provides the names of all handles and the absolute hierarchical path of the supply set
associated with them.

The supply set functions are listed below the handle name as well as the individual
functions and associated supply nets.

Note
If a handle is left unassociated with a supply set or supply net, the report will display
<Anonymous> in the relevant field.

• Section 5 — Shows an example of the reference ground specified in the supply set.

Power Switch
The power switches associated with the power domain are listed in this section of the report.
This listing contains the name of the power switch and the reference to the UPF source file

Power Aware Simulation User’s Manual, v10.2c56

Power Aware Reports
UPF Reports

where that switch was created. All the output and input supply ports are listed, followed by
control ports and the switch states mentioned in the UPF file.

UPF Command for Power Switch

create_power_switch pd_sw \
-domain pd \
-output_supply_port { out_sw_pd pd_pwr } \
-input_supply_port { in_sw_pd1 V_pd_net1 } \
-input_supply_port { in_sw_pd2 V_pd_net2 } \
-control_port { ctrl_sw_pd1 pwr1 } \
-control_port { ctrl_sw_pd2 pwr2 } \
-on_state { normal_working1 in_sw_pd1 { (ctrl_sw_pd1 && !ctrl_sw_pd2) } } \
-on_state { normal_working2 in_sw_pd2 { (ctrl_sw_pd2 && !ctrl_sw_pd1) } } \
-off_state { off_state { (!ctrl_sw_pd1 && !ctrl_sw_pd2) } }

Report File Sections and Subheadings

1 Power Switch: pd_sw, File: test.upf(35).
2 Output Supply port:

out_sw_pd(/tb/top/pd_pwr)
3 Input Supply ports:

1. in_sw_pd1(/tb/top/V_pd_net1)
2. in_sw_pd2(/tb/top/V_pd_net2)

4 Control Ports:
1. ctrl_sw_pd1(/tb/top/pwr1)
2. ctrl_sw_pd2(/tb/top/pwr2)

5 Switch States:
1. normal_working2(ON) : ((ctrl_sw_pd2 && !ctrl_sw_pd1))
2. normal_working1(ON) : ((ctrl_sw_pd1 && !ctrl_sw_pd2))
3. off_state(OFF) : ((!ctrl_sw_pd1 && !ctrl_sw_pd2))

6 Switch Instances:
1. /tb/dut/SW_INST_1
2./tb/dut/SW_INST_2

Where the sections contain the following information:

• Section 1 — Port information, appears in the format of:

<formal_port_name> (<externally_connected_net>)

• Section 2 — Displays the output supply port of the switch

• Section 3 — Displays the input supply ports.

• Section 4 — Displays the control ports.

• Section 5 — Displays the states of the switch, listing each state in the following format:

<state_name> (<switch state>): <Boolean_expression>

• Section 6 — Displays the switch instances in the design associated with the UPF switch
command. This information is dependent upon specification of the -pa_enable=detectsw
argument.

Power Aware Reports
UPF Reports

Power Aware Simulation User’s Manual, v10.2c 57

Retention Strategy
Report information for the retention strategies is listed under this heading followed by the name
of the strategy and the reference to the UPF source file where the strategy was created.

UPF Commands for Retention

set_retention pd_retention -domain pd -retention_power_net V_pd_net

set_retention_control pd_retention -domain pd -save_signal { ret posedge }
-restore_signal { ret negedge }

Report File Sections and Subheadings

1 Retention Strategy: pd_retention, File: test.upf(39).
2 Retention Supplies:

power : /tb/top/V_pd_net
ground : /tb/top/G_pd_net

3 Retention SAVE (/tb/top/ret), Retention Sense (posedge)
Retention RESTORE (/tb/top/ret), Retention Sense (negedge)

4 Retained Signals:
1. Scope: /tb/top_vh, File: reg_vh.vhdl(12)

Model: Default UPF Retention
1. /tb/top_vh/q_regvh
2. /tb/top_vh/q_latvh

2. Scope: /tb/top_vl, File: reg_vl.v(1)
Model: Default UPF Retention

1. /tb/top_vl/q_regvl
2. /tb/top_vl/q_latvl

Where the sections contain the following information:

• Section 1 — Defines the retention strategy

• Section 2 — Specifies the retention supplies, listing the full hierarchical path of the
supply nets.

• Section 3 — Specifies the retention control signals and the retention sense.

• Section 4 — Specifies signals that have retention applied.

Isolation Strategy
Report information for the isolation strategy is listed under this heading followed by the name
of the strategy and the reference to the UPF source file where the strategy was created.

UPF Commands for Isolation

set_isolation pd_isolation -domain pd -isolation_power_net V_pd_net
-clamp_value 1 -applies_to outputs

set_isolation_control pd_isolation -domain pd -isolation_signal iso
-isolation_sense high -location parent

Power Aware Simulation User’s Manual, v10.2c58

Power Aware Reports
UPF Reports

Report File Sections and Subheadings

1 Isolation Strategy: pd_isolation, File: test.upf(45).
2 Isolation Supplies:

power : /tb/top/V_pd_net
ground : /tb/top/G_pd_net

3 Isolation Control (/tb/top/iso), Isolation Sense (HIGH),
Clamp Value (1), Location (parent)

4 Isolated Signals:
1. Signal : /tb/top/q_combvl
2. Signal : /tb/top/q_latvl
3. Signal : /tb/top/q_regvl

Where the sections contain the following information:

• Section 1 — Header information about the isolation strategy.

• Section 2 — Specifies the isolation supplies with the full hierarchical path name of the
supply nets.

• Section 3 — Provides additional information related to the isolation strategy,
specifically:

o Isolation Control — The control signal triggering the isolation clamp value.

o Isolation Sense — The sense of the control signal at which the clamp value is
applied on the isolated port.

o Clamp Value — The clamp value specified.

o Location — The location specified in the isolation strategy.

• Section 4 — Specifies a list of candidate ports for isolation with full hierarchical path
names of the port.

Level Shifter Strategy
The information regarding the level shifter strategy is specified under this heading followed by
the strategy name and UPF file reference.

UPF Command for Level Shifting

set_level_shifter pd_ls -domain pd -applies_to both

Report File Sections and Subheadings

1 Level Shifter Strategy: pd_ls, File: test.upf(51).
2 Rule (both), Threshold (0), Applies_to (both), Location (automatic).
3 Level Shifted Candidate Ports:

1. Signal : /tb/top/q_combvl
2. Signal : /tb/top/q_latvl
3. Signal : /tb/top/q_regvl
4. Signal : /tb/top/set
5. Signal : /tb/top/reset
6. Signal : /tb/top/clk

Power Aware Reports
UPF Reports

Power Aware Simulation User’s Manual, v10.2c 59

7. Signal : /tb/top/d

Where the sections contain the following information:

• Section 1 — Header information about the level-shifter strategy.

• Section 2 — Information related to the level shifting strategy, including the following:

o Rule — Shift Direction.

o Threshold — Threshold value in volts.

o Applies_to — The value of the -applies_to argument specified in the
set_level_shifter command.

o Location — The location specified with the set_level_shifter command.

• Section 3 — A list of candidate ports for level shifting with full hierarchical path names
of the port.

Power State Tables (PSTs)
Report information for power state tables (PST) is listed under the heading Pst.

UPF Command for Power State Table

add_port_state PD_ALU_sw/out_sw_PD_ALU \
-state {s_state 2.2}\
-state {r_state 3.2}\
-state {o_state 4.2}\
-state {off_state off}

add_port_state PD_RAM_sw/out_sw_PD_RAM \
-state {ram_s 3.8 4.2 4.8 }\
-state {ram_r 5.2}\
-state {ram_o 6.2}\
-state {off_state off}

create_pst MyPowerStateTable -supplies {PD_ALU_primary_power
PD_RAM_sw/out_sw_PD_RAM}
add_pst_state Reboot -pst MyPowerStateTable -state {s_state ram_s}
add_pst_state Sleep -pst MyPowerStateTable -state {r_state ram_s}
add_pst_state Hibernate -pst MyPowerStateTable -state {r_state ram_r}
add_pst_state Complete_on -pst MyPowerStateTable -state {o_state ram_o}

Report File Sections and Subheadings

1 Pst MyPowerStateTable, File:prototype.upf(80).
2 Scope => /tb
3 Header ==> : PD_ALU_primary_power PD_RAM_sw/out_sw_PD_RAM

Reboot prototype.upf(84): s_state ram_s
Sleep prototype.upf(85): r_state ram_s
Hibernate prototype.upf(86): r_state ram_r
Complete_on prototype.upf(87): o_state ram_o

4 List of possible states on:
PD_ALU_primary_power [source supply port: out_sw_PD_ALU,

Power Aware Simulation User’s Manual, v10.2c60

Power Aware Reports
UPF Reports

File:prototype.upf(12)]
1. o_state: 4.20
2. r_state: 3.20
3. s_state: 2.20

out_sw_PD_RAM [source supply port: out_sw_PD_RAM,
File:prototype.upf(65)]

1. ram_s : 3.80,4.20,4.80
2. ram_r : 5.20
3. ram_o : 6.20
4. off_state: OFF

Where the sections contain the following information:

• Section 1 — Header information about the level-shifter strategy.

• Section 2 — Specifies the hierarchical path of the scope where the PST is created.

• Section 3 — Specifies hierarchical paths of the supply nets/ports that form the columns
of the PST. The hierarchical paths are relative to the Scope of the PST.

The lines that follow contain the rows of the PST as mentioned in the UPF and the
corresponding states of the supply nets/ports mentioned in the PST header. At the end, a
list of all possible states present on the objects mentioned in the header is shown. This
includes detailed information of the states listed with the voltage information.

• Section 4 — Specifies a list of all possible states present on the objects mentioned in the
header. The detailed information of the states is listed with the voltage information as
well. This information is similar to what was specified in the corresponding
add_port_state UPF command. The source supply port mentioned in brackets ([]) is the
name of the supply port on which the add_port_state command is called or its the supply
net/port which is directly connected to the port on which add_port_state command was
called. The UPF file reference corresponds the file and line number of the
add_port_state command.

Sample Power Architecture Report

----- QuestaSim Power Aware Architecture Report File -----

-- QuestaSim Version: DEV-main 2294369 2011.01
-- Generated on : Tue Jan 25 09:37:28 2011

-- This report file contains information about all
-- the Power Aware Architecture elements in the design.
--

Power Domain: pd_aon, File: test.upf(4).
Creation Scope: /tb
Primary Supplies:

power : /tb/vdd_net
ground : /tb/gnd_net

Power Domain: pd, File: test.upf(16).
Creation Scope: /tb

Power Aware Reports
UPF Reports

Power Aware Simulation User’s Manual, v10.2c 61

Primary Supplies:
power : /tb/pd_pwr
ground : /tb/G_pd_net

Power Switch: pd_sw, File: test.upf(37).
Output Supply port:

out_sw_pd(/tb/pd_pwr)
Input Supply ports:

1. in_sw_pd(/tb/V_pd_net)
Control Ports:

1. ctrl_sw_pd(/tb/pwr)
Switch States:

1. normal_working(ON) : (ctrl_sw_pd)
2. off_state(OFF) : (!ctrl_sw_pd)

Retention Strategy: pd_retention, File: test.upf(41).
Retention Supplies:

power : /tb/V_pd_net
ground : /tb/G_pd_net

Retention SAVE (/tb/ret), Retention Sense (posedge)
Retention RESTORE (/tb/ret), Retention Sense (negedge)
Retained Signals:

1. Scope: /tb/top_vh, File: reg_vh.vhdl(12)
Model: upf_retention_ret

1. /tb/top_vh/q_regvh
2. Scope: /tb/top_vl, File: reg_vl.v(1)

Model: upf_retention_ret
1. /tb/top_vl/q_regvl

Isolation Strategy: pd_isolation, File: test.upf(48).
Isolation Supplies:

power : /tb/V_pd_net
ground : /tb/G_pd_net

Isolation Control (/tb/iso), Isolation Sense (HIGH), Clamp Value (1),
Location (parent)

Isolated Signals:
1. Signal : /tb/top_vh/q_combvh
2. Signal : /tb/top_vh/q_latvh
3. Signal : /tb/top_vh/q_regvh
4. Signal : /tb/top_vl/q_combvl
5. Signal : /tb/top_vl/q_latvl
6. Signal : /tb/top_vl/q_regvl

Design Elements Report
Report Output: report.de.txt

Command: vopt -pa_genrpt=de

This report contains all the information related to elements present in user design and its
corresponding Power Aware information. The contents of this report are similar to that provided
in the report.mspa.txt file, but it is presented in a different format that makes it easier to extract
information from the report. Report information is listed in single-line records that contain
keywords indicating the specific Power Aware characteristics.

This report file contains information regarding the following:

Power Aware Simulation User’s Manual, v10.2c62

Power Aware Reports
UPF Reports

• Design Element Scopes and Power Domains

• Corrupted Signals

• State Elements

• Retention Signals

Design Element Scopes and Power Domains
This information identifies the extent of power domains, such that all scopes in the design
belonging to a particular power domain are listed in this report.

Format

The report format for listing domains, scopes, and elements is the following:

<power_domain>: {Path<N>} = scope <element> [SIM] [<>]

where:

• <power_domain> — identifies the name of the power domain. When <power_domain>
is represented by two dashes (--) it indicates that the <element> was excluded using
exclusion rules.

• Path<N> — identifies the hierarchical path of the scope in the rest of the report.

• scope — keyword that identifies that this line is a design element scope (to assist in
using a grep search).

• <element> — identifies the full hierarchical path of the design element (its scope).

• SIM — (optional) keyword that identifies a power domain referring to simulation-only
elements (such as processes, always blocks, or signals).

• <> — (optional) identifies a scope that is present at the power domain boundary.

Example: Excerpt of UPF Commands

set_scope tb
create_power_domain pd_aon -include_scope
create_power_domain pd -elements {top_vl top_vh}

Example: Design Elements Report Excerpt for Scopes and Power Domains

pd_aon: {Path1} = scope /tb/top_aon
pd: {Path2} = scope /tb/top_vh <>
pd: {Path3} = scope /tb/top_vl <>

Power Aware Reports
UPF Reports

Power Aware Simulation User’s Manual, v10.2c 63

Corrupted Signals
The signals inside the power domain corrupted when the supply of the power domain is
switched off.

Format

The report format for listing corrupted signals is the following:

<power_domain>: {Path<N>}/<signal>

where

• <power_domain> — identifies the name of the power domain. When <power_domain>
is represented by two dashes (--) it indicates that the <signal> was excluded using
exclusion rules.

• Path<N> — identifies the hierarchical path of the scope in the rest of the report.

• <signal> — identifies the name of the signal.

Example: Design Elements Report Excerpt for Corrupted Signals

pd_aon: {Path1}/q_combvl
pd: {Path2}/q_latvh NPM_LA
pd: {Path3}/q_regvl R

State Elements
The signals in the design acting as state elements are listed in the same way as Corrupted
Signals, along with a special keyword that identifies the kind of state element.

Format

The report format for listing corrupted signals is the following:

<power_domain>: {Path<N>}/<signal> <keyword>

where

• <power_domain> — identifies the name of the power domain. When <power_domain>
is represented by two dashes (--) it indicates that the <signal> was excluded using
exclusion rules.

• Path<N> — identifies the hierarchical path of the scope in the rest of the report.

• <signal> — identifies the name of the signal.

• <keyword> — one of the following values, indicating whether the signal is acting as a
state element or a retention element:

o NPM_LA — Non-retention Latch

Power Aware Simulation User’s Manual, v10.2c64

Power Aware Reports
UPF Reports

o NPM_FF — Non-retention Flip-Flop

o MEM — Non-retention Memory

o UDP_LA — Non-retention UDP Latch

o UDP_FF — Non-retention UDP Flip-Flop

o R — Retention element

o <no keyword> — Combinatorial logic

Example: Design Elements Report Excerpt for State Elements

pd: {Path3}/q_combvl
pd: {Path3}/q_regvl R
pd: {Path3}/q_latvl NPM_LA
pd_aon: {Path1}/q_regvl NPM_FF

Retention Signals
The signals in the design performing retention behavior are marked with a special keyword R
after the signal name.

The signals in the design performing retention behavior are listed in the same way as Corrupted
Signals, along with the keyword R after the signal name.

Format

The report format for listing corrupted signals is the following:

<power_domain>: {Path<N>}/<signal> R

where

• <power_domain> — identifies the name of the power domain. When <power_domain>
is represented by two dashes (--) it indicates that the <signal> was excluded using
exclusion rules.

• Path<N> — identifies the hierarchical path of the scope in the rest of the report.

• <signal> — identifies the name of the signal.

• R — indicates a retention signal.

Example: Excerpt of UPF Commands

set_retention pd_retention -domain pd -retention_power_net V_pd_net

set_retention_control pd_retention -domain pd -save_signal { ret posedge }
-restore_signal { ret negedge}

Power Aware Reports
UPF Reports

Power Aware Simulation User’s Manual, v10.2c 65

Example: Design Elements Report Excerpt for Retention Signals

pd: {Path3}/q_regvl R
pd: {Path2}/q_regvh R

Working With A Design Element Report

General Information

The name of the report and other information are presented as commented text at the top of the
report. Comments are marked with double hyphens (--) at the beginning of a line. For example:

--
----- Questa Sim Power Aware Design Element Report File -----
--
-- QuestaSim Version: DEV-10.0 2238002 2010.11
-- Generated on : Mon Nov 22 13:44:03 2010
--

Extracting Information from a Design Element Report

The structure and keywords of a Power Aware design element report allow you to extract the
information related to power intent easily and effectively using any string matching utility, such
as the grep command.

The following examples show how to use the grep command to extract specific details of your
power intent.

List all instances in the design belonging to a power domain

Function: Search all scopes belonging to power domain pd_aon.

Command:

grep pd_aon report.de.txt | grep scope

Output:

pd_aon: {Path1} = scope /tb/top_aon

List all retention signals in the design

Command:

grep " R" report.de.txt | grep -v "^--"

Output:

pd: {Path2}/q_regvh R
pd: {Path3}/q_regvl R

Expand the Path Id

Command:

grep "{Path2} =" report.de.txt

Power Aware Simulation User’s Manual, v10.2c66

Power Aware Reports
UPF Reports

Output:

pd: {Path2} = scope /tb/top_vh <>

Search a particular signal for power intent

Command 1:

grep "/tb/top_vh\>" report.de.txt

Output 1:

pd: {Path2} = scope /tb/top_vh <>

Command 2:

grep "{Path2}/q_regvh" report.de.txt

Output 2:

pd: {Path2}/q_regvh R

(implies that /tb/top_vh/q_regvh is a retention register inside power domain pd)

Identify instances at power domain boundary

Command:

grep "<>" report.de.txt

Output:

pd: {Path2} = scope /tb/top_vh <>
pd: {Path3} = scope /tb/top_vl <>

Sample Power Aware Design Element Report

--
----- QuestaSim Power Aware Design Element Report File -----
--
-- QuestaSim Version:
-- Generated on :
--
-- This report file contains PA information about all the elements in user
-- design.

pd_aon: {Path1} = scope /tb
pd_aon: {Path2} = scope /tb/top_aon
pd: {Path3} = scope /tb/top_vh <>
--: {Path4} = scope /tb/top_vl <>

pd_aon: {Path1}/tie_high_low
pd_aon: {Path1}/q_combaon
pd_aon: {Path1}/q_latchaon
pd_aon: {Path1}/q_regaon

Power Aware Reports
Behavioral Element Reporting

Power Aware Simulation User’s Manual, v10.2c 67

pd_aon: {Path1}/q_combvh
pd_aon: {Path1}/q_latchvh
pd_aon: {Path1}/q_regvh
pd_aon: {Path1}/q_combvl
pd_aon: {Path1}/q_latchvl
pd_aon: {Path1}/q_regvl
pd_aon: {Path1}/ret
pd_aon: {Path1}/iso
pd_aon: {Path1}/pwr
pd_aon: {Path1}/set
pd_aon: {Path1}/rst
pd_aon: {Path1}/clk
pd_aon: {Path1}/d
pd_aon: {Path2}/q_combvl
pd_aon: {Path2}/q_regvl NPM_FF
pd_aon: {Path2}/q_latvl NPM_LA
pd: {Path3}/q_combvh
pd: {Path3}/q_regvh R
pd: {Path3}/q_latvh NPM_LA
--: {Path4}/q_combvl
--: {Path4}/q_regvl R
--: {Path4}/q_latvl NPM_LA

Behavioral Element Reporting
Use the -pa_behavlogfile argument to generate a report on behavioral constructs in the design
that need to be in an always-on power domain.

Usage

vopt -pa_behavlogfile=<filename>

Description

This argument creates a report, filename, of all the non-synthesizable constructs found in
design. This report allows you to identify all the constructs that have to be put in an always-on
power domain.

The format for the constructs of this argument is the following:

I: hierarchical path of instance (for non-synthesizable instances)

P: hierarchical path of block process/always/initial (for non-synthesizable
process/always/initial blocks)

S: hierarchical path of signals (for signals (writers) falling in non-synthesizable
unnamed process/always/initial block)

Example Excerpt from a Behavioral Log File

S : /top/out
P : /top/l1
P : /top/l2

Power Aware Simulation User’s Manual, v10.2c68

Power Aware Reports
Behavioral Element Reporting

S : /top/out
I : /top/bot

Power Aware Simulation User’s Manual, v10.2c 69

Chapter 5
Automatic Checking

This chapter describes how to perform static and dynamic checking as part of Power Aware
simulation. To implement either mode of checking, use the -pa_checks argument of the vopt
command. This argument takes on a variety of values, which are listed and described in the
following sections:

• Static Checking in Power Aware

• Dynamic Checking in Power Aware

• Implementing Checking at Gate Level

Note
You can enable all power aware checks (static and dynamic) by specifying the
-pa_checks=all argument.
You can enable all dynamic power aware checks by specifying the -pa_checks=d
argument or -pa_checks without any argument.
You can enable all static power aware checks by specifying the -pa_checks=s argument.

Static and Dynamic Checking Overview
This section provides an overview of static and dynamic checking for level shifters and
isolation.

Level Shifter Checking
A level shifter cell is present in the design description if a set_level_shifter -instance command
in your UPF file identifies that cell in the design description as a level shifter cell.

A level shifter cell is implied by a level shifting strategy if the set_level_shifter command
exists with the appropriate options for the appropriate power domain.

• Level shifting is statically required for a power domain crossing if the source and sink
domains can be both powered on at the same time and the difference between the
maximum voltages exceeds a certain threshold.

• Level shifting is dynamically required for a power domain crossing if the source and
sink domains are both powered on at the same time and the difference between the
maximum voltages exceeds a certain threshold.

The direction of a level shifter must be:

Power Aware Simulation User’s Manual, v10.2c70

Automatic Checking
Static Checking in Power Aware

• high_to_low — if the maximum voltage powering the source domain is higher than the
maximum voltage powering the sink domain.

• low_to_high — if the maximum voltage powering the source domain is lower than the
maximum voltage powering the sink domain.

Isolation Checking
An isolation cell is present in the design description if a set_isolation -instance command in
your UPF file identifies that cell in the design description as an isolation cell.

An isolation cell is implied by an isolation strategy if a set_isolation command exists with the
appropriate options for the appropriate power domain.

• Isolation is statically required for a power domain crossing if the source domain can be
off when the sink domain is on.

• Isolation is dynamically required for a power domain crossing if the source domain is
off when the sink domain is on.

Static Checking in Power Aware
The -pa_checks argument enables static checking to validate the behavior of power intent and
specification in the designs. The values you specify for the -pa_checks argument activate static
checking of signals for the power conditions: Static Isolation Checks and Static Level Shifter
Checks.

The static checking functionality does the following:

• Displays a vopt summary related to all the checks performed and the result.

• Generates a detailed report file (report.static.txt) containing the result of static checks in
the following formats:

o Domain-wise dumping — all the ports are identified and collected with respect to
connectivity between power domains.

o Level-shifter-strategy-wise dumping — the same information displayed with respect
to individual level shifting strategy. It helps to correlate easily with the list of
candidate ports dumped in the UPF report file, report.upf.txt.

For all static (isolation or level-shifter) checks, Power Aware simulation analyzes any specified
Power State Tables (PSTs) and power states added on power domains and supply sets in the
UPF file. The purpose of this is to detect the power domain relative OFF/ON condition and
relative operating voltages.

If state dependencies between two connected power domains are not present in
PST/add_power_state, then Power Aware simulation cannot determine power domain relative

Automatic Checking
Static Checking in Power Aware

Power Aware Simulation User’s Manual, v10.2c 71

ON/OFF states statically. In this case, static isolation checking will report isolation strategies as
“Not Analyzed.”

Table 5-7 shows a quick-reference comparison of static and dynamic checks.

Usage Notes for Static Checking
The -pa_checks argument of the vopt command has numerous possible values that you can
assign to enable either dynamic or static checking for Power Aware simulation.

• For a quick listing of all values, refer to Table A-1.

• For additional reference information, refer to the vopt command in the ModelSim
Reference Manual.

• For a listing of static and dynamic checks according to elements defined for a given
power domain, refer to Table 5-7.

• To specify more than one value, use the plus (+) operator between values, for example:

vopt -pa_checks=sni+sdi

Related Topics

Debugging Static Checks
You can perform debugging on static checking for isolation or level shifters by using the vopt
-pa_dbgstatic command. The available values determine the debugging behavior performed, as
described below.

• -pa_dbgstatic=rsn

Power Aware simulation appends information at the end of a report following the phrase
“Possible reason” to help determine the cause of the check. Report file example
(report.static.txt):

Inferred type:’Not inserted’[count: 1],
Source port : /tb/TOP/bot4/bot5/out1_bot [connected mask: "1"]
[LowConn] { Domain: pd_bot } -> Sink port: /tb/TOP/bot4/out1_bot
[connected mask: "0001"] [HighConn] { Domain: pd_top }
 Possible reason:’Level shifter is specified as -no_shift’

• -pa_dbgstatic=msk

Captures the connection mask of the signal taken in a particular path. For example, if
there is a vector taking a different path, the phrase “connected mask” provides

Voltage Level-Shifting (Multi-Voltage
Analysis)

Modeling Isolation

Power Aware Simulation User’s Manual, v10.2c72

Automatic Checking
Static Checking in Power Aware

information about which bits are used in connecting the particular source and sink.
Report File example (report.static.txt):

Inferred type:’Incorrect’[count: 0],
Source port : /tb/TOP/bot4/out1_bot [connected mask: "0100"]
[LowConn] { Domain: pd_aon } -> Sink port: /tb/TOP/bot4/out1_bot
[connected mask: "0100"] [HighConn] { Domain: pd_top }

Static Isolation Checks
Table 5-1 lists a summary of the various static isolation checks you can apply by specifying
different values for the vopt -pa_checks command. All static isolation check results are written
to the report file, report.static.txt.

Table 5-1. Static Isolation Checks

Check Usage Syntax Description
Example Message

Static
Missing

vopt -pa_checks=smi For domain crossings where the source domain is
relatively OFF with respect to sink domain.

Reports missing isolation cells for any isolation
strategies not specified for such crossings.

Warning: (vopt-9750) [UPF_ISO_STATIC_CHK]
Found Total 1 Missing isolation cells.

Static
Redundant

vopt -pa_checks=sri If power domain crossings occur where isolation
strategies are specified, but isolation is not required for
power domain crossing, then these strategies will be
reported as redundant.

Reports redundant isolation cells when isolation is not
required from driving power domain to sink power
domain and isolation cell is placed for the power
domain crossing.

Warning: (vopt-9750) [UPF_ISO_STATIC_CHK]
Found Total 3 Redundant isolation cells.

Static
Incorrect

vopt -pa_checks=sii Reports incorrect isolation cells when isolation is
required for power domain crossing but isolation
strategy is specified with set_isolation -no_isolation.

Warning: (vopt-9750) [UPF_ISO_STATIC_CHK]
Found Total 3 Incorrect isolation cells.

Automatic Checking
Static Checking in Power Aware

Power Aware Simulation User’s Manual, v10.2c 73

Isolation Cell Instance Checking

When you use the set_isolation -instance command in a UPF file to instantiate RTL isolation
cells, Power Aware simulation detects those cells and performs the following isolation checks
on them, reporting the information in the file report.static.txt:

• Incorrect Isolation Check

Total 1 Incorrect isolation cells.
Source power domain : PD_mid1 -> Sink power domain: PD_mid2

[Total count: 1]
1. ISO(count: 1): Candidate Port: /tb/TOP/mid1/out1_bot

[connected mask: "0001"], count:1, Isolation cell :
/tb/TOP/isoinst1_0(ISO_AND), Domain: PD_mid1,

Source port : /tb/TOP/mid1/out1_bot [connected mask:
"0001"], count:1 [LowConn] -> Sink port: /tb/TOP/mid2/in1_bot
[connected mask: "0001"], count:1 [LowConn]

• Valid Isolation

PD_mid2 [Total count: 1]

Static
Valid

vopt -pa_checks=svi Isolation is required for a power domain crossing and
valid isolation strategies are specified for domain
crossing.

Note: (vopt-9750) [UPF_ISO_STATIC_CHK] Found
Total 1 Valid isolation cells.

Static
Not
Analyzed

vopt -pa_checks=sni Reports isolation strategies as “Not analyzed” if power
state table (PST) information is not sufficient to
analyze whether isolation is required or not for input
and output power domains of an isolation strategy.

Warning: (vopt-9750) [UPF_ISO_STATIC_CHK]
Found Total 1 Not analyzed isolation cells.

Static
Not Inserted

vopt -pa_checks=sdi Reports isolation strategies as “Not inserted” when
isolation is not required for a power domain crossing
and isolation strategies specified with set_isolation
-no_isolation.

Warning: (vopt-9750) [UPF_ISO_STATIC_CHK]
Found Total 1 Not inserted isolation cells.

All Static
Isolation
Checks

vopt -pa_checks=si Perform all static isolation checks (smi, sri, sii, svi,
sni, sdi)

Table 5-1. Static Isolation Checks (cont.)

Check Usage Syntax Description
Example Message

Power Aware Simulation User’s Manual, v10.2c74

Automatic Checking
Static Checking in Power Aware

1. ISO(count: 1): Candidate Port: /tb/TOP/mid1/out1_bot
[connected mask: "0010"], count:1, Isolation cell :
/tb/TOP/isoinst1_1(ISO_AND), Domain: PD_mid1,

Source port : /tb/TOP/mid1/out1_bot [connected mask:
"0010"], count:1 [LowConn] -> Sink port: /tb/TOP/mid2/in1_bot
[connected mask: "0010"], count:1 [LowConn]

• Redundant Isolation

Total 1 Redundant isolation cells.
Source power domain : PD_mid1 -> Sink power domain: PD_mid2

[Total count: 1]
1. ISO(count: 1): Candidate Port: /tb/TOP/mid2/in1_bot

[connected mask: "0100"], count:1, Isolation cell :
/tb/TOP/isoinst2_0(ISO_AND), Domain: PD_mid2,

Source port : /tb/TOP/mid1/out1_bot [connected mask:
"0100"], count:1 [LowConn] -> Sink port: /tb/TOP/mid2/in1_bot [
connected mask: "0100"], count:1 [LowConn]

• Not Analyzed Isolation

Source power domain : PD_mid1 -> Sink power domain: PD_mid2
[Total count: 1]

1. ISO(count: 1): Candidate Port: /tb/TOP/mid2/in1_bot
[connected mask: "1000"], count:1, Isolation cell :
/tb/TOP/isoinst2_1(ISO_AND), Domain: PD_mid2,

Source port : /tb/TOP/mid1/out1_bot [connected mask:
"1000"], count:1 [LowConn] -> Sink port: /tb/TOP/mid2/in1_bot
[connected mask: "1000"], count:1 [LowConn]

Static Level Shifter Checks
You can apply various static checking functions for level shifters by using the vopt -pa_checks
command. The value you specify determines the checking function performed, as shown in
Table 5-2.

Table 5-2. Static Level Shifter Checks

Check Usage Syntax Description
Example Message

Missing
Level Shifter

vopt -pa_checks=sml Checks that if level shifter is required at domain
crossing and level shifter strategy is not specified.

** Warning: (vopt-9693) [UPF_LS_STATIC_CHK]
Found Total 1 Missing level shifters.

Automatic Checking
Static Checking in Power Aware

Power Aware Simulation User’s Manual, v10.2c 75

Incorrect
Level Shifter

vopt -pa_checks=sil Checks that if the direction of level shifters specified
for domain crossing does not match with the direction
as per voltage difference of domain crossing.
For example: domain crossing requires low_to_high
level shifter and level shifter specified is high_to_low,
then it will be reported as incorrect.

** Warning: (vopt-9693) [UPF_LS_STATIC_CHK]
Found Total 1 Incorrect level shifters.

Redundant
Level Shifter

vopt -pa_checks=srl Checks for any level shifter whose source and sink
power domains have no voltage difference, flagging
this as a redundant level shifter.

** Warning: (vopt-9693) [UPF_LS_STATIC_CHK]
Found Total 1 Redundant level shifters.

Unanalyzed
Level Shifter

vopt -pa_checks=snl Reports level shifter strategies that are not analyzed
because of insufficient information, such as when a
power state table is not specified or is incomplete.

** Warning: (vopt-9693) [UPF_LS_STATIC_CHK]
Found Total 1 Not analyzed level shifters.

Valid Level
Shifter

vopt -pa_checks=svl Indicates the valid level shifters that have matching
voltage information and proper direction of shift.
(Also, see Reporting for a Valid Level Shifter.)

** Note: (vopt-9693) [UPF_LS_STATIC_CHK]
Found Total 2 Valid level shifters

Uninserted
Level Shifter

vopt -pa_checks=sdl Reports level shifter strategies that are defined with the
set_level_shifter -no_shift command in UPF file, but
are not inserted.

Inferred type:’Not inserted’[count: 1], Source port :
/tb/TOP/bot4/bot5/out1_bot [LowConn] { Domain:
pd_bot } -> Sink port: /tb/TOP/bot4/out1_bot [
HighConn] { Domain: pd_top }

All Static
Level Shifter
Checks

vopt -pa_checks=sl Enables all static level shifter checks. Writes Static
Checks report to report.static.txt file.

All Static
Checks

vopt -pa_checks=s Enables all static level shifter and static isolation
checks.

Table 5-2. Static Level Shifter Checks (cont.)

Check Usage Syntax Description
Example Message

Power Aware Simulation User’s Manual, v10.2c76

Automatic Checking
Static Checking in Power Aware

Level Shifter Cell Instance Checking

If you have used the set_level_shifter -instance command in a UPF file to instantiate RTL level
shifter cells, Power Aware simulation will detect those cells and perform the following level
shifting checks on them (instance checking results are written to report.static.txt):

• Incorrect Level Shifter Check

Total 1 Incorrect level shifters
Source power domain : PD_mid1 -> Sink power domain: PD_mid2 [

Total count: 1]
1. LS(count: 1): Candidate Port: /tb/TOP/mid1/out1_bot [

connected mask: "0001"], count:1, level shifter cell :
/tb/TOP/lsinst1_0(ls_buf), Domain: PD_mid1,

Source port : /tb/TOP/mid1/out1_bot [connected mask:
"0001"], count:1 [LowConn] -> Sink port: /tb/TOP/mid2/in1_bot [
connected mask: "0001"], count:1 [LowConn]

• Valid Level Shifter

Total 1 Valid level shifters
Source power domain : PD_mid1 -> Sink power domain: PD_mid2 [

Total count: 1]
1. LS(count: 1): Candidate Port: /tb/TOP/mid1/out1_bot [

connected mask: "0010"], count:1, : level shifter cell :
/tb/TOP/lsinst1_1(ls_buf), Domain: PD_mid1,

Source port : /tb/TOP/mid1/out1_bot [connected mask:
"0010"], count:1 [LowConn] -> Sink port: /tb/TOP/mid2/in1_bot [
connected mask: "0010"], count:1 [LowConn]

• Redundant Level Shifter

Total 1 Redundant level shifter.
Source power domain : PD_mid1 -> Sink power domain: PD_mid2 [

Total count: 1]
1. LS(count: 1): Candidate Port: /tb/TOP/mid2/in1_bot [

connected mask: "0100"], count:1, level shifter cell :
/tb/TOP/lsinst2_0(ls_buf), Domain: PD_mid2,

Source port : /tb/TOP/mid1/out1_bot [connected mask:
"0100"], count:1 [LowConn] -> Sink port: /tb/TOP/mid2/in1_bot [
connected mask: "0100"], count:1 [LowConn]

• Not Analyzed Level Shifter

Total 1 Not Analyzed level shifters.
Source power domain : PD_mid1 -> Sink power domain: PD_mid2 [

Total count: 1]
1. LS(count: 1): Candidate Port: /tb/TOP/mid2/in1_bot [

connected mask: "1000"], count:1, level shifter cell :
/tb/TOP/lsinst2_1(ls_buf), Domain: PD_mid2,

Source port : /tb/TOP/mid1/out1_bot [connected mask:
"1000"], count:1 [LowConn] -> Sink port: /tb/TOP/mid2/in1_bot [
connected mask: "1000"], count:1 [LowConn]

Automatic Checking
Static Checking in Power Aware

Power Aware Simulation User’s Manual, v10.2c 77

Reporting for a Valid Level Shifter
• -pa_checks=svl

Indicates the valid level shifters that have matching voltage information and proper
direction of shift. Message from vopt:

** Note: (vopt-9693) [UPF_LS_STATIC_CHK] Found Total 2 Valid level
shifters

Report File dump (for the power domain): (report.static.txt)

Total 2 Valid level shifters.
Source power domain: pd_bot -> Sink power domain: pd_aon
[Total count: 1]

1. LS(count: 1): Candidate Port: /tb/TOP/bot1/out1_bot,
count:1, level shifting strategy : my_ls [PD: pd_bot],

Source port : /tb/TOP/bot1/out1_bot, count:1 [LowConn] ->
Sink port: /tb/TOP/bot2/in2_bot, count:1 [LowConn]

2. LS(count: 0): Candidate Port: /tb/TOP/bot1/out1_bot,
count:1, level shifting strategy : my_ls [PD: pd_bot],

Source port : /tb/TOP/bot1/out1_bot, count:1 [LowConn] ->
Sink port: /tb/TOP/bot3/in2_bot, count:1 [LowConn]

3. LS(count: 0): Candidate Port: /tb/TOP/bot1/out1_bot,
count:1, level shifting strategy : my_ls [PD: pd_bot],

Source port : /tb/TOP/bot1/out1_bot, count:1 [LowConn] ->
Sink port: /tb/TOP/bot4/in2_bot, count:1 [LowConn]

Source power domain: pd_aon -> Sink power domain: pd_top
[Total count: 1]

 1. LS(count: 1): Candidate Port: /tb/TOP/bot2/out1_bot,
count:1, level shifting strategy : my_ls [PD: pd_aon],

Source port : /tb/TOP/bot2/out1_bot, count:1 [LowConn] ->
Sink port: /tb/TOP/bot2/out1_bot, count:1 [HighConn]

Report File dump (for the level shifter strategy):

Total 2 Valid level shifters
Level shifting strategy: my_ls, Power domain: pd_aon

1. Candidate port: /tb/TOP/bot2/out1_bot [count: 1]
Inferred type:’Valid’[count: 1], Source port :
/tb/TOP/bot2/out1_bot [LowConn] { Domain: pd_aon } ->

Sink port: /tb/TO
P/bot2/out1_bot [HighConn] { Domain: pd_top }

Level shifting strategy: my_ls, Power domain: pd_bot
3. Candidate port: /tb/TOP/bot1/out1_bot [count: 1]

Inferred type:’Valid’[count: 0], Source port :
/tb/TOP/bot1/out1_bot [LowConn] { Domain: pd_bot } ->

Sink port: /tb/TO
P/bot4/in2_bot [LowConn] { Domain: pd_aon }

 Inferred type:’Valid’[count: 0], Source port :
/tb/TOP/bot1/out1_bot [LowConn] { Domain: pd_bot } ->

Sink port: /tb/TO
P/bot3/in2_bot [LowConn] { Domain: pd_aon }

Power Aware Simulation User’s Manual, v10.2c78

Automatic Checking
Dynamic Checking in Power Aware

Inferred type:’Valid’[count: 1], Source port :
/tb/TOP/bot1/out1_bot [LowConn] { Domain: pd_bot } ->

Sink port: /tb/TO
P/bot2/in2_bot [LowConn] { Domain: pd_aon }

Note
Sometimes, you may find the level shifter count for a particular source-to-sink path may
be 0. This happens when there is only one level shifter identified for insertion at that
boundary (even though there are multiple fanouts possible), but the value for
set_level_shifter -location is not specified as fanout. In that case, the level shifter
insertion is counted for only one of the paths, while the other paths will have level shifter
counts reported as 0.

Dynamic Checking in Power Aware
Use the -pa_checks argument of the vopt command to perform more comprehensive dynamic
rule checking to validate the behavior of power intent and specification in the designs. The
values you specify activate dynamic checking of signals for various power conditions:

• Dynamic Retention Checking

• Dynamic Isolation Checking

• Dynamic Level Shifter Checking

• Miscellaneous Dynamic Checking

o Toggle

o Control Signal Corruption Checking

o Always-On Power Domain Checking

o Power Domain Status

Table 5-7 shows a quick-reference comparison of static and dynamic checks.

Usage Notes
The -pa_checks argument of the vopt command has numerous possible values that you can
assign to enable either dynamic or static checking for Power Aware simulation.

• For a list of all values, refer to Table A-1.

• For additional reference information, refer to the vopt command in the Reference
Manual.

• For a list of static and dynamic checks according to elements defined for a given power
domain, refer to Table 5-7.

Automatic Checking
Dynamic Checking in Power Aware

Power Aware Simulation User’s Manual, v10.2c 79

• To specify more than one checking, use the plus (+) operator between values. For
example:

vopt -pa_checks=rop+cp+a

• To enable all dynamic checks, specify the -pa_checks=d argument.

Dynamic Retention Checking
You can specify any of the values in Table 5-3 to provide retention checking:

Table 5-3. Dynamic Retention Checks

Check Usage Syntax Description
Example Message

Power off vopt -pa_checks=rop Reports that there were retention signals mapped to the
power domain. However, these signals were not asserted
when the power was switched off.

Error: (vsim-8903) MSPA_RET_OFF_PSO: Time: 35
ns, Retention control (x) for the following retention
elements of power domain ’PD’ is not asserted during
power shut down:
#/tb/top/mid1/bot_latch1.
File: ./src/pa_all_checks/, Line: 2, Power Domain:PD

Power on vopt -pa_checks=rpo Reports that there was an error in the sequence of
triggering of the retention and power signal. For
retention to succeed, the power should be high.
However, this check is triggered when that is not the
case.

Error: (vsim-8904) MSPA_RET_PD_OFF: Time: 85 ns,
Power for domain: ’PD’ is not ON (0) when retention is
enabled for retention elements:
/tb/top/mid1/bot_latch1.
File: ./src/pa_all_checks/, Line: 2, Power Domain:PD

Power Aware Simulation User’s Manual, v10.2c80

Automatic Checking
Dynamic Checking in Power Aware

Clock/Latch
enable

vopt -pa_checks=rcs Certain Power Aware models require that the clock/latch
enable must be at a certain value when retention takes
place.
Reports an error when this condition is not satisfied. If
latch is enabled and can change its value, triggering
retention can potentially cause race conditions in the
stored value. This is also a check against such
conditions.

Error: (vsim-8905) MSPA_RET_CLK_STATE: Time:
85 ns, LatchEn is not at proper level: ’LOW’ (1) for the
retention element(s) of type: AHRLA of power domain:
PD.
/tb/top/mid1/bot_latch1.
File: Line: 2, Power Domain:PD

Error: (vsim-8905) MSPA_RET_CLK_STATE: Time:
207 ns, Clock is not at proper level: ’LOW’ (1) for the
retention element(s) of type: CLRFF of power domain:
PD.
/tb/top/mid1/bot_ff.
File: Line: 3, Power Domain:PD

Clock toggle vopt -pa_checks=rsa Some Power Aware models require that the clock not
toggle when the power is down. This check helps in
monitoring this condition.

Error: (vsim-PA-8906) MSPA_RET_SEQ_ACT: Time:
208 ns, clock toggled during retention period for
retention element(s):
/tb/top/mid1/bot_ff

All vopt -pa_checks=r

Table 5-3. Dynamic Retention Checks (cont.)

Check Usage Syntax Description
Example Message

Automatic Checking
Dynamic Checking in Power Aware

Power Aware Simulation User’s Manual, v10.2c 81

Dynamic Isolation Checking
Isolation checks trigger messages when a particular isolation strategy has failed or a noise has
been detected in isolating a particular hierarchy.

Table 5-4. Dynamic Isolation Checks

Check Usage Syntax Description
Example Message

Isolation
Clamp Value
Check

vopt -pa_checks=icp Ensures isolation cell is clamping to correct clamp
value specified in UPF file. Catches any functional
issue in isolation cell inserted in RTL or applied
isolation. Performed during active isolation period.

Error: (vsim-8930) MSPA_ISO_CLAMP_CHK: Time:
40 ns, Isolated port for isolation cell (strategy:
iso_PD_mid2_2) on port ’/tb/TOP/mid2/in2_bot’
having value (x) is different from clamp value (1)
during isolation period.
File: test.upf, Line: 125, Power Domain:PD_mid2

Isolation
Disable
Protocol
Check

vopt -pa_checks=idp Flags violation if isolation control of isolation
cell/strategy is disabled during power shut OFF of
source power domain (power domain of driving ports)
and sink power domain ON.

Error: (vsim-8919) MSPA_ISO_DIS_PG: Time: 250
ns, Isolation control is disabled during power shut OFF
(0) for the following:
Port: /tb/TOP/mid3/in2_bot[3:2].
File: test.upf, Line: 113, Power Domain:PD_mid3

Isolation
Enable
Protocol
Check

vopt -pa_checks=iep Flags violation if isolation control of isolation
cell/strategy is not enabled when source power domain
(power domain of driving ports) is switched OFF and
sink power domain ON.

Error: (vsim-8918) MSPA_ISO_EN_PSO: Time: 358
ns, Isolation control (0) is not enabled when power is
switched OFF for the following:
Port: /tb_25/FA4_inst/ FA_inst2/d.

Power Aware Simulation User’s Manual, v10.2c82

Automatic Checking
Dynamic Checking in Power Aware

Isolation
Disable
Protocol
Check for
COA States

vopt -
pa_checks=idpcoa

Flags violation if isolation control is disabled when the
driving power domain is in the following CORRUPT
simstates, and receiving logic does not have a
CORRUPT simstate:
CORRUPT, CORRUPT_ON_ACTIVITY,
CORRUPT_STATE_ON_CHANGE, and
CORRUPT_STATE_ON_ACTIVITY.

Error: (vsim-8919) MSPA_ISO_DIS_PG: Time: 60 ns,
Isolation control is disabled during driving supply
CORRUPT_ON_ACTIVITY simstate (1) for the
following:
Port: /tb/TOP/mid1/out1_bot,
File: test.upf, Line: 62, Power Domain:PD_mid1

Isolation
Enable
Protocol
Check for
COA States

vopt -
pa_checks=iepcoa

Flags violation if isolation control is not enabled when a
driving power domain goes into any of the following
states and receiving logic does not have CORRUPT
simstate:
CORRUPT, CORRUPT_ON_ACTIVITY,
CORRUPT_STATE_ON_CHANGE, and
CORRUPT_STATE_ON_ACTIVITY.

Error: (vsim-8918) MSPA_ISO_EN_PSO: Time: 20 ns,
Isolation control (x) is not enabled when driving supply
is in CORRUPT_ON_ACTIVITY simstate for the
following:
Port: /tb/TOP/mid1/out1_bot,
File: test.upf, Line: 62, Power Domain:PD_mid1

Isolation
Functionality
Check

vopt -pa_checks=ifc Ensures that when isolation is not applied, the value at
isolation cell’s output is same as that at its input.
This is to catch any functional error because of applied
isolation cell. Performed during in-active isolation
period. During inactive isolation period, it will catch
occurrences where value of isolated port is different
than the ports’ value.

Error: (vsim-8931) MSPA_ISO_FUNC_CHK: Time:
100 ns, Isolated port for isolation cell (strategy:
iso_PD_mid2) on port ’/tb/TOP/mid2/in2_bot’ having
value (x) is different from port value (1) during non-
isolation period.
File: test.upf, Line: 111, Power Domain:PD_mid2

Table 5-4. Dynamic Isolation Checks (cont.)

Check Usage Syntax Description
Example Message

Automatic Checking
Dynamic Checking in Power Aware

Power Aware Simulation User’s Manual, v10.2c 83

Isolation
Redundant
Activity
Check

vopt -pa_checks=ira Flags violation if there was no requirement of isolation
(such as driving logic is not in an OFF or CORRUPT
state when receiving logic is in an ON state) and there is
activation of an isolation control signal. In general, this
ensures that if activation of isolation control occurs that
it is required by power management behavior.

Error: (vsim-8934) MSPA_ISO_REDUNDANT_ACT:
Time: 430 ns, Redundant activity on isolation control
signal, for crossing {(PD_mid1) => (PD_mid2)}.
Port: /tb/TOP/mid1/out1_bot,
File: test.upf, Line: 44, Power Domain:PD_mid1

Isolation
Race Check

vopt -pa_checks=irc The value on isolated ports should not change when
isolation is enabled (at the time of assertion of isolation
control) and when isolation is disabled (at the de-
assertion of isolation control). This check flags any
toggling of isolated port’s value at assertion/de-
assertion of isolation control signal.

Error: (vsim-8910) MSPA_ISO_PORT_TOGGLE:
Time: 50 ns, Isolated port for isolation cell
(strategy: iso_PD_mid1) on port
’/tb/TOP/mid1/out2_bot’ toggled when its control
signal is activated.
File: test.upf, Line: 70, Power Domain:PD_mid1

Isolation
Toggle
Check

vopt -pa_checks=it Catches any change in isolated ports’ value during
isolation period (such as in between the period when
isolation is enabled till isolation is disabled). Performed
during active isolation period.

Error: (vsim-PA-8908) MSPA_ISO_ON_ACT : Time:
60 ns, /tb/TOP/mid1/out1_bot toggled when
isolation signal was active

Table 5-4. Dynamic Isolation Checks (cont.)

Check Usage Syntax Description
Example Message

Power Aware Simulation User’s Manual, v10.2c84

Automatic Checking
Dynamic Checking in Power Aware

Dynamic Level Shifter Checking
You enable dynamic checking functions for level shifters by using the vopt -pa_checks
command. The value you specify determines the checking function performed, as shown in
Table 5-5.

Operating Voltage for Dynamic Checking
It is recommended to change the operating voltages of those domains during simulation. In
some cases, the dynamic checks report the operating voltage of one of the domains as 0—this
happens when you have not changed the voltage on the primary power and ground pin of the
domain and you are operating with default unknown voltage levels. You can change the

Missing
Isolation
Cell

vopt -pa_checks=umi Catches failure occurring whenever source domain is
OFF and sink domain is ON for a power domain
crossing and isolation strategy is not specified for that
domain crossing.

Error: (vsim-8929)
MSPA_UPF_MISSING_ISO_CHK: Time: 130 ns,
Missing isolation cell for domain boundary, PD_mid1
=> PD_wrapper2 for following:
Source port : /tb/TOP/mid1/out1_bot [connected
mask: "1"] [LowConn] -> Sink port:
/tb/TOP/mid2/wrapper1/wrapper2/in1 [connected
mask: "1"] [LowConn],
File: test.upf, Line: 25, Power Domain:--

Power on vopt -pa_checks=upc Catches switching off of retention/isolation supplies
during active retention/isolation period.

Error: (vsim-8920) MSPA_UPF_PG_CHK: Time: 0 ns,
Power for Isolation strategy: ’ISO_FA4_1_3’ of power
domain: ’PD_FA4_1’ is switched OFF during isolation.
File: test.upf, Line: 121, Power Domain:PD_FA4_1

All vopt -pa_checks=i Enable isolation checking performed by all arguments,
this value enables only iep, idp, irc, icp, ifc, and it.

Table 5-4. Dynamic Isolation Checks (cont.)

Check Usage Syntax Description
Example Message

Automatic Checking
Dynamic Checking in Power Aware

Power Aware Simulation User’s Manual, v10.2c 85

operating voltages by using the supply_on or supply_off commands defined in the UPF
SystemVerilog package.

Table 5-5. Dynamic Level Shifter Checks

Check Usage Syntax Description
Example Message

Missing
Level Shifter

vopt -pa_checks=uml During simulation, checks if a level shifter is required
between domain crossing and reports if a level shifter
strategy is not specified.

Also, strategies specified with set_level_shift
-no_shift in the UPF file are checked for any missing
level shifters.

** Error: MPSA_UPF_MISSING_LS_CHK:
Missing level shifters for domain boundary, pd_aon (
Operating Voltage: 2.000000 V) => pd_top (Opera
ting Voltage: 1.000000 V) for the following:

Source port : /tb/TOP/bot4/out1_bot [LowConn] ->
Sink port: /tb/TOP/bot4/out1_bot [HighConn]
Time: 90 ns Scope:
mspa_top.mspa_upf_top.mspa0_pd_tb.mspa3_pd_top.
mspa5_pd_aon. MPSA_UPF_MISSING_LS_CHK_0
File: src/inc_ls_dyn_check1/top.upf Line: 4

Incorrect
Level Shifter

vopt -pa_checks=uil Checks if the direction of level shifters specified for
domain crossing does not match the direction of the
voltage difference at domain crossing.
For example, domain crossing requires low_to_high
level shifter but level shifter specified is high_to_low,
then it will be reported as incorrect.

** Error: MPSA_UPF_INCORRECT_LS_CHK:
Shift mismatch for level shifter(my_ls_bot3, rule:
low_to_high, Domain: pd_aon) at domain boundary,
pd_aon (Operating Voltage: 2.000000 V) => pd_top
(Operating Voltage: 1.000000 V) for following:

Source port : /tb/TOP/bot3/out1_bot [LowConn] ->
Sink port: /tb/TOP/bot3/out1_bot [HighConn]

Time: 90 ns Scope: mspa_top.mspa_upf_top.msp
a0_pd_tb.mspa3_pd_top.mspa5_pd_aon. my_ls_bot3.
MPSA_UPF_INCORRECT_LS_CHK_1 File:
src/inc_ls_dyn_check1/top.upf Line:4

All vopt -pa_checks=ul Enables all dynamic level shifter checks.

Power Aware Simulation User’s Manual, v10.2c86

Automatic Checking
Dynamic Checking in Power Aware

Miscellaneous Dynamic Checking
Table 5-6 lists values you can specify for vopt -pa_checks that perform the following checking
operations:

Table 5-6. Miscellaneous Dynamic Checks

Check Usage Syntax Description
Error Messages

Toggle vopt -pa_checks=t Enables the simulator to catch a condition where
inputs to the power domain toggle even when the
power domain is turned off.

** Error: (vsim-PA-8908) MSPA_PD_OFF_ACT:
Time: 36 ns, /tb/top/clk toggled during power down of
power domain: PD

Control
Signal
Corruption

vopt -pa_checks=cp During simulation, this check helps catch conditions
when the power signal to any power domain gets
corrupted.

This check will not flag a violation when both the
source and sink power domain supplies are off.

For UPF, this check is applicable to control ports of a
switch, isolation enable signal of an isolation strategy,
and retention save and restore signals of a retention
strategy.

** Error: (vsim-8901) MSPA_CTRL_SIG_CRPT:
Time: 240 ns, Control Signal ’/tb/pg_array[1]’ is
corrupted. (Current Value: x)
#File: test.upf, Line: 29, Power Domain:PD_TOP

Power
Domain
Status

vopt -pa_checks=p This check identifies when each power domain is
switched on or off.

MSPA_PD_STATUS_INFO: Power domain 'PD' is
powered down at time 20.

MSPA_PD_STATUS_INFO: Power domain 'PD' is
BIASED down at time 20.
(CORRUPT_ON_CHANGE)

MSPA_PD_STATUS_INFO: Power domain 'PD' is
BIASED up at time 24. (CORRUPT_ALL_ON_ACT)

Automatic Checking
Dynamic Checking in Power Aware

Power Aware Simulation User’s Manual, v10.2c 87

Illegal or
Undefined
State

vopt -pa_checks=pis This check flags a violation if there is an undefined or
illegal state on a PST or supply port.

A state is undefined or illegal if the state of nets or
ports is not a valid combination as related to the power
state table in the UPF file.

A state on a supply port is undefined if it is not defined
with add_port_state for the supply port.

** Error: (vsim-8933)
MSPA_UPF_ILLEGAL_STATE_REACHED: Time:
80 ns, PST 'eth_pci_pst' reached an undefined state.
{tb_pow = (tb_nom : 4.800000 V),
mid1_MAIN_NET = (undefined : 4.000000 V),
mid2_MAIN_NET = (NOM2 : 5.300000 V)}
File: ./src/illegal_pst_2/test.upf, Line: 79, PST
state:UNDEFINED

** Error: (vsim-8933)
MSPA_UPF_ILLEGAL_STATE_REACHED: Time:
90 ns, Port 'TB_PRI' reached an undefined state.
{TB_PRI = (undefined : 4.099999 V)}

Glitch
Detection

vopt -pa_checks=ugc Catches any spurious spikes (glitches) on control lines
so that it does not cause false switching of control
ports of various control logic (such as isolation/power
switch and retention).

You can use pa msg -glitch_window command to
specify time window for glitch checking.

Non-
Retention
Register
Reset

vopt -pa_checks=npu Checks that non-retention registers are reset when the
power domain containing them is powered up.

** Error: (vsim-8912) MSPA_NRET_ASYNCFF:
Time: 12 ns, Asynchronous(set/reset) control for the
following flop(s) of power domain 'PD1' is not
asserted at power up:
/tb/top_inst/out1.
File: test.upf, Line: 4, Power Domain:PD1

Also generates the report file report.nretsyncff.txt.

Table 5-6. Miscellaneous Dynamic Checks (cont.)

Check Usage Syntax Description
Error Messages

Power Aware Simulation User’s Manual, v10.2c88

Automatic Checking
Implementing Checking at Gate Level

Implementing Checking at Gate Level
For Power Aware simulation on gate-level designs (PA-GLS), you can generate various level
shifter and isolation checks.

Related Topics

Level Shifting for Gate-Level Checking
You can create a gate-level instance of a model that will be recognized as a level-shifter
instance by either of the methods given below. This type of level-shifter instance will be
recognized for static and dynamic Level Shifter Checks.

Method 1

Specify the Liberty is_level_shifter attribute as part of the module definition to identify the
level shifter cell. For example:

(* is_level_shifter = 1 *)
module ls_buf(
 (*pg_type = "primary_power"*) input logic pwr_rail,
 (*pg_type = "primary_ground"*)input logic gnd_rail,
 (* level_shifter_data_pin = 1 *)input data,
 output logic out);
assign out = (data);
endmodule

Method 2

Assign a level-shifting prefix or suffix string to the instance, as specified by the UPF
name_format command. For example:

LVLHLD1BWP lsinst2_UPF_LS(.I(w2), .Z(w4));

Isolation for Gate-Level Checking
A gate-level instance of a model that will be recognized as an isolation instance can occur by
any of the methods given below.

Method 1

Create this instance by specifying the Liberty is_isolation_cell attribute as part of the module
definition to identify the isolation cell. Also, set the isolation_cell_enable_pin = "TRUE" on
the instance enable pin. For example:

(* is_isolation_cell = 1 *)

Voltage Level-Shifting (Multi-Voltage
Analysis)

Modeling Isolation

Automatic Checking
Quick-Reference Comparison of Static and Dynamic Check Arguments

Power Aware Simulation User’s Manual, v10.2c 89

module ISO_AND(
 (*pg_type = "primary_power"*) input logic pwr_rail,
 (*pg_type = "primary_ground"*)input logic gnd_rail,
 (*isolation_cell_enable_pin = "TRUE"*) input logic en,
 (*isolation_cell_data_pin = "TRUE"*) input data,
 output logic out);
assign out = (data & ~en);
endmodule

Method 2

Pragma information to the instantiation is generated by the synthesis application. For example:

ISOLOD1BWP isoinst1(.I(o1), .Z(w1), .ISO(ctrl)); //synopsys isolation_upf
iso_PD_mid1+PD_mid1

where iso_PD_mid1 is the UPF strategy for this isolation cell instance, and PD_mid1 is the
Power domain for which strategy has been specified.

Method 3

Create this instance by assigning an isolation prefix or suffix string to it, as specified by the UPF
name_format command. For example:

ISO isoinst2_UPF_ISO(.I(o1), .Z(w1), .ISO(ctrl));

Quick-Reference Comparison of Static and
Dynamic Check Arguments

Table 5-7. Static and Dynamic Checks Comparison

Check Static Syntax Dynamic Syntax

Missing Level Shifter -pa_checks=sml -pa_checks=uml

Redundant Level Shifter -pa_checks=srl

Incorrect Level Shifter -pa_checks=sil -pa_checks=uil

Unanalyzed level shifter -pa_checks=snl

Valid level shifter -pa_checks=svl

Uninserted level shifter -pa_checks=sdl

Missing Isolation Cell -pa_checks=smi -pa_checks=umi

Redundant Isolation Cell -pa_checks=sri

Incorrect Isolation Cell -pa_checks=sii

Power Aware Simulation User’s Manual, v10.2c90

Automatic Checking
Quick-Reference Comparison of Static and Dynamic Check Arguments

Valid Isolation -pa_checks=svi

Isolation not analyzed -pa_checks=sni

Isolation not inserted -pa_checks=sdi

Isolation Enable Protocol -pa_checks=iep

Isolation Disable Protocol -pa_checks=idp

Isolation Race Check -pa_checks=irc

Isolation Enable Protocol Check for
COA States

-pa_checks=iepcoa

Isolation Disable Protocol Check for
COA States

-pa_checks=idpcoa

Isolation Functionality Check -pa_checks=ifc

Isolation Clamp Value Check -pa_checks=icp

Isolation Redundant Activity Check -pa_checks=ira

Isolation Toggle Check -pa_checks=it

Retention Enable Protocol -pa_checks=rop

Retention Enable/Disable Protocol -pa_checks=rpo

Latch Enable/Clock Level Protocol -pa_checks=rcs

Latch Enable/Clock Toggle Protocol -pa_checks=rsa

Primary Supply -pa_checks=cp

Isolation and Retention Supply -pa_checks=upc

Non-Retention Register Reset -pa_checks=npu

Glitch Detection -pa_checks=ugc

Toggle -pa_checks=t

Always-on Power Domain -pa_checks=a

Power Domain Status -pa_checks=p

Illegal or Undefined State -pa_checks=pis

Table 5-7. Static and Dynamic Checks Comparison

Check Static Syntax Dynamic Syntax

Automatic Checking
Quick-Reference Comparison of Static and Dynamic Check Arguments

Power Aware Simulation User’s Manual, v10.2c 91

Power Aware Simulation User’s Manual, v10.2c92

Automatic Checking
Quick-Reference Comparison of Static and Dynamic Check Arguments

Power Aware Simulation User’s Manual, v10.2c 93

Chapter 6
Power Aware Coverage

Power aware coverage data helps you ensure that your regression suites are adequately testing
power aware elements of your design, specifically:

• Dynamic power aware checks, as specified with the -pa_checks switch to the vopt
command.

• Power aware states and transitions, as created through the UPF file with the
add_power_state, add_port_state or add_pst_state commands.

This chapter describes the following topics:

• Power Aware Coverage Collection — provides procedures for collecting coverage data.

• Power Aware Coverage Analysis — provides procedures for analyzing your collected
coverage data.

• Power Aware Coverage Report Reference — provides reference information about the
power aware coverage reports.

Power Aware Coverage Collection
This section describes how you can alter your existing scripts to collect coverage data for your
design and test suite.

• Collecting Power Aware Coverage Information on Dynamic Checks

• Collecting Power Aware Coverage Information on States and Transitions

You can view the coverage information during a live simulation or analyze it later by saving it
to a Unified Coverage Data Base (UCDB) file. Refer to Saving Code Coverage in the UCDB in
the User’s Manual for more information.

Collecting Power Aware Coverage Information on
Dynamic Checks

You can collect coverage information on dynamic checks and analyze the results within the
ModelSim environment. Refer to the section “Dynamic Checking in Power Aware” for more
information.

Power Aware Simulation User’s Manual, v10.2c94

Power Aware Coverage
Power Aware Coverage Collection

Prerequisites

• Enable dynamic checks with the -pa_checks switch to vopt.

Procedure

1. Compile:

You do not need to alter your existing commands.

2. Optimize and Simulate:

o Enable the default coverage behavior. Specifically, a power aware dynamic check is
marked as “covered” when the check has been attempted and never failed
(fail count = 0).

• vopt: Add the -pa_coverage=checks switch

• vsim: No changes needed

o Enable advanced coverage behavior. Specifically, a power aware dynamic check is
marked as “covered” when the check has never failed and has passed at least once
(fail count = 0 and pass count > 0).

• vopt: Add the -pa_coverage=checks switch

• vsim: Add the -assertcover switch

o View any unattempted power aware check assertions. Specifically, the coverage data
includes information about any unattempted power aware checks. You can use this
in combination with the other two options.

• vopt: Add the -pa_coverage=checks switch

• vsim: Add the -unattemptedimmed switch

3. Generate UCDB — refer to the section “Generating a UCDB File for Power Aware”.

4. Generate reports — refer to the section “Generating Power Aware Coverage Reports”.

5. Analyze data after simulation — refer to the section “Accessing Coverage Data for Post-
Simulation Analysis”.

Concepts

• Dynamic check coverage — A particular dynamic check will be performed when test
vector will provide stimuli so that check is hit in simulation. For example, when you
want to check for missing isolation cell for all power domain crossings, you can enable
this check with the -pa_check=umi switch to vopt. To trigger this check during
simulation, for a particular power domain crossing (such as, PD_SRC => PD_SINK),
your test vector should create a stimuli such that power domain PD_SRC is OFF and
PD_SINK is ON. If test vectors are not creating this scenario then this particular

Power Aware Coverage
Power Aware Coverage Collection

Power Aware Simulation User’s Manual, v10.2c 95

dynamic check will not be hit during simulation. In this case see that there are no
missing isolation cells in the design, but in fact this check is not even hit by test vectors.

• PA Check Exclusions — Any power aware checks for gate level cell instance scopes
will not be taken into account for coverage.

In this case, they will be excluded for coverage calculation. You can find the list of
excluded assertion information in the report pachecks.excluded.txt.

Collecting Power Aware Coverage Information on States
and Transitions

You can collect coverage information on power aware states and transitions, as created in your
UPF file, and analyze the results within the ModelSim environment. Refer to the section
“Power State and Transition Concepts” for more information.

Prerequisites

• Include power aware state information in your UPF file.

Procedure

1. Compile

You do not need to alter your existing commands.

2. Optimize

You do not need to alter your existing command.

3. Simulate

Add the -coverage option to your existing command.

4. Generate UCDB — refer to the section “Generating a UCDB File for Power Aware”.

5. Generate reports — refer to the section “Generating Power Aware Coverage Reports”

6. Analyze data after simulation — refer to the section “Accessing Coverage Data for Post-
Simulation Analysis”.

Concepts

• Undefined Power State — During simulation, when none of the named states
(including predefined states) of a state object is active the tool-created “Undefined” state
becomes active. This tool-inserted undefined state is representative of all the power
states that are missing in the UPF while adding states on a particular UPF objects, such
as power domain, Supply set, Supply port, PST

Power Aware Simulation User’s Manual, v10.2c96

Power Aware Coverage
Power Aware Coverage Analysis

• pa_coverageinfo — The simulator generates a power aware coverage scope, which
represents all of the power aware state and transition coverage data, inside the related
design instance named pa_coverageinfo. The coverage scope contains information
related to supply sets, power domains, ports, nets and power state tables.

Name conflicts of pa_coverageinfo are resolved by adding a counter to the end of the
name (pa_coverageinfo_<n>) for the second and any further occurrences.

Power Aware Coverage Analysis
• Generating a UCDB File for Power Aware

• Generating Power Aware Coverage Reports

• Accessing Coverage Data for Post-Simulation Analysis

Generating a UCDB File for Power Aware
When you save your coverage statistics to a UCDB file you are able to accumulate and analyze
the results during post-simulation analysis.

Refer to the Chapter “Coverage and Verification Management in the UCDB” in the User’s
Manual for information on using UCDB files.

Prerequisites

• Complete a simulation where you have enabled coverage collection, as described in the
section “Power Aware Coverage Collection”.

Procedure

Generate the UCDB containing information about all coverage for the whole design:

coverage save <name>.ucdb

Alternatively, if you want to generate a UCDB containing coverage data with only your power
aware information, use the following command (adding -pa):

coverage save -pa <name>.ucdb

Generating Power Aware Coverage Reports
You can generate several formats of report to analyze the results of your power aware coverage.
This section describes how you generate each type of report from either the command line or
through the GUI during a live simulation.

Power Aware Coverage
Power Aware Coverage Analysis

Power Aware Simulation User’s Manual, v10.2c 97

If you want to generate reports and do not want to open a simulation, you should substitute
coverage report with vcover report and add the UCDB file as an argument, for example:

vcover report pa.ucdb -assert -pa

Power Aware Checks Coverage Summary

This produces a simple report including a summary of the checks that never failed.

• Command line:

coverage report -assert -pa

• GUI:

o Menu: Tools > Coverage Report > Text

o Coverage Text Report dialog box:

• Verbosity: Default

• Coverage Type: Assertions and Power Aware

Refer to the section “Power Aware Checks Coverage Summary” for a detailed description of
this report.

Power Aware Checks Coverage Detailed Report

This produces a detailed report showing each type of check with pass and failure information.

• Command line:

coverage report -assert -pa -details

• GUI:

o Menu: Tools > Coverage Report > Text

o Coverage Text Report dialog box:

• Verbosity: Details

• Coverage Type: Assertions and Power Aware

Refer to the section “Power Aware Checks Coverage Detailed Report” for a detailed description
of this report.

Power Aware Checks Coverage Verbose Report

This produces a expansive report showing each type of check with detailed information.

• Command line:

coverage report -assert -pa -verbose -xml

Power Aware Simulation User’s Manual, v10.2c98

Power Aware Coverage
Power Aware Coverage Analysis

• GUI:

o Menu: Tools > Coverage Report > Text

o Coverage Text Report dialog box:

• Verbosity: Details

• Coverage Type: Assertions and Power Aware

• Output Mode: XML Format

It is suggested that you output to XML format for usability. You can then open
the .xml file with a spreadsheet program or other XML parser.

• Report Pathname: Specify a filename with the .xml suffix.

Refer to the section “Power Aware Coverage Verbose Report” for a detailed description of this
report.

Power Aware State Coverage Summary

This produces a summary report showing coverage information organized by state machine
instance.

• Command line:

coverage report -pa

• GUI:

o Menu: Tools > Coverage Report > Text

o Coverage Text Report dialog box:

• Verbosity: Default

• Coverage Type: Power Aware

Refer to the section “Power Aware Coverage Summary” for a detailed description of this report.

Power Aware State Coverage Detailed Report

This produces a detailed report showing coverage information organized by machine instance.

• Command line:

coverage report -pa -details

• GUI:

o Menu: Tools > Coverage Report > Text

o Coverage Text Report dialog box:

• Verbosity: Details

Power Aware Coverage
Power Aware Coverage Analysis

Power Aware Simulation User’s Manual, v10.2c 99

• Coverage Type: Power Aware

Refer to the section “Power Aware Coverage Detailed Report” for a detailed description of this
report.

Generating HTML Reports
As an alternative to the text-based reports, you can create a navigation-ready HTML report of
your power aware coverage data.

• Command line:

coverage report -pa -html

• GUI:

o Menu: Tools > Coverage Report > HTML

o Coverage HTML Report dialog box:

• Other Options: Power Aware

Accessing Coverage Data for Post-Simulation Analysis

Prerequisites

• Enable coverage collection during your power aware flow. Refer to the section “Power
Aware Coverage Collection”.

• Create a UCDB based on a the power aware simulation. Refer to the section “Generating
a UCDB File for Power Aware”.

Procedure

1. Load UCDB

vsim -viewcov <name>.ucdb

This loads the UCDB into the GUI for your analysis.

2. Generate reports

coverage report -pa [-details]

Refer to the Chapter “Coverage and Verification Management in the UCDB” in the
User’s Manual for information on using UCDB files.

Power Aware Simulation User’s Manual, v10.2c100

Power Aware Coverage
Power Aware Coverage Report Reference

Power Aware Coverage Report Reference
This section contains an overview of the various coverage reports you can generate, as
described in the section “Generating Power Aware Coverage Reports”.

Power Aware Coverage Summary
This report provides an overview of information about all power aware coverage metrics,
including state and transition coverage and power aware check coverage.

Generation

coverage report -pa

Example

Coverage Report Summary Data by PA state machine instance

Total Coverage By Instance (filtered view): 37.8%

PA State Machine Instance: /tb/CPU1/pa_coverageinfo/PD_RAM_sw/out_sw_PD_RAM
UPF Object PORT: /tb/CPU1/PD_RAM_sw/out_sw_PD_RAM
 Enabled Coverage Active Hits Misses % Covered
 ---------------- ------ ---- ------ ---------
 States 4 0 4 0.0
 Transitions 16 0 16 0.0

PA State Machine Instance: /tb/pa_coverageinfo/out_sw_PD_ALU
UPF Object PORT: /tb/out_sw_PD_ALU
 Enabled Coverage Active Hits Misses % Covered
 ---------------- ------ ---- ------ ---------
 States 4 0 4 0.0
 Transitions 16 0 16 0.0

PA State Machine Instance: /tb/pa_coverageinfo/PD_ALU_sw/out_sw_PD_ALU
UPF Object PORT: /tb/PD_ALU_sw/out_sw_PD_ALU
 Enabled Coverage Active Hits Misses % Covered
 ---------------- ------ ---- ------ ---------
 States 4 2 2 50.0
 Transitions 16 2 14 12.5

PA State Machine Instance: /tb/pa_coverageinfo/MyPowerStateTable
UPF Object PST: /tb/MyPowerStateTable
 Enabled Coverage Active Hits Misses % Covered
 ---------------- ------ ---- ------ ---------
 States 5 0 5 0.0
 Transitions 25 0 25 0.0

TOTAL POWER STATE COVERAGE: 43.7% POWER STATE COVERAGE TYPES: 12

POWER AWARE CHECKs COVERAGE SUMMARY

NEVER FAILED: 75.0% ASSERTIONS: 24

Power Aware Coverage Detailed Report
This report provides detailed information about the state and transition coverage metrics
followed by details about the power aware check coverage metrics.

Power Aware Coverage
Power Aware Coverage Report Reference

Power Aware Simulation User’s Manual, v10.2c 101

Generation

coverage report -pa -details

Example (Excerpt)

PA State Machine Instance: /tb/pa_coverageinfo/MyPowerStateTable
UPF Object PST: /tb/MyPowerStateTable
PA State Coverage:
 Enabled Coverage Active Hits Misses % Covered
 ---------------- ------ ---- ------ ---------
 States 5 0 5 0.0
 Transitions 25 0 25 0.0
================================PA State Machine Details================================
PA State Coverage for PA State Machine instance /tb/pa_coverageinfo/MyPowerStateTable --
PSM_ID: MyPowerStateTable_pst_state_info.state_var
 Current State Object : MyPowerStateTable_pst_state_info.state_var

 State Value MapInfo :

Line State Name Value
---- ---------- -----
 118 Complete_on 5
 118 Hibernate 4
 118 Sleep 3
 118 Reboot_alias 2
 118 Reboot 1
 Uncovered States :

 State

 Complete_on
 Hibernate
 Sleep
 Reboot_alias
 Reboot
 Uncovered Transitions :

Line Trans_ID Transition
---- -------- ----------
 124 7 Complete_on -> Complete_on
 123 8 Complete_on -> Hibernate
 122 9 Complete_on -> Sleep
 121 10 Complete_on -> Reboot_alias
 120 11 Complete_on -> Reboot
 124 13 Hibernate -> Complete_on
 123 14 Hibernate -> Hibernate

...

 123 32 Reboot -> Hibernate
 122 33 Reboot -> Sleep
 121 34 Reboot -> Reboot_alias
 120 35 Reboot -> Reboot
 Excluded States :

 State Exclusion
 ----- ---------
 undefined E-hit
 Excluded Transitions :

Line Trans_ID Transition Exclusion
---- -------- ---------- ---------
 118 0 undefined -> undefined E-hit

 Summary Active Hits Misses % Covered
 ------- ------ ---- ------ ---------
 States 5 0 5 0.0
 Transitions 25 0 25 0.0

POWER STATE COVERAGE:

UPF OBJECT Metric Goal/ Status
 At Least

Power Aware Simulation User’s Manual, v10.2c102

Power Aware Coverage
Power Aware Coverage Report Reference

 TYPE : SUPPLY SET /tb/CPU1/PD_RAM_SS 75.0% 100 Uncovered
 SUPPLY SET coverage instance \/tb/CPU1/pa_coverageinfo/PD_RAM_SS/PS_PD_RAM_SS
 75.0% 100 Uncovered
 Power State PD_RAM_SS_ON1 100.0% 100 Covered
 bin ACTIVE 1 1 Covered
 Power State PD_RAM_SS_ON2 100.0% 100 Covered
 bin ACTIVE 1 1 Covered
 Power State PD_RAM_SS_ON3 100.0% 100 Covered
 bin ACTIVE 1 1 Covered

...

 Power State DEFAULT_CORRUPT 100.0% 100 Covered
 bin ACTIVE 4 1 Covered
 TYPE : SUPPLY SET /tb/CPU1/PD_RAM_SS 14.2% 100 Uncovered
 SUPPLY SET coverage instance \/tb/CPU1/pa_coverageinfo/PD_RAM_SS/PS_TRANS_PD_RAM_SS
 14.2% 100 Uncovered
 Power State Transitions 14.2% 100 Uncovered
 bin PD_RAM_SS_ON1 -> PD_RAM_SS_ON2 0 1 ZERO
 bin PD_RAM_SS_ON1 -> PD_RAM_SS_ON3 0 1 ZERO
 bin PD_RAM_SS_ON1 -> PD_RAM_SS_ON4 0 1 ZERO
 bin PD_RAM_SS_ON1 -> PD_RAM_SS_ON5 0 1 ZERO
 bin PD_RAM_SS_ON1 -> PD_RAM_SS_ON6 0 1 ZERO
 bin PD_RAM_SS_ON1 -> DEFAULT_NORMAL 0 1 ZERO
 bin PD_RAM_SS_ON1 -> DEFAULT_CORRUPT 1 1 Covered
 bin PD_RAM_SS_ON2 -> PD_RAM_SS_ON1 0 1 ZERO
 bin PD_RAM_SS_ON2 -> PD_RAM_SS_ON3 0 1 ZERO

...

 bin DEFAULT_NORMAL -> PD_RAM_SS_ON5 0 1 ZERO
 bin DEFAULT_NORMAL -> PD_RAM_SS_ON6 0 1 ZERO
 bin DEFAULT_NORMAL -> DEFAULT_CORRUPT 0 1 ZERO
 bin DEFAULT_CORRUPT -> PD_RAM_SS_ON1 1 1 Covered
 bin DEFAULT_CORRUPT -> PD_RAM_SS_ON2 1 1 Covered
 bin DEFAULT_CORRUPT -> PD_RAM_SS_ON3 1 1 Covered
 bin DEFAULT_CORRUPT -> PD_RAM_SS_ON4 0 1 ZERO
 bin DEFAULT_CORRUPT -> PD_RAM_SS_ON5 0 1 ZERO
 bin DEFAULT_CORRUPT -> PD_RAM_SS_ON6 1 1 Covered
 bin DEFAULT_CORRUPT -> DEFAULT_NORMAL 0 1 ZERO

...

TOTAL POWER STATE COVERAGE: 43.7% POWER STATE COVERAGE TYPES: 12

POWER AWARE CHECKs COVERAGE RESULTS:

Check Coverage Failure Pass
Type Object Count Count

Isolation Functionality Check

/tb/CPU1/out_alu_UPF_ISO/pa_iso_cell_checks_vec/mspa_iso_func_chk
 0 2
Isolation Clamp Value Check

/tb/CPU1/out_alu_UPF_ISO/pa_iso_cell_checks_vec/mspa_iso_clamp_chk
 3 2
Isolation Race Check

/tb/CPU1/out_alu_UPF_ISO/pa_iso_cell_checks_vec/iso_port_toggle_pos/iso_toggle_posedge
 0 3
Isolation Race Check

/tb/CPU1/out_alu_UPF_ISO/pa_iso_cell_checks_vec/iso_port_toggle_neg/iso_toggle_negedge
 0 2
Toggle Check

/tb/CPU1/out_alu_UPF_ISO/pa_iso_cell_checks_vec/mspa_iso_on_act
 0 0
Missing Level Shifter

/tb/CPU1/pa_missing_ls_check_1/mspa_upf_missing_ls_chk
 0 4
Missing Isolation

/tb/CPU1/pa_missing_iso_check_2/mspa_upf_missing_iso_chk
 0 4

...

Power Aware Coverage
Power Aware Coverage Report Reference

Power Aware Simulation User’s Manual, v10.2c 103

Power Aware Coverage Verbose Report
This report provides a view of all coverage information collected about the dynamic checks
analyzed during the simulation. It is suggested that you generate this file in XML format to be
loaded in a spreadsheet program for ease of use.

Generation

coverage report -pa -verbose -xml -file pa_checks.xml

Power Aware Checks Coverage Summary
This report provides a basic overview of the coverage statistics, including information collected
from state and transition counts and dynamic check counts.

Generation

coverage report -assert -pa

Example

Total Coverage By Instance (filtered view): 62.5%
POWER AWARE CHECKs COVERAGE SUMMARY
NEVER FAILED: 75.0% ASSERTIONS: 24

Power Aware Checks Coverage Detailed Report
This report provides a detailed view of all the dynamic checks analyzed during the simulation.
The information includes: the type of check, a hierarchical path to the check, and the failure and
pass counts of the check.

Generation

coverage report -assert -pa -details

Example

Total Coverage By Instance (filtered view): 62.5%

POWER AWARE CHECKs COVERAGE RESULTS:

Check Coverage Failure Pass
Type Object Count Count

Isolation Functionality Check

/tb/CPU1/out_alu_UPF_ISO/pa_iso_cell_checks_vec/mspa_iso_func_chk
 0 2
Isolation Clamp Value Check

/tb/CPU1/out_alu_UPF_ISO/pa_iso_cell_checks_vec/mspa_iso_clamp_chk
 3 2
Isolation Race Check

/tb/CPU1/out_alu_UPF_ISO/pa_iso_cell_checks_vec/iso_port_toggle_pos/iso_toggle_posedge
 0 3
Isolation Race Check

/tb/CPU1/out_alu_UPF_ISO/pa_iso_cell_checks_vec/iso_port_toggle_neg/iso_toggle_negedge
 0 2
Toggle Check

/tb/CPU1/out_alu_UPF_ISO/pa_iso_cell_checks_vec/mspa_iso_on_act
 0 0
Missing Level Shifter

Power Aware Simulation User’s Manual, v10.2c104

Power Aware Coverage
Power Aware Coverage Report Reference

/tb/CPU1/pa_missing_ls_check_1/mspa_upf_missing_ls_chk
 0 4
Missing Isolation

/tb/CPU1/pa_missing_iso_check_2/mspa_upf_missing_iso_chk
 0 4
Control Signal Corruption Check

/tb/CPU1/pa_upf_control_check_1/mspa_ctrl_crpt_chk
 0 5
Control Signal Corruption Check

/tb/CPU1/RAM1/pa_rcs_check_vec_6/rcs_checks[2]/ctrl_chk
 3 3

Power Aware Simulation User’s Manual, v10.2c 105

Chapter 7
Visualization of Power Aware Operations

You can use ModelSim GUI windows to visualize aspects of your Power Aware design and
simulation. The following sections describe the ModelSim windows provided for Power Aware
visualization:

• UPF Object Display — The Objects, Structure, and Wave windows provide visibility
into UPF objects.

• Power Aware Schematic Display — The Schematic window provides color coding of
design elements in different power domains.

• Power Aware Waveform Display — The Wave window provides highlighting of bias,
corruption, and isolation.

• Power State and Transition Display — The FSM List and FSM Viewer windows
provide finite state machine information on power state tables and multi-state
transitions.

UPF Object Display
You can view objects created through the UPF file in the Structure, Objects and Wave windows
by adding the -pa_enable=supplynetworkdebug option to your vopt command.

A special icon is used to identify UPF objects in these windows:

Figure 7-1. UPF Object Icon

Visualizing UPF Objects in the GUI
This task outlines how you can enable the visualization of UPF objects in the Structure, Objects
and Wave windows

Prerequisite

• Have an existing power aware simulation flow.

Power Aware Simulation User’s Manual, v10.2c106

Visualization of Power Aware Operations
UPF Object Display

Procedure

1. Open the ModelSim GUI.

2. Add the -pa_enable=supplynetworkdebug option to your vopt command.

3. Run your power aware simulation flow as you normally would.

4. Ensure the Objects, Structure, and Wave windows are open:

o view structure

o view objects

o view wave

5. Locate and select a UPF object in the Structure Window (refer to Figure 7-2).

a. Click the UPF object to view additional port and net information in the Objects
window.

b. Right-click the UPF object and select Add Wave to add all of the related ports and
nets in the Wave window.

The default value of supply ports and nets in these windows are:

• Voltage (Decimal)

• State (Enum, UNDETERMINED, FULL_ON, OFF, PARTIAL_ON).

Visualization of Power Aware Operations
Power Aware Schematic Display

Power Aware Simulation User’s Manual, v10.2c 107

Results

Figure 7-2. Visualization of UPF Objects in the GUI

Power Aware Schematic Display
You can perform debugging at the same time you run a Power Aware simulation by adding the
-debugdb argument to both of the vopt and vsim commands. The results of both the Power
Aware analysis and the debug operation are provided as Power Aware schematic in the
Schematic window. You can also view a correlation between the UPF power intent and the
design display in the Schematic window.

Refer to the “Schematic Window” Chapter of the User’s Manual for more information.

Note
Debugging in Power Aware is supported for RTL usage flow only—it is not available for
gate-level simulation (GLS).

Power Aware Simulation User’s Manual, v10.2c108

Visualization of Power Aware Operations
Power Aware Schematic Display

Top-Down Debugging (From the Test Bench)
You can run Power Aware analysis and debugging from the top of the design (test bench) with
or without specifying an optimized design unit. These methods resemble the conventional two-
step and three-step optimization flows.

• No optimized design unit — This flow resembles the conventional two-step flow, where
you use the vopt command to specify a Power Aware simulation and debugging only;
no optimization is performed. When you run the vsim command, it performs debugging
and runs vopt internally to perform optimization (see Using the Delayed Optimization
Flow). For example:

vlog design.v
vcom design.vhdl
vopt -pa_upf <config_file> -debugdb tb
vsim tb -pa -debugdb [-vopt]

• Optimized design unit — This flow resembles conventional three-step flow, where you
use the vopt command to specify a Power Aware simulation, the name of the design unit
to be optimized, and debugging,. When you run the vsim command, it begins simulation
on the optimized design unit and runs debugging (General Steps for Running Power
Aware). For example:

vlog design.v
vcom design.vhdl
vopt -o optdu -pa_upf <config_file> -debugdb tb
vsim optdu -pa -debugdb

Bottom-Up Debugging (From the Design Under Test)
You can run Power Aware analysis from the DUT hierarchy and debugging on the complete
design. Running vopt -pa_top captures the DUT hierarchy for Power Aware analysis

• No optimized design unit — This flow resembles conventional two-step flow, where
you use the vopt command to specify a Power Aware simulation and debugging without
optimization. Use the -pa_top argument to capture the DUT hierarchy for Power Aware
analysis. When you run the vsim command, it performs debugging and runs vopt
internally to perform optimization (see Using the Delayed Optimization Flow). For
example:

vlog design.v
vcom design.vhdl
vopt -pa_upf <config_file> tb -debugdb -pa_top /tb/dut
vsim tb -pa -debugdb [-vopt]

• Optimized design unit — This flow resembles the conventional three-step flow, where
you use the vopt command to specify a Power Aware simulation, the name of the design
unit to be optimized, and debugging. Use the -pa_top argument to capture the DUT
hierarchy for Power Aware analysis. For example:

Visualization of Power Aware Operations
Power Aware Schematic Display

Power Aware Simulation User’s Manual, v10.2c 109

vlog design.v
vcom design.vhdl
vopt -o optdu -pa_upf <config_file> tb -debugdb -pa_top /tb/dut
vsim optdu -pa -debugdb

This DUT-based flow with an optimized design unit not only does common analysis for
Power Aware and debugging, but also provides flexibility to enable Power Aware
analysis from specific hierarchy and do code generation in one step.

Usage Notes
• The -pa_top argument is used to specify hierarchy of UPF root scope. This supports

Power Aware analysis of UPF from hierarchy other than the vopt TOP hierarchy. If vopt
is run from test bench (tb) and UPF scope is starting from DUT (which is instantiated in
test bench as dut_inst), then you need to specify vopt -pa_top /tb/<dut_inst>.

• If -pa_top is specifying the hierarchy other than UPF root scope then an Error message
will be displayed:

** Error: ./src/ss_error_1/test.upf(2): UPF: (vopt-9782) PA Top
’/tb/top/dut_inst/top_inst’ is specifying incorrect hierarchy for
UPF scope ’DUT’.

• Do not use the vopt -pa_prefix and -pa_replacetop arguments with -pa_top. If you do,
the -pa_prefix and -pa_replacetop arguments are ignored and a Warning message is
displayed:

** Warning: UPF: (vopt-9780) Option "-pa_prefix/-pa_replacetop" is
not applicable with option "-pa_top". Ignoring option "-pa_prefix/-
pa_replacetop".

Schematic Window Visualization for Debugging
You can open the Schematic window to view debugging results from a Power Aware analysis.
In particular, these results are shown as follows:

• Power Domain — All design elements are colored and highlighted according to their
respective power domains (see Figure 7-3).

o All design elements, such as mux, flip-flops, and gates are colored according to the
power domain specification.

o The granularity of power domain visualization is at the instance level.

o Any simulation-only power domains that are specified on a process or signal are not
highlighted.

o Colorization supports up to 16 different power domains.

o If the power domain is in the OFF state, the schematic will be filled with a grey color
(see Figure 7-4).

Power Aware Simulation User’s Manual, v10.2c110

Visualization of Power Aware Operations
Power Aware Schematic Display

o Isolation cells will be filled in with a green color.

o Level-shifter cells will be filled in with a purple color.

• Excluded Domains — shown as default schematic color. You can define a power
domain to be excluded.

o Power Aware exclude file support (vopt -pa_excludefile)

o Currently, PG-type connected instances are excluded. There is no analysis
information to decide whether they inherit the parent power domain, create their
own, or have multiple power domains (like memories)

Both are supported with instance level granularity, signal and process level exclusion
will not be visualized.

• UPF Source Viewing — You can display the source text of the UPF file for power
domain specifications. Power domain information can be viewed for a design element in
either of the following ways:

o Right-click and select View Selection > Power Domain — Displays UPF source
code (see Figure 7-5).

o Hover the mouse cursor — Displays a Tool Tip that concatenates the HDL source
file with the appropriate line number in the UPF source file (see Figure 7-6).

Example 7-1. UPF FIle to Demonstrate Schematic Visualization for Debugging

set_design_top top

create_power_domain P1 -elements {dut1}
#---
create_supply_port VDD -domain P1
create_supply_net VDD_NET -domain P1
connect_supply_net VDD_NET -ports { VDD }
#---
create_supply_port GND -domain P1
create_supply_net GND_NET -domain P1
connect_supply_net GND_NET -ports { GND }
#---
create_supply_net VDD_PRI -domain P1
set_domain_supply_net P1 -primary_power_net VDD_PRI -primary_ground_net
GND_NET
#-- #

create_power_switch P1_SW \
-domain P1 \
-output_supply_port {VDD_SW VDD_PRI} \
-input_supply_port {VDD_SW_In1 VDD_NET} \
-control_port {ctrl1 dut_sleep } \
-on_state {full_s1 VDD_SW_In1 {!ctrl1}} \
-off_state {off_s0 {ctrl1}}

Visualization of Power Aware Operations
Power Aware Schematic Display

Power Aware Simulation User’s Manual, v10.2c 111

create_power_domain P2 -elements {dut2}
#---
create_supply_port VDD_P2 -domain P2
create_supply_net VDD_N -domain P2
connect_supply_net VDD_N -ports { VDD_P2 }
#---
create_supply_port GND_P2 -domain P2
create_supply_net GND_N -domain P2
connect_supply_net GND_N -ports { GND_P2 }
#---
create_supply_net VDD_P -domain P2
set_domain_supply_net P2 -primary_power_net VDD_P -primary_ground_net
GND_NET

create_power_switch P1_SW2 \
-domain P2 \
-output_supply_port {VDD_SW VDD_PRI} \
-input_supply_port {VDD_SW_In1 VDD_NET} \
-control_port {ctrl1 dut_sleep } \
-on_state {full_s1 VDD_SW_In1 {!ctrl1}} \
-off_state {off_s0 {ctrl1}}

create_power_domain P3 -elements {dut3}
#---
create_supply_port VDD_P3 -domain P3
create_supply_net VDD_NE -domain P3
connect_supply_net VDD_NE -ports { VDD_P3 }
#---
create_supply_port GND_P3 -domain P3
create_supply_net GND_NE -domain P3
connect_supply_net GND_NE -ports { GND_P3 }
#---
create_supply_net VDD_PR -domain P3
set_domain_supply_net P3 -primary_power_net VDD_PR -primary_ground_net
GND_NE
create_power_switch P1_SW3 \
-domain P3 \
-output_supply_port {VDD_SW VDD_PRI} \
-input_supply_port {VDD_SW_In1 VDD_NET} \
-control_port {ctrl1 dut_sleep } \
-on_state {full_s1 VDD_SW_In1 {!ctrl1}} \
-off_state {off_s0 {ctrl1}}

Example 7-2. ModelSim Commands to Run Power Aware Debugging

vlog -sv mid.v top.v
vopt -pa_upf test.upf top -debugdb
vsim -debugdb -pa -L mtiPA -vopt -do test.do top

Power Aware Simulation User’s Manual, v10.2c112

Visualization of Power Aware Operations
Power Aware Schematic Display

Example 7-3. Schematic Displays for Power Aware Debugging

Figure 7-3. Color-Coded HDL Design Elements

Figure 7-4. Grey Area Indicates a Power Domain That is Off

Visualization of Power Aware Operations
Power Aware Waveform Display

Power Aware Simulation User’s Manual, v10.2c 113

Figure 7-5. UPF Source File: Right-Click and Choose Power Domain

Figure 7-6. UPF Source File: Hover the Mouse and View Tool Tip

Power Aware Waveform Display
When using the conventional Wave window display, it can be difficult to see the effects of
Power Aware simulation. For example, a zero on a signal may represent normal simulation
behavior, it may be the result of an isolated port clamped to zero, or it could be corruption on a
bit type.

Power Aware Simulation User’s Manual, v10.2c114

Visualization of Power Aware Operations
Power Aware Waveform Display

In particular, isolation has been difficult to confirm through simulation that the intent has been
met. Typically, you would want results to show isolation buffer placement and clamping,
identify the corrupted and clamp values associated with that buffer, and confirm that isolation
happens at the proper time.

To do this, you can activate Power Aware highlighting in the Wave window, which provides
visual indicators for the isolation, corruption, and biasing behavior in your simulation results.
These waveform indicators provide valuable information by visually distinguishing values
caused by Power Aware activity. This should help quickly determine if their power intent is
correctly applied.

The visual indicators provided by Power Aware highlighting show the power state of signals
viewed in the Wave window. Highlighting on waveforms appears during the interval when they
are corrupted, isolated, or biased.

Figure 7-7 show an example of waveform highlighting, where:

• Bias mode is indicated by blue highlighting

• Corruption is indicated by red cross-hatch highlighting

• Isolation is indicated by green highlighting

Tip: When you hover the mouse cursor over an isolation highlight region, a balloon
popup appears. This indicates the clamp value and location, along with he actual signal
value.

Also, when you click to expand an isolation highlighted signal (on the + to the left of the
signal name), associated signals are displayed that provide more information about the
isolation.

Figure 7-7. Power Aware Highlighting in the Wave Window

Visualization of Power Aware Operations
Power State and Transition Display

Power Aware Simulation User’s Manual, v10.2c 115

Using Power Aware Highlighting
To enable Power Aware highlighting, use the following flow:

1. Enable highlighting during elaboration by adding the -pa_enable=highlight option to
your vopt command line.

2. Enable highlighting during simulation by adding the -pa_highlight option to the vsim
command.

This argument enables the generation of the WLF data used by the Wave window to
display the highlighting.

3. Enable highlighting in the GUI by selecting:

Wave > Tools > Wave Preferences... > [Display tab] > PA waveform highlighting

You only need to perform this action upon your first invocation, or if your GUI settings
are reset.

4. View Power Aware activity in post-simulation debug by loading the WLF file
containing the information as follows

vsim -view vsim.wlf

Power State and Transition Display
Because power domains are not limited to two states (ON or OFF) and multi-voltage capability
allows designs to assign different voltage levels to different states, tracking combinations of
states in different power domains has become increasingly difficult.

Power State and Transition Concepts
In UPF, you can add states on the following objects and model a Power Aware state machine
(PASM) corresponding to each:

• PST — resulting from the add_pst_state UPF command

• Supply port — resulting from the add_port_state UPF command.

• Supply net — resulting when a PST contains a supply net entry.

• Power domain — resulting from the add_power_state UPF command

• Supply sets — resulting from the add_power_state UPF command

A power state table (PST) defines the allowable combinations of power states of supply ports
and nets—those combinations of states that can exist at the same time during simulation of the
design. As a result, changing the power state supply port/nets changes the state of PST.

Power Aware Simulation User’s Manual, v10.2c116

Visualization of Power Aware Operations
Power State and Transition Display

The UPF command add_power_state adds power states on power domains and supply sets.
The power states associated with supply sets determine the simulation semantics of connected
design elements (power domain).

Power domain elements can be in one of the following simstates based on which power states of
the related supply set are true at a given simulation time: NORMAL, CORRUPT,
CORRUPT_ON_ACTIVITY, CORRUPT_STATE_ON_CHANGE or
CORRUPT_STATE_ON_ACTIVITY.

Typically power states are composed hierarchically while creating power intent, for example
the power state of a top-level power domain depends upon power states of any contributing
power domains. These contributing power states (leaf level power domains) then depend upon
power states of their supply sets.

Power states of a supply set depend upon power states of supply nets associated with functions
of the supply set. Therefore, as design complexity increases, such as with IP-level hierarchical
power intent, these power states become drivers for the whole power aware verification and it
becomes important to provide debugging facilities for power states.

Note
You can find an example of a UPF file with a PST at:

<install_dir>/examples/pa_sim/example_one/rtl_top.upf

DIfferences Between a Conventional RTL FSM and a PASM
Some conceptual differences between conventional RTL Finite State Machines (FSM) and
Power Aware state machines are:

• Power Aware State machines are asynchronous in nature—there use no concept of
clock.

• Power Aware state machines can reach multiple states at a time (Nondeterministic
Situation).

• Power Aware state machines are modeled by Power Aware simulation.

• There are a few interdependent Power Aware state machines. For example, a PST state
machine runs in accordance to supply port/net Power Aware state machines.

Visualizing Power Aware State Machines
Dynamic visualization with debugging capabilities of power states is useful for verification of
power intent.

Visualization of Power Aware Operations
Power State and Transition Display

Power Aware Simulation User’s Manual, v10.2c 117

Prerequisites

• Your UPF file contains power state information (add_power_state, create_pst,
add_port_state, and/or add_pst_state UPF commands).

• vsim command includes -coverage option

Process

1. Begin your simulation.

2. Analyze state machines from your design in the Power Aware State Machine List
Window.

3. View bubble diagrams of individual state machines in the Power Aware State Machine
Viewer Window.

Power Aware State Machine List Window
Use this window to view a list of power aware state machines after beginning a Power Aware
simulation.

This window lists all of the Power Aware State Machines in the design with the hierarchical
path of their creation.

For example, if a PST has been created in dut/top, then this PST will be visible in scope
dut/top/pa_coverageinfo.

This window is very similar to the FSM List Window.

Accessing

Access the window using either of the following

• View > PA State Machine List

• Command: view powerstatelist

Power Aware Simulation User’s Manual, v10.2c118

Visualization of Power Aware Operations
Power State and Transition Display

Figure 7-8. Power Aware State Machine List Example

GUI Elements of the Power Aware State Machine List Window

This section describes GUI elements specific to this window.

Column Descriptions

Table 7-1. Power Aware State Machine List Window Columns

Column Description

Instance Instance name of the state machine.

The hierarchical display shows state
dependency, specifically those instances where
states of a particular power state machine
depend upon states of other power state
machines.

States Number of states.

Transitions Number of transitions between the states.

UPF Type One of the following:
PORT, NET, PST, POWER DOMAIN,
SUPPLY SET

Visualization of Power Aware Operations
Power State and Transition Display

Power Aware Simulation User’s Manual, v10.2c 119

Popup Menu

PA State Machines Menu

Power Aware State Machine Viewer Window
Use this window to view a state diagram of any of your power aware state machines.

This window is very similar to the FSM Viewer Window.

Table 7-2. Power Aware State Machine List Window Popup Menu

Popup Menu Item Description

View State Machine Displays a graphical representation of the power
aware state transitions in the Power Aware State
Machine Viewer Window

View UPF Opens the UPF file and displays the line creating the
power aware state machine.

Add to Adds the selected (or all) state machines to the Wave
window, List window, or to the log (add log).

Properties Displays the Power Aware State Machine Properties
dialog box, which contains detailed information
about the selection.

Table 7-3. PA State Machines Menu

Menu Item Description

View State Machine Displays a graphical representation of the
power aware state transitions in the Power
Aware State Machine Viewer Window.

View UPF Opens the UPF file and displays the line
creating the power aware state machine.

Add to Adds the selected (or all) state machines to the
Wave window, List window, or to the log (add
log).

Options Opens the State Machine Display Options
dialog box that allows you to control:
• Specific instructions when adding state

machines to the Wave window
• Limit the number of path elements in the

Instance column.

Power Aware Simulation User’s Manual, v10.2c120

Visualization of Power Aware Operations
Power State and Transition Display

Accessing

Access the window as follows:

• From the Power Aware State Machine List Window, double click on the power aware
state machine you want to analyze

Figure 7-9. Power Aware State Machine Viewer Window Example

GUI Elements of the Power Aware State Machine Viewer Window

This section describes GUI elements specific to this window.

Window Element Descriptions

• Title bar — The UPF type and hierarchical path.

• Tab label — Leaf name of the state machine.

• State Diagram — All states of a state machine and their transitions.

o Bubbles — Information associated with logic expression supply expression simstate
legality. Information appears in properties box associated with each state bubble.

Visualization of Power Aware Operations
Power State and Transition Display

Power Aware Simulation User’s Manual, v10.2c 121

• Color — Green represents the current state and yellow represents the previous
state. A thick red border identifies an illegal state (as allowed with
add_power_state).

• Label — State name

o Transitions — Directional arrows showing transitions between the states.

o Time Mode (upper right-hand corner) — The time of the current state transition,
which decides yellow and green. Also affects States table.

• Goto Previous and Next State buttons — Allows synchronization between other
state machine windows and the wave window and the objects window.

• Synchronization — By default, this window is synchronized with the Wave
window, Objects window, and other Power Aware State Machine View
windows.

State Machine to State Machine — State machines opened will remain
synchronized with each other, related to the simulation time stamp. This
enables you to work with multiple power aware state machines.

State Machine to Wave — The Wave window and Power Aware State
Machine Viewer windows are synchronized to facilitate your debugging.
When you move a wave window time cursor to observe various values of
signals in wave window, the Power Aware State Machine Viewer window
changes to mach the same simulation time stamp, and the reverse is true.

• States table — (Only appears for supply sets, power domains, and PSTs) Shows current
and previous values of objects that decide the power state of the supply set or power
domain. This table helps you perform root cause analysis of your power aware states.
When you encounter an unexpected power state, this feature allows you to understand
the reason behind it, specifically when looking for unexpected, illegal, or undefined
power states.

o Column headers — Shows objects (power domains, supply sets, supply nets, logic
variables) that contribute to the power states. If a header is associated with a power
domain or supply set, you can double click on it to view the state transitions of that
state machine. For PSTs, the column headers show ports and nets from the creation
of the PST with the create_pst UPF command and you can double click on them to
view the state transitions of that state machine.

o Rows — Shows values for the time selected in the Time Mode widget, where green
indicates the current value and yellow indicates the previous value.

Power Aware Simulation User’s Manual, v10.2c122

Visualization of Power Aware Operations
Power State and Transition Display

Popup Menu

FSM View Menu - For Power Aware State Machines

Table 7-4. Power Aware State Machine Viewer Window Popup Menu

Popup Menu Item Description

Transition > View Full
Text

Displays the full text of all condition expressions.

View UPF Opens the UPF file and displays the line creating the
power aware state machine.

Show States Table Toggles the display of the states table for supply sets
and power domains.

Zoom Full Fits the bubble diagram into the visible space.

Set Context Sets the context (env command) of the session based
on your selection.

Add to Adds the selected (or all) state machines to the Wave
window, List window, or to the log (add log).

Properties Displays the Power Aware State Machine Properties
dialog box, which contains detailed information
about the selection.

Table 7-5. FSM View Menu, Specific to Power Aware State Machines

FSM View Menu Item Description

Show States Table Toggles the display of the states table for supply sets
and power domains

Show States Counts Displays the coverage counts for each state in the
state bubble.

Show Transition Counts Displays the coverage counts for each transition.

Show Transition Conditions Displays the condition for each transition.
The condition format is based on the
GUI_expression_format Operators.

Enable Info Mode Popups Displays popup information when you hover over a
state or transition.

Track Wave Cursor Displays current and previous state information
based on the cursor location in the Wave window.

Visualization of Power Aware Operations
Power State and Transition Display

Power Aware Simulation User’s Manual, v10.2c 123

Transitions to “Reset” Controls the display of transitions to a reset state:
• Show All
• Show None — will also add a “hide all” note to

the lower-right hand corner.
• Hide Asynchronous Only
• Combine Common Transitions — (default)

creates a single transition for any transitions to
reset that use the same condition. The transition
is shown from a gray diamond that acts as a
placeholder.

Options Displays the FSM Display Options dialog box,
which allows you to control:
• how FSM information is added to the Wave

Window.
• how much information is shown in the Instance

Column

Table 7-5. FSM View Menu, Specific to Power Aware State Machines (cont.)

FSM View Menu Item Description

Power Aware Simulation User’s Manual, v10.2c124

Visualization of Power Aware Operations
Power State and Transition Display

Power Aware Simulation User’s Manual, v10.2c 125

Appendix A
Power Aware Commands and Options

Note
The functionality described in this chapter requires an additional license feature for
ModelSim SE. Refer to the section “License Feature Names” in the Installation and
Licensing Guide for more information or contact your Mentor Graphics sales
representative.

This appendix provides reference information on the following:

• ModelSim Commands Used for Power Aware — a summary of the arguments for the
vopt and vsim commands that you use to implement a Power Aware simulation.

• Additional Commands You Can Use with Power Aware — a summary of Tcl
commands that you can use to control a Power Aware simulation.

• Power Aware Messages — basic information on message handling for Power Aware
simulation.

• Excluding Design Elements from Power Aware — a description of how to use vopt
-pa_excludefile to skip Power Aware processing for any module, its instances in a
particular hierarchical path in the design, or signals in the design.

• Voltage Level-Shifting (Multi-Voltage Analysis)

• Restricting Isolation and Level Shifting on a Port

• Simulating Designs Containing Macromodels

• Creating Feedthrough For RTL Conversion Functions

Power Aware Simulation User’s Manual, v10.2c126

Power Aware Commands and Options
ModelSim Commands Used for Power Aware

ModelSim Commands Used for Power Aware
Tables A-1 and A-2 list the arguments for the vopt and vsim commands that you use to run a
Power Aware simulation. Refer to the ModelSim Reference Manual for a more comprehensive
description of these commands and their arguments.

Table A-1. Power Aware Arguments for vopt

vopt Argument Argument Value(s)

-pa_all none

-pa_behavlogfile <filename>

-pa_ce o | os | osw | sc | scb

-pa_cfg <filename>

-pa_checks= Quick-Reference Comparison of Static and
Dynamic Check Arguments

-pa_checkseq= “<t1> [<unit>] [...<tn>]”

-pa_connectpgpin i | a | e

-pa_corrupt= |
-pa_nocorrupt=

real | integer

-pa_dbgstatic msk | rsn

-pa_defertop none

-pa_dbgstatic msk | rsn

-pa_disable= Using -pa_enable and -pa_disable

-pa_dumplibertydb= <database_path>

-pa_dumpupf <filename>

-pa_enable= Using -pa_enable and -pa_disable

-pa_excludedelayedbuffer none

-pa_excludefile <filename>

-pa_genrpt= [{nv | v}] [{us | ud | u}] [b] [pa] [de]

-pa_gls none (required for purely gate-level designs)

-pa_hiersep <alphanum_character>

-pa_intcrptval0 none

-pa_lib <library_pathname>

-pa_libertyrefresh= <database_path>

-pa_libertyupdate

Power Aware Commands and Options
ModelSim Commands Used for Power Aware

Power Aware Simulation User’s Manual, v10.2c 127

-pa_lsthreshold <real>

-pa_loadlibertydb= <database_path>

-pa_modeltype= 2

-pa_nopcfctrlcheck none

-pa_out none

-pa_prefix <hier_path>

-pa_replacetop <string>

-pa_reportdir <pathname>

-pa_reportfile <filename>

-pa_rtlinfo none

-pa_tclfile <filename>

-pa_top <pathname>

-pa_upf <filename>

-pa_upfextensions Supported UPF Extensions

-pa_upfsyntaxchecks none

-pa_upfversion= 1.0 | 2.0(default)

Table A-2. Power Aware Arguments for vsim

vsim Argument Argument Value

-pa none

-pa_allowtimezeroevent= all

-pa_debugdir <directory>

-pa_disabletimezeroevent none

-pa_gls none (previously used for purely gate-level
designs. You can now use -pa option
instead.)

-pa_highlight none

-pa_lib <pathname>

-pa_togglelimit= <integer>

-pa_top <pathname>

Table A-1. Power Aware Arguments for vopt (cont.)

vopt Argument Argument Value(s)

Power Aware Simulation User’s Manual, v10.2c128

Power Aware Commands and Options
ModelSim Commands Used for Power Aware

Using -pa_enable and -pa_disable
The values for the -pa_enable and -pa_disable arguments to the vopt command listed in
Table A-3 allow you to enable or disable certain actions that performed during Power Aware
simulation.

Syntax

vopt -pa_enable=<value>[+<value>...]

vopt -pa_disable=<value>[+<value>...]

Description

• Each argument uses the same set of values, which means using a value with either
argument toggles that action from its default state or from a previously specified state.

• Table A-3 lists each value, a brief description of the Power Aware action performed, and
which argument used for that value by default.

• You can specify one or more values for either argument—there is no order dependency
when specifying multiple values. To specify more than one value for either argument,
use the + operator between values. For example:

vopt -pa_enable=lowerboundary+insertiso
vopt -pa_disable=sourcesink+relatedsupplies

-pa_zcorrupt none

Table A-3. Power Aware Actions for vopt -pa_enable and -pa_disable

Value Action Default

ackportbehavior For UPF 2.0, power switches with the
-ack_port switch require a supply set.
• pa_enable — Issues an error if this

condition is not met.
• pa_disable — allows violation of this

condition and uses an always on supply
set. Essentially reverting to UPF 1.0
functionality

-pa_enable

anonupfobjects Create anonymous supply sets or nets for
future replacement by associated objects.

-pa_disable

Table A-2. Power Aware Arguments for vsim (cont.)

vsim Argument Argument Value

Power Aware Commands and Options
ModelSim Commands Used for Power Aware

Power Aware Simulation User’s Manual, v10.2c 129

defaultoff Changes the default state of supply nets
and ports to either OFF or FULL_ON
• -pa_disable=defaultoff sets default to

FULL_ON
• -pa_enable=defaultoff sets default to

OFF

-pa_enable

detectiso Detect isolation cells present in the design. -pa_enable

detectret Detect retention cells present in the design. -pa_enable

detectls Detect level-shifter cells present in the
design.

-pa_enable

detectsw Detect switches instantiated in the design
and their association with a UPF
create_power_switch command.

-pa_disable

highlight Enables highlighting in the Wave window -pa_disable

ignorespecialdrivers
ignoregroundsupplyconn
ignorehangingoutput
ignorepowersupplyconn
ignoretielow
ignoretiehigh
ignoreundriveninput

If you enable any of these options, the tool
disables the automatic insertion of level
shifter and isolation cells based on the
following scenarios. It also disables any
static level shifter, isolation checking or
dynamic checks (missing level-shifter or
missing isolation):
• All of the following scenarios
• Ports connected to ground supplies
• Unconnected output ports
• Ports connected to power supplies
• Ports tied to 0
• Ports tied to 1
• Undriven input ports

-pa_disable

insertiso Insert isolation cells. -pa_enable

insertret Controls retention cell insertion.
• -pa_enable=insertret enables retention

cell insertion in the gate-level flow
(-pa_gls).

• -pa_disable=insertret disables retention
cell insertion in the RTL or mixed
RTL-gate-level flows.

-pa_enable

insertls Insert level-shifter cells. -pa_enable

Table A-3. Power Aware Actions for vopt -pa_enable and -pa_disable (cont.)

Value Action Default

Power Aware Simulation User’s Manual, v10.2c130

Power Aware Commands and Options
ModelSim Commands Used for Power Aware

lowerboundary Perform isolation on the ports present in
lower boundary of power domain.

-pa_enable

modsrns Enables or disables support of the non-
LRM UPF command
set_related_supply_net.

-pa_enable

nonoptimizedflow Must be enabled if you use -novopt on the
vopt command line

-pa_disable

relatedsupplies Define related supplies attributes on the
boundary ports (accessible pins of hard
macros).

-pa_enable

sourcesink Apply pathwise analysis of isolation or
level-shifting.

-pa_enable

supplynetworkdebug Enables or disables the appearance of UPF
objects created in the Structure, Object,
and Wave windows.

-pa_disable

udpnoret Enables or disables the retention of
sequential UDPs in a gate-level or mixed
RTL-gate-level power aware simulation.
This does not impact the default behavior
of UDP corruption. Refer to the section
“UDP Corruption and Retention Modes”
for more information.

-pa_disable

undeterminedstate Controls behavior related to power aware
switches or supply nets/ports going into an
UNDETERMINED state as defined by
UPF 2.0. Refer to the section “Detailed
Support for supply_net_type” for more
information
• pa_enable — enables UPF 2.0 behavior
• pa_disable — reverts to UPF 1.0

behavior

-pa_enable

verbosereporting Toggles the addition of a full hierarchical
path of the power domain for static and
dynamic reporting.

-pa_disable

Table A-3. Power Aware Actions for vopt -pa_enable and -pa_disable (cont.)

Value Action Default

Power Aware Commands and Options
Additional Commands You Can Use with Power Aware

Power Aware Simulation User’s Manual, v10.2c 131

Additional Commands You Can Use with Power
Aware

Power Aware simulation supports the following additional Tcl commands, which are not UPF
commands, that you specify in either a UPF file (vopt -pa_upf) or a Tcl file (vopt -pa_tclfile).

• set_corruption_extent

• set_feedthrough_object

• set_related_supply_net

Power Aware Simulation User’s Manual, v10.2c132

Power Aware Commands and Options
Additional Commands You Can Use with Power Aware

set_corruption_extent

Syntax

set_corruption_extent -domains {<domain_name> …} -ce {o | os | osw | sc | scb}

Arguments

• domain_name — the name of any power domain in the current scope, You can specify
multiple domain names in a space-separated list, enclosed in braces [{}].

• -ce — sets the corruption extent, which takes one of the following values:

o — outputs only.

os — outputs and sequential elements.

osw — outputs and sequential and non-sequential wires.

sc — sequential and combination logic (based on UPF corruption semantics honoring all
sequential and combination logic for corruption—excluding any buffers in the path
for corruption).

scb — sequential, combination, and buffer logic.

Description

Specify in either a UPF file (vopt -pa_upf) or a Tcl file (vopt -pa_tclfile).

Changes the corruption extent of the power domains created by the UPF file.

Example

Change the corruption semantics of domains P1 and P2 created in the scope tb to outputs only.

set_scope tb
set_corruption_extent -domains {P1 P2} -ce o

Power Aware Commands and Options
Additional Commands You Can Use with Power Aware

Power Aware Simulation User’s Manual, v10.2c 133

set_feedthrough_object

Syntax

set_feedthrough_object -function <function_list> [-package <package_name>]

Arguments

• -function <function_list> — a required list of one or more function names (you must specify
at least one function name).

• -package <package_name> — detects only functions from the specified package,
package_name. Optional.

Description

Allows conversion functions to be treated as feedthroughs for UPF-based corruption. The
objective is to detect conversion functions in the PA-RTL and treat them as feedthrough paths.

Specify in either a UPF file (vopt -pa_upf) or a Tcl file (vopt -pa_tclfile).

Power Aware Simulation User’s Manual, v10.2c134

Power Aware Commands and Options
Additional Commands You Can Use with Power Aware

set_related_supply_net

Syntax

set_related_supply_net -object_list <objects> -reset -power <power_net_name>
-ground <ground_net_name>

Arguments

• -object_list <objects> — List of ports or pins that is to have a related power or ground
supply defined. Pins or ports are referenced relative to the active scope.

• -power <power_net_name> — The related supply power net, referenced relative to the
active scope. You can specify this switch by itself or in combination with -ground.

• -ground <ground_net_name> — The related supply ground net, referenced relative to the
active scope. You can specify this switch by itself or in combination with -power.

• -reset — not currently supported.

Description

Allows associating an instance signal pin or a hierarchical port with specific supply nets. Thus,
you can create a supply net based on supply pins so you can specify your related supplies of
cells.

Specify with vopt -pa_upfextensions (see Using -pa_upfextensions).

Power Aware simulation internally maps this command to the set_port_attributes command that
you specify in the UPF file, specifically the following arguments:

-related_power_pin <power_net_name>

-related_ground_pin <ground_net_name>

Note that v2.0 of the UPF standard interprets the related_power_net and related_ground_net
attributes as defining the driver supply set of an output port or the receiver supply set of an input
port. The standard also declares that it is an error in the following cases:

• if the actual driving logic is present and its supply is not the same as the driver supply.

• if the actual receiving logic is present and its supply is not the same as the receiver
supply.

As a result, use of set_related_supply_net for any purpose other than specifying the driver
supply set of a macro model output or the receiver supply set of a macro model input may
generate errors.

Specifically, Power Aware simulation gives a vopt error message (vopt-9814). You can use the
-warning argument of vopt to change the severity of this message to a warning so that
simulation may continue:

vopt -warning 9814

Power Aware Commands and Options
Additional Commands You Can Use with Power Aware

Power Aware Simulation User’s Manual, v10.2c 135

Refer to Power Aware Messages for more information on changing the level of message
severity.

Default Behavior

The functionality in the section is enabled by default.

For top-level ports (in the absence of boundary information), it is left up to the simulator to
decide how to handle the primary input and output ports.

You can define the supply related to the primary input and output ports, and instruct the
simulator as to what voltage the input ports can be driven and what voltage the output ports can
drive.

If you use the –source, -sink, or -diff_supply_only options for setting isolation strategies, the
related supply tells the simulator what supply is powering the cell on the other side of the
domain boundary, which can then be used to determine whether or not isolation is necessary
based upon your constraints. This related supply information is useful for static analysis.

This command relates the specified power and/or ground net to the port or pin specified.

When you use set_related_supply_net on a primary port:

• Input port assumes the supply net specified is the driver of the input port.

• Output port assumes the supply net specified is the receiver of the output port.

That is, the command specifies the external supplies. In other words a buffer insertion takes
place at the location parent.

• For input port — Buffer --> Input port

• For output port — Output Port --> Buffer

Static analysis honors this information of related supplies.

As buffers are now inserted in design just like isolation, when supply of buffer goes off, then
buffer output gets corrupted.

For this case, when isolation is also applied on the port at which srns is defined:

• For input ports — buffer is applied at location parent (followed by isolation cells).

Buffer -- ISO -- Input port

• For output ports — buffer is applied at location parent (preceded by isolation cells)

Output Port -- ISO -- Buffer

When buffer (set_related_supply_net supply) goes off:

• Input Port — Corruption is seen on the input port.

• Output Port — Corruption is seen on the logic (or port) driven by output port.

Power Aware Simulation User’s Manual, v10.2c136

Power Aware Commands and Options
Power Aware Messages

Power Aware Messages
This section describes the ways in which you can control messaging within the ModelSim
power aware functionality.

Dynamic Power Aware Check Message Control
Use the pa msg command to finely control the appearance of messages resulting from power
aware checks during simulation.

Note
When you disable a message for a specific power aware check, you also disable the
underlying assertion as well. This means that the any messages are disabled as well as
any resulting coverage collection.

The syntax for the command is:

pa msg [-enable | -disable] [-severity {note | warning | error | fatal}] [-stopafter <number>]
[message_number …] [-pa_checks[=<spec>]] [-scope <scope_name>] [-domain <pd_name>]
[-strategy <strategy_name>] [-ports <ports_list>] [-glitch_window <duration>] [-all]

Concepts of pa msg
• Command scope (-scope) — When you do not specify the -scope argument, the scope

of the command is set to the design top, specifically it applies to the entire design (from
design top scope downwards). Use of this option changes the scope of command to the
specified scope.

For example if tb is the design top (the scope from which vsim was invoked) then:

pa msg

with no arguments, applies to all objects from the /tb scope. While:

pa msg -scope /tb/dut

applies to all objects from the /tb/dut scope.

The pa msg command also applies to all objects from the scope of the command. It also
applies to all domains and all relevant objects from scope downwards, specifically:

o If you specify -domain, the command is restricted to apply only to all instances
within that domain.

o If you specify -strategy or -ports, the command applies only to those objects with in
the scope (or domain).

o Any names specified with -domain or -ports should be relative to the scope of the
command.

Power Aware Commands and Options
Power Aware Messages

Power Aware Simulation User’s Manual, v10.2c 137

Other examples show you how to apply the command to all objects of the power domain
/tb/dut/mid1/PD_mid1.

pa msg -scope /tb/dut/mid1 -domain PD_mid1

Also, when you do not specify -scope, names associated with -ports or -domain are
relative to design top.

pa msg -domain dut/mid1PD_dut ... -ports {dut/mid1/P1 dut/mid1/P2}

2. Use of -all — When you specify -all, the command applies to all dynamic power
aware check messages.

pa msg <options> -all

Otherwise, when you do not specify -all, it applies to all messages except the ones with
severity NOTE.

pa msg <options>

• Disabling checks also disables assertions — When you disable a particular power
aware check, the underlying assertion for that check is also disabled, resulting the
following:

o disabling the messages of selected checks.

o disabling the associated coverage collection of that assertion

• Power aware checks are disabled at time 0 (zero) — By default, all dynamic power
aware checks are disabled at time 0, resulting in no messages at this time. You can
change this behavior with pa msg before running your simulation, for example, if you
want to enable Power Status Info (-pa_checks=p) at time 0, do the following:

vsim > pa msg -enable -pa_checks=p

vsim > run 1ns

Use Model for pa msg
You can use this command at any time during simulation. It will have impact in simulation after
the time stamp of its usage until the time any new pa msg command overrides the previous one,
for example

In the following example, the power aware check umi (missing iso) will be disabled after 100ns
and it will be re-enabled at 150ns. Therefore, in the time window from 100ns to 150ns this pa
check will be disabled.

run 100ns

pa msg -pa_checks=umi -disable

run 50ns

pa msg -pa_checks=umi -enable

Power Aware Simulation User’s Manual, v10.2c138

Power Aware Commands and Options
Power Aware Messages

Option Descriptions of pa msg
The options to the pa msg command are organized, broadly, into three categories:

• Selecting power aware checks.

• Taking finer control over selected power aware checks.

• Performing actions on selected power aware checks.

Power Aware Check Selection

Note
If you do not specify any of these options, the command selects all dynamic power aware
checks, except the ones with severity NOTE.

• message numbers — These numbers are found in the violation message of the power
aware check. The numbers you specify select the associated power aware checks. For
example:

pa msg 8920 8931

selects the power aware checks associated with message numbers 8920 and 8931.

• -pa_checks[=<spec>] — This option is the same as that specified with the vopt
command. For example,

pa msg -pa_checks=irc+upc

selects the “isolation race” and “switching off of isolation and retention supply” checks.

• -all — This option selects all dynamic PA Checks.

Fine Control of Check Selection

• -scope <scope_name> — This option defines the scope of the command, where the
scope is restricted to apply from this scope downward. By default, the scope is the
design top scope.

Note
This option is meaningful when you specify it with -domain, -strategy, or -ports.

The scope is dependent on how you specify scope_name:

o If you specify an absolute path name, starting the argument with a slash (/), then the
scope is becomes your explicit argument.

pa msg ... -scope /tb/TOP/mid1

Power Aware Commands and Options
Power Aware Messages

Power Aware Simulation User’s Manual, v10.2c 139

o If you do not specify an absolute path name, not starting with a slash (/) then scope
becomes: <design_scope>/<scope_name>. For example, assuming the design top
scope is tb:

pa msg ... -scope TOP/mid1

the scope of the command will be /tb/TOP/mid1.

• -strategy <strategy_name> — This option selects a power aware check belonging to
the specified strategy. If you use this option with -domain, then checks belonging to
domain.strategy will be selected.

For example, the following command will select the “Isolation functionality” check
(associated with message 8931) for isolation strategy iso_top:

pa msg 8931 -strategy iso_top

The following command will select all isolation checks which belong to strategy
iso_mid1 of power domain <Scope Of Command>/PD_mid1:

pa msg -pa_checks=i -domain PD_mid1 -strategy iso_mid1

This option will be ignored if you use it to finely control checks that do not belong to
any strategy. For example, the following checks do not have any UPF strategy

o Power domain status check "-pa_checks=p", which refers to message 8902

o Power domain toggle check "-pa_checks=t", which refers to message 8908

o Missing level shifter check "-pa_checks=uml", which refers to message 8915

o Missing isolation check "-pa_checks=umi", which refers to message 8929

o Non-retention register reset check "-pa_checks=npu", which refers to message 8912

Note
It the specified strategy name does not exist tool will flag a NOTE message as shown
below and will ignore this option.

** Warning: (vsim-4086) Strategy 'iso_PD_mid3' specified with '-strategy' option not
found

• -ports <list of ports> —This option restricts your selection power aware checks for
specified ports only, where the names of ports should be relative to Scope of Command.

For example, to select Isolation clamp value check for Ports /tb/TOP/mid1/P1 and
/tb/TOP/mid1/P2, which belong to strategy iso_mid1 of power domain PD1, use the
command:

pa msg -pa_checks=icp -domain PD1 -strategy iso_mid1 -scope /tb/TOP/mid1
-ports {P1 P2}

This option is applicable only to the following checks:

Power Aware Simulation User’s Manual, v10.2c140

Power Aware Commands and Options
Power Aware Messages

o Isolation race check "-pa_checks=irc" which refers to message 8910

o Isolation functionality check "-pa_checks=ifc" which refers to message 8931

o Isolation clamp value check "-pa_checks=icp" which refers to message 8930

o Isolation toggle check "-pa_checks=it" which refers to message 8908

If you specify this option with checks other than these, you’ll receive a NOTE message
and the option will be ignored. For example, the command:

pa msg 8918 -domain PD1 -strategy iso_mid1 -scope /tb/TOP/mid1 -ports {P1 P2}

Issues the error:

** Note: (vsim-4087) The command 'pa msg' is ignored for message
number 8918, as option '-ports' is not applicable for this message
number.

because -ports is not applicable with message 8918.

Actions for Power Aware Checks

Use the following options to specify the action to be taken on the selected power aware checks.

• -enable or -disable — Use these options to enable or disable a particular power aware
check which was selected using the selection and fine control options.

• -severity <note | warning | error | fatal > — Use this option to change default severity
of a selected check.

• -stopafter <number> — Use this option to specify a maximum count. If a selected
check exceeds this specified count, then simulation will stop.

• -glitch_window <duration> — Use this option to specify the maximum allowed time
window of a glitch. It is applicable for glitch checks (-pa_checks=ugc) only. If specified
with any other checks it will be ignored.

Examples
The following commands show several usage examples of the pa msg command.

• Disable all isolation functionality and clamp value checks for isolation strategy iso_mid
belonging to power domain /tb/TOP/mid1/PD_mid:

pa msg -disable -pa_checks=ifc+icp -scope /tb/TOP/mid1 -domain PD_mid
-strategy iso_mid

In this command, if action is to be taken only for Port /tb/TOP/mid1/P3 then you would
specify:

pa msg -disable -pa_checks=ifc+icp -scope /tb/TOP/mid1 -domain PD_mid
-strategy iso_mid -ports {P3}

Power Aware Commands and Options
Power Aware Messages

Power Aware Simulation User’s Manual, v10.2c 141

• Disable all power aware checks belonging to strategy iso_mid2:

pa msg -all -strategy iso_mid2

It applies to all power aware checks which belong to the iso_mid2 strategy only. If you
want to control iso_mid2 of /tb/TOP/PD_top only then you should specify:

pa msg -all -domain TOP/PD_top -strategy iso_mid2

or

pa msg -all -scope /tb/TOP -domain PD_top -strategy iso_mid2

• Enable all isolation checks at time 0.

Before running simulation specify:

pa msg -enable -pa_checks=i

After this command, and when simulation has run, all failing isolation checks, even
those at time 0, will be flagged.

Controlling Power Aware Message Severity During vopt
Stage

You can use the following vopt arguments to suppress or control the severity of messages that
occur while running Power Aware:

• -suppress <msg_num> — Suppresses a particular message by its ID number
(msg_num).

Messages are not displayed and processing continues.

• -warning <msg_num> — Changes the severity of a particular message to Warning.

Messages are displayed and processing continues.

• -error <msg_num> — Changes the severity of a particular message to Error.

Messages are displayed and processing continues.

• -note <msg_num> — Changes the severity of a particular message to Note.

Messages are displayed and processing continues.

• -fatal <msg_num> — Changes the severity of a particular message to Fatal.

Messages are displayed and processing stops.

Applying different severity levels allows you to prevent stoppage of vopt operation or
inconsistent behavior in processing and resolve phases when the error is encountered. An

Power Aware Simulation User’s Manual, v10.2c142

Power Aware Commands and Options
Excluding Design Elements from Power Aware

example of this is when vopt stops for errors in the processing phase, while continuing when the
same errors occur in the resolve phase.

When you suppress or lower the severity of an error message, you may not see the desired
result, since the corresponding UPF command behavior gets bypassed or ignored.

Examples

• Use vopt to suppress or change the severity of a single message:

vopt -pa_upf top.upf -o t tb -suppress <msg_num>

• Use vopt to suppress or change the severity of multiple messages:

vopt -pa_upf top.upf -o t tb -warning <msg_num1>,<msg_num2>,
<msg_num3>

Excluding Design Elements from Power Aware
You can exclude Power Aware processing for any module, instance, or signal within a
particular hierarchical path in a design.

Usage

vopt -pa_excludefile <filename>

Description

The -pa_excludefile option instructs Power Aware processing to skip any module listed in the
specified exclude file.

• <filename> — The name of a text file that specifies modules, instances, or signals you want
to exclude from Power Aware verification.

Entries for modules must be of the following form:

<module_name> [-a] <hier_path>

module_name — any regular expression (enclosed in quotation marks).

-a — an optional switch that enables recursive exclusion of module_name.

hier_path — the full pathname to the instance of the module you want to exclude. When
a module instance is skipped, Power Aware simulation displays the following
message:

** Note: (vopt-9691) Excluding power aware module ’<module_name>’
in path ’<hier_path>’.

When used with -a, specifying hier_path limits the recursive exclusion to a particular
scope.

Power Aware Commands and Options
Excluding Design Elements from Power Aware

Power Aware Simulation User’s Manual, v10.2c 143

Entries for instances or signals must be of the following form:

<module_name> [<instance_pathname>] [[-s | -r] <signal_name> …}]

-s — specifies signal exclusion

-r — specifies recursion (applied to s, where all occurrences inside only that module
scope will be excluded).

Examples—Excluding a Module

The following examples show entries in the exclude file.

1. Direct Power Aware processing to skip all instantiation of bot_mod found within the
top hierarchy.

• Entry in the exclude file:

bot_mod

• Log messages for the vopt command:

** Note: (vopt-9691) Excluding power aware module ’bot_mod’ in path
’/top/t1’.

** Note: (vopt-9691) Excluding power aware module ’bot_mod’ in path
’/top/t1/t2’.

2. Direct Power Aware processing to skip all instantiation of bot_mod2 and bot_mod3
found within the top hierarchy.

• Entry in the exclude file:

"bot_mod[2-3]" /top/mid

• Log messages for the vopt command:

** Note: (vopt-9691) Excluding power aware module ’bot_mod2’ in path
’/top/inst1’.

** Note: (vopt-9691) Excluding power aware module ’bot_mod3’ in path
’/top/inst2’. "

Examples—Excluding Signals/Nets

The following examples show entries in the exclude file.

1. Direct Power Aware processing to skip signal/net sig, present in all instantiations of
bot_mod found within the instance /top/t1.

• Entry in the exclude file:

bot_mod /top/t1 -s sig

• Log messages for the vopt command:

Power Aware Simulation User’s Manual, v10.2c144

Power Aware Commands and Options
Excluding Design Elements from Power Aware

** Note: exclude.txt(1): (vopt-9013) Excluding signal ‘sig’ in power
aware module ’bot_mod’ in path ’/top/t1/sig’.

A warning message will be reported if there was no match found in exclude file, for
signal sig in module bot_mod in instance /top/t1:

** Warning: exclude.txt(1): (vopt-9014) No match found in exclude
file, for signal ’sig’ in module ’bot_mod’ in instance path
’/top/t1’.

2. Direct Power Aware processing to skip signals or nets sig2, sig3, sig4, present in all
instantiation of bot_mod found within the instance /top/t1.

• Entry in the exclude file:

bot_mod /top/t1 -s "sig[2-4]"

• Log messages for the vopt command:

** Note: exclude.txt(1): (vopt-9013) Excluding signal ’sig3’ in
power aware module ’bot_mod’ in path ’/top/t1/sig3’.

** Note: exclude.txt(1): (vopt-9013) Excluding signal ’sig4’ in
power aware module ’bot_mod’ in path ’/top/t1/sig4’.

** Note: exclude.txt(1): (vopt-9013) Excluding signal ’sig2’ in
power aware module ’bot_mod’ in path ’/top/t1/sig2’.

3. Direct Power Aware processing to skip signal or net, sig, present in the scope of all
instantiations of bot_mod found within the instance /top/t1.

• Entry in the exclude file:

bot_mod /top/t1 -sr sig

• Log messages for the vopt command:

** Note: exclude.txt(1): (vopt-9013) Excluding signal ’sig’ in power
aware module ’bot_mod’ in path ’/top/t1/blk/fg__5/sig’.

** Note: exclude.txt(1): (vopt-9013) Excluding signal ’sig’ in power
aware module ’bot_mod’ in path ’/top/t1/blk/fg__4/sig’.

** Note: exclude.txt(1): (vopt-9013) Excluding signal ’sig’ in power
aware module ’bot_mod’ in path ’/top/t1/blk/fg__3/sig’.

** Note: exclude.txt(1): (vopt-9013) Excluding signal ’sig’ in power
aware module ’bot_mod’ in path ’/top/t1/blk/fg__2/sig’.

** Note: exclude.txt(1): (vopt-9013) Excluding signal ’sig’ in power
aware module ’bot_mod’ in path ’/top/t1/blk/fg__1/sig’.

** Note: exclude.txt(1): (vopt-9013) Excluding signal ’sig’ in power
aware module ’bot_mod’ in path ’/top/t1/blk/sig’.

** Note: exclude.txt(1): (vopt-9013) Excluding signal ’sig’ in power
aware module ’bot_mod’ in path ’/top/t1/sig’.

Power Aware Commands and Options
Voltage Level-Shifting (Multi-Voltage Analysis)

Power Aware Simulation User’s Manual, v10.2c 145

Voltage Level-Shifting (Multi-Voltage Analysis)
This section describes the voltage level-shifting capability of Power Aware, which is primarily
implemented as Unified Power Format (UPF) commands and Power Aware arguments to the
ModelSim vopt command.

The supply network state provides information about the possible power states of the network.
Power Aware simulation uses that information to detect level shifters wherever a signal crosses
from a power domain operating at a voltage level that may be different than the voltage level of
another power domain to which it connects (also known as multi-voltage analysis).

Power State Tables
Power Aware simulation uses information from a Power State Table (PST) in Power Aware
analysis. PSTs are also parsed and dumped to the UPF report file (report.upf.txt). It is assumed
that the PST is complete; any domains that are not mentioned in PST will not be used for
analysis.

The traversal does not skip any power switches encountered in the supply network path. The
traversal goes only behind direct connectivity of supply ports and supply nets that are created in
UPF. It does not go behind a supply net present in the design or the UPF supply net/port that is
directly connected to an HDL supply net or port.

Example
Pst top_pst, File:../UPF/rtl_top.upf(127).
 Header ==> : VDD_0d99 VDD_0d81 VSS
 ON ../UPF/rtl_top.upf(133): ON ON ON
 OFF ../UPF/rtl_top.upf(134): ON ON ON

 List of possible states on:
 VDD_0d99 [source supply port: VDD_0d99, File:../UPF/rtl_top.upf(21)]
 1. ON: 0.99,1.10,1.21

 VDD_0d81 [source supply port: VDD_0d81, File:../UPF/rtl_top.upf(22)]
 1. ON: 0.81,0.90,0.99

 VSS [source supply port: VSS, File:../UPF/rtl_top.upf(23)]
 1. ON: 0.00,0.00,0.00

Power Aware Simulation User’s Manual, v10.2c146

Power Aware Commands and Options
Voltage Level-Shifting (Multi-Voltage Analysis)

Level Shifter Specification

Reporting
Power Aware simulation parses the set_level_shifter command in the UPF file and selects a list
of candidate ports for level shifter insertion. These ports are also dumped into the UPF report
file (report.upf.txt) as in the following example:

Level Shifter Strategy: my_ls, File: ./src/simple_mv7/test.upf(63).
 Rule (high_to_low), Threshold (0), Applies_to (outputs).
 Level Shifted Candidate Ports:
 1. Signal : /tb/TOP/bot2/out1_bot

Level Shifter Strategy: my_ls_bot3, File: ./src/simple_mv7/test.upf(69).
 Rule (low_to_high), Threshold (0), Applies_to (outputs).
 Level Shifted Candidate Ports:
 1. Signal : /tb/TOP/bot3/out1_bot

Threshold Control for Level Shifters
You can set a global threshold level for a Power Aware analysis containing multiple voltage
levels using the following command:

vopt -pa_lsthreshold <real>

where <real> is any numerical value that specifies a voltage threshold.

Use this argument with the vopt command when you know that level shifting is not required for
particular range of voltage differences. You can then specify a global threshold— otherwise
Power Aware simulation will flag missing level shifter errors even if the potential difference
between two domains is within an acceptable range.

Level Shifter Instances
If you have used the set_level_shifter -instance command in a UPF file to instantiate level
shifters, Power Aware simulation will detect those instances and perform level shifting checks
on them (see Static Checking in Power Aware).

An instance is recognized as a level shifter instance in any of the following cases:

• The level shifter instance is specified with -instance argument of set_level_shifter
command.

• For a gate-level design, any of the following:

o The is_level_shifter attribute is specified for the module. Example:

(* is_level_shifter = 1 *)
module ls_buf(
 (*pg_type = "primary_power"*) input logic pwr_rail,

Power Aware Commands and Options
Restricting Isolation and Level Shifting on a Port

Power Aware Simulation User’s Manual, v10.2c 147

 (*pg_type = "primary_ground"*)input logic gnd_rail,
 (* level_shifter_data_pin = 1 *)input data,
 output logic out);
assign out = (data);
endmodule

o Instantiation has prefix or suffix string for level shifter specified with name_format
UPF command. Example:

LVLHLD1BWP lsinst2_UPF_LS(.I(w2), .Z(w4));

Limitations on Level Shifting
• Support for VHDL and Verilog synthesizable data types. Restricted support for

SystemVerilog (array, struct).

• Level shifters not specified at the power-domain boundary are not considered for multi-
voltage checks.

Restricting Isolation and Level Shifting on a Port
The set_isolation and set_level_shifter UPF commands each have -source and -sink arguments,
which you can use to apply isolation or level shifting only to certain paths of a specific port in
your design. When you specify either or both of these arguments, Power Aware simulation
identifies all the paths through the given port and applies isolation or level shifting to only those
paths whose driver and receiver supplies match the specified source and sink supplies.

Isolation and Level Shifting Behavior
Using the -source and -sink arguments affects Isolation and Level Shifter insertion behavior in
the following ways:

• Determine all the paths passing through a given port.

To determine the path, all the buffers, isolation cells, and level shifter cells are treated as
feedthroughs and actual drivers and receivers are determined.

• Insert isolation or level shifter cells after matching source or sink supplies, if specified.

To match equivalent supplies, the driver nets of primary power and ground nets are
matched.

• Determine, via the -location argument (for both commands), the placement of an
isolation or level shifter cell.

You can specify any of the following values for set_isolation -location or
set_level_shifter -location:

Power Aware Simulation User’s Manual, v10.2c148

Power Aware Commands and Options
Restricting Isolation and Level Shifting on a Port

o Fanout — isolation or level shifter cell is placed at all fanout locations (sinks) of the
port.

o Fanin — isolation or level shifter cell is placed at all fanin locations (sources) of the
port.

o Faninout — isolation or level shifter cell is placed at all fanout locations (sinks) for
each output port, or at all fanin locations (sources) for each input port.

o Parent — isolation or level shifter cell is placed in the parent of the domain whose
interface port is being isolated or shifted.

o Automatic — same as Parent.

o Self — isolation or level shifter cell is placed inside the domain whose interface port
is being isolated or shifted.

o Sibling — same as Self.

Note
Level shifter cells are not currently inserted in RTL — their effect will not be present in
simulation. Only Power Aware checking (vopt -pa_checks) will validate these cells.

How to Apply the -source and -sink Arguments
Figure A-1 shows a block diagram of power domains, ports, and paths for use in the examples
that follow.

Example A-1. UPF Commands That Define Power Domains

The following list shows fragments of UPF commands used to define the diagram of
Figure A-1:

create_supply_set PD1_SS ...
create_power_domain PD1 ...
associate_supply_set PD1_SS -handle PD1.primary
create_supply_set PD2_SS ...
create_power_domain PD2 ...
associate_supply_set PD2_SS -handle PD2.primary
create_power_domain PD3 ...

Power Aware Commands and Options
Restricting Isolation and Level Shifting on a Port

Power Aware Simulation User’s Manual, v10.2c 149

Figure A-1. Supply Paths to Power Domains

Source Examples

• Place isolation cell at Port C and isolate Path A-C.

set_isolation iso1 -domain PD3 -source PD1_SS -location parent ...

• Place isolation cell at Port B and isolate Path B-D.

set_isolation iso2 -domain PD3 -source PD2_SS -location fanin ...

Sink Examples

• Place isolation cells at Port G and Port H and isolate Path E-G and F-H.

set_isolation iso1 -domain PD3 -sink PD4_SS -location fanout ...

• Place isolation cell at Port H and isolate Path F-H.

set_isolation iso2 -domain PD3 -elements {F} -sink PD4_ss
-location fanout ...

• Place isolation cell at Port F and isolate Path F-H.

set_isolation iso3 -domain PD3 -elements {F} -sink PD4_ss
-location parent ...

Power Aware Simulation User’s Manual, v10.2c150

Power Aware Commands and Options
Restricting Isolation and Level Shifting on a Port

Differential Supply Examples

You can prevent the application of isolation into a path from driver to receiver for isolation
strategy by using the -diff_supply_only argument to the The set_isolation command.

For these examples, assume that PD2, PD3 and PD4 all have same supply sets:

create_supply_set PD2_SS ...
create_power_domain PD2 ...
associate_supply_set PD2_SS -handle PD2.primary
associate_supply_set PD2_SS -handle PD3.primary
associate_supply_set PD2_SS -handle PD4.primary

• Place isolation cells at Ports C and F and isolate Paths A-C and F-I. Do not isolate path
F-H.

set_isolation iso1 -domain PD3 -applies_to both
-diff_supply_only TRUE -location parent ...

• Place isolation cells at Ports A and I and isolate Paths A-C and F-I.

set_isolation iso2 -domain PD3 -applies_to both
-diff_supply_only TRUE -location faninout ...

• Place isolation cell at Port A and isolate Path A-C.

set_isolation iso3 -domain PD3 -applies_to both -source PD1_SS
-diff_supply_only TRUE -location faninout ...

Multiple Strategies Example

• Isolate the same port F with different Sinks. Here, Port H will be isolated with iso1 and
port I with iso2.

set_isolation iso1 -domain PD3 -elements {F} -sink PD4_SS
-location fanout -clamp 1 ...

set_isolation iso2 -domain PD3 -elements {F} -sink PD5_SS
-location fanout -clamp 0 ...

Multiple Isolation Cells Examples

Refer to Figure A-2 for the following examples on using multiple isolation cells.

• Using -source and -location fanout — Isolates all output port paths and places isolation
cells at Ports G, H and I. Places two isolation cells at Port H and I for the same port F.

set_isolation iso1 -domain PD3 -source PD3_SS -location fanout ...

• Using -source and -location parent — Places isolation cells at Ports E and F. Places only
one Isolation Cell at Port F, which isolates both Paths F-H and F-I.

set_isolation iso2 -domain PD3 -source PD3_SS -location parent ...

• Places isolation at Port G. Relative ordering is maintained with iso3 cell in front of iso4
cell, means Iso3 -> iso4 -> port G.

Power Aware Commands and Options
Restricting Isolation and Level Shifting on a Port

Power Aware Simulation User’s Manual, v10.2c 151

set_isolation iso3 -domain PD3 -elements {E} -location fanout
-clamp 1 ...

set_isolation iso4 -domain PD4 -elements {G} -location parent
-clamp 0 ...

Figure A-2. Multiple Isolation Cells

Multiple Strategies in a Path Examples

Refer to Figure A-2 for the following examples on using multiple strategies in a path.

• Places isolation cell at Port H and isolates path M-F-H.

set_isolation iso1 -domain PD7 -sink PD4 -location fanout ...

• Places isolation cell at Port M and isolates only path M-F-H. This means the clamp
value will be seen at Port H. All other ports M, F and I will not have clamp value during
power down.

set_isolation iso2 -domain PD7 -sink PD4 -location parent ...

• Places three isolation cells at Port H with relative ordering: iso3 > iso4 > iso5 > port H.

Power Aware Simulation User’s Manual, v10.2c152

Power Aware Commands and Options
Simulating Designs Containing Macromodels

set_isolation iso3 -domain PD7 -sink PD4 -location fanout ...

set_isolation iso4 -domain PD3 -elements {F} -sink PD4
-location fanout ...

set_isolation iso5 -domain PD4 -elements {H} -location parent ..

• Places two isolation cells at Port F and isolates only port H with relative ordering: Port F
> iso6 > iso7. This means the clamp value (o/p of iso7) will be seen at Port H. All other
ports (M, F and I) will not have clamp value during power down.

set_isolation iso6 -domain PD7 -sink PD4 -location fanout ...

set_isolation iso7 -domain PD3 -elements {F} -sink PD4
-location parent ...

Simulating Designs Containing Macromodels
A macromodel is a block-level model in a design that has been optimized for power, area, or
timing and has been silicon-tested. Defining the power intent for a macromodel depends on
whether you have access to its internal structure (logic and topology). If internal access is not
available, you can specify power intent only on its external pins—this is referred to as a “hard
macro.”

To specify power intent for a hard macro, you define related-supplies attributes on these
accessible pins as boundary ports. Similarly, you can isolate a hard macro from the rest of the
design by applying the isolation on its boundary ports.

Specifying power intent for a hard macro is available by any of the following methods:

• In a UPF file with the commands:

o set_port_attributes

o set_pin_related_supply

• Related-supplies attributes in RTL

• Using a Liberty file in GLS

Using UPF Commands
To specify hard macro power intent, use the UPF commands and their arguments described
below.

Command

set_port_attributes

Power Aware Commands and Options
Simulating Designs Containing Macromodels

Power Aware Simulation User’s Manual, v10.2c 153

Arguments

• -receiver_supply

This argument specifies the supply of the logic reading the port. If the receiving logic is not
within the logic design starting at the design root, it is presumed the receiver supply is the
supply for the receiving logic.

• -driver_supply

This argument specifies the supply of the logic driving the port. If the driving logic is not
within the logic design starting at the design root, it is presumed the driver supply is the
supply for the driver logic and the port is corrupted when the driver supply is in a simstate
other than NORMAL.

• -related_power_port
-related_ground_port
-related_bias_ports

Any of these arguments create an implicit supply set containing the supply nets connected to
the ports. The behavior differs, depending on the mode of the port being attributed:

in mode — the implicitly created supply set is treated as the -receiver_supply set.

out mode — the implicitly created supply set is treated as the -driver_supply set.

inout mode — the implicitly created supply set is treated as both the -receiver_supply
and -driver_supply set.

• -receiver_supply

If you use this argument and if the receiving logic is within the logic design starting at the
design root, it shall be an error if its supply is not the receiver supply.

• -driver_supply

If you use this argument and if the driver logic is within the logic design starting at the
design root, it shall be an error if its supply is not the driver supply.

Command

set_pin_related_supply

This command defines the related power and ground pins for signal pins on a library cell. It
conveys information similar to related_power_pin and related_ground_pin in Liberty, but it
may override them. This command is restricted to only leaf-library cells and non-synthesizable
hierarchical modules.

Attributes in RTL
You can define the following attributes in RTL to specify the power intent of hard macros:

• UPF_related_power_pin

Power Aware Simulation User’s Manual, v10.2c154

Power Aware Commands and Options
Simulating Designs Containing Macromodels

• UPF_related_ground_pin

System Verilog Example

(* UPF_related_power_pin = "my_Vdd" *) output my_Logic_Port;

VHDL Example

attribute UPF_related_power_pin of my_Logic_Port : signal is "my_Vdd";
(* UPF_related_power_pin = "my_Vdd" *) output my_Logic_Port;

Liberty File
You can define the following attributes at the pins in a Liberty file:

• related_power_pin

• related_ground_pin

The related_power_pin and related_ground_pin attributes are defined at the pin level for output,
input, and inout pins. These attributes associate a predefined power and ground pin with the
corresponding signal pins under which they are defined. A default related_power_pin and
related_ground_pin will always exist in any cell.

Example of Power Intent on a Hard Macro
Figure A-3 shows an example of a block diagram of hard macro power domains, using the
following top-level UPF definition:

set_scope top

create_power_domain PD_top -include_scope

create_power_domain PD_HM1 -elements { HM1 }

set_domain_supply_net PD_top -primary_power_net VDD
-primary_ground_net GND

set_domain_supply_net PD_HM1 -primary_power_net VDD_HM_P1
-primary_ground_net GND_HM_P1

Power Aware Commands and Options
Simulating Designs Containing Macromodels

Power Aware Simulation User’s Manual, v10.2c 155

Figure A-3. Design Consisting of Hard Macros

The following sections show how to define the hard macro power intent for each method.

UPF Commands
Constraints are specified on pins.

set_pin_related_supply HM1 -pins { i4 } -related_power_pin VDD_HM_P1
-related_ground_pin GND_HM_P1

set_port_attributes -ports { HM2/i7 } -related_power_port VDD_HM_P1
-related_ground_port GND_HM_P1

set_port_attributes -ports { HM2/i8 HM2/o2 HM1/i5 } -related_power_port
VDD_HM_P2 -related_ground_port GND_HM_P2

RTL Attributes
For HM1 —

(* UPF_related_power_pin = "VDD_HM_p1", UPF_related_ground_pin =
"GND_HM_p1" *) input in4;

(* UPF_related_power_pin = "VDD_HM_p2", UPF_related_ground_pin =
"GND_HM_p2" *) input in5;

For HM2 —

(* UPF_related_power_pin = "VDD_HM_p1", UPF_related_ground_pin =
"GND_HM_p1" *) input in7;

(* UPF_related_power_pin = "VDD_HM_p2", UPF_related_ground_pin =
"GND_HM_p2" *) input in8;

(* UPF_related_power_pin = "VDD_HM_p2", UPF_related_ground_pin =
"GND_HM_p2" *) output o2;

Power Aware Simulation User’s Manual, v10.2c156

Power Aware Commands and Options
Creating Feedthrough For RTL Conversion Functions

Liberty File Attributes
library (PALIB) {
cell (HM) {
pg_pin (VDD_HM_P1) {
pg_type : primary_power;
user_pg_type : "abc";
voltage_name : COREVDD1;
}

pg_pin (GND_HM_P1) {
pg_type : primary_ground;
voltage_name : COREGND1;
}

pg_pin (VDD_HM_P2) {
pg_type : backup_power;
user_pg_type : "abc";
voltage_name : COREVDD1;
}

pg_pin (GND_HM_P2) {
pg_type : backup_ground;
voltage_name : COREGND1;
}

pin(in1) {
direction : input;
related_ground_pin : GND_HM_P1;
related_power_pin : VDD_HM_P1;
}

pin(in2) {
direction : input;
related_ground_pin : GND_HM_P2;
related_power_pin : VDD_HM_P2;
}

pin(out1) {
direction : input;
related_ground_pin : GND_HM_P2;
related_power_pin : VDD_HM_P2;
}
}
}

Creating Feedthrough For RTL Conversion
Functions

In RTL logic, a function call normally creates a driver in the design, to which Power Aware will
attempt to apply the specified power intent. However, functions that are intended only to

Power Aware Commands and Options
Creating Feedthrough For RTL Conversion Functions

Power Aware Simulation User’s Manual, v10.2c 157

convert or assign data types should not be considered as part of the power intent—they do not
require isolation, retention, or corruption.

You can create a Tcl file to identify such functions in your design so that they are excluded from
your power intent. These are referred to as a “feedthrough” functions. In the Tcl file, you use the
set_feedthrough_object command for each function you want to exclude.

Syntax

set_feedthrough_object -function {function_list} [-package package_name]

When you run Power Aware, use vopt -pa_tclfile to specify the name of this Tcl file.

• -function {function_list} — a list of function name. This is a mandatory option and at least
one function name should be specified.

• -package package_name — (optional) detects functions from the specified package only.

Power Aware Simulation User’s Manual, v10.2c158

Power Aware Commands and Options
Creating Feedthrough For RTL Conversion Functions

Power Aware Simulation User’s Manual, v10.2c 159

Appendix B
Model Construction for Power Aware

Simulation

Power Aware verification uses Verilog behavioral models of Power Aware cells. These models
encapsulate the Power Aware behaviors of various types of design state, such as clock-low
retention flip-flops and active-high retention latches.

Verilog HDL constructs and attributes for Power Aware models provided by a silicon (or
library) vendor. These models trigger relevant events for the simulator to modify the runtime
behavior of the design. Typically, these modifications consist of corrupting states and output
values and storing or restoring state values based on power control network activity.

Typically, your UPF power specification file relates inferred registers or latches to these
models. However, it is possible to capture Power Aware functionality in combination with
register and latch functionality in a single model. Because of this, you can create Power Aware
models in Verilog to specify Power Aware behavior for inferred registers and latches, as well as
provide the functionality directly through direct instantiation of the Power Aware models.
Combining both of these functional descriptions in a single model facilitates the testing of the
model for use in Power Aware verification.

Note
Use of these models is only allowed in the -novopt simulation flow. Refer to the section
“Using the No-Optimization Flow” for more information.

Assumptions and Advantages
• The silicon foundry is responsible for the specification of these models to match the

behavior of their Power Aware cell technology.

• Capturing the Power Aware behavior in standard Verilog gives the vendor the flexibility
to add new cell types and behaviors without creating additional simulation requirements
for those cells.

• Foundries providing Power Aware models have control over the protection of their
intellectual property (IP).

Basic Model Structure
Model vendors can implement the Verilog model in any style. The cells communicate important
events to the simulator using named events. Power Aware verification defines a standard set of

Power Aware Simulation User’s Manual, v10.2c160

Model Construction for Power Aware Simulation
Named Events in Power Aware

named event identifiers that are used in the model. Each named event corresponds to a
particular action to be taken by the simulator.

The simulator communicates with the model by connecting the model to the clock, reset, power
(on/off) and power retention signals. Through events on these signals, the model determines
when the Power Aware events are triggered, notifying the simulator that the normal RTL
behavior must be modified to reflect power control network activity. Because the only inputs
are single-bit inputs and the only “output” to the simulator is the triggering of named events, the
models (at the RTL or higher abstraction level) are general-purpose and can work with inferred
registers and latches of any data type (for VHDL and SystemVerilog support).

The model communicates with the simulator only by triggering the defined named events. The
simulator will then map the event trigger into the appropriate Power Aware behavior for the
inferred register or latch that the Power Aware model is associated (using the Power
Specification File).

The port interface to the Power Aware model can contain additional port declarations. For
example, a Power Aware latch model might define enable, data in and data out ports. For the
purpose of Power Aware RTL verification, these additional ports are ignored and will not be
connected to the design's functional network.

As additional ports are permitted (but ignored), it is feasible to define a Power Aware model
that can be verified as functionally correct as it can be instantiated into a test circuit and
exercised to ensure it triggers the Power Aware events at the appropriate time and that saved
and restored values match what is expected.

A benefit of this approach is that a single Power Aware model can be created for both gate-level
verification and Power Aware RTL verification. The gate-level functionality can be used in gate
level simulations and would include the cell's Power Aware functionality but not the triggering
of the Power Aware events that are designed for use in RTL (or higher) abstraction level
simulations. The Power Aware events can be used without the overhead of the gate-level
functionality, for RTL and higher abstraction simulations. Together, both sets of functionality
can be used to verify the correctness of the model. The example below shows the use of
conditional compilation to control inclusion of functional code, the Power Aware code or both
in a simulation.

Modeling using conditional compilation implies that the model would be compiled twice into
different libraries for use in gate-level and RTL simulations. An alternative would be the use of
parameters and conditional generates to control the inclusion of functionality. In any case, the
ability to specify a single model for use at multiple abstraction levels simplifies the support and
maintenance associated with the development and deployment of Power Aware IP models.

Named Events in Power Aware
The following declarations of named events in a Power Aware Verilog model control simulator
activity as indicated.

Model Construction for Power Aware Simulation
Named Events in Power Aware

Power Aware Simulation User’s Manual, v10.2c 161

event pa_store_value

The simulator stores the current value of the inferred registers or latches that the Power
Aware model is associated within the power specification file.

event pa_store_x

The simulator stores a corruption value for the inferred registers or latches. Corruption
values depend on the type of data inferring the register or latch. A table mapping
corruption values to data types is specified separately.

event pa_restore_value

The simulator restores the value previously saved for the inferred registers or latches to
the corresponding signal(s) in the design. Restoration of a value results in an event on
the corresponding signal to facilitate propagation of known, good states throughout a
block that has had power restored.

event pa_restore_x

The simulator restores (re-initializes) the inferred registers or latches to an unknown
state specified by the corruption value for the signal's data type. The simulator
propagates an event on the restored corruption value.

event pa_corrupt_register; // corrupt the register

The simulator corrupts the current value of the signal corresponding to the inferred
registers or latches. The corruption value used is determined by the data type/corruption
value table specified separately. No event is propagated due to the corruption. NOTE:
See Usage Note for Sequence Requirements (below).

event pa_set_register; // set the register

The simulator sets the current value of the signal corresponding to the inferred register
or latch to a set value, which is inferred from the RTL code. The simulator propagates an
event on the set signal value.

event pa_reset_register; // reset the register

The simulator sets the current value of the signal corresponding to the inferred register
or latch to a reset value, which is inferred from the RTL code. The simulator propagates
an event on the reset signal value.

event pa_restore_hold_register

The simulator restores the value previously saved and holds that value until a
pa_release_register event is raised. NOTE: See Usage Note for Sequence Requirements
(below).

event pa_release_register

Power Aware Simulation User’s Manual, v10.2c162

Model Construction for Power Aware Simulation
Attributes

The simulator releases any forced values on a register. If the register is combinational,
the simulator re-evaluates the register. NOTE: See Usage Note for Sequence
Requirements (below).

event pa_release_reeval_register

The simulator re-evaluates a latch at powerup. Forces the register to be re-evaluated if
the latch enable is active when power is restored.

event pa_iso_on

The simulator is notified that an isolation period has begun. Use pa_release_register
event to identify the end of an isolation period.

The model is responsible for raising the named event when the model of the Power Aware cell
is in the appropriate state.

For instance, when the retention signal goes high and the clock is in the proper state in a CLRFF
(clock-low, retention flip-flop), the model should raise the pa_store_value event. When the
power goes low, the pa_corrupt_register event should be raised.

Usage Note for Sequence Requirements
When you use a pa_restore_hold_register or pa_corrupt_register event, you must include a
corresponding pa_release_register or pa_release_reeval_register event in the model in the next
sequence. The release event can be in a different always block (for example), but it must be next
in the sequence.

Attributes
To assist in the identification of Power Aware cells and facilitate their mapping inferred
sequential elements, attributes are placed within the module to provide easily located
information. The attributes names and allowed values, as well as contexts in which they are
used, are as specified.

Retention Cells and Memories
The attribute name is is_retention and the allowed attribute values are the strings
corresponding to the pacell_type specified in the section Power Model Mapping Statement.

(* is_retention = <pacell_type_string> *)

Where pacell_type_string is one of:

"FF_CKHI"
"FF_CKLO"
"FF_CKFR"

Model Construction for Power Aware Simulation
Attributes

Power Aware Simulation User’s Manual, v10.2c 163

"LA_ENHI"
"LA_ENLO"
"LA_ENFR"
"RETMEM_CKHI"
"RETMEM_CKLO"
"RETMEM_CKFR"

Note that within this context, the pacell types of ANY_CKHI, ANY_CKLO and ANY_CKFR
have no meaning as these types are used to map any inferred register or latch. Within the
context of attributing a retention cell, that cell will be either a register or latch and that
information will be known at the time of attribution.

Example

(* is_retention = "FF_CKFR" *) // Clock free register
(* is_retention = "RETMEM_CKHI" *) // Retention memory sensitive

// on posedge of clock

Isolation Cells
The behavior of isolation cells is automatically introduced at the RTL or higher levels through
specification of output corruption. However, it is necessary to attribute the gate level library
isolation cell models to ensure that the gate level design matches the verified and specified RTL
(or higher) functionality. The is_isolation_cell attribute is Boolean.

Example

(* is_isolation_cell *) // According to IEEE 1364, this
// is equivalent to:

(* is_isolation_cell = 1 *)

Level Shifters
Level shifters imply no functional behavior at RTL or higher. However, they are required to
ensure proper operation and scaling of signal values from one voltage domain to another.
Attributing level shifter cells in the gate level library ensures the gate level design matches the
verified and specified RTL (or higher) design specification. The is_level_shifter attribute is
Boolean.

Example

(* is_level_shifter *) // According to IEEE 1364, this
// is equivalent to:

(* is_level_shifter = 1 *)

Power Aware Simulation User’s Manual, v10.2c164

Model Construction for Power Aware Simulation
Model Interface Ports

Model Interface Ports
The model must define the necessary ports using the names as specified in this section. All ports
are required even if the optional functionality does not apply to a specific inferred register or
latch. This port interface specification allows generic models that can be applied to a variety of
inferred registers and latches.

All ports specified below are input ports. The simulator will connect the ports to the
corresponding functional and power control network signals by name. Verilog is case sensitive.

• PWR — Power control network signal that indicates whether power is on or off for the
power island that this model is associated with. This port is always connected.

• Retention port(s) — One of the following must be defined by the module and the
retention port(s) will always be connected:

o RET — Power control network signal that indicates whether or not the state of the
inferred register or latch must be saved (or restored).

o SAVE, RESTORE — Separate ports to signal save and restore separately.

• CLK — Functional network data in enable signal. For registers, this would be a clock
signal. For latches, this will be the enable signal. This port will always be connected.

• SET — Functional network control signal indicating that the inferred sequential model's
value should be set or preset. The functionality of this port is optional and the port will
not be connected if there are no inferred set or preset conditions. This port needs to be
modeled active high or active posedge. The tool infers the control signal and its polarity
and will automatically negate the signal's value when it is connected to the model if it is
active low or active negedge.

• RESET — Functional network control signal indicating that the inferred sequential
model's value should be reset or clear. The functionality of this port is optional and the
port will not be connected if there are no inferred reset or clear conditions. The tool
infers the control signal and its polarity and will automatically negate the signal's value
when it is connected to the model if it is active low or active negedge.

Power and retention ports may be connected to an expression involving two or more signals
(each).

Customizing Activity at Time Zero
The default models present in the mtiPA library are equipped to handle any power aware
activity at time zero (0). However, there may be instances where you want to use your own
custom simulation models for power aware verification. In such cases, if you require power
aware activity at time 0 to be honored then you need to ensure that your models are equipped to
do so.

Model Construction for Power Aware Simulation
Example—Register Model

Power Aware Simulation User’s Manual, v10.2c 165

To utilize time zero corruption through your own models instead of the default ones (mtiPA)
you must add some extra logic in his model as follows:

parameter int pa_time0param = 0;
initial begin

#0;
if(pa_time0param == 1 && (PWR === 1'bx || PWR === 1'b0))

->pa_corrupt_register;
end

The changed models like corrupt.v andupf_retention_ret.v etc... have same extra logic as
follows:

module CORRUPT(PWR);
parameter int pa_time0param = 0;
input PWR;
event pa_corrupt_register;
event pa_release_register;

initial begin
#0;
if(pa_time0param == 1 && (PWR === 1'bx || PWR === 1'b0))

->pa_corrupt_register;
end

always @(negedge PWR)

-> pa_corrupt_register;
always @(posedge PWR)

-> pa_release_register;
endmodule

Example—Register Model
The following Verilog code represents a behavioral model of a Clock Free Retention Flip Flop
(CFRFF) modified to use many of the listed named events. The RTL verification event
generation functionality is separated from the “gate-level” cell functionality to demonstrate how
a single model can be defined for use at both RTL and gate levels for Power Aware verification
as well as facilitate the verification of both functional aspects of the model.

module CFRFF (
 PWR, RET, CLK, SET, RESET
`ifdef PA_GLS_FUNC // Extra ports would be left unconnected
 , D, Q // It isn't necessary to conditionally
`endif // compile them out for RTL PA
) ;

 input PWR;
 input RET;
 input CLK;
 input SET; // Not used in this model
 input RESET;
`ifdef PA_GLS_FUNC

Power Aware Simulation User’s Manual, v10.2c166

Model Construction for Power Aware Simulation
Example—Register Model

 input D;
 output Q;

 reg Q;

 reg reg_q;
 reg reg_q_ret;
 reg ret_value;
 reg restore_value;
 reg posedge_power_w_reset;
 reg negedge_ret_w_reset;
 reg reset_active;
`endif // PA_GLS_FUNC

 // MG event declarations
`ifdef PA_RTL_FUNC // Would not be needed in GLS
 event pa_store_value;
 event pa_store_x;
 event pa_restore_value;
 event pa_restore_x;
 event pa_corrupt_register;
 event pa_reset_register;
`endif // PA_RTL_FUNC

`ifdef PA_GLS_FUNC
// Functionality in this section is used only in Gate Level
// simulations or in the verification of the PA RTL functionality
// (triggering of the appropriate events at the appropriate time).

 initial
 begin

Q = 0;
ret_value = 0;
restore_value = 0;
posedge_power_w_reset = 0;
negedge_ret_w_reset = 0;
reset_active = 0;

 end

 always @ (PWR, RESET,
 RET, reg_q, ret_value,
 posedge_power_w_reset, negedge_ret_w_reset)
 begin : output_mux

if(~PWR)
 begin
 Q <= 1'bx;
 end
else if (posedge_power_w_reset)
 Q <= reg_q;
else if (negedge_ret_w_reset)
 Q <= reg_q;
else if (RET)
 begin
 Q <= reg_q_ret;
 end
else
 Q <= reg_q;

 end

Model Construction for Power Aware Simulation
Example—Register Model

Power Aware Simulation User’s Manual, v10.2c 167

 always @(RESET)
 begin

reset_active = RESET;
 end

 always @(posedge CLK or negedge RESET)
 begin : ff_process

if (RESET)
 reg_q <= 1'b0;
else
 reg_q <= D;

 end

 always @(posedge CLK)
 begin : ret_ff_process

if (~RET)
 reg_q_ret <= D;

 end

 always @(posedge RET)
 begin

ret_value <= reg_q;
 end

 always @(negedge RET)
 restore_value <= ret_value;

 always @(negedge PWR)
 begin

if (!RET)
 begin

 wait (PWR);
 if (~RESET) posedge_power_w_reset <= 1;
 wait (!CLK);
 wait (CLK);
 posedge_power_w_reset <= 0;

 end
 end

`endif // PA_GLS_FUNC

`ifdef PA_RTL_FUNC
// Functionality in this section is used for Power Aware RTL (or higher)
// abstraction verification. It can also be combined with the gate
// level functionality for the purpose of verifying both.

 always @(posedge RET)
 -> pa_store_value;

 always @(negedge RET)
 begin

if ((RESET) && PWR)
 -> pa_reset_register;

 end

 always @(posedge PWR)

Power Aware Simulation User’s Manual, v10.2c168

Model Construction for Power Aware Simulation
Example—Corrupt Model

 begin
if (RET)
 begin
 -> pa_restore_value;
 end

 end

 always @(negedge PWR)
 -> pa_corrupt_register;

`endif // PA_RTL_FUNC

endmodule

Example—Corrupt Model
The following Verilog code shows how to create a simple corruption model that initiates and
releases corruption on a register:

module CORRUPT(PWR);
 input PWR;
 event pa_corrupt_register;
 event pa_release_register;

 always @(negedge PWR)
 -> pa_corrupt_register;

 always @(posedge PWR)
 -> pa_release_register;

endmodule // corrupt

where

• The pa_corrupt_register statement causes the simulator to corrupt the current value of
the signal corresponding to the inferred registers or latches.

• The pa_release_register statement causes the simulator to release any forced values on a
register. If the register is combinational, the simulator re-evaluates the register.

Power Aware Simulation User’s Manual, v10.2c 169

Appendix C
UPF Commands and Reference

This appendix provides information on Unified Power Format (UPF), which is a standardized
set of low-power design specifications for use throughout design, analysis, verification, and
implementation.

• Unified Power Format (UPF)

• UPF Standards

• Supported UPF Commands

• Supported UPF Package Functions

• Accessing Generate Blocks in UPF

• Supported UPF Attributes

• Supported UPF Extensions

• UPF Supply Connections

• Value Conversion Tables

• Supply Nets

Unified Power Format (UPF)
You apply UPF as a user-defined file that specifies the Power Aware characteristics of a design
for use by the simulator. UPF file format adheres to v1.0 of the UPF standard by default. In
addition, Mentor also supports portions of v2.0 (IEEE Std1801-2009). Mentor supports the use
of the industry-wide standard known as Unified Power Format (UPF), which consists of
commands and statements in a Tcl text file that define the low-power intent for a design.

A UPF file is designed to capture all Power Aware characteristics of the design at the RTL or
gate level in a compact form that can be easily used by the simulator. The scope of the UPF file
is to provide a standardized format for specifying the supply network, switches, power isolation,
data retention, and other aspects relevant to power management of an electronic design.

The UPF file is the key to using Power Aware verification on your design. This file provides the
following information required to overlay RTL or gate-level verification with the power control
network and Power Aware functionality:

• Power regions, voltage domains, and power islands

Power Aware Simulation User’s Manual, v10.2c170

UPF Commands and Reference
UPF Standards

• Retention sequential models, their type and the regions they are in

• State and output corruption behavior in power-down situations

• Power control signals and the portions of the design they control

Using a UPF File as Part of Power Aware Simulation
The following procedure describes how to use a UPF file as part of basic Power Aware
simulation (see Using the Standard Flow).

1. Use a text editor to create a UPF file that contains commands that specify the Supply
Network over your design. These commands are TCL functions, as described in the
current UPF standard.

2. Specify this UPF file as part of the vopt command, using the -pa_upf switch, as follows:

vopt -o <opt_top> <Design Top> -pa_upf <upf_file>

Result: vopt creates a parallel hierarchy that contains the power supply network of the
design. This hierarchy also triggers the control signals that are used to control
corruption, retention, or isolation.

Also, Power Aware data is written to either the current working directory or to a library
that you can specify using the -pa_lib switch.

3. If you are importing a UPF package into a Verilog test bench or file, and the mtiUPF
variable is not defined in your modelsim.ini file, you must use the vlog command with
the -L argument to compile the test bench, as follows:

vlog <filename> -L mtiUPF

Note that this variable is defined by default, so you generally do not have to do this.

Alternatively, if you want to use a UPF package with VHDL, you must include it in your
VHDL file, as follows:

library IEEE;
use IEEE.UPF.all;

UPF Standards
At this time, two versions of the UPF standard have been published:

• Version 1.0 of the UPF Standard

• Version 2.0 of the UPF Standard: IEEE Std 1801-2009

Power Aware simulation currently supports v2.0 of the UPF standard by default.

UPF Commands and Reference
UPF Standards

Power Aware Simulation User’s Manual, v10.2c 171

In addition, Power Aware simulation also supports portions of v1.0, published by Accellera,
which you can implement in a given UPF file by inserting the following text as the first line:

upf_version 1.0

Version 1.0 of the UPF Standard
The technological foundation for the UPF standard was originally developed by Accellera
Organization, Inc.1 UPF 1.0 was approved as an Accellera standard in February 2007. Version
1.0 of the standard was administered by the P1801 Low Power Working Group of the IEEE. For
more information on this working group, refer to the following web location:

http://www.accellera.org/activities/p1801_upf/

You can obtain a copy of v1.0 of the UPF standard (February 2007) in PDF format from the
following web location:

http://www.accellera.org/apps/group_public/download.php/989/upf.v1.0.pdf

Version 2.0 of the UPF Standard: IEEE Std 1801-2009
In May 2007, Accellera donated UPF v1.0 to the IEEE for the purposes of creating an IEEE
standard. The donation was assigned to the P1801 working group and was eventually developed
into a formal standard titled the IEEE Standard for the Design and Verification of Low Power
Integrated Circuits (IEEE Std1801-2009). Although this standard is the first official IEEE
version, it represents the second version of what is more informally referred to as UPF v2.0.

When you use v2.0, Power Aware simulation parses all UPF v2.0 commands and displays a
warning message for the following:

• Unsupported commands

• Any unsupported arguments for a supported command

Syntax and Semantic Differences Between UPF 1.0 and
UPF 2.0

The release of Version 2.0 of the UPF Standard from IEEE introduced syntactical and semantic
differences from the Version 1.0 UPF Standard from Accellera. Power Aware simulation
provides functionality to help you control its behavior for these changes.

By default, Power Aware simulation assumes that the UPF file is written in UPF 2.0 and expects
proper syntax from that specification and will treat semantic behavior to follow UPF 2.0
specification as well.

1. http://www.accellera.org

http://www.accellera.org/
http://www.accellera.org/activities/p1801_upf
http://www.accellera.org/apps/group_public/download.php/989/upf.v1.0.pdf

Power Aware Simulation User’s Manual, v10.2c172

UPF Commands and Reference
Supported UPF Commands

UPF 2.0 Syntax Differences
You can review the specifications for UPF 2.0 and UPF 1.0 to determine the syntax changes
between the two.

The UPF command upf_version defines the syntax within the UPF file. If you do not specify
this command, Power Aware simulation assumes the version is UPF 2.0.

UPF 2.0 Semantic Differences
By default, Power Aware simulation applies the semantic behavior applicable to UPF 2.0,
however you can override this behavior by specifying the -pa_upfversion=1.0 option with your
vopt command.

The following are some noticeable differences between UPF 2.0 and UPF 1.0:

• Default port state — OFF in UPF 2.0, while FULL_ON in UPF 1.0. Refer to the section
“Detailed Support for supply_net_type” for more information. You can control the
behavior specific to this semantic difference with the defaultoff argument to the vopt
-pa_enable or -pa_disable switches.

• Undetermined state functionality — This state did not exist in UPF 1.0. This impacts
power switch behavior and resolution semantics. Refer to the section “Detailed Support
for supply_net_type” for more information. You can control this behavior with the
undeterminedstate argument to the vopt -pa_enable or -pa_disable switches.

• ACK port behavior — This requires a mandatory supply set on the power switch in UPF
2.0 and was always on in UPF 1.0. You can control this behavior with the
ackportbehavior argument to the -pa_enable or -pa_disable options.

• Lower boundary isolation support. — Refer to the section “set_isolation” for additional
information. You can control this behavior with the lowerboundary argument to the
vopt -pa_enable or -pa_disable switches.

Supported UPF Commands
This section provides reference information on the UPF commands that you can use with Power
Aware simulation. These commands are listed in Table C-1.

Note
Note that some commands in Table C-1 have arguments that are not supported, and some
commands or arguments are supported only if the UPF file contains the command:
 upf_version 2.0

UPF Commands and Reference
Supported UPF Commands

Power Aware Simulation User’s Manual, v10.2c 173

Table C-1 lists UPF commands that are not supported for this release of Power Aware
simulation.

Table C-1. List of Supported UPF Commands

Command UPF Support Description

1.0 2.0

add_domain_elements Y Y Adds design elements to the power
domain.

add_port_state Y Y Adds state information to a supply port,
which can represent off-chip supply
sources that are not driven by the test
bench.

add_power_state N/A Y Attributes one or more power states to a
supply set or a power domain.

add_pst_state Y Y Specifies a power state table (PST) to
define states on a supply net.

associate_supply_set N/A Y Associates a supply set or supply_set_ref
to a power domain, power switch, or
strategy supply_set_handle.

bind_checker Y Y Inserts a checker module into your design
without modifying the design code or
introducing functional changes.

connect_logic_net N/A Y Connects a logic net to a logic port.

connect_supply_net Partial Partial Connects a supply net to the specified
ports.

connect_supply_set N/A Partial Defines automatic connection semantics on
supply sets.

create_composite_domain N/A Y Defines a set of domains.

create_hdl2upf_vct Y Y Defines a value conversion table (VCT)
that can be used in converting HDL logic
values into state type values.

create_logic_net N/A Y Creates a net reflecting the same value as a
port that you connect to it using the
connect_logic_net command.

create_logic_port N/A Y Creates a logic port on the active scope.

create_power_domain Partial Y Defines a set of design elements that share
a common primary supply set, can specify
additional supply sets used within the
domain, and any isolation, level-shifting,
or retention strategies.

Power Aware Simulation User’s Manual, v10.2c174

UPF Commands and Reference
Supported UPF Commands

create_power_switch Partial Y Defines an instance of a power switch in
the active scope or the scope of the
-domain argument when provided.

create_pst Y Y Creates a power state table (PST).

create_supply_net Y Y Creates a supply net.

create_supply_port Y Y Defines a supply port.

create_supply_set N/A Y Creates the supply set name within the
active scope.

create_upf2hdl_vct Y Y Defines a value conversion table for the
two LSBs of the supply_state_type.state
value when that value is propagated from a
UPF supply net into a logic port defined in
an HDL.

describe_state_transition N N Not supported

find_objects N/A Y Finds logical hierarchy objects within a
scope.

get_supply_set N N/A Not supported

load_simstate_behavior N/A Y Loads a UPF file containing the defaults of
simstate behavior for a library.

load_upf Y Y Sets the scope to the specified instance and
executes the set of UPF commands in
the specified UPF file.

load_upf_protected N/A Y Loads a UPF file in a protected
environment that prevents corruption of
existing variables

map_isolation_cell N Y Maps an isolation strategy to a library cell
or range of library cells to be inserted for
isolation.

map_level_shifter_cell N Y Maps a particular level-shifter strategy to a
simulation or implementation model.

map_power_switch N N Not supported

map_retention_cell Partial Partial Constrains retention strategy
implementation choices and may also
specify functional retention behavior for
verification.

Table C-1. List of Supported UPF Commands

Command UPF Support Description

1.0 2.0

UPF Commands and Reference
Supported UPF Commands

Power Aware Simulation User’s Manual, v10.2c 175

merge_power_domains N N Not supported

name_format Partial Partial Defines the format for constructing names
of implicitly created objects.

query_design_attributes N/A Y Returns state information about attributes
for a design element or model.

query_port_state N/A Y Returns state information for a specified
port.

query_power_domain N/A Partial Returns parameters of a power domain.

query_power_state N/A Y Returns the state information for a power
domain or supply set.

query_power_switch N/A Y Returns information for a UPF power
switch.

query_pst N/A Y Returns information for any defined PSTs.

query_pst_state N/A Y Returns state information for a PST.

query_supply_net N/A Y Returns state information about a
previously created supply net.

query_supply_port N/A Y Returns state information about a
previously created supply port.

save_upf Partial Y Creates a UPF file of the structures in the
relative to the active scope.

set_design_attributes N/A Partial Sets the specified attributes for models or
design elements.

set_design_top Y Y Specifies the root of the design.

set_domain_supply_net Y Y Associates the power and ground supply
nets with the primary supply set for the
domain.

set_isolation Partial Partial Specifies the ports on the domain to isolate
using the specified strategy.

set_isolation_control Partial Partial Specifies the control signals for a
previously defined isolation strategy.

set_level_shifter Partial Partial Specifies a strategy for level-shifting
during implementation.

Table C-1. List of Supported UPF Commands

Command UPF Support Description

1.0 2.0

Power Aware Simulation User’s Manual, v10.2c176

UPF Commands and Reference
Supported UPF Commands

set_partial_on_translation N/A Yes Defines the translation of PARTIAL_ON
to FULL_ON or OFF for purposes of
evaluating the power state of supply sets
and power domains.

set_pin_related_supply Y Y Defines the related power and ground pins
for signal pins on a library cell.

set_port_attributes N/A Y Specifies information relevant to ports on
the interface of power domains.

set_power_switch Partial Y Extends a switch by adding the input
supply port, output supply port,
and states to the switch.

set_retention Partial Partial Specifies a set of objects in the domain that
need to be retention registers and identifies
the save and restore behavior.

set_retention_control Partial Partial Specifies the control signals and assertions
for a previously defined retention strategy.

set_retention_elements N/A N Not supported

set_scope Y Y Specifies the active UPF scope.

set_simstate_behavior N/A Y Specifies the simulation simstate behavior
for a model or library.

upf_version Y Y Specifies the UPF version for interpreting
subsequent commands.

Table C-1. List of Supported UPF Commands

Command UPF Support Description

1.0 2.0

UPF Commands and Reference
add_domain_elements

Power Aware Simulation User’s Manual, v10.2c 177

add_domain_elements
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

Usage Notes

This command adds design elements to the power domain.

Argument Name Comments/Restrictions

-elements

Power Aware Simulation User’s Manual, v10.2c178

UPF Commands and Reference
add_port_state

add_port_state
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

Usage Notes

Adds state information to a supply port, which can represent off-chip supply sources that are not
driven by the test bench.

Argument Comments/Restrictions

-state

UPF Commands and Reference
add_power_state

Power Aware Simulation User’s Manual, v10.2c 179

add_power_state
Support for UPF Standard

v1.0 — no

v2.0 — yes

Power Aware Simulation User’s Manual, v10.2c180

UPF Commands and Reference
add_power_state

Arguments

Argument Comments/Restrictions

-state The name you specify here is simply an identifier; it has no
semantic meaning.

-supply_expr Including, but not limited to, support for:
• power==FULL_ON

(similarly, SS.power == FULL_ON)
• primary == SS_State1

(similarly, PD.primary ==SS_State1)
• primary.power == FULL_ON

(similarly, PD.primary.power == FULL_ON)
• RET.supply == SS_State2

(similarly, PD.RET.supply == SS_State2)
• RET.supply.power == FULL_ON

(similarly, PD.RET.supply.power == FULL_ON)

-logic_expr

-legal | -illegal

-update

UPF Commands and Reference
add_power_state

Power Aware Simulation User’s Manual, v10.2c 181

Usage Notes

This command attributes one or more power states to a supply set or a power domain.

-simstate Values:

• CORRUPT
The power level of the supply set is either off (one or more
supply nets in the set are switched off, terminating the flow of
current) or at such a low level that it cannot support switching
and the retention of the state of logic nets cannot be guaranteed
to be maintained even in the absence of changes or activity in
the elements powered by the supply.

• CORRUPT_ON_ACTIVITY
The power level of the supply set is insufficient to support
activity. However, the power level is sufficient that logic nets
retain their state as long as there is no activity within the
elements connected to the supply.

• CORRUPT_STATE_ON_ACTIVITY
The power level of the supply set is sufficient to support
combinational logic, but it is not sufficient to support activity
inside state elements, whether that activity would result in any
state change or not.

• CORRUPT_STATE_ON_CHANGE
The power level of the supply set is sufficient to support
combinational logic, but it is not sufficient to support a change
of state for state elements.

• NORMAL
The power level of the supply set is sufficient to support full
and complete operational (switching) capabilities with
characterized timing.

• NOT_NORMAL
This is a special, placeholder state. It allows early specification
of a non-operational power state while deferring the detail of
whether the supply set is in the CORRUPT,
CORRUPT_ON_ACTIVITY,
CORRUPT_STATE_ON_CHANGE, or
CORRUPT_STATE_ON_ACTIVITY simstate. If the supply
set matches a power state specified with simstate
NOT_NORMAL, the semantics of CORRUPT shall be applied,
unless overridden by a tool-specific option. NOT_NORMAL
semantics shall never be interpreted as NORMAL.

Argument Comments/Restrictions

Power Aware Simulation User’s Manual, v10.2c182

UPF Commands and Reference
add_power_state

Supply set

A supply set is a grouping of supply nets that collectively define a complete power supply. The
power state of a supply set is specified in terms of the supply nets that constitute the set. It is the
combined states of the constituent supply nets that determine the following:

• Whether there is current available to power an element.

• The voltage level of the supply. Simstates are associated with power states of supply
sets.

Semantics for supply set simulation are applied to the elements connected to the supply set
when you enable simstate behavior.

You can also reference supply sets in add_power_state as handles. Here, only those handles
associated with some supply sets when add_power_state is invoked are valid.

Note
It is an error when there are no supply nets associated with the handles and the handles
are used in the expression

Power domain

The power state of a domain is determined by the state of supply sets associated with the
domain.

For example, the definition of a domain’s MY_DOMAIN_IS_ON power state would logically
require that the primary supply set be in a power state that is a NORMAL simstate (all supply
nets of the primary supply set are on and the current delivered by the power circuit sufficient to
support normal operation.)

Similarly, a SLEEP mode for the domain may require the primary supply set to be in power
state whose simstate is not NORMAL (perhaps CORRUPT), while appropriate retention and
isolation supplies are NORMAL.

You can define the power state for a domain directly in terms of supply nets using -supply_expr
in addition to the -logic_expr.

• If a domain’s power state -logic_expr specification includes comparison of another
domain’s active state to a power state defined on that domain, it is equivalent to
including the -logic_expr and -supply_expr specifications for that power state of the
referenced domain in the definition of the power state.

• If a domain’s power state -logic_expr specification includes comparison of a supply
set’s active state to a power state defined on that supply set, it is equivalent to including
the -logic_expr and -supply_expr specifications for that power state of the referenced
supply set in the definition of the power state.

UPF Commands and Reference
add_pst_state

Power Aware Simulation User’s Manual, v10.2c 183

add_pst_state
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

Usage Notes

Allows specifying a power state table (PST) to define states on a supply net.

Argument Comments/Restrictions

-pst

-state

Power Aware Simulation User’s Manual, v10.2c184

UPF Commands and Reference
associate_supply_set

associate_supply_set
Support for UPF Standard

v1.0 — no

v2.0 — yes

Arguments

Usage Notes

Associates a supply set or supply_set_ref to a power domain, power switch, or strategy
supply_set_handle.

Argument Comments/Restrictions

-handle All predefined handles for supply set are
supported.

UPF Commands and Reference
bind_checker

Power Aware Simulation User’s Manual, v10.2c 185

bind_checker
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

Usage Notes

Note
This command is only supported in the vopt flow.

This command inserts a checker module into your design without modifying the design code or
introducing functional changes

net_name argument to -ports

The -ports argument accepts the following symbolic references for the net_name argument:

• isolation_signal

<scope_name>.<pd_name>.<iso_stratgy_name>.isolation_signal

• isolation_supply_set

<scope_name>.<pd_name>.<iso_stratgy_name>.isolation_supply_set

• isolation_power_net

<scope_name>.<pd_name>.<iso_stratgy_name>.isolation_power_net

• isolation_ground_net

<scope_name>.<pd_name>.<iso_stratgy_name>.isolation_ground_net

• <supply_set>.<function_name>

ISO_SS.primary

Argument v1.0 v2.0 Comments/Restrictions

-module Y Y

-elements Y Y Elements should be relative to the active scope.

-bind_to [-arch] n/a Y

-ports Y Y The net_name argument accepts symbolic
references. Refer to Usage note for additional
information

Power Aware Simulation User’s Manual, v10.2c186

UPF Commands and Reference
bind_checker

• save_signal of retention strategies

<scope_name>.<pd_name>.<retention_stratgy_name>.save_signal

• restore_signal of retention strategies

<scope_name>.<pd_name>.<retention_stratgy_name>.restore_signal

• retention_supply_set

<scope_name>.<pd_name>.<retention_stratgy_name>.supply

• retention_power_net

<scope_name>.<pd_name>.retention_power_net

• retention_ground_net

<scope_name>.<pd_name>.retention_ground_net

Example

This example shows you could create a low power assertion to: Flag if an isolation supply goes
down during an isolation period.

• Checker module:

module ISO_SUPPLY_CHECKER(ISO_CTRL,ISO_PWR,ISO_GND);
import UPF::*;
input ISO_CTRL;
input supply_net_type ISO_PWR;
input supply_net_type ISO_GND;
reg ISO_pg_sig;

assign ISO_pg_sig = get_supply_on_state(ISO_PWR) && \
get_supply_on_state(ISO_GND);

always @(negedge ISO_pg_sig)
assert(!(ISO_CTRL)) else \

$display("\n At time %0d isolation supply is switched OFF \
during isolation period, ISO_CTRL=%b", $time, ISO_CTRL);

endmodule

• Design

module tb();
...

top top(...);
...
endmodule

module top(...);
mid_vl test1_vl(...);
mid_vl test2_vl(...);
mid_vl test3_vl(...);

endmodule;

UPF Commands and Reference
bind_checker

Power Aware Simulation User’s Manual, v10.2c 187

module mid_vl(...);
...
endmodule

• UPF

upf_version 2.0

set_scope /tb/TOP

create_supply_net ISO_PWR
create_supply_net ISO_GND
create_supply_port ISO_PWR_PORT
create_supply_port ISO_GND_PORT
connect_supply_net ISO_PWR -port ISO_PWR_PORT
connect_supply_net ISO_GND -port ISO_GND_PORT
create_supply_set ISO_SS -function {power ISO_PWR} \

-function {ground ISO_GND}
create_power_domain PD_mid1 -supply {primary ISO_SS}
set_isolation iso_PD_mid1 \

-domain PD_mid1\
-applies_to outputs\
-isolation_supply_set ISO_SS\
-location self\
-isolation_signal ctrl

bind_checker iso_supply_chk \
-module ISO_SUPPLY_CHECKER \
-bind_to mid_vl \
-ports {\

{ISO_CTRL PD_mid1.iso_PD_mid1.isolation_signal} \
{ISO_PWR ./ISO_SS.power} \
{ISO_GND ./ISO_SS.ground} \
}

Power Aware simulation inserts ISO_SUPPLY_CHECKER in all instances of the mid_vl
module in your design.

You should ensure the net_name arguments to -ports are present in the target instance scope or
the parent scope. If you want to associate an object present in the active UPF scope then prefix
net_name with “./”. For example, PD_mid1 was created in scope, therefore
PD_mid1.iso_PD_mid1.isolation_signal is directly accessible. If something is created in
active scope, such as if you are not sure if it would be present in scope of the target instance,
you should include the prefix “./”, as is done for ./ISO_SS.power and ./ISO_SS.ground.

Power Aware Simulation User’s Manual, v10.2c188

UPF Commands and Reference
connect_logic_net

connect_logic_net
Support for UPF Standard

v1.0 — no

v2.0 — yes

Arguments

Usage Notes

Connects a logic net to a logic port.

Argument Comments/Restrictions

-ports

UPF Commands and Reference
connect_supply_net

Power Aware Simulation User’s Manual, v10.2c 189

connect_supply_net
Support for UPF Standard

v1.0 — yes (partial)

v2.0 — yes (partial)

Arguments

Usage Notes

Refer to “UPF Supply Connections”

Argument v1.0 v2.0 Comments/Restrictions

-ports Y Y

-pg_type Y Y Using an <element_list> is not supported.

-vct Y Y

-pins Y Y

-cells Y Y

-domain Y Y

-rail_connection N N Not supported.

Power Aware Simulation User’s Manual, v10.2c190

UPF Commands and Reference
connect_supply_set

connect_supply_set
Support for UPF Standard

v1.0 — no

v2.0 — yes (partial)

Arguments

Usage Notes

Defines automatic connection semantics on supply sets. Supply nets of supply sets are
automatically connected to the supply ports of design elements based on the purpose of the
supply set in a given domain or strategy context and the function that a supply net performs in
the context of supply set.

Restrictions:

• Supply sets specified in strategy context are not automatically connected to design
elements.

• Supply nets in supply sets functioning as predefined supply set functions are not
automatically connected according to their predefined function. You must specify
explicit automatic connections.

Examples

connect_supply_set PD.primary \
-connect {power primary_power} \
-elements TOP

connect_supply_set PD.ISO.isolation_supply_set \
-connect {iso_power primary_power} \
-connect {iso_ground primary_ground} \

connect_supply_set PD.RET.retention_supply_set \
-connect {ret_backup_power backup_power} \
-connect {switchtable_supply primary_power}

Argument v1.0 v2.0 Comments/Restrictions

-connect N Y

-elements N Y

-exclude_elements N N Not supported

-transitive N N Not supported

UPF Commands and Reference
create_composite_domain

Power Aware Simulation User’s Manual, v10.2c 191

create_composite_domain
Support for UPF Standard

v1.0 — no

v2.0 — yes

Arguments

Usage Notes

A composite power domain is a set of domains (referred to as subdomains), each of which has a
primary supply set as necessary common property.

A composite domain contains these attributes:

• primary supply set handles

• power states

Operations on a supply set

UPF v2.0 states that all operations performed on a composite domain are transitively applied to
each subdomain. This implies that many UPF commands may refer to a composite domain,
either directly using the -domain(s) argument or by using a handle name, in case of supply sets.

UPF commands applied on a composite domain are applied only to those domains that are
present at that time in the subdomain tree of that composite domain—they will not be applied to
the subdomains added later.

Implementation

• Checks

o If a composite domain with the given composite_domain_name exists in the current
scope, you must specify the -update argument, or it will be flagged as an error.
Similarly, if the composite domain is new and does not exist in the current scope, it
will be an error to use the -update argument.

• Subdomains

o For each subdomain provided in the -subdomain list, it will be an error if any of
given rooted name does not match a power domain or composite domain in the
current scope.

Argument Comments/Restrictions

-subdomains

-supply

-update

Power Aware Simulation User’s Manual, v10.2c192

UPF Commands and Reference
create_composite_domain

o A domain can be a subdomain to multiple composite domains. However, this may
lead to conflicting commands being applied on that domain (UPF v2.0 is not clear on
this).

• Supply sets

o Each supply set handle name provided with the -supply argument is searched for in
the existing supply sets list for that composite domain. If found, the presence of
supply set reference is checked for that handle.

o A warning message is displayed if the reference is present but its name does not
match the current the supply set reference name.

o If the supply set handle did not contain a reference before, but now a reference name
has been provided, Power Aware simulation searches the current scope and updates
the handle with this reference. It will be an error if any matching reference is not
found.

o If the supply set handle does not exist, Power Aware simulation creates a new handle
and populates the reference. Power Aware simulation adds the new handle to the list
of supply sets for the current composite domain and adds it to each subdomain.

o You can add new subdomains and supply set handles to a composite domain subject
to the checks mentioned above.

• Power states

o The add_power_state command is supported, which means power states for
composite domains are available.

• Support for save_upf command

o In the interpreted mode, Power Aware dumps instances of the
create_composite_domain command once for each composite domain with all the
updates included.

o All the commands applied on a composite domain are applied to all the subdomains
down to the leaf-level power domains. Because a composite domain can contain
only subdomains, supply sets, and power states, Power Aware simulation does not
store strategies, nets, or other objects on it. As a result, these commands appear as
multiple commands applied to each power domain that was a part of the subdomain
hierarchy of a composite domain.

o In uninterpreted mode, Power Aware simulation saves the command texts as-is, and
the create_composite_domain command may appear multiple times with -update.
Also, the commands applied on a composite domain are directly dumped.

UPF Commands and Reference
create_composite_domain

Power Aware Simulation User’s Manual, v10.2c 193

Interaction of composite domains with other UPF commands

• add_power_state

• associate_supply_set

In Section 6.15 of UPF v2.0:

It is valid to refer to the primary supply of a composite domain because there is exactly
one primary supply common to all subdomains. It is not valid to refer to other
supply_set_handles or strategies in the composite domain because they are not
necessarily common to all sub domains.

This statement asserts that you cannot refer to a supply set handle in a composite domain other
than primary supply set. Currently, the associate_supply_set command is supported only for the
primary supply. For other supplies, you can associate them by using either of the following
ways:

o associate_supply_set on each sub power domain individually

o using create_composite_domain -update -supply {supply_set_handle
[supply_set_ref]

It will be an error if the primary supply handle already exists in a subdomain and points to a
different supply set.

Correct usage example:

create_composite_domain cd -subdomains {pd2 pd3} -supply {primary}
associate_supply_set pd_ss -handle cd.primary

Alternate correct usage example:

create_composite_domain cd -subdomains {pd2 pd3}
create_composite_domain cd -supply {ssh pd_ss}

Incorrect usage example

create_composite_domain cd -subdomains {pd2 pd3} -supply {ssh}
associate_supply_set pd_ss -handle cd.ssh

Error message:

** Error: ./test.upf(88): UPF: (vopt-9765) It is invalid to use the
’associate_supply_set’ command with any composite domain supply set handle
other than the primary handle.
Domain: ’cd’, supply set handle: ’pd_ss’

• create_power_switch

The power switch will be created in the creation scope of composite_domain.

Power Aware Simulation User’s Manual, v10.2c194

UPF Commands and Reference
create_composite_domain

• create_supply_net

The supply net will be created in the creation scope of composite_domain. The command will
also be applied with a -reuse argument to each subdomain. If the subdomain belongs to a
different creation scope, the command will be applied without reuse.

• create_supply_port

The supply port will be created in the creation scope of composite_domain.

• map_isolation_cell

Not supported.

• map_level_shifter_cell

Not supported.

• map_power_switch

Not supported.

• map_retention_cell

Not supported.

• set_isolation

This command will be transitively applied to all the subdomains of a composite domain.

The following are also in effect:

o set_isolation -domain composite_domain cannot have -elements/-
exclude_elements/-instance argument. This may cause conflict in the subdomains.

o The elements can be individually updated for each strategy in all the sub power
domains.

o If any error occurred while transitively applying this command, it will not be applied
to that subdomain.

o If a strategy has already been applied on a subdomain, trying to set a strategy of that
same name directly on that subdomain without -update will be an error.

Correct usage example:

create_composite_domain cd -subdomains {pd2 pd3} -supply {primary
pdsub_ss}
set_isolation cd_iso1 -domain cd -clamp_value 0 -applies_to inputs -
isolation_signal iso -isolation_sense high -location parent
set_isolation cd_iso2 -domain cd -clamp_value 0 -applies_to outputs -
isolation_signal iso -isolation_sense high -location parent

Alternate correct usage:

create_composite_domain cd -subdomains {pd2 pd3} -supply {primary
pdsub_ss}
set_isolation cd_iso -domain cd -update -clamp_value 0 -applies_to outputs
-isolation_signal iso -isolation_sense high -location parent

UPF Commands and Reference
create_composite_domain

Power Aware Simulation User’s Manual, v10.2c 195

set_isolation cd_iso -domain pd2 -update -elements
{hier_inst/leaf_inst2/localout_leaf}
set_isolation cd_iso -domain pd3 -update -elements
{hier_inst/leaf_inst3/localout_leaf}

Incorrect usage example:

create_composite_domain cd -subdomains {pd2 pd3} -supply {primary
pdsub_ss}
set_isolation cd_iso -domain cd -update -clamp_value 0 -applies_to outputs
-isolation_signal iso -isolation_sense high -location parent -elements
{hier_inst/leaf_inst3/scanout_leaf hier_inst/leaf_inst3/localout_leaf}

Error message:

** Error: ./test.upf(90): UPF: (vopt-PA-9809) The isolation strategy
’cd_ret’ is defined on the composite domain ’cd’.
Specifying elements or instances on this strategy is invalid. Please
specify the member elements/instances on the subpower domains’ strategies
by using the -update argument.

Help message:

power-aware Message # 9809:
A composite domain cannot contain design objects as elements/members. So a
UPF command applied to a composite domain cannot cannot directly refer to
design objects in its elements/instances list. These elements/instances
should be populated individually for each sub power domain using the
strategy/command with -update argument, after applying the
strategy/command on the composite domain.

• set_isolation_control

This command will be applied to all the subdomains of a composite domain.

• set_level_shifter

This command will be applied to all the subdomains of a composite domain.

The following arguments are not supported (they can also refer to composite_domain):

o -source domain_name

o -sink domain_name:

The following are also in effect:

o set_level_shifter -domain composite_domain cannot use the -elements,
-exclude_elements, or -instance arguments. This may cause conflict in the
subdomains.

o The elements can be individually updated for each strategy in all the sub-power
domains.

Power Aware Simulation User’s Manual, v10.2c196

UPF Commands and Reference
create_composite_domain

o If any error occurred in transitively applying this command on a subdomain, it will
not be applied to that subdomain. Usage and error messages for incorrectly
specifying -elements or -instance arguments are similar to those for set_isolation.

• set_port_attributes

If a composite domain is included in the -domains argument of this command, it will be
replaced by its sub-power domains, listed transitively.

Example:

create_composite_domain cd -subdomains {pd1 pd2 pd3} -supply {primary
pdsub_ss}
set_port_attributes {-domains {cd} -applies_to inputs} -attribute pin_type
data_in

This is equivalent to:

set_port_attributes {-domains {pd1 pd2 pd3} -applies_to inputs} -attribute
pin_type data_in

• set_retention

This command will be applied to all the subdomains of a composite domain.

The following shall also apply:

o set_isolation -domain composite_domain cannot have -elements, or
-exclude_elements, or -instance arguments. This may cause conflict in the
subdomains.

o The elements can be individually updated for each strategy in all the sub-power
domains.

o If any error occurred in transitively applying this command on a subdomain, it will
not be applied to that subdomain.

The usage and error messages for incorrectly specifying -elements are -instance arguments are
similar to set_isolation.

• set_retention_control

This command will be applied to all the subdomains of a composite domain.

• use_interface_cell

Not supported.

UPF Commands and Reference
create_hdl2upf_vct

Power Aware Simulation User’s Manual, v10.2c 197

create_hdl2upf_vct
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

Usage Notes

Defines a value conversion table (VCT) from an HDL logic type to the net_state_type of the
supply net value when that value is propagated from HDL port to a UPF supply net.

Argument Comments/Restrictions

-hdl_type User-defined types not supported.

-table

Power Aware Simulation User’s Manual, v10.2c198

UPF Commands and Reference
create_logic_net

create_logic_net
Support for UPF Standard

v1.0 — no

v2.0 — yes

Arguments

Usage Notes

Results in the created net reflecting the same value as a port that you connect to it using the
connect_logic_net command (net_dut and pmb_out in the example below).

This net can be used as a control signal.

The following are not supported:

• Logic nets with the same name but different creation scope

• Dumping of logic nets with save_upf command

• Implicit port/net semantics for logic ports/nets

Example

set_scope /tb
create_logic_net net_tb
set_scope /tb/pmb

#connect the logic net to an output port on the
#power management block

connect_logic_net net_tb -ports pmb_out
set_scope /tb/dut
create_logic_port p_dut
create_logic_net net_dut
connect_logic_net net_dut -ports p_dut
set_scope
connect_logic_net net_tb -ports dut/p_dut

Argument Comments/Restrictions

<net_name> The name of a logic net that you want to create in
the active scope.

UPF Commands and Reference
create_logic_port

Power Aware Simulation User’s Manual, v10.2c 199

create_logic_port
Support for UPF Standard

v1.0 — no

v2.0 — yes

Arguments

Usage Notes

The following are not supported:

• Implicit port/net semantics for logic ports/nets

• Application of isolation strategies on logic ports

Argument Comments/Restrictions

-direction

Power Aware Simulation User’s Manual, v10.2c200

UPF Commands and Reference
create_power_domain

create_power_domain
Support for UPF Standard

v1.0 — yes (partial)

v2.0 — yes

Arguments

Usage Notes

For the -elements argument:

• You can specify a hierarchical path within the active scope in the list of design elements.

• You can specify bit- or part-selects of one or more signals. However, complex data
types of SystemVerilog, such as structs, are not supported.

• According to UPF, only hierarchical path of instances can be accepted inside -elements
{element_list}. This has been extended under the above mentioned switch to allow
generate hierarchy to be specified in the extent of a power domain. This feature is only
available for corruption and retention and not for isolation and level shifting. This
implies that if a generate block is added in the extent of a power domain, it will only
show corruption and if it contains a retention register, retention behavior as well.
However, there will not be any level shifters/isolation cells placed at the generate
boundary.

create_power_domain PD_forgen -elements { forgen[1] }

Examples

• Results in an effective element list of {top1 top2}.

create_power_domain PD1 -elements {sig[2] sig1[2:1]}

Argument v1.0 v2.0 Comments/Restrictions

-simulation_only N Y

-elements Y Y See “Usage Notes” below.

-include_scope Y Y

-supply N Y

-scope Y Y

-define_func_type N Y

-update N Y Allows adding elements and supplies to a
previously created power domain for a progressive
refinement of power intent.

-exclude_elements N Y

UPF Commands and Reference
create_power_domain

Power Aware Simulation User’s Manual, v10.2c 201

create_power_domain PD -elements {top1}
create_power_domain PD -elements {top2} -update

• Defines automatic connection semantics on supply sets. Supply nets of supply sets are
automatically connected to the supply ports of design elements based on the purpose of
the supply set in a given domain or strategy context and the function that a supply net
performs in the context of supply set.

create_power_domain PD -elements {top1}
create_power_domain PD -elements {top2} -update

Power Aware Simulation User’s Manual, v10.2c202

UPF Commands and Reference
create_power_switch

create_power_switch
Support for UPF Standard

v1.0 — yes (partial)

v2.0 — yes

Arguments

Usage Notes

The following is not supported:

• In order to model the definition of a power switch, Power Aware simulation currently
treats UNDETERMINED state as OFF state for simulation. This implies that when the
state of supply set is NOT_NORMAL, the state on the output supply port will be OFF
instead of UNDETERMINED state.

Argument v1.0 v2.0 Comments/Restrictions

-domain Y Y

-output_supply_port Y Y

-input_supply_port Y Y

-control_port Y Y

-on_state Y Y

-off_state Y Y

-supply_set N Y When the supply set simstate is anything other
than NORMAL, the state of the output supply port
of a switch is OFF and the acknowledge ports are
corrupted. Note that this differs from UPF v2.0,
which states that the state of the output supply port
of a switch is UNDETERMINED.

-on_partial_state Y Y

-ack_port Y Y

-ack_delay Y Y

-error_state Y Y

UPF Commands and Reference
create_pst

Power Aware Simulation User’s Manual, v10.2c 203

create_pst
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

Usage Notes

Creates a power state table (PST).

Argument Comments/Restrictions

-supplies

Power Aware Simulation User’s Manual, v10.2c204

UPF Commands and Reference
create_supply_net

create_supply_net
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

Usage Notes

UPF v1.0 implemented a slight error in the semantic specification for UPF command
create_supply_net -resolve parallel, which has been corrected in UPF v2.0.

Power Aware simulation follows the UPF v2.0 specification in this case, since it is the later
standard and its definition reflects what was intended to be the semantics for UPF v1.0.

Specifically, if multiple switches drive a supply net with parallel resolution, and the state of at
least one (but not all) switch outputs is fully ON, and the remaining switch outputs are OFF,
then:

• UPF v1.0 says the state of the driven supply net should be fully ON.

• UPF v2.0 says the state of the driven supply net should be partially ON.

Therefore, in following the UPF v2.0 specification, the state of the driven supply net will be
partially ON.

Argument Comments/Restrictions

-domain

-reuse

-resolve The value of parallel is implemented differently
for v1.0 and v2.0. See “Usage Notes” below.

UPF Commands and Reference
create_supply_port

Power Aware Simulation User’s Manual, v10.2c 205

create_supply_port
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

Argument Comments/Restrictions

-direction The value of inout is not supported.

-domain

Power Aware Simulation User’s Manual, v10.2c206

UPF Commands and Reference
create_supply_set

create_supply_set
Support for UPF Standard

v1.0 — no

v2.0 — yes

Arguments

Argument Comments/Restrictions

-function

-reference_gnd This option is accepted during parsing, however it
has no impact on simulation.

-update

UPF Commands and Reference
create_upf2hdl_vct

Power Aware Simulation User’s Manual, v10.2c 207

create_upf2hdl_vct
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

Usage Notes

Defines a value conversion table (VCT) for the two LSBs of the supply_state_type.state value
when that value is propagated from a UPF supply net into a logic port defined in an HDL.

Argument Comments/Restrictions

-hdl_type User-defined types not supported.

-table

Power Aware Simulation User’s Manual, v10.2c208

UPF Commands and Reference
find_objects

find_objects
Support for UPF Standard

v1.0 — no

v2.0 — yes

Arguments

Usage Notes

Use this command to find logical hierarchy objects within a scope. Specifically, use it to search
for design elements, nets, or ports that are defined in the HDL. It works on the logical hierarchy
and only searches in the scope (or in and below the scope when -transitive is specified). The
search pattern can be any of the following: exact pattern match, tcl glob expression, or regular
expression.

There are different behaviors for case sensitivity:

• VHDL — search is always case-insensitive.

• Verilog — search, by default, is case-sensitive. Use -ignore_case to set to case-
insensitive

Note
Search for a multi-dimensional array of instances is currently not supported.

You can search for generates and within generate hierarchies when you specify the
-pa_upfextensions=genblk argument with vopt.

Examples

• Tcl glob pattern-matching examples:

find_objects top -pattern {a}
find_objects top -pattern {bc[0-3]}
find_objects top -pattern {e*}

Argument Comments/Restrictions

-pattern

-object_type

-direction

-transitive

-regexp | -exact

-ignore_case

-non_leaf | -leaf_only not supported

UPF Commands and Reference
find_objects

Power Aware Simulation User’s Manual, v10.2c 209

find_objects top -pattern {d?f}
find_objects top -pattern {g\[0\]}

• Tcl Glob Search: Find all nets

find_objects top -pattern { a* } -object_type net

• Regex Search: Find Out ports

find_objects top -pattern { a_.* } -object_type port -direction out
-regex

• Exact Search: Find Process

find_objects top -pattern { a_proc } -object_type process -exact

• Finding objects when generates are involved. Given the following design hierarchy:

o Default mode

find_objects top -pattern {*} -object_type inst
Returns: top/mid

find_objects top -pattern {*} -object_type inst -transitive TRUE
Returns: top/mid top/gen1/bot

find_objects top/gen1 -pattern {*} -object_type inst
Returns: Invalid Scope Error.

o Running with vopt -pa_upfextensions=genblk

find_objects top -pattern {*} -object_type inst
Returns: top/mid top/gen1

find_objects top -pattern {*} -object_type inst -transitive TRUE
Returns: top/mid top/gen1 top/gen1/bot

find_objects top/gen1 -pattern {*} -object_type inst
Returns: top/gen1/bot

tb

topgen1
bot

mid

Power Aware Simulation User’s Manual, v10.2c210

UPF Commands and Reference
load_simstate_behavior

load_simstate_behavior
Support for UPF Standard

v1.0 — no

v2.0 — yes

Arguments

Usage Notes

The load_simstate_behavior command loads a UPF file containing the defaults of simstate
behavior for a library. This file consists solely of set_simstate_behavior commands, which are
applied to the models in the library specified by the library_name argument.

You can load only one file per occurrence of this command.

Examples

Example C-1. Load Files With load_simstate_behavior Commands

The following example shows how to use the load_simstate_behavior command to load
simstate semantics for lib1 and lib2.

main.upf
upf_version 2.0
set_scope tb/top1
...
load_simstate_behavior lib1 -file load1.upf
load_simstate_behavior lib2 -file load2.upf
...
create_power_domain pd1
set_simstate_behavior ENABLE -elements {mid1/bot1}
create_supply_net VDD_N -domain pd1
create_supply_net GND_N -domain pd1
...

where

load1.upf consists of

set_simstate_behavior ENABLE -model mid
set_simstate_behavior DISABLE -model bot

load2.upf consists of

set_simstate_behavior ENABLE -model top

Argument Comments/Restrictions

<library_name> Name of a ModelSim library (Required)

-file Name of a file containing set_simstate_behavior
commands.

UPF Commands and Reference
load_simstate_behavior

Power Aware Simulation User’s Manual, v10.2c 211

Example C-2. Error/Warning Conditions: Unknown Library Name

It is an error if the specified library cannot be resolved.

upf_version 2.0
set_scope tb/top1
...
load_simstate_behavior lib1 -file simstate_file1.upf
...

Vopt Message

** Error: test.upf(6): UPF: (vopt-9753) Library 'lib1' does not exist.

Example C-3. Error/Warning Conditions: Library File Does Not Exist

It is an error if specified file does not exist.

upf_version 2.0
set_scope tb/top1
...
load_simstate_behavior lib1 -file sim.upf
...

Vopt Message

** Error: test.upf(6): UPF: (vopt-9718) Can't open file 'sim.upf'

Example C-4. Error/Warning Conditions: Model Cannot Be Found

It is an error if a model specified in file cannot be found.

main.upf
upf_version 2.0
set_scope tb/top1
...
load_simstate_behavior lib1 -file sim.upf
...

sim.upf
set_simstate_behavior ENABLE -model mad

Vopt Message

** Error: sim.upf(1): UPF: (vopt-9655) Model: 'mad' doesn't exist in
library: 'lib1'.

Power Aware Simulation User’s Manual, v10.2c212

UPF Commands and Reference
load_simstate_behavior

Example C-5. Error/Warning Conditions: File Contains Wrong Commands

It is an error if the specified file contains UPF commands other than set_simstate_behavior.

main.upf
upf_version 2.0
set_scope tb/top1
...
load_simstate_behavior lib1 -file sim.upf
...

sim.upf
set_scope mid1
set_simstate_behavior ENABLE -model mid

Vopt Message

** Error: sim.upf(1): UPF: (vopt-9754) Command 'set_scope' not allowed in
file specified via command 'load_simstate_behavior'.

UPF Commands and Reference
load_upf

Power Aware Simulation User’s Manual, v10.2c 213

load_upf
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

Argument Comments/Restrictions

-scope

-version

Power Aware Simulation User’s Manual, v10.2c214

UPF Commands and Reference
load_upf_protected

load_upf_protected
Support for UPF Standard

v1.0 — no

v2.0 — yes

Arguments

Usage Notes

This command loads a UPF file in a protected environment that prevents corruption of existing
variables.

Argument Comments/Restrictions

-hide_globals

-params

-scope

-version

UPF Commands and Reference
map_isolation_cell

Power Aware Simulation User’s Manual, v10.2c 215

map_isolation_cell
Support for UPF Standard

v1.0 — no

v2.0 — yes

Arguments

Usage Notes

This command maps a particular isolation strategy to a library cell or range of library cells to be
inserted for isolation. It has an effect only if isolation cells have been inserted (see
set_isolation).

The information about the ports of the library model is specified using '-port' argument, which
connects the specified net_ref to a port of the model.

A net_ref may be one of the following:

• A logic net name

• A supply net name

Argument Comments/Restrictions

<filename> Text file that defines isolation strategy and power
domain.

-domain

-elements This argument takes the list of ports on which
user-defined isolation cell is to be placed. If no list
specified, then user-defined cells are applied to all
the elements belonging to the specified isolation
strategy.

-lib_cells

-lib_cell_type

-lib_model_name Specifies the name of the cell/module to be picked
up for isolation. This module must be present in a
library visible to the Power Aware vopt command.

-port Provides information about the ports of the library
cell. This argument connects the specified net_ref
to a port of the model (see Usage Notes, below).

Power Aware Simulation User’s Manual, v10.2c216

UPF Commands and Reference
map_isolation_cell

• One of the following symbolic references:

o UPF_ISO_ENABLE (Specific to ModelSim)

Refers to the isolation control signal of associated isolation strategy.

o UPF_ISO_PWR (Specific to ModelSim)

Refers to the isolation power net of associated isolation strategy.

o UPF_ISO_GND (Specific to ModelSim)

Refers to the isolation ground net of associated isolation strategy.

o UPF_GENERIC_DATA

Refers to the port on which the cell is to be placed.

o UPF_GENERIC_OUTPUT

Refers to the output of the isolation cell.

o isolation_signal

Refers to the isolation control signal of associated isolation strategy.

o isolation_signal[index]

Not supported.

o isolation_supply_set.function_name

The function_name extension refers to the supply net corresponding to the
function it provides to the isolation_supply_set.

o isolation_supply_set[index].function_name

Not supported.

Example C-6. Specifying Argument Values for map_isolation_cell

...
set_isolation ISO_GEN \
-domain C0 \
-isolation_power_net PDO_VNET_ISO_OUT \
-clamp_value 1 \
-applies_to outputs

set_isolation_control ISO_GEN \
-domain C0 \
-isolation_signal /tb/iso \
-isolation_sense low \
-location parent

UPF Commands and Reference
map_isolation_cell

Power Aware Simulation User’s Manual, v10.2c 217

map_isolation_cell ISO_GEN \
 -domain C0 \
 -elements {mid_inst/out1} \
 -lib_model_name iso_cell_0_vh \
 -port "iso UPF_ISO_ENABLE"

map_isolation_cell ISO_GEN \
 -domain C0 \
 -elements {mid_inst/out1} \
 -lib_model_name iso_cell_0_vh \
 -port "iso !tb_iso"
 -port "cell_in UPF_GENERIC_DATA"
 -port "cell_out UPF_GENERIC_OUTPUT"

Power Aware Simulation User’s Manual, v10.2c218

UPF Commands and Reference
map_level_shifter_cell

map_level_shifter_cell
Support for UPF Standard

v1.0 — no

v2.0 — yes

Arguments

Argument Comments/Restrictions

<filename> Text file that defines level shifter strategy.

-domain

-lib_cells

-elements A list of ports to use from the strategy defined in
the <textfile> provided with this command.

UPF Commands and Reference
map_retention_cell

Power Aware Simulation User’s Manual, v10.2c 219

map_retention_cell
Support for UPF Standard

v1.0 — parital

v2.0 — partial

Arguments

Argument v1.0 v2.0 Comments/Restrictions

-domain Y Y

-elements N N Not supported.

-exclude_elements N N

-lib_cells Y Y

-lib_cell_type Y Y

-lib_model_name Y Y Port connectivity using -port argument of this
option is not supported.
Verification semantics of lib_model are not
honored for UDP retention, where flops and
latches are written as UDPs and retention is
applied on them.

Power Aware Simulation User’s Manual, v10.2c220

UPF Commands and Reference
name_format

name_format
Support for UPF Standard

v1.0 — yes (partial)

v2.0 — yes (partial)

Arguments

Argument v1.0 v2.0 Comments/Restrictions

-isolation_prefix N Y

-isolation_suffix N Y

-level_shift_prefix N Y

-level_shift_suffix N Y

-implicit_supply_suffix N N Not supported.

-implicit_logic_prefix N N Not supported.

-implicit_logic_suffix N N Not supported.

UPF Commands and Reference
query_design_attributes

Power Aware Simulation User’s Manual, v10.2c 221

query_design_attributes
Support for UPF Standard

v1.0 — not applicable

v2.0 — yes

Arguments

Usage Notes

Returns state information about attributes for a design element or model.

Argument Comments/Restrictions

-element

-model

-detailed

Power Aware Simulation User’s Manual, v10.2c222

UPF Commands and Reference
query_port_state

query_port_state
Support for UPF Standard

v1.0 — not applicable

v2.0 — yes

Arguments

Usage Notes

Returns state information for a specified port.

Argument Comments/Restrictions

-state

-detailed

UPF Commands and Reference
query_power_domain

Power Aware Simulation User’s Manual, v10.2c 223

query_power_domain
Support for UPF Standard

v1.0 — not applicable

v2.0 — yes (partial)

Arguments

Usage Notes

Returns parameters of a power domain.

Argument Comments/Restrictions

-non_leaf

-all not supported

-no_elements

-detailed

Power Aware Simulation User’s Manual, v10.2c224

UPF Commands and Reference
query_power_state

query_power_state
Support for UPF Standard

v1.0 — not applicable

v2.0 — yes

Arguments

Usage Notes

Returns the state information for a power domain or supply set. Specifically, listing the
previously defined power states for the specified object_name, which can be a power domain or
a supply set.

Argument Comments/Restrictions

-state

-detailed

UPF Commands and Reference
query_power_switch

Power Aware Simulation User’s Manual, v10.2c 225

query_power_switch
Support for UPF Standard

v1.0 — not applicable

v2.0 — yes

Arguments

Usage Notes

Returns information for a UPF power switch.

Argument Comments/Restrictions

-detailed

Power Aware Simulation User’s Manual, v10.2c226

UPF Commands and Reference
query_pst

query_pst
Support for UPF Standard

v1.0 — not applicable

v2.0 — yes

Arguments

Usage Notes

Returns information for any defined PSTs.

Argument Comments/Restrictions

-detailed

UPF Commands and Reference
query_pst_state

Power Aware Simulation User’s Manual, v10.2c 227

query_pst_state
Support for UPF Standard

v1.0 — not applicable

v2.0 — yes

Arguments

Usage Notes

Returns state information for a PST.

Argument Comments/Restrictions

-pst

-detailed

Power Aware Simulation User’s Manual, v10.2c228

UPF Commands and Reference
query_supply_net

query_supply_net
Support for UPF Standard

v1.0 — not applicable

v2.0 — yes

Arguments

Usage Notes

Returns state information about a previously created supply net.

Argument Comments/Restrictions

-domain

-detailed

UPF Commands and Reference
query_supply_port

Power Aware Simulation User’s Manual, v10.2c 229

query_supply_port
Support for UPF Standard

v1.0 — not applicable

v2.0 — yes

Arguments

Usage Notes

Returns state information about a previously created supply port.

Argument Comments/Restrictions

-domain

-is_supply

-detailed

Power Aware Simulation User’s Manual, v10.2c230

UPF Commands and Reference
save_upf

save_upf
Support for UPF Standard

v1.0 — yes (partial)

v2.0 — yes (partial)

Arguments

Usage Notes

Power Aware simulation supports two modes for using the save_upf command: interpreted and
uninterpreted.

• Interpreted mode (default)

In interpreted mode, any command or argument that is not supported by Power Aware
simulation is written as a comment at the end of the saved UPF file. This file contains
supported commands as interpreted by Power Aware simulation, which are written after
performing various operations such as semantic checks, resolving net-port connections,
and resolving design objects related to a command.

Note that save_upf dumps the complete power intent of the scope, not just the UPF
commands in effect at the point where save_upf command is given.

• Uninterpreted mode

Argument v1.0 v2.0 Comments/Restrictions

-scope Y Y See Usage Notes, below

-version Y Y Currently, -version is supported only when its
value is the same as input file version.

-u N Y (ModelSim extension) Optional argument not
specified in UPF v2.0.

Uninterpreted mode only, not part of UPF standard

You can specify UPF commands in a separate file
that is loaded by specifying the filename as the
argument to the -pa_tcl command line option.
Specifically you can use this functionality to avoid
putting non-standard commands, or commands
with non-standard arguments, in the main UPF
file, which allows you to keep the file portable.
Also, navigation commands, such as set_scope,
must be used in the -pa_tcl file to ensure that UPF
commands in that file are applied in the
appropriate scope.

UPF Commands and Reference
save_upf

Power Aware Simulation User’s Manual, v10.2c 231

In uninterpreted mode, all the UPF commands are saved in the output file without any
processing (even if the commands are not supported by Power Aware simulation). This
mode filters out any TCL-specific constructs in the UPF and writes only the UPF
commands to the output UPF file.

To write the output file in uninterpreted mode, do either of the following:

o Specify save_upf -u. Note that in uninterpreted mode, the -scope and -version
arguments of the save_upf command are not supported. Also, the saved UPF file is a
complete replica of the original UPF file (but without any TCL constructs).

o Specify vopt -pa_dumpupf <filename>. This saves the UPF file in uninterpreted
mode to the <filename> file.

Power Aware Simulation User’s Manual, v10.2c232

UPF Commands and Reference
set_design_attributes

set_design_attributes
Support for UPF Standard

v1.0 — no

v2.0 — yes (partial)

Arguments

Argument v1.0 v2.0 Comments/Restrictions

-elements N Y

-models N Y

-attribute N Y Refer to Table C-4 for a list of UPF attributes
supported for this argument.

-exclude_elements N N Not supported.

UPF Commands and Reference
set_design_top

Power Aware Simulation User’s Manual, v10.2c 233

set_design_top
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

none

Power Aware Simulation User’s Manual, v10.2c234

UPF Commands and Reference
set_domain_supply_net

set_domain_supply_net
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

Argument Comments/Restrictions

-primary_power_net

-primary_ground_net

UPF Commands and Reference
set_isolation

Power Aware Simulation User’s Manual, v10.2c 235

set_isolation
Support for UPF Standard

v1.0 — yes (partial)

v2.0 — yes (partial)

Power Aware Simulation User’s Manual, v10.2c236

UPF Commands and Reference
set_isolation

Arguments

Argument v1.0 v2.0 Comments/Restrictions

-domain Y Y

-elements Y Y Complex data types of SystemVerilog, such as
structs, are not supported. However, you can
specify bit- or part-selects of one or more
signals.

Example:
set_isolation ISO1 -domain PD1 -elements
{out1[2] out2[2:1]}

-applies_to Y Y

-isolation_power_net Y Y

-isolation_ground_net Y Y

-no_isolation Y Y

-isolation_supply_set Y Y Supports only a single value (no list) —
multiple clamp values, supplies, and enable
isolation strategies are not supported.

-name_prefix Y Y

-name_suffix Y Y

-clamp_value Y Y Specifying a user-defined value for <latch> is
not supported.

-location Y Y Supports only the following values:
• self
• parent
• fanin
• fanout
• faninout

UPF Commands and Reference
set_isolation

Power Aware Simulation User’s Manual, v10.2c 237

-instance N Y Recognizes the special attributes present on the
specified instance, applies the appropriate
simulation semantics, and makes the
connections as follows:

• If there is a port of type pg_type present on
the instance, then Power Aware simulation
automatically connects the appropriate
power and ground pins of the respective
strategy and disable the implicit corruption
semantics.

• If there is no port of type pg_type present on
the instance, then Power Aware simulation
applies implicit corruption semantics
according to the primary_power and ground
nets specified for the strategy.

-update N Y Allows adding elements and supplies to a
previously created power domain.

-applies_to_clamp Y Y

-applies_to_sink_off_clamp Y Y

-applies_to_source_off_clamp Y Y

-diff_supply_only N Y No isolation is introduced into the path from the
driver to the receiver for an isolation strategy
defined on a port on the interface of
ref_domain_name, where the driver is powered
by the same supply as a receiver of the port.

-force_isolation N Y

-isolation_signal Y Y

-isolation_sense Y Y

-source N Y Filters the ports receiving a net that is driven by
logic powered by the supply set.

-sink N Y Filters the ports driving a net that fans out to
logic powered by the supply set.

-sink_off_clamp N N Not supported.

-source_off_clamp N N Not supported.

-transitive N N Not supported.

Argument v1.0 v2.0 Comments/Restrictions

Power Aware Simulation User’s Manual, v10.2c238

UPF Commands and Reference
set_isolation

Usage Notes

The isolation strategy defined by set_isolation causes Power Aware to perform insertion of
isolation cells, together with an analysis of the power state table to see whether adjacent power
domains can be in different power states and therefore require isolation.

The -instance argument prevents insertion of a redundant isolation cell at a port where one
already exists (see map_isolation_cell).

When both -source and -sink are specified, a port is included if it has a source as specified and a
sink as specified.

This command supports isolation of lower boundary ports of a power domain, which is defined
in UPF v2.0 as “The highconn side of ports defined on design elements in other power domains,
but instanced within design elements in the extent of the domain.”

set_scope /tb
create_power_domain PD_TOP ?elements {top_inst}
create_power_domain PD_BOT ?elements {top_inst/bot_inst}
...
set_isolation PD_TOP_isolation1 -domain PD_TOP \
-isolation_power_net VDD_PD_TOP_net -clamp_value 0 \
-applies_to inputs \
-location parent

This command will isolate both the inputs ports of the instance /tb/top_inst, as well as outputs of
the instance /tb/top_inst/bot_inst (lower boundary ports).

UPF Commands and Reference
set_isolation_control

Power Aware Simulation User’s Manual, v10.2c 239

set_isolation_control
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

Usage Notes

The -location argument defines the isolation behavior so that it appears in the specified location,
which is used by synthesis and/or place-and-route to guide insertion of actual isolation cells.

Argument Comments/Restrictions

-domain

-isolation_signal

-isolation_sense

-location The sibling value is not supported.

Power Aware Simulation User’s Manual, v10.2c240

UPF Commands and Reference
set_level_shifter

set_level_shifter
Support for UPF Standard

v1.0 — yes (partial)

v2.0 — yes (partial)

UPF Commands and Reference
set_level_shifter

Power Aware Simulation User’s Manual, v10.2c 241

Arguments

Argument v1.0 v2.0 Comments/Restrictions

-domain Y Y

-elements Y Y Complex data types of SystemVerilog, such as
structs, are not supported. However, you can
specify bit- or part-selects of one or more signals.

-no_shift Y Y

-threshold Y Y

-applies_to Y Y

-rule Y Y

-location Y Y The -location argument defines where level shifter
cells are to be placed in the design.

• If you specify a value of fanout, a level shifter
will be identified for placement at all fanout
locations (for valid level shifters) and the count
is incremented accordingly in the report.

• If you specify self, parent, sibling, or
automatic, then only one level shifter will be
identified for placement at a fanout location.
Thus, the report may show a count of level
shifters in some paths to be 0.

Supports only the following values:
• self
• parent
• fanin
• fanout
• faninout

Example:
set_level_shifter LS1 -domain pd1 -
elements {out3] out4[2:1]}

-instance N Y Recognizes the special attributes present on the
specified instance, applies the appropriate
simulation semantics, currently disables the Power
Aware simstate semantics.

-update N Y Allows adding elements and supplies to a
previously created power domain for a progressive
refinement of power intent.

Power Aware Simulation User’s Manual, v10.2c242

UPF Commands and Reference
set_level_shifter

Usage Notes

When -source and -sink are specified, a port is included if it has a source as specified or a sink
as specified.

For a selected output port on the interface of a domain for which this strategy is specified, level-
shifting is performed only on the subset of the fanout that drives an element in the domain
specified by the -sink option.

For a selected input port on the interface of a domain for which this strategy is specified, level -
shifting is performed only on the subset of the fanin driven by an element in the domain
specified by the -source option.

Notes about -location:

-force_shift N Y

-input_supply_set N Y

-output_supply_set N Y

-internal_supply_set N Y

-name_prefix Y Y

-name_suffix Y Y

-source N Y Selects the ports receiving a net that is driven from
a port on the interface of the specified domain. See
Usage Notes, below.

-sink N Y Selects the ports driving a net that fans out to a
port on the interface of the specified domain. See
Usage Notes, below.

-transitive N N Not supported.

Argument v1.0 v2.0 Comments/Restrictions

UPF Commands and Reference
set_partial_on_translation

Power Aware Simulation User’s Manual, v10.2c 243

set_partial_on_translation
Support for UPF Standard

v1.0 — no

v2.0 — yes

Arguments

Usage Notes

The set_partial_on_translation command defines the translation of PARTIAL_ON to
FULL_ON or OFF for purposes of evaluating the power state of supply sets and power
domains. The state of a supply set is evaluated after the tool-specific translation of
PARTIAL_ON to FULL_ON or OFF for each supply net in the set.

By default Power Aware translates PARTIAL_ON is translated to OFF. Therefore, you must
use the set_partial_on_translation command to change the default translation behavior to
FULL_ON.

You can also define a list of tools for which translation of PARTIAL_ON to FULL_ON takes
place and the tools for which PARTIAL_ON to OFF takes place. All tool names are case-
insensitive

You can also specify default behavior for an unlisted tool.

Note
To define PARTIAL_ON translation behavior for Power Aware simulation, specify
'questa' in the tools list. In Power Aware simulation, PARTIAL_ON has an enum value of
2. The supply_partial_on function would also assign the same enum value of 2.

Argument Comments/Restrictions

OFF | FULL_ON OFF defines a default translation from
PARTIAL_ON to OFF when evaluating the power
state of supply sets and power domains (default).

FULL_ON defines a default translation from
PARTIAL_ON to FULL_ON when evaluating the
power state of supply sets and power domains.

-full_on_tools Defines a list of tools (products) for which
translation of PARTIAL_ON to FULL_ON take
place.

-off_tools Defines a list of tools for which translation of
PARTIAL_ON to OFF take place.

Power Aware Simulation User’s Manual, v10.2c244

UPF Commands and Reference
set_partial_on_translation

Example C-7. Set the Translation of PARTIAL_ON to FULL_ON For All Tools

upf_version 2.0
set_scope tb
...
set_partial_on_translation FULL_ON
...

Example C-8. Set the translation of PARTIAL_ON to FULL_ON Only for
ModelSim and to OFF for Others

upf_version 2.0
set_scope tb
...
set_partial_on_translation OFF -full_on_tools questa
...

Example C-9. Set the translation of PARTIAL_ON to OFF Only for ModelSim and
to FULL_ON for Others

upf_version 2.0
set_scope tb
...
set_partial_on_translation FULL_ON -off_tools questa
...

Example C-10. Error/Warning Conditions: Same String in Different Lists

It is an error if the same string for a tool name occurs in both the -full_on_tools and -off_tools
lists. In the following example for Power Aware simulation, the error occur only if questa tool
name is specified in both the -full_on_tools and -off_tools string_lists.

upf_version 2.0
set_scope tb
...
set_partial_on_translation OFF -full_on_tools {questa} -off_tools questa
...

Vopt Message

** Error: test.upf(5): UPF: (vopt-9762) The same string occurs in both the
-full_on_tools and -off_tools string_lists.

UPF Commands and Reference
set_partial_on_translation

Power Aware Simulation User’s Manual, v10.2c 245

Usage: set_partial_on_translation [OFF | FULL_ON] [-full_on_tools
{string_list}] [-off_tools {string_list}]

Example C-11. Error/Warning Conditions: set_partial_on_translation Invoked
More Than Once

A Warning message is issued if set_partial_on_translation is invoked more than once.

...
upf_version 2.0
set_scope tb
...
set_partial_on_translation OFF -full_on_tools {questa}
set_partial_on_translation FULL_ON
...

Vopt Message

** Warning: test.upf(6): UPF: (vopt-9763) Command
'set_partial_on_translation' invoked more than once. Ignoring previous
specification(s) of this command.

Power Aware Simulation User’s Manual, v10.2c246

UPF Commands and Reference
set_pin_related_supply

set_pin_related_supply
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

Usage Notes

• Questa SIM assumes the driver/receiver logic supply to be the same as specified related
supplies—that is, corruption, isolation, and level-shifting behavior is in accordance with
the specified related supplies. When the supply specified using set_pin_related_supply
(using -related_power_pin or -related_ground_pin is a different supply than that of
actual driver or receiver logic, Power Aware simulation gives a vopt error message
(vopt-9814).

You can use the -warning argument of vopt to change the severity of this message to a
warning so that simulation may continue:

vopt -warning 9814

Refer to Power Aware Messages for more information on changing the level of message
severity.

Argument Comments/Restrictions

-pins

-related_power_pin

-related_ground_pin

UPF Commands and Reference
set_port_attributes

Power Aware Simulation User’s Manual, v10.2c 247

set_port_attributes
Support for UPF Standard

v1.0 — no

v2.0 — yes (partial)

Arguments

Argument v1.0 v2.0 Comments/Restrictions

-ports N Y This option takes precedence over any other
set_port_attributes with any other option, such as
-elements, -domains, or -model.

-domains N Y

-elements N Y Complex data types of SystemVerilog, such as
structs, are not supported.

-applies_to N Y

-model N Y

-attribute N Y

-clamp_value N Y

-sink_off_clamp N Y

-source_off_clamp N Y

-receiver_supply N Y

-driver_supply N Y

-related_power_port N Y

-related_ground_port N Y

-related_bias_ports N N

-repeater_supply N Y

-pg_type N Y No support for -pg_type for UPF-created supply
ports.

-exclude_domains N N Not supported.

-exclude_elements N N Not supported.

-exclude_ports N N Not supported.

-transitive N N Not supported.

Power Aware Simulation User’s Manual, v10.2c248

UPF Commands and Reference
set_port_attributes

Usage Notes

• Power Aware Simulation does ot support the specification of an attribute on an index or
record field specification as appropriate for the type of an object. Specifically, bit and
part selects for Verilog, VHDL indexed name (for array elements), slice names (for
array subranges), or selected names (for record elements).

• The -clamp_value, -source_off_clamp, and -sink_off_clamp arguments affect the
filtering of ports specified by the set_isolation command.

• Power Aware simulation assumes the driver/receiver logic supply to be the same as
specified related supplies—that is, corruption, isolation, and level-shifting behavior is in
accordance with the specified related supplies. When the supply specified using
set_port_attributes (using -related_power_port or -related_ground_port) is a different
supply than that of actual driver or receiver logic, Power Aware simulation gives a vopt
error message (vopt-9814).

You can use the -warning argument of vopt to change the severity of this message to a
warning so that simulation may continue:

vopt -warning 9814

Refer to Power Aware Messages for more information on changing the level of message
severity.

Example

set_port_attributes -ports top/out -source_off clamp_1

UPF Commands and Reference
set_power_switch

Power Aware Simulation User’s Manual, v10.2c 249

set_power_switch
Support for UPF Standard

v1.0 — yes (partial)

v2.0 — yes

Arguments

Usage Notes

The following is not supported:

• In order to model the definition of a power switch, the tool currently treats
UNDETERMINED state as OFF state for simulation. This implies that when the state of
supply set is NOT_NORMAL, the state on the output supply port will be OFF instead of
UNDETERMINED state.

Argument v1.0 v2.0 Comments/Restrictions

-output_supply_port Y Y

-input_supply_port Y Y

-control_port Y Y

-on_state Y Y

-supply_set N Y When the supply set simstate is anything other
than NORMAL, the state of the output supply port
of a switch is OFF and the acknowledge ports are
corrupted. Note that this differs from UPF v2.0,
which states that the state of the output supply port
of a switch is UNDETERMINED.

-on_partial_state Y Y

-off_state Y Y

-error_state Y Y

Power Aware Simulation User’s Manual, v10.2c250

UPF Commands and Reference
set_retention

set_retention
Support for UPF Standard

v1.0 — yes (partial)

v2.0 — yes (partial)

Arguments

Argument v1.0 v2.0 Comments/Restrictions

-domain Y Y

-elements Y Y

-retention_power_net Y Y

-retention_ground_net Y Y

-retention_supply_set N Y Powers the register holding the retained value.

-no_retention N Y Specifies that storage elements specified by the
retention strategy do not have retention capability
added.

-use_retention_as_primary N Y Powers the storage element and the output drivers
of the register using the retention supply.

-save_signal N Y

-restore_signal N Y

-instance N Y Recognizes the special attributes present on the
specified instance, applies the appropriate
simulation semantics, and makes the connections:

Refer to Usage Notes for set_retention for more
information

-update N Y Allows adding elements and supplies to a
previously created power domain.

-exclude_elements N N Not supported.

-restore_condition N Y

-retention_condition N Y

-save_condition N Y

-parameters N N Not supported.

-transitive N N Not supported.

UPF Commands and Reference
set_retention

Power Aware Simulation User’s Manual, v10.2c 251

Usage Notes for set_retention

Restrictions:

• Corruption of retention element and saved value is not supported.

• The implicit corruption semantics are also applied to the shadow latch used to preserve
the data during retention period. In order to remove the shadow latch from corruption,
you must specify it in an exclude file (vopt -pa_excludefile).

Notes about -instance:

• If there is a port of type pg_type present on the instance, then Power Aware simulation
automatically connects the primary_power and primary_ground pins with primary
power and primary ground nets of the power domain. It connects the backup power and
backup ground pin specified on the instance with the retention power and ground nets
specified in the strategy.

• If there is no port of type pg_type present on the instance, then Power Aware simulation
applies implicit corruption semantics according to the primary_power and ground nets
specified for the power domain.

Power Aware Simulation User’s Manual, v10.2c252

UPF Commands and Reference
set_retention_control

set_retention_control
Support for UPF Standard

v1.0 — yes (partial)

v2.0 — yes (partial)

Arguments

Argument v1.0 v2.0 Comments/Restrictions

-domain Y Y

-save_signal Y Y

-restore_signal Y Y

-assert_r_mutex N N Not supported.

-assert_s_mutex N N Not supported.

-assert_rs_mutex N N Not supported.

UPF Commands and Reference
set_scope

Power Aware Simulation User’s Manual, v10.2c 253

set_scope
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

The syntax of set_scope in UPF only allows hierarchical path up to instances (design elements).
This has been extended under the above mentioned switch to accept hierarchical path of
generate blocks as well. This allows user to create power domains inside a generate blocks. e.g.

set_scope mid/forgen\[1\]
create_power_domain PD_forgen -include_scope

Argument Comments/Restrictions

<instance> | <pathname>

Power Aware Simulation User’s Manual, v10.2c254

UPF Commands and Reference
set_simstate_behavior

set_simstate_behavior
Support for UPF Standard

v1.0 — no

v2.0 — yes

Arguments

Argument Comments/Restrictions

ENABLE | DISABLE ENABLE applies simstate simulation semantics
for every supply set automatically connected to an
instance of a model. Elements implicitly connected
to a particular supply set have simstate semantics
enabled by default.

DISABLE disables simstate simulation semantics
recursively for all the descendants of the instance
of the model. Elements automatically or explicitly
connected to a particular supply set have simstate
semantics disabled by default.

-lib When both -lib and -model are specified, the
simstate behavior is defined for the specified
models in the specified library.

If -model is not defined and -lib is specified, the
simstate behavior is defined for all models in the
specified library.

The -elements argument has higher priority over
-model and -lib.

-model

-elements <.list> (ModelSim extension) Optional argument not
specified in UPF v2.0.

You specify a list of element names as the value to
this argument, which determines the simulation
simstate behavior for one or more design elements.

Because this is a non-standard argument, you can
specify this information through the use of vopt
-pa_tcl, which allows your UPF file to remain
portable.

UPF Commands and Reference
set_simstate_behavior

Power Aware Simulation User’s Manual, v10.2c 255

Usage Notes

The set_simstate_behavior command defines the simulation simstate behavior for a model or
library. You can use this command to override the default setting of simstate semantics.

Examples

Example C-12. Enable Simstate Behavior Using set_simstate_behavior

In the following example, automatic connections led to disablement of simstate semantics of
model mid. The set_simstate_behavior command enables the simstate semantics of instances of
the model.

upf_version 2.0
set_scope tb/top1
create_power_domain pd1
...
set_simstate_behavior ENABLE -model {mid}
...
create_supply_net VDD_N -domain pd1
create_supply_net GND_N -domain pd1

Example C-13. Disable Simstate Behavior Using set_simstate_behavior

In the following example, set_simstate_behavior disables the simulation semantics all instances
of model bot.

set_scope tb/top1
set_simstate_behavior ENABLE -model {mid} -elements {mid3}
set_simstate_behavior DISABLE -model {bot}
...
create_power_domain pd1
create_supply_net VDD_N -domain pd1
...

Vopt Message

** Note: test.upf(7): UPF: (vopt-9693) Power Aware simulation semantics
disabled for /tb/top1/mid1/bot1.
** Note: test.upf(7): UPF: (vopt-9693) Power Aware simulation semantics
disabled for /tb/top1/mid1/bot2.
** Note: test.upf(7): UPF: (vopt-9693) Power Aware simulation semantics
disabled for /tb/top1/mid2/bot1.
** Note: test.upf(7): UPF: (vopt-9693) Power Aware simulation semantics
disabled for /tb/top1/mi

Power Aware Simulation User’s Manual, v10.2c256

UPF Commands and Reference
set_simstate_behavior

Tip: You can suppress the above messages by using the following argument with the
vopt command: vopt -suppress 9693

Example C-14. When Both -models and -lib Arguments Are Specified

upf_version 2.0
set_scope tb/top1
create_power_domain pd1
...
set_simstate_behavior ENABLE -model {mid} -lib lib_name1
set_simstate_behavior DISABLE -model {top} -lib lib_name2
...
create_supply_net VDD_N -domain pd1
create_supply_net GND_N -domain pd1
...

Example C-15. Specify Simstate Behavior For All Models in a Library

upf_version 2.0
set_scope tb/top1
create_power_domain pd1
...
set_simstate_behavior ENABLE -lib lib_name1
set_simstate_behavior DISABLE -lib lib_name2
...
create_supply_net VDD_N -domain pd1
create_supply_net GND_N -domain pd1
...

Example C-16. Use -elements Argument to Override or Specify Simstate
Behavior (single element)

upf_version 2.0
set_scope tb/top1
create_power_domain pd1
...
set_simstate_behavior ENABLE -elements /tb/top1/mid1
...
create_supply_net VDD_N -domain pd1
create_supply_net GND_N -domain pd1

UPF Commands and Reference
set_simstate_behavior

Power Aware Simulation User’s Manual, v10.2c 257

Example C-17. Use -elements Argument to Override or Specify Simstate
Behavior (list of elements)

upf_version 2.0
set_scope tb/top1
create_power_domain pd1
...
set_simstate_behavior ENABLE -model {mid}
set_simstate_behavior DISABLE -elements {mid1 mid2}
...
create_supply_net VDD_N -domain pd1
create_supply_net GND_N -domain pd1

Example C-18. Error/Warning Conditions: -lib Argument Without a Library

It is an error if the specified library with -lib argument does not exist.

upf_version 2.0
set_scope tb/top1
create_power_domain pd1
set_simstate_behavior ENABLE -lib lib1
...

Vopt Message

** Error: test.upf(4): UPF: (vopt-9753) Library 'lib1' does not exist.

Example C-19. Error/Warning Conditions: -model Argument Without a Model

It is an error if the specified model (using -model argument) does not exist in the specified
library (using -lib argument).

upf_version 2.0
set_scope tb/top1
create_power_domain pd1
set_simstate_behavior ENABLE -model mad -lib work
...

Vopt Message

** Error: test.upf(4): UPF: (vopt-9655) Model: 'mad' doesn't exist in
library: 'work'.

Power Aware Simulation User’s Manual, v10.2c258

UPF Commands and Reference
set_simstate_behavior

Example C-20. Error/Warning Conditions: Conflicting Simstate Behaviors

It is an error if a model has conflicting simstate behaviors specified.

upf_version 2.0
set_scope tb/top1
create_power_domain pd1
...
set_simstate_behavior ENABLE -model { mid top }
set_simstate_behavior DISABLE -model { mid }
...

Vopt Message

** Error: (vopt-9730) Attribute:'upf_simstate_behavior DISABLE' on design
object:'mid1' conflict

Example C-21. Error/Warning Conditions: DISABLE Argument Used Without
Supply Ports

It is an error if DISABLE is specified and the model has no supply ports.

upf_version 2.0
set_scope tb/top1
create_power_domain pd1
...
set_simstate_behavior DISABLE -model {mid}
...
create_supply_net VDD_N -domain pd1
create_supply_net GND_N -domain pd1
...

Vopt Message

** Error: test.upf(6): UPF: (vopt-9756) Power aware simulation semantics
cannot be disabled for design element '/tb/top1/mid1'.
** Error: test.upf(6): UPF: (vopt-9756) Power aware simulation semantics
cannot be disabled for

UPF Commands and Reference
upf_version

Power Aware Simulation User’s Manual, v10.2c 259

upf_version
Support for UPF Standard

v1.0 — yes

v2.0 — yes

Arguments

none

Supported UPF Package Functions
Power Aware simulation Supports the UPF 2.0 package that is part of IEEE Std 1801™-2009.

The following tables list the UPF 2.0 package functions supported for VHDL (Table C-2) and
SystemVerilog (Table C-3). Refer to IEEE Std 1801™-2009 for complete details

Table C-2. Supported UPF Package Functions for VHDL

Function Name

function supply_on (pad_name : IN string ; value : IN real) return boolean;

function supply_off (pad_name : IN string) return boolean;

function supply_partial_on (pad_name : IN string; value : real) return boolean;

function get_supply_value (pad_name : IN string) return supply_net_type;

function get_supply_voltage (value : IN supply_net_type) return real;

function get_supply_on_state (value : IN supply_net_type) return boolean;

function get_supply_on_state (value : IN supply_net_type) return bit;

function get_supply_state (value : IN supply_net_type) return net_state;

Table C-3. Supported UPF Package Functions for SystemVerilog

Function Name

function bit supply_on(string pad_name, real value);

function bit supply_off(string pad_name);

function bit supply_partial_on(string pad_name, real value);

function supply_net_type get_supply_value(string name);

function real get_supply_voltage(supply_net_type arg);

function bit get_supply_on_state(supply_net_type arg);

Power Aware Simulation User’s Manual, v10.2c260

UPF Commands and Reference
Supported UPF Package Functions

Note
UPF 2.0 introduced “state” as a reserved keyword.

Detailed Support for supply_net_type
For UPF 2.0, the definition of supply_net_type was redefined from UPF 1.0 (Accellera UPF
Standard 1.0). Key changes include:

• ON state changed to FULL_ON. Ensure you rewrite any UPF v1.0 files to match this
change.

• Type state changed from 32-bit vector to an enum.

• Addition of the UNDETERMINED state for supply_net_type, which has the following
impact on the power aware functionality. Ensure you rewrite any UPF v1.0 files to take
account of this new state.

o Power Aware switches can go to the UNDETERMINED state, as described in the
following situations (defined in the IEEE Std 1801-2009, Section 6.20).

• Multiple-on or partial-on conditions are true with different root supply drivers.

• Both off_state and on_state conditions or on_partial_state condition are true.

• Any error state condition is true.

• Control signals go to x or z.

• Simstate of the supply set associated with the switch is anything other than
NORMAL.

For UPF 1.0, under these conditions the output port of the switch would go to the
OFF state. You can switch to UPF 1.0 type functionality with the vopt -
pa_upfversion=1.0 option, which sets the upf_version of the UPF file to UPF 1.0

Due to introduction of this UNDETERMINED state, switch output may go to
UNDETERMINED state in delta periods if any of these conditions is true due to
input delta activities

o A supply net may go to UNDETERMINED state as defined by resolution methods
provided for create_supply_net command (defined in the IEEE Std 1801-2009,
Section 6.22.2). Specifically, for any error condition in resolution techniques, such
as:

function bit [1:0] get_supply_state(supply_net_type arg);

Table C-3. Supported UPF Package Functions for SystemVerilog

Function Name

UPF Commands and Reference
Accessing Generate Blocks in UPF

Power Aware Simulation User’s Manual, v10.2c 261

• For ONE_HOT resolution, if at any point in time more than one supply source
that is driving the net is anything other than OFF

• For PARALLEL resolution, if any of the potentially conducting paths can be
traced to more than one root supply driver

For UPF 1.0, under these conditions the state of the supply net was set to OFF.

o For UPF 2.0, the default state of supply nets and ports is set to OFF. You can change
this to FULL_ON with the vopt option -pa_disable=defaultoff.

Accessing Generate Blocks in UPF
In order to access hierarchy as defined in individual languages or as Power Aware simulation
accepts it, UPF uses square bracket pairs, []. This is because UPF is written in Tcl, so in some
contexts square brackets can be interpreted as special command substitution characters—though
you usually need to use escape characters with them for that purpose. The exception to this
when using a UPF command argument that takes a list of values enclosed in braces, { }, because
that is not actually command substitution.

The following examples show how to generate references in UPF for both Verilog and VHDL.

create_power_domain pd -elements { top_vh/for_genvh__1/bot_vh_inst
top_vl/forgen_vl[1]/bot_vl_inst }

create_power_domain pd -elements { top_vh/for_genvh(1)/bot_vh_inst
top_vl/forgen_vl[1]/bot_vl_inst }

Limitation
Connections from UPF to HDL port of inout type are not supported for inout capability. These
connections are made in such a way that UPF is driving data to the HDL port.

Supported UPF Attributes
Power Aware simulation supports the use of UPF attributes used to express the power intent in
an HDL model. You can specify these attributes using the following methods:

• UPF commands (set_design_attributes, set_port_attributes, set_isolation,
set_pin_related_supply, set_simstate_behavior, set_retention_elements)

Power Aware Simulation User’s Manual, v10.2c262

UPF Commands and Reference
Supported UPF Attributes

• VHDL or SystemVerilog attributes

• Liberty cell specification

Table C-4 lists the UPF attributes supported by Power Aware simulation.

Specifying Attributes
You can use the set_design_attributes and set_port_attributes commands to specify attributes
for Power Aware simulation. The following arguments for these UPF commands are now
supported:

• set_design_attributes

Table C-4. Supported UPF Attributes

HDL Attribute Value(s) UPF Command

UPF_clamp_value 0 | 1 | Z | latch | any |
<value>

set_isolation -clamp_value
set_port_attributes -clamp_value

UPF_sink_off_clamp_value 0 | 1 | Z | latch | any |
<value>

set_isolation
-sink_off_clamp_value
set_port_attributes
-sink_off_clamp_value

UPF_source_off_clamp_value 0 | 1 | Z | latch | any |
<value>

set_isolation
-source_off_clamp_value
set_port_attributes
-source_off_clamp_value

UPF_pg_type <pg_type_value> set_port_attributes -pg_type

UPF_related_ground_pin <port_name> set_pin_related_supply
-related_ground_pin
set_port_attributes
-related_ground_port

UPF_related_power_pin <port_name> set_pin_related_supply
-related_power_pin
set_port_attributes
-related_power_port

UPF_related_bias_pin <port_name> set_port_attributes
-related_bias_port

UPF_retention required | optional set_retention_elements
-retention

UPF_simstate_behavior ENABLE | DISABLE set_simstate_behavior

UPF Commands and Reference
Supported UPF Attributes

Power Aware Simulation User’s Manual, v10.2c 263

-elements
-models
-attribute

• set_port_attributes

-ports
-domains
-elements
-model
-attribute
-clamp_value
-sink_off_clamp_value
-source_off_clamp_value
-related_power_port
-related_ground_port
-pg_type

Limitations
• In some cases, -related_power_port/-related_ground_port might not work properly with

-model.

• -pg_type might not work on UPF-created supply_ports/nets.

• -source_off_clamp_value -sink_off_clamp_value -clamp_value only affects the filtering
of ports affected by the set_isolation command.

Attributes in VHDL or SystemVerilog
You can also specify all supported attributes using VHDL or SystemVerilog.

VHDL example:

(attribute UPF_pg_type of vdd_backup : signal is "backup_power"
System Verilog example:

(* UPF_pg_type = “backup_power” *) input vdd_backup;

Specifying Supply Nets in UPF
The connect_supply_net command specifies connection to a supply net that conforms to the
behavior described in 6.13 of IEEE Std 1801-2009. A UPF supply net is propagated through
implicitly created ports and throughout the logic hierarchy of the scope in which the net is
created.

Power Aware Simulation User’s Manual, v10.2c264

UPF Commands and Reference
Supported UPF Attributes

Format of Assigned Net Values
A supply net connected by this command is a composite signal consisting of a real voltage value
(in μV) and an enumerated supply state (ON, OFF). For Power Aware simulation, the default
voltage value is 81μV on both VDD and VSS / GND nets (a voltage value is not used for
dynamic simulation).

For simulating a digital design, the more important information for the net is whether its supply
state is ON or OFF. Regardless of whether the power supply net is VDD or GND, when the
power supply state is ON, the state value assumes an integer value of 1. When the supply state is
OFF, the state value assumes an integer value of 0. By default, the power state is ON.

Consequently, Power Aware simulation reports the two default values of 81 and 1 to a power
net as 81_0000000001. Note that the output of a switch in UPF whose control port has been
driven to the OFF state is always 0μV and a 0 supply state (reported by Power Aware
simulation as 0_0000000000).

Changing the Default Supply State Values for VHDL Models
When you connect a supply net to an HDL port to extend the UPF supply network directly to an
HDL model, Power Aware simulation connects the net to the HDL port and converts the
enumerated supply state to the HDL port type.

By default, Power Aware simulation performs the following conversion:

{supply_state_type.state = ON} => {HDL bit type = 1’b1}
{supply_state_type.state = OFF} => {HDL bit type = 1’b0}

However, for VHDL models in the design (such as memory models), this results in a logical '1'
on ground and VSS nets.

To change this default conversion, you need to define a UPF-to-VHDL Value Conversion Table
(VCT) from that converts UPF supply states to their corresponding VHDL bit values. You then
need to apply the conversion when connecting the supply net in the UPF file.

1. Define a Value Change Table for UPF-to-VHDL conversion, by doing either of the
following:

• Use the create_upf2hdl_vct command to create a VCT that defines the conversion.
For example:

create_upf2hdl_vct upf2vhdl_vss
-hdl_type {vhdl std_logic}
-table {{OFF 1} {ON 0} {PARTIAL_ON X}}

where upf2vhdl_vss is the name of the table, -hdl_type specifies VHDL std_logic
for the data type and -table maps OFF to 1, ON to 0, and PARTIAL_ON to X. Note
that this reverses the default conversion values.

UPF Commands and Reference
Supported UPF Extensions

Power Aware Simulation User’s Manual, v10.2c 265

• Use a predefined VCT provided by Questa (see Predefined VCTs Supported from
the UPF Standard) to perform the conversion mapping. In this example, the
UPF_GNDZERO2VHDL_SL table performs this conversion.

Note
Using a predefined VCT is easier, but it requires implementation of UPF 2.0 (IEEE Std
1801-2009), so both methods are shown here.

2. Implement the VCT conversion in your UPF file by using the -vct argument of the
connect_supply_net command. Continuing with the examples from Step 1, use either
one of the following:

• Assign the name of the VCT you defined (upf2vhdl_vss) to the -vct argument:

connect_supply_net power_supply_net { HDL_port ..} -vct upf2vhdl_vss

• Assign the name of the predefined VCT you selected
(UPF_GNDZERO2VHDL_SL) to the -vct argument:

connect_supply_net power_supply_net { HDL_port ..}
-vct UPF_GNDZERO2VHDL_SL

Supported UPF Extensions

Using -pa_upfextensions
The -pa_upfextensions argument to the vopt command allows you to define and apply various
UPF behaviors that are not supported by the current standard (UPF v2.0). Table C-5 lists the
values for this argument that you can specify to override supported UPF behavior.

Syntax

vopt -pa_upfextensions=[default] | [all] | [ackport] | [altgenname] | [case] | [flathiername] |
[genblk] | [ignorepgports] | [ignorepgportsaon] | [ignoresupply_expr] | [mapcells] |
[nonameclash] | [nonlrmstatenames] | [relatedsnet] | [s] | [v] | [wildcard]

Description

• To specify more than one value for this argument, use the + operator between values
(there is no order dependency when specifying multiple values). For example:

vopt -pa_upfextensions=relatedsnet+genblk+v

• To enable all values, specify the following:

vopt -pa_upfextensions=all

Power Aware Simulation User’s Manual, v10.2c266

UPF Commands and Reference
Supported UPF Extensions

• To enable a limited number of values (see default in Table C-5), specify either of the
following:

vopt -pa_upfextensions=default
vopt -pa_upfextensions

Table C-5. Power Aware Actions for vopt -pa_upfextensions

Value Action

all Enables (specifies) all values of the -pa_upfextensions
argument.

ackport Enforces the rule of the the ack_port of
create_power_switch UPF command requires a
mandatory supply set on the power switch in UPF 2.0.
Disable this to revert to UPF 1.0 behavior.

altgenname Supports the synthesis style hierarchical paths for generate
blocks. Power Aware simulation recognizes a hierarchical
path with an escaped generate scope of the form that a
synthesis tool generates, and maps such a name to a
hierarchical name of conventional form.

For example, each of the following styles—

{< prefix >/}gen_label[index].name2
{/< suffix >}

/* ’gen_label[index].name2’ is the new
name of the instance ’name2’ within scope
gen_label[index].*/

{< prefix >/}\\gen_label[index].name2
{/< suffix >}

/* The new name could also be double-
escaped. */

{< prefix >.}gen_label[index].name2
{/< suffix >}

/* Use ’.’ as a path separator for
generate scopes */

would map to—

{< prefix >/}gen_label[index]/name2
{/< suffix >}

case Allows you to specify predefined option values like
TRUE, FALSE, high, low, posedge, and latch in case-
insensitive form

UPF Commands and Reference
Supported UPF Extensions

Power Aware Simulation User’s Manual, v10.2c 267

default Enables (specifies) only the following values of the
-pa_upfextensions argument:

• case
• genblk
• ignorepgports
• mapcell
• nonameclash
• nonameclash
• relatedsnet
• s
• v

NOTE: Specifying vopt -pa_upfextensions with no values
has the same effect.

flathiername Allows hierarchical names within the UPF file that refer to
flattened gate level hierarchies in the design.

genblk Allows generate block to be used in set_scope,
find_objects, and create_power_domain (-elements
argument) commands.

ignorepgports Bypasses connection of a supply net to a port using the
connect_supply_net command when the port is missing in
the verification model but is a power or ground (PG) pin
in the Liberty model.

In this case, the connect_supply_net command to these
ports is ignored.

This is equivalent to using vopt -pa_connectpgpin=i

ignorepgportsaon Bypasses connection of a supply net to a port using the
connect_supply_net command when the port is missing in
the verification model but is a power or ground (PG) pin
in the Liberty model.

In this case, connect_supply_net command to these ports
is ignored and the Power Aware simulation semantics of
the parent instance of the port are disabled.

This is equivalent to using vopt -pa_connectpgpin=a

ignoresupply_expr Ignores supply_expr when both supply and logic
expressions are present in an add_power_state command.

Table C-5. Power Aware Actions for vopt -pa_upfextensions (cont.)

Value Action

Power Aware Simulation User’s Manual, v10.2c268

UPF Commands and Reference
Supported UPF Extensions

mapcell Supports the use of -lib_cells specified in
map_power_switch, map_isolation_cell and
map_level_shifter_cell UPF commands in
<libraryname/cellname> format. For example

map_power_switch PD_ONE -domain PD_SUP
-lib_cells{LIB/NODE]

nonameclash Ignores the name clash error that occurs for ports of the
set_power_switch command that are specified for the
-input_supply_port or -output_supply_port arguments and
that already exist in RTL.

nonlrmstatenames Allows non-standard UPF names in state name of
add_port_state command. For example:

add_port_state VN1 -state {1p1 1.0}

relatedsnet Supports the behavior for the Tcl command
set_related_supply_net.

s Allows relative paths in set_scope command. For
example:

set_scope ../../

v Allows automatic insertion of vct for pins detected as
power and ground pins.

mapcell Supports the use of -lib_cells specified in
map_power_switch, map_isolation_cell and
map_level_shifter_cell UPF commands in
<libraryname/cellname> format. For example

map_power_switch PD_ONE -domain PD_SUP
-lib_cells{LIB/NODE]

Table C-5. Power Aware Actions for vopt -pa_upfextensions (cont.)

Value Action

UPF Commands and Reference
UPF Supply Connections

Power Aware Simulation User’s Manual, v10.2c 269

UPF Supply Connections
Supply connections between various UPF objects can made between supply nets, supply sets,
supply ports, power switches and UPF objects such as retention, isolation, level shifter cells.
You can define these connections in the following ways:

• Implicit Connections

• Explicit Connections

• Automatic Connections

• Power State Composition

Implicit Connections
Implicit connections provide a way to connect supply nets to elements that do not have supply
ports. Any design element that is present in the extent of power domain and does not have
supply ports connected or is excluded from Power Aware processing (-pa_excludefile) will be
implicitly connected with the primary supplies (power and ground) of the power domain. Thus,
the corruption of that element will be depend on the state of the primary power net and primary
ground net of the power domain.

wildcard Supports the use of the wildcard character (*) to the
following UPF commands:
• add_domain_elements -elements
• bind_checker -elements
• connect_logic_net -ports
• connect_supply_net -ports
• connect_supply_set -elements
• create_power_domain -elements -exclude_elements
• map_isolation_cell -elememts
• map_level_shifter_cell -elements
• map_retention_cell -elements
• set_design_attribute -elements
• set_isolation -elements
• set_level_shifter -elements
• set_retention -elements
• set_pin_related_supply -pins
• set_related_supply_net -objects
• set_port_attribute -elements -ports

Table C-5. Power Aware Actions for vopt -pa_upfextensions (cont.)

Value Action

Power Aware Simulation User’s Manual, v10.2c270

UPF Commands and Reference
UPF Supply Connections

Explicit Connections
You can explicitly connect a supply net to a supply port using the following UPF command:

connect_supply_net

This explicit connection overrides (has higher precedence than) the implicit and automatic
connection semantics that might otherwise apply.

Explicit connections include:

• Connections to UPF-created supply ports

• Connections to HDL-created supply ports (supply_net_type or 1-bit type)

• Connections to supply ports of power switches

Explicit connection to an HDL supply port has simulation semantics disabled by default (see
“Simulation Semantics for UPF Supply Connections”). Driving an HDL port from UPF
overrides its RTL connection.

Explicit Connections to HDL Ports
Using the connect_supply_net command, you can connect a UPF-created supply net to an
HDL-created supply port and a UPF-created supply port to an HDL-created supply net. To
ensure the supply net state and voltage values are propagated and modeled in the various HDLs,
you must use the supply_net_type datatype. You can make these datatypes visible by importing
UPF defined HDL packages (refer to Appendix B in UPF v1.0 and Annex B in IEEE Std
1801-2009).

Examples
HDL specification (Verilog):

module memory(input supply_net_type vdd, ..);
...
endmodule

HDL specification (VHDL):

entity memory is
port (vdd : in supply_net_type; ..)
...
end entity

UPF specification:

connect_supply_net vdd_switchable -ports mem/vdd

UPF Commands and Reference
UPF Supply Connections

Power Aware Simulation User’s Manual, v10.2c 271

Explicit Connections to 1-bit HDL Ports
UPF also allows supply connections between supply nets and 1-bit Verilog/VHDL ports for
building simple functional models. In these cases, HDL supply ports are connected to the
ON/OFF state bit of the supply net. For complex modeling, you can use value change tables
(VCTs) for the conversion from the supply net state to values relevant to an HDL type, or
vice-versa.

Limitation

Enumerated HDL types are not supported.

Examples

HDL specification (Verilog):

module memory(input vdd, ..);
...
endmodule

HDL specification (VHDL):

entity memory is
port (vdd : in std_logic; ..)
..
end entity

UPF specification:

connect_supply_net vdd_switchable -ports mem/vdd

Explicit Connections to Supply Ports of Power Switch
You can use the connect_supply_net command to define connections to supply ports of power
switch. For example:

create_power_switch SW \
 -input_supply_ports {IN_SW} \
 ..
connect_supply_net VDD_IN -ports {SW.IN_SW}

Power Aware Simulation User’s Manual, v10.2c272

UPF Commands and Reference
UPF Supply Connections

You can also specify connections using the create_power_switch command.
For example:

create_power_switch SW \
 -input_supply_ports {IN_SW VDD_IN} \
 ..

Automatic Connections
Questa supports the UPF automatic connection semantics of supply nets and supply sets as
defined by IEEE Std 1801-2009 (UPF v2.0).

Automatic connections semantics are defined for:

Supply nets using the connect_supply_net command
(see “Automatic Connections for Supply Nets”)

Supply sets using either the connect_supply_set or create_power_domain command
(see “Automatic Connections for Supply Sets”)

The necessary conditions for the supply nets (or supply nets of supply sets) to automatically
connected to the supply ports of design elements are:

• Design element has a port with -pg_type attribute. The pg_type attribute includes

o String type HDL attribute named either pg_type or UPF_pg_type.

o Implementation library model with pg_type attribute.

• Value of the pg_type attribute of the port matches with the pg_type value specified
using UPF commands.

Simulation semantics of all the design elements whose ports are automatically connected to
power supply are disabled (see “Simulation Semantics for UPF Supply Connections”).

Automatic Connections for Supply Nets
You can define automatic connection semantics on individual supply nets using the following
UPF command:

connect_supply_net -pg_type -domain -cells

Questa will automatically connect the specified supply net with the supply ports on the
specified cell or the design elements within the extent of power domain which fulfills the
necessary conditions for automatic connection semantics. You can also specify Value
Conversion Tables (VCTs) for automatic connection semantics by using the -vct argument.

UPF Commands and Reference
UPF Supply Connections

Power Aware Simulation User’s Manual, v10.2c 273

Using the -vct argument has a restriction that all the ports that are connected using
connect_supply_net should have matching types, since the type matching for VCT will produce
error during connections.

For example:

connect_supply_net snet -domain PD -pg_type primary_power -vct my_sv_vct

This will produce an error message when domain PD has a VHDL instance contain supply port
with pg_type primary_power and different type and create the connection, assuming a 1-bit
connection.

Command Syntax

UPF v1.0:

connect_supply_net net_name
[-ports list] [-pins list]
[<-cells list | -domain domain_name>]
[<-rail_connection rail_type | -pg_type pg_type>]*
[-vct vct_name]

UPF2.0:

connect_supply_net net_name"
[-ports list]
[-pg_type {pg_type_list element_list}]*
[-vct vct_name] [-pins list]
[-cells list] [-domain domain_name]
[-rail_connection rail_type]

Currently, the connect_supply_net command in UPF2.0 is modeled as its equivalent command
in UPF v1.0. That is, connect_supply_net command in UPF v2.0 will not accept element_list in
-pg_type argument.

Examples

connect_supply_net VDD -domain PD_SW -pg_type primary_power
connect_supply_net Vdd_backup -cells {RET_CELL} -pg_type backup_power
connect_supply_net VSS -domain PD_SW -pg_type primary_ground -vct

UPF_GNDZERO2SV_LOGIC.

Automatic Connections for Supply Sets
You can define automatic connection semantics on supply sets using either of the following
UPF commands:

connect_supply_set -connect

create_power_domain -define_func_type

Power Aware Simulation User’s Manual, v10.2c274

UPF Commands and Reference
UPF Supply Connections

Power Aware simulation automatically connects supply nets of supply sets to the supply ports
of design elements. This connection is based on the purpose of the supply set in a given domain
or strategy context and the function that a supply net performs in the context of supply set.

Limitations

• Supply sets specified in strategy context will not be automatically connected to design
elements owing to separate infrastructure in -instance.

• Supply nets in supply sets functioning as predefined supply set functions are not
automatically connected as per their predefined function. Explicit specification of
automatic connections must be specified.

Command Syntax

Using connect_supply_set:

connect_supply_set supply_set_ref
{-connect {supply_function {pg_type_list}}}*
[-elements element_list]
[-exclude_elements exclude_list]
[-transitive]

Using create_power_domain:

create_power_domain
[-define_func_type {supply_function {pg_type_list}}]*

Examples

create_power_domain PD \
-define_func_type {power primary_power} \
-define_func_type {always_on backup_power} \
..

connect_supply_set PD.primary \
-connect {power primary_power} \
-elements TOP

connect_supply_set PD.ISO.isolation_supply_set \
-connect {iso_power primary_power} \
-connect {iso_ground primary_ground} \

connect_supply_set PD.RET.retention_supply_set \
-connect {ret_backup_power backup_power} \
-connect {switchtable_supply primary_power}

UPF Commands and Reference
UPF Supply Connections

Power Aware Simulation User’s Manual, v10.2c 275

Power State Composition
States of ports and nets carry voltage and on/off information, which means combinations of
power states of supply ports and/or nets are important in identifying the requirement of isolation
cells and level shifters on boundaries between two power domains. Because a power state added
on one domain/supply set can reference other power states added on another domain/supply set,
Power Aware simulation can statically infer such dependencies. These dependencies help in
determining the combinations of power states of supply nets and/or ports.

You can add composite power states to your design as follows:

• Supply net — power state information (state and voltage level) is defined by the
supply_net_type declaration of the HDL cell (see Explicit Connections to HDL Ports).

• Supply port — power state information (state and voltage level) is defined by the
supply_net_type declaration of the HDL cell (see Explicit Connections to HDL Ports).

• Supply set — composed of two or more supply nets, so its power state is specified in
terms of those supply nets.

• Power domain — power state is determined by the state of supply sets associated with
the domain.

Power Aware simulation performs level shifter and isolation cell analysis/checks from
information provided with add_power_state UPF commands and also reports the power domain
state dependencies in report files.

To know whether an isolation or level-shifting is required on a boundary between power
domains, a static analysis is required to determine state dependencies between these power
domains (or supply sets associated with these domains). The dependency information is
extracted from supply/logic expression (mentioned in add_power_state command) of various
power states from power domains or supply sets.

A valid combination of two power states of domains/supply sets is equivalent to a valid
combination of power states of certain supply ports/supply nets (state and voltages). Power
Aware simulation uses this net state and voltage information to determine whether isolation or
level-shifting is required or not.

Note
For the cases where Power Aware simulation is statically not able to determine whether
the state combination of two power domain/supply sets is invalid (or these power states
cannot co-exist at any point of time), Power Aware simulation assumes it to be a valid
state combination.

In the following example for static analysis, Power Aware simulation assumes that PD1_ON
and PD2_ON may co-exist at some point of time.

Power Aware Simulation User’s Manual, v10.2c276

UPF Commands and Reference
UPF Supply Connections

add_power_state PD1 -state PD1_ON
{-supply_expr {VDD1 == FULL_ON && GND1 == FULL_ON}}

add_power_state PD2 -state PD2_ON
{-supply_expr {VDD2 == FULL_ON && GND2 == FULL_ON}}

This information corresponds that (VDD1 is FULL_ON, GND1 is FULL_ON, VDD2 is
FULL_ON, GND2 is FULL_ON) may exist at some point of time.

Note
For better static analysis, it is recommended to include the state information of primary
nets of power domain in supply expression of add_power_state for power domain (or its
associated supply set).

Also, to determine the state relation between two power domains/supply sets, Power
Aware simulation uses the information specified in power states of those two power
domains/supply sets.

For example:

create_supply_net VDD ...
create_supply_net GND ...
set_domain_supply_net PD1 -primary_power_net VDD -primary_ground_net GND
add_power_state PD1 -state PD1_ON {-logic_expr {PD2 == PD2_OFF}

-supply_expr {VDD == FULL_ON && GND == FULL_ON}}

Determining State Dependency with add_power_state Arguments
You can use the following arguments of the UPF add_power_state command to determine
whether power states of different power domains can co-exist:

• -logic_expr

• -supply_expr

The following examples show various ways of using these arguments.

Example C-22. Dependency Specified with add_power_state -logic_expr —
Case 1

In this example, from logic_expr of PD1_S1 Power Aware simulation determines that state
PD1_S1 and PD2_S2 cannot co-exist.

add_power_state PD1 -state PD1_S1 {-logic_expr {PD2 != PD2_S2}
-supply_expr {VDD1 == FULL_ON && GND1 == FULL_ON}}

add_power_state PD2 -state PD2_S2 {-supply_expr {VDD1 == FULL_ON &&

UPF Commands and Reference
UPF Supply Connections

Power Aware Simulation User’s Manual, v10.2c 277

GND1 == FULL_ON}}

Example C-23. Dependency Specified with add_power_state -logic_expr —
Case 2

In this example, from logic_expr of PD1_S1 and PD2_S2 Power Aware simulation determines
that state PD1_S1 and PD2_S2 cannot co-exist, as one requires ctrl to be 1 and other requires it
to be 0.

add_power_state PD1 -state PD1_S1 {-logic_expr {ctrl} -supply_expr
{VDD1 == FULL_ON && GND1 == FULL_ON}}

add_power_state PD2 -state PD2_S2 {-logic_expr {!ctrl} -supply_expr
{VDD1 == FULL_ON && GND1 == FULL_ON}}

Example C-24. Dependency Specified with add_power_state -logic_expr —
Case 3

In this example, from logic_expr of PD1_S1, PD3_S3 Power Aware simulation determines that
state PD1_S1 and PD2_S2 cannot co-exist.

add_power_state PD1 -state PD1_S1 {-logic_expr {PD3 == PD3_S3}
-supply_expr {VDD1 == FULL_ON && GND1 == FULL_ON}}

add_power_state PD2 -state PD2_S2 {-logic_expr {!ctrl} -supply_expr
{VDD1 == FULL_ON && GND1 == FULL_ON}}

add_power_state PD3 -state PD3_S3 {-logic_expr {PD2 != PD2_S2}
-supply_expr {VDD3 == FULL_ON && GND3 == FULL_ON}}

Example C-25. Dependency Specified with add_power_state -logic_expr —
Case 4

In this example, from logic_expr of PD1_S1 and PD2_S2 Power Aware simulation determines
that state PD1_S1 and PD2_S2 cannot co-exist, as one requires ctrl to be 1 and other requires it
to be 0.

add_power_state PD1 -state PD1_S1 {-logic_expr {ctrl == 1} -supply_expr
{VDD1 == FULL_ON && GND1 == FULL_ON}}

add_power_state PD2 -state PD2_S2 {-logic_expr {!ctrl} -supply_expr
{VDD1 == FULL_ON && GND1 == FULL_ON}}

Power Aware Simulation User’s Manual, v10.2c278

UPF Commands and Reference
UPF Supply Connections

Example C-26. Dependency Specified with add_power_state -supply_expr —
Case 1

In this example, from supply_expr of PD1_S1 and PD2_S2 (VDD state) Power Aware
simulation determines that state PD1_S1 and PD2_S2 cannot co-exist.

add_power_state PD1 -state PD1_S1 {-supply_expr {VDD1 == FULL_ON &&
GND1 == FULL_ON && VDD == FULL_ON}}

add_power_state PD2 -state PD2_S2 {-supply_expr {VDD1 == FULL_ON &&
GND1 == FULL_ON && VDD == OFF}}

Example C-27. Dependency Specified with add_power_state -supply_expr —
Case 2

In this example, from supply_expr of PD1_S1 and PD2_S2 (VDD state), Power Aware
simulation determines that state PD1_S1 and PD2_S2 cannot co-exist.

add_power_state PD1 -state PD1_S1 {-supply_expr {VDD1 == FULL_ON &&
GND1 == FULL_ON && VDD == FULL_ON}}

add_power_state PD2 -state PD2_S2 {-supply_expr {VDD1 == FULL_ON &&
GND1 == FULL_ON && VDD != FULL_ON}}

Example C-28. Dependency Specified with add_power_state -supply_expr —
Case 3

In this example, from supply_expr of PD1_S1 and PD2_S2 (VDD voltage range), Power Aware
simulation determines that state PD1_S1 and PD2_S2 cannot co-exist.

add_power_state PD1 -state PD1_S1 {-supply_expr {VDD1 == FULL_ON &&
GND1 == FULL_ON && VDD == ’{FULL_ON, 0.8, 1.4}}}

add_power_state PD2 -state PD2_S2 {-supply_expr {VDD1 == FULL_ON &&
GND1 == FULL_ON && VDD == ’{FULL_ON, 1.6, 2.4}}}

Power State Reporting
Power Aware simulation provides the following types of information in the report files:

• Information about the power state added on power domain/supply sets.

• Power State dependencies between connected power domains.

UPF Commands and Reference
UPF Supply Connections

Power Aware Simulation User’s Manual, v10.2c 279

Example Report (Excerpt)

Power state info of Power domain : ’PD_tb’.
 1. Power state ’PD_tb_normal’, File: src/testcase4/test.upf(15).
 Supply Expression : ((((tb_pow)==(‘{FULL_ON , 3.30
})))&&(((tb_gnd)==(‘{FULL_ON , 1.00 })))).
 Function States :
 1. Ground(tb_gnd) == {FULL_ON,1.00}, Power(tb_pow) ==

{FULL_ON,3.30}.

 Power state info of Power domain : ’PD_mid2’.
 1. Power state ’PD_mid2_off’, File: src/testcase4/test.upf(67).
 Supply Expression : ((((mid2_MAIN_NET)==(‘{OFF
})))&&(((mid2_GND_NET)==(‘{OFF })))).
 Function States :
 1. Ground(mid2_GND_NET) == {OFF}, Power(mid2_MAIN_NET) ==

{OFF}.

 2. Power state ’PD_mid2_normal’, File: src/testcase4/test.upf(66).
 Supply Expression : ((((mid2_MAIN_NET)==(‘{FULL_ON , 4.20
})))&&(((mid2_GND_NET)==(‘{FULL_ON , 1.30 })))).
 Function States :
 1. Ground(mid2_GND_NET) == {FULL_ON,1.30}, Power(mid2_MAIN_NET)

== {FULL_ON,4.20}.

 Power State Combinations for connected domains :

 Power Domain ’PD_mid1’ Power Domain ’PD_wrapper1’

 PD_mid1_off PD_wrapper1_normal

 Power Domain ’PD_mid1’ Power Domain ’PD_wrapper2’

 PD_mid1_off PD_wrapper2_normal
 PD_mid1_normal PD_wrapper2_normal

 Power Domain ’PD_mid1’ Power Domain ’PD_mid3’

 PD_mid1_off PD_mid3_off
 PD_mid1_off PD_mid3_normal
 PD_mid1_normal PD_mid3_off
 PD_mid1_normal PD_mid3_normal

 Power Domain ’PD_wrapper1’ Power Domain ’PD_mid3’

 PD_wrapper1_normal PD_mid3_off
 PD_wrapper1_normal PD_mid3_normal

Power Aware Simulation User’s Manual, v10.2c280

UPF Commands and Reference
Value Conversion Tables

Value Conversion Tables
A value conversion table (VCT) is a UPF definition (IEEE Std1801-2009) of how to convert, or
map, a value from a supply net state relevant to an HDL variable type (and from an HDL
variable type to a supply net state). This mapping enables complex modeling of connections
between supply nets and RTL ports.

You can visualize which VCT is used for a given pin in the Wave window by hovering over the
waveform for the port/net, as shown in Figure C-1.

Figure C-1. Viewing VCT Information in the Wave Window

Using VCT Commands
You can use the create_upf2hdl_vct and create_hdl2upf_vct commands in the UPF file for
modeling complex connections between a supply net and RTL port.

Power Aware simulation also automatically inserts VCT for pins detected as power and ground
pins when you specify vopt -pa_upfextensions.

Examples
The following examples show the create_upf2hdl_vct and create_hdl2upf_vct commands in a
UPF file.

create_hdl2upf_vct VHDL_SL2UPF \
-hdl_type {vhdl} \
-table {{'U' OFF} \

{'X' OFF} \
{'0' OFF} \
{'1' ON} \
{'Z' OFF} \
{'L' OFF} \
{'H' ON} \
{'W' OFF} \
{'-' OFF}}

create_upf2hdl_vct UPF_GNDZERO2SV_LOGIC \

UPF Commands and Reference
Value Conversion Tables

Power Aware Simulation User’s Manual, v10.2c 281

-hdl_type sv \
-table {{PARTIAL_ON X} \

{OFF 1} \
{ON 0}}

Note
If VCT definition for a connection is not applicable or fails, then default 1-bit connection
semantics will be applied. For example:

module memory (input gnd, ...);

...

endmodule

connect_supply_net gnd_switchable -ports mem_sv/gnd -vct

SV_LOGIC2UPF_GNDZERO

Data flow for the connection is UPF to RTL but VCT is specified as RTL

to UPF. Hence, specified VCT is not applicable.

Limitations
Only the following HDL data types are supported:

• System Verilog — logic, bit, wire, reg

• Verilog — wire, reg

• VHDL — bit, std_logic, std_ulogic, Boolean
(NOTE: Any subtypes of these are not supported.)

Predefined VCTs Supported from the UPF Standard
Power Aware simulation provides several predefined VCTs described in Annex C of IEEE
Std1801-2009, which you can use with the connect_supply_net -vct command.

The predefined VCT definitions provided with Power Aware simulation are listed below.

create_hdl2upf_vct VHDL_SL2UPF \
-hdl_type {vhdl} \
-table { {'U' OFF} \
{'X' OFF} \
{'0' OFF} \
{'1' ON} \
{'Z' OFF} \
{'L' OFF} \
{'H' ON} \
{'W' OFF} \
{'-' OFF}}

Power Aware Simulation User’s Manual, v10.2c282

UPF Commands and Reference
Value Conversion Tables

create_upf2hdl_vct UPF2VHDL_SL \
-hdl_type {vhdl} \
-table {{PARTIAL_ON 'X'} \
{ON '1'} \
{OFF '0'}}

create_hdl2upf_vct VHDL_SL2UPF_GNDZERO \
-hdl_type {vhdl} \
-table { {'U' OFF} \
{'X' OFF} \
{'0' ON} \
{'1' OFF} \
{'Z' OFF} \
{'L' ON} \
{'H' OFF} \
{'W' OFF} \
{'-' OFF}}

create_upf2hdl_vct UPF_GNDZERO2VHDL_SL \
-hdl_type {vhdl} \
-table {{PARTIAL_ON 'X'} \
{OFF '1'} \
{ON '0'}}

create_hdl2upf_vct SV_LOGIC2UPF \
-hdl_type sv \
-table {{X OFF} \
{Z PARTIAL_ON } \
{1 ON } \
{0 OFF }}

create_upf2hdl_vct UPF2SV_LOGIC \
-hdl_type sv \
-table {{PARTIAL_ON X} \
{ON 1} \
{OFF 0}}

create_hdl2upf_vct SV_LOGIC2UPF_GNDZERO \
-hdl_type sv \
-table {{X OFF} \
{0 ON} \
{1 OFF} \
{Z OFF}}

create_upf2hdl_vct UPF_GNDZERO2SV_LOGIC \
-hdl_type sv \
-table {{PARTIAL_ON X} \
{OFF 1} \
{ON 0}}

UPF Commands and Reference
Value Conversion Tables

Power Aware Simulation User’s Manual, v10.2c 283

create_upf2hdl_vct VHDL_TIED_HI \
-hdl_type {vhdl} \
-table {{ON '1'} \
{PARTIAL_ON 'X'} \
{OFF 'X'}}

create_upf2hdl_vct SV_TIED_HI \
-hdl_type sv \
-table {{ON 1} \
{PARTIAL_ON X} \
{OFF X}}

create_upf2hdl_vct VHDL_TIED_LO \
-hdl_type {vhdl} \
-table {{ON '0'} \
{PARTIAL_ON '0'} \
{OFF 'X'}}

create_upf2hdl_vct SV_TIED_LO \
-hdl_type sv \
-table {{ON 0} \
{PARTIAL_ON X} \
{OFF X}}

create_hdl2upf_vct SV_BIT2UPF \
-hdl_type {sv bit}\
-table {{1 ON } \
{0 OFF }}

create_upf2hdl_vct UPF2SV_BIT \
-hdl_type {sv bit} \
-table {{PARTIAL_ON 0}
{ON 1} \
{OFF 0}}

create_hdl2upf_vct SV_BIT2UPF_GNDZERO \
-hdl_type {sv bit}\
-table {{0 ON} \
{1 OFF}}

create_upf2hdl_vct UPF_GNDZERO2SV_BIT \
-hdl_type {sv bit}\
-table {{PARTIAL_ON 1} \
{OFF 1} \
{ON 0}}

create_hdl2upf_vct VHDL_BIT2UPF \
-hdl_type {vhdl bit} \
-table {{'1' ON } \

Power Aware Simulation User’s Manual, v10.2c284

UPF Commands and Reference
Value Conversion Tables

{'0' OFF }}

create_upf2hdl_vct UPF2VHDL_BIT \
-hdl_type {vhdl bit} \
-table {{PARTIAL_ON '0'}
{ON '1'} \
{OFF '0'}}
create_hdl2upf_vct VHDL_BIT2UPF_GNDZERO \
-hdl_type {vhdl bit}\
-table {{'0' ON} \
{'1' OFF}}

create_upf2hdl_vct UPF_GNDZERO2VHDL_BIT \
-hdl_type {vhdl bit}\
-table {{PARTIAL_ON '1'} \
{OFF '1'} \
{ON '0'}}

create_hdl2upf_vct VHDL_BOOL2UPF \
-hdl_type {vhdl boolean} \
-table {{TRUE ON } \
{FALSE OFF }}

create_upf2hdl_vct UPF2VHDL_BOOL \
-hdl_type {vhdl boolean} \
-table {{PARTIAL_ON FALSE}
{ON TRUE} \
{OFF FALSE}}

create_hdl2upf_vct VHDL_BOOL2UPF_GNDZERO \
-hdl_type {vhdl boolean}\
-table {{FALSE ON} \
{TRUE OFF}}

create_upf2hdl_vct UPF_GNDZERO2VHDL_BOOL \
-hdl_type {vhdl bit}\
-table {{PARTIAL_ON TRUE} \
{OFF TRUE} \
{ON FALSE}}

Connections Using Value Conversion Tables (VCTs)
You can model more complex connections between supply nets and HDL ports by using either
of the following UPF commands to define value conversions:

create_upf2hdl_vct

create_hdl2upf_vct

UPF Commands and Reference
Value Conversion Tables

Power Aware Simulation User’s Manual, v10.2c 285

Limitations

Only following types are supported in HDL data types:

• SystemVerilog (logic, bit, wire, reg)

• Verilog (wire, reg)

• VHDL (bit, std_logic, std_ulogic, Boolean).

Any subtypes of these are not supported.

Examples

create_hdl2upf_vct VHDL_SL2UPF \
 -hdl_type {vhdl} \
 -table {{'U' OFF} \
 {'X' OFF} \
 {'0' OFF} \
 {'1' ON} \
 {'Z' OFF} \
 {'L' OFF} \
 {'H' ON} \
 {'W' OFF}\
 {'-' OFF}}

create_upf2hdl_vct UPF_GNDZERO2SV_LOGIC \
 -hdl_type sv \
 -table {{PARTIAL_ON X} \
 {OFF 1} \
 {ON 0}}

In addition, you can specify an existing value conversion table (VCT) using the following UPF
command and argument:

connect_supply_net -vct

Note
Power Aware simulation provides several predefined VCT definitions (see “Value
Conversion Tables”) that you with connect_supply_net -vct. However, if the VCT
specification for a connection is not applicable or valid, then Power Aware simulation
applies the default 1-bit connection semantics.

Examples

RTL Specification (Verilog):

module memory (input VSS, VDD);
..
endmodule

Power Aware Simulation User’s Manual, v10.2c286

UPF Commands and Reference
Value Conversion Tables

RTL Specification (VHDL):

entity memory is
port (VSS : in std_logic; VDD: in std_logic;..)
..
end entity

UPF specification:

connect_supply_net VDD_switchable -ports mem_sv/VDD
connect_supply_net VSS_switchable -ports mem_sv/VSS -vct
UPF_GNDZERO2SV_LOGIC

connect_supply_net VDD_switchable -ports mem_vhd/VDD
connect_supply_net VSS_switchable -ports mem_vhd/gnd -vct
UPF_GNDZERO2VHDL_SL

RTL Specification (Verilog):

module memory (input VSS, ..);
...
endmodule

UPF specification:

connect_supply_net VSS_switchable -ports mem_sv/VSS -vct
SV_LOGIC2UPF_GNDZERO

Data flow for the connection is UPF to HDL, but VCT is specified as HDL to UPF. As a result,
the specified VCT is not applicable.

Simulation Semantics for UPF Supply Connections
Power Aware simulation semantics are automatically disabled for design elements that are
explicitly or automatically connected to a particular supply net or supply set. Simulation
semantics are disabled for all the descendants of the instance of model.

Examples

RTL Specification (Verilog):

module memory(input vdd, ..);
...
endmodule

RTL Specification (VHDL):

UPF Commands and Reference
Supply Nets

Power Aware Simulation User’s Manual, v10.2c 287

entity memory is
port (vdd : in std_logic; ..)
..
end entity

UPF specification:

create_power_domain mem_pd -elements mem
connect_supply_net vdd_switchable -ports mem/vdd

Usage Note

When automatic connection semantics are applied, simulation semantics of all the instances
whose ports are automatically connected will be disabled. This may display a notification
message similar to the following:

** Note: top.upf(12): (vopt-9693) Power Aware simulation semantics
disabled for /testbench/rtl_top/mem

It is recommended that you use vopt -suppress 9693 to suppress this message.

Supply Nets
This section describes how to use UPF commands with Power Aware simulation to define
supply net behavior for Power Aware.

Resolving Drivers on a Supply Net
Supply nets are often connected to the output of a single switch. However, if you have a design
where the output of multiple switches are connected to the same supply net, you need a
resolution mechanism to determine the state and voltage of the net, depending on the values
supplied by the each of the individual switches.

Version 1.0 of the UPF Standard (UPF v1.0) defines the semantics of using the
create_supply_net command to determine the resolution of different drivers on a supply net. In
UPF v1.0, the resolution is mainly dependent on the state and voltage value of the supply
network. In particular, the -resolve argument provides the following values, which you to select
a method of multiple drivers on a supply net (refer to Section 5.1.5):

• unresolved

• one-hot

• parallel

Power Aware Simulation User’s Manual, v10.2c288

UPF Commands and Reference
Supply Nets

Note that resolution can only be defined on the supply net and not on supply ports. As a result
you can have multiple ports driving a supply net, but not multiple supply nets driving a supply
port.

Example
In the following example, ports p1, p2, and p3 are driving the resolved supply net, resol_net,
which has ’one_hot’ resolution specified.

A voltage value and supply state would be driven on resol_net, depending on the resolution
(one_hot) specified and the state of the drivers (p1, p2, p3).

In a case of a error in resolution, the supply net is turned off and voltage value is driven to 0. An
error message is displayed that lists the voltages and states of all the drivers.

The following is an example of the error message for one_hot and parallel resolution
respectively.

set_scope tb
create_power_domain PD_TOP -elements { top1 } -include_scope
create_supply_port p1 -domain PD_TOP -direction in
create_supply_port p2 -domain PD_TOP -direction in
create_supply_port p3 -domain PD_TOP -direction in
create_supply_net resol_net -domain PD_TOP -resolve one_hot

####### Supply Net Resolution ########
connect_supply_net resol_net -ports p1

connect_supply_net resol_net -ports p2

connect_supply_net resol_net -ports p3

** Error: (vsim-8928) MSPA_RSLV_ONE_HOT: Time: 20 ns, More than one driver
is ON for one_hot supply net: /tb/resol_net

Drivers are:-

/tb/p1: {0 uV, OFF}
/tb/p2: {5 uV, ON}
/tb/p3: {10 uV,ON}

** Error: (vsim-8927) MSPA_RSLV_PARALLEL: Time: 15 ns, Different
voltages driven by ON drivers of parallel supply net /tb/resol_net

Drivers are:-

/tb/p1: {0 uV, OFF}
/tb/p2: {5 uV, ON}
/tb/p3: {10 uV, ON}

UPF Commands and Reference
Supply Nets

Power Aware Simulation User’s Manual, v10.2c 289

Defining Isolation
Isolation is used to separate signals that originate in a design element with power off from a part
of the design that has power on and that can still read the signals from the powered down
element. A particular domain may be powered off while another domain is operating in normal
mode.

There are two methods for defining an isolation cell.

Method 1: Isolation is already explicitly present
In this case, the design (in either a RTL or a GL netlist) contains an explicit cell instance that
functions as an isolation cell. The UPF file includes a set_isolation -instance command that
identifies this explicit instance as an isolation cell. In this case:

• No isolation needs to be added

• Power Aware will not insert an additional isolation cell

• Power Aware will not modify the explicit isolation cell that is present
(it is assumed that the user-provided isolation cell does what it is supposed to do)

Method 2: Isolation needs to be added
In this case, you use the set_isolation command to provide an isolation strategy (without the
-instance option). Power Aware simulation then implicitly inserts an isolation cell on any port
that satisfies all of the following:

• Matches the criteria defined in the isolation strategy

• Requires isolation because the power state table indicates that the two power domains
on either side of the port can be ON/OFF or OFF/ON respectively

• Does not already have an explicit isolation cell present and identified (per Method 1)

By default, if Power Aware simulation does insert an isolation cell, Power Aware simulation
will use a built-in behavioral model for isolation. However, you can cause the simulation to
insert a different model (when required) by using the map_isolation_cell UPF command to
identify the isolation model to be used.

Note
To prevent a redundant isolation cell from being inserted on a port, use the set_isolation
-instance command to identify the instance of the existing isolation cell.

Power Aware Simulation User’s Manual, v10.2c290

UPF Commands and Reference
Supply Nets

Specifying Isolation Cells
Power Aware simulation reads the set_isolation command in the UPF file and identifies ports as
candidates for isolation cell insertion. These ports are also dumped into the UPF report file
(report.upf.txt), as in Example C-29.

Example C-29. UPF Report File for Isolation Ports (report.upf.txt)

Isolation Strategy: iso_PD_mid1, File: test.upf(44).
Isolation Supplies:

power : /tb/TOP/tb_pow
ground : /tb/TOP/mid1_GND_NET

Isolation Control (/tb/TOP/ctrl), Isolation Sense (HIGH), Clamp Value
(1), Location (automatic)

Isolated Signals:
1. Signal : /tb/TOP/mid1/out2_bot
2. Signal : /tb/TOP/mid1/out1_bot

Isolation Cell Instances

If you have used the set_isolation -instance command in a UPF file to instantiate RTL isolation
cells, Power Aware simulation will infer those cells and perform isolation checks on them.

Power Aware simulation automatically infers the right UPF strategy for cells that are not
specified in the UPF file. For more information, refer to “Detection of Power
Management Cells.”

A cell instance is identified as an isolation cell in any of the following cases:

• Instance is specified with -instance argument of set_isolation command.

• For a GLS design, any of the following is present:

o Synopsys pragma synopsys isolation_upf.
Example:

ISOLOD1BWP trafficWriteEnable_UPF_ISO (.I(trafficWriteEnable),
.ISO(n16),.Z(n57)); //synopsys isolation_upf PD_C2_ISS1+PD_C2

o Liberty attribute is_isolation_cell. Example:

cell (ISO_LO) {
 is_isolation_cell : true;
 ...
 }

o HDL attribute is_isolation_cell. Example:

UPF Commands and Reference
Supply Nets

Power Aware Simulation User’s Manual, v10.2c 291

(* is_isolation_cell = 1 *)
 module ISOCELL (I, ISO, Z) ;

 endmodule

o Cell in accordance with map_isolation_cell UPF command. Example:

UPF Command : map_isolation_cell mem_ctrl_iso_0 -domain PD_mem_ctrl
-lib_cells {ISO_LO}
 Instantiation in hdl : ISO_LO addr_0 (.I(n158), .ISO(n174),
.Z(address[0]));

o Instance name in accordance with name_format UPF command. Example:

UPF Command : name_format -isolation_prefix "MY_ISO_"
-isolation_suffix "UPF_ISO"
 Instantiation in hdl : SEN_OR2_4 MY_ISO_t_state_21__UPF_ISO
(.A1 (n151) , .A2 (n354) , .X (t_state[21])) ;

Limitations
If isolation is required and is not present (and identified with set_isolation -instance), then
Power Aware simulation effectively inserts an isolation cell.

The current Power Aware architecture implements isolation by actually inserting a cell—an
instance of a behavioral model for isolation—into the design where isolation is required.
However, ports on an isolation cell inserted this way have a limitation of not supporting enum
types.

For ports of type enum, Power Aware reverts to the implementation approach used in previous
releases. In that approach, an isolation cell is not actually inserted into the design. Instead,
internal mechanisms (such as the force command) make an existing design port (highconn or
lowconn) behave as if isolation were present.

Note that the isolation effect of these two approaches is identical—you will see exactly the
same results in reports and in the GUI. The only difference is that the new architecture shows
explicit instances of isolation cells that have been added to the design.

Defining Retention
To define retention registers in a power domain and set the corresponding save and restore
signals for the retention registers, you use the set_retention command in your UPF file. In
particular, you can use the following arguments (which are supported only in UPF v2.0) to
define your retention strategy:

• -retention_supply_set— Defines the supply set used to power the logic inferred by the
<retention_name> strategy.

Power Aware Simulation User’s Manual, v10.2c292

UPF Commands and Reference
Supply Nets

• -no_retention — Storage elements specified by this argument are prevented from having
retention capability.

• -use_retention_as_primary — Specifies that the storage element and its output are
powered by the retention supply.

-retention_supply_set

Description

This argument defines the supply set used to power the register holding the retained value.

Note the following cases:

• If you have specified both retention power and retention ground nets, using this
command creates an implicit retention supply set and is used with the specified strategy.
The retention power net serves the power function in the retention supply set and the
retention ground net serves the ground function in the retention supply set.

• If you have specified the retention power net but not the retention ground net, then the
domain’s primary supply sets ground function is used as the retention ground.

• If you have specified the retention ground net but not the retention power net, then the
domain’s primary supply sets power function is used as the retention power.

Note that the power of the retention cell is preserved (an extra port RETPWR (Retention Power)
is added to the retention models).

Whenever the power of a retention cell (RETPWR) goes down, the value stored in retention cell
gets corrupted, and the ‘X’ value is restored when restore signal is triggered.

Example

Consider the following logic added in a retention model:

// store x in RETPWRDOWN
 always @(negedge RETPWR)
 begin
 -> pa_store_x ;
 end

An extra port RETPWR has been added in the Power Aware retention models.

Whenever you use your own retention models using the map_retention_cell UPF command:

• For a user-defined model with RETPWR port and corresponding logic—Behavior will
be in accordance with the RETPWR logic.

• For a user-defined model without a RETPWR port — A warning is issued during the
vsim simulation. For example:

UPF Commands and Reference
Supply Nets

Power Aware Simulation User’s Manual, v10.2c 293

** Warning: (vsim-PA-8944) Retention Model : 'MyRetModel' does not have
Port 'RETPWR'. Ignoring it.
Region: /mspa_top/blk0/inst0_MyRetModel

-no_retention

Description

This argument disables retention on specified storage elements.

Example

upf_version 2.0
set_scope tb1
create_power_domain PD_TOP -elements { top1/bot1/tdsig}
create_power_domain PD_TOP2 -elements { top1/q1 }
create_power_domain PD_TOP3 -elements { top1/}
...
set_domain_supply_net PD_TOP -primary_power_net PD_TOP_primary_power -
primary_ground_net GND_net
set_domain_supply_net PD_TOP2 -primary_power_net PD_TOP_primary_power2 -
primary_ground_net GND_net
set_domain_supply_net PD_TOP3 -primary_power_net PD_TOP_primary_power3 -
primary_ground_net GND_net
create_power_switch PD_TOP_sw \

-domain PD_TOP \
-output_supply_port { out_sw_PD_TOP PD_TOP_primary_power } \
-input_supply_port { in_sw_PD_TOP VDD_net } \
-control_port { ctrl_sw_PD_TOP pg } \
-on_state { normal_working in_sw_PD_TOP {ctrl_sw_PD_TOP } } \
-off_state { off_state {!ctrl_sw_PD_TOP} }

...
set_retention PD_TOP_retention3 -domain PD_TOP -retention_power_net
VDD_net -elements { top1/bot1/tdsig[0][1] } -no_retention
set_retention_control PD_TOP_retention3 -domain PD_TOP -save_signal { ret3
posedge } -restore_signal { ret1 negedge }

set_retention PD_TOP_retention2 -domain PD_TOP -retention_power_net
VDD_net -elements { top1/bot1/tdsig }
set_retention_control PD_TOP_retention2 -domain PD_TOP -save_signal { ret2
posedge } -restore_signal { ret1 negedge }

set_retention PD_TOP_retention1 -domain PD_TOP -retention_power_net
VDD_net -elements { top1/bot1/tdsig[0][0] }
set_retention_control PD_TOP_retention1 -domain PD_TOP -save_signal { ret1
posedge } -restore_signal { ret1 negedge }
...

As a result of this UPF command, no retention strategy is applied to:

top1/bot1/tdsig[0][1]

Power Aware Simulation User’s Manual, v10.2c294

UPF Commands and Reference
Supply Nets

Reports

report.upf.txt

Power Domain: PD_TOP, File: ./src/bitwise_1/test.upf(7).
 Creation Scope: /tb1
 Primary Supplies:
 power : /tb1/PD_TOP_primary_power
 ground : /tb1/GND_net
 Power Switch: PD_TOP_sw, File: ./src/bitwise_1/test.upf(34).
 Output Supply port:
 out_sw_PD_TOP(/tb1/PD_TOP_primary_power)
 Input Supply ports:
 1. in_sw_PD_TOP(/tb1/VDD_net)
 Control Ports:
 1. ctrl_sw_PD_TOP(/tb1/pg)
 Switch States:
 1. normal_working(ON) : (ctrl_sw_PD_TOP)
 2. off_state(OFF) : (!ctrl_sw_PD_TOP)
 Retention Strategy: PD_TOP_retention3, File:
./src/bitwise_1/test.upf(58).
 Retention Supplies:
 power : /tb1/VDD_net
 ground : /tb1/GND_net
 No Retention
 Retention SAVE (/tb1/ret3), Retention Sense (posedge)
 Retention RESTORE (/tb1/ret1), Retention Sense (negedge)
 Retention Strategy: PD_TOP_retention2, File:
./src/bitwise_1/test.upf(61).
 Retention Supplies:
 power : /tb1/VDD_net
 ground : /tb1/GND_net
 Retention SAVE (/tb1/ret2), Retention Sense (posedge)
 Retention RESTORE (/tb1/ret1), Retention Sense (negedge)
 Retention Strategy: PD_TOP_retention1, File:
./src/bitwise_1/test.upf(64).
 Retention Supplies:
 power : /tb1/VDD_net
 ground : /tb1/GND_net
 Retention SAVE (/tb1/ret1), Retention Sense (posedge)
 Retention RESTORE (/tb1/ret1), Retention Sense (negedge)

Power Domain: PD_BOT, File: ./src/bitwise_1/test.upf(70).
...

report.mspa.txt

--
----- ModelSim Power Aware Report File -----
--
Total (tb1)
 upf_retention_ret # 1
 upf_retention_sr # 12
 NPM_FF # 12
 NPM_LA # 2
 OUTPUT # 38
...

UPF Commands and Reference
Supply Nets

Power Aware Simulation User’s Manual, v10.2c 295

PD_TOP sub_total (/tb1/top1/bot1)
 upf_retention_ret # 1
 /tb1/top1/bot1/tdsig[0] 1
 upf_retention_sr # 12
 /tb1/top1/bot1/tdsig[2] 1
 /tb1/top1/bot1/tdsig[3] 1
 /tb1/top1/bot1/tdsig[4] 1
 /tb1/top1/bot1/tdsig[5] 1
 /tb1/top1/bot1/tdsig[6] 1
 /tb1/top1/bot1/tdsig[7] 1
 /tb1/top1/bot1/tdsig[8] 1
 /tb1/top1/bot1/tdsig[9] 1
 /tb1/top1/bot1/tdsig[10] 1
 /tb1/top1/bot1/tdsig[11] 1
 /tb1/top1/bot1/tdsig[12] 1
 /tb1/top1/bot1/tdsig[13] 1
 NPM_FF # 1
 /tb1/top1/bot1/tdsig[1] 1

PD_TOP2 sub_total (/tb1/top1)
 OUTPUT # 1
 /tb1/top1/q1 1

...
PD_TOP3 sub_total (/tb1/top1)
 NPM_FF # 7
 /tb1/top1/d1[6:4] 3
 /tb1/top1/d1[3:0] 4
 OUTPUT # 11
 /tb1/top1/out_buf 1
 /tb1/top1/out_reg 1
 /tb1/top1/out_lat 1
 /tb1/top1/out_uniso 1
 /tb1/top1/d2 7

-- NPM_FF => Denotes all Non Power Management Flip Flops of a Power
Domain.
-- NPM_LA => Denotes all Non Power Management Latches of a Power Domain.
-- OUTPUT => Denotes all outputs and power signals,which are not
sequential elements, of a Power Domain.

-use_retention_as_primary

Description

This argument powers the storage element and the output drivers of the register using the
retention supply.

Example

upf_version 2.0
set_scope tb
create_power_domain pd_aon -include_scope
...

Power Aware Simulation User’s Manual, v10.2c296

UPF Commands and Reference
Supply Nets

connect_supply_net vdd_net -ports { vdd_port }
connect_supply_net gnd_net -ports { gnd_port }
create_supply_set pd_aon_ss \
 -function { power vdd_net } \
 -function { ground gnd_net }
...
###############################
Retention Strategy for pd
###############################
set_retention pd_retention1 -domain pd -save_signal { ret posedge
} -restore_signal { ret negedge } -elements {top_vh} -
use_retention_as_primary
map_retention_cell pd_retention1 -domain pd -lib_model_name
upf_retention_ret -lib_cell_type FF_CKHI
associate_supply_set pd_aon_ss -handle pd.pd_retention1.supply
...

Report

report.mspa.txt

--
----- ModelSim Power Aware Report File -----
--
Total (tb)
 upf_retention_ret # 2
 NPM_FF # 1
 NPM_LA # 3
 OUTPUT # 3

pd sub_total (/tb/top_vh /tb/top_vl)
 upf_retention_ret # 1
 /tb/top_vl/q_regvl 1
 NPM_LA # 2
 /tb/top_vh/q_latvh 1
 /tb/top_vl/q_latvl 1
 OUTPUT # 2
 /tb/top_vh/q_combvh 1
 /tb/top_vl/q_combvl 1

pd.pd_retention1.use_retention_as_primary sub_total (/tb/top_vh)
 upf_retention_ret # 1
 /tb/top_vh/q_regvh 1

pd_aon sub_total (/tb/top_aon)
 NPM_FF # 1
 /tb/top_aon/q_regvl 1
 NPM_LA # 1
 /tb/top_aon/q_latvl 1
 OUTPUT # 1
 /tb/top_aon/q_combvl 1

-- NPM_FF => Denotes all Non Power Management Flip Flops of a Power
Domain.
-- NPM_LA => Denotes all Non Power Management Latches of a Power Domain.

UPF Commands and Reference
Supply Nets

Power Aware Simulation User’s Manual, v10.2c 297

-- OUTPUT => Denotes all outputs and power signals,which are not
sequential elements, of a Power Domain.

Power Aware Simulation User’s Manual, v10.2c298

UPF Commands and Reference
Supply Nets

Power Aware Simulation User’s Manual, v10.2c 299

Appendix D
Power Configuration File Reference

In addition to the UPF format (see UPF Commands and Reference), Mentor also supports a
format for specifying the power intent of a design that is referred to as Power Configuration File
(PCF).

Power Specification File
To perform Power Aware verification, you need to provide a power specification file that
identifies the low-power specification of the design. A power specification file is analogous to a
standard delay file (SDF) used for annotating timing and timing check information into a
simulation.

Using a power specification file is the key to the verification flow using Power Aware. This file
provides the following information required to overlay verification with the power control
network and Power Aware functionality:

• Power regions, voltage domains, and power islands

• Retention sequential models, their type, and the regions they are in
(including nodebug, encrypted, and protected regions)

• State and output corruption behavior in power-down situations

• Power control signals and the portions of the design they control

The power specification file is designed to capture all Power Aware characteristics of the design
at the RTL (or higher) in a compact form that can be easily used by the simulator.

Formats
This power specification file can be written using:

• Power Configuration File (PCF) — A preliminary file format specific to ModelSim that
was developed to meet the specific needs of various customers and semiconductor
companies. Refer to Power Configuration File Reference for more information on PCF.

Using a PCF as Part of Power Aware Verification
You can use a power specification file written as a Power Configuration File (PCF) as part of a
Power Aware analysis at the RTL level as follows:

Power Aware Simulation User’s Manual, v10.2c300

Power Configuration File Reference
PCF Syntax and Contents

1. Code the functional design using normal RTL coding guidelines. Specifically, the power
control network is not wired through the RTL functional network.

2. Model the power management blocks, including the definition of the power control
signals. These signals either indicate the on/off status of power to specific power islands
or flag the storing and restoring of state information.

3. Use the PCF to specify how the power control network overlays connect to the
functional network.

4. Use a Power Aware library of Verilog models provided by the silicon (or library)
vendor. The library models trigger relevant events for the simulator so that the simulator
can modify the run-time behavior of the RTL design to corrupt state and outputs and
store or restore state values based on power control network activity. For more
information refer to Model Construction for Power Aware Simulation

5. Use the PCF to map the Power Aware models to sequential elements in the design.

6. Use the Power Aware model library, it is presumed to be precompiled as it does not
change.

7. Compile the RTL design normally.

8. Simulate the design (see Using the Standard Flow). When the design is simulated, the
simulator will take the PCF as input as well as the compiled design.

9. Proceed with the simulation normally, as the test bench triggers power down signals for
various power islands while save and restore occur as required. The purpose of the
verification is to ensure the design functions correctly within the dynamic context of
power islands being turned off and on.

PCF Syntax and Contents
This section describes the syntax and semantics of the PCF, using Backus-Naur Format (BNF)
grammar to specify the syntax.

Basic PCF Statement Types
The PCF consists of header and power or context statements. The header statement must be the
first statement in the PCF. Power and context statements can be intermixed. Context statements
apply to all statements that follow the context statement unless and until overridden by a
subsequent context statement.

Power Configuration File Reference
PCF Syntax and Contents

Power Aware Simulation User’s Manual, v10.2c 301

Statement Termination
You should terminate all statements with a semicolon (;). However, for backward compatibility
with earlier PCF formats, a statement may be terminated by a new line (CRLF).

When using a new line to terminate a statement, use the backslash (\) character to indicate line
continuation instead of termination immediately prior to the new line.

Only one form of statement termination can be used in a simulation session.

stmt_end ::=
 ;
| CRLF

Header Statement
The header statement is mandatory for PCF version 2.0 or later. It is an error if the PCF version
is not specified or if there is no header statement prior to the occurrence of the first power or
context statement.

Future versions of the PCF may define additional header information. That is why the header
statement is defined as a comma-separated list of keyword-value pairs that are specified only
once in a PCF file.

header_statement ::=
HEADER keyword_value_pair {, keyword_value_pair }
 stmt_end

 keyword_value_pair ::=
 (keyword = value)

 keyword ::=
 VERSION
 | SEPARATOR
 | STMT_TERM
 | ... (user or vendor defined)

Note
Currently, the only information defined in the header statement is the PCF version
number and separator character. The verification tool provider will specify which
versions numbers they support. Future versions of the PCF specification may identify
additional keywords and the values associated with them.

• VERSION — (Required) This keyword-value pair identifies the PCF specification
version number and must be the first keyword specified in the header statement as this
information can determine whether or not subsequent keywords are recognizable and
supported. The version number will be of the form:

Power Aware Simulation User’s Manual, v10.2c302

Power Configuration File Reference
PCF Syntax and Contents

<positive>.<natural>

Vendors may not extend or add to the version number as it applies to the version of the
PCF specification and not to a vendor's tool version.

• SEPARATOR — (Optional) This keyword-value pair identifies the separator character
used to separate one scope level from the next. If not specified, the separator character is
defined by the tool processing the PCF or, if the tool defines no default, it is the slash
character (/). Although defined by a string value, the separator character string value
must be exactly one character in length.

• STMT_TERM — (Optional) This keyword-value pair identifies the statement
termination. In PCF 1.0, the default statement termination is CRLF. For PCF 2.0 or later,
the default statement termination is semicolon. The only permissible values are “CRLF”
or “;”.

• VENDOR_<string> — (Optional) This keyword-value pair specifies a vendor’s tool-
specific entry.

Vendors may define their own tool-specific header information. Vendor-specific
information must be tagged by the prefix “VENDOR_” in the keyword. Vendor-specific
header information cannot be used to change the PCF syntactic or semantic information
as defined in this specification. It can be used for general informational purposes, for
example to identify the tool and tool version that generated or is targeted for consuming
the PCF. Vendor-specific keyword values must be double quoted strings.

Example

This example shows the use of a secondary prefix (“MGC”) that identifies the specific vendor,
in this case Mentor Graphics Corporation. Such keyword naming conventions are encouraged
as they facilitate the ability of tools to easily identify header information that has meaning to
them.

HEADER (VERSION = "2.0"),
 (SEPARATOR = "/"),
 (VENDOR_MGC_SOURCE = "PX"),
 (VENDOR_MGC_SOURCE_VERSION = "2006.05") ;

Context Statements
By setting the current design scope as the implicit prefix to all instance paths, you can
significantly reduce the amount of text required in the PCF. Context statements provide the
ability to define specific context items that apply to all power (and context) statements that
follow until another context statement makes a subsequent change.

context_statement ::=
 scope_statement
 | variable_statement
 | include_statement
 | corruption_map_statement

Power Configuration File Reference
PCF Syntax and Contents

Power Aware Simulation User’s Manual, v10.2c 303

 | corruption_extent

Scope Statement
The scope statement sets the current scope context within the hierarchy of the design being
verified (including the test bench). All relative paths used in subsequent context or power
statements will be equivalent to an absolute path starting with the current scope and proceeding
through the relative path specified in the statement. The most recent scope statement shall apply
to each relative path specified in the PCF.

scope_statement ::=
 SCOPE instance_path stmt_end

instance_path ::=
 relative_path
 | absolute_path

relative_path ::=
 hdl_identifier { separator_character hdl_identifier }

absolute_path ::=
 separator_character relative_path

Another application may provide a mechanism, external to the PCF, to specify information
equivalent to a scope statement being specified immediately after the header statement. This
usage model supports the use of the same PCF with different test benches or in block level as
well as chip level verification.

Examples

SCOPE /root/dut ; -- Set initial scope to DUT

SCOPE memctrl/arbiter ; -- Set scope to memctrl.arbiter
 -- instance down design hierarchy
 -- from current scope.

Variable Statement
Variable statements are used to store frequently used values. The values are treated as untyped
and are applied to the context specified and then interpreted. They are very similar to UNIX
environment variables or macros. An example usage would be to define a path to a common
level of hierarchy from which many instance, signal, etc. paths will then be defined.

variable_statement ::=
 $identifier = value stmt_end

• $<identifier> — The lexical form of the identifier adheres to the rules for identifiers in
Verilog (IEEE Std 1364-2005). The identifier must be prefixed by the dollar sign ($)
symbol in both the specification of its value and the referencing of that value. No white
space is permitted between the “$” symbol and the identifier.

Power Aware Simulation User’s Manual, v10.2c304

Power Configuration File Reference
PCF Syntax and Contents

• value — a double quoted (“…”) string.

Example

$memctrl_scope = "/top/dut/memory_unit/memctrl" ;
SCOPE $memctrl_scope/arbiter ;

$inst_path = "top/pd1/inst1/inst11";
POWER PDINST11 $inst_path/cell1,
 ($inst_path/gl obal_vdd1 &
 $inst_path/vd1/local_vdd_11);

Include Statement
The ability to textually include another PCF file is provided through the include statement. The
include statement allows PCF files to be created on a hierarchical or power island or voltage
domain basis. It also allows the specification of common, reusable information in a separate file
for easier maintenance. For example, the data type corruption mapping information can be
specified once and then included in any design PCF that uses that specific mapping.

include_statement ::=
 include filepath_name stmt_end

• filepath_name — a simple file name, a relative file path name or an absolute file path
name. Simple filenames will be searched in the current working directory of the tool
processing the PCF. Relative file path names will be searched using the current working
directory of the tool as the starting point for the search. Absolute file path names are
searched without regard to the current working directory.

The filepath_name must conform to the UNIX file path name convention.

It is an error if the specified include file does not exist.

Example

include corruption_map.pcf ; -- corruption_map.pcf
 -- must exist in current
 -- working directory

include memctrl/memctrl.pcf ; -- Search in memctrl
 -- subdirectory of
 -- current working dir

include /u/home/tsmith/projs/memctrl/memctrl.pcf ;
 -- Absolute path to a PCF file to include

Corruption Extent Statement
By default, corruption semantics are applied only to what has been specified. Frequently,
corruption in power down situations should be applied more extensively. The corruption extent

Power Configuration File Reference
PCF Syntax and Contents

Power Aware Simulation User’s Manual, v10.2c 305

statement allows the specification of the extent that corruption is applied in power-down
situations.

corruption_extent ::=
 CEXTENT = extent_keyword stmt_end

extent_keyword ::=
 OUTS_SEQ_AND_WIRES
 | OUTS_AND_SEQ
 | OUTPUTS

• OUTS_SEQ_AND_WIRES — corrupts registers and signals that are driven by logic
which is powered down.

• OUTS _AND_SEQ — corrupts output ports and sequential elements within the power
domain.

• OUTPUTS — corrupts only the output ports of a power domain.

Power Statements
Power statements define voltage domains, power islands, mapping of inferred registers and
latches to Power Aware models and corruption behavior.

power_statement ::=
 power_control statement
 | power_model_mapping

Power Control Statement

The power control statement defines the power islands by mapping a power control signal to the
design power elements to which it applies.

power_control_statement ::=
 POWER tag [-osw | -os| -o] region_definitions , (boolean_expr)
 [retention_specification]
 [POWER_VDD voltage_specification]
stmt_end

• tag — a name without any white space (spaces, tabs, etc.) that provides a descriptive
handle or identifier for the power island or power control mapping being defined.

• [-osw | -os | -o] — command options that allow you to override the global corruption
extent of the vopt -pa_ce command for specific power domains.

o osw — sets the corruption extent to outputs and sequential and non-sequential wires.

o os — sets the corruption extent to outputs and sequential elements.

o o — sets the corruption extent to outputs only.

Power Aware Simulation User’s Manual, v10.2c306

Power Configuration File Reference
PCF Syntax and Contents

For example, you can use -o to define a specific power domain with non-synthesizable
RTL to prevent register/latch detection, even though you the command line specifies
vopt -pa_ce=os.

• region_definitions — a list of signal, instance, and process definitions that allow the
declaration of a power island by specifying various combinations of elements which are
controlled by the power island on/off state. Refer to the section Region Definitions for
detailed information.

• boolean_expr — a Verilog boolean expression. When the expression evaluates TRUE,
power to the specified elements in rtl_region_definition is powered ON. When it
evaluates FALSE, power to the specified elements in rtl_region_definition is OFF.

• retention_specification — (optional) The power control statement may optionally
specify the signal(s) used to control retention behavior throughout the power island
defined by the power control statement. The retention specification is described in the
section Retention Statement.

• POWER_VDD voltage_specification — (optional) To facilitate a concise specification
in the situation where the voltage domain and the power island are the same, the power
control statement may optionally specify the operating voltages for the power
island/voltage domain. The voltage specification is described in the section Voltage
Domains.

Region Definitions
The region definitions are a list of signal, instance and process definitions. This will allow
declaring a power island by specifying various combinations of elements which are controlled
by the power island on/off state.

region_definitions ::=
 region_definition { , region_definition }

region_definition ::=
 signal_definition
 | instance_definition
 | process_definition

signal_definition ::=
 -s hdl_path

instance_definition ::=
 [-i][-nr] hdl_path

process_definition ::=
 -p hdl_path

In each region definition, the HDL path is relative to the context that has previously been set
through a SCOPE statement. The path must terminate at an object or scope appropriate for the
type of definition (a signal or port, block instance or process instance).

Power Configuration File Reference
PCF Syntax and Contents

Power Aware Simulation User’s Manual, v10.2c 307

• Signal Definition

o -s — specifies that the given signal (hdl_path) is part of the power island and must
be corrupted on power down. The signal is the lowest level of granularity for power
region definition.

• Instance Definition

Instance regions are recursive by default. That is, the corruption includes the specified
instance and extends to any additional instances contained within the design hierarchy
sub-tree rooted at the specified instance through the lowest leaves of that sub-tree.

You can target individual instances within generate using two underscore characters
(__) instead of square brackets, [].

o -i — For block instances, the argument -i is optional, since it is the only region
definition that does not require a argument to identify the kind of region. It is
recommended that you specify the -i argument for clarity.

o -nr — If the corruption should not extend beyond the immediately specified
instance, then you can specify the -nr argument, since -nr specifies non-recursive
corruption.

Note
The -nr argument applies to all instance names that match a regular expression.

The -nr argument is meaningful only during 'all' corruption: CEXTENT = ALL.
When you specify this argument, the simulator applies the corruption only to the
inferred registers and latches contained in the root of the sub-tree defined by the
instance specification and not to the instances declared below that.

Corruption of instance outputs will be applied to the outputs of all the instances
listed in the POWER statements. In the case of an instance declared without -nr,
output corruption will be applied to the outputs of the top of the instance and not to
the instances below that. That is, recursive application of corruption applies only to
inferred registers and latches—never to outputs.

• Process Definition

To identify specific processes within a block instance and not all processes within a
block instance, the PCF supports the specification of processes individually.

o -p — indicates that the region definition applies to only the specified process. The
HDL path identifies the relative hierarchical path to the process's label.

The sequential elements in the process and the outputs (drivers) of the process will be
corrupted. If two processes in one single instance are controlled by different power
control signals, the sequential elements of the different processes need to be corrupted
separately.

Power Aware Simulation User’s Manual, v10.2c308

Power Configuration File Reference
PCF Syntax and Contents

Example

POWER PD0
 -s top/pd11/s1,
 -nr top/pd11/w11,
 -p top/pd11/c111/p1,
 top/pd11/c112,
 (top/global_vdd_1 & top/vd1/local_vdd_11) ;

A power island named PD0 is defined by the signals top/global_vdd_1 bit-wise anded with
top/vd1/local_vdd_11. In other words, the power is ON for PD0 only when both vdd _1 and
vdd_11 are on (1). When the power for PD0 is off, the following are corrupted:

• The signal top/pd11/s1

• The block instance top/pd11/w11 (inferred registers, latches and outputs)

• The inferred registers or latches for the process top/pd11/c112

Example

POWER VD1 top/vd1 , (top/global/vdd1)

The instance top/vd1 is controlled by power control signal top/global_vdd1.

If corruption extent is set to ALL, then the outputs of top/vd1 are corrupted when
top/global/vdd1 is 0 as are inferred registers and latches in top/vd1 and all sub-blocks below
top/vd1.

Example

POWER PD1
top/pd11 ,
 (top/global_vdd1 & top/vd1/local_vdd_12);

POWER signal_always_on
 -s top/pd11/out1, 1;

With this power specification file, the output top/pd11/out1 will not be corrupted when the
power for power domain PD1 goes off.

Example

Note
This example describes the combinatorial logic (powered by top/VDD1) which is an
output out1 of an instance m2_00 which is powered from VDD2.

POWER PD1
 -s top/m2_00/out1,
 (top/VDD1);

Power Configuration File Reference
PCF Syntax and Contents

Power Aware Simulation User’s Manual, v10.2c 309

POWER PD0
 top/m2_00,
 (top/VDD2);

This means if the VDD1 goes off, the 'out1' needs to go 'X', but VDD2 has no effect on the
'out1'.

Example

POWER PD0
 -s top/pd11/s1,
 -nr top/pd11/w11,
 -p top/pd11/c111/p1,
 top/pd11/c112,
 (top/global_vdd_1 & top/vd1/local_vdd_11)
 RETENTION top/vd1/save top/vd1/restore
 POWER_VDD {0.5} ;

Example

POWER PD1 -- Process p1 is in a different
 -p /top/m2_00/p1, -- power island
 (top/VDD1);

POWER PD2 -- Than process p2
 -p /top/m2_00/p2, -- But both exist in the same block
 (top/VDD2);

module m2(i1, i2, i3, i4, iso, a1, a2, clock, reset)
 output a 1, a2;
 reg a11, a21;
 input i1, i2, i3, i4;
 input clk, reset;

 // Belong to PD1
 always @(i1 or i2 or i3)
 begin : p1

 a11 <= i1 & i2 & i3;

 end

// Belong to PD2
 always @(i1 or i2 or i3)
 begin : p2
 …..
 a21 <= (i1 | i2 | i3);
 …..
 end

endmodule

Power Aware Simulation User’s Manual, v10.2c310

Power Configuration File Reference
PCF Syntax and Contents

Power Model Mapping Statement
The mapping statement defines how an inferred register or latch signal or variable in the design
maps to a model from the Power Aware model library that defines its run-time behavior.

Need to allow mapping of a Power Aware model to all inferred sequential items (regs/latches)
in a scope or to specific signals (whole signals, not bit, part or selected elements of a signal) in a
scope. Wildcard matching will apply.

power_model_mapping ::=
 MAP model_module_name pacell_spec
 ret_ctrl_signals,
 region_definitions stmt_end

ret_ctrl_signals ::=
 ret_signal_name
 | ret_save_sig_name ret_restore_sig_name

 pacell_spec ::=
 pacell_type [interface_information]

pacell_type ::=
 FF_CKHI
 | FF_CKLO
 | FF_CKFR
 | LA_ENHI
 | LA_ENLO
 | LA_ENFR
 | ANY_CKHI
 | ANY_CKLO
 | ANY_CKFR
 | RETMEM
 | NON_RETMEM

interface_information ::=
 (named_parameter_assignment
 {, named_parameter_assignment })

• model_module_name — specifies a Verilog module that defines the Power Aware
(retention) behavior that will be mapped to the regions specified by region_definition.
Normal Verilog library search will be used to locate the module (e.g., -L my_lib). It is
an error if the specified module cannot be found or, if found, does not conform to the
modeling guidelines for Power Aware models. For more information refer to Model
Construction for Power Aware Simulation.

• ret_ctrl_signals — specifies either a single signal name that will be connected to the
RET port of the Power Aware model, or a pair of retention signal names that are
connected to the SAVE and RESTORE ports of the Power Aware model. For more
information refer to the chapter Model Construction for Power Aware Simulation.

• region_definitions — determines which regions, defined in the section Region
Definitions, shall be supported in the power model mapping statement with the
following semantics for each region:

Power Configuration File Reference
PCF Syntax and Contents

Power Aware Simulation User’s Manual, v10.2c 311

o Signal — The specified signal shall infer a sequential element (register or latch) that
will be mapped to the Power Aware model. A warning shall be issued if a sequential
element has not been inferred for the specified signal. An error shall be issued if the
pacell_type is specified and the Power Aware cell type inferred for the specified
signal does not match.

o Instance — All sequential elements inferred within the instance will be mapped to
the specified Power Aware model. By default, the mapping is recursive to all child
instances of the specified instance. The -nr switch may be used to specify non-
recursive mapping to the instance only (not to any child instances). A warning shall
be issued if pacell_type is specified and no inferred sequential elements of that type
are present in the region.

o Process — All sequential elements inferred within the process will be mapped to the
specified Power Aware model. A warning shall be issued if there are no inferred
sequential elements for the specified process. A warning shall be issued if
pacell_type is specified and no inferred sequential elements of that type are present
in the region.

• pacell_type — specifies the type of inferred sequential cell to which the mapping
statement applies.

Specification of the Power Aware cell type avoids unintentional mapping of the
incorrect Power Aware model to an inferred sequential element of a different type while
permitting all types of cells to be inferred in the same region definition and PCF
coverage of all inferred sequential elements with as few power model mapping
statements as possible. When the cell type is specified, then only inferred sequential
elements that match that type are mapped to the Power Aware model specified in the
mapping statement. The cell types are defined as follows:

o FF_CKHI — Inferred registers (flip-flops) active on the positive edge of the clock
signal.

o FF_CKLO — Inferred registers active on the negative edge of the clock signal.

o FF_CKFR — All inferred registers regardless of the edge sensitivity of the clock
signal.

o LA_ENHI — Inferred latches active when the enable signal is high.

o LA_ENLO — Inferred latches active when the enable signal is low.

o LA_ENFR — All inferred latches regardless of the level sensitivity of the enable
signal.

o ANY_CKHI — Generically matches any inferred sequential element (register or
latch) that is active on the posedge of a clock or high level of an enable signal. That
is, this cell type is equivalent to two mapping statements that are identical except for
cell type where one statement cell type is FF_CKHI and the cell type of the other
equivalent mapping statement is LA_ENHI.

Power Aware Simulation User’s Manual, v10.2c312

Power Configuration File Reference
PCF Syntax and Contents

o ANY_CKLO — Generically matches any inferred sequential element that is active
on the engaged of a clock or low level of an enable signal. That is, this cell type is
equivalent to two mapping statements that are identical except for cell type where
one statement cell type is FF_CKLO and the cell type of the other equivalent
mapping statement is LA_ENLO.

o ANY_CKFR — Generically matches any inferred sequential element without regard
to edge or level sensitivity. A mapping statement specifying this cell type is
equivalent to four mapping statements that are identical except for the cell type. The
1st equivalent statement has cell type FF_CKHI, the 2nd equivalent statement has
cell type FF_CKLO, the 3rd equivalent statement has cell type LA_ENHI and the
4th equivalent statement has cell type LA_ENLO.

o RETMEM — Matches an inferred memory to a model that will determine under
what conditions the memory contents would be corrupted. If the pacell type is
RETMEM, then the region definition must specify a signal (-s
<signal_for_memory_contents>). It is an error if any other region definition is
specified.

o NON_RETMEM — Matches an inferred memory to corruption only semantics
(memory contents are always corrupted in power down situations). In the case of
NON_RETMEM pacell type, the model module name must indicate the built-in
corruption model bi_nonret_memory. The builtin corruption model applies the
corruption value as governed by the corruption map in effect for that scope.

• interface_information — (optional) The pacell_spec can optionally specify a named
mapping of power control signals to the ports of the PA model. This allows the names of
the signals in the design to differ from the names of the pins on the PA cell. The syntax
used is straight from the Verilog 1364 LRM for named parameter assignment. The
actual may be a simple name, a hierarchical name, a bit or part select or struct (record)
element selection.

During verification, the Power Aware behavior is mapped from the specified Power Aware
model to all inferred sequential elements matching the cell type in order to determine when to
save and restore the state (or specified corruption value) of the sequential element according to
the semantics defined in the PA Verification Guidelines for Power Aware Modeling.

Mapping Statement Precedence
The general precedence ordering defined in section Rule Precedence applies when multiple
mapping statements refer to the same region. Specifically, the precedence for mapping
statements is as follows:

• A mapping to an instance lower in the design hierarchy takes precedence over a
mapping to an instance of a parent scope in the hierarchy.

• A mapping to a process takes precedence over a mapping applied to a parent instance
scope.

Power Configuration File Reference
PCF Syntax and Contents

Power Aware Simulation User’s Manual, v10.2c 313

• A mapping to a signal takes precedence over either a process or instance mapping
applied to a parent scope.

• If two or more mapping statements map to the same region and the same Power Aware
cell type but map to different retention models, then the first mapping statement is used
and a warning message issued.

• The precedence of Power Aware cell types is as follows from highest to lowest
precedence:

a. Clock/enable specific and sequential element specific types (FF_CKHI, FF_CKLO,
LA_ENHI, LA_ENLO)

b. Clock/enable free, sequential element specific types (FF_CKFR, LA_ENFR).

c. Clock/enable specific, sequential element generic types (ANY_CKHI,
ANY_CKLO).

d. Clock/enable free, sequential element generic type (ANY_CKFR).

The default mapping for an inferred latch is to LA_ENHI. This default mapping is considered
only under the following conditions:

• The enable condition for latches may be complex whether the latch is intentional or
unintentional. For enable conditions that are not simply low or high values such as an
equality expression, e.g, en_cond = “101”, the mapping will be made to an LA_ENHI
model (if such a mapping is specified) where the true condition is considered high.

• For latches inferred from a typically unintentional situation, such as the failure to assign
all outputs in all branches of a process, the inferred latch will be mapped to a LA_ENHI
Power Aware type.

• If there is an ambiguity as to which latch Power Aware type to map an inferred latch, it
will be mapped to LA_ENHI.

The power model mapping statement may be terminated by a CRLF or by a semicolon. If
terminated by a CRLF, then line continuation must be used if a CRLF is inserted in the middle
of the statement. Semicolon termination is encouraged as CRLF is provided primarily for
backward compatibility.

Specifying Default Model Mappings
A likely scenario is for a design to use a single technology library from a single vendor. In this
situation, repeating the model mapping specifics repeatedly for multiple parts of the design
becomes excessively redundant. The DEFAULT_MAP statement is provided for the purpose of
defining default mappings of Power Aware models to various Power Aware cell types. To
increase the usefulness of the default mapping statements, their lifetimes are defined to extend
to the context (scope) they are defined within. To allow a global set of default mappings
together with locally overridden mappings, the default mapping statements conform to the
precedence rules defined in the sections Rule Precedence and Mapping Statement Precedence.

Power Aware Simulation User’s Manual, v10.2c314

Power Configuration File Reference
PCF Syntax and Contents

Each default mapping statement is independent of other default mapping statements defined
within the same scope. This allows the default mapping for one type of Power Aware cell to be
overridden in a nested context while other default mappings are not. Furthermore, a Power
Model Mapping Statement overrides any default mapping that might otherwise apply.

DEFAULT_MAP model_module_name : pacell_type
 stmt_end

A warning will result if a default mapping within a context (scope) creates an ambiguity with
another default mapping within that same context. In such ambiguous situations, the first default
mapping will be used and subsequent default mappings ignored.

Retention Statement
Normally, the Power Control Statement will specify the retention control signal(s) for an entire
power island. However, to provide the ability for a power island to have more than one set of
retention control signals as well as the flexibility to specify retention control signals separate
from the power control statement and the default model mappings, the retention statement is
provided. The retention statement may be paired with the use of default mappings to specify the
information that is region-specific for inferred sequential elements. Specifically, the retention
control signals that are specific to a region are specified so they can be connected to the Power
Aware models associated with the default mapping to inferred sequential elements.

retention_statement ::=
 retention_specification, region_definitions
 stmt_end

retention_specification ::=
 RETENTION ret_ctrl_signals

The retention control signals specified must match the Power Aware model that is mapped to
the inferred sequential elements. The Model Construction for Power Aware Simulation allows
the use of one or two retention control signals.

Corruption Semantics
Corruption occurs on power down. Corruption can be applied to state variables (inferred
registers and latches) and to the outputs of a block. The corruption of inferred registers and
latches and outputs results in a change in the current value of these signal objects in the
simulation to the corruption value. No events are propagated as a result in these changes in
values. That is, corruption shall not result in the activation of any processes sensitive to the state
variables (if signals) or outputs that are corrupted.

Upon restoration of a retained value for inferred registers and latches, the current value of these
signal objects will be changed and events are propagated to ensure that the restored state is
propagated to outputs. Only inferred registers and latches may have retained values restored.
The restored values are specified by the Power Aware model mapped by the PCF to the inferred

Power Configuration File Reference
PCF Syntax and Contents

Power Aware Simulation User’s Manual, v10.2c 315

registers and latches. For more information, refer to Model Construction for Power Aware
Simulation.

Voltage Domains
Voltage domains may be specified along with power islands. There are 2 key pieces of
information for a voltage domain:

• Whether power is on or off. This information is already specified by the power control
statement.

• The voltage level or range of levels under which the domain operates.

Voltage domain statements are optional. Whereas power control statements specify power
islands and retention specifications along with model mappings specify retention sequential
objects and both impact the simulated behavior of the design, the voltage statement and voltage
specification have no simulation semantics defined.

voltage_domain_statement ::=
 POWER_VDD tag region_definitions ,
 voltage_specification
 stmt_end

voltage_specification ::=
 op_voltages
 [, vdd_level_sig]

op_voltages ::=
 { real_literal {, real_literal} }

The voltage domain statement begins with the keyword POWER_VDD.

• tag — a mnemonic name for the VDD region.

• region_definition — the same as defined in section Region Definitions.

• op_voltages — a list of one or more real values that specify the allowable voltages under
which the domain may operate in units of volts. A list of voltage values provides the
ability to specify voltage domains where clock frequency is reduced to lower dynamic
power consumption.

• vdd_level_sig — (optional) specifies a voltage level signal (or legal Verilog signal
expression). This signal must be an integral type. Its value indicates which operating
voltage level is in operation at any given point in time. The integral value shall match
the positional value of the operating voltages with the value of 0 corresponding to the
first operating voltage level specified, 1 corresponding to the 2nd operating voltage level
specified, etc.

Power Aware Simulation User’s Manual, v10.2c316

Power Configuration File Reference
Regular Expressions and Variables

Comments
A comment may appear anywhere on the line. The start of a comment is denoted by “--”. The
comment extends to the end of the line.

comment ::=
 -- <any text> CRLF

Regular Expressions and Variables
In order to make it easy to group instances, signals and labels within instances, regular
expressions are supported. The common subset of syntax and rules of Perl and Tcl are
supported. More specifically, the following sets of meta-characters are supported.

• Single Character Matches — “.” or “[]”, for example:

"/ab.c/" -- a, b, any character, c
"/a[bc]d/" -- abd, or acd

• Multiple Character Matches — “*” or “{n,m}”, for example:

"/ab*c/" -- a, zero or more b's, c
"/ab{2,4}c/" # a, two to four b's, c

The only difference is that the regular expression will be delimited by quotation marks.

Examples

The following matches all the instances 'DFF_ 0' to 'DFF_ 99' within the 'top/pd11' instance.

POWER PD0
 top/pd11/"DFF_[0- 9]{1,2}",
 (top/global_vdd1 & top/vd1/local_vdd_11);

The following matches all instances 'DFF_0' to 'DFF_99' for any sub-instance with a name
beginning with 'pd2' under 'top'.

POWER PD2
 top/"pd2.*"/"DFF_[0- 9]{1,2}",
 (top/global_vdd1 & top/vd1/local_vdd_12);

Rule Precedence
When more than one rule applies to a given power element, the rule defined at the lowest
hierarchical level takes precedence over the rules defined at higher hierarchical level. This
applies to power control statements, power model mapping statements and voltage domain
statements.

Power Configuration File Reference
Rule Precedence

Power Aware Simulation User’s Manual, v10.2c 317

When a rule is defined for an instance and a rule is defined for a signal belonging to that
instance (at same hierarchical level), then, for that signal, the rule defined for the signal takes
precedence over the rule defined for the process. In case more than one rule is defined at the
same power element, a fatal error shall be reported and no verification will be terminated.

Power Aware Simulation User’s Manual, v10.2c318

Power Configuration File Reference
Rule Precedence

Power Aware Simulation User’s Manual, v10.2c 319

Appendix E
Supplemental Information

This appendix provides supplemental information on applications of Power Aware.

Power Aware Verification of ARM-Based Designs
This section contains an application note written by Ping Yeung and Erich Marschner of Mentor
Graphics Corporation.

Abstract
Power dissipation has become a key constraint for the design of today’s complex chips.
Minimizing power dissipation is essential for battery-powered portable devices, as well as for
reducing cooling requirements for non-portable systems. Such minimization requires active
power management built into a device.

In a System-on-Chip (SoC) design with active power management, various subsystems can be
independently powered up or down, and/or powered at different voltage levels. It is important to
verify that the SoC works correctly under active power management. When a given subsystem
is turned off, its state will be lost, unless some or all of the state is explicitly retained during
power down. When that subsystem is powered up again, it must either be reset, or it must
restore its previous state from the retained state, or some combination thereof. When a
subsystem is powered down, it must not interfere with the normal operation of the rest of the
SoC.

Power aware verification is essential to verify the operation of a design under active power
management, including the power management architecture, state retention and restoration of
subsystems when powered down, and the interaction of subsystems in various power states. In
this presentation, we summarize the challenges of power aware verification and describe the use
of IEEE Std 1801™-2009 UPF to define power management architecture. We outline the
requirements and essential coverage goals for verifying a power-managed ARM-based SoC
design.

Power Aware Simulation User’s Manual, v10.2c320

Supplemental Information
Power Aware Verification of ARM-Based Designs

Introduction
The continual scaling of transistors and the end of voltage scaling has made power one of the
critical design constraints in the design flow. Trying to maintain performance levels and achieve
faster speeds by scaling supply and threshold voltages increases the subthreshold leakage
current due to its exponential relationship with the threshold voltage [1]. Leakage currents lead
to power dissipation even when the circuit is not doing any useful work, which limits operation
time between charges for battery-operated devices, and creates a heat dissipation problem for all
devices.

Minimizing power dissipation starts with minimizing the dynamic power dissipation associated
with the clock tree, by turning off the clock for subsystems that are not in use. This technique
has been in use for many years. But at 90nm and below, static leakage becomes the dominant
form of power dissipation. Active power management minimizes static leakage through various
techniques, such as shutting off the power to unused subsystems or varying the supply voltage
or threshold voltage for a given component to achieve the functionality and performance
required with minimum power.

Active Power Management
Active power management can be thought of as having three major aspects:

• the power management architecture, which involves the partitioning of the system into
separately controlled power domains, and the logic required to power those domains;
mediate their interactions, and control their behavior;

• the power managed behavior of the design, which involves the dynamic operation of
power domains as they are powered up and down under active power management, as
well as the dynamic interactions of those power domains to achieve system
functionality;

• the power control logic that ultimately drives the control inputs to the power
management architecture, which may be implemented in hardware or software or a
combination thereof.

All three of these aspects need to be verified to ensure that the design will work properly under
active power management. Ideally such verification should be done at the RTL stage. This
enables verification of the active power management capability much more efficiently than
would be possible at the gate level, which in turn allows more time for consideration of
alternative power management architectures and simplifies debugging.

Power Management Techniques
Several power management techniques are used to minimize power dissipation: clock gating,
power gating, voltage scaling, and body biasing are four of them. Clock gating disables the

Supplemental Information
Power Aware Verification of ARM-Based Designs

Power Aware Simulation User’s Manual, v10.2c 321

clock of an unused device, to eliminate dynamic power consumption by the clock tree. Power
gating uses a current switch to cut off a circuit from its power supply rails during standby mode,
to eliminate static leakage when the circuit is not in use. Voltage scaling changes the voltage
and clock frequency to match the performance required for a given operation so as to minimize
leakage. Body biasing changes the threshold voltage to reduce leakage current at the expense of
slower switching times.

Power gating is one of the most common active power management techniques. Switching off
the power to a subsystem when it is not in use eliminates the leakage current in that subsystem
when it is powered down, and hence the overall leakage power dissipation through that
subsystem is reduced. However, this technique also results in loss of state in the subsystem
when it is switched off. Also, the outputs of a power domain can float to unpredictable values
when they are powered down.

Another common technique is the use of different supply voltage levels for different
subsystems. A subsystem that has a higher voltage supply can change state more quickly and
therefore operate with higher performance, at the expense of higher static leakage and dynamic
power. A subsystem with a lower voltage supply cannot change state as quickly, and
consequently operates with lower performance, but also with less static leakage and dynamic
power. This technique allows designers to minimize static leakage in areas where higher
performance is not required.

Multiple voltage supplies can also be used for a single subsystem, for example, by enabling it to
dynamically switch between a higher voltage supply and a lower voltage supply. This allows
the system to select higher performance for that subsystem when necessary, but minimize static
leakage when high performance is not required. Multi-voltage and power gating techniques can
be combined to give a range of power/performance options.

All of these power management techniques must be implemented in a manner that preserves the
intended functionality of the design. This requires creation of power management logic to
ensure that the design operates correctly as the power supplies to its various components are
switched on and off or switched between voltage levels. Since this power management logic
could potentially affect the functionality of the design, it is important to verify the power
management logic early in the design cycle, to avoid costly respins.

Power Management Specification
The power management architecture for a given design could be defined as part of the design,
and ultimately it will be a part of the design’s implementation. A better approach, however, is to
specify the power management architecture separate from the design. This simplifies
exploration of alternative power management architectures, reduces the likelihood of
unintended changes to the golden design functionality, and maintains the reusability of the
design data. This is the approach supported by IEEE Std 1801™-2009, “Standard for Design
and Verification of Low Power Integrated Circuits.” This standard is also known as the Unified
Power Format (UPF) version 2.0. Initially developed by Accellera, UPF is currently supported
by multiple vendors and is in use worldwide [5].

Power Aware Simulation User’s Manual, v10.2c322

Supplemental Information
Power Aware Verification of ARM-Based Designs

UPF provides the concepts and notation required to define the power management architecture
for a design. A UPF specification can be used to drive the implementation of power
management for a given design, during synthesis or subsequent implementation steps. A UPF
specification can also be used to drive verification of power management, during RTL
simulation, gate-level simulation, or even via static verification methods. The ability to use
UPF in conjunction with RTL simulation enables early verification of the power management
architecture. The ability to use UPF across all of these applications eases implementation and
validation by enabling reuse of power management specifications throughout the flow.

UPF syntax is defined as an extension of Tcl [6], which enables UPF descriptions to leverage all
of the control features of Tcl. UPF captures the power management architecture in a portable
form for use in simulation, synthesis, and routing, reducing potential omissions during
translation of that intent from tool to tool. Because it is separate from the HDL description and
can be read by all of the tools in the flow, the UPF side file is as portable and interoperable as
the logic design’s HDL code.

The concepts introduced in the following sections are illustrated with the UPF commands used
to specify them.

Power Management Architecture
In order to employ active power management techniques such as power gating and multiple
voltage supplies, the design must be partitioned into separate functional areas that can be
independently powered. Additional logic must be inserted into the design to perform special
functions such as power switching, state retention, isolation, and level shifting. These additional
components constitute the power management architecture for a given system.

Operating Modes
Designing the power management architecture for a given system starts with characterization of
the functions and operating modes of the system. Since the goal of active power management is
to optimize the use of power based on the function and performance required of the system at
any given time, the first step involves identifying the distinct combinations of functionality and
performance that will be required of the device in use. Analysis of the set of distinct operating
modes allows the designer to determine how to partition the design into independently powered
subsystems or subcomponents, so that any given operating mode can be supported by providing
the necessary subset of system components with the appropriate power.

For example, Figure E-1 shows a block diagram of a design that has two operating modes: ON
and SLEEP.

Supplemental Information
Power Aware Verification of ARM-Based Designs

Power Aware Simulation User’s Manual, v10.2c 323

Figure E-1. A Power-Managed Design

In the ON mode, it reads input data streams, interleaves them, and stores them in the memory
before driving them onto outputs. In the SLEEP mode, it monitors inputs and maintains the state
of its memory, but it does not process inputs.

Power Domains
Each independently powered subsystem or subcomponent is called a power domain. At the RTL
stage, a power domain is typically somewhat abstract, consisting of some or all of the RTL logic
within a given portion of the design hierarchy. At the logical netlist stage, a power domain
consists of a collection of cells that will share the same primary power and ground supplies. At
the physical level, the cells associated with a given power domain may be placed in a
contiguous region of a chip or distributed over multiple discontiguous regions of the chip.

The design in Figure E-1 has several major components. These include the interleaver block,
the memory controller block, and the memory itself. Each of these can be defined as a separate
power domain. The top-level of the design is also a separate power domain. The dotted lines in
Figure E-1 indicate power domain boundaries. The following UPF commands would be used to
define these power domains:

#--
Create power domains
#--
create_power_domain PD_top
create_power_domain PD_interleaver -elements {i0}
create_power_domain PD_mem_ctrl -elements {mc0}
create_power_domain PD_sram -elements {m1 m2 m3 m4}

Power Aware Simulation User’s Manual, v10.2c324

Supplemental Information
Power Aware Verification of ARM-Based Designs

The –elements option on each command lists the instance names of the elements to be included
in the specified power domain.

Power Distribution
Each power domain may have one or more power supplies. The primary supply provides power
for most of the functional elements in that domain. Additional supplies may provide power for
retention, isolation, or level shifting cells associated with the power domain.

The primary supply may be a switched supply, which can be turned on and off via a control
input to the switch. Either the VDD or VSS supply may be switched. A supply may be driven by
multiple switches connected to the same voltage source. The switches are turned on
incrementally, to minimize rush currents when the supply is switched on. A supply may also be
driven by multiple switches connected to different voltage sources, so that the supply voltage
level delivered to elements of the power domain may be varied. Switches may be on-chip or off-
chip.

Power is distributed to power domains via supply ports interconnected by supply nets. Supply
ports may represent external supplies or may be driven by internal supply sources. Supply ports
are connected to supply nets, each of which is ultimately connected to a power domain. Each
supply port has one or more supply states defined. The port may drive only one state at any
given time. That state is propagated by the supply net connected to the port.

For the example in Figure E-1, the following UPF commands could be used to define top-level
supply ports, and to define and connect supply nets to those ports:

#--
Create top level power domain supply ports
#--
create_supply_port VDD_0d99 -domain PD_top
create_supply_port VDD_0d81 -domain PD_top
create_supply_port VSS -domain PD_top

#--
Create top level power domain supply nets
#--
create_supply_net VDD_0d99 -domain PD_top
create_supply_net VDD_0d81 -domain PD_top
create_supply_net VSS -domain PD_top

#--
Connect top level power domain supply ports
to supply nets
#--
connect_supply_net VDD_0d99 -ports VDD_0d99
connect_supply_net VDD_0d81 -ports VDD_0d81
connect_supply_net VSS -ports VSS

Supplemental Information
Power Aware Verification of ARM-Based Designs

Power Aware Simulation User’s Manual, v10.2c 325

The following UPF command would be used to identify a particular pair of
supply nets as the primary power and ground supplies for a given power
domain:

#--
Set the default for top level power domain
#--
set_domain_supply_net PD_top \
 -primary_power_net VDD_0d99 \
 -primary_ground_net VSS

Additional UPF commands could be used to propagate the top-level supply
nets into subordinate power domains and to define a power switch to create
a switched ground (VSS_SW) for one of the power domains:

#--
Create sub domain supply nets
#--
create_supply_net VDD_0d81 -domain PD_interleaver -reuse
create_supply_net VDD_0d81 -domain PD_mem_ctrl -reuse
create_supply_net VDD_0d99 -domain PD_sram -reuse

create_supply_net VSS -domain PD_interleaver -reuse
create_supply_net VSS -domain PD_mem_ctrl -reuse
create_supply_net VSS -domain PD_sram -reuse

#--
Create supply net for switch output
#--
create_supply_net VSS_SW -domain PD_mem_ctrl

#--
Create power switch for memory controller domain
- switch on ground side of supply network
#--
create_power_switch mem_ctrl_sw \
 -domain PD_mem_ctrl \
 -output_supply_port {vout_p VSS_SW} \
 -input_supply_port {vin_p VSS} \
 -control_port {ctrl_p mc_pwr_c} \
 -on_state {normal_working vin_p {ctrl_p}} \
 -off_state {off_state {!ctrl_p}}

Power distribution logic may also include on-chip analog components such as regulators and
sensors. A regulator takes an input supply voltage and generates a specific output voltage. A
sensor monitors a supply rail and signals when the voltage has stabilized at its nominal value
with respect to ground. Sensors enable construction of a feedback loop so that power control
logic can determine when a power rail has completed transitioning. Analog components such as
these are not specifiable in UPF, but can be modeled in HDL code using UPF package functions
to model the ramp-up and ramp-down of power supplies as they switch on and off.

Power Aware Simulation User’s Manual, v10.2c326

Supplemental Information
Power Aware Verification of ARM-Based Designs

Power States
UPF provides commands for defining a power state table that captures the possible power states
of the system. The power state table defines system power states in terms of the states of supply
ports or nets.

For the example in Figure E-1, the following UPF commands define the possible states of the
supply ports VDD_0d81, VDD_0d99, and VSS, as well as the switched ground supply
VSS_SW:

#--
Define power states
#--
add_port_state VDD_0d99 -state {ON 0.99 1.10 1.21}
add_port_state VDD_0d99 –state {OFF off}

add_port_state VDD_0d81 -state {ON 0.81 0.90 0.99}
add_port_state VDD_0d81 –state {OFF off}

add_port_state VSS -state {ON 0 0 0}
add_port_state VSS_SW -state {ON 0} -state {OFF off}

#--
Create power state table
#--
create_pst top_pst \
 –supplies { VDD_0d99 VDD_0d81 VSS VSS_SW }

add_pst_state ON \
 -pst top_pst -state { ON ON ON ON }
add_pst_state SLEEP \
 –pst top_pst -state { ON ON ON OFF }
add_pst_state OFF \
 -pst top_pst -state { OFF OFF ON OFF }

The power states of the system in Figure E-1 are defined in the above power state table. Note
that these power states are the same as the operating modes of the system, plus the state in
which the system is completely turned off.

Isolation and Level Shifting
Even though each power domain may be independently powered on and off, their logical and
physical connections to other power domains remain; therefore, when one domain is turned off,
it is still connected logically and electrically to other domains. These connections between
power domains require special cells to mediate the interaction between domains as their
respective power states change. Two kinds of cells are involved: isolation cells, and level
shifting cells.

Isolation cells ensure that signals coming from unpowered domains are clamped to a well-
defined logic value while the source domain is powered down, so that any sink domain that is
powered up sees reliable inputs. Depending upon the architecture of the design, and the

Supplemental Information
Power Aware Verification of ARM-Based Designs

Power Aware Simulation User’s Manual, v10.2c 327

particular characteristics of a signal that crosses from one power domain to another (e.g., how
many power domains it fans out to, and when those power domains are on or off with respect to
the source domain), it may be appropriate to insert isolation cells at either the source of the
signal or at its sink(s). However, since the isolation cell must be powered on when the source
domain is powered off, isolation cells are typically powered by a separate, “always-on” supply
voltage.

The following UPF commands specify the addition of isolation for the PD_mem_ctrl power
domain in the example in Figure E-1. The first command defines the supplies powering the
isolation cell and specifies its clamp value. The second command defines the control signal for
the isolation cell.

#---
Setup isolation strategy for memory controller
#---

Mem ctrl chip & write enables: clamp to '1'

set_isolation mem_ctrl_iso_1 \
 -domain PD_mem_ctrl \
 -isolation_power_net VDD_0d99 \
 -isolation_ground_net VSS \
 -clamp_value 1 \
 -elements {mc0/ceb mc0/web}

set_isolation_control mem_ctrl_iso_1 \
 -domain PD_mem_ctrl \
 -isolation_signal mc_iso_c \
 -isolation_sense high \
 -location parent

Level shifting cells ensure that a signal coming from a power domain operating at one voltage is
correctly interpreted when it is received by a power domain operating at a different voltage.
Depending upon the relative voltage levels of the two power domains, a level shifter may
increase or decrease the operating voltage of the signal. As with isolation cells, level shifters
may have separate power supplies that are always on, or they may be powered by the primary
supplies of the source and sink domains, respectively.

#---
Define level shifters
#---

set_level_shifter interleaver_ls_in \
 -domain PD_interleaver \
 -applies_to inputs \
 -location self

set_level_shifter interleaver_ls_out \
 -domain PD_interleaver \
 -applies_to outputs \
 -location parent

Power Aware Simulation User’s Manual, v10.2c328

Supplemental Information
Power Aware Verification of ARM-Based Designs

The UPF commands above specify addition of level shifters for the PD_interleaver power
domain in the example in Figure E-1. The first command specifies addition of level shifters for
inputs; the second command specifies addition of level shifters for outputs. Whether level
shifters will actually be inserted depends upon the respective supply voltages of the source and
sink domains involved.

State Retention
When a power domain is powered down, any normal state elements within the power domain
will lose their state. When the power domain is powered on again, the power domain must be
brought to a predictable state again. This may involve resetting all state elements in the domain,
or resetting some subset that will be sufficient to cause the rest of the domain to reach a well-
defined state after a few clock cycles. Another alternative is to save the state of certain state
elements before the domain is powered down, and restore those statements to their saved state
after the power domain is powered up again.

Retention cells are special memory elements that preserve their data during power down. Such
cells involve extra logic and possibly complex timing to save and restore their values across
powered-down periods [2]. Various kinds of retention cells have been designed [2], [3], [4].
Some of these use balloon latch mechanisms [2], which are made up of high threshold
transistors to minimize leakage through them. They are separated from the critical path of the
design by transmission gates and thus are not required to be timing critical. Others depend on
complex sequences of different controls to achieve data retention.

The following UPF command specifies where retention should occur in the example in
Figure E-1.

#---
Setup retention strategy for mem cntrl
#---
set_retention mem_ctrl_ret \
 -domain PD_mem_ctrl \
 -retention_power_net VDD_0d81 \
 -save_signal {mc_save_c high} \
 -restore_signal {mc_restore_c low}

This command identifies the power domain (PD_mem_ctrl) within which retention registers
should be used, specifies the power supply used to maintain retained values, and specifies the
control signals required for saving and restoring the values of retention registers.

Power Managed Behavior
With the power management architecture implemented on top of the design, it should be
possible to repeatedly power up each power domain and later power it down again. Each time a
domain is powered up, it should reach a well-defined state from which to continue its

Supplemental Information
Power Aware Verification of ARM-Based Designs

Power Aware Simulation User’s Manual, v10.2c 329

operations. That state may be the initial reset state, or a state saved before the power domain
was last powered down, or a combination of the two.

While a power domain is powered down, its elements cannot drive their outputs to well-defined
logic values. As a result, those outputs may float to 1 or float to 0, or may be at an intermediate
value. In this situation, those outputs are considered corrupted. This is not a problem as long as
no other active power domain sinks those corrupted values; otherwise logical and/or electrical
problems could result. During the power down process, it is essential for the isolation cells in
the design to be enabled before the domain’s primary supply is shut off, for those isolation cells
to clamp signals from the powered-down domain to appropriate values, and for the isolation
cells to remain enabled until the shut-off domain’s primary supply is turned on again.

Similarly, when two interconnected power domains have been put into respective power states
that involve different supply voltages, the level shifters in the design must convert logic 1 signal
voltage levels in the source domain to logic 1 signal voltage levels in the sink domain. Although
level shifters function continuously and therefore do not need to be enabled, dynamic changes
in the supply voltages for the respective power domains may result in unexpected situations.

Power Control Logic
Power management may involve both software and hardware control. For example, a power
control unit (PCU) can be specified in RTL internal to the SoC. The PCU may be under
software control by an embedded processor. The combination of these power management
controls drive the signals that define the PCN, based on the system’s power management
strategy—signaling power domains to retain state, enable isolation, power down (turn off
switches), power up (turn on switches), disable isolation, and restore state.

Correct operation of the power management architecture depends upon correct sequencing of
power control signals. For example, outputs of a domain must be isolated before the power is
shut off, and must remain isolated until after power is turned on again. Thus the control signal
initiating isolation must come before the control signal that turns off the power switch.
Similarly, the control signal that turns on the power switch must occur before the control signal
that terminates isolation. In fact, turning power on and off may involve handshaking between
the PCU and the supply source (or a sensor monitoring the supply) to ensure that voltage-
dependent delays in ramping up or down the power supply are factored into control signal
sequencing.

Power Aware Verification Flow
Verifying RTL-level specification of active power management for a given design involves
several steps. First, we need to verify that the power management architecture is correctly
structured, given the operating modes of the device and the power states that have been defined
to reflect those modes. Second, we need to verify that the design (both each power domain
individually and all of them collectively) behave correctly when power management control

Power Aware Simulation User’s Manual, v10.2c330

Supplemental Information
Power Aware Verification of ARM-Based Designs

signals are given in the correct sequence. Third, we need to verify that the power control logic
will always generate power control signals in the correct sequence.

Figure E-2 shows the high-level design of an ARM-based SoC with active power management.
The above verification steps as applied to this example are described below.

Figure E-2. An ARM-based SoC with Active Power Management

This design consists of multiple functional units communicating over the AXI bus. Each
functional unit may be defined as a separate power domain, or even as a collection of power
domains. A UPF file for this design would specify the power management architecture for the
whole system, including the specific requirements for power distribution, switching, and state
retention for each power domain, and the requirements for isolation and level shifting between
interacting power domains. The Power Control Unit (PCU) is a hardware implementation of
power control logic that drives power control signals for each domain in the correct order. The
Cortex R4 CPU is an embedded ARM processor that drives system-level power state changes
by sending transactions to the PCU.

Verifying the Power Management Architecture
Verifying the sufficiency of the power management architecture can be done in part through
static analysis. Given a complete definition of the power domains and power states for a given
design, it is relatively straightforward to verify that the necessary isolation cells and level
shifters are present (or implied by a UPF specification) to ensure that the power domains will
interact correctly and will not be adversely affected when their neighboring power domains are

Supplemental Information
Power Aware Verification of ARM-Based Designs

Power Aware Simulation User’s Manual, v10.2c 331

powered down. Static analysis can also ensure that the necessary supply structures are present to
provide the ability to control power to each power domain.

However, static analysis is not always possible. Depending upon the sequencing of power state
changes, and the ramping of power supplies as they transition, there may be a requirement for
level shifters that is not obvious from the power state table. Also, the power state table may not
be complete, and power states that are not defined might actually occur during operation of the
device. Finally, external supply sources may be switched or may vary in voltage beyond what is
defined in the power state table. For these and other reasons, simulation is often required. In this
case, power aware simulation is necessary, to ensure that the power management architecture
and its controls are taken into account during simulation.

Power Aware simulation enables functional verification of power management in the context of
an RTL design. A power aware simulation run does the following:

• Compiles the design and UPF specifications

• Infers sequential elements from the RTL design (registers, latches and memories)

• Applies the UPF-specified power management architecture to the RTL design

• Augments the simulation model with appropriate power aware models

• Dynamically modifies the RTL behavior to reflect the impact of active power
management.

Using the UPF and sequential element information, the simulator is able to augment the normal
RTL behavior with the UPF-specified power aware behavior (power distribution and control,
retention, corruption, and isolation). This involves selecting the appropriate simulation models
to implement the UPF-specified power management architecture. It may also involve
recognizing and integrating user-supplied power aware simulation models.

Verifying Power Managed Behavior
Power aware simulation can be used to visualize the effects of active power management on the
dynamic behavior of the design, as well as visualizing the behavior of the power management
architecture itself under control of power management logic. In a power aware simulation, the
internal state and outputs of a power domain will be set to X to reflect the corruption of those
signals when the primary supply to that domain is turned off. When the supply is turned on
again, the X values will be replaced as the power domain reinitializes or has its state restored.
Signals driven by outputs of a powered-down domain should be clamped to 0 or 1, so that
downstream power domains see a well-defined value and won’t be affected by corrupted
outputs of a power domain that has been powered down. Retention should be evident in that the
state of signals following power up will correspond to the state of signals prior to the previous
power down.

Visualizing the effects of active power management helps the designer confirm that all of the
necessary power domains and power states required to implement the operation modes of this

Power Aware Simulation User’s Manual, v10.2c332

Supplemental Information
Power Aware Verification of ARM-Based Designs

device have been defined, and that all the necessary isolation, level-shifting, and retention cells
necessary to enable power management have been added. If there are errors in the power
management architecture, they will very likely cause signal corruption that does not go away
after power up, which in turn will lead to functional errors in the design.

Debugging power management errors can be performed by tracking corruption of signals in the
waveform view, but that method is tedious and error-prone. A much more effective method is
the use of assertions to check for correct operation of the design under active power
management. For example, an assertion to check that an output of a power domain is clamped to
the correct value when the power domain is powered down will immediately catch any error
related to the clamp value, or the powering of the isolation cell involved, rather than just
generating an X and letting it propagate. Such assertions can be automatically generated by the
power aware simulator.

Verifying Power Control Logic
Power aware simulation can also be used to verify the control logic driving the power
management architecture, provided that the control logic is part of the design rather than being
implemented in a test bench. For software-based power control logic, simulation is the only
method available. In particular, hardware/software co-simulation is necessary if the power
control logic is split between hardware and software components, as is often the case. For
hardware-based power control logic, such as a power control unit, another alternative is
available.

Formal verification is particularly suited to verifying complex control logic. In contrast to
simulation, which runs one input sequence at a time to test a device, formal verification
considers all valid input sequences in one pass. A formal verification tool can therefore identify
all possible behaviors of the power control logic, which enables it to automatically find any
corner cases in which the generated control sequences may not be complete or in the correct
order. Formal verification is driven by assertions, so use of formal verification requires creation
of assertions about the expected behavior of the power control unit. Although this takes some
effort, the ability to thoroughly verify the power control logic makes it worthwhile.

Summary
Active power management is becoming a necessary part of today’s SoC designs. To add active
power management to a design and verify that it is working correctly, it is critical to have a
well-defined methodology that addresses all aspects of active power management. The
methodology needs to support defining and verifying an appropriate power management
architecture, verifying that the design behaves correctly under the power management
architecture, and verifying that the power control signals controlling the power management
architecture are generated correctly. IEEE Std 1801™-2009 UPF supports such a methodology,
as does static analysis of power management architecture, power-aware simulation of power-
managed designs, and formal verification of power control logic. These methods provide a
comprehensive solution for defining and verifying active power management.

Supplemental Information
Power Aware Verification of ARM-Based Designs

Power Aware Simulation User’s Manual, v10.2c 333

Acknowledgements
The authors would like to acknowledge the thoughtful commentary and suggestions for
improvement provided by Barry Pangrle on the penultimate draft of this paper.

References
1. N.S. Kim, T. Austin, T. Blaauw, T. Mudge, K. Flautner, H.S. Hu, M.J.Irwin, M.

Kandemir, and V. Narayanan. Leakage current: Moore's law meets static power. IEEE
Computer, 36(12):68--75, 2003.

2. S. Shigematsu, S. Mutoh, Y. Matsuya, Y. Tanabe and J. Yamada, “A 1-V High-Speed
MTCMOS Circuit Scheme for Power-Down Application Circuits,” IEEE J. Solid-State
Circuits, Vol. 32, No. 6, pp. 861--869,1997.

3. Hyo-Sig Won; Kyo-Sun Kim; Kwang-Ok Jeong; Ki-Tae Park; Kyu-Myung Choi;
Jeong-Taek Kong, “An MTCMOS design methodology and its application to mobile
computing,” Low Power Electronics and Design, 2003. ISLPED '03. Proceedings of the
2003 International Symposium on, vol., no., pp. 110-115, 25-27 Aug. 2003.

4. Zyuban, V.; Kosonocky, S.V., “Low power integrated scan-retention mechanism,” Low
Power Electronics and Design, 2002. ISLPED '02. Proceedings of the 2002 International
Symposium on, vol., no., pp. 98-102, 2002.

5. IEEE 1801™-2009, “Standard for Design and Verification of Low Power Integrated
Circuits”, IEEE.

6. Tcl/Tk Documentation, Tcl Developer Xchange, http://www.tcl.tk.

Power Aware Simulation User’s Manual, v10.2c334

Supplemental Information
Power Aware Verification of ARM-Based Designs

335

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

Power Aware Simulation User’s Manual, v10.2c

— A —
Accellera, 171

— B —
Backus-Naur Format, 300
BNF, 300

— D —
Design flow, 14

— F —
Feedthrough, 157

— H —
Hard macro, 152

— I —
IEEE standard for low power, 18

— L —
Liberty libraries, 35

database, 35
Low power, 13

IEEE standard for, 18
Lower boundary ports, 238

— M —
Macro, hard, 152
Macromodels, 152
Messages, 136
MTI_LIBERTY_PATH, 39
Multi-voltage analysis, 145

— N —
Named events, 160

— P —
PA-GL, 13
PA-RTL, 13
PCF (Power Configuration File), 299
Power Aware, 13

documentation, 16
Power Aware verification, 170

Power Configuration File, 299
Power gating, 13
Power intent specification file, 19
Power State Table (PST), 145, 203
PST, 145, 203

— U —
Unified Power Format (UPF), 19, 169
UPF, 19, 169, 170

supported commands, 172

— V —
Value converstion table (VCT), 280
VCT, 280
Verilog

named events, 160
Voltage level-shifting, 145

Index

336 Power Aware Simulation User’s Manual, v10.2c

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

End-User License Agreement

The latest version of the End-User License Agreement is available on-line at:
www.mentor.com/eula

END-USER LICENSE AGREEMENT (“Agreement”)

This is a legal agreement concerning the use of Software (as defined in Section 2) and hardware (collectively “Products”)
between the company acquiring the Products (“Customer”), and the Mentor Graphics entity that issued the
corresponding quotation or, if no quotation was issued, the applicable local Mentor Graphics entity (“Mentor
Graphics”). Except for license agreements related to the subject matter of this license agreement which are physically
signed by Customer and an authorized representative of Mentor Graphics, this Agreement and the applicable quotation
contain the parties’ entire understanding relating to the subject matter and supersede all prior or contemporaneous
agreements. If Customer does not agree to these terms and conditions, promptly return or, in the case of Software
received electronically, certify destruction of Software and all accompanying items within five days after receipt of
Software and receive a full refund of any license fee paid.

1. ORDERS, FEES AND PAYMENT.

1.1. To the extent Customer (or if agreed by Mentor Graphics, Customer’s appointed third party buying agent) places and
Mentor Graphics accepts purchase orders pursuant to this Agreement (“Order(s)”), each Order will constitute a contract
between Customer and Mentor Graphics, which shall be governed solely and exclusively by the terms and conditions of
this Agreement, any applicable addenda and the applicable quotation, whether or not these documents are referenced on the
Order. Any additional or conflicting terms and conditions appearing on an Order or presented via any electronic portal or
other automated order management system will not be effective unless agreed in writing by an authorized representative of
Customer and Mentor Graphics.

1.2. Amounts invoiced will be paid, in the currency specified on the applicable invoice, within 30 days from the date of such
invoice. Any past due invoices will be subject to the imposition of interest charges in the amount of one and one-half
percent per month or the applicable legal rate currently in effect, whichever is lower. Prices do not include freight,
insurance, customs duties, taxes or other similar charges, which Mentor Graphics will state separately in the applicable
invoice(s). Unless timely provided with a valid certificate of exemption or other evidence that items are not taxable, Mentor
Graphics will invoice Customer for all applicable taxes including, but not limited to, VAT, GST, sales tax, consumption tax
and service tax. Customer will make all payments free and clear of, and without reduction for, any withholding or other
taxes; any such taxes imposed on payments by Customer hereunder will be Customer’s sole responsibility. If Customer
appoints a third party to place purchase orders and/or make payments on Customer’s behalf, Customer shall be liable for
payment under Orders placed by such third party in the event of default.

1.3. All Products are delivered FCA factory (Incoterms 2010), freight prepaid and invoiced to Customer, except Software
delivered electronically, which shall be deemed delivered when made available to Customer for download. Mentor
Graphics retains a security interest in all Products delivered under this Agreement, to secure payment of the purchase price
of such Products, and Customer agrees to sign any documents that Mentor Graphics determines to be necessary or
convenient for use in filing or perfecting such security interest. Mentor Graphics’ delivery of Software by electronic means
is subject to Customer’s provision of both a primary and an alternate e-mail address.

2. GRANT OF LICENSE. The software installed, downloaded, or otherwise acquired by Customer under this Agreement,
including any updates, modifications, revisions, copies, documentation and design data (“Software”) are copyrighted, trade
secret and confidential information of Mentor Graphics or its licensors, who maintain exclusive title to all Software and retain
all rights not expressly granted by this Agreement. Mentor Graphics grants to Customer, subject to payment of applicable
license fees, a nontransferable, nonexclusive license to use Software solely: (a) in machine-readable, object-code form (except
as provided in Subsection 5.2); (b) for Customer’s internal business purposes; (c) for the term of the license; and (d) on the
computer hardware and at the site authorized by Mentor Graphics. A site is restricted to a one-half mile (800 meter) radius.
Customer may have Software temporarily used by an employee for telecommuting purposes from locations other than a
Customer office, such as the employee’s residence, an airport or hotel, provided that such employee’s primary place of
employment is the site where the Software is authorized for use. Mentor Graphics’ standard policies and programs, which vary
depending on Software, license fees paid or services purchased, apply to the following: (a) relocation of Software; (b) use of
Software, which may be limited, for example, to execution of a single session by a single user on the authorized hardware or for
a restricted period of time (such limitations may be technically implemented through the use of authorization codes or similar
devices); and (c) support services provided, including eligibility to receive telephone support, updates, modifications, and
revisions. For the avoidance of doubt, if Customer provides any feedback or requests any change or enhancement to Products,

 IMPORTANT INFORMATION

USE OF ALL SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS. CAREFULLY READ THIS LICENSE
AGREEMENT BEFORE USING THE PRODUCTS. USE OF SOFTWARE INDICATES CUSTOMER’S

COMPLETE AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND CONDITIONS SET FORTH IN
THIS AGREEMENT. ANY ADDITIONAL OR DIFFERENT PURCHASE ORDER TERMS AND CONDITIONS

SHALL NOT APPLY.

http://www.mentor.com/eula

whether in the course of receiving support or consulting services, evaluating Products, performing beta testing or otherwise, any
inventions, product improvements, modifications or developments made by Mentor Graphics (at Mentor Graphics’ sole
discretion) will be the exclusive property of Mentor Graphics.

3. ESC SOFTWARE. If Customer purchases a license to use development or prototyping tools of Mentor Graphics’ Embedded
Software Channel (“ESC”), Mentor Graphics grants to Customer a nontransferable, nonexclusive license to reproduce and
distribute executable files created using ESC compilers, including the ESC run-time libraries distributed with ESC C and C++
compiler Software that are linked into a composite program as an integral part of Customer’s compiled computer program,
provided that Customer distributes these files only in conjunction with Customer’s compiled computer program. Mentor
Graphics does NOT grant Customer any right to duplicate, incorporate or embed copies of Mentor Graphics’ real-time operating
systems or other embedded software products into Customer’s products or applications without first signing or otherwise
agreeing to a separate agreement with Mentor Graphics for such purpose.

4. BETA CODE.

4.1. Portions or all of certain Software may contain code for experimental testing and evaluation (which may be either alpha or
beta, collectively “Beta Code”), which may not be used without Mentor Graphics’ explicit authorization. Upon Mentor
Graphics’ authorization, Mentor Graphics grants to Customer a temporary, nontransferable, nonexclusive license for
experimental use to test and evaluate the Beta Code without charge for a limited period of time specified by Mentor
Graphics. This grant and Customer’s use of the Beta Code shall not be construed as marketing or offering to sell a license
to the Beta Code, which Mentor Graphics may choose not to release commercially in any form.

4.2. If Mentor Graphics authorizes Customer to use the Beta Code, Customer agrees to evaluate and test the Beta Code under
normal conditions as directed by Mentor Graphics. Customer will contact Mentor Graphics periodically during Customer’s
use of the Beta Code to discuss any malfunctions or suggested improvements. Upon completion of Customer’s evaluation
and testing, Customer will send to Mentor Graphics a written evaluation of the Beta Code, including its strengths,
weaknesses and recommended improvements.

4.3. Customer agrees to maintain Beta Code in confidence and shall restrict access to the Beta Code, including the methods and
concepts utilized therein, solely to those employees and Customer location(s) authorized by Mentor Graphics to perform
beta testing. Customer agrees that any written evaluations and all inventions, product improvements, modifications or
developments that Mentor Graphics conceived or made during or subsequent to this Agreement, including those based
partly or wholly on Customer’s feedback, will be the exclusive property of Mentor Graphics. Mentor Graphics will have
exclusive rights, title and interest in all such property. The provisions of this Subsection 4.3 shall survive termination of
this Agreement.

5. RESTRICTIONS ON USE.

5.1. Customer may copy Software only as reasonably necessary to support the authorized use. Each copy must include all
notices and legends embedded in Software and affixed to its medium and container as received from Mentor Graphics. All
copies shall remain the property of Mentor Graphics or its licensors. Customer shall maintain a record of the number and
primary location of all copies of Software, including copies merged with other software, and shall make those records
available to Mentor Graphics upon request. Customer shall not make Products available in any form to any person other
than Customer’s employees and on-site contractors, excluding Mentor Graphics competitors, whose job performance
requires access and who are under obligations of confidentiality. Customer shall take appropriate action to protect the
confidentiality of Products and ensure that any person permitted access does not disclose or use Products except as
permitted by this Agreement. Customer shall give Mentor Graphics written notice of any unauthorized disclosure or use of
the Products as soon as Customer becomes aware of such unauthorized disclosure or use. Except as otherwise permitted for
purposes of interoperability as specified by applicable and mandatory local law, Customer shall not reverse-assemble,
reverse-compile, reverse-engineer or in any way derive any source code from Software. Log files, data files, rule files and
script files generated by or for the Software (collectively “Files”), including without limitation files containing Standard
Verification Rule Format (“SVRF”) and Tcl Verification Format (“TVF”) which are Mentor Graphics’ proprietary
syntaxes for expressing process rules, constitute or include confidential information of Mentor Graphics. Customer may
share Files with third parties, excluding Mentor Graphics competitors, provided that the confidentiality of such Files is
protected by written agreement at least as well as Customer protects other information of a similar nature or importance,
but in any case with at least reasonable care. Customer may use Files containing SVRF or TVF only with Mentor Graphics
products. Under no circumstances shall Customer use Software or Files or allow their use for the purpose of developing,
enhancing or marketing any product that is in any way competitive with Software, or disclose to any third party the results
of, or information pertaining to, any benchmark.

5.2. If any Software or portions thereof are provided in source code form, Customer will use the source code only to correct
software errors and enhance or modify the Software for the authorized use. Customer shall not disclose or permit disclosure
of source code, in whole or in part, including any of its methods or concepts, to anyone except Customer’s employees or
on-site contractors, excluding Mentor Graphics competitors, with a need to know. Customer shall not copy or compile
source code in any manner except to support this authorized use.

5.3. Customer may not assign this Agreement or the rights and duties under it, or relocate, sublicense or otherwise transfer the
Products, whether by operation of law or otherwise (“Attempted Transfer”), without Mentor Graphics’ prior written
consent and payment of Mentor Graphics’ then-current applicable relocation and/or transfer fees. Any Attempted Transfer
without Mentor Graphics’ prior written consent shall be a material breach of this Agreement and may, at Mentor Graphics’
option, result in the immediate termination of the Agreement and/or the licenses granted under this Agreement. The terms

of this Agreement, including without limitation the licensing and assignment provisions, shall be binding upon Customer’s
permitted successors in interest and assigns.

5.4. The provisions of this Section 5 shall survive the termination of this Agreement.

6. SUPPORT SERVICES. To the extent Customer purchases support services, Mentor Graphics will provide Customer with
updates and technical support for the Products, at the Customer site(s) for which support is purchased, in accordance with
Mentor Graphics’ then current End-User Support Terms located at http://supportnet.mentor.com/about/legal/.

7. LIMITED WARRANTY.

7.1. Mentor Graphics warrants that during the warranty period its standard, generally supported Products, when properly
installed, will substantially conform to the functional specifications set forth in the applicable user manual. Mentor
Graphics does not warrant that Products will meet Customer’s requirements or that operation of Products will be
uninterrupted or error free. The warranty period is 90 days starting on the 15th day after delivery or upon installation,
whichever first occurs. Customer must notify Mentor Graphics in writing of any nonconformity within the warranty period.
For the avoidance of doubt, this warranty applies only to the initial shipment of Software under an Order and does not
renew or reset, for example, with the delivery of (a) Software updates or (b) authorization codes or alternate Software under
a transaction involving Software re-mix. This warranty shall not be valid if Products have been subject to misuse,
unauthorized modification, improper installation or Customer is not in compliance with this Agreement. MENTOR
GRAPHICS’ ENTIRE LIABILITY AND CUSTOMER’S EXCLUSIVE REMEDY SHALL BE, AT MENTOR
GRAPHICS’ OPTION, EITHER (A) REFUND OF THE PRICE PAID UPON RETURN OF THE PRODUCTS TO
MENTOR GRAPHICS OR (B) MODIFICATION OR REPLACEMENT OF THE PRODUCTS THAT DO NOT MEET
THIS LIMITED WARRANTY. MENTOR GRAPHICS MAKES NO WARRANTIES WITH RESPECT TO:
(A) SERVICES; (B) PRODUCTS PROVIDED AT NO CHARGE; OR (C) BETA CODE; ALL OF WHICH ARE
PROVIDED “AS IS.”

7.2. THE WARRANTIES SET FORTH IN THIS SECTION 7 ARE EXCLUSIVE. NEITHER MENTOR GRAPHICS NOR
ITS LICENSORS MAKE ANY OTHER WARRANTIES EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO
PRODUCTS PROVIDED UNDER THIS AGREEMENT. MENTOR GRAPHICS AND ITS LICENSORS
SPECIFICALLY DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NON-INFRINGEMENT OF INTELLECTUAL PROPERTY.

8. LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR RESTRICTION OF LIABILITY WOULD BE
VOID OR INEFFECTIVE UNDER APPLICABLE LAW, IN NO EVENT SHALL MENTOR GRAPHICS OR ITS
LICENSORS BE LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING
LOST PROFITS OR SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY, EVEN
IF MENTOR GRAPHICS OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN
NO EVENT SHALL MENTOR GRAPHICS’ OR ITS LICENSORS’ LIABILITY UNDER THIS AGREEMENT EXCEED
THE AMOUNT RECEIVED FROM CUSTOMER FOR THE HARDWARE, SOFTWARE LICENSE OR SERVICE GIVING
RISE TO THE CLAIM. IN THE CASE WHERE NO AMOUNT WAS PAID, MENTOR GRAPHICS AND ITS LICENSORS
SHALL HAVE NO LIABILITY FOR ANY DAMAGES WHATSOEVER. THE PROVISIONS OF THIS SECTION 8 SHALL
SURVIVE THE TERMINATION OF THIS AGREEMENT.

9. HAZARDOUS APPLICATIONS. CUSTOMER ACKNOWLEDGES IT IS SOLELY RESPONSIBLE FOR TESTING ITS
PRODUCTS USED IN APPLICATIONS WHERE THE FAILURE OR INACCURACY OF ITS PRODUCTS MIGHT
RESULT IN DEATH OR PERSONAL INJURY (“HAZARDOUS APPLICATIONS”). EXCEPT TO THE EXTENT THIS
EXCLUSION OR RESTRICTION OF LIABILITY WOULD BE VOID OR INEFFECTIVE UNDER APPLICABLE LAW, IN
NO EVENT SHALL MENTOR GRAPHICS OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES RESULTING FROM
OR IN CONNECTION WITH THE USE OF MENTOR GRAPHICS PRODUCTS IN OR FOR HAZARDOUS
APPLICATIONS. THE PROVISIONS OF THIS SECTION 9 SHALL SURVIVE THE TERMINATION OF THIS
AGREEMENT.

10. INDEMNIFICATION. CUSTOMER AGREES TO INDEMNIFY AND HOLD HARMLESS MENTOR GRAPHICS AND
ITS LICENSORS FROM ANY CLAIMS, LOSS, COST, DAMAGE, EXPENSE OR LIABILITY, INCLUDING
ATTORNEYS’ FEES, ARISING OUT OF OR IN CONNECTION WITH THE USE OF MENTOR GRAPHICS PRODUCTS
IN OR FOR HAZARDOUS APPLICATIONS. THE PROVISIONS OF THIS SECTION 10 SHALL SURVIVE THE
TERMINATION OF THIS AGREEMENT.

11. INFRINGEMENT.

11.1. Mentor Graphics will defend or settle, at its option and expense, any action brought against Customer in the United States,
Canada, Japan, or member state of the European Union which alleges that any standard, generally supported Product
acquired by Customer hereunder infringes a patent or copyright or misappropriates a trade secret in such jurisdiction.
Mentor Graphics will pay costs and damages finally awarded against Customer that are attributable to such action.
Customer understands and agrees that as conditions to Mentor Graphics’ obligations under this section Customer must:
(a) notify Mentor Graphics promptly in writing of the action; (b) provide Mentor Graphics all reasonable information and
assistance to settle or defend the action; and (c) grant Mentor Graphics sole authority and control of the defense or
settlement of the action.

http://supportnet.mentor.com/about/legal/

11.2. If a claim is made under Subsection 11.1 Mentor Graphics may, at its option and expense: (a) replace or modify the Product
so that it becomes noninfringing; (b) procure for Customer the right to continue using the Product; or (c) require the return
of the Product and refund to Customer any purchase price or license fee paid, less a reasonable allowance for use.

11.3. Mentor Graphics has no liability to Customer if the action is based upon: (a) the combination of Software or hardware with
any product not furnished by Mentor Graphics; (b) the modification of the Product other than by Mentor Graphics; (c) the
use of other than a current unaltered release of Software; (d) the use of the Product as part of an infringing process; (e) a
product that Customer makes, uses, or sells; (f) any Beta Code or Product provided at no charge; (g) any software provided
by Mentor Graphics’ licensors who do not provide such indemnification to Mentor Graphics’ customers; or
(h) infringement by Customer that is deemed willful. In the case of (h), Customer shall reimburse Mentor Graphics for its
reasonable attorney fees and other costs related to the action.

11.4. THIS SECTION 11 IS SUBJECT TO SECTION 8 ABOVE AND STATES THE ENTIRE LIABILITY OF MENTOR
GRAPHICS AND ITS LICENSORS, AND CUSTOMER’S SOLE AND EXCLUSIVE REMEDY, FOR DEFENSE,
SETTLEMENT AND DAMAGES, WITH RESPECT TO ANY ALLEGED PATENT OR COPYRIGHT
INFRINGEMENT OR TRADE SECRET MISAPPROPRIATION BY ANY PRODUCT PROVIDED UNDER THIS
AGREEMENT.

12. TERMINATION AND EFFECT OF TERMINATION.

12.1. If a Software license was provided for limited term use, such license will automatically terminate at the end of the
authorized term. Mentor Graphics may terminate this Agreement and/or any license granted under this Agreement
immediately upon written notice if Customer: (a) exceeds the scope of the license or otherwise fails to comply with the
licensing or confidentiality provisions of this Agreement, or (b) becomes insolvent, files a bankruptcy petition, institutes
proceedings for liquidation or winding up or enters into an agreement to assign its assets for the benefit of creditors. For
any other material breach of any provision of this Agreement, Mentor Graphics may terminate this Agreement and/or any
license granted under this Agreement upon 30 days written notice if Customer fails to cure the breach within the 30 day
notice period. Termination of this Agreement or any license granted hereunder will not affect Customer’s obligation to pay
for Products shipped or licenses granted prior to the termination, which amounts shall be payable immediately upon the
date of termination.

12.2. Upon termination of this Agreement, the rights and obligations of the parties shall cease except as expressly set forth in this
Agreement. Upon termination, Customer shall ensure that all use of the affected Products ceases, and shall return hardware
and either return to Mentor Graphics or destroy Software in Customer’s possession, including all copies and
documentation, and certify in writing to Mentor Graphics within ten business days of the termination date that Customer no
longer possesses any of the affected Products or copies of Software in any form.

13. EXPORT. The Products provided hereunder are subject to regulation by local laws and United States (“U.S.”) government
agencies, which prohibit export, re-export or diversion of certain products, information about the products, and direct or indirect
products thereof, to certain countries and certain persons. Customer agrees that it will not export or re-export Products in any
manner without first obtaining all necessary approval from appropriate local and U.S. government agencies. If Customer wishes
to disclose any information to Mentor Graphics that is subject to any U.S. or other applicable export restrictions, including
without limitation the U.S. International Traffic in Arms Regulations (ITAR) or special controls under the Export
Administration Regulations (EAR), Customer will notify Mentor Graphics personnel, in advance of each instance of disclosure,
that such information is subject to such export restrictions.

14. U.S. GOVERNMENT LICENSE RIGHTS. Software was developed entirely at private expense. The parties agree that all
Software is commercial computer software within the meaning of the applicable acquisition regulations. Accordingly, pursuant
to U.S. FAR 48 CFR 12.212 and DFAR 48 CFR 227.7202, use, duplication and disclosure of the Software by or for the U.S.
government or a U.S. government subcontractor is subject solely to the terms and conditions set forth in this Agreement, which
shall supersede any conflicting terms or conditions in any government order document, except for provisions which are contrary
to applicable mandatory federal laws.

15. THIRD PARTY BENEFICIARY. Mentor Graphics Corporation, Mentor Graphics (Ireland) Limited, Microsoft Corporation
and other licensors may be third party beneficiaries of this Agreement with the right to enforce the obligations set forth herein.

16. REVIEW OF LICENSE USAGE. Customer will monitor the access to and use of Software. With prior written notice and
during Customer’s normal business hours, Mentor Graphics may engage an internationally recognized accounting firm to
review Customer’s software monitoring system and records deemed relevant by the internationally recognized accounting firm
to confirm Customer’s compliance with the terms of this Agreement or U.S. or other local export laws. Such review may include
FlexNet (or successor product) report log files that Customer shall capture and provide at Mentor Graphics’ request. Customer
shall make records available in electronic format and shall fully cooperate with data gathering to support the license review.
Mentor Graphics shall bear the expense of any such review unless a material non-compliance is revealed. Mentor Graphics shall
treat as confidential information all information gained as a result of any request or review and shall only use or disclose such
information as required by law or to enforce its rights under this Agreement. The provisions of this Section 16 shall survive the
termination of this Agreement.

17. CONTROLLING LAW, JURISDICTION AND DISPUTE RESOLUTION. The owners of certain Mentor Graphics
intellectual property licensed under this Agreement are located in Ireland and the U.S. To promote consistency around the
world, disputes shall be resolved as follows: excluding conflict of laws rules, this Agreement shall be governed by and construed
under the laws of the State of Oregon, U.S., if Customer is located in North or South America, and the laws of Ireland if

Customer is located outside of North or South America. All disputes arising out of or in relation to this Agreement shall be
submitted to the exclusive jurisdiction of the courts of Portland, Oregon when the laws of Oregon apply, or Dublin, Ireland when
the laws of Ireland apply. Notwithstanding the foregoing, all disputes in Asia arising out of or in relation to this Agreement shall
be resolved by arbitration in Singapore before a single arbitrator to be appointed by the chairman of the Singapore International
Arbitration Centre (“SIAC”) to be conducted in the English language, in accordance with the Arbitration Rules of the SIAC in
effect at the time of the dispute, which rules are deemed to be incorporated by reference in this section. Nothing in this section
shall restrict Mentor Graphics’ right to bring an action (including for example a motion for injunctive relief) against Customer in
the jurisdiction where Customer’s place of business is located. The United Nations Convention on Contracts for the
International Sale of Goods does not apply to this Agreement.

18. SEVERABILITY. If any provision of this Agreement is held by a court of competent jurisdiction to be void, invalid,
unenforceable or illegal, such provision shall be severed from this Agreement and the remaining provisions will remain in full
force and effect.

19. MISCELLANEOUS. This Agreement contains the parties’ entire understanding relating to its subject matter and supersedes all
prior or contemporaneous agreements. Some Software may contain code distributed under a third party license agreement that
may provide additional rights to Customer. Please see the applicable Software documentation for details. This Agreement may
only be modified in writing, signed by an authorized representative of each party. Waiver of terms or excuse of breach must be
in writing and shall not constitute subsequent consent, waiver or excuse.

Rev. 130502, Part No. 255853

	Bookcase
	Table of Contents
	List of Tables
	Chapter 1 Getting Started With Power Aware Simulation
	Where Is Power Aware in Your Design Flow?
	Documentation—Scope and Organization
	Usage
	Design
	Flow

	Contents of This Manual
	How to Use This Manual
	Related Documentation

	Chapter 2 Concepts for Using Power Aware Simulation
	Power Intent Specification
	Power Aware Modeling
	Modeling Corruption
	Corruption Values
	Default Corruption Semantics

	Modeling Isolation
	Modeling Retention
	Edge-sensitive and Level-sensitive Control of Retention Models
	Automatic Model Selection
	Level-sensitive Retention Model Protocol Example

	Modeling Bias

	Chapter 3 Power Aware Simulation
	Inputs Required for Power Aware Simulation
	Commands Used For Power Aware Simulation
	General Steps for Running Power Aware

	Power Aware Simulation Flows
	Using the Standard Flow
	Compile
	Optimize
	Simulate

	Using the Delayed Optimization Flow
	Using the No-Optimization Flow

	Working with Liberty Libraries
	Liberty Library Models
	Using Liberty Files with vopt
	Creating and Saving a Liberty Database
	Using a Previously Created Liberty Database
	Using Liberty Files Directly
	Updating a Liberty Database
	Refreshing a Liberty Database

	PDU-Based Simulation
	Power Aware Simulation Debug
	Capturing Information for Post-simulation Debug
	Debugging Designs Containing Liberty Cells

	Applying Power Intent to the Design
	Detection of Gate-level Cells
	Detection of Power Management Cells
	Automatic Insertion of Power Management Cells
	Automatic Corruption and Retention of UDPs
	UDP Corruption and Retention Modes

	Chapter 4 Power Aware Reports
	Generating Reports for Power Aware
	How to Generate a Report with vopt -pa_genrpt

	UPF Reports
	UPF Power Intent Report
	Example of UPF File and Power Intent Report

	UPF Static Report
	Example of UPF Static Report File

	Static Checking UPF Reports
	Dynamic UPF Report
	Architecture Report
	Power Domain
	Power Switch
	Retention Strategy
	Isolation Strategy
	Level Shifter Strategy
	Power State Tables (PSTs)
	Sample Power Architecture Report

	Design Elements Report
	Design Element Scopes and Power Domains
	Corrupted Signals
	State Elements
	Retention Signals
	Working With A Design Element Report

	Behavioral Element Reporting

	Chapter 5 Automatic Checking
	Static and Dynamic Checking Overview
	Level Shifter Checking
	Isolation Checking

	Static Checking in Power Aware
	Usage Notes for Static Checking
	Debugging Static Checks
	Static Isolation Checks
	Isolation Cell Instance Checking

	Static Level Shifter Checks
	Level Shifter Cell Instance Checking
	Reporting for a Valid Level Shifter

	Dynamic Checking in Power Aware
	Usage Notes
	Dynamic Retention Checking
	Dynamic Isolation Checking
	Dynamic Level Shifter Checking
	Operating Voltage for Dynamic Checking

	Miscellaneous Dynamic Checking

	Implementing Checking at Gate Level
	Level Shifting for Gate-Level Checking
	Isolation for Gate-Level Checking

	Quick-Reference Comparison of Static and Dynamic Check Arguments

	Chapter 6 Power Aware Coverage
	Power Aware Coverage Collection
	Collecting Power Aware Coverage Information on Dynamic Checks
	Collecting Power Aware Coverage Information on States and Transitions

	Power Aware Coverage Analysis
	Generating a UCDB File for Power Aware
	Generating Power Aware Coverage Reports
	Generating HTML Reports
	Accessing Coverage Data for Post-Simulation Analysis

	Power Aware Coverage Report Reference
	Power Aware Coverage Summary
	Power Aware Coverage Detailed Report
	Power Aware Coverage Verbose Report
	Power Aware Checks Coverage Summary
	Power Aware Checks Coverage Detailed Report

	Chapter 7 Visualization of Power Aware Operations
	UPF Object Display
	Visualizing UPF Objects in the GUI

	Power Aware Schematic Display
	Top-Down Debugging (From the Test Bench)
	Bottom-Up Debugging (From the Design Under Test)
	Usage Notes

	Schematic Window Visualization for Debugging

	Power Aware Waveform Display
	Using Power Aware Highlighting

	Power State and Transition Display
	Power State and Transition Concepts
	DIfferences Between a Conventional RTL FSM and a PASM

	Visualizing Power Aware State Machines
	Power Aware State Machine List Window
	GUI Elements of the Power Aware State Machine List Window

	Power Aware State Machine Viewer Window
	GUI Elements of the Power Aware State Machine Viewer Window

	Appendix A Power Aware Commands and Options
	ModelSim Commands Used for Power Aware
	Using -pa_enable and -pa_disable

	Additional Commands You Can Use with Power Aware
	set_corruption_extent
	set_feedthrough_object
	set_related_supply_net

	Power Aware Messages
	Dynamic Power Aware Check Message Control
	Concepts of pa msg
	Use Model for pa msg
	Option Descriptions of pa msg
	Power Aware Check Selection
	Fine Control of Check Selection
	Actions for Power Aware Checks

	Examples

	Controlling Power Aware Message Severity During vopt Stage

	Excluding Design Elements from Power Aware
	Voltage Level-Shifting (Multi-Voltage Analysis)
	Power State Tables
	Example

	Level Shifter Specification
	Reporting
	Threshold Control for Level Shifters
	Level Shifter Instances

	Limitations on Level Shifting

	Restricting Isolation and Level Shifting on a Port
	Isolation and Level Shifting Behavior
	How to Apply the -source and -sink Arguments

	Simulating Designs Containing Macromodels
	Using UPF Commands
	Attributes in RTL
	Liberty File
	Example of Power Intent on a Hard Macro
	UPF Commands
	RTL Attributes
	Liberty File Attributes

	Creating Feedthrough For RTL Conversion Functions

	Appendix B Model Construction for Power Aware Simulation
	Assumptions and Advantages
	Basic Model Structure
	Named Events in Power Aware
	Usage Note for Sequence Requirements

	Attributes
	Retention Cells and Memories
	Isolation Cells
	Level Shifters

	Model Interface Ports
	Customizing Activity at Time Zero

	Example—Register Model
	Example—Corrupt Model

	Appendix C UPF Commands and Reference
	Unified Power Format (UPF)
	Using a UPF File as Part of Power Aware Simulation

	UPF Standards
	Version 1.0 of the UPF Standard
	Version 2.0 of the UPF Standard: IEEE Std 1801-2009
	Syntax and Semantic Differences Between UPF 1.0 and UPF 2.0
	UPF 2.0 Syntax Differences
	UPF 2.0 Semantic Differences

	Supported UPF Commands
	add_domain_elements
	add_port_state
	add_power_state
	add_pst_state
	associate_supply_set
	bind_checker
	connect_logic_net
	connect_supply_net
	connect_supply_set
	create_composite_domain
	create_hdl2upf_vct
	create_logic_net
	create_logic_port
	create_power_domain
	create_power_switch
	create_pst
	create_supply_net
	create_supply_port
	create_supply_set
	create_upf2hdl_vct
	find_objects
	load_simstate_behavior
	load_upf
	load_upf_protected
	map_isolation_cell
	map_level_shifter_cell
	map_retention_cell
	name_format
	query_design_attributes
	query_port_state
	query_power_domain
	query_power_state
	query_power_switch
	query_pst
	query_pst_state
	query_supply_net
	query_supply_port
	save_upf
	set_design_attributes
	set_design_top
	set_domain_supply_net
	set_isolation
	set_isolation_control
	set_level_shifter
	set_partial_on_translation
	set_pin_related_supply
	set_port_attributes
	set_power_switch
	set_retention
	set_retention_control
	set_scope
	set_simstate_behavior
	upf_version

	Supported UPF Package Functions
	Detailed Support for supply_net_type

	Accessing Generate Blocks in UPF
	Limitation

	Supported UPF Attributes
	Specifying Attributes
	Limitations
	Attributes in VHDL or SystemVerilog
	Specifying Supply Nets in UPF
	Format of Assigned Net Values
	Changing the Default Supply State Values for VHDL Models

	Supported UPF Extensions
	Using -pa_upfextensions

	UPF Supply Connections
	Implicit Connections
	Explicit Connections
	Explicit Connections to HDL Ports
	Examples
	Explicit Connections to 1-bit HDL Ports
	Explicit Connections to Supply Ports of Power Switch

	Automatic Connections
	Automatic Connections for Supply Nets
	Automatic Connections for Supply Sets

	Power State Composition
	Determining State Dependency with add_power_state Arguments
	Power State Reporting

	Value Conversion Tables
	Using VCT Commands
	Examples
	Limitations

	Predefined VCTs Supported from the UPF Standard
	Connections Using Value Conversion Tables (VCTs)
	Simulation Semantics for UPF Supply Connections

	Supply Nets
	Resolving Drivers on a Supply Net
	Example

	Defining Isolation
	Method 1: Isolation is already explicitly present
	Method 2: Isolation needs to be added
	Specifying Isolation Cells
	Isolation Cell Instances

	Limitations

	Defining Retention
	-retention_supply_set
	-no_retention
	-use_retention_as_primary

	Appendix D Power Configuration File Reference
	Power Specification File
	Formats

	Using a PCF as Part of Power Aware Verification
	PCF Syntax and Contents
	Basic PCF Statement Types
	Statement Termination
	Header Statement
	Context Statements
	Scope Statement
	Variable Statement
	Include Statement
	Corruption Extent Statement

	Power Statements
	Power Control Statement

	Region Definitions
	Power Model Mapping Statement
	Mapping Statement Precedence
	Specifying Default Model Mappings

	Retention Statement
	Corruption Semantics
	Voltage Domains
	Comments

	Regular Expressions and Variables
	Rule Precedence

	Appendix E Supplemental Information
	Power Aware Verification of ARM-Based Designs
	Abstract
	Introduction
	Active Power Management
	Power Management Techniques
	Power Management Specification
	Power Management Architecture
	Operating Modes
	Power Domains
	Power Distribution
	Power States
	Isolation and Level Shifting
	State Retention

	Power Managed Behavior
	Power Control Logic
	Power Aware Verification Flow
	Verifying the Power Management Architecture
	Verifying Power Managed Behavior
	Verifying Power Control Logic

	Summary
	Acknowledgements
	References

	Index
	End-User License Agreement
	Documentation Feedback

