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Abstract

This report describes RoboSoc, a system for developing RoboCup agents
designed especially, but not only, for educational use.

RoboSoc is designed to be as general, open, and easy to use as possible
and to encourage and simplify the modification, extension and sharing of
RoboCup agents, and parts of them. To do this I assumed four requirements
from the user: she wants the best possible data, use as much time as possible
for the decision making, rather act on incomplete information than not act at
all, and she wants to manipulate the objects found in the soccer environment.

RoboSoc consists of three parts: a library of basic objects and utilities
used by the rest of the system, a basic system handling the interactions
with the soccer server and the timing of the agent, and a framework for
world modeling and decision support. The framework defines three con-
cepts, views, predicates and skills. The views are specialized information
processing units responsible for a specific part of the world model, like mod-
eling the ball or the agent, controlled by events generated by the basic
system. The predicates can be used either by the decision maker or the
skills to test the state of the world. The skills are specialized, short-term
planners which generate plans for what actions the agent should do in order
to reach a desired goal state.

The whole RoboSoc system, implemented in C++ in the Solaris Unix
environment, is working and have been used in a course on Al-progamming.
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Chapter 1

Introduction

This chapter contains a short description of the problem I have studied,
namely how to create a system for developing RoboCup agents, and the
outline of my solution, RoboSoc. The purpose of this chapter is to motivate
and define the conditions for the research, but also to state the assumptions
I had to make in order to solve it. The last section of this chapter describes
the structure of the report. But first a short introduction to RoboCup for
those who are not familiar with it.

RoboCup is an attempt to foster artificial intelligence (AI) and intel-
ligent robotics research by providing a standard problem, soccer, where a
wide range of technologies can be integrated and examined. The reason for
choosing soccer is that it is played in a highly dynamic environment, with
both teammates and opponents, where independent agents must collabo-
rate in order to beat the other team [14]. At the same time it is easy to
understand the problem and most people know how soccer is played and
what a team should do to be successful. These properties make RoboCup
an excellent environment for students to, in a playful fashion, create and
test different Al-strategies. It is also easy to motivate them by providing
competitions where they can test their teams against each other.

RoboCup is divided into different leagues, real robots leagues and a sim-
ulated software agents league. This report only consider teams of simulated
software agents. The simulation is done by a special server called the Soccer
server, which is described in section 2.1. Anybody can download the neces-
sary software and start developing their own soccer agents [28]. Descriptions
of the teams that participated in the RoboCup world cup competitions held
1997, 1998 and 1999 can be found in [2, 13, 35]. Many of them can also be
downloaded from [22] and tested. More information about RoboCup can be
found on web-site of the RoboCup organization [21].



1.1 The Problem

A major problem when constructing RoboCup agents for the simulation
league is to implement the basic functionality of the agent. This is a general
problem when developing multi-agent systems, Wooldridge and Jennings
write “one of the greatest obstacles in the way of the wider use of agent
technology is that there are no widely-used software platforms for developing
multi-agent system” [37].

This is due to a number of problems, for instance interacting with the
Soccer server, and developing the basic skills of a soccer player like finding
the ball, move to the ball and kick it in the desired direction. The develop-
ment of a new RoboCup team from scratch usually takes at least six months,
often more. Since we want students to be able to use RoboCup to implement
and test different AT algorithms we need some way to make the students start
from a much higher level so they can spend their time implementing the Al
parts and skip most of the tedious low-level programming needed to create
a functional RoboCup team. Therefore a platform for creating new teams is
needed. This platform can also be used by non-students creating their first
team but I think the educational aspects put higher demands on the ease of
use, clean design and sharability so that the teams can improve from year
to year even with different students and different approaches.

The platform should first of all take care of the most basic tasks of a
RoboCup agent namely receiving data from the server, interpret this sensor
data and sending commands back to the server. To be able to do this the
platform must have a well defined work cycle since timing is very important
and events are asynchronous. It also needs data structures for storing the
results from the interpretation of the sensor data. Finally it needs some
basic actions or skills the agent can perform.

Since different teams use different theories and models the platform must
be able to work with all kinds of different agent architectures and cope
with other user defined design issues. The platform should also support,
encourage and promote the sharing of different parts of the agent, like skills
and information processing algorithms.

1.2 The Solution

Since this is a very open problem I had to make some assumptions. The
assumptions I made about what the user wants for their agents are:

1. accurate, complete and consistent data, in that order of importance;
2. use as much time as possible for the decision making;

3. rather act on incomplete information than not act at all;



4. soccer objects the agent can manipulate, like the ball and the players.

Since I want to make as few assumptions as possible I do not make any
unnecessary estimations since they can be done in many different ways. The
few estimations I do are well documented and easy to change if the user finds
a need for it.

My solution to this problem is a system called RoboSoc. It includes
three parts: a library of utility classes, a basic system for taking care of the
timing and the interaction with the server, and a framework for information
processing and decision support. The basic system provides a well defined
work cycle by which the agent acts. It takes care of the communication
with the Soccer server and it does the basic information processing, mainly
parsing the messages sent by the Soccer server but also some feed back from
the actuators. The information processing framework consists of a collection
of specialized units that process the raw data obtained from the basic system
and from other information processing units into information. There are for
example units specialized in the ball, the agent, and the players. This system
of specialized units makes it easy for the user, i.e. the agent programmer, to
either use the units as they are or modify them to suit her needs. RoboSoc
provides two more frameworks, one for defining skills and one for defining
predicates. The decision making is almost completely done by the user but
it is guided by events generated by the basic system.

The purposes of the frameworks are to simplify the extension, modifica-
tion and sharing of the units. In fact the whole system is designed to be
as general and open as possible to encourage and simplify the modification,
extension and sharing of RoboCup agents created by RoboSoc.

1.3 The structure of the report

This report is organized as follows: Chapter 2 contains the background
material needed for this report. In section 2.1 the Soccer server is discussed,
in section 2.2 the educational aspects, and finally in section 2.3 related work.

In chapter 3 RoboSoc is described in detail starting with an overview in
section 3.1 where the overall design of RoboSoc is discussed. The library is
described in section 3.2, the basic system in section 3.3, and the framework
in section 3.4. The chapter is concluded with section 3.5 describing the
educational value of RoboSoc.

In the last chapter of the report, chapter 4, contains some concluding
remarks. First a summary is given in section 4.1 and then a discussion about
future work in section 4.2.

There is also an appendix with a limited user’s manual.



Chapter 2

Background

2.1 The Soccer server

The Soccer server is the software developed for RoboCup by Itsuki Noda to
do the soccer simulation [20]. It is a distributed simulation server to which
11 players and 1 coach from each of the two teams can connect. One of the
players is special, the goal keeper. The goal keeper is the only player who is
allowed to catch the ball. There is also a simulated referee who is responsible
for enforcing the rules of the game. The referee and the mechanics of the
simulation are described in section 2.1.2.

The communication between the server and the clients is done with the
UDP/IP protocol, which is a connectionless and unreliable internet protocol
[29]. Each agent (player or coach) is a separate program with no direct
communication with the other agents. All communication has to go through
the Soccer server.

When the agent is connected to the server it receives sensor data con-
tinuously as they are available. Visual data is available approximately each
150 milliseconds, physical data roughly each 100 milliseconds and aural data
directly when either the referee, one of the players or one of the coaches say
something. The sensor data is neither complete nor perfect. The sensors
are discussed in detail in section 2.1.3.

The server also accepts commands from the agent describing what action
it wants to perform. The commands and their properties will be further
discussed in section 2.1.4. Since the UDP/IP protocol is unreliable, data
to and from the server will be lost in the network. This together with the
noisy sensors and the fact that players can act as often as 10 times a second
makes the simulation highly dynamic and uncertain. This also makes the
task of developing RoboCup agents very interesting.

Apart from the simulation server there is also a visualization tool called
the Soccer monitor where you can watch the games as they are played. In
Figure 2.1 you can see what it looks like. The players are the bigger circles
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Figure 2.1: The Soccer monitor.

and the small circle, next to the dark player below the middle circle, is the
ball. The players are facing the direction of the light half of the circle. The
black bars on the left and right side of the field are the goals. The text in
the three shaded areas on top of the screen is from the left: the name of the
team playing on the left side and its score, the current play mode and the
current time, and the name of the team playing on the right side and its
score. In this example FCFoo is playing on the left side and has scored zero
goals, the current play mode is “play on” and the current time is 482, the
team on the right side is CMUnited and they have also scored zero goals.

The rest of this section will describe important parts of the simulation
in more detail. Most of the material comes from the Soccer server manual
[8], where more information can be obtained.

2.1.1 The server parameters

The Soccer server has many different parameters which control how the
simulation works. Most of them can be changed by editing a configuration



Table 2.1: The Soccer server parameters used in the report with their default
values. The table is adapted from the parameter table in the Soccer server

manual [8]
Parameter name | Default | Description
value

simulator_step 100 Length of each simulation cycle in milliseconds

sense_body_step 100 Length of interval, in milliseconds, between sense_body infor-
mations

send_step 150 Length of interval, in milliseconds, between sending visual
information to a player in the standard view mode

recv_step 10 Length of interval between server polling sockets to clients
(milliseconds)

visible_angle 90 Angle of the view cone of a player in the standard view mode

visible_distance 3.0 Maximum distance to an object out of the view cone a player
can see

audio_cut_dist 50 Maximum distance a spoken message can be heard

ball_size 0.085 The radius of the ball in meters

ball_decay 0.94 Decay rate of speed of the ball (1 = no decay, 0 = all decay)

ball_rand 0.05 Amount of noise added in the movements of the ball

ball_speed_max 2.7 Maximum speed of the ball during a simulation cycle (me-
ter/cycle)

player_size 0.3 The radius of a player (meter)

player_decay 0.4 Decay rate of speed of a player (1 = no decay, 0 = all decay)

player_rand 0.1 Amount of noise added in players’ movements and turns

player_speed_max| 1.0 Maximum speed of a player during a simulation cycle (me-
ter/cycle)

stamina_min 0.0 Minimum stamina of a player

stamina_max 3500.0 Maximum stamina of a player

stamina_inc_max | 35.0 Maximum amount of stamina that a player gains in a simu-
lation cycle

recover_dec_thr 0.3 Decrement threshold for players’ recovery

recover._dec 0.002 Decrement step for a player’s recovery

recover_min 0.5 Minimum recovery of a player

effort_dec_thr 0.3 Decrement threshold for a player’s effort capacity

effort_dec 0.05 Decrement step for a player’s effort capacity

effort_inc_thr 0.6 Increment threshold for a player’s effort capacity

effort_inc 0.1 Increment step for a player’s effort capacity

effort_min 0.6 Minimum value for a player’s effort capacity

effort_max 1.0 Maximum value for a player’s effort capacity

kickable_margin 0.7 The maximum distance the ball can be from a player and still
be kickable

kick_power_rate 0.016 Rate by which the Power argument in kick commands is
multiplied

dash_power_rate | 0.006 Rate by which the Power argument in dash commands is
multiplied

inertia_moment 5.0 Inertia moment of a player, affects its movements

maxpower 100 Maximum value of Power in dash and kick commands

minpower -100 Minimum value of Power in dash and kick commands

maxmoment 180 Maximum value of Moment in turn and Direction in kick
commands

minmoment -180 Minimum value of Moment in turn and Direction in kick
commands

maxneckmoment | 180 Maximum value of Moment in turn_neck commands

minneckmoment | -180 Minimum value of Moment in turn_neck commands

maxneckang 90 Maximum value of Moment in turn_neck commands

minneckang -90 Minimum value of Moment in turn_neck commands

say_msg._size 512 Maximum length of a message a player can say
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Figure 2.2: The markers and the lines in the simulation.

file and load it with the server. The parameters mentioned in the report are
described in Table 2.1. For a complete list see the Soccer server manual [8].

2.1.2 The simulation

Since the simulation is discrete all moves within one time step occur si-
multaneously at the end of the step. The length of a step is set by the
simulator_step parameter. At the end of the step, the server takes all ac-
tion commands received and applies them to the objects in the field, using
the current position and velocity information to calculate a new position
and velocity for each object.

The soccer field

The soccer field and all objects in it are 2-dimensional, so there is no notion
of height of any object. The field is 105 meters long and 68 meters wide.
The goals are 14.02 meters wide, about twice the size of a normal soccer
goal since it was too difficult to score otherwise. The field and the different
markers and lines used by the agents to navigate are shown in Figure 2.2.
The players are bound by the outer flags which are 5 meters outside the
playing field. The markers on the field have a known absolute position
which is independent of the side the team is currently playing on. The
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Figure 2.3: The coordinate system for the two teams. The coordinates are
given in the form (z,y), if two signs are shown then the first sign is for the
left team and the second sign is for the right team. The two diagrams at
the top shows the sign of the coordinates for each team and the two at the
bottom shows the directions of each team.

coordinate system and the directions are on the other hand dependent on
what side the team is playing on, see Figure 2.3. The origo is in the center
of the field; negative x-values are always found on the team’s own side of
the field and positive on the opposite side; negative y-values are found on
the team’s left part of the field and positive on the right, when standing in
origo facing the opponents’ goal. Directions are also based on the side of the
team with straight ahead (0 degrees) from the origo towards the opponents’
goal. Positive angles are to the right of the agent (standing in origo facing
the opponents’ goal) and negative angles are to the left.

All movable objects on the field, i.e. the players and the ball, are treated
as circles. All distances and angles are to the center of the circles.

The referee

The simulated referee controls the play mode of the game. It decides when
a team scores a goal, when the ball is out of bounds and when to call an
offside. There are also rules which the simulated referee can not enforce
since they concern the “intention” of the players. Some of these rules are:
surrounding the ball, not putting the ball into play, and intentionally block-



ing the movement of other players. Therefore a human referee also has the
possibility to call free-kicks.

Movements of objects

At the end of each time step the server updates the current state of all the
objects in the world. To quote the the Soccer server manual the movement
of each object is calculated in the following manner [8]:

(ufl,uzﬂ) = (v5,v)) + (al,al): accelerate
(5P (P, py) + (uft!, uftt): move
(v;“,v;“) = decay X (ufn+1,u;+1): decay speed
(a?l,a?l) = (0,0): reset acceleration

where (p;,pf/), and (vt, v;) are position and velocity of the object
in timestep t, decay is a decay parameter specified by ball _decay
or player_decay depending on what object is being updated.
(ai,aé) is the acceleration of the object, which is derived from
the Power parameter in dash (in case the object is a player) or
kick (in case the object is the ball) commands in the following
manner:

(atx,a;}) = Power x power_rate x (cos(6?),sin(6?))

where power_rate is either dash power_rate or is calculated from
kick_power_rate as described in section 2.1.4, and 6! is the di-
rection of the object in timestep ¢. In the case of a player !
is the direction the player is facing. In the case of the ball the
direction is:

t . t . .
eball = Hkicker—l-Dzrectzon

where ef)all and gﬂicker are the directions of the ball and the
kicking player at time ¢, and Direction is the second parameter
of the kick command.

Collisions

At the end of the simulation cycle if two objects overlap then
a collision occurs and the objects are moved back until they do
not overlap. Then the velocities are multiplied by —0.1. Note
that it is possible for the ball to go through a player as long as
the ball and the player never overlap at the end of a cycle.



The stamina model

To simulate the endurance of the players each player has a limited amount
of stamina. The stamina is used when the player dashes and is regained a
little each cycle. The maximum Power the player can dash with and the
amount of stamina regained each cycle is depending on the three variables
stamina, effort, and recovery. Where stamina is the total amount of energy
the agent has left, effort determines how effective the agent’s dashes are and
recovery controls how much stamina is regained each cycle. According to
the Soccer server manual the stamina model works as follows:

When the client dashes its stamina is updated like this:

If Power > 0:
EffectivePower = effort x min(Power, stamina)
stamina = max(stamina — Power,stamina min)
If Power < 0:
PowerUsed = min(—2 x Power, stamina)/ — 2
EffectivePower = effort x PowerUsed
stamina = max(stamina + 2 X PowerUsed, stamina min)

The Power of the dash actually executed is EffectivePower.

Every cycle (whether the client dashes or not), the three variables
are updated in the following way:

e Stamina: Stamina increases slightly every cycle. When
recovery decreases less stamina is recovered.

stamina = Inin(sta.mina_max, stamina + recovery X sta.mina_inc_max)

e Effort: The basic idea is that if stamina gets low, effort
decreases (with a minimum value given by effort min) and
if stamina gets high enough, then effort increases with a
maximum of effort max. Specifically:

min(effort max, effort + effort_inc) if stamina > effort_int_thr X stamina max

max(effort_min, effort — effort_dec) if stamina < effort_dec_thr X stamina max
effort =

effort otherwise

e Recovery: This is similar to effort except that recovery
never increases.

max(recover_min, Tecovery — recover_dec) if stamina < recover_dec_thr X stamina max

TECOVETY — .
recovery otherwise

The order in which the different variables are changed are im-
portant. First the stamina value is decreased (if there is a dash).
Next, the recovery value is changed, then the effort. Finally,
stamina is recovered.

Figure 2.4 visualize the different thresholds in the stamina model.
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Figure 2.4: The different thresholds used in the stamina model.

Table 2.2: Data given by the visual sensor.

| Data | Description

ObjectName What object the data describes

Distance The distance to the object

Direction The direction to the object

DistChng The change in distance to the object

DirChng The change in direction to the object

BodyDir The body direction relative the facing direction of the agent,
only if the object seen is another player

HeadDir The head direction relative the facing direction of the agent,
only if the object seen is another player

TeamName The name of the team of the seen player, only if the object
seen is another player

UniformNumber | The uniform number of the seen player, only if the object seen
is another player

2.1.3 The sensor inputs

As mentioned before there are three types of sensor inputs providing visual,
aural and physical sensor data. Each of the sensors and what type of data
they send to the agent will be discussed in this section.

The visual sensors

Each send_step the agent receives visual sensor data. In Table 2.2 the data
given by the visual sensors are described. Some of the data is only available
if the agent is close enough to the object, the quality of the data is also
dependent on the distance to the object. For a detailed description of the
exact details see the Soccer server manual [8].

The aural sensors

The agent will receive data from the aural sensor when it is available. Data is
available when one of the players, the coaches or the referee says something

11




Table 2.3: Data given by the physical sensor.

| Data | Description |

ViewQuality The current setting of the agent’s ViewQuality, affects the
amount and quality of the visual data sent to the agent

ViewWidth The current setting of the agent’s ViewWidth, affects the
amount and quality of the visual data sent to the agent

Stamina The current stamina of the agent

Effort The current effort of the agent

AmountOfSpeed | The amount of the agent’s current speed vector

HeadDirection The relative direction of the agent’s head

DashCount The number of dashes made by the agent so far

KickCount The number of kicks made by the agent so far

SayCount The number of says made by the agent so far

TurnCount The number of turns made by the agent so far

TurnNeckCount | The number of turn necks made by the agent so far

and the distance to the speaker is less than audio_cut_dist. The agent
will hear all messages from itself, the referee and the coaches, but only one
message from another teammate in two cycles. If more than one message is
sent in the two cycles the first to arrive will be heard.

The physical sensors

Each sense body_step the agent will receive physical sensor data. In Ta-
ble 2.3 the data given by the physical sensor is described.

2.1.4 The available commands

This section will discuss what basic actions the agent can tell the server
to perform. Table 2.4 contains a short description of the syntax of the
commands, the range of the parameters and how often the actions can be
sent. The detailed description of the effects of the actions below is taken
from the Soccer server manual:

e turn: The turn moment must be between minmoment and maxmoment
(—180 degrees and 180 degrees by default). However, there is a concept
of inertia that makes it more difficult to turn when the agent is moving.
The actual angle the player is turned is calculated as follows:

ActualAngle = Moment/(1.0 + inertia moment X player_speed)

(Note that player_speed is the amount of the player’s velocity vec-
tor, and is therefore always positive.) inertia moment is a parame-
ter with default value 5.0. Therefore (with default values), when the
player is at max speed (1.0), the maximum effective turn it can do

12



is £30. However, because the agent can not dash and turn in the
same cycle, the fastest a player can be going when executing a turn
is player_speed max X player _decay, which means the effective turn
(with default values) is +60.

turn_ neck: Each client has a neck which can be turned independently
of its body. The angle of the player’s head is the viewing angle of the
player. The turn command changes the angle of the player’s body
while turn_neck changes the angle of the player’s head relative to its
body. The maximum relative angle for the player’s neck is 90 degrees
to either side. Remember that the neck angle is relative to the player’s
body so if the client issues a turn command, the viewing angle changes
even if no turn neck command is issued.

Also, turn neck commands can be executed in the same cycle as turn,
dash, and kick commands. turn neck is not affected by momentum
like turn is. The argument for a turn neck command must be in the
range [—180,180] and the resulting neck angle must be in [—90, 90].

dash: The dash is essentially a small push in the direction that the
player’s body is facing. It is not a sustained run. In order to have a sus-
tained run, multiple dash commands must be sent. The power passed
to the dash command is multiplied by dash_power_rate (default 0.006)
and the effort (see Section 2.1.2) and applied in the direction that the
player’s body is facing. With negative power, the agent dashes back-
wards, but it consumes twice the stamina (see Section 2.1.2).

kick: The kick is very similar to the dash except that it accelerates
the ball instead of the player. If the player tries to kick when the ball
is further than the kickable _area (which is equal to the player _size
+ball_size +kickablemargin), there is no effect. The one impor-
tant difference between dashes and kicks is how the kick power rate is
figured. Let dir_diff be the absolute value of the angle of the ball rel-
ative to the direction the player’s body is facing (if the ball is directly
ahead, this would be 0). Let dist_ball be the distance from the center
of the player to the center of the ball. Then the kick power rate is
figured as follows:

.25 X dir_diff .25 % (dist_ball — player_size — ball_size)

kick_power_rate X 1
180 kickable_margin

Basically, this means that the most powerful kick can be done when
the ball is directly in front of the player and very close to it, and drops
off as both distance and angle increase.
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Table 2.4: The syntax of the basic actions the agent can perform [8].

Syntax | One/turn?

(catch Direction) Yes
Direction ::= minmoment ~ maxmoment degrees (default -180 ~ 180)

(change_view Width Quality) No

Width ::= narrow | normal | wide

Quality ::= high | low

(dash Power) Yes
Power ::= minpower ~ maxpower (default -~100 ~ 100)

(kick Power Direction) Yes

Power ::= minpower ~ maxpower (default -100 ~ 100)

Direction ::= minmoment ~ maxmoment degrees (default -180 ~ 180)

(move X Y) Yes
X ::=-54.5 ~ 54.5
Y:=-34~ 34

move only works in before _kick_off mode and 5 seconds after a goal is scored

(say Message) No
Message ::= a string of at most say msg_size characters (default 512)

(turn Moment) Yes
Moment ::= minmoment ~ maxmoment degrees (default -180 ~ 180)

(turn_neck Moment) Yes
Moment ::= minneckmoment ~ maxneckmoment degrees (default -180 ~ 180)

turn neck is relative to to the direction of the body and the resulting angle

must be between minneckang and maxneckang degrees (default -90 ~ 90).

Can be invoked at the same cycle as a turn, dash, catch or kick.

2.1.5 The command cycle

The command cycle, i.e. the cycle within which the agent must reason,

decide on action and send it to the server, is actually composed of
different cycles, running in parallel. The four cycles are:

four

e The simulator cycle controls the time in the simulation. The length
is determined by the parameter simulator_step, its default value is

100 milliseconds.

e The send physical sensor data cycle controls when to send

the

current physical sensor data to the agent. The length is determined

by sense_body_step, its default value is 100 milliseconds.

e The send visual sensor data cycle controls when to send the

cur-

rent visual sensor data to the agent. The length is determined by

send_step, its default value is 150 milliseconds.

e The receive commands from the clients cycle controls when the

server receives commands from the clients. The length is determined

by recv_step, its default values is 10 milliseconds.

The four cycles are controlled by the same internal clock inside the server
and due to the new implementation of the server they are updated quite

accurately. But they are still asynchronous as shown in Figure 2.5.
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Figure 2.5: An example of what data the agent receives when, and also when
commands sent by the agent will be executed.

example in the figure shows what data the agent receives and when. As
shown, the data can arrive both earlier and later than expected.

All actions received by the server at the end of the simulator cycle will
be used when updating the state of the simulation. The example shows
the agent sending commands back to the server, but due to the delays in
the network and the fact that the server takes some time before reading
the messages received (between 0 and recv_step milliseconds) they are not
always executed in the same simulation step as the agent sent them.

Since the agent neither knows when it will receive the next sensor in-
put nor when the current simulator cycle will end it has to make a decision
whether to wait for more information or to act on the current information.
This decision will affect both how often the agent can act and how much in-
formation can be used when deciding what action to do. This balance is very
central to every RoboCup agent and have great impact on the performance
of the agent.

2.2 Educational aspects

Since 1997 the Department of Computer Science at Link6ping university
has been giving a course in Al-programming focusing on the problem of
developing RoboCup teams. A paper describing the course has been written
by Silvia Coradeschi and Jacek Malek [6]. They found that

The use of a challenging and interesting task [RoboCup], and the
incentive of having a tournament has made the [Al-programming]
course quite successful, both in terms of enthusiasm of the stu-
dents and of knowledge acquired.

Similar conclusions are also drawn by Russel and Norvig when they intro-
duced the wumpus world in their introductory AI course [25].

The major problem with the Al-programming course, from the students’
point of view, was that creating RoboCup agents requires a large amount of
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knowledge not related to Al, like real-time and process programming, and
a large effort to overcome the initial problems, like communicating with the
server, parsing the server messages, calculating the position of the player and
sending simple commands back to the server. The most requested improve-
ment was more help with these practical problems of developing a RoboCup
agent [6].

This Al-programming course and the fact that there are no libraries de-
veloped for the purpose of helping students creating their own RoboCup
teams has motivated and inspired me to do this master thesis. The edu-
cational aspects of the problem induces some important demands on the
library, it should be:

e Simple enough to be easy to use;

e general, in order to allow different approaches to be implemented and
tested;

e extendible, it should be possible to replace and extend the different
parts of the library with as little difficulty as possible.

In order for a library, with the above properties, to be really useful from
an educational point of view it has to take care of the basic problems that
a RoboCup agent has to handle. Four essential problems I think should be
addressed by a library are:

1. Basic server communication:
The first practical problem when building RoboCup agents is to get
the basic communication with the server working, i.e. the agent must
be able to receive the data sent by the server then be able to use this
data to decide on an action and finally to be able to send that action,
with the correct parameters, back to the server.

2. Timing:

As described in the section about the different cycles of the server there
are a lot of things to keep in mind when handling the timing. Together
they make the problem of keeping track of the current simulation step
and send commands in time for them to be executed in the current
step, but at the same time use the best available information when
making the decision, very hard. It is also a major source of confusion
when first encountered. Therefore it is very important that students
do not have to worry about these low-level problems.

3. World modeling:
The next problem is to keep track of the state of the simulation based
on the sensory data received from the server. Since the soccer envi-
ronment is not very hard to represent, the main problem is to use the

16



noisy and incomplete sensor data to draw correct conclusions about
the objects in the world. There is also the problem of making predic-
tions about future states of the server, but that is not so important as
having a model of the current world which is as complete, consistent
and updated as possible.

4. Support for decision making:

The fourth problem is, based on the current world model, to decide
on what action to do. This is of course the job of the agent designer
not the library designer but to assist the agent programmer it is very
good to have some support for the decision making like notifications
when new information arrive from the server and when a new cycle is
started. Since most decision makers used in RoboCup use some sorts
of rules it is practical to have some predefined predicates, like is the
ball on our half, are we playing on the left side of the field and so on,
which can be used to trigger rules. With decision making I mean the
very general meaning of the concept from a RoboCup point of view, to
select some actions to do based on the current world model. It is also
very convenient to have some higher level of abstraction when it comes
to actions. Therefore intermediate skills are needed, which are based
on the basic actions the agent can do. For example turn to absolute
direction D, or kick the ball to position (X,Y).

2.3 Related work

This section describes some of the related work to this report. The first
section will discuss the concept of an agent. The second section will define
what an agent architecture is and what kind of architectures exist. The
third, and final, section describes some of the RoboCup libraries available
today.

2.3.1 What is an agent?

The are many answers to that question, almost as many as there are agent
researchers. The definition that is most appropriate for this work is the
definition of Russel and Norvig, they define an agent as “anything that can
be viewed as perceiving its environment through sensors and acting upon
that environment through effectors” [26]. Even though it is a very simple
definition of an agent, compared to most other definitions (see [11] for a
collection of agent definitions). It is general enough to cover most agents
used in RoboCup, since all RoboCup agents decide upon sensor information
from the soccer server what effectors to use by sending commands back to
the server.
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2.3.2 Agent architectures

Since there are many definitions of what an agent is, there are also many
definitions of what an agent architecture is. For example Pattie Maes defines
an agent architecture as: “[A] particular methodology for building [agents].
It specifies how ... the agent can be decomposed into the construction of
a set of component modules and how these modules should be made to
interact. The total set of modules and their interactions has to provide an
answer to the question of how the sensor data and the current internal state
of the agent determine the actions ... and future internal state of the agent.
An architecture encompasses techniques and algorithms that support this
methodology.” [16]

Over the past decade a number of different approaches to the problem
of finding good functional decompositions of agents has lead to at least
four major types of agent architectures: reactive, deliberative, hybrid and
interacting architectures [17].

Reactive architectures

The reactive, behavior-based or situated, architectures are strongly influ-
enced by behaviorist psychology. The goal is to achieve robust behavior
instead of correct or optimal behavior. They do this by using simple action
rules based on the current situation with little or no explicit information
[17].

An example of a behavior-based architecture used in the RoboCup do-
main is the architecture used by the Headless Chickens [7, 27].

Deliberative architectures

Agents based on Simon and Newell’s physical symbol system hypothesis
[19], the assumption that agents maintain an internal representation of their
world, and that there is an explicit mental state which can be modified by
some form of symbolic reasoning are called deliberative agents [17].

One example of a deliberative architecture is the Belief, Desire, Intention
architecture (BDI) developed by Bratman et al [3]. BDI is used in the
RoboCup domain by for example AT Humboldt [4, 5].

Hybrid reactive-deliberative architectures

Since most agents need to be both reactive and able to use deliberation
in their decision processes the hybrid, layered, architecure has emerged. It
usually combines reactive and deliberative layers in some way to create a
hybrid agent architecture [17]. The major problem is how to combine the
different layers into a single unit. Wooldridge and Jennings even argue that
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hybrid architectures are very ad-hoc since it is not clear how to reason about
them and what the underlying theory is [36].

An example of hybrid architecture used in RoboCup is the architecture
used by FCFoo [12].

Interacting architectures

Architectures which mainly deal with coordination and cooperation among
distributed intelligent agents are called interacting architectures [18].

No example of interacting architectures have be found in the RoboCup
domain.

2.3.3 Other RoboCup libraries

Previous attempts to build RoboCup libraries have usually been a team
releasing parts of their code for others to use. The problem with these
releases are usually that they come with little or no documentation and the
code is tightly connected to the structure of the team. Therefore there is a
need for a well documented, well structured and generic library for people
to use. The structure of the library should help and encourage different
developers to share their code. The benefit is that new teams do not have
to start from scratch but can instead build on previous teams experience.

The rest of the section will be used to describe two existing libraries,
libsclient and RoboLog, and also the team CMUnited which have been a
great source of ideas and inspiration.

Libsclient

Libsclient is a library of C routines for basic RoboCup client functionality
first developed by Itsuki Noda at ETL, Japan, and then extended by Yaser-
Al Onaizan, Gal Kaminka, Jafar Adibi, and the other members of the ISIS
team at the University of Southern California/Information Sciences Insti-
tute, USA.

This library contains an interface to the server, a parser, an algorithm
for calculating the position of the agent and some very basic algorithms for
calculating the absolute position of an object and for calculating the turn’s
and dash’s the agent has to make in order to move to a certain position.

Unfortunately this library is not very suitable for educational use since
it is very basic and does not really handle any of the low-level problems
of the server. For example the basic network services only takes care of
sending and receiving messages on request by the agent. It does not address
any of the problems with synchronization with the server or making sure
that the agent tries to send commands each cycle and base them on the
best available data, which is one of the most important tasks for any library
useful for educational purposes. But it is useful for scientists who want to
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do their own thing, but do not want to do the parsing and need a better
interface to the communication with the server. Another problem is that the
libsclient is no longer supported, and it is not up to date with the current
server.

RoboLog

RoboLog is an ECLiPSe-Prolog library built on top of a C++ library devel-
oped by Oliver Obst at the university of Koblenz-Landau. The C++ library
was developed to make the server functions accessible from Prolog and to
build a database with the data from the soccer server. The interface to
the database is somewhat awkward and not very elegant since all the data
is stored in one large structure. A more serious problem with this world
model is that no inference about the objects are made from old knowledge,
instead the new sensor data is simply stored in the database and the client
programmer has to do all the inference.

Apart from the world model RoboLog is an advanced library with many
nice features and algorithms for computing the position of the agent, do
geometric calculations and support the development of advanced skills. Even
though it does not have any abstractions of the basic server commands, like
turn to absolute direction D or kick the ball to the point (X,Y). It does
take care of most of the low-level tasks like sending and receiving data from
the server and the timing of the commands, but in a rather simple manner.
It makes sure that the agent will not send more than one catch, dash, move
or turn each cycle, but it does not give the agent any hints of when it has
to send the commands or when it is getting too late to send a command the
current cycle.

Another serious problem, from my point of view, is the fact that it is
very hard to replace parts of the RoboLog code with new, without having
to change other, irrelevant, parts of the code, mostly because of the design
of the world model. This together with the complexity of the library mainly
due to lack of a clear general architecture makes it quite hard to understand
and exchanging parts of the code to try different approaches is cumbersome.
Finally the threshold before productivity is not low enough for it to be useful
in an educational setting. The benefits from the library is the possibility to
program agents in Prolog, and the large amount of features available when
the initial obstacles are overcome.

More information about RoboLog can be found on their web site [23].

CMUnited

CMUnited is the most successful team in the history of RoboCup so far, it
has won the last two competitions, 1998 in Paris and 1999 in Stockholm. It is
developed by Peter Stone, Manuela Veloso and Patrick Riley from Carnegie
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Mellon University, USA. The team and its development is described in a
series of articles, among them [31, 33, 34], and in Peter Stone’s PhD-thesis
[30].

To help the rest of the RoboCup community they have released parts of
their team. The released code does the basic server communication, most of
their world modeling and their basic actions and skills. Their implementa-
tion is very advanced and they have one of the most accurate world models
available. The main problem is the very tight connection between the parts,
it is almost impossible to replace parts of it. The code is also very complex,
and it is hard to get a grasp of what it really does. The documentation is
very good and it is easy to get an overall picture of how their team and the
major algorithms works.

Even though their code is not very useful from a student perspective their
release is very important since others can use it as a source of inspiration
and ideas and are also allowed to take the parts of the code they find use
for.
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Chapter 3

RoboSoc

This chapter describes the RoboSoc system for developing RoboCup agents.
It discusses how the system works, its design and the reason behind the
design. It is not a manual of how to use RoboSoc, a limited user’s guide can
be found in Appendix A.

Since RoboSoc is object-oriented, and I assume the reader have some
basic knowledge about the object-oriented paradigm, I will sometimes refer
to objects, classes and methods when I talk about different parts or features
of RoboSoc.

Everything described in this chapter is actually implemented and has
been used in a course on Al-programming at the computer and information
science department at LinkOping university in the fall of 1999 [1]. The
implementation is done in C++ on a UNIX platform.

3.1 Overview

The design goal of RoboSoc is to create a system for developing RoboCup
agents especially, but not only, for students which is as general, open, and
easy to use as possible and that encourages and simplifies the modification,
extension and sharing of RoboCup agents, and parts of them.

As stated in the introduction this is a very open problem and some
assumptions about what the user wants from the system have to be made.
I assume the user wants:

1. accurate, complete and consistent data, in that order of importance;
2. use as much time as possible for the decision making;
3. rather act on incomplete information than not act at all;

4. soccer objects the agent can manipulate, like representations of the
ball and the players.
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Figure 3.1: The RoboSoc architecture.

The design goal together with the four assumptions above and the four
essential problems discussed in section 2.2 has lead to a system consisting
of three major parts:

e a library of utility classes, like geometric objects, game objects, and
some basic building blocks to be used with the framework;

e a basic system for the timing and the interaction with the server; and
e a framework for information processing, skills and predicates.

The system architecture is shown in Figure 3.1 and includes the basic
system and the framework. The figure consists of three different kinds of
boxes representing different kinds of units. The rectangular boxes repre-
sent objects (classes), the hexagonal boxes collections of objects (from the
same base class) and the boxes with the rounded edges separate indepen-
dent programs. The arrows show how data and information flows between
the different subparts. An arrow does not always implicate a dependency
between the units. In fact, the library is not dependent on any part of the
system, the basic system is dependent on the library, and the framework is
dependent on the basic system and therefore also on the library. This means
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that a user can either use the library, the basic system and the library or
the whole system when creating a team. Most of the implementation of the
framework and the decision maker is supposed to be done by the user, with
support from the framework and the library, while the basic system is not
supposed to be changed be the user, unless it is really necessary.

The following sections of this chapter describe the functionality and de-
sign of the three majors parts.

3.2 The library

The RoboSoc library is the foundation for the rest of the system. It pro-
vides the necessary types, classes and utilities needed by the other parts
of the system. There are classes for representing geometric objects, there
are classes for representing the objects found in the soccer environment and
there is a class for each of the commands that can be sent to the soccer
server.

3.2.1 Data types

To make the system more machine independent there is a set of basic types
for representing integers and floating point numbers. They are named after
the type they represent and the number of bits they can store. There are
also types defined to represent simple objects in the RoboCup simulation,
like a command name, a marker name and so on.

Modifiers

Since most values a RoboCup agent has to handle are based on uncertain
observations, or estimations there is a need for representing the confidence
of the correctness of a value. Since the agent is not always aware of the state
of an object in the world, like the velocity of the ball, there is also a need
for representing unknown values. To support the reasoning with observation
times, uncertainty and unknown values I have implemented a system with
modifiers where a basic type can be modified to handle one of the features.

3.2.2 Utilities

The library provides some basic mathematic utilities like calculating abso-
lute values, convert radians to degrees and so on, but also a class for rep-
resenting a communication socket and a class for representing a real-time
timer.
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Figure 3.2: The object hierarchy of the game objects in the RoboSoc library.

CBallObject

3.2.3 Geometric objects

The geometric objects included in the library are classes for representing
angles, both in degrees and in radians, vectors, point, lines and rectangles.
The reason for having two types of angles is that you do not want to confuse
the user by making it unclear what unit the angles are in.

Modifiers

The same argument about uncertainty and unknown values is valid for geo-
metric objects therefore there are modifiers for them too. Unfortunately the
modifiers described above only work on basic types like integers and floats,
therefore there exist specialized modifiers for the geometric objects.

3.2.4 Game objects

The game objects represent the objects introduced by the soccer environ-
ment. They include a ball object, a player object and an agent object. The
object hierarchy is shown in Figure 3.2.

This hierarchy looks almost the same as the object hierarchy used by
CMUnited [34], but in fact they are not very similar because my objects
have no reference to the current world model of the agent, as the CMUnited
objects have. The main reason is that I want the library to be stand-alone
and not dependent on anything else, especially not the world model which
is usually very specific for each agent design.

Since each game object represents an object at a certain moment in time,
and they do not have any connection to the rest of the world model, they can
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also be used by a prediction system to create multiple, possible, versions of
the object. This is not possible with the objects used by CMUnited. If the
user desires, she can extend the basic game objects by connecting them to
the world model of the agent. The benefit is that you can make sure that the
state of the object is valid according to the world model and the simulation,
for example by checking the speed and see if it is within the limits of the
object, but also to make special, world or simulation dependent, update
methods directly in the game object.

There is also a template for representing a collection of game objects
called ObjectCollection used in the views to represent the history on an
object. It can be instantiated with any class derived from the CGameObject
class.

3.2.5 Command objects

The command objects are designed to represent the commands that can be
sent to the Soccer server. The version of the command objects included
in the library are very simple since they are completely separated from
the world model of the agent, for the same reason as the game objects.
This unfortunately implies that no checks can be made about the validity
of the commands sent to the server. But the objects can be extended to
support more advanced functionality like making sure the arguments are
legal according to the simulation and to assist the updating of the world
model.

The available commands and their arguments are shown in Table 3.1 in
section 3.3.5.

3.3 The basic system

The purpose of the basic system is to take care of the basic server commu-
nication and the timing as described in section 2.2. To accomplish this the
task is to receive the messages from the server as soon as they arrive and
send them to the sensors which parse the messages and store the raw data.
Concurrently the controller keeps track of the current game time and when
it is time to send commands back to the server. When the time comes the
controller gets the next command from the actuators, which are responsi-
ble for queuing the commands from the decision maker, and sends it to the
server for execution. The type of data and how it flows through the basic
system is shown in Figure 3.3.

It is possible to use only the basic system, without the information pro-
cessing and skills framework on top of it. The only difference is that the
user must use simpler versions of the sensor and actuator interfaces, all the
functionality of the basic system are still available to the user.
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Figure 3.3: The data flow in the basic system of RoboSoc.

The basic system consists of the server interface, the controller, the sen-
sors, the sensor interface, the actuators, the actuator interface and the de-
cision maker. The rest of this section is devoted to describe these different
subparts in detail.

3.3.1 The server interface

The server interface takes care of the lowest level of communication with the
server by providing an interface to the socket implementing the actual server
communication. The controller uses the interface to connect to the server
when the agent is started, receive the server messages when they arrive and
send the commands back to the server.

3.3.2 The controller

One of the most important units in RoboSoc is the controller. It is respon-
sible for the timing of the agent and the synchronization with the server. Its
task is to keep track of the current game time, receive messages as soon as
they arrive and control when to act. It should also dispatch the messages
from the server to the sensors and guide the decision maker by generating
events.

To complete its task the controller uses an internal clock, an IO handler
and three control algorithms. The internal clock will generate an interrupt
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every recv_step (usually 10) milliseconds and the IO handler an interrupt
as soon as data arrive to the socket connecting the agent to the Soccer server.
The first algorithm is used to update the agent after a tick of the internal
clock, the second algorithm is used to update the agent when sensor data is
received and the third algorithm is used to update the current time of the
agent based on the last known server time. These three algorithms define
the working cycle of the agent since they generate the events which guide
the decision maker.

The only assumption about the server the algorithms make is that the
agent receives physical sensor data from a sense_body message almost ev-
ery cycle either at the beginning of the new cycle or at the end of the old
cycle. This assumption makes it possible to assume a new cycle has started
when the agent receive a sense_body message and it can also assume it has
almost 100 milliseconds before its command for this cycle has to be at the
server. Before discussing the algorithms in detail the RoboSoc concept of
time needs to be defined.

Time in RoboSoc

The time concept used in RoboSoc is based on the CMUnited concept of
time [8]. They represent time as a tuple of the last known server time and
the number of cycles since the clock was stopped. If the clock is not stopped
then the second value is 0. The reason behind this concept is that the agent
wants to reason about time even when the game clock is stopped and the
time reported by the server does not change. This makes it possible to use
the same internal work cycle even when the game is stopped, which would
not be possible otherwise. Whether the game clock is stopped or not is de-
pending on what state the game is in. The state of the game is only changed
after a call of the referee, therefore the starting and stopping of the clock is
done in the sensor interface after the sensors have received a message from
the referee.

Algorithm for updating the agent after a tick of the internal clock

The internal clock is used to time the acting of the agent and to predict if
the agent is missing messages from the server. Therefore the algorithm has
to check if a new cycle ought to have begun and in that case update the state
of the agent with this prediction, but since the controller does not want to
assume that a new cycle actually has begun it will generate an event which
allows the decision maker to react to the situation. The decision maker has
two possibilities, either to assume that a new cycle has begun or to assume
that a new cycle has not begun. When this is done the algorithm will check
to see if a periodic command is waiting to be sent. Otherwise, it checks if
the last time for sending a periodic command this cycle is approaching, then
it generates an event for the decision maker to handle. The reason for this
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is the second assumption about the user given above. Then the algorithm
checks if there are some other commands waiting to be sent.

Algorithm 3.1 Update the agent after a tick of the internal clock.
begin
Generate a BeforeTick event
Update counters
if ( ticks > ticks between cycles ) then begin
Assume new cycle
Update current time
end
if ( assumed new cycle ) then begin
Generate an EstimatedNewCycle event
if ( the decision maker forced a new cycle ) then
Generate a NewCycle event

end
if ( periodic actions waiting and current time > last action time ) then
Send next periodic action
else begin
if ( ticks > ticks before command warning ) then
Generate a CommandWarning event
if ( immediate actions waiting ) then
Send next immediate action
end
Generate an AfterTick event
end

Algorithm for updating the agent when receiving sensor data

When sensor data is received it is first parsed by the sensors, then a suitable
event is generated based on what type of sensor was used in parsing the
message.

Algorithm 3.2 Update the agent when receiving sensor data.
begin
Generate a BeforeSensorData event
while ( sensor data waiting to be received ) do begin
Receive the sensor data
Let the sensors analyze the sensor data received
switch ( last sensor type ) begin
case Physical sensor: Generate a PhysicalSensorData event
case Visual sensor: Generate a VisualSensorData event
case Aural sensor: Generate an AuralSensorData event
case Init sensor: Generate an Init event
case Sensor error: Generate a SensorError event

end
end
Generate an AfterSensorData event
end

Algorithm for updating the current time after receiving the cur-
rent server time

Assumptions made about the current time of the agent:
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e If the clock is not stopped then the time received with the sensor data
is assumed to be correct.

e If the agent thinks the clock is stopped but the time received from the
sensor data is different from the current time then assume the agent
is wrong and the clock is started again.

e If the clock is stopped then the agent assumes a new cycle starts with
a sense_body message, and therefore updates the time.

e A new cycle starts when the current time is greater than the time of
the last cycle.

Based on the assumptions above the following algorithm was developed, the
only addition is the number of ticks of the internal clock that are counted
from a visual or a physical sensor event. They are used to predict how much
time is remaining before the next visual sensor data and how much time the
agent has left in this cycle.

Algorithm 3.3 Update the current time based on current server time.
begin
if ( not clock stopped ) then
Reset estimated time
else if ( last known server not equal new server time ) then
Assume the clock is running
Update last known server time with the new server time
Update the current time with the new server time
switch ( last sensor type ) begin
case Physical sensor:
if ( clock is stopped and last sense time is equal to current server time ) then
Update estimated time since clock was stopped
Reset ticks since last physical sensor data
case Visual sensor: Reset ticks since last visual sensor data
end

end

3.3.3 The sensors

The purpose of the sensors are to parse the messages sent by the server
and store the intermediate result for further processing either by some user-
defined unit or, if the framework is used, by the views. The parser is an
adapted version of the parser used in CMUnited-98 [34].

3.3.4 The sensor interface

To hide the implementation of the sensors there is a sensor interface. There
are actually two different sensor interfaces, the first, called the basic sensor
interface, should be used when only using the basic system and the second,
called the sensor interface, should be used when the information processing
framework is used.
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The basic sensor interface contains methods for accessing all the raw
data produced by the sensors. If the information processing framework is
used then the sensor interface is also responsible for telling the views when
new data is available from the sensors. How this is done is described in
section 3.4.2.

3.3.5 The actuators

The actuators are designed to provide an interface between the agent and
the server when it comes to acting. It takes special command objects, there
is one class for each type of command available to the agent, as input and
converts them to something executable by the server. The actuators are
called by the controller when it is time to send a command. The commands
available are described in Table 3.1.

Since there are two basic types of commands, those that can be exe-
cuted immediately (immediate commands) and those that only one can be
executed every cycle (periodic commands), the actuators maintain two sep-
arate queues, one for each type of command.

3.3.6 The actuator interface

To hide the implementation of the actuators, in the same way as with the
sensors, there is an actuator interface the agent should use to send commands
to the actuators.

3.3.7 The decision maker

The decision maker is the unit that implements the decision making process
of the agent. This is the unit the agent designer will extend to program the
behavior of the agent.

Since the second assumption about the user is that she wants to use
as much time as possible to do the decision making, the main loop of the
agent is inside the decision maker. To help the user, the controller generates
events when important things happen, like new sensor data arrives or when
it is urgent to decide on a command for this cycle (because of the third
assumption about the user) before it is too late. The decision maker also
has limited possibilities to give feedback to the controller by changing some
of its parameters like how late in the cycle the decision maker wants the
command warning event.

The events the decision maker has to handle are described in Table 3.2.
Since the events are generated from the critical section of the controller’s
signal handler the decision maker should not use too much time in the event
handlers, since there will be no other interrupts while in the critical section.
Otherwise it can lead to serious problems with the synchronization with the
server and the the estimation of the current time.
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Table 3.1: The actuator commands

available to the agent.

| Command | Description | Periodic|
Bye() Disconnect the agent No
Catch(direction) Tries to catch the ball in di- | Yes
direction €[minmoment : maxmoment] rection direction
ChangeView(view_width, view_quality) Change the current view | No
view_width €{narrow, normal, wide} width and view quality of
view_quality €{normal, high} the agent
Dash(power) Accelerates the agent based | Yes
power €[minpower : maxpower] on the power
Init(team_name, version, goalie) Connect initialize the agent | No
team_name a string
version a string
goalie true or false
Kick(power, direction) Tries to kick the ball in | Yes
power €[minpower : maxpower] direction with power
direction €[minmoment : maxmoment]
Move(z,y) Moves the agent to absolute | Yes
z €[—52.5: 52.5] position (z, y) if it is al-
y €34 : 34] lowed to use move
Say(message) The player screams out | No
message a string of max msg_say_size message loud and clear
characters
Turn(moment) Turn the agent moment de- | Yes
moment €[minmoment : maxmoment] grees to the right
TurnNeck(moment) Turn the neck of the agent | No
moment €[minneckmoment : maxneckmoment|| moment degrees to the right

Table 3.2: The events available to the decision maker.
| Event Generated

BeforeTick Before a tick of the internal clock

AfterTick After a tick of the internal clock

BeforeSensorData Before receiving sensor data

AfterSensorData After receiving sensor data

ActuatorSensorData| After receiving actuator feedback

AuralSensorData After receiving aural sensor data

PhysicalSensorData | After receiving physical sensor data

VisualSensorData After receiving visual sensor data

Init After receiving init data

SensorError After sensor errors

NewCycle When a new cycle has started

EstimatedNewCycle | When the controller estimates that a new cycle has started

CommandWarning | When it is time to send a command before it is too late

DelayedActions When a sense_body indicates that more actions were per-
formed than was sent the previous cycle

MissingActions When a sense_body indicates that less actions were per-
formed than was sent the previous cycle
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It should be possible to use any type of agent architecture with this
decision maker, whether it is a reactive, deliberative or hybrid architecture.
The deliberate agent can use only the main loop to guide the behavior of
the agent, the reactive agent can use only the events and finally the hybrid
agent can use both the events and the main loop to control the behavior of
the agent.

3.4 The framework

On top of the basic system it is possible to use the framework designed to
support and modularize the world modeling and the support for decision
making discussed in section 2.2. The purpose is to provide building blocks
for the user, who either can use the existing blocks as they are or extend them
with new functionality. It is also possible to create completely new blocks.
There are three kinds of building blocks, views, skills and predicates. They
each encapsulate an important concept used in the information processing
and the decision making. A view is a way of looking at and extracting
information, focusing on some special property or object, from a collection
of data which is dependent either on the current time or on the history of
the agent. A skill is a complex action, combined of several primitive actions,
that will take an agent towards a certain goal state. A predicate works like
a predicate defined in a three-valued logic. It is used to answer yes or no
questions about the state of the world. They are supposed to be used as
conditions for rules used in either the decision maker or in the skills.

This section discusses the only concrete unit in the framework, the view
manager, and the three different building blocks, or concepts, that it tries to
capture. The following sections describes instances of the different concepts,
the predefined building blocks available in more detail and how they are used
to supply an agent with a basic world model.

3.4.1 The view manager

The purpose of the view manager is to store and keep track of all the views
in the system and to make sure they are updated when new information
arrives. The view manager is not responsible for the creation of the views.
This is done by the unit where they are needed, when they are needed.
There are two ideas behind this. The first idea is that it should be possible
to have hundreds of views in the system but they should only use resources
when they are actually used and it should not be necessary to know this
at compile time. The second idea is that the actual views in the system do
not need to be known by the framework or the basic system, they only need
to be known to the users of the views. To support the first idea the view
manager keeps a reference counter for each view it stores. When a view is
needed, a request for the pointer to this view is sent to the view manager.
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If the view is stored, then the pointer is returned and the reference count is
increased. If the view is not stored then a null-pointer is returned and the
user has to create the view and send it to the view manager which stores it
and sets the reference counter to 1.

When a view is no longer needed a release view message is sent to the
view manager, which will decrease the reference counter. If the reference
counter reaches zero then the view is removed from the system, unless the
persistent flag is set. The persistent flag is used to prevent a view from
being removed from the system every time its reference counter reach zero.
The reason for this feature is if a view which continuously keeps track of
historic data is not used continuously or if you have a view which takes a
lot of resources when it is started but not very much resource when it is
running.

When the view manager gets a request to update the views after new
sensor data have been received it will go through the current list of views in
its storage and send an update message to each of them. Since each view has
the possibility to request that another view should update itself, a counter
is used to prevent the view to be updated twice with the same information.
It is also possible for the views to detect circular dependencies, which can
not be handled with the current design.

3.4.2 The views

The view is the basic component of the information processing in RoboSoc.
With information processing I mean transforming the data from the sensors
together with information from other views to more detailed or specialized
information and storing it. This information is used to build the agent’s
world model. Each view should (but does not have to) be specialized in some
area, like modeling the ball, a certain skill or some other subject needed by
the decision maker, a skill or another part of the agent.

An important issue is to minimize the redundancy of information. To
make this possible each view can have links to other views containing already
processed and stored information. To solve the problem with dependencies
each update contains a unique number so that the view knows if it has been
updated already, this also makes it possible to discover circular dependen-
cies, as described above.

The views are, like the decision maker, controlled by events. The sen-
sor interface will generate events whenever new sensor data is available or
something else occurred that the views should know about, like a new cycle
started. All the events are described in Table 3.3.

34



Table 3.3: The events the views needs to handle.

| Event | Generated
NewCycle After a new cycle has started
UpdateAfterInit After the agent has been initiated
UpdateAfterSee After visual sensor data has been received
UpdateAfterHear After aural sensor data has been received
UpdateAfterSense After physical sensor data has been received
UpdateAfterCommand | After feedback from the actuators has been received

Information processing

To provide the basic information processing needed by most RoboCup agents,
RoboSoc comes with a set of views that will build up a world model consist-
ing of a model of the ball, a model of the agent, a model of the other players
and a model of the markers on the soccer field. Each of these models are
put in its own view. There are also three more views: the parameter view
which keeps track of the server parameters and optional client parameters;
the command view which is used to calculate the total effects of the actions
executed by the agent; and the game view which keeps track of the current
game. Each of the views mentioned above are described in the following
sections.

In Figure 3.4 the dependency between the views are shown. To overcome
the problem with circular references, some of the views use the previous
cycle’s data instead of the current data. This is possible since each of the
views keep historic data from the last cycles’ in case a need for them are
found. They could for example be used for calculating a trajectory of an
object based on the previous observations of it.

The parameter view

The parameter view keeps track of all the Soccer server parameters, de-
scribed in section 2.1.1, and a few other important, user defined, parameters
like the team name and whether the agent is the goalie or not. It is also pos-
sible for the user to define her own parameters and let the parameter view,
or rather an extended version of the parameter view, take care of them. The
values for the parameters can either be supplied from text files containing
them or from the command line. If no value for a parameter is supplied a
default value is used. It is possible for the user to change the parameters
during run-time, even though it is not likely to be necessary. Since the pa-
rameter view only contains parameters that are independent of the rest of
the agent nothing is done in the event handlers.
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Figure 3.4: Graph showing the dependency between the views.

The command view

The command view calculates the effect of the commands executed the dur-
ing current cycle. It will give the total movement vector of the agent and
the ball for the current cycle. It will also give the total turn angle of the
agent and its neck. The available methods are described in Table 3.4.

The game view

The game view stores information about the status of the game, like the
play mode, the score and the current time. The complete set of methods is

shown in Table 3.5.

Table 3.4: Functionality provided by the command view.

[ Name | Return type | Description |
GetAgentMovement A vector Get the previous cycle’s total agent movement vector
GetBallMovement A vector Get the previous cycle’s total ball movement vector
GetActualTurn An angle Get the previous cycle’s total agent turn body angle
GetActualTurnNeck | An angle Get the previous cycle’s total agent turn neck angle
GetAgentAcceleration| A vector Get the previous cycle’s total agent acceleration vector
GetBallAcceleration | A vector Get the previous cycle’s total ball acceleration vector
GetActualDashPower | A number Get the dash power used the previous cycle
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Table 3.5: Functionality provided by the game view.

[ Name | Return type | Description
GetCurrentTime A time object | Get the current time according to the agent
GetPlayMode(hist) A play mode Get the play mode for hist cycles ago
GetOurSide A side Get the side of the field the agent is playing on
GetTheirSide A side Get the side of the field the agent is not playing on
GetOurScore A number Get the score for the agent’s team
GetTheirScore A number Get the score for the other team
GetOurTeamName A string Get the name of the agent’s team
GetTheirTeamName | A string Get the name of the other team

Table 3.6: Functionality provided by the marker view.

[ Name | Return type | Description |

GetNumberOfSeenLines A number Get the number of lines seen in the
last see message

GetClosestSeenLine A line object Get the closest line last seen

GetLine(line, hist)

A line object

Get the line line as seen hist cycles
ago

GetLine{L,R,T,B}(hist)

A line object

Get the line object as seen hist cycles
ago

GetClosestSeenMarker

A marker object

Get the closest marker seen in the
last see message

GetMarker(marker, hist)

A marker object

Get the marker marker as seen hist
cycles ago

GetClosestMarkerTo(point, hist)

A marker object

Get the closest marker to point as
seen hist cycles ago

GetClosest GoalTo(point, hist)

A marker object

Get the closest goal to point as seen
hist cycles ago

GetTheirGoal(hist) A marker object | Get the opponents’ goal as seen hist
cycles ago
GetOurGoal(hist) A marker object | Get the agent’s team’s goal as seen

hist cycles ago

GetGoal{L,R}(hist)

A marker object

Get the goal object as seen hist cycles
ago

GetFlagName(hist)

A marker object

Get the marker object as seen hist
cycles ago

The marker view

The marker view stores information about all the markers on the field. It
will give absolute position, relative distance and direction to each marker.
In Table 3.6 all the methods are described.

The agent view

The agent view keeps track of the agents status, i.e. its absolute position,
stamina, effort, recover, absolute face direction, body and neck directions.
In Table 3.7 all the methods are described.
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Table 3.7: Functionality provided by the agent view.

Name

| Return type

Description

GetAgentObject (hist)

An agent object

Get the object representing the agent hist cycles
ago

GetAgentPosition(hist) | A point Get an estimation of the position of the agent
hist cycles ago

GetFaceDirection(hist) | An angle Get an estimation of the facing direction of the
agent hist cycles ago

GetBodyDirection(hist)] An angle Get an estimation of the body direction of the
agent hist cycles ago

GetNeckDirection(hist)| An angle Get an estimation of the neck direction of the
agent hist cycles ago

GetEffort (hist) A number Get an estimation of the effort of the agent hist
cycles ago

GetRecover (hist) A number Get an estimation of the recover of the agent
hist cycles ago

GetStamina(hist) A number Get an estimation of the stamina of the agent
hist cycles ago

IsGoalie A boolean Return true if the agent is the goalie otherwise
false

GetUniformNumber A number Get the uniform number of the agent

GetSpeed(hist) A number Get an estimation of the speed of the agent hist
cycles ago

GetViewWidth (hist) A view width Get the view width of the agent hist cycles ago

GetViewQuality (hist) | A view quality Get the view quality of the agent hist cycles ago

GetViewAngle(hist) An angle Get the width of view cone of the agent hist
cycles ago

GetDashes(hist) A number Get the number of dashes the agent has made
up to hist cycles ago

GetKicks(hist) A number Get number of kicks the agent has made up to
hist cycles ago

GetSays(hist) A number Get the number of says the agent has made up
to hist cycles ago

GetTurns(hist) A number Get the number of turns the agent has made up
to hist cycles ago

GetTurnNecks(hist) A number Get the number of turn necks the agent has

made up to hist cycles ago
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Table 3.8: Functionality provided by the ball view.

[ Name | Return type | Description
GetBallObject (hist) A ball object Get the object representing the
ball hist cycles ago
GetBallDistance(hist) A float Get the distance to the ball hist
cycles ago
GetRelativeBallVector (hist) A vector Get the relative vector to the ball
hist cycles ago
GetRelativeBallDirection (hist) An angle Get the relative direction to the
ball hist cycles ago
GetAbsoluteBallVector (hist) A vector Get the absolute vector to the ball
hist cycles ago
GetAbsoluteBallDirection (hist) An angle Get the absolute direction to the
ball hist cycles ago
GetBallPosition(hist) A point Get the absolute position of the
ball hist cycles ago
GetBallDistChanged (hist) A float Get the distance change of the ball
hist cycles ago
GetBallDirChanged (hist) An angle Get the direction change of the
ball hist cycles ago
GetBallAbsoluteSpeedVector (hist) A vector Get the absolute speed vector of
the ball hist cycles ago
GetBallRelativeSpeed Vector (hist) A vector Get the relative speed vector of
the ball hist cycles ago
GetBallSpeed (hist) A float Get the speed of the ball hist cy-
cles ago
GetBallAbsoluteSpeedDirection(hist) | An angle Get the absolute direction of the
speed of the ball hist cycles ago
GetBallRelativeSpeedDirection(hist) | An angle Get the relative direction of the
speed of the ball hist cycles ago

The ball view

The ball view keeps track of the ball, its absolute position, relative distance
and direction and a very rough estimation of its speed. In Table 3.8 all the
methods are described. All relative angles are relative to the facing direction
of the agent, taken from the agent view.

The player view

The player view keeps track of the other players. It will give access to three
structures: teammates, opponents and unknown players. Each will give
information about the absolute position, relative distance and direction,
body direction, face direction and uniform number (not available for the
unknown players). In Table 3.9 all the methods are described. All relative
angles are relative to the facing direction of the agent, taken from the agent

view.
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Table 3.9: Functionality provided by the player view.
| Name | Return type | Description |

GetClosestPlayer (hist) A pointer to a player object | Get the closest seen
player hist cycles ago

GetClosestOpponent(hist) | A pointer to a player object | Get the closest seen oppo-
nent seen hist cycles ago
GetClosest Teammate(hist) | A pointer to a player object | Get the closest seen

teammate  seen hist
cycles ago
GetOpponents(hist) A vector of player objects Get the opponents seen
hist cycles ago
GetTeammates(hist) A vector of player objects Get the teammates seen
hist cycles ago
GetUnknownPlayers(hist) | A vector of player objects Get the unknown players

seen hist cycles ago

Table 3.10: The truth-tables used by the predicates.

| [~ [~ [t [f Ju [v [t [f Ju |
t f t t f u t t t t
f t f f f f f t f u
u u u u f u u t u u

3.4.3 The predicates

The purpose of the predicates is to encapsulate the concept of a predicate,
in a three-valued logic definition of the concept. In other words one has
a static feature the predicate should describe, like “is the ball on our half
of the field?”, with or without parameters, that can either be true, false
or unknown. The truth-tables used comes from Kleene [15] and are shown
in Table 3.10. The predicates are not automatically updated when new
information is available, but they can use information stored in the views
and thereby get access to historic data.

3.4.4 The skills

The skills encapsulate the concept of acting, or rather short term specialized
planning, or to use the current world model as provided by the views and
the predicates to derive a sequence of primitive actions that will make the
agent perform a certain task or take it towards an intended goal state.

Every skill should do two things, first of all it should be able to deter-
mine if it is applicable at a given moment or if the goal state is already
reached or some of its preconditions are not fulfilled. It should also be able
to generate a plan, a sequence of primitive actions, consisting of at least
one primitive action. The primitive actions are the actions the server can
execute, described in section 3.3.5.

To support the decision maker each skill has the possibility to set its
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own persistence flag, to tell the decision maker that it wants to be called
again. This can be used if a skill wants to do a sequence of actions but is
only allowed to return one primitive action each time it is called. Which is
the case with all the basic skills provided. The reason is efficiency and the
fact that the world is highly dynamic and changes significantly from cycle
to cycle.

The following skills are currently implemented in RoboSoc. They are
not really intended to be used in a real team, but rather act as examples of
what skills can look like.

CatchBall

Purpose: To catch the ball

Arguments: None

Preconditions: The ball is catchable and the agent is the goalie

Algorithm: Catch in the direction of the ball

Limitations: It does not take the movement of the ball or the agent into account

FindBall

Purpose: To find the ball
Arguments: None
Preconditions: None
Algorithm: if the direction to the ball is known
then turn towards the ball
else turn 45 degrees to the right
Limitations: It does not take the time between the visual sensor data into account,
it does not use previous knowledge of the ball

InterceptBall

Purpose: To intercept the ball
Arguments: None
Preconditions: The distance and direction to the ball is known
Algorithm: if the direction to the ball is greater than 5 degrees
then turn towards the ball
else dash with 50% of the maximum power
Limitations: It does not take obstacles or the movement of the ball into account

MoveTo

Purpose: To move to the absolute position (X, Y)
Arguments: X and Y

Preconditions: The position of the agent is known
Algorithm: if allowed to use the move command

41



then Move(X, Y)
else if the direction to the point(X,Y) is greater than 5 degrees
then turn towards the point
else dash with 50% of the maximum power
Limitations: It does not take obstacles into account

Score

Purpose: To kick the ball into the opponents’ goal

Arguments: None

Preconditions: The ball is kickable

Algorithm: Kick the ball as hard as possible towards the center of the opponents’
goal

Limitations: It does not take obstacles nor the agent’s body into account when
kicking

TrackBall

Purpose: Follow the motion of the ball

Arguments: None

Preconditions: The direction to the ball is known
Algorithm: Turn towards the ball

Limitations: It does not take motion of the ball into account

3.5 Educational value

As stated previously in this chapter the RoboSoc system have been used
in the AI programming course given by the department of computer and
information science at Linkoping university. For more information about
the course, look at its web page [1]. The main goal of the course is for
the students to create their own RoboCup teams and then compete against
each other at the end. Previous years the server parameters were adjusted to
remove some problems regarding the timing of the agent to make it easier to
make good teams. The first benefit of the RoboSoc system was that students
could use the standard parameters and still get better teams, since RoboSoc
takes care of the timing of the agent. Another benefit was that the students
could focus on the problem of developing the skills and the decision making
for their agents instead of having to implement the server communication
and the processing and storing of information sent by the server.

Most students felt that it was easy to get started when using RoboSoc
and that it was easy to implement their own ideas. The major problem
reported was the implementation of the modifiers, which is not very user
friendly at the moment. The problem has to do with the way C++ handles
types and type conversions.
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Chapter 4

Conclusions

4.1 Summary

This report discusses RoboSoc, a system for developing RoboCup agents
suitable for educational use. It is designed to be as general, open, and easy
to use as possible and to encourage and simplify the modification, extension
and sharing of RoboCup agents, and parts of them. To do this I assumed
four requirements from the user: she wants the best possible data, use as
much time as possible for the decision making, rather act on incomplete
information than not act at all, and she wants to manipulate the objects
found in the soccer environment.

In order for the system to be useful from a student’s point of view I stated
four essential problems the system has to solve or at least support. It should
take care of the basic interactions with the Soccer server, do the timing, have
support for different world models, and have support for decision making.

The resulting system consists of three parts, the library, the basic system
and the framework. The library consists of basic objects and utilities used
by the rest of the system, and is not dependent on any other part of the
system. The basic system takes care of the interactions with the server,
like sending and receiving data. It is also responsible for the timing and
most of the decision making support by generating events when new things
happen. The basic system is only depending on the library and can be
used without the framework. The framework defines three concepts, used
for world modeling and decision support, views, predicates and skills. The
views are specialized information processing units responsible for a specific
part of the world model, like modeling the ball or the agent. They are also
controlled by events generated by the basic system. The predicates can
be used either by the decision maker or the skills to test the state of the
world. They work like predicates in a three-valued logic, and can either be
true, false or unknown. The skills are specialized, short-term planners which
generate plans for what actions the agent should take in order to reach a
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desired goal state. The framework is depending on both the library and the
basic system.

In [17] Jorg Miiller argue that an agent needs five basic capabilities to
cope with difficult tasks. The agent needs to be:

e Reactive: it should react timely and appropriately to changes in the
environment, even unforeseen changes.

e Deliberative: it should be able to perform tasks in a goal-directed
manner.

e Efficient: it should be able to solve its tasks efficiently by using hard-
coded procedures in routine situations.

e Interactive: it should be able to interact with other agents.

e Adaptive: it should be able to adapt to a changing environment and
to cope with unforeseen events.

Since the computational resources available to the agent is limited a
central task is to “define a control architecture for resource-bounded agents,
which allows the designer of an agent-based system to integrate the require-
ments mentioned above, and to define the trade-offs between them in a way
that is adequate for the application domain under consideration” [17]. Ro-
boSoc is such a control architecture. Since it generates events when the
environment changes, the agent programmerer has the opportunity to inter-
rupt the current deliberative decision process and react to the event. At the
same time the implementation is efficient enough and the skill framework
provides a way to define hard-coded procedures. Other types of reactive
procedures, like RAPs [10] or CONTAP [9], can also be incorporated by
the user without too much trouble. There is currently only very limited
support for adaptation consisting of the history of the world from the last
cycles provided by the information processing framework which can be used
for machine learning or other adaptation mechanisms. The only thing that
is not explicitly supported is the interactive capability, but at the same
time there are no major obstacles if the user wants to add communication
capabilities to their agents.

The contributions of this work is mainly an architecture and an infras-
tructure which makes it easier to develop RoboCup agents that is actually
implemented and working. It takes care of all the low-level details and let
the user focus on the more interesting Al-parts of the agent. It also gives
the users the possibility to share different parts of their agents, by providing
a framework for the most common concepts used in RoboCup.

Since more and more educational institutes are starting to use RoboCup
as part of their curriculum I think this system can play an important role
in the promotion of RoboCup, and AI, by making it more accessible to
everyone.
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4.2 Future work

There is a vast number of things that would improve RoboSoc. The following
paragraphs each discuss one area where improvements are possible.

Improve the existing basic system

The most needed improvement to the basic system is to make it a distributed
application with different units running in separate threads. The benefit
would be better performance and a nicer computational model. At the same
time making it less machine dependent would make it easier to transfer it
to other platforms. Currently RoboSoc will run on most unix flavors with
minor changes, but all operating systems that support sockets and some
type of signals should be able to run it after modifications.

Improve the existing framework

The most obvious improvement is to improve the views, skills, and predicates
that are included. They could be made to deliver more accurate information
and be made to do more advanced geometric calculations.

New views, skills and predicates are always welcome and I hope that
users of RoboSoc will contribute with theirs to advance the state of the art
of RoboCup teams. This could help move RoboCup from the hacking stage
to the stage where all teams have almost the same level of basic functionality
when it comes to individual players. Then more scientific methods becomes
more and more important. One will need a team that has models of the
opponents and uses team tactics and plays to be able to win. Today one
can win most games by only having good individual players.

Another interesting experiment would be to connect existing specialized
software to RoboSoc to take care of certain tasks like planning or prediction.

Other frameworks

The three frameworks that exist today are the most obvious, and necessary,
ones for creating a functional RoboCup agent. But adding other frameworks
is possible. I can think of at least four other useful frameworks: a role
framework, a communication framework, a coach framework, and a machine
learning framework. The role framework is probably the most wanted one
since most teams use some sort of roles to divide the tasks between the agents
today. Otherwise it is interesting to wait and see where the development of
RoboCup is going before taking a concept on as one of general interest.

It is also possible to create completely separate frameworks, that do not
use the current ones, for example support for genetic programming.

45



Development tools and debugging

One direction of development which could be more fruitful than to add
more frameworks is to provide a set of development tools that can help the
developers with the creation of the agents. Tools that are of interest are for
example the layered disclosure tool provided by CMUnited [32], and tools
that graphically show what the agent currently believes in.

Regarding debugging I see two possible types of debugging. The first
type is the retrospective analysis like the logplayer from CMU, where you
first store data from a game and then watch the game and inspect the actions
of the agents afterwards. The second type is the interactive analysis and
maybe even pro active analysis. The interactive analysis is when the current
state of the agent can be inspected during a game, and where you can step
through the execution of the agent and the whole game. The major problem
for the interactive analysis is the support for the step feature within the
current Soccer server. The whole area of developing support for debugging
of real-time, multi-agent systems is very interesting.

A more realistic debug feature could be view-servers, used by RoboLog
[23] and in some sense also the Headless chickens from Linkoping [7]. A
view-server is a server you connect a, running, agent to which then use the
data sent to it by the agents to visualize the current state of the agent, or
use it for inspection or debugging purposes.

I hope to be able to continue working on RoboSoc and add some of the
improvements discussed above. The next event will be to create a team with
RoboSoc that will compete in the Swedish and European championships in
May.
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Appendix A

The user’s manual

A.1 Introduction

This is a preliminary version of the user’s and the reference manual for
the RoboSoc system for developing RoboCup agents. It consists of four
sections. This first section contains a short introduction to the software and
the following three sections described each of the three modules that make
up the complete RoboSoc system.

For the latest information about the current release of RoboSoc, look at
the READVME file included in the latest release. For information about how
to install the software look in the INSTALL file included in the release. To
download the latest version of RoboSoc, including the latest version of the
manual, or to get more information about the development of it look at the
RoboSoc web-site [24].

A problem with the current release is that RoboSoc uses namespaces, be-
cause of a nameclash between the Unix socket management and the standard
template library. Therefore your compiler needs to support namespaces, for
example gcec 2.95 and CC 5.0 does.

A.1.1 Overview of the software package

The RoboSoc system consists of three different parts, the library, the basic
system and the framework. You can either use only the library, the library
and the basic system, or the whole system. Therefore there are three soft-
ware packages available the RoboSoc library, the RoboSoc basic system, and
the RoboSoc framework package. Each of them contains all the files needed
to use the software. Each of the three packages are described in more detail
in the following sections.
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A.1.2 General parts

There are two files included in each of the packages, the compiler directives
and the types for the package. The compiler directives are flags that are set
to control the compilation of the package. The types are those types that
are used by the package. There is also an extra set of compiler directives and
types in the library package for machine dependent compiler directives and
types. What directives and types included in each package are described in
the section describing that package.

A.2 The library

This section will describe the functionality and the use of the library module
of the RoboSoc system.

A.2.1 How to use the library?

The library is not a single unit but rather a collection of classes. To use the
library you therefore have to include the header file for the wanted class.
The names of the include files are usually the name of the class with the
extension .h. The definitions of the classes are in a file with the same name
as the include file, but with the extension .cc.

A.2.2 Compiler directives

The following directives can be defined in library_compiler _directives.h:
_TRIG_IN DEG.: If trigonometry functions should return angles in degrees.
_TRIG_IN_RAD_: If trigonometry functions should return angles in radians.
_USE_EXCEPTIONS_: If exceptions should be used.
_USE DEBUG_: If the debug features should be used.

Only one of the first two directives can be defined, otherwise the compi-
lation will fail.

A.2.3 Data types

RoboSoc contains many different data types used to encapsulate both ma-
chine dependent and implementation dependent data types. The machine
dependent data types are shown in Table A.1, and they are all defined in
machine dependent _types.h. The definition of these must be changed to
match the size of the data types on the local system.

There are also three basic number types that have an unspecified maxi-
mum size, but a specified minimum size, since they are used in such a way
that the size of the type mainly affects the precision of the calculation, not
the range of the values. The three types are shown in Table A.2.
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Table A.1: The basic, machine dependent, data types available in RoboSoc.

| Type | Signed | Size (bytes) | Description |

t_uint16 No 2 Unsigned 16-bit integers

t_uint32 No 4 Unsigned 32-bit integers

t_uint64 No 8 Unsigned 64-bit integers

t_int16 Yes 2 Signed 16-bit integers

t_int32 Yes 4 Signed 32-bit integers

t_int64 Yes 8 Signed 64-bit integers

t_float32 Yes 4 Signed 32-bit floats

t_float64 Yes 8 Signed 64-bit floats

Table A.2: The basic, precision dependent, data types available in RoboSoc.
| Type | Signed| Min size (bytes) | Description |

t_uint | No 2 Unsigned integers with at least 16 bits
t_int Yes 4 Signed integers with at least 32 bits
t_float | Yes 4 Signed floats with at least 32 bits

RoboCup types

The RoboCup specific enumeration types are shown in Table A.3 and are
all defined in 1ibrary types.h.

RoboSoc templates

RoboSoc contains a few templates that are used to represent angles, both in
radians (AngleRad<type>) and in degrees (AngleDeg<type>), and coordi-
nates, both vectors (CoordVector<type>) and points (CoordPoint< type>).
The types in the templates are used to represent basic values, like the angle
or the x and y coordinate.

There is also a template for representing collections of objects called
ObjectCollection< object-type>, the object-type is the type of the object in
the collection.

RoboSoc types

The RoboSoc specific types are shown in Table A.4 and are all defined in
library_types.h. There are also some named instantiations of templates
defined in library types.h, shown in Table A.5.

Modifiers

There are three types of modifiers. Each with its own feature. The three
modifiers are with unknown, with confidence and with observation time.
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Table A.3: Data types for RoboCup concepts available in RoboSoc.

| Type | Values | Description |
t_view_width | VW_Normal, VW _Wide, A type for representing the
VW _Narrow, VW _Unknown concept of view width
t_view_quality| VQ_High, VQ_Low, A type for representing the
VQ_Unknown concept of view quality
t_cmd_type CMD _Unknown, A type for representing the
CMD _Bye, available server commands
CMD_Catch,
CMD_ChangeView,
CMD_Dash,
CMD _Init,
CMD _Kick,
CMD_Move,
CMD_Say,
CMD _SenseBody,
CMD _Turn,
CMD_TurnNeck
t_side_line SL_Left, SL_Right, SL_Top, A type for representing the
SL_Bottom, SL_Unknown side lines
t_marker Goal L, Goal R, A type for representing the
Flag C, Flag CT, markers

Flag CB, Flag LT,
Flag LB, Flag RT,
Flag RB, Flag PLT,
Flag PLC, Flag PLB,
Flag PRT, Flag PRC,
Flag PRB, Flag GLT,
Flag GLB, Flag GRT,
Flag_GRB, Flag_TL50,
Flag_TL40, Flag_TL30,
Flag TL20, Flag_TL10,
Flag_TO0, Flag_TR10,
Flag_TR20, Flag_TR30,
Flag TR40, Flag_ TR50,
Flag BL50, Flag BL40,
Flag BL30, Flag BL20,
Flag BL10, Flag_BO,
Flag BR10, Flag_ BR20,
Flag BR30, Flag_ BRA40,
Flag BR50, Flag LT30,
Flag LT20, Flag LT10,
Flag L0, Flag_LB10,
Flag LB20, Flag_LB30,
Flag RT30, Flag RT20,
Flag RT10, Flag RO,
Flag RB10, Flag_ RB20,
Flag RB30, Unknown_Marker,
Unknown_Goal, Unknown_Flag
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Table A.4:

Data types for RoboSoc concepts available in RoboSoc.

| Type | Values | Description |

t_side S_Unknown, A type for representing the sides
S_Left, of the field
S_Right

t_team T_Unknown, A type for representing the
T_Our_Team, teams
T_Their_Team

t_play_mode | PM_Unknown, A type for representing the pos-

PM _Before_Kick_Off,
PM_Time_Over,
PM_Play_On,

PM Drop_Ball,
PM_Offside_Kick,
PM_Our_Offside Kick,
PM _Their_Offside_Kick,
PM_Half_Time,
PM_Time_Up,
PM_Extended_Time,
PM _Kick_Off,
PM_Our_Kick_Off,
PM_Their_Kick_Off,

PM Kick_In,
PM_Our_Kick_In,

PM _Their_Kick In,

PM _Free_Kick,
PM_Our_Free_Kick,
PM_Their_Free_Kick,
PM_Corner_Kick,
PM_Our_Corner_Kick,
PM_Their_Corner Kick,
PM_Goal Kick,
PM_Our_Goal _Kick,
PM_Their_Goal Kick,
PM_Goal,
PM_Our_Goal,

PM _Their_Goal,
PM_Goalie_Got_Ball,
PM_Our_Goalie_Got_Ball,
PM_Their_Goalie_Got_Ball

sible game modes
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Table A.5: Named instatiations of templates available in RoboSoc.

Type | Instatition |
t_uint16_u WithUnknown<t_uint16>

t_int32_u WithUnknown<t_int32>

t_float32_u WithUnknown<t_float32>

t_float64_u WithUnknown<t_float64>

t_int_unknown WithUnknown<t_int>

t_uint_unknown WithUnknown<t_uint>

t_float_unknown WithUnknown<t_float>

t_float_uco WithUCO<t_float, CTimeUnknown>
CAngleDeg AngleDeg<t_float>

CAngleDegUnknown | AngleDegUnknown<t_float>
CAngleDegUCO AngleDegUCO<t_float, CTimeUnknown>
CPoint CoordPoint<t_float>

CPointUnknown CoordPointUnknown<t_float>

CPointUC CoordPointUC<t_float>

CPointUCO CoordPointUCO<t_float, CTimeUnknown >
CVector CoordVector<t_float>

CVectorUnknown CoordVectorUnknown<t_float>

CVectorUC CoordVectorUC<t_float>

CVectorUCO CoordVectorUCO<t_float, CTimeUnknown>
CVectorCollection ObjectCollection<CVector>
CAngleDegCollection | ObjectCollection< CAngleDeg>
FloatCollection ObjectCollection<t_float>

They add the feature of unknown values, a confidence factor and an obser-
vation time respectively.

They are implemented as templates but are only tested for basic C++
types and other modifiers instantiated with basic types. The basic idea
is to create a new class with an attribute to store a value of the type the
template was instatitated with and extra attributes for the feature. The class
then implements all the basic arithmetic operators and also some special
operators for that modifier. There is also a method called GetValue() which
returns the value of the variable, but without the modification. Therefore
it will discard information stored in the variable. In some cases it might
not even work, if you try to take the value of an unknown variable then it
will throw an UnknownValueException. The special operators are described
below.

With unknown The “with unknown” modifier makes it possible for a
value to be unknown. The special methods available are MakeUnknown(),
which makes the variable unknown and return a reference to that variable,
and IsUnknown() which returns true if the value is unknown or false other-
wise.
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With confidence The “with confidence” modifier makes it possible to
add a confidence factor to the value. The special methods available are
GetConfidence(), which returns the current confidence value, and SetConfi-
dence(CConfidence) which sets the current confidence value.

There is a compiler directive called _PESSIMISTIC_OBSERVATIONS_ which
controlls how confidence values are updated when doing arithmetic with
modified values. If it is set then the lowest confidence value is taken, other-
wise the highest.

With observation time The “with observation time” modifier makes
it possible to add a timestamp to the value. The special methods are
GetObservationTime(), which returns the observation time, SetObserva-
tionTime(Time), which sets the current observation time, and GetCyclesS-
ince(Time) which returns the number of cycles between observation time
and time.

There is a compiler directive called _PESSIMISTIC_OBSERVATIONS_ which
controls how observation times are updated when doing arithmetic with
modified values. If it is set then the earliest observation time value is taken,
otherwise the latest.

The standard modifiers (WithUnknown< type>, WithConfidence<type>,
and WithObservationTime<type, time>) does not work with the templates
for the angles and coordinates there are special versions of the modifiers
available, called AngleDegUnknown< type>, for unknown, AngleDegUC< type>
for both unknown and confidence, and AngleDegUCO < type> for unknown,
confidence and observation time and similar for AngleRad, CoordVector and
CoordPoint.

A.3 The basic system

This section describes the basic system of RoboSoc and how to use it.

A.3.1 How to create an agent?

To create an agent using the RoboSoc basic system, without the framework,
you have to create a main function where you start the different parts. In
Example A.1 you can see how the code for a basic agent might look like.
The function rs_debug is used for debugging, and is only needed if the com-
piler directive 'USE_DEBUG_ defined in 1library compiler directives.h.
The constructors for the different units are described in the following sec-
tions.

The initialization of the agent is done in the CDecision class, and since
the base class CDecision does not send any init message to the server you
have to write your own decision class. How this is done is described in
section A.3.9.
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A.3.2 How to use the basic system with the framework?

The only difference is that you have to use the class CSensorInterface instead
of CBasicSensorInterface when you start the sensor interface in Example A.1.
You also need to start the view manager and use a different decision class,
but that is discussed in section A.4.

A.3.3 The controller

The constructor is CController (CServerInterface* const, CSensorsx*

const, CActuators* const, CDecision* const, const t_uintl6 cycle_length,
const t_uintl6 recv_step, const t_uintl6 sense_step, const t_uintl6
visual_step) where CServerInterface, CSensors, CActuators, CDecsion is

pointers to the current server interface, sensors, actuators and decision ob-

jects. The cycle_length it the length of a cycle in milliseconds, recv_step is the

interval between the server polls the sockets, sense_step the interval between
sense_body messages, and visual_step the interval between see messages.
recv_step, sense_step, and visual_step can be found in server.conf.

A.3.4 The sensors

The constructor is CSensors (CBasicSensorInterface*), where CBasicSensorInterface
is a pointer to the sensor interface object.

A.3.5 The sensor interface

The constructor is CBasicSensorInterface (string& my_team name) where
my_team_name is the name of the team. The string is used to infere which
team a player belongs to.

A.3.6 The actuators

The constructor is CActuators (CActuatorInterface*), where CActuatorInterface
is a pointer to the actuator interface object.

A.3.7 The actuator interface

The constructor is CActuatorInterface().

A.3.8 The decision maker

The constructor is CDecision(CActuatorInterface* const actuator_interface,
CBasicSensorInterface* const sensor_interface), where C'ActuatorInterface
is a pointer to the actuator interface object and CBasicSensorInterface is a

pointer to the sensor interface object.
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Table A.6: The events available to the decision maker.

| Event | Generated

BeforeTick Before a tick of the internal clock

AfterTick After a tick of the internal clock

BeforeSensorData Before starting to receive sensor data

AfterSensorData After receiving sensor data

ActuatorSensorData| After receiving actuator feedback

AuralSensorData After receiving aural sensor data

PhysicalSensorData | After receiving physical sensor data (sense_body)

VisualSensorData After receiving visual sensor data

Init After receiving init data

SensorError After sensor errors

NewCycle When a new cycle has started

EstimatedNewCycle | When the controller estimates that a new cycle has started

CommandWarning | When it is time to send a command before it is too late

DelayedActions When a sense_body indicates that more actions were per-
formed than was sent the previous cycle

MissingActions When a sense_body indicates that less actions were per-
formed than was sent the previous cycle

A.3.9 How to do the decision making?

To add the decision making you have to the following. Create a new class
that inherits from CDecision. In that class you have to start the main loop of
the program, for an example see Example A.2. Then you have to implement
some of the event handlers that the controller will call. The event handlers
are described in Table A.6. For an example implementation of a basic agent
look at the basic decision class in Example A.3.

A.3.10 How to get the sensor information?

To get the sensor information you have to call the methods in CBasicSen-
sorInterface. They are described in Table A.7. Since all the values in the
basic sensor interface is reset at the begining of a cycle, all the data given
by is from the current cycle.

A.3.11 How to send commands to the server?

To send a command to the server you have to create a new pointer to the
wanted command object class, for example new CDashCommand(75) to cre-
ate a new command (dash 75), then send it to server by using the methods
available in the actuator interface described in Table A.8.
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Table A.7: Public methods in class CBasicSensorInterface.

Name Description

NewCycle() Called by the controller when a new
cycle has started

ForceNewCycle() Called by the controller when a new

cycle was forced to start by the user

CTime GetCurrentTime()

Get the current time

ForEachMarker(void (*fn)(const marker_object))

Apply the function fn on each marker

t_uint GetNumberOfSeenMarkers()

Get the number of markers in the last
see message

ForEachLine(void (*fn)(const line_object))

Apply the function fn on each line

t_uint GetNumberOfSeenLines()

Get the number of lines in the last see
message

ForEachPlayer(void (*fn)(const player_object))

Apply the function fn on each player

t_uint GetNumberOfSeenPlayers()

Get number of players in the last see
message

bool SawBall()

Return true if the ball was seen in the
last see message

t_float_unknown GetBallDistance()

Return the distance to the ball

CAngleDegUnknown GetBallDirection()

Return the direction to the ball

t_float_unknown GetBallDistanceChange()

Return the distance change for the
ball

t_float_unknown GetBallDirectionChange()

Return the direction change for the
ball

t_view_quality GetViewQuality()

Return the view quality

t_view_width GetViewWidth()

Return the view width

t_float GetStamina()

Return the stamina

t_float GetEffort()

Return the effort

t_float GetSpeed()

Return the speed

CAngleDeg GetHeadDirection()

Return the direction of the head

t_uint GetKicks()

Return the number of kicks made

t_uint GetDashes()

Return the number of dashes made

t_uint GetTurns()

Return the number of turns made

t_uint GetSays()

Return the number of says made

t_uint GetTurnNecks()

Return the number of turn necks made

string& GetOurTeamName()

Return our team name

string& GetTheirTeamName()

Return the other teams name

t_side GetOurSide()

Get the side of our team

t_side GetTheirSide()

Get the side of the other team

t_uint GetUniformNumber()

Get my uniform number

t_play_mode GetPlayMode()

Get the play mode

t_uint GetOurScore()

Get our score

t_uint GetTheirScore()

Get the score of the other team

string GetCoachMessage()

Get the message from the coach

string GetPlayerMessage()

Get the message from another player

CCommand* GetLastCommand()

Get the last command sent to the
server
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Table A.8: Public methods in class CActuatorInterface.
| Name | Description |

Init(CActuators*) Tells the interface what actuators to use called
by the actuators
bool AddPlan(CCommand*) | Add a command to the send queue

A.4 The framework

A.4.1 How to create an agent with the framework?

To create an agent using the RoboSoc framework you have to create a main
function where you start the different parts. In Example A.4 you can see
how the code for a basic agent, using the framework, might look like.
The function rs_debug is used for debugging, and is only needed if the com-
piler directive 'USE_DEBUG_ is defined in 1library compiler directives.h.
The constructors for the different units were described in the last sections.
The initialization of the agent is done in the CDecision class, and since
the base class CDecision does not send any init message to the server you
have to write your own decision class. How this is done see section A.3.9.

A.4.2 The views

The view is the basic component of the information processing in RoboSoc.
With information processing we mean transforming the data from the sen-
sors together with information from other views to more detailed or special-
ized information and storing it. Each view should (but does not have to) be
specialized in some area, like the ball, a certain skill or some other subject
needed by the decision process or other parts of RoboSoc.

An important issue is to minimize the redundancy of information. To
make this possible each view can have links to other views containing already
processed and stored information. To solve the problem with dependencies
each update contains a unique number so that the view knows if it has been
updated already, this also makes it possible to discover circular dependen-
cies.

How do they work?

The purpose of the views is to process and store information. To make this
possible they need to know when new information has arrived and they need
to be able to access the raw data from the server and information stored in
other views. The data from the sensor interface is available from the class
variable CView::sensorInterface. (To make this work you need to assign the
address of the sensor interface object to the CView::sensorInterface variable.)
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Other views are reachable through the view manager pointer, viewManager,
stored in each view.

In order to know when new information is available the views have a
method for each type of update in the system. They are:

- NewCycle which is called by the view manager when a new server
cycle is about to begin. It’s called before the UpdateBeforeNewCycle()
method of the sensor interface is called. This is the last chance to use
any data stored in the sensor interface, afterwards it will be reset.

- UpdateAfterlnit is called when the init messsage has arrived from
the server.

- UpdateAfterSee is called when new see information has arrived from
the server.

- UpdateAfterHear is called when new audio information has arrived
from the server.

- UpdateAfterSense is called when a new sense body has arrived from
the server.

- UpdateAfterCommand is called when a command was sent to the
server.

What kind of data you can get from the sensor interface and when it is
available is described in the previous section.

How are the views updated?

When new information arrives to the sensor interface it will tell the view
manager that it is time to update after XXX (which is the type of the in-
formation). The view manager will then generate an unique update number
and iterate over all the stored views and for each one of them call their
UpdateAfterXXX () method with the update number as the argument. This
method will check to see if the view has already been updated or not. If it
has not been updated then it will call the method MyUpdateAfterXXX().
If the view has been updated nothing happens, if the view detects a circular
dependency it will abort the program.

If your view needs updated information from some other view then you
need to call its UpdateAfterXXX()-method with the same update number
you got, which is stored in the view as currentUpdateNumber.

The update for a new cycle is somewhat different. The NewCycle()-
method of a view is called before the sensor interface updates itself for a
new cycle, all the other update methods are called after the sensor interface
has been updated. When the sensor interface updates itself it will erase all
data stored in it. Therefore this is the last chance for the view to use the
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data stored in the sensor interface for the current server cycle. It is also
time for the view to make it ready for a new cycle.

How do I use the views?

First of all you need the wanted view object, or a pointer to it. Then you
can call it’s public methods and access its public attributes.

To get a pointer to a view object you need to ask the view manager if
the view is stored there. This is done by calling the GetView-method. The
argument to GetView is the id-number of the view you need. A symbolic
constant for this value can usually be found in view_data.h. The GetView-
method will return either a NULL-pointer if the view doesn’t exist or a
pointer to the object if it exist. The problem is that the pointer is of the
type CView*, and not the correct view-pointer you need. Therefore you
have to use the static_cast template to convert the pointer from one type
to another. Eg. to convert v_ptr from a CView* to a CBallView* you do:
v_ptr = static_cast < CBallViewx > (v_ptr).

How do I create a view object?

First of all, create an instance of the view you need. Then you need to store
the view in the view manager. This is done by calling the view manager’s
AddView()-method with the address of the view and a persistence flag. If
the persistence flag is set the view will not be destroyed when no one is
using the view, otherwise it will be destroyed when no one is using it. With
no one using the view I mean that there are no pointers to the view active
in the system. An active pointer to a view is given when you ask the view
manager for a view with the GetView()-method and they are deactivated
with a call to the ReleaseView()-method. The reason for storing the viewe
in the view manager is to make them available to the rest of the system.

How do I extend them?

The basic rule is to create new views which use information from the view
you want to extend instead of changing the code of the existing view. If
you really would like to extend an existing view, inherit from the view you
want to extend and then add the things you miss and redefine the necessary
methods.

How do I write my own views?

The best way to add new functionality regarding information processing in
RoboSoc is to create a new view. To create a new view all you have to do
is to inherit from CView (or any other view that you want to use as your
starting point) and write your own update methods. I.e. you need to define
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what the view should do when new information has arrived and what to do
when a new cycle begin. If you need to store data (which is very likely) you
will need to create the necessary data structures and initialize them in the
constructor, destroy them in the destructor and supply methods to extract
and use the information stored in them. If you need access to other views,
the best way to do this is to store pointers to those views in the object and
initialize them in the constructor. Then you’ll know that the views you want
are always accessible.

For examples and hints, look at the code for the views that are included
in the RoboSoc-package.

What views are included in RoboSoc?

Currently seven views are supplied with RoboSoc version 1.5.0. I hope to
be able to add more views as the users of RoboSoc get their views working
and sending them to me.

The views are:

- ParameterView: stores all the parameters from server.conf. Use
them to make your agent independent of the actual server configura-
tion. It also contains methods for parsing the command line. Available
options are -f config-file to read a config file, ~goalie true to start a
player as the goalie, and -team name team-name to set the team name
of the agent.

- GameView: which stores information about the status of the game
(play mode, score and current time).

- CommandView: calculates the effect of the commands executed the
current cycle. It will give you the total movement vector of the agent
and the ball for the current cycle. You will also get the total turn
angle of the agent and its neck.

- MarkerView: stores information about all the markers on the field.
It will give you absolute position, relative distance and direction to
the markers.

- AgentView: keeps track of the agents status (absolute position,
stamina, effort, recover, absolute face direction, body and neck di-
rections)

- BallView: keeps track of the ball (absolute position, relative dis-
tance and direction and a very rough estimation of the speed) item
PlayerView: keeps track of the other players. You will get access to
three structures: teammates, opponents and unknown players. Each
will give information about absolute position, relative distance and
direction, body, face direction and uniform number (if available).
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Figure A.1: The dependencies between the views.

How the views depend on each other can be seen in Figure A.1. A more
detailed description of these views is available in the section 3.4.2.

A.4.3 How to use the predicates

Create an instance of the predicate you want. Call the Evaluate() method,
which will return either true or false.

A.4.4 How to create your own predicates

Create a new class that inherits from the CPredicate class. Implement the
bool Evaluate() method.

A.4.5 How to extend existing predicates

Create a new class that inherits from the predicate you want to extend. Call
its Evaluate() method if its functionality is useful, otherwise rewrite it from
scratch.
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A.4.6 How to use the skills

Create an instance of the skill you want. To check whether the skill is appli-
cable call its Applicable() method which will return true if it is applicable
otherwise false. To get the next command generated by the skill call its
GeneratePlan() method. If the skill wants to be called again the next cycle
it will set the persistence flag of the skill. This flag is checked with the
Persistent() method.

A.4.7 How to create your own skills

Create a new class that inherits from the CSkill class. Implement the bool
Applicable(), bool Persitent() and CCommand* GeneratePlan() methods.

A.4.8 How to extend existing skills

Create a new class that either inherits from the skill you want to extend
and then use its Applicable, Persistent and GeneratePlan methods to create
the new skill or inherit from some other skill (or CSkill) and create a local
instance of the skill you want to extend and calls its Applicable, Persistent
and GeneratePlan methods to implement the class.
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Example A.1 A basic agent using only the basic system.

#include "CController.h"

#include "CActuatorInterface.h"
#include "CBasicSensorInterface.h"
#include "CActuators.h"

#include "CSensors.h"

#include "CDecision.h"

extern void rs_debug(const std::string& str)
{
std: :cerr << "Error: " << str << std::endl;

}

int main(int argc, charx* argv)
{

std::cout << "Starting actuator interface...\n";
CActuatorInterface actuator_interface;
std::cout << "Starting actuator...\n";
CActuators actuators(&actuator_interface);
std::cout << "Starting sensor interface...\n";
CBasicSensorInterface sensor_interface("RoboSoc");
std::cout << "Starting sensors...\n";
CSensors sensors(&sensor_interface);
std::cout << "Starting server interface...\n";
CServerInterface server_interface("localhost", 6000, 2048);

std::cout << "Starting decision...\n";

CDecision decision(&actuator_interface, &sensor_interface);

std::cout << "Starting controller...\n";

CController controller(&server_interface, &sensors, &actuators,
&decision, 100, 10, 100, 150);

if ( 'controller.Init() ) {
std::cout << "Error in Init!\nExit...\n";
return 1;

}

controller.Start();

return 0O;

63



Example A.2 An example of a main loop.

void CBasicDecision::Start()

{
while ( serverAlive )
if ( pause() == -1 && errno != EINTR )
std::cerr << "Something went wrong in pause!\n";
b
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Example A.3 An example of a basic decision maker.

CCommand* CBasicDecision::InitAgent() {
return new CInitCommand(‘‘RoboSoc’’, 5, false);

}

void CBasicDecision::Decide() {
if ( !'ballDir.IsUnknown() )
ballDir -= lastTurn;
lastTurn = O;
if ( sensorInterface->SawBall() ) {
ballDir = sensorInterface->GetBallDirection();
ballDist = sensorInterface->GetBallDistance();
counter = 0;
} else {
counter++;
if ( counter > 4 ) {
ballDir.MakeUnknown() ;
ballDist.MakeUnknown() ;
counter = 0;
}
}

if ( ballDir.IsUnknown() ) {
actuatorInterface->AddPlan(new CTurnCommand(CAngleDeg(30)));
} else if ( ballDist < 1 ) {
actuatorInterface->AddPlan(new CKickCommand (100, CAngleDeg(0)));
} else if ( Abs(ballDir) < 5 ) {
actuatorInterface->AddPlan(new CDashCommand(50));
} else {
actuatorInterface->AddPlan(new CTurnCommand(ballDir.GetDeg()));

}

void CBasicDecision: :0nActuatorSensorData() {
const CCommand* const cmd = sensorInterface->GetLastCommand() ;
if ( cmd !'= NULL && cmd->GetType() == CMD_Turn ) {
lastTurn = static_cast<const CTurnCommand*>(cmd)->GetAngle() ;
}
}

void CBasicDecision::0nInit() {
actuatorInterface->AddPlan(new CMoveCommand(CPoint(-10, -10)));
}

void CBasicDecision::0nCommandWarning() {
Decide();
}
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Example A.4 An example of a basic agent using the framework.

int main(int argc, char** argv) {
CViewManager view_manager;
CParameterView* parameterView =
new CParameterView (PARAMETER_VIEW_ID, &view_manager,
argc, argv);
view_manager.AddView(parameterView, true);

CActuatorInterface actuator_interface;

CActuators actuators(&actuator_interface);

CSensorInterface sensor_interface(parameterView->CP_team_name,
&view_manager) ;

CSensors sensors(&sensor_interface);

CGameView* gameView = new CGameView(GAME_VIEW_ID, &view_manager) ;
view_manager.AddView(gameView, true);
CCommandView* commandView =

new CCommandView (COMMAND_VIEW_ID, &view_manager) ;
view_manager.AddView(commandView, true);
CMarkerView* markerView =

new CMarkerView(MARKER_VIEW_ID, &view_manager, parameterView);
view_manager.AddView(markerView, true);
CAgentView* agentView =

new CAgentView(AGENT_VIEW_ID, &view_manager, parameterView);
view_manager.AddView(agentView, true);
CBallView* ballView = new CBallView(BALL_VIEW_ID, &view_manager) ;
view_manager.AddView(ballView, true);
CPlayerView* playerView =

new CPlayerView(PLAYER_VIEW_ID, &view_manager) ;
view_manager.AddView(playerView, true);

CServerInterface server_interface(parameterView->SP_host,
parameterView->SP_port,
parameterView—>SP_buffer_size);

CMyDecision decision(&actuator_interface, &sensor_interface,
&view_manager) ;

CController controller(&server_interface, &sensors, &actuators,
&decision,
parameterView->SP_simulator_step,
parameterView->SP_recv_step,
parameterView->SP_sense_body_step,
parameterView—>SP_send_step);

controller.Start();
return 0;
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