
RoboSoc a System for Developing RoboCup Agentsfor Educational UseFredrik Heintzfrehe@ida.liu.seMarch 23, 2000

AbstractThis report describes RoboSoc, a system for developing RoboCup agentsdesigned especially, but not only, for educational use.RoboSoc is designed to be as general, open, and easy to use as possibleand to encourage and simplify the modi�cation, extension and sharing ofRoboCup agents, and parts of them. To do this I assumed four requirementsfrom the user: she wants the best possible data, use as much time as possiblefor the decision making, rather act on incomplete information than not act atall, and she wants to manipulate the objects found in the soccer environment.RoboSoc consists of three parts: a library of basic objects and utilitiesused by the rest of the system, a basic system handling the interactionswith the soccer server and the timing of the agent, and a framework forworld modeling and decision support. The framework de�nes three con-cepts, views, predicates and skills. The views are specialized informationprocessing units responsible for a speci�c part of the world model, like mod-eling the ball or the agent, controlled by events generated by the basicsystem. The predicates can be used either by the decision maker or theskills to test the state of the world. The skills are specialized, short-termplanners which generate plans for what actions the agent should do in orderto reach a desired goal state.The whole RoboSoc system, implemented in C++ in the Solaris Unixenvironment, is working and have been used in a course on AI-progamming.

Contents
1 Introduction 11.1 The Problem . 21.2 The Solution . 21.3 The structure of the report 32 Background 42.1 The Soccer server . 42.1.1 The server parameters 52.1.2 The simulation . 72.1.3 The sensor inputs . 112.1.4 The available commands 122.1.5 The command cycle 142.2 Educational aspects . 152.3 Related work . 172.3.1 What is an agent? . 172.3.2 Agent architectures . 182.3.3 Other RoboCup libraries 193 RoboSoc 223.1 Overview . 223.2 The library . 243.2.1 Data types . 243.2.2 Utilities . 243.2.3 Geometric objects . 253.2.4 Game objects . 253.2.5 Command objects . 263.3 The basic system . 263.3.1 The server interface 273.3.2 The controller . 273.3.3 The sensors . 303.3.4 The sensor interface 303.3.5 The actuators . 313.3.6 The actuator interface 31iii

3.3.7 The decision maker . 313.4 The framework . 333.4.1 The view manager . 333.4.2 The views . 343.4.3 The predicates . 403.4.4 The skills . 403.5 Educational value . 424 Conclusions 434.1 Summary . 434.2 Future work . 45A The user's manual 47A.1 Introduction . 47A.1.1 Overview of the software package 47A.1.2 General parts . 48A.2 The library . 48A.2.1 How to use the library? 48A.2.2 Compiler directives . 48A.2.3 Data types . 48A.3 The basic system . 53A.3.1 How to create an agent? 53A.3.2 How to use the basic system with the framework? . . 54A.3.3 The controller . 54A.3.4 The sensors . 54A.3.5 The sensor interface 54A.3.6 The actuators . 54A.3.7 The actuator interface 54A.3.8 The decision maker . 54A.3.9 How to do the decision making? 55A.3.10 How to get the sensor information? 55A.3.11 How to send commands to the server? 55A.4 The framework . 57A.4.1 How to create an agent with the framework? 57A.4.2 The views . 57A.4.3 How to use the predicates 61A.4.4 How to create your own predicates 61A.4.5 How to extend existing predicates 61A.4.6 How to use the skills 62A.4.7 How to create your own skills 62A.4.8 How to extend existing skills 62Bibliography 67iv

Chapter 1
Introduction
This chapter contains a short description of the problem I have studied,namely how to create a system for developing RoboCup agents, and theoutline of my solution, RoboSoc. The purpose of this chapter is to motivateand de�ne the conditions for the research, but also to state the assumptionsI had to make in order to solve it. The last section of this chapter describesthe structure of the report. But �rst a short introduction to RoboCup forthose who are not familiar with it.RoboCup is an attempt to foster arti�cial intelligence (AI) and intel-ligent robotics research by providing a standard problem, soccer, where awide range of technologies can be integrated and examined. The reason forchoosing soccer is that it is played in a highly dynamic environment, withboth teammates and opponents, where independent agents must collabo-rate in order to beat the other team [14]. At the same time it is easy tounderstand the problem and most people know how soccer is played andwhat a team should do to be successful. These properties make RoboCupan excellent environment for students to, in a playful fashion, create andtest di�erent AI-strategies. It is also easy to motivate them by providingcompetitions where they can test their teams against each other.RoboCup is divided into di�erent leagues, real robots leagues and a sim-ulated software agents league. This report only consider teams of simulatedsoftware agents. The simulation is done by a special server called the Soccerserver, which is described in section 2.1. Anybody can download the neces-sary software and start developing their own soccer agents [28]. Descriptionsof the teams that participated in the RoboCup world cup competitions held1997, 1998 and 1999 can be found in [2, 13, 35]. Many of them can also bedownloaded from [22] and tested. More information about RoboCup can befound on web-site of the RoboCup organization [21].1

1.1 The ProblemA major problem when constructing RoboCup agents for the simulationleague is to implement the basic functionality of the agent. This is a generalproblem when developing multi-agent systems, Wooldridge and Jenningswrite \one of the greatest obstacles in the way of the wider use of agenttechnology is that there are no widely-used software platforms for developingmulti-agent system" [37].This is due to a number of problems, for instance interacting with theSoccer server, and developing the basic skills of a soccer player like �ndingthe ball, move to the ball and kick it in the desired direction. The develop-ment of a new RoboCup team from scratch usually takes at least six months,often more. Since we want students to be able to use RoboCup to implementand test di�erent AI algorithms we need some way to make the students startfrom a much higher level so they can spend their time implementing the AIparts and skip most of the tedious low-level programming needed to createa functional RoboCup team. Therefore a platform for creating new teams isneeded. This platform can also be used by non-students creating their �rstteam but I think the educational aspects put higher demands on the ease ofuse, clean design and sharability so that the teams can improve from yearto year even with di�erent students and di�erent approaches.The platform should �rst of all take care of the most basic tasks of aRoboCup agent namely receiving data from the server, interpret this sensordata and sending commands back to the server. To be able to do this theplatform must have a well de�ned work cycle since timing is very importantand events are asynchronous. It also needs data structures for storing theresults from the interpretation of the sensor data. Finally it needs somebasic actions or skills the agent can perform.Since di�erent teams use di�erent theories and models the platform mustbe able to work with all kinds of di�erent agent architectures and copewith other user de�ned design issues. The platform should also support,encourage and promote the sharing of di�erent parts of the agent, like skillsand information processing algorithms.1.2 The SolutionSince this is a very open problem I had to make some assumptions. Theassumptions I made about what the user wants for their agents are:1. accurate, complete and consistent data, in that order of importance;2. use as much time as possible for the decision making;3. rather act on incomplete information than not act at all;2

4. soccer objects the agent can manipulate, like the ball and the players.Since I want to make as few assumptions as possible I do not make anyunnecessary estimations since they can be done in many di�erent ways. Thefew estimations I do are well documented and easy to change if the user �ndsa need for it.My solution to this problem is a system called RoboSoc. It includesthree parts: a library of utility classes, a basic system for taking care of thetiming and the interaction with the server, and a framework for informationprocessing and decision support. The basic system provides a well de�nedwork cycle by which the agent acts. It takes care of the communicationwith the Soccer server and it does the basic information processing, mainlyparsing the messages sent by the Soccer server but also some feed back fromthe actuators. The information processing framework consists of a collectionof specialized units that process the raw data obtained from the basic systemand from other information processing units into information. There are forexample units specialized in the ball, the agent, and the players. This systemof specialized units makes it easy for the user, i.e. the agent programmer, toeither use the units as they are or modify them to suit her needs. RoboSocprovides two more frameworks, one for de�ning skills and one for de�ningpredicates. The decision making is almost completely done by the user butit is guided by events generated by the basic system.The purposes of the frameworks are to simplify the extension, modi�ca-tion and sharing of the units. In fact the whole system is designed to beas general and open as possible to encourage and simplify the modi�cation,extension and sharing of RoboCup agents created by RoboSoc.1.3 The structure of the reportThis report is organized as follows: Chapter 2 contains the backgroundmaterial needed for this report. In section 2.1 the Soccer server is discussed,in section 2.2 the educational aspects, and �nally in section 2.3 related work.In chapter 3 RoboSoc is described in detail starting with an overview insection 3.1 where the overall design of RoboSoc is discussed. The library isdescribed in section 3.2, the basic system in section 3.3, and the frameworkin section 3.4. The chapter is concluded with section 3.5 describing theeducational value of RoboSoc.In the last chapter of the report, chapter 4, contains some concludingremarks. First a summary is given in section 4.1 and then a discussion aboutfuture work in section 4.2.There is also an appendix with a limited user's manual.3

Chapter 2Background2.1 The Soccer serverThe Soccer server is the software developed for RoboCup by Itsuki Noda todo the soccer simulation [20]. It is a distributed simulation server to which11 players and 1 coach from each of the two teams can connect. One of theplayers is special, the goal keeper. The goal keeper is the only player who isallowed to catch the ball. There is also a simulated referee who is responsiblefor enforcing the rules of the game. The referee and the mechanics of thesimulation are described in section 2.1.2.The communication between the server and the clients is done with theUDP/IP protocol, which is a connectionless and unreliable internet protocol[29]. Each agent (player or coach) is a separate program with no directcommunication with the other agents. All communication has to go throughthe Soccer server.When the agent is connected to the server it receives sensor data con-tinuously as they are available. Visual data is available approximately each150 milliseconds, physical data roughly each 100 milliseconds and aural datadirectly when either the referee, one of the players or one of the coaches saysomething. The sensor data is neither complete nor perfect. The sensorsare discussed in detail in section 2.1.3.The server also accepts commands from the agent describing what actionit wants to perform. The commands and their properties will be furtherdiscussed in section 2.1.4. Since the UDP/IP protocol is unreliable, datato and from the server will be lost in the network. This together with thenoisy sensors and the fact that players can act as often as 10 times a secondmakes the simulation highly dynamic and uncertain. This also makes thetask of developing RoboCup agents very interesting.Apart from the simulation server there is also a visualization tool calledthe Soccer monitor where you can watch the games as they are played. InFigure 2.1 you can see what it looks like. The players are the bigger circles4

Figure 2.1: The Soccer monitor.and the small circle, next to the dark player below the middle circle, is theball. The players are facing the direction of the light half of the circle. Theblack bars on the left and right side of the �eld are the goals. The text inthe three shaded areas on top of the screen is from the left: the name of theteam playing on the left side and its score, the current play mode and thecurrent time, and the name of the team playing on the right side and itsscore. In this example FCFoo is playing on the left side and has scored zerogoals, the current play mode is \play on" and the current time is 482, theteam on the right side is CMUnited and they have also scored zero goals.The rest of this section will describe important parts of the simulationin more detail. Most of the material comes from the Soccer server manual[8], where more information can be obtained.2.1.1 The server parametersThe Soccer server has many di�erent parameters which control how thesimulation works. Most of them can be changed by editing a con�guration5

Table 2.1: The Soccer server parameters used in the report with their defaultvalues. The table is adapted from the parameter table in the Soccer servermanual [8]. Parameter name Defaultvalue Descriptionsimulator step 100 Length of each simulation cycle in millisecondssense body step 100 Length of interval, in milliseconds, between sense body infor-mationssend step 150 Length of interval, in milliseconds, between sending visualinformation to a player in the standard view moderecv step 10 Length of interval between server polling sockets to clients(milliseconds)visible angle 90 Angle of the view cone of a player in the standard view modevisible distance 3.0 Maximum distance to an object out of the view cone a playercan seeaudio cut dist 50 Maximum distance a spoken message can be heardball size 0.085 The radius of the ball in metersball decay 0.94 Decay rate of speed of the ball (1 = no decay, 0 = all decay)ball rand 0.05 Amount of noise added in the movements of the ballball speed max 2.7 Maximum speed of the ball during a simulation cycle (me-ter/cycle)player size 0.3 The radius of a player (meter)player decay 0.4 Decay rate of speed of a player (1 = no decay, 0 = all decay)player rand 0.1 Amount of noise added in players' movements and turnsplayer speed max 1.0 Maximum speed of a player during a simulation cycle (me-ter/cycle)stamina min 0.0 Minimum stamina of a playerstamina max 3500.0 Maximum stamina of a playerstamina inc max 35.0 Maximum amount of stamina that a player gains in a simu-lation cyclerecover dec thr 0.3 Decrement threshold for players' recoveryrecover dec 0.002 Decrement step for a player's recoveryrecover min 0.5 Minimum recovery of a playere�ort dec thr 0.3 Decrement threshold for a player's e�ort capacitye�ort dec 0.05 Decrement step for a player's e�ort capacitye�ort inc thr 0.6 Increment threshold for a player's e�ort capacitye�ort inc 0.1 Increment step for a player's e�ort capacitye�ort min 0.6 Minimum value for a player's e�ort capacitye�ort max 1.0 Maximum value for a player's e�ort capacitykickable margin 0.7 The maximum distance the ball can be from a player and stillbe kickablekick power rate 0.016 Rate by which the Power argument in kick commands ismultiplieddash power rate 0.006 Rate by which the Power argument in dash commands ismultipliedinertia moment 5.0 Inertia moment of a player, a�ects its movementsmaxpower 100 Maximum value of Power in dash and kick commandsminpower -100 Minimum value of Power in dash and kick commandsmaxmoment 180 Maximum value of Moment in turn and Direction in kickcommandsminmoment -180 Minimum value of Moment in turn and Direction in kickcommandsmaxneckmoment 180 Maximum value of Moment in turn neck commandsminneckmoment -180 Minimum value of Moment in turn neck commandsmaxneckang 90 Maximum value of Moment in turn neck commandsminneckang -90 Minimum value of Moment in turn neck commandssay msg size 512 Maximum length of a message a player can say6

(flag b l 50)

(flag l t 30)

(flag l t 10)

(flag l 0)

(flag l b 10)

(flag l b 30)

(flag l t 20)

(flag l b 20)

(flag b l 20)(flag b l 40)

(flag b l 10) (flag b r 10) (flag b r 30)

(flag b r 40)

(flag b r 50)(flag b l 30)

(flag b r 20)

(flag b 0)

(goal l)

(flag g l b)

(flag g l t)

(flag p l b)

(flag p l c)

(flag p l t)

(flag c b)

(flag c)

(flag l b)

(flag l t) (flag r t)

(flag r b)

(flag c t)

(flag p r t)

(flag p r c)

(flag p r b)

(goal r)

(flag g r t)

(flag g r b)

(line l)

(line t)

(line r)

(line b)

(flag r 0)

(flag r t 10)

(flag r t 20)

(flag r t 30)

(flag r b 10)

(flag r b 20)

(flag r b 30)

(flag t l 50)

(flag t l 40)

(flag t l 30)

(flag t l 20)

(flag t l 10) (flag t r 10)

(flag t r 20)

(flag t r 30)

(flag t r 40)

(flag t r 50)(flag t 0)

Physical boundary Figure 2.2: The markers and the lines in the simulation.�le and load it with the server. The parameters mentioned in the report aredescribed in Table 2.1. For a complete list see the Soccer server manual [8].2.1.2 The simulationSince the simulation is discrete all moves within one time step occur si-multaneously at the end of the step. The length of a step is set by thesimulator step parameter. At the end of the step, the server takes all ac-tion commands received and applies them to the objects in the �eld, usingthe current position and velocity information to calculate a new positionand velocity for each object.The soccer �eldThe soccer �eld and all objects in it are 2-dimensional, so there is no notionof height of any object. The �eld is 105 meters long and 68 meters wide.The goals are 14.02 meters wide, about twice the size of a normal soccergoal since it was too di�cult to score otherwise. The �eld and the di�erentmarkers and lines used by the agents to navigate are shown in Figure 2.2.The players are bound by the outer
ags which are 5 meters outside theplaying �eld. The markers on the �eld have a known absolute positionwhich is independent of the side the team is currently playing on. The7

-90

90

0+/-180

X

Y

-, - +, -

+, +-, +

0

90

-90

+/-180

Y

X
+, +

+, - -, -

-, +

(0, -/+34)

(0, +/-34)

Left team (0,0)(-/+52.5, 0)

105m

68m14.02m

10m

10m

16.5m

Right team (+/-52.5, 0)40.32m

Figure 2.3: The coordinate system for the two teams. The coordinates aregiven in the form (x; y), if two signs are shown then the �rst sign is for theleft team and the second sign is for the right team. The two diagrams atthe top shows the sign of the coordinates for each team and the two at thebottom shows the directions of each team.coordinate system and the directions are on the other hand dependent onwhat side the team is playing on, see Figure 2.3. The origo is in the centerof the �eld; negative x-values are always found on the team's own side ofthe �eld and positive on the opposite side; negative y-values are found onthe team's left part of the �eld and positive on the right, when standing inorigo facing the opponents' goal. Directions are also based on the side of theteam with straight ahead (0 degrees) from the origo towards the opponents'goal. Positive angles are to the right of the agent (standing in origo facingthe opponents' goal) and negative angles are to the left.All movable objects on the �eld, i.e. the players and the ball, are treatedas circles. All distances and angles are to the center of the circles.The refereeThe simulated referee controls the play mode of the game. It decides whena team scores a goal, when the ball is out of bounds and when to call ano�side. There are also rules which the simulated referee can not enforcesince they concern the \intention" of the players. Some of these rules are:surrounding the ball, not putting the ball into play, and intentionally block-8

ing the movement of other players. Therefore a human referee also has thepossibility to call free-kicks.Movements of objectsAt the end of each time step the server updates the current state of all theobjects in the world. To quote the the Soccer server manual the movementof each object is calculated in the following manner [8]:(ut+1x ; ut+1y) = (vtx; vty) + (atx; aty): accelerate(pt+1x ; pt+1y) = (ptx; pty) + (ut+1x ; ut+1y): move(vt+1x ; vt+1y) = decay � (ut+1x ; ut+1y): decay speed(at+1x ; at+1y) = (0; 0): reset accelerationwhere (ptx; pty), and (vtx; vty) are position and velocity of the objectin timestep t, decay is a decay parameter speci�ed by ball decayor player decay depending on what object is being updated.(atx; aty) is the acceleration of the object, which is derived fromthe Power parameter in dash (in case the object is a player) orkick (in case the object is the ball) commands in the followingmanner:(atx; aty) = Power� power rate � (cos(�t); sin(�t))where power rate is either dash power rate or is calculated fromkick power rate as described in section 2.1.4, and �t is the di-rection of the object in timestep t. In the case of a player �tis the direction the player is facing. In the case of the ball thedirection is: �tball = �tkicker +Directionwhere �tball and �tkicker are the directions of the ball and thekicking player at time t, and Direction is the second parameterof the kick command.CollisionsAt the end of the simulation cycle if two objects overlap thena collision occurs and the objects are moved back until they donot overlap. Then the velocities are multiplied by �0:1. Notethat it is possible for the ball to go through a player as long asthe ball and the player never overlap at the end of a cycle.9

The stamina modelTo simulate the endurance of the players each player has a limited amountof stamina. The stamina is used when the player dashes and is regained alittle each cycle. The maximum Power the player can dash with and theamount of stamina regained each cycle is depending on the three variablesstamina, e�ort, and recovery. Where stamina is the total amount of energythe agent has left, e�ort determines how e�ective the agent's dashes are andrecovery controls how much stamina is regained each cycle. According tothe Soccer server manual the stamina model works as follows:When the client dashes its stamina is updated like this:If Power � 0:E�ectivePower = e�ort�min(Power; stamina)stamina = max(stamina� Power; stamina min)If Power < 0:PowerUsed = min(�2� Power; stamina)=� 2E�ectivePower = e�ort� PowerUsedstamina = max(stamina+ 2� PowerUsed; stamina min)The Power of the dash actually executed is E�ectivePower.Every cycle (whether the client dashes or not), the three variablesare updated in the following way:� Stamina: Stamina increases slightly every cycle. Whenrecovery decreases less stamina is recovered.stamina = min(stamina max; stamina+ recovery � stamina inc max)� E�ort: The basic idea is that if stamina gets low, e�ortdecreases (with a minimum value given by effort min) andif stamina gets high enough, then e�ort increases with amaximum of effort max. Speci�cally:e�ort = (max(effort min; e�ort � effort dec) if stamina � effort dec thr� stamina maxmin(effort max; e�ort + effort inc) if stamina � effort int thr� stamina maxe�ort otherwise� Recovery: This is similar to e�ort except that recoverynever increases.recovery = � max(recover min; recovery � recover dec) if stamina � recover dec thr� stamina maxrecovery otherwiseThe order in which the di�erent variables are changed are im-portant. First the stamina value is decreased (if there is a dash).Next, the recovery value is changed, then the e�ort. Finally,stamina is recovered.Figure 2.4 visualize the di�erent thresholds in the stamina model.10

stamina_max

effort_inc_thr

effort_dec_thr

stamina_min

recover_dec_thr

Stamina

Figure 2.4: The di�erent thresholds used in the stamina model.Table 2.2: Data given by the visual sensor.Data DescriptionObjectName What object the data describesDistance The distance to the objectDirection The direction to the objectDistChng The change in distance to the objectDirChng The change in direction to the objectBodyDir The body direction relative the facing direction of the agent,only if the object seen is another playerHeadDir The head direction relative the facing direction of the agent,only if the object seen is another playerTeamName The name of the team of the seen player, only if the objectseen is another playerUniformNumber The uniform number of the seen player, only if the object seenis another player2.1.3 The sensor inputsAs mentioned before there are three types of sensor inputs providing visual,aural and physical sensor data. Each of the sensors and what type of datathey send to the agent will be discussed in this section.The visual sensorsEach send step the agent receives visual sensor data. In Table 2.2 the datagiven by the visual sensors are described. Some of the data is only availableif the agent is close enough to the object, the quality of the data is alsodependent on the distance to the object. For a detailed description of theexact details see the Soccer server manual [8].The aural sensorsThe agent will receive data from the aural sensor when it is available. Data isavailable when one of the players, the coaches or the referee says something11

Table 2.3: Data given by the physical sensor.Data DescriptionViewQuality The current setting of the agent's ViewQuality, a�ects theamount and quality of the visual data sent to the agentViewWidth The current setting of the agent's ViewWidth, a�ects theamount and quality of the visual data sent to the agentStamina The current stamina of the agentE�ort The current e�ort of the agentAmountOfSpeed The amount of the agent's current speed vectorHeadDirection The relative direction of the agent's headDashCount The number of dashes made by the agent so farKickCount The number of kicks made by the agent so farSayCount The number of says made by the agent so farTurnCount The number of turns made by the agent so farTurnNeckCount The number of turn necks made by the agent so farand the distance to the speaker is less than audio cut dist. The agentwill hear all messages from itself, the referee and the coaches, but only onemessage from another teammate in two cycles. If more than one message issent in the two cycles the �rst to arrive will be heard.The physical sensorsEach sense body step the agent will receive physical sensor data. In Ta-ble 2.3 the data given by the physical sensor is described.2.1.4 The available commandsThis section will discuss what basic actions the agent can tell the serverto perform. Table 2.4 contains a short description of the syntax of thecommands, the range of the parameters and how often the actions can besent. The detailed description of the e�ects of the actions below is takenfrom the Soccer server manual:� turn: The turn moment must be between minmoment and maxmoment(�180 degrees and 180 degrees by default). However, there is a conceptof inertia that makes it more di�cult to turn when the agent is moving.The actual angle the player is turned is calculated as follows:ActualAngle = Moment=(1:0 + inertia moment� player speed)(Note that player speed is the amount of the player's velocity vec-tor, and is therefore always positive.) inertia moment is a parame-ter with default value 5:0. Therefore (with default values), when theplayer is at max speed (1:0), the maximum e�ective turn it can do12

is �30. However, because the agent can not dash and turn in thesame cycle, the fastest a player can be going when executing a turnis player speed max� player decay, which means the e�ective turn(with default values) is �60.� turn neck: Each client has a neck which can be turned independentlyof its body. The angle of the player's head is the viewing angle of theplayer. The turn command changes the angle of the player's bodywhile turn neck changes the angle of the player's head relative to itsbody. The maximum relative angle for the player's neck is 90 degreesto either side. Remember that the neck angle is relative to the player'sbody so if the client issues a turn command, the viewing angle changeseven if no turn neck command is issued.Also, turn neck commands can be executed in the same cycle as turn,dash, and kick commands. turn neck is not a�ected by momentumlike turn is. The argument for a turn neck command must be in therange [�180; 180] and the resulting neck angle must be in [�90; 90].� dash: The dash is essentially a small push in the direction that theplayer's body is facing. It is not a sustained run. In order to have a sus-tained run, multiple dash commands must be sent. The power passedto the dash command is multiplied by dash power rate (default 0:006)and the e�ort (see Section 2.1.2) and applied in the direction that theplayer's body is facing. With negative power, the agent dashes back-wards, but it consumes twice the stamina (see Section 2.1.2).� kick: The kick is very similar to the dash except that it acceleratesthe ball instead of the player. If the player tries to kick when the ballis further than the kickable area (which is equal to the player size+ball size +kickable margin), there is no e�ect. The one impor-tant di�erence between dashes and kicks is how the kick power rate is�gured. Let dir di� be the absolute value of the angle of the ball rel-ative to the direction the player's body is facing (if the ball is directlyahead, this would be 0). Let dist ball be the distance from the centerof the player to the center of the ball. Then the kick power rate is�gured as follows:kick power rate � �1� :25 � dir di�180 � :25� (dist ball� player size� ball size)kickable margin �Basically, this means that the most powerful kick can be done whenthe ball is directly in front of the player and very close to it, and dropso� as both distance and angle increase.13

Table 2.4: The syntax of the basic actions the agent can perform [8].Syntax One/turn?(catch Direction) YesDirection ::= minmoment � maxmoment degrees (default -180 � 180)(change view Width Quality) NoWidth ::= narrow j normal j wideQuality ::= high j low(dash Power) YesPower ::= minpower � maxpower (default -100 � 100)(kick Power Direction) YesPower ::= minpower � maxpower (default -100 � 100)Direction ::= minmoment � maxmoment degrees (default -180 � 180)(move X Y) YesX ::= -54.5 � 54.5Y ::= -34 � 34move only works in before kick off mode and 5 seconds after a goal is scored(say Message) NoMessage ::= a string of at most say msg size characters (default 512)(turn Moment) YesMoment ::= minmoment � maxmoment degrees (default -180 � 180)(turn neck Moment) YesMoment ::= minneckmoment � maxneckmoment degrees (default -180 � 180)turn neck is relative to to the direction of the body and the resulting anglemust be between minneckang and maxneckang degrees (default -90 � 90).Can be invoked at the same cycle as a turn, dash, catch or kick.2.1.5 The command cycleThe command cycle, i.e. the cycle within which the agent must reason,decide on action and send it to the server, is actually composed of fourdi�erent cycles, running in parallel. The four cycles are:� The simulator cycle controls the time in the simulation. The lengthis determined by the parameter simulator step, its default value is100 milliseconds.� The send physical sensor data cycle controls when to send thecurrent physical sensor data to the agent. The length is determinedby sense body step, its default value is 100 milliseconds.� The send visual sensor data cycle controls when to send the cur-rent visual sensor data to the agent. The length is determined bysend step, its default value is 150 milliseconds.� The receive commands from the clients cycle controls when theserver receives commands from the clients. The length is determinedby recv step, its default values is 10 milliseconds.The four cycles are controlled by the same internal clock inside the serverand due to the new implementation of the server they are updated quiteaccurately. But they are still asynchronous as shown in Figure 2.5. The14

Action sent and executedVisual sensor data sent Physical sensor data sent

t+2t+1

Agent timeline

Server timeline
t+3tFigure 2.5: An example of what data the agent receives when, and also whencommands sent by the agent will be executed.example in the �gure shows what data the agent receives and when. Asshown, the data can arrive both earlier and later than expected.All actions received by the server at the end of the simulator cycle willbe used when updating the state of the simulation. The example showsthe agent sending commands back to the server, but due to the delays inthe network and the fact that the server takes some time before readingthe messages received (between 0 and recv step milliseconds) they are notalways executed in the same simulation step as the agent sent them.Since the agent neither knows when it will receive the next sensor in-put nor when the current simulator cycle will end it has to make a decisionwhether to wait for more information or to act on the current information.This decision will a�ect both how often the agent can act and how much in-formation can be used when deciding what action to do. This balance is verycentral to every RoboCup agent and have great impact on the performanceof the agent.2.2 Educational aspectsSince 1997 the Department of Computer Science at Link�oping universityhas been giving a course in AI-programming focusing on the problem ofdeveloping RoboCup teams. A paper describing the course has been writtenby Silvia Coradeschi and Jacek Malek [6]. They found thatThe use of a challenging and interesting task [RoboCup], and theincentive of having a tournament has made the [AI-programming]course quite successful, both in terms of enthusiasm of the stu-dents and of knowledge acquired.Similar conclusions are also drawn by Russel and Norvig when they intro-duced the wumpus world in their introductory AI course [25].The major problem with the AI-programming course, from the students'point of view, was that creating RoboCup agents requires a large amount of15

knowledge not related to AI, like real-time and process programming, anda large e�ort to overcome the initial problems, like communicating with theserver, parsing the server messages, calculating the position of the player andsending simple commands back to the server. The most requested improve-ment was more help with these practical problems of developing a RoboCupagent [6].This AI-programming course and the fact that there are no libraries de-veloped for the purpose of helping students creating their own RoboCupteams has motivated and inspired me to do this master thesis. The edu-cational aspects of the problem induces some important demands on thelibrary, it should be:� Simple enough to be easy to use;� general, in order to allow di�erent approaches to be implemented andtested;� extendible, it should be possible to replace and extend the di�erentparts of the library with as little di�culty as possible.In order for a library, with the above properties, to be really useful froman educational point of view it has to take care of the basic problems thata RoboCup agent has to handle. Four essential problems I think should beaddressed by a library are:1. Basic server communication:The �rst practical problem when building RoboCup agents is to getthe basic communication with the server working, i.e. the agent mustbe able to receive the data sent by the server then be able to use thisdata to decide on an action and �nally to be able to send that action,with the correct parameters, back to the server.2. Timing:As described in the section about the di�erent cycles of the server thereare a lot of things to keep in mind when handling the timing. Togetherthey make the problem of keeping track of the current simulation stepand send commands in time for them to be executed in the currentstep, but at the same time use the best available information whenmaking the decision, very hard. It is also a major source of confusionwhen �rst encountered. Therefore it is very important that studentsdo not have to worry about these low-level problems.3. World modeling:The next problem is to keep track of the state of the simulation basedon the sensory data received from the server. Since the soccer envi-ronment is not very hard to represent, the main problem is to use the16

noisy and incomplete sensor data to draw correct conclusions aboutthe objects in the world. There is also the problem of making predic-tions about future states of the server, but that is not so important ashaving a model of the current world which is as complete, consistentand updated as possible.4. Support for decision making:The fourth problem is, based on the current world model, to decideon what action to do. This is of course the job of the agent designernot the library designer but to assist the agent programmer it is verygood to have some support for the decision making like noti�cationswhen new information arrive from the server and when a new cycle isstarted. Since most decision makers used in RoboCup use some sortsof rules it is practical to have some prede�ned predicates, like is theball on our half, are we playing on the left side of the �eld and so on,which can be used to trigger rules. With decision making I mean thevery general meaning of the concept from a RoboCup point of view, toselect some actions to do based on the current world model. It is alsovery convenient to have some higher level of abstraction when it comesto actions. Therefore intermediate skills are needed, which are basedon the basic actions the agent can do. For example turn to absolutedirection D, or kick the ball to position (X;Y).2.3 Related workThis section describes some of the related work to this report. The �rstsection will discuss the concept of an agent. The second section will de�newhat an agent architecture is and what kind of architectures exist. Thethird, and �nal, section describes some of the RoboCup libraries availabletoday.2.3.1 What is an agent?The are many answers to that question, almost as many as there are agentresearchers. The de�nition that is most appropriate for this work is thede�nition of Russel and Norvig, they de�ne an agent as \anything that canbe viewed as perceiving its environment through sensors and acting uponthat environment through e�ectors" [26]. Even though it is a very simplede�nition of an agent, compared to most other de�nitions (see [11] for acollection of agent de�nitions). It is general enough to cover most agentsused in RoboCup, since all RoboCup agents decide upon sensor informationfrom the soccer server what e�ectors to use by sending commands back tothe server. 17

2.3.2 Agent architecturesSince there are many de�nitions of what an agent is, there are also manyde�nitions of what an agent architecture is. For example Pattie Maes de�nesan agent architecture as: \[A] particular methodology for building [agents].It speci�es how . . . the agent can be decomposed into the construction ofa set of component modules and how these modules should be made tointeract. The total set of modules and their interactions has to provide ananswer to the question of how the sensor data and the current internal stateof the agent determine the actions ... and future internal state of the agent.An architecture encompasses techniques and algorithms that support thismethodology." [16]Over the past decade a number of di�erent approaches to the problemof �nding good functional decompositions of agents has lead to at leastfour major types of agent architectures: reactive, deliberative, hybrid andinteracting architectures [17].Reactive architecturesThe reactive, behavior-based or situated, architectures are strongly in
u-enced by behaviorist psychology. The goal is to achieve robust behaviorinstead of correct or optimal behavior. They do this by using simple actionrules based on the current situation with little or no explicit information[17].An example of a behavior-based architecture used in the RoboCup do-main is the architecture used by the Headless Chickens [7, 27].Deliberative architecturesAgents based on Simon and Newell's physical symbol system hypothesis[19], the assumption that agents maintain an internal representation of theirworld, and that there is an explicit mental state which can be modi�ed bysome form of symbolic reasoning are called deliberative agents [17].One example of a deliberative architecture is the Belief, Desire, Intentionarchitecture (BDI) developed by Bratman et al [3]. BDI is used in theRoboCup domain by for example AT Humboldt [4, 5].Hybrid reactive-deliberative architecturesSince most agents need to be both reactive and able to use deliberationin their decision processes the hybrid, layered, architecure has emerged. Itusually combines reactive and deliberative layers in some way to create ahybrid agent architecture [17]. The major problem is how to combine thedi�erent layers into a single unit. Wooldridge and Jennings even argue that18

hybrid architectures are very ad-hoc since it is not clear how to reason aboutthem and what the underlying theory is [36].An example of hybrid architecture used in RoboCup is the architectureused by FCFoo [12].Interacting architecturesArchitectures which mainly deal with coordination and cooperation amongdistributed intelligent agents are called interacting architectures [18].No example of interacting architectures have be found in the RoboCupdomain.2.3.3 Other RoboCup librariesPrevious attempts to build RoboCup libraries have usually been a teamreleasing parts of their code for others to use. The problem with thesereleases are usually that they come with little or no documentation and thecode is tightly connected to the structure of the team. Therefore there is aneed for a well documented, well structured and generic library for peopleto use. The structure of the library should help and encourage di�erentdevelopers to share their code. The bene�t is that new teams do not haveto start from scratch but can instead build on previous teams experience.The rest of the section will be used to describe two existing libraries,libsclient and RoboLog, and also the team CMUnited which have been agreat source of ideas and inspiration.LibsclientLibsclient is a library of C routines for basic RoboCup client functionality�rst developed by Itsuki Noda at ETL, Japan, and then extended by Yaser-Al Onaizan, Gal Kaminka, Jafar Adibi, and the other members of the ISISteam at the University of Southern California/Information Sciences Insti-tute, USA.This library contains an interface to the server, a parser, an algorithmfor calculating the position of the agent and some very basic algorithms forcalculating the absolute position of an object and for calculating the turn'sand dash's the agent has to make in order to move to a certain position.Unfortunately this library is not very suitable for educational use sinceit is very basic and does not really handle any of the low-level problemsof the server. For example the basic network services only takes care ofsending and receiving messages on request by the agent. It does not addressany of the problems with synchronization with the server or making surethat the agent tries to send commands each cycle and base them on thebest available data, which is one of the most important tasks for any libraryuseful for educational purposes. But it is useful for scientists who want to19

do their own thing, but do not want to do the parsing and need a betterinterface to the communication with the server. Another problem is that thelibsclient is no longer supported, and it is not up to date with the currentserver.RoboLogRoboLog is an ECLiPSe-Prolog library built on top of a C++ library devel-oped by Oliver Obst at the university of Koblenz-Landau. The C++ librarywas developed to make the server functions accessible from Prolog and tobuild a database with the data from the soccer server. The interface tothe database is somewhat awkward and not very elegant since all the datais stored in one large structure. A more serious problem with this worldmodel is that no inference about the objects are made from old knowledge,instead the new sensor data is simply stored in the database and the clientprogrammer has to do all the inference.Apart from the world model RoboLog is an advanced library with manynice features and algorithms for computing the position of the agent, dogeometric calculations and support the development of advanced skills. Eventhough it does not have any abstractions of the basic server commands, liketurn to absolute direction D or kick the ball to the point (X;Y). It doestake care of most of the low-level tasks like sending and receiving data fromthe server and the timing of the commands, but in a rather simple manner.It makes sure that the agent will not send more than one catch, dash, moveor turn each cycle, but it does not give the agent any hints of when it hasto send the commands or when it is getting too late to send a command thecurrent cycle.Another serious problem, from my point of view, is the fact that it isvery hard to replace parts of the RoboLog code with new, without havingto change other, irrelevant, parts of the code, mostly because of the designof the world model. This together with the complexity of the library mainlydue to lack of a clear general architecture makes it quite hard to understandand exchanging parts of the code to try di�erent approaches is cumbersome.Finally the threshold before productivity is not low enough for it to be usefulin an educational setting. The bene�ts from the library is the possibility toprogram agents in Prolog, and the large amount of features available whenthe initial obstacles are overcome.More information about RoboLog can be found on their web site [23].CMUnitedCMUnited is the most successful team in the history of RoboCup so far, ithas won the last two competitions, 1998 in Paris and 1999 in Stockholm. It isdeveloped by Peter Stone, Manuela Veloso and Patrick Riley from Carnegie20

Mellon University, USA. The team and its development is described in aseries of articles, among them [31, 33, 34], and in Peter Stone's PhD-thesis[30].To help the rest of the RoboCup community they have released parts oftheir team. The released code does the basic server communication, most oftheir world modeling and their basic actions and skills. Their implementa-tion is very advanced and they have one of the most accurate world modelsavailable. The main problem is the very tight connection between the parts,it is almost impossible to replace parts of it. The code is also very complex,and it is hard to get a grasp of what it really does. The documentation isvery good and it is easy to get an overall picture of how their team and themajor algorithms works.Even though their code is not very useful from a student perspective theirrelease is very important since others can use it as a source of inspirationand ideas and are also allowed to take the parts of the code they �nd usefor.

21

Chapter 3RoboSocThis chapter describes the RoboSoc system for developing RoboCup agents.It discusses how the system works, its design and the reason behind thedesign. It is not a manual of how to use RoboSoc, a limited user's guide canbe found in Appendix A.Since RoboSoc is object-oriented, and I assume the reader have somebasic knowledge about the object-oriented paradigm, I will sometimes referto objects, classes and methods when I talk about di�erent parts or featuresof RoboSoc.Everything described in this chapter is actually implemented and hasbeen used in a course on AI-programming at the computer and informationscience department at Link�oping university in the fall of 1999 [1]. Theimplementation is done in C++ on a UNIX platform.3.1 OverviewThe design goal of RoboSoc is to create a system for developing RoboCupagents especially, but not only, for students which is as general, open, andeasy to use as possible and that encourages and simpli�es the modi�cation,extension and sharing of RoboCup agents, and parts of them.As stated in the introduction this is a very open problem and someassumptions about what the user wants from the system have to be made.I assume the user wants:1. accurate, complete and consistent data, in that order of importance;2. use as much time as possible for the decision making;3. rather act on incomplete information than not act at all;4. soccer objects the agent can manipulate, like representations of theball and the players. 22

Skills

Predicates

View Manager

Views

Server Interface

Soccer Server

Controller

Collection of objects ProgramObject

UDP/IP

Actuator Interface

Sensors Actuators

Decision Maker

BASIC SYSTEM

FRAMEWORK & USER

Sensor Interface

BASIC SYSTEM & USER

Figure 3.1: The RoboSoc architecture.The design goal together with the four assumptions above and the fouressential problems discussed in section 2.2 has lead to a system consistingof three major parts:� a library of utility classes, like geometric objects, game objects, andsome basic building blocks to be used with the framework;� a basic system for the timing and the interaction with the server; and� a framework for information processing, skills and predicates.The system architecture is shown in Figure 3.1 and includes the basicsystem and the framework. The �gure consists of three di�erent kinds ofboxes representing di�erent kinds of units. The rectangular boxes repre-sent objects (classes), the hexagonal boxes collections of objects (from thesame base class) and the boxes with the rounded edges separate indepen-dent programs. The arrows show how data and information
ows betweenthe di�erent subparts. An arrow does not always implicate a dependencybetween the units. In fact, the library is not dependent on any part of thesystem, the basic system is dependent on the library, and the framework isdependent on the basic system and therefore also on the library. This means23

that a user can either use the library, the basic system and the library orthe whole system when creating a team. Most of the implementation of theframework and the decision maker is supposed to be done by the user, withsupport from the framework and the library, while the basic system is notsupposed to be changed be the user, unless it is really necessary.The following sections of this chapter describe the functionality and de-sign of the three majors parts.3.2 The libraryThe RoboSoc library is the foundation for the rest of the system. It pro-vides the necessary types, classes and utilities needed by the other partsof the system. There are classes for representing geometric objects, thereare classes for representing the objects found in the soccer environment andthere is a class for each of the commands that can be sent to the soccerserver.3.2.1 Data typesTo make the system more machine independent there is a set of basic typesfor representing integers and
oating point numbers. They are named afterthe type they represent and the number of bits they can store. There arealso types de�ned to represent simple objects in the RoboCup simulation,like a command name, a marker name and so on.Modi�ersSince most values a RoboCup agent has to handle are based on uncertainobservations, or estimations there is a need for representing the con�denceof the correctness of a value. Since the agent is not always aware of the stateof an object in the world, like the velocity of the ball, there is also a needfor representing unknown values. To support the reasoning with observationtimes, uncertainty and unknown values I have implemented a system withmodi�ers where a basic type can be modi�ed to handle one of the features.3.2.2 UtilitiesThe library provides some basic mathematic utilities like calculating abso-lute values, convert radians to degrees and so on, but also a class for rep-resenting a communication socket and a class for representing a real-timetimer. 24

CLineObject CMarkerObject CBallObject

CMobileObjectCStationaryObject

CGameObject

CAgentObject

CPlayerObject

Figure 3.2: The object hierarchy of the game objects in the RoboSoc library.3.2.3 Geometric objectsThe geometric objects included in the library are classes for representingangles, both in degrees and in radians, vectors, point, lines and rectangles.The reason for having two types of angles is that you do not want to confusethe user by making it unclear what unit the angles are in.Modi�ersThe same argument about uncertainty and unknown values is valid for geo-metric objects therefore there are modi�ers for them too. Unfortunately themodi�ers described above only work on basic types like integers and
oats,therefore there exist specialized modi�ers for the geometric objects.3.2.4 Game objectsThe game objects represent the objects introduced by the soccer environ-ment. They include a ball object, a player object and an agent object. Theobject hierarchy is shown in Figure 3.2.This hierarchy looks almost the same as the object hierarchy used byCMUnited [34], but in fact they are not very similar because my objectshave no reference to the current world model of the agent, as the CMUnitedobjects have. The main reason is that I want the library to be stand-aloneand not dependent on anything else, especially not the world model whichis usually very speci�c for each agent design.Since each game object represents an object at a certain moment in time,and they do not have any connection to the rest of the world model, they can25

also be used by a prediction system to create multiple, possible, versions ofthe object. This is not possible with the objects used by CMUnited. If theuser desires, she can extend the basic game objects by connecting them tothe world model of the agent. The bene�t is that you can make sure that thestate of the object is valid according to the world model and the simulation,for example by checking the speed and see if it is within the limits of theobject, but also to make special, world or simulation dependent, updatemethods directly in the game object.There is also a template for representing a collection of game objectscalled ObjectCollection used in the views to represent the history on anobject. It can be instantiated with any class derived from the CGameObjectclass.3.2.5 Command objectsThe command objects are designed to represent the commands that can besent to the Soccer server. The version of the command objects includedin the library are very simple since they are completely separated fromthe world model of the agent, for the same reason as the game objects.This unfortunately implies that no checks can be made about the validityof the commands sent to the server. But the objects can be extended tosupport more advanced functionality like making sure the arguments arelegal according to the simulation and to assist the updating of the worldmodel.The available commands and their arguments are shown in Table 3.1 insection 3.3.5.3.3 The basic systemThe purpose of the basic system is to take care of the basic server commu-nication and the timing as described in section 2.2. To accomplish this thetask is to receive the messages from the server as soon as they arrive andsend them to the sensors which parse the messages and store the raw data.Concurrently the controller keeps track of the current game time and whenit is time to send commands back to the server. When the time comes thecontroller gets the next command from the actuators, which are responsi-ble for queuing the commands from the decision maker, and sends it to theserver for execution. The type of data and how it
ows through the basicsystem is shown in Figure 3.3.It is possible to use only the basic system, without the information pro-cessing and skills framework on top of it. The only di�erence is that theuser must use simpler versions of the sensor and actuator interfaces, all thefunctionality of the basic system are still available to the user.26

The ControllerThe Sensors The Actuators

The Actuator InterfaceThe Sensor Interface

processed

control dataparsing

raw sensor

raw sensor
data

The Server Interface

UDP/IP messages

server commands

data
commands

results

The Soccer Server

parsed sensor data command objects

Figure 3.3: The data
ow in the basic system of RoboSoc.The basic system consists of the server interface, the controller, the sen-sors, the sensor interface, the actuators, the actuator interface and the de-cision maker. The rest of this section is devoted to describe these di�erentsubparts in detail.3.3.1 The server interfaceThe server interface takes care of the lowest level of communication with theserver by providing an interface to the socket implementing the actual servercommunication. The controller uses the interface to connect to the serverwhen the agent is started, receive the server messages when they arrive andsend the commands back to the server.3.3.2 The controllerOne of the most important units in RoboSoc is the controller. It is respon-sible for the timing of the agent and the synchronization with the server. Itstask is to keep track of the current game time, receive messages as soon asthey arrive and control when to act. It should also dispatch the messagesfrom the server to the sensors and guide the decision maker by generatingevents.To complete its task the controller uses an internal clock, an IO handlerand three control algorithms. The internal clock will generate an interrupt27

every recv step (usually 10) milliseconds and the IO handler an interruptas soon as data arrive to the socket connecting the agent to the Soccer server.The �rst algorithm is used to update the agent after a tick of the internalclock, the second algorithm is used to update the agent when sensor data isreceived and the third algorithm is used to update the current time of theagent based on the last known server time. These three algorithms de�nethe working cycle of the agent since they generate the events which guidethe decision maker.The only assumption about the server the algorithms make is that theagent receives physical sensor data from a sense body message almost ev-ery cycle either at the beginning of the new cycle or at the end of the oldcycle. This assumption makes it possible to assume a new cycle has startedwhen the agent receive a sense body message and it can also assume it hasalmost 100 milliseconds before its command for this cycle has to be at theserver. Before discussing the algorithms in detail the RoboSoc concept oftime needs to be de�ned.Time in RoboSocThe time concept used in RoboSoc is based on the CMUnited concept oftime [8]. They represent time as a tuple of the last known server time andthe number of cycles since the clock was stopped. If the clock is not stoppedthen the second value is 0. The reason behind this concept is that the agentwants to reason about time even when the game clock is stopped and thetime reported by the server does not change. This makes it possible to usethe same internal work cycle even when the game is stopped, which wouldnot be possible otherwise. Whether the game clock is stopped or not is de-pending on what state the game is in. The state of the game is only changedafter a call of the referee, therefore the starting and stopping of the clock isdone in the sensor interface after the sensors have received a message fromthe referee.Algorithm for updating the agent after a tick of the internal clockThe internal clock is used to time the acting of the agent and to predict ifthe agent is missing messages from the server. Therefore the algorithm hasto check if a new cycle ought to have begun and in that case update the stateof the agent with this prediction, but since the controller does not want toassume that a new cycle actually has begun it will generate an event whichallows the decision maker to react to the situation. The decision maker hastwo possibilities, either to assume that a new cycle has begun or to assumethat a new cycle has not begun. When this is done the algorithm will checkto see if a periodic command is waiting to be sent. Otherwise, it checks ifthe last time for sending a periodic command this cycle is approaching, thenit generates an event for the decision maker to handle. The reason for this28

is the second assumption about the user given above. Then the algorithmchecks if there are some other commands waiting to be sent.Algorithm 3.1 Update the agent after a tick of the internal clock.beginGenerate a BeforeTick eventUpdate countersif (ticks > ticks between cycles) then beginAssume new cycleUpdate current timeendif (assumed new cycle) then beginGenerate an EstimatedNewCycle eventif (the decision maker forced a new cycle) thenGenerate a NewCycle eventendif (periodic actions waiting and current time > last action time) thenSend next periodic actionelse beginif (ticks > ticks before command warning) thenGenerate a CommandWarning eventif (immediate actions waiting) thenSend next immediate actionendGenerate an AfterTick eventendAlgorithm for updating the agent when receiving sensor dataWhen sensor data is received it is �rst parsed by the sensors, then a suitableevent is generated based on what type of sensor was used in parsing themessage.Algorithm 3.2 Update the agent when receiving sensor data.beginGenerate a BeforeSensorData eventwhile (sensor data waiting to be received) do beginReceive the sensor dataLet the sensors analyze the sensor data receivedswitch (last sensor type) begincase Physical sensor: Generate a PhysicalSensorData eventcase Visual sensor: Generate a VisualSensorData eventcase Aural sensor: Generate an AuralSensorData eventcase Init sensor: Generate an Init eventcase Sensor error: Generate a SensorError eventendendGenerate an AfterSensorData eventendAlgorithm for updating the current time after receiving the cur-rent server timeAssumptions made about the current time of the agent:29

� If the clock is not stopped then the time received with the sensor datais assumed to be correct.� If the agent thinks the clock is stopped but the time received from thesensor data is di�erent from the current time then assume the agentis wrong and the clock is started again.� If the clock is stopped then the agent assumes a new cycle starts witha sense body message, and therefore updates the time.� A new cycle starts when the current time is greater than the time ofthe last cycle.Based on the assumptions above the following algorithm was developed, theonly addition is the number of ticks of the internal clock that are countedfrom a visual or a physical sensor event. They are used to predict how muchtime is remaining before the next visual sensor data and how much time theagent has left in this cycle.Algorithm 3.3 Update the current time based on current server time.beginif (not clock stopped) thenReset estimated timeelse if (last known server not equal new server time) thenAssume the clock is runningUpdate last known server time with the new server timeUpdate the current time with the new server timeswitch (last sensor type) begincase Physical sensor:if (clock is stopped and last sense time is equal to current server time) thenUpdate estimated time since clock was stoppedReset ticks since last physical sensor datacase Visual sensor: Reset ticks since last visual sensor dataendend3.3.3 The sensorsThe purpose of the sensors are to parse the messages sent by the serverand store the intermediate result for further processing either by some user-de�ned unit or, if the framework is used, by the views. The parser is anadapted version of the parser used in CMUnited-98 [34].3.3.4 The sensor interfaceTo hide the implementation of the sensors there is a sensor interface. Thereare actually two di�erent sensor interfaces, the �rst, called the basic sensorinterface, should be used when only using the basic system and the second,called the sensor interface, should be used when the information processingframework is used. 30

The basic sensor interface contains methods for accessing all the rawdata produced by the sensors. If the information processing framework isused then the sensor interface is also responsible for telling the views whennew data is available from the sensors. How this is done is described insection 3.4.2.3.3.5 The actuatorsThe actuators are designed to provide an interface between the agent andthe server when it comes to acting. It takes special command objects, thereis one class for each type of command available to the agent, as input andconverts them to something executable by the server. The actuators arecalled by the controller when it is time to send a command. The commandsavailable are described in Table 3.1.Since there are two basic types of commands, those that can be exe-cuted immediately (immediate commands) and those that only one can beexecuted every cycle (periodic commands), the actuators maintain two sep-arate queues, one for each type of command.3.3.6 The actuator interfaceTo hide the implementation of the actuators, in the same way as with thesensors, there is an actuator interface the agent should use to send commandsto the actuators.3.3.7 The decision makerThe decision maker is the unit that implements the decision making processof the agent. This is the unit the agent designer will extend to program thebehavior of the agent.Since the second assumption about the user is that she wants to useas much time as possible to do the decision making, the main loop of theagent is inside the decision maker. To help the user, the controller generatesevents when important things happen, like new sensor data arrives or whenit is urgent to decide on a command for this cycle (because of the thirdassumption about the user) before it is too late. The decision maker alsohas limited possibilities to give feedback to the controller by changing someof its parameters like how late in the cycle the decision maker wants thecommand warning event.The events the decision maker has to handle are described in Table 3.2.Since the events are generated from the critical section of the controller'ssignal handler the decision maker should not use too much time in the eventhandlers, since there will be no other interrupts while in the critical section.Otherwise it can lead to serious problems with the synchronization with theserver and the the estimation of the current time.31

Table 3.1: The actuator commands available to the agent.Command Description PeriodicBye() Disconnect the agent NoCatch(direction)direction 2[minmoment : maxmoment] Tries to catch the ball in di-rection direction YesChangeView(view width, view quality)view width 2fnarrow, normal, widegview quality 2fnormal, highg Change the current viewwidth and view quality ofthe agent NoDash(power)power 2[minpower : maxpower] Accelerates the agent basedon the power YesInit(team name, version, goalie)team name a stringversion a stringgoalie true or false Connect initialize the agent NoKick(power, direction)power 2[minpower : maxpower]direction 2[minmoment : maxmoment] Tries to kick the ball indirection with power YesMove(x,y)x 2[�52:5 : 52:5]y 2[�34 : 34] Moves the agent to absoluteposition (x, y) if it is al-lowed to use move YesSay(message)message a string of max msg say sizecharacters The player screams outmessage loud and clear NoTurn(moment)moment 2[minmoment : maxmoment] Turn the agent moment de-grees to the right YesTurnNeck(moment)moment 2[minneckmoment : maxneckmoment] Turn the neck of the agentmoment degrees to the right NoTable 3.2: The events available to the decision maker.Event GeneratedBeforeTick Before a tick of the internal clockAfterTick After a tick of the internal clockBeforeSensorData Before receiving sensor dataAfterSensorData After receiving sensor dataActuatorSensorData After receiving actuator feedbackAuralSensorData After receiving aural sensor dataPhysicalSensorData After receiving physical sensor dataVisualSensorData After receiving visual sensor dataInit After receiving init dataSensorError After sensor errorsNewCycle When a new cycle has startedEstimatedNewCycle When the controller estimates that a new cycle has startedCommandWarning When it is time to send a command before it is too lateDelayedActions When a sense body indicates that more actions were per-formed than was sent the previous cycleMissingActions When a sense body indicates that less actions were per-formed than was sent the previous cycle32

It should be possible to use any type of agent architecture with thisdecision maker, whether it is a reactive, deliberative or hybrid architecture.The deliberate agent can use only the main loop to guide the behavior ofthe agent, the reactive agent can use only the events and �nally the hybridagent can use both the events and the main loop to control the behavior ofthe agent.3.4 The frameworkOn top of the basic system it is possible to use the framework designed tosupport and modularize the world modeling and the support for decisionmaking discussed in section 2.2. The purpose is to provide building blocksfor the user, who either can use the existing blocks as they are or extend themwith new functionality. It is also possible to create completely new blocks.There are three kinds of building blocks, views, skills and predicates. Theyeach encapsulate an important concept used in the information processingand the decision making. A view is a way of looking at and extractinginformation, focusing on some special property or object, from a collectionof data which is dependent either on the current time or on the history ofthe agent. A skill is a complex action, combined of several primitive actions,that will take an agent towards a certain goal state. A predicate works likea predicate de�ned in a three-valued logic. It is used to answer yes or noquestions about the state of the world. They are supposed to be used asconditions for rules used in either the decision maker or in the skills.This section discusses the only concrete unit in the framework, the viewmanager, and the three di�erent building blocks, or concepts, that it tries tocapture. The following sections describes instances of the di�erent concepts,the prede�ned building blocks available in more detail and how they are usedto supply an agent with a basic world model.3.4.1 The view managerThe purpose of the view manager is to store and keep track of all the viewsin the system and to make sure they are updated when new informationarrives. The view manager is not responsible for the creation of the views.This is done by the unit where they are needed, when they are needed.There are two ideas behind this. The �rst idea is that it should be possibleto have hundreds of views in the system but they should only use resourceswhen they are actually used and it should not be necessary to know thisat compile time. The second idea is that the actual views in the system donot need to be known by the framework or the basic system, they only needto be known to the users of the views. To support the �rst idea the viewmanager keeps a reference counter for each view it stores. When a view isneeded, a request for the pointer to this view is sent to the view manager.33

If the view is stored, then the pointer is returned and the reference count isincreased. If the view is not stored then a null-pointer is returned and theuser has to create the view and send it to the view manager which stores itand sets the reference counter to 1.When a view is no longer needed a release view message is sent to theview manager, which will decrease the reference counter. If the referencecounter reaches zero then the view is removed from the system, unless thepersistent
ag is set. The persistent
ag is used to prevent a view frombeing removed from the system every time its reference counter reach zero.The reason for this feature is if a view which continuously keeps track ofhistoric data is not used continuously or if you have a view which takes alot of resources when it is started but not very much resource when it isrunning.When the view manager gets a request to update the views after newsensor data have been received it will go through the current list of views inits storage and send an update message to each of them. Since each view hasthe possibility to request that another view should update itself, a counteris used to prevent the view to be updated twice with the same information.It is also possible for the views to detect circular dependencies, which cannot be handled with the current design.3.4.2 The viewsThe view is the basic component of the information processing in RoboSoc.With information processing I mean transforming the data from the sensorstogether with information from other views to more detailed or specializedinformation and storing it. This information is used to build the agent'sworld model. Each view should (but does not have to) be specialized in somearea, like modeling the ball, a certain skill or some other subject needed bythe decision maker, a skill or another part of the agent.An important issue is to minimize the redundancy of information. Tomake this possible each view can have links to other views containing alreadyprocessed and stored information. To solve the problem with dependencieseach update contains a unique number so that the view knows if it has beenupdated already, this also makes it possible to discover circular dependen-cies, as described above.The views are, like the decision maker, controlled by events. The sen-sor interface will generate events whenever new sensor data is available orsomething else occurred that the views should know about, like a new cyclestarted. All the events are described in Table 3.3.34

Table 3.3: The events the views needs to handle.Event GeneratedNewCycle After a new cycle has startedUpdateAfterInit After the agent has been initiatedUpdateAfterSee After visual sensor data has been receivedUpdateAfterHear After aural sensor data has been receivedUpdateAfterSense After physical sensor data has been receivedUpdateAfterCommand After feedback from the actuators has been receivedInformation processingTo provide the basic information processing needed by most RoboCup agents,RoboSoc comes with a set of views that will build up a world model consist-ing of a model of the ball, a model of the agent, a model of the other playersand a model of the markers on the soccer �eld. Each of these models areput in its own view. There are also three more views: the parameter viewwhich keeps track of the server parameters and optional client parameters;the command view which is used to calculate the total e�ects of the actionsexecuted by the agent; and the game view which keeps track of the currentgame. Each of the views mentioned above are described in the followingsections.In Figure 3.4 the dependency between the views are shown. To overcomethe problem with circular references, some of the views use the previouscycle's data instead of the current data. This is possible since each of theviews keep historic data from the last cycles' in case a need for them arefound. They could for example be used for calculating a trajectory of anobject based on the previous observations of it.The parameter viewThe parameter view keeps track of all the Soccer server parameters, de-scribed in section 2.1.1, and a few other important, user de�ned, parameterslike the team name and whether the agent is the goalie or not. It is also pos-sible for the user to de�ne her own parameters and let the parameter view,or rather an extended version of the parameter view, take care of them. Thevalues for the parameters can either be supplied from text �les containingthem or from the command line. If no value for a parameter is supplied adefault value is used. It is possible for the user to change the parametersduring run-time, even though it is not likely to be necessary. Since the pa-rameter view only contains parameters that are independent of the rest ofthe agent nothing is done in the event handlers.35

Game View

Sensor Interface

Player View Marker View Agent View Ball View

Command View

Parameter View

Depend on the current cycle’s information

Depend on the previous cycle’s informationFigure 3.4: Graph showing the dependency between the views.The command viewThe command view calculates the e�ect of the commands executed the dur-ing current cycle. It will give the total movement vector of the agent andthe ball for the current cycle. It will also give the total turn angle of theagent and its neck. The available methods are described in Table 3.4.The game viewThe game view stores information about the status of the game, like theplay mode, the score and the current time. The complete set of methods isshown in Table 3.5.Table 3.4: Functionality provided by the command view.Name Return type DescriptionGetAgentMovement A vector Get the previous cycle's total agent movement vectorGetBallMovement A vector Get the previous cycle's total ball movement vectorGetActualTurn An angle Get the previous cycle's total agent turn body angleGetActualTurnNeck An angle Get the previous cycle's total agent turn neck angleGetAgentAcceleration A vector Get the previous cycle's total agent acceleration vectorGetBallAcceleration A vector Get the previous cycle's total ball acceleration vectorGetActualDashPower A number Get the dash power used the previous cycle36

Table 3.5: Functionality provided by the game view.Name Return type DescriptionGetCurrentTime A time object Get the current time according to the agentGetPlayMode(hist) A play mode Get the play mode for hist cycles agoGetOurSide A side Get the side of the �eld the agent is playing onGetTheirSide A side Get the side of the �eld the agent is not playing onGetOurScore A number Get the score for the agent's teamGetTheirScore A number Get the score for the other teamGetOurTeamName A string Get the name of the agent's teamGetTheirTeamName A string Get the name of the other teamTable 3.6: Functionality provided by the marker view.Name Return type DescriptionGetNumberOfSeenLines A number Get the number of lines seen in thelast see messageGetClosestSeenLine A line object Get the closest line last seenGetLine(line, hist) A line object Get the line line as seen hist cyclesagoGetLinefL,R,T,Bg(hist) A line object Get the line object as seen hist cyclesagoGetClosestSeenMarker A marker object Get the closest marker seen in thelast see messageGetMarker(marker, hist) A marker object Get the marker marker as seen histcycles agoGetClosestMarkerTo(point, hist) A marker object Get the closest marker to point asseen hist cycles agoGetClosestGoalTo(point, hist) A marker object Get the closest goal to point as seenhist cycles agoGetTheirGoal(hist) A marker object Get the opponents' goal as seen histcycles agoGetOurGoal(hist) A marker object Get the agent's team's goal as seenhist cycles agoGetGoalfL,Rg(hist) A marker object Get the goal object as seen hist cyclesagoGetFlagName(hist) A marker object Get the marker object as seen histcycles agoThe marker viewThe marker view stores information about all the markers on the �eld. Itwill give absolute position, relative distance and direction to each marker.In Table 3.6 all the methods are described.The agent viewThe agent view keeps track of the agents status, i.e. its absolute position,stamina, e�ort, recover, absolute face direction, body and neck directions.In Table 3.7 all the methods are described.37

Table 3.7: Functionality provided by the agent view.Name Return type DescriptionGetAgentObject(hist) An agent object Get the object representing the agent hist cyclesagoGetAgentPosition(hist) A point Get an estimation of the position of the agenthist cycles agoGetFaceDirection(hist) An angle Get an estimation of the facing direction of theagent hist cycles agoGetBodyDirection(hist) An angle Get an estimation of the body direction of theagent hist cycles agoGetNeckDirection(hist) An angle Get an estimation of the neck direction of theagent hist cycles agoGetE�ort(hist) A number Get an estimation of the e�ort of the agent histcycles agoGetRecover(hist) A number Get an estimation of the recover of the agenthist cycles agoGetStamina(hist) A number Get an estimation of the stamina of the agenthist cycles agoIsGoalie A boolean Return true if the agent is the goalie otherwisefalseGetUniformNumber A number Get the uniform number of the agentGetSpeed(hist) A number Get an estimation of the speed of the agent histcycles agoGetViewWidth(hist) A view width Get the view width of the agent hist cycles agoGetViewQuality(hist) A view quality Get the view quality of the agent hist cycles agoGetViewAngle(hist) An angle Get the width of view cone of the agent histcycles agoGetDashes(hist) A number Get the number of dashes the agent has madeup to hist cycles agoGetKicks(hist) A number Get number of kicks the agent has made up tohist cycles agoGetSays(hist) A number Get the number of says the agent has made upto hist cycles agoGetTurns(hist) A number Get the number of turns the agent has made upto hist cycles agoGetTurnNecks(hist) A number Get the number of turn necks the agent hasmade up to hist cycles ago
38

Table 3.8: Functionality provided by the ball view.Name Return type DescriptionGetBallObject(hist) A ball object Get the object representing theball hist cycles agoGetBallDistance(hist) A
oat Get the distance to the ball histcycles agoGetRelativeBallVector(hist) A vector Get the relative vector to the ballhist cycles agoGetRelativeBallDirection(hist) An angle Get the relative direction to theball hist cycles agoGetAbsoluteBallVector(hist) A vector Get the absolute vector to the ballhist cycles agoGetAbsoluteBallDirection(hist) An angle Get the absolute direction to theball hist cycles agoGetBallPosition(hist) A point Get the absolute position of theball hist cycles agoGetBallDistChanged(hist) A
oat Get the distance change of the ballhist cycles agoGetBallDirChanged(hist) An angle Get the direction change of theball hist cycles agoGetBallAbsoluteSpeedVector(hist) A vector Get the absolute speed vector ofthe ball hist cycles agoGetBallRelativeSpeedVector(hist) A vector Get the relative speed vector ofthe ball hist cycles agoGetBallSpeed(hist) A
oat Get the speed of the ball hist cy-cles agoGetBallAbsoluteSpeedDirection(hist) An angle Get the absolute direction of thespeed of the ball hist cycles agoGetBallRelativeSpeedDirection(hist) An angle Get the relative direction of thespeed of the ball hist cycles agoThe ball viewThe ball view keeps track of the ball, its absolute position, relative distanceand direction and a very rough estimation of its speed. In Table 3.8 all themethods are described. All relative angles are relative to the facing directionof the agent, taken from the agent view.The player viewThe player view keeps track of the other players. It will give access to threestructures: teammates, opponents and unknown players. Each will giveinformation about the absolute position, relative distance and direction,body direction, face direction and uniform number (not available for theunknown players). In Table 3.9 all the methods are described. All relativeangles are relative to the facing direction of the agent, taken from the agentview. 39

Table 3.9: Functionality provided by the player view.Name Return type DescriptionGetClosestPlayer(hist) A pointer to a player object Get the closest seenplayer hist cycles agoGetClosestOpponent(hist) A pointer to a player object Get the closest seen oppo-nent seen hist cycles agoGetClosestTeammate(hist) A pointer to a player object Get the closest seenteammate seen histcycles agoGetOpponents(hist) A vector of player objects Get the opponents seenhist cycles agoGetTeammates(hist) A vector of player objects Get the teammates seenhist cycles agoGetUnknownPlayers(hist) A vector of player objects Get the unknown playersseen hist cycles agoTable 3.10: The truth-tables used by the predicates.: ^ t f u _ t f ut f t t f u t t t tf t f f f f f t f uu u u u f u u t u u3.4.3 The predicatesThe purpose of the predicates is to encapsulate the concept of a predicate,in a three-valued logic de�nition of the concept. In other words one hasa static feature the predicate should describe, like \is the ball on our halfof the �eld?", with or without parameters, that can either be true, falseor unknown. The truth-tables used comes from Kleene [15] and are shownin Table 3.10. The predicates are not automatically updated when newinformation is available, but they can use information stored in the viewsand thereby get access to historic data.3.4.4 The skillsThe skills encapsulate the concept of acting, or rather short term specializedplanning, or to use the current world model as provided by the views andthe predicates to derive a sequence of primitive actions that will make theagent perform a certain task or take it towards an intended goal state.Every skill should do two things, �rst of all it should be able to deter-mine if it is applicable at a given moment or if the goal state is alreadyreached or some of its preconditions are not ful�lled. It should also be ableto generate a plan, a sequence of primitive actions, consisting of at leastone primitive action. The primitive actions are the actions the server canexecute, described in section 3.3.5.To support the decision maker each skill has the possibility to set its40

own persistence
ag, to tell the decision maker that it wants to be calledagain. This can be used if a skill wants to do a sequence of actions but isonly allowed to return one primitive action each time it is called. Which isthe case with all the basic skills provided. The reason is e�ciency and thefact that the world is highly dynamic and changes signi�cantly from cycleto cycle.The following skills are currently implemented in RoboSoc. They arenot really intended to be used in a real team, but rather act as examples ofwhat skills can look like.CatchBallPurpose: To catch the ballArguments: NonePreconditions: The ball is catchable and the agent is the goalieAlgorithm: Catch in the direction of the ballLimitations: It does not take the movement of the ball or the agent into accountFindBallPurpose: To �nd the ballArguments: NonePreconditions: NoneAlgorithm: if the direction to the ball is knownthen turn towards the ballelse turn 45 degrees to the rightLimitations: It does not take the time between the visual sensor data into account,it does not use previous knowledge of the ballInterceptBallPurpose: To intercept the ballArguments: NonePreconditions: The distance and direction to the ball is knownAlgorithm: if the direction to the ball is greater than 5 degreesthen turn towards the ballelse dash with 50% of the maximum powerLimitations: It does not take obstacles or the movement of the ball into accountMoveToPurpose: To move to the absolute position (X,Y)Arguments: X and YPreconditions: The position of the agent is knownAlgorithm: if allowed to use the move command41

then Move(X, Y)else if the direction to the point(X,Y) is greater than 5 degreesthen turn towards the pointelse dash with 50% of the maximum powerLimitations: It does not take obstacles into accountScorePurpose: To kick the ball into the opponents' goalArguments: NonePreconditions: The ball is kickableAlgorithm: Kick the ball as hard as possible towards the center of the opponents'goalLimitations: It does not take obstacles nor the agent's body into account whenkickingTrackBallPurpose: Follow the motion of the ballArguments: NonePreconditions: The direction to the ball is knownAlgorithm: Turn towards the ballLimitations: It does not take motion of the ball into account3.5 Educational valueAs stated previously in this chapter the RoboSoc system have been usedin the AI programming course given by the department of computer andinformation science at Link�oping university. For more information aboutthe course, look at its web page [1]. The main goal of the course is forthe students to create their own RoboCup teams and then compete againsteach other at the end. Previous years the server parameters were adjusted toremove some problems regarding the timing of the agent to make it easier tomake good teams. The �rst bene�t of the RoboSoc system was that studentscould use the standard parameters and still get better teams, since RoboSoctakes care of the timing of the agent. Another bene�t was that the studentscould focus on the problem of developing the skills and the decision makingfor their agents instead of having to implement the server communicationand the processing and storing of information sent by the server.Most students felt that it was easy to get started when using RoboSocand that it was easy to implement their own ideas. The major problemreported was the implementation of the modi�ers, which is not very userfriendly at the moment. The problem has to do with the way C++ handlestypes and type conversions. 42

Chapter 4Conclusions4.1 SummaryThis report discusses RoboSoc, a system for developing RoboCup agentssuitable for educational use. It is designed to be as general, open, and easyto use as possible and to encourage and simplify the modi�cation, extensionand sharing of RoboCup agents, and parts of them. To do this I assumedfour requirements from the user: she wants the best possible data, use asmuch time as possible for the decision making, rather act on incompleteinformation than not act at all, and she wants to manipulate the objectsfound in the soccer environment.In order for the system to be useful from a student's point of view I statedfour essential problems the system has to solve or at least support. It shouldtake care of the basic interactions with the Soccer server, do the timing, havesupport for di�erent world models, and have support for decision making.The resulting system consists of three parts, the library, the basic systemand the framework. The library consists of basic objects and utilities usedby the rest of the system, and is not dependent on any other part of thesystem. The basic system takes care of the interactions with the server,like sending and receiving data. It is also responsible for the timing andmost of the decision making support by generating events when new thingshappen. The basic system is only depending on the library and can beused without the framework. The framework de�nes three concepts, usedfor world modeling and decision support, views, predicates and skills. Theviews are specialized information processing units responsible for a speci�cpart of the world model, like modeling the ball or the agent. They are alsocontrolled by events generated by the basic system. The predicates canbe used either by the decision maker or the skills to test the state of theworld. They work like predicates in a three-valued logic, and can either betrue, false or unknown. The skills are specialized, short-term planners whichgenerate plans for what actions the agent should take in order to reach a43

desired goal state. The framework is depending on both the library and thebasic system.In [17] J�org M�uller argue that an agent needs �ve basic capabilities tocope with di�cult tasks. The agent needs to be:� Reactive: it should react timely and appropriately to changes in theenvironment, even unforeseen changes.� Deliberative: it should be able to perform tasks in a goal-directedmanner.� E�cient: it should be able to solve its tasks e�ciently by using hard-coded procedures in routine situations.� Interactive: it should be able to interact with other agents.� Adaptive: it should be able to adapt to a changing environment andto cope with unforeseen events.Since the computational resources available to the agent is limited acentral task is to \de�ne a control architecture for resource-bounded agents,which allows the designer of an agent-based system to integrate the require-ments mentioned above, and to de�ne the trade-o�s between them in a waythat is adequate for the application domain under consideration" [17]. Ro-boSoc is such a control architecture. Since it generates events when theenvironment changes, the agent programmerer has the opportunity to inter-rupt the current deliberative decision process and react to the event. At thesame time the implementation is e�cient enough and the skill frameworkprovides a way to de�ne hard-coded procedures. Other types of reactiveprocedures, like RAPs [10] or CONTAP [9], can also be incorporated bythe user without too much trouble. There is currently only very limitedsupport for adaptation consisting of the history of the world from the lastcycles provided by the information processing framework which can be usedfor machine learning or other adaptation mechanisms. The only thing thatis not explicitly supported is the interactive capability, but at the sametime there are no major obstacles if the user wants to add communicationcapabilities to their agents.The contributions of this work is mainly an architecture and an infras-tructure which makes it easier to develop RoboCup agents that is actuallyimplemented and working. It takes care of all the low-level details and letthe user focus on the more interesting AI-parts of the agent. It also givesthe users the possibility to share di�erent parts of their agents, by providinga framework for the most common concepts used in RoboCup.Since more and more educational institutes are starting to use RoboCupas part of their curriculum I think this system can play an important rolein the promotion of RoboCup, and AI, by making it more accessible toeveryone. 44

4.2 Future workThere is a vast number of things that would improve RoboSoc. The followingparagraphs each discuss one area where improvements are possible.Improve the existing basic systemThe most needed improvement to the basic system is to make it a distributedapplication with di�erent units running in separate threads. The bene�twould be better performance and a nicer computational model. At the sametime making it less machine dependent would make it easier to transfer itto other platforms. Currently RoboSoc will run on most unix
avors withminor changes, but all operating systems that support sockets and sometype of signals should be able to run it after modi�cations.Improve the existing frameworkThe most obvious improvement is to improve the views, skills, and predicatesthat are included. They could be made to deliver more accurate informationand be made to do more advanced geometric calculations.New views, skills and predicates are always welcome and I hope thatusers of RoboSoc will contribute with theirs to advance the state of the artof RoboCup teams. This could help move RoboCup from the hacking stageto the stage where all teams have almost the same level of basic functionalitywhen it comes to individual players. Then more scienti�c methods becomesmore and more important. One will need a team that has models of theopponents and uses team tactics and plays to be able to win. Today onecan win most games by only having good individual players.Another interesting experiment would be to connect existing specializedsoftware to RoboSoc to take care of certain tasks like planning or prediction.Other frameworksThe three frameworks that exist today are the most obvious, and necessary,ones for creating a functional RoboCup agent. But adding other frameworksis possible. I can think of at least four other useful frameworks: a roleframework, a communication framework, a coach framework, and a machinelearning framework. The role framework is probably the most wanted onesince most teams use some sort of roles to divide the tasks between the agentstoday. Otherwise it is interesting to wait and see where the development ofRoboCup is going before taking a concept on as one of general interest.It is also possible to create completely separate frameworks, that do notuse the current ones, for example support for genetic programming.45

Development tools and debuggingOne direction of development which could be more fruitful than to addmore frameworks is to provide a set of development tools that can help thedevelopers with the creation of the agents. Tools that are of interest are forexample the layered disclosure tool provided by CMUnited [32], and toolsthat graphically show what the agent currently believes in.Regarding debugging I see two possible types of debugging. The �rsttype is the retrospective analysis like the logplayer from CMU, where you�rst store data from a game and then watch the game and inspect the actionsof the agents afterwards. The second type is the interactive analysis andmaybe even pro active analysis. The interactive analysis is when the currentstate of the agent can be inspected during a game, and where you can stepthrough the execution of the agent and the whole game. The major problemfor the interactive analysis is the support for the step feature within thecurrent Soccer server. The whole area of developing support for debuggingof real-time, multi-agent systems is very interesting.A more realistic debug feature could be view-servers, used by RoboLog[23] and in some sense also the Headless chickens from Link�oping [7]. Aview-server is a server you connect a, running, agent to which then use thedata sent to it by the agents to visualize the current state of the agent, oruse it for inspection or debugging purposes.I hope to be able to continue working on RoboSoc and add some of theimprovements discussed above. The next event will be to create a team withRoboSoc that will compete in the Swedish and European championships inMay.

46

Appendix AThe user's manual
A.1 IntroductionThis is a preliminary version of the user's and the reference manual forthe RoboSoc system for developing RoboCup agents. It consists of foursections. This �rst section contains a short introduction to the software andthe following three sections described each of the three modules that makeup the complete RoboSoc system.For the latest information about the current release of RoboSoc, look atthe README �le included in the latest release. For information about howto install the software look in the INSTALL �le included in the release. Todownload the latest version of RoboSoc, including the latest version of themanual, or to get more information about the development of it look at theRoboSoc web-site [24].A problem with the current release is that RoboSoc uses namespaces, be-cause of a nameclash between the Unix socket management and the standardtemplate library. Therefore your compiler needs to support namespaces, forexample gcc 2.95 and CC 5.0 does.A.1.1 Overview of the software packageThe RoboSoc system consists of three di�erent parts, the library, the basicsystem and the framework. You can either use only the library, the libraryand the basic system, or the whole system. Therefore there are three soft-ware packages available the RoboSoc library, the RoboSoc basic system, andthe RoboSoc framework package. Each of them contains all the �les neededto use the software. Each of the three packages are described in more detailin the following sections. 47

A.1.2 General partsThere are two �les included in each of the packages, the compiler directivesand the types for the package. The compiler directives are
ags that are setto control the compilation of the package. The types are those types thatare used by the package. There is also an extra set of compiler directives andtypes in the library package for machine dependent compiler directives andtypes. What directives and types included in each package are described inthe section describing that package.A.2 The libraryThis section will describe the functionality and the use of the library moduleof the RoboSoc system.A.2.1 How to use the library?The library is not a single unit but rather a collection of classes. To use thelibrary you therefore have to include the header �le for the wanted class.The names of the include �les are usually the name of the class with theextension .h. The de�nitions of the classes are in a �le with the same nameas the include �le, but with the extension .cc.A.2.2 Compiler directivesThe following directives can be de�ned in library compiler directives.h:TRIG IN DEG : If trigonometry functions should return angles in degrees.TRIG IN RAD : If trigonometry functions should return angles in radians.USE EXCEPTIONS : If exceptions should be used.USE DEBUG : If the debug features should be used.Only one of the �rst two directives can be de�ned, otherwise the compi-lation will fail.A.2.3 Data typesRoboSoc contains many di�erent data types used to encapsulate both ma-chine dependent and implementation dependent data types. The machinedependent data types are shown in Table A.1, and they are all de�ned inmachine dependent types.h. The de�nition of these must be changed tomatch the size of the data types on the local system.There are also three basic number types that have an unspeci�ed maxi-mum size, but a speci�ed minimum size, since they are used in such a waythat the size of the type mainly a�ects the precision of the calculation, notthe range of the values. The three types are shown in Table A.2.48

Table A.1: The basic, machine dependent, data types available in RoboSoc.Type Signed Size (bytes) Descriptiont uint16 No 2 Unsigned 16-bit integerst uint32 No 4 Unsigned 32-bit integerst uint64 No 8 Unsigned 64-bit integerst int16 Yes 2 Signed 16-bit integerst int32 Yes 4 Signed 32-bit integerst int64 Yes 8 Signed 64-bit integerst
oat32 Yes 4 Signed 32-bit
oatst
oat64 Yes 8 Signed 64-bit
oatsTable A.2: The basic, precision dependent, data types available in RoboSoc.Type Signed Min size (bytes) Descriptiont uint No 2 Unsigned integers with at least 16 bitst int Yes 4 Signed integers with at least 32 bitst
oat Yes 4 Signed
oats with at least 32 bitsRoboCup typesThe RoboCup speci�c enumeration types are shown in Table A.3 and areall de�ned in library types.h.RoboSoc templatesRoboSoc contains a few templates that are used to represent angles, both inradians (AngleRad<type>) and in degrees (AngleDeg<type>), and coordi-nates, both vectors (CoordVector<type>) and points (CoordPoint<type>).The types in the templates are used to represent basic values, like the angleor the x and y coordinate.There is also a template for representing collections of objects calledObjectCollection<object-type>, the object-type is the type of the object inthe collection.RoboSoc typesThe RoboSoc speci�c types are shown in Table A.4 and are all de�ned inlibrary types.h. There are also some named instantiations of templatesde�ned in library types.h, shown in Table A.5.Modi�ersThere are three types of modi�ers. Each with its own feature. The threemodi�ers are with unknown, with con�dence and with observation time.49

Table A.3: Data types for RoboCup concepts available in RoboSoc.Type Values Descriptiont view width VW Normal, VW Wide,VW Narrow, VW Unknown A type for representing theconcept of view widtht view quality VQ High, VQ Low,VQ Unknown A type for representing theconcept of view qualityt cmd type CMD Unknown,CMD Bye,CMD Catch,CMD ChangeView,CMD Dash,CMD Init,CMD Kick,CMD Move,CMD Say,CMD SenseBody,CMD Turn,CMD TurnNeck
A type for representing theavailable server commands

t side line SL Left, SL Right, SL Top,SL Bottom, SL Unknown A type for representing theside linest marker Goal L, Goal R,Flag C, Flag CT,Flag CB, Flag LT,Flag LB, Flag RT,Flag RB, Flag PLT,Flag PLC, Flag PLB,Flag PRT, Flag PRC,Flag PRB, Flag GLT,Flag GLB, Flag GRT,Flag GRB, Flag TL50,Flag TL40, Flag TL30,Flag TL20, Flag TL10,Flag T0, Flag TR10,Flag TR20, Flag TR30,Flag TR40, Flag TR50,Flag BL50, Flag BL40,Flag BL30, Flag BL20,Flag BL10, Flag B0,Flag BR10, Flag BR20,Flag BR30, Flag BR40,Flag BR50, Flag LT30,Flag LT20, Flag LT10,Flag L0, Flag LB10,Flag LB20, Flag LB30,Flag RT30, Flag RT20,Flag RT10, Flag R0,Flag RB10, Flag RB20,Flag RB30, Unknown Marker,Unknown Goal, Unknown Flag

A type for representing themarkers

50

Table A.4: Data types for RoboSoc concepts available in RoboSoc.Type Values Descriptiont side S Unknown,S Left,S Right A type for representing the sidesof the �eldt team T Unknown,T Our Team,T Their Team A type for representing theteamst play mode PM Unknown,PM Before Kick O�,PM Time Over,PM Play On,PM Drop Ball,PM O�side Kick,PM Our O�side Kick,PM Their O�side Kick,PM Half Time,PM Time Up,PM Extended Time,PM Kick O�,PM Our Kick O�,PM Their Kick O�,PM Kick In,PM Our Kick In,PM Their Kick In,PM Free Kick,PM Our Free Kick,PM Their Free Kick,PM Corner Kick,PM Our Corner Kick,PM Their Corner Kick,PM Goal Kick,PM Our Goal Kick,PM Their Goal Kick,PM Goal,PM Our Goal,PM Their Goal,PM Goalie Got Ball,PM Our Goalie Got Ball,PM Their Goalie Got Ball

A type for representing the pos-sible game modes

51

Table A.5: Named instatiations of templates available in RoboSoc.Type Instatitiont uint16 u WithUnknown<t uint16>t int32 u WithUnknown<t int32>t
oat32 u WithUnknown<t
oat32>t
oat64 u WithUnknown<t
oat64>t int unknown WithUnknown<t int>t uint unknown WithUnknown<t uint>t
oat unknown WithUnknown<t
oat>t
oat uco WithUCO<t
oat, CTimeUnknown>CAngleDeg AngleDeg<t
oat>CAngleDegUnknown AngleDegUnknown<t
oat>CAngleDegUCO AngleDegUCO<t
oat, CTimeUnknown>CPoint CoordPoint<t
oat>CPointUnknown CoordPointUnknown<t
oat>CPointUC CoordPointUC<t
oat>CPointUCO CoordPointUCO<t
oat, CTimeUnknown>CVector CoordVector<t
oat>CVectorUnknown CoordVectorUnknown<t
oat>CVectorUC CoordVectorUC<t
oat>CVectorUCO CoordVectorUCO<t
oat, CTimeUnknown>CVectorCollection ObjectCollection<CVector>CAngleDegCollection ObjectCollection<CAngleDeg>FloatCollection ObjectCollection<t
oat>They add the feature of unknown values, a con�dence factor and an obser-vation time respectively.They are implemented as templates but are only tested for basic C++types and other modi�ers instantiated with basic types. The basic ideais to create a new class with an attribute to store a value of the type thetemplate was instatitated with and extra attributes for the feature. The classthen implements all the basic arithmetic operators and also some specialoperators for that modi�er. There is also a method called GetValue() whichreturns the value of the variable, but without the modi�cation. Thereforeit will discard information stored in the variable. In some cases it mightnot even work, if you try to take the value of an unknown variable then itwill throw an UnknownValueException. The special operators are describedbelow.With unknown The \with unknown" modi�er makes it possible for avalue to be unknown. The special methods available are MakeUnknown(),which makes the variable unknown and return a reference to that variable,and IsUnknown() which returns true if the value is unknown or false other-wise. 52

With con�dence The \with con�dence" modi�er makes it possible toadd a con�dence factor to the value. The special methods available areGetCon�dence(), which returns the current con�dence value, and SetCon�-dence(CCon�dence) which sets the current con�dence value.There is a compiler directive called PESSIMISTIC OBSERVATIONS whichcontrolls how con�dence values are updated when doing arithmetic withmodi�ed values. If it is set then the lowest con�dence value is taken, other-wise the highest.With observation time The \with observation time" modi�er makesit possible to add a timestamp to the value. The special methods areGetObservationTime(), which returns the observation time, SetObserva-tionTime(Time), which sets the current observation time, and GetCyclesS-ince(Time) which returns the number of cycles between observation timeand time.There is a compiler directive called PESSIMISTIC OBSERVATIONS whichcontrols how observation times are updated when doing arithmetic withmodi�ed values. If it is set then the earliest observation time value is taken,otherwise the latest.The standard modi�ers (WithUnknown<type>, WithCon�dence<type>,and WithObservationTime<type, time>) does not work with the templatesfor the angles and coordinates there are special versions of the modi�ersavailable, called AngleDegUnknown<type>, for unknown, AngleDegUC<type>for both unknown and con�dence, and AngleDegUCO<type> for unknown,con�dence and observation time and similar for AngleRad, CoordVector andCoordPoint.A.3 The basic systemThis section describes the basic system of RoboSoc and how to use it.A.3.1 How to create an agent?To create an agent using the RoboSoc basic system, without the framework,you have to create a main function where you start the di�erent parts. InExample A.1 you can see how the code for a basic agent might look like.The function rs debug is used for debugging, and is only needed if the com-piler directive USE DEBUG de�ned in library compiler directives.h.The constructors for the di�erent units are described in the following sec-tions.The initialization of the agent is done in the CDecision class, and sincethe base class CDecision does not send any init message to the server youhave to write your own decision class. How this is done is described insection A.3.9. 53

A.3.2 How to use the basic system with the framework?The only di�erence is that you have to use the class CSensorInterface insteadof CBasicSensorInterface when you start the sensor interface in Example A.1.You also need to start the view manager and use a di�erent decision class,but that is discussed in section A.4.A.3.3 The controllerThe constructor is CController(CServerInterface* const, CSensors*const, CActuators* const, CDecision* const, const t uint16 cycle length,const t uint16 recv step, const t uint16 sense step, const t uint16visual step) where CServerInterface, CSensors, CActuators, CDecsion ispointers to the current server interface, sensors, actuators and decision ob-jects. The cycle length it the length of a cycle in milliseconds, recv step is theinterval between the server polls the sockets, sense step the interval betweensense body messages, and visual step the interval between see messages.recv step, sense step, and visual step can be found in server.conf.A.3.4 The sensorsThe constructor is CSensors(CBasicSensorInterface*), whereCBasicSensorInterfaceis a pointer to the sensor interface object.A.3.5 The sensor interfaceThe constructor is CBasicSensorInterface(string& my team name)wheremy team name is the name of the team. The string is used to infere whichteam a player belongs to.A.3.6 The actuatorsThe constructor is CActuators(CActuatorInterface*), where CActuatorInterfaceis a pointer to the actuator interface object.A.3.7 The actuator interfaceThe constructor is CActuatorInterface().A.3.8 The decision makerThe constructor is CDecision(CActuatorInterface* const actuator interface,CBasicSensorInterface* const sensor interface), whereCActuatorInterfaceis a pointer to the actuator interface object and CBasicSensorInterface is apointer to the sensor interface object.54

Table A.6: The events available to the decision maker.Event GeneratedBeforeTick Before a tick of the internal clockAfterTick After a tick of the internal clockBeforeSensorData Before starting to receive sensor dataAfterSensorData After receiving sensor dataActuatorSensorData After receiving actuator feedbackAuralSensorData After receiving aural sensor dataPhysicalSensorData After receiving physical sensor data (sense body)VisualSensorData After receiving visual sensor dataInit After receiving init dataSensorError After sensor errorsNewCycle When a new cycle has startedEstimatedNewCycle When the controller estimates that a new cycle has startedCommandWarning When it is time to send a command before it is too lateDelayedActions When a sense body indicates that more actions were per-formed than was sent the previous cycleMissingActions When a sense body indicates that less actions were per-formed than was sent the previous cycleA.3.9 How to do the decision making?To add the decision making you have to the following. Create a new classthat inherits from CDecision. In that class you have to start the main loop ofthe program, for an example see Example A.2. Then you have to implementsome of the event handlers that the controller will call. The event handlersare described in Table A.6. For an example implementation of a basic agentlook at the basic decision class in Example A.3.A.3.10 How to get the sensor information?To get the sensor information you have to call the methods in CBasicSen-sorInterface. They are described in Table A.7. Since all the values in thebasic sensor interface is reset at the begining of a cycle, all the data givenby is from the current cycle.A.3.11 How to send commands to the server?To send a command to the server you have to create a new pointer to thewanted command object class, for example new CDashCommand(75) to cre-ate a new command (dash 75), then send it to server by using the methodsavailable in the actuator interface described in Table A.8.55

Table A.7: Public methods in class CBasicSensorInterface.Name DescriptionNewCycle() Called by the controller when a newcycle has startedForceNewCycle() Called by the controller when a newcycle was forced to start by the userCTime GetCurrentTime() Get the current timeForEachMarker(void (*fn)(const marker object)) Apply the function fn on each markert uint GetNumberOfSeenMarkers() Get the number of markers in the lastsee messageForEachLine(void (*fn)(const line object)) Apply the function fn on each linet uint GetNumberOfSeenLines() Get the number of lines in the last seemessageForEachPlayer(void (*fn)(const player object)) Apply the function fn on each playert uint GetNumberOfSeenPlayers() Get number of players in the last seemessagebool SawBall() Return true if the ball was seen in thelast see messaget
oat unknown GetBallDistance() Return the distance to the ballCAngleDegUnknown GetBallDirection() Return the direction to the ballt
oat unknown GetBallDistanceChange() Return the distance change for theballt
oat unknown GetBallDirectionChange() Return the direction change for theballt view quality GetViewQuality() Return the view qualityt view width GetViewWidth() Return the view widtht
oat GetStamina() Return the staminat
oat GetE�ort() Return the e�ortt
oat GetSpeed() Return the speedCAngleDeg GetHeadDirection() Return the direction of the headt uint GetKicks() Return the number of kicks madet uint GetDashes() Return the number of dashes madet uint GetTurns() Return the number of turns madet uint GetSays() Return the number of says madet uint GetTurnNecks() Return the number of turn necks madestring& GetOurTeamName() Return our team namestring& GetTheirTeamName() Return the other teams namet side GetOurSide() Get the side of our teamt side GetTheirSide() Get the side of the other teamt uint GetUniformNumber() Get my uniform numbert play mode GetPlayMode() Get the play modet uint GetOurScore() Get our scoret uint GetTheirScore() Get the score of the other teamstring GetCoachMessage() Get the message from the coachstring GetPlayerMessage() Get the message from another playerCCommand* GetLastCommand() Get the last command sent to theserver56

Table A.8: Public methods in class CActuatorInterface.Name DescriptionInit(CActuators*) Tells the interface what actuators to use calledby the actuatorsbool AddPlan(CCommand*) Add a command to the send queueA.4 The frameworkA.4.1 How to create an agent with the framework?To create an agent using the RoboSoc framework you have to create a mainfunction where you start the di�erent parts. In Example A.4 you can seehow the code for a basic agent, using the framework, might look like.The function rs debug is used for debugging, and is only needed if the com-piler directive USE DEBUG is de�ned in library compiler directives.h.The constructors for the di�erent units were described in the last sections.The initialization of the agent is done in the CDecision class, and sincethe base class CDecision does not send any init message to the server youhave to write your own decision class. How this is done see section A.3.9.A.4.2 The viewsThe view is the basic component of the information processing in RoboSoc.With information processing we mean transforming the data from the sen-sors together with information from other views to more detailed or special-ized information and storing it. Each view should (but does not have to) bespecialized in some area, like the ball, a certain skill or some other subjectneeded by the decision process or other parts of RoboSoc.An important issue is to minimize the redundancy of information. Tomake this possible each view can have links to other views containing alreadyprocessed and stored information. To solve the problem with dependencieseach update contains a unique number so that the view knows if it has beenupdated already, this also makes it possible to discover circular dependen-cies.How do they work?The purpose of the views is to process and store information. To make thispossible they need to know when new information has arrived and they needto be able to access the raw data from the server and information stored inother views. The data from the sensor interface is available from the classvariable CView::sensorInterface. (To make this work you need to assign theaddress of the sensor interface object to the CView::sensorInterface variable.)57

Other views are reachable through the view manager pointer, viewManager,stored in each view.In order to know when new information is available the views have amethod for each type of update in the system. They are:- NewCycle which is called by the view manager when a new servercycle is about to begin. It's called before the UpdateBeforeNewCycle()method of the sensor interface is called. This is the last chance to useany data stored in the sensor interface, afterwards it will be reset.- UpdateAfterInit is called when the init messsage has arrived fromthe server.- UpdateAfterSee is called when new see information has arrived fromthe server.- UpdateAfterHear is called when new audio information has arrivedfrom the server.- UpdateAfterSense is called when a new sense body has arrived fromthe server.- UpdateAfterCommand is called when a command was sent to theserver.What kind of data you can get from the sensor interface and when it isavailable is described in the previous section.How are the views updated?When new information arrives to the sensor interface it will tell the viewmanager that it is time to update after XXX (which is the type of the in-formation). The view manager will then generate an unique update numberand iterate over all the stored views and for each one of them call theirUpdateAfterXXX() method with the update number as the argument. Thismethod will check to see if the view has already been updated or not. If ithas not been updated then it will call the method MyUpdateAfterXXX().If the view has been updated nothing happens, if the view detects a circulardependency it will abort the program.If your view needs updated information from some other view then youneed to call its UpdateAfterXXX()-method with the same update numberyou got, which is stored in the view as currentUpdateNumber.The update for a new cycle is somewhat di�erent. The NewCycle()-method of a view is called before the sensor interface updates itself for anew cycle, all the other update methods are called after the sensor interfacehas been updated. When the sensor interface updates itself it will erase alldata stored in it. Therefore this is the last chance for the view to use the58

data stored in the sensor interface for the current server cycle. It is alsotime for the view to make it ready for a new cycle.How do I use the views?First of all you need the wanted view object, or a pointer to it. Then youcan call it's public methods and access its public attributes.To get a pointer to a view object you need to ask the view manager ifthe view is stored there. This is done by calling the GetView-method. Theargument to GetView is the id-number of the view you need. A symbolicconstant for this value can usually be found in view data.h. The GetView-method will return either a NULL-pointer if the view doesn't exist or apointer to the object if it exist. The problem is that the pointer is of thetype CView*, and not the correct view-pointer you need. Therefore youhave to use the static cast template to convert the pointer from one typeto another. Eg. to convert v ptr from a CView* to a CBallView* you do:v ptr = static cast < CBallV iew� > (v ptr).How do I create a view object?First of all, create an instance of the view you need. Then you need to storethe view in the view manager. This is done by calling the view manager'sAddView()-method with the address of the view and a persistence
ag. Ifthe persistence
ag is set the view will not be destroyed when no one isusing the view, otherwise it will be destroyed when no one is using it. Withno one using the view I mean that there are no pointers to the view activein the system. An active pointer to a view is given when you ask the viewmanager for a view with the GetView()-method and they are deactivatedwith a call to the ReleaseView()-method. The reason for storing the viewein the view manager is to make them available to the rest of the system.How do I extend them?The basic rule is to create new views which use information from the viewyou want to extend instead of changing the code of the existing view. Ifyou really would like to extend an existing view, inherit from the view youwant to extend and then add the things you miss and rede�ne the necessarymethods.How do I write my own views?The best way to add new functionality regarding information processing inRoboSoc is to create a new view. To create a new view all you have to dois to inherit from CView (or any other view that you want to use as yourstarting point) and write your own update methods. I.e. you need to de�ne59

what the view should do when new information has arrived and what to dowhen a new cycle begin. If you need to store data (which is very likely) youwill need to create the necessary data structures and initialize them in theconstructor, destroy them in the destructor and supply methods to extractand use the information stored in them. If you need access to other views,the best way to do this is to store pointers to those views in the object andinitialize them in the constructor. Then you'll know that the views you wantare always accessible.For examples and hints, look at the code for the views that are includedin the RoboSoc-package.What views are included in RoboSoc?Currently seven views are supplied with RoboSoc version 1.5.0. I hope tobe able to add more views as the users of RoboSoc get their views workingand sending them to me.The views are:- ParameterView: stores all the parameters from server.conf. Usethem to make your agent independent of the actual server con�gura-tion. It also contains methods for parsing the command line. Availableoptions are -f con�g-�le to read a con�g �le, -goalie true to start aplayer as the goalie, and -team name team-name to set the team nameof the agent.- GameView: which stores information about the status of the game(play mode, score and current time).- CommandView: calculates the e�ect of the commands executed thecurrent cycle. It will give you the total movement vector of the agentand the ball for the current cycle. You will also get the total turnangle of the agent and its neck.- MarkerView: stores information about all the markers on the �eld.It will give you absolute position, relative distance and direction tothe markers.- AgentView: keeps track of the agents status (absolute position,stamina, e�ort, recover, absolute face direction, body and neck di-rections)- BallView: keeps track of the ball (absolute position, relative dis-tance and direction and a very rough estimation of the speed) itemPlayerView: keeps track of the other players. You will get access tothree structures: teammates, opponents and unknown players. Eachwill give information about absolute position, relative distance anddirection, body, face direction and uniform number (if available).60

Game View

Sensor Interface

Player View Marker View Agent View Ball View

Command View

Parameter View

Depend on the current cycle’s information

Depend on the previous cycle’s informationFigure A.1: The dependencies between the views.How the views depend on each other can be seen in Figure A.1. A moredetailed description of these views is available in the section 3.4.2.A.4.3 How to use the predicatesCreate an instance of the predicate you want. Call the Evaluate() method,which will return either true or false.A.4.4 How to create your own predicatesCreate a new class that inherits from the CPredicate class. Implement thebool Evaluate() method.A.4.5 How to extend existing predicatesCreate a new class that inherits from the predicate you want to extend. Callits Evaluate() method if its functionality is useful, otherwise rewrite it fromscratch. 61

A.4.6 How to use the skillsCreate an instance of the skill you want. To check whether the skill is appli-cable call its Applicable() method which will return true if it is applicableotherwise false. To get the next command generated by the skill call itsGeneratePlan() method. If the skill wants to be called again the next cycleit will set the persistence
ag of the skill. This
ag is checked with thePersistent() method.A.4.7 How to create your own skillsCreate a new class that inherits from the CSkill class. Implement the boolApplicable(), bool Persitent() and CCommand* GeneratePlan() methods.A.4.8 How to extend existing skillsCreate a new class that either inherits from the skill you want to extendand then use its Applicable, Persistent and GeneratePlan methods to createthe new skill or inherit from some other skill (or CSkill) and create a localinstance of the skill you want to extend and calls its Applicable, Persistentand GeneratePlan methods to implement the class.

62

Example A.1 A basic agent using only the basic system.#include "CController.h"#include "CActuatorInterface.h"#include "CBasicSensorInterface.h"#include "CActuators.h"#include "CSensors.h"#include "CDecision.h"extern void rs_debug(const std::string& str){ std::cerr << "Error: " << str << std::endl;}int main(int argc, char** argv){ std::cout << "Starting actuator interface...\n";CActuatorInterface actuator_interface;std::cout << "Starting actuator...\n";CActuators actuators(&actuator_interface);std::cout << "Starting sensor interface...\n";CBasicSensorInterface sensor_interface("RoboSoc");std::cout << "Starting sensors...\n";CSensors sensors(&sensor_interface);std::cout << "Starting server interface...\n";CServerInterface server_interface("localhost", 6000, 2048);std::cout << "Starting decision...\n";CDecision decision(&actuator_interface, &sensor_interface);std::cout << "Starting controller...\n";CController controller(&server_interface, &sensors, &actuators,&decision, 100, 10, 100, 150);if (!controller.Init()) {std::cout << "Error in Init!\nExit...\n";return 1;}controller.Start();return 0;}
63

Example A.2 An example of a main loop.void CBasicDecision::Start(){ while (serverAlive)if (pause() == -1 && errno != EINTR)std::cerr << "Something went wrong in pause!\n";}

64

Example A.3 An example of a basic decision maker.CCommand* CBasicDecision::InitAgent() {return new CInitCommand(``RoboSoc'', 5, false);}void CBasicDecision::Decide() {if (!ballDir.IsUnknown())ballDir -= lastTurn;lastTurn = 0;if (sensorInterface->SawBall()) {ballDir = sensorInterface->GetBallDirection();ballDist = sensorInterface->GetBallDistance();counter = 0;} else {counter++;if (counter > 4) {ballDir.MakeUnknown();ballDist.MakeUnknown();counter = 0;}}if (ballDir.IsUnknown()) {actuatorInterface->AddPlan(new CTurnCommand(CAngleDeg(30)));} else if (ballDist < 1) {actuatorInterface->AddPlan(new CKickCommand(100, CAngleDeg(0)));} else if (Abs(ballDir) < 5) {actuatorInterface->AddPlan(new CDashCommand(50));} else {actuatorInterface->AddPlan(new CTurnCommand(ballDir.GetDeg()));}}void CBasicDecision::OnActuatorSensorData() {const CCommand* const cmd = sensorInterface->GetLastCommand();if (cmd != NULL && cmd->GetType() == CMD_Turn) {lastTurn = static_cast<const CTurnCommand*>(cmd)->GetAngle();}}void CBasicDecision::OnInit() {actuatorInterface->AddPlan(new CMoveCommand(CPoint(-10, -10)));}void CBasicDecision::OnCommandWarning() {Decide();} 65

Example A.4 An example of a basic agent using the framework.int main(int argc, char** argv) {CViewManager view_manager;CParameterView* parameterView =new CParameterView(PARAMETER_VIEW_ID, &view_manager,argc, argv);view_manager.AddView(parameterView, true);CActuatorInterface actuator_interface;CActuators actuators(&actuator_interface);CSensorInterface sensor_interface(parameterView->CP_team_name,&view_manager);CSensors sensors(&sensor_interface);CGameView* gameView = new CGameView(GAME_VIEW_ID, &view_manager);view_manager.AddView(gameView, true);CCommandView* commandView =new CCommandView(COMMAND_VIEW_ID, &view_manager);view_manager.AddView(commandView, true);CMarkerView* markerView =new CMarkerView(MARKER_VIEW_ID, &view_manager, parameterView);view_manager.AddView(markerView, true);CAgentView* agentView =new CAgentView(AGENT_VIEW_ID, &view_manager, parameterView);view_manager.AddView(agentView, true);CBallView* ballView = new CBallView(BALL_VIEW_ID, &view_manager);view_manager.AddView(ballView, true);CPlayerView* playerView =new CPlayerView(PLAYER_VIEW_ID, &view_manager);view_manager.AddView(playerView, true);CServerInterface server_interface(parameterView->SP_host,parameterView->SP_port,parameterView->SP_buffer_size);CMyDecision decision(&actuator_interface, &sensor_interface,&view_manager);CController controller(&server_interface, &sensors, &actuators,&decision,parameterView->SP_simulator_step,parameterView->SP_recv_step,parameterView->SP_sense_body_step,parameterView->SP_send_step);controller.Start();return 0;} 66

Bibliography[1] AI-Programming course web-page. http://www.ida.liu.se/�TDDA14/,March 2000.[2] Minoru Asada and Hiroaki Kitano, editors. RoboCup-98: Robot SoccerWorld Cup II. Springer Verlag, Berlin, 1999.[3] M. E. Bratman. Intentions, Plans, and Practical Reason. HarvardUniversity Press, 1987.[4] Hans-Dieter Burkhard, Markus Hannebauer, and Jan Wendler. ATHumboldt - development, practice and theory. In Hiroaki Kitano, edi-tor, RoboCup-97: Robot Soccer World Cup I, pages 357{372. SpringerVerlag, Berlin, 1998.[5] Hans-Dieter Burkhard, Jan Wendler, Pascal Gugenberger, KaySchr�oter, and Ralf K�uhnel. AT Humboldt in RoboCup-98. In MinoruAsada and Hiroaki Kitano, editors, RoboCup-98: Robot Soccer WorldCup II. Springer Verlag, Berlin, 1999.[6] Silvia Coradeschi and Jacek Malek. How to make a challenging AIcourse enjoyable using the RoboCup soccer simulation system. 1999.[7] Silvia Coradeschi and Paul Scerri. A User Oriented System for Develop-ing Behavior Based Agents. In Minoru Asada and Hiroaki Kitano, edi-tors, RoboCup-98: Robot Soccer World Cup II. Springer Verlag, Berlin,1999.[8] Emiel Corten, Klaus Dorer, Fredrik Heintz, Kostas Kostiadis, JohanKummeneje, Helmut Myritz, Itsuki Noda, Jukka Riekki, Patrick Riley,Peter Stone, and Tralvex Yeap. Soccerserver Manual Ver. 5.1, 1999.[9] Patrick Doherty. The WITAS Integrated Software System Ar-chitecture. Link�oping Electronic Articles in Computer andInformation Science, Vol 4(1999): no 17, December 1999.http://www.ep.liu.se/ea/cis/1999/017/.67

[10] James R. Firby. Building symbolic primitives with continuous controlroutines. In J. Hendler, editor, Proceedings of the 1st International Con-ference on Arti�cial Intelligence Planning Systems (AIPS-92). MorganKaufmann Publishers, San Mateo, CA, 1992.[11] Stanley Franklin and Arthur Graesser. Is it an agent, or just a program?In Intelligent Agents III, pages 21{36.[12] Fredrik Heintz. FCFoo a short description. In Robocup 1999 TeamDescription: Simulation League. Link�oping Electronic Press, 1999.[13] Hiroaki Kitano, editor. RoboCup-97: Robot Soccer World Cup I.Springer Verlag, Berlin, 1998.[14] Hiroaki Kitano, Milind Tambe, Peter Stone, Manuela Veloso, SilviaCoradeschi, Eiichi Osawa, Hitoshi Matsubara, Itsuki Noda, and MinoruAsada. The RoboCup synthetic agent challenge 97. In Proceedings ofthe Fifteenth International Joint Conference on Arti�cial Intelligence,pages 24{29, San Francisco, CA, 1997. Morgan Kaufmann.[15] S. C. Kleene. Introduction to Metamathematics. Princeton N.J., 1952.[16] Pattie Maes. The agent network architecture (ANA). SIGART Bulletin,2(4):115{120, 1991.[17] J�org P. M�uller. The Design of Autonomous Agents - A Layered Ap-proach. Springer-Verlag, Heidelberg, 1996.[18] J�org P. M�uller. The right agent (architecture) to do the right thing.In J�org P. M�uller, Munindar P. Singh, and Anand S. Rao, editors,Intelligent Agents V - Proceedings of the Fifth International Workshopon Agent Theories, Architectures, and Languages (ATAL-98). Springer-Verlag, Heidelberg, 1999.[19] A. Newell and H. A. Simon. Computer science as empirical enquiry:Symbols and search. Communications of the ACM, 19(3):113{126,1976.[20] Itsuki Noda, Hitoshi Matsubara, Kazuo Hiraki, and Ian Frank. Soccerserver: A tool for research on multiagent systems. Applied Arti�cialIntelligence, 12:233{250, 1998.[21] The Robot World Cup Initiative web-page. http://www.robocup.org,March 2000.[22] The RoboCup Simulator Team Repository.http://medialab.di.unipi.it/Project/Robocup/pub/, March 2000.68

[23] The RoboLog Soccer Agent Libraries web-page. http://www.uni-koblenz.de/ag-ki/ROBOCUP/ROBOLOG/, March 2000.[24] The RoboSoc web site. http://www.ida.liu.se/�frehe/RoboCup/RoboSoc/,March 2000.[25] Stuart Russel and Peter Norvig. A Modern, Agent-Oriented Approachto Introductory Arti�cial Intelligence. 1995.[26] Stuart Russel and Peter Norvig. Arti�cial Intelligence: A Modern Ap-proach. Prentice Hall International, 1995.[27] Paul Scerri, Johan Ydren, Tobias Wiren, Mikael L�onneberg, and Per-Erik Nilsson. Headless Chickens III. In Manuela Veloso, Enrico Pagello,and Hiroaki Kitano, editors, RoboCup-99: Robot Soccer World Cup III.Springer Verlag, Berlin, 2000.[28] The Soccer Server web-page. http://ci.etl.go.jp/�noda/soccer/server,March 2000.[29] Richard W. Stevens. UNIX network programming Vol 1. Prentice-HallPTR, Upper Saddle River, NJ, 1998.[30] Peter Stone. Layered Learning in Multi-Agent Systems. PhD thesis,Carnegie Mellon University, 1998.[31] Peter Stone, Patrick Riley, and Manuela Veloso. The CMUnited-99champion simulator team. In Manuela Veloso, Enrico Pagello, andHiroaki Kitano, editors, RoboCup-99: Robot Soccer World Cup III.Springer Verlag, Berlin, 2000.[32] Peter Stone, Patrick Riley, and Manuela Veloso. Layered Disclosure:Why is the agent doing what it's doing? In Proceedings of the FourthInternational Conference on Autonomous Agents, 2000.[33] Peter Stone and Manuela Veloso. The cmunited-97 simulator team.In Hiroaki Kitano, editor, RoboCup-97: Robot Soccer World Cup I.Springer Verlag, Berlin, 1998.[34] Peter Stone, Manuela Veloso, and Patrick Riley. The CMUnited-98Champion Simulator Team. In Minoru Asada and Hiroaki Kitano, edi-tors, RoboCup-98: Robot Soccer World Cup II. Springer Verlag, Berlin,1999.[35] Manuela Veloso, Enrico Pagello, and Hiroaki Kitano, editors. RoboCup-99: Robot Soccer World Cup III. Springer Verlag, Berlin, 2000.69

[36] Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: The-ory and practice. The Knowledge Engineering Review, 10(2):115{152,1995.[37] Michael Wooldridge and Nicholas R. Jennings. Pitfalls of Agent-Oriented Development. 1998.

70

