
RADIUS

Common Development Environment

User's Manual

R I U SD

Version 1.0

Sponsored by the
O�ce of Research and Development

Under Contract 91-F 133700-000

Developed by
SRI International and Martin Marietta

Acknowledgements

The primary architect of the RCDE is Lynn Quam of SRI International, who developed the Car-

tographic Modeling Environment over the last decade. The other members of the team shaped the
�nal product, which includes documentation and the Lisp-C/C++ interface:

Bill Bremner Martin Marietta Aaron Heller SRI International

Bill Deriscavage Martin Marietta Tom Strat SRI International

Doug Hackett Martin Marietta

Anthony Hoogs Martin Marietta Joseph Mundy General Electric

Mark Horwedel Martin Marietta

Phil Rossomando Martin Marietta Richard Welty Infologic

Janis Tomko Martin Marietta

Our thanks to the O�ce of Research and Development and ARPA for funding this e�ort.

ARPA

Version 1.0 Edition, July 1993

Copyright c
1993 Martin Marietta and SRI International.

Reproduction of this document is permitted for internal use only in conjunction with the RCDE.

Lisp-C/C++ Interface and LCI are trademarks of Martin Marietta.

3DIUS, ImagCalc and CME are trademarks of SRI International.

Lucid and Lucid Common Lisp are trademarks of Lucid, Inc.

Motif is a trademark of the Open Software Foundation

Sun, Sun Microsystems, Sun Workstation, SPARCstation, SunOS, SBus, NFS and

OpenWindows are trademarks of Sun Microsystems, Inc.

SPARC is a trademark of SPARC International, Inc.

ObjectCenter is a trademark of CenterLine Software, Inc.

PostScript is a trademark of Adobe Systems Incorporated.

UNIX is a trademark of Novell, Inc.

X Window System is a product of the Massachusetts Institute of Technology.

All other products or services mentioned in this document are identi�ed by their trademarks or

service marks of their respective companies or organizations.

Contents

1 Introduction 1

1.1 Purpose : 1
1.2 Scope of the Document : 1
1.3 Applicable Documents : 2
1.4 Document Organization : 2

2 RCDE Overview 5

2.1 Introduction : 5
2.1.1 Historical Overview : 5
2.1.2 Architecture : 6

2.2 Design Philosophy and Overview : 6
2.2.1 Data Manipulation : 6
2.2.2 Data Representations : 8
2.2.3 User Interface Overview : 12
2.2.4 Object Sensitivity : 13
2.2.5 Development Environment : 17

3 Stack Usage Scenario 21

3.1 Taking Charge : 21
3.2 Scenario Initialization : 22
3.3 Stack Scenario : 22

4 Stack Manipulation 27

5 Geometric Image Transform Scenario 35

6 Geometric View Transforms 41

7 Arithmetic Image Transform Scenarios 47

8 Arithmetic Image Transforms 53

iii

9 Enhancement Image Transforms 59

10 Graph, I/O, and Miscellaneous Operations 63

10.1 The Graph Menu : 63
10.2 The I/O Menu : 65
10.3 The Misc Menu : 68

11 Introduction to 3-D Modeling 73

11.1 Representations : 73
11.2 Views : 74
11.3 The Transforms Menu : 77
11.4 Feature Sets : 78
11.5 The View Menu : 79

12 The RCDE Objects 83

12.1 Site Model Update Scenario : 83
12.1.1 Creating a New View : 83
12.1.2 Instantiating Model Object Primitives : : : : : : : : : : : : : : : : : : 84
12.1.3 Moving Model Objects : 86
12.1.4 Adjusting the Model View : 86

12.2 Object Classi�cation : 87
12.2.1 2-D Objects : 87
12.2.2 3-D Feature Objects : 87
12.2.3 3-D Face Objects : 88
12.2.4 Tool Objects : 89
12.2.5 Miscellaneous Objects : 89

12.3 Methods on Objects : 90
12.3.1 Basic Methods : 90
12.3.2 Common Methods : 91
12.3.3 3-D Methods : 91
12.3.4 2-D Methods : 92
12.3.5 Vertex Manipulation Methods : 92
12.3.6 Color Mapping Methods : 93
12.3.7 Conjugate Point Methods : 94
12.3.8 View Tool Methods : 94
12.3.9 Super Methods : 94
12.3.10Camera Methods : 95
12.3.11House Methods : 95
12.3.12Cylinder Methods : 95
12.3.13Rectangle Methods : 95
12.3.14Scroll Bar Methods : 95
12.3.15Window Methods : 96

12.3.16Feature Set Methods : 96
12.3.17Composite Methods : 96
12.3.18Perspective Transform Methods : 96
12.3.19Curve Methods : 97
12.3.20Half Cylinder : 97
12.3.21Sun Ray Methods : 97

13 The Camera Model 99

13.1 Coordinate Transforms : 99
13.1.1 The Transform Matrix : 100

13.2 The Pinhole Camera : 101
13.3 Camera Re�nement : 104

13.3.1 Entering a Known Camera : 105
13.3.2 Manually Adjusting Camera Positions : : : : : : : : : : : : : : : : : : 106

13.4 Applying Camera Resection : 110
13.4.1 Conjugate Points : 111
13.4.2 Executing Camera Resection : 113

14 Terrain Data Integration 115

14.1 Registering USGS DEM Files : 116
14.2 Preparing a DTM Image : 117

14.2.1 Loading a DTED File as a RCDE Image : : : : : : : : : : : : : : : : : 118
14.2.2 Loading a RCDE-Compatible DTM Image : : : : : : : : : : : : : : : : 119

14.3 The DTM Transform : 120
14.4 Creating a DTM Object : 122
14.5 Linking the DTM to the Site : 122

15 Building a Site Model 125

15.1 Creating a New Site Object : 125
15.2 Registering Images : 126
15.3 Registering a Terrain Model : 127
15.4 Constructing 3-D Models : 128
15.5 Saving a Site Model : 128
15.6 Loading a Site Model : 129

15.6.1 Initialize The Frame : 129
15.6.2 Initialize The Site Model : 129
15.6.3 Display the Site Model : 130

16 Data Exchange 131

16.1 Transfer Between RCDE Sites: FASD Files : : : : : : : : : : : : : : : : : : : 131
16.1.1 Creating FASD Files : 131
16.1.2 Loading a FASD File Into The RCDE : : : : : : : : : : : : : : : : : : 132

16.1.3 FASD File Format : 133
16.1.4 FASD Limitations : 134

16.2 Transferring Objects To and From C/C++ Systems : : : : : : : : : : : : : : 134
16.2.1 Restoring Objects from C/C++ Files or Programs : : : : : : : : : : : 135

17 Lisp-C/C++ Interface 141

17.1 LCI Overview : 141
17.1.1 Executing C and C++ within Lisp: Performance Mode : : : : : : : : 144
17.1.2 Executing C and C++ Outside Lisp: Debugging Mode : : : : : : : : : 144
17.1.3 Switching Between Modes : 145
17.1.4 Programming C and C++ in the RCDE : : : : : : : : : : : : : : : : : 145

17.2 Operations Concept : 151
17.2.1 Projects : 153
17.2.2 Executing without Compiling : 154

17.3 LCI Scenarios : 154
17.3.1 Preparation and Example 1 : 154
17.3.2 Tightly-Coupled Example : 156
17.3.3 Loose Example : 157
17.3.4 Example 2: Image I/O, Shared Image Array Structures, and Image

Modi�cation : 159
17.3.5 Example 3: Object Creation and Manipulation in C++ : : : : : : : : 160

17.4 The Menu Interface : 162
17.4.1 Control Panel : 162
17.4.2 Parameters Menu : 163
17.4.3 Files Menu : 165
17.4.4 Functions Menu : 165
17.4.5 Project Files Menu : 169

17.5 C/C++ Programming Details : 169
17.5.1 Parameter Passing : 169
17.5.2 LCI Compilation and Linking : 171
17.5.3 Notational Conventions : 173
17.5.4 Calling C/C++ from Lisp : 173
17.5.5 Calling Lisp from C/C++ : 174
17.5.6 C++ Proxy Classes : 176
17.5.7 C/C++ Programming Hints and Suggestions : : : : : : : : : : : : : : 177

18 On-line Documentation 181

18.1 RCDE's Online Documentation System : 181
18.2 The GNU Emacs Info facility : 181
18.3 Organization of RCDE Nodes : 184
18.4 Synopsis of Info Commands : 185
18.5 Other Means of Obtaining Online Information : : : : : : : : : : : : : : : : : : 186

A Bucky Menu Functionality 189

B Glossary 217

List of Figures

2.1 An Overview of the RCDE System : 6
2.2 The CME System Developed at SRI : 7
2.3 The RCDE Architecture : 8
2.4 The RCDE Subsystems : 9
2.5 Example RCDE Functional Flow : 10
2.6 RCDE Data Representations : 11
2.7 The RCDE User Interface : 14
2.8 The Lisp Interaction Window : 16
2.9 A Top-Level View of the Lisp/C++ Interface Design : : : : : : : : : : : : : : 18

4.1 An Example of the Lisp Inspector : 29

11.1 A Simple 3-D World : 75
11.2 RCDE Data Representations : 76

12.1 A Simple Scene of Model Objects : 85

13.1 The Pinhole Camera Model : 102
13.2 The Pinhole Camera with Separated Principal and Stare Points : : : : : : : : 107
13.3 Pinhole Camera Model with Principal Point Moved : : : : : : : : : : : : : : : 109
13.4 The Steps in Executing Automatic Camera Resection. : : : : : : : : : : : : : 111

16.1 Generic FASD Example : 133

17.1 System Level View of Lisp C/C++ Interface Architecture : : : : : : : : : : : 143
17.2 System-level view of Performance (Tight Coupling) Mode : : : : : : : : : : : 147
17.3 System-level view of Debugging Mode (Loose Coupling) in the Lisp Process : 148
17.4 System Level View of Debugging Mode (Loose Coupling) in the C/C++ Process149

18.1 The GNU Emacs Top-Level Directory : 182
18.2 The Menu of RCDE Documents : 183
18.3 Top Level Nodes of RCDE Documentation : 184

ix

18.4 Documentation Node Relationships : 185

List of Tables

16.1 House FASD Example : 136
16.2 Half-Cylinder FASD Example : 137
16.3 Superquadric FASD Example : 138
16.4 Ribbon-Curve FASD Example : 139

A.1 Class 3d-Curve : 190
A.2 Class 3d-Closed-Curve : 192
A.3 Class 3d-Ruler-Object : 194
A.4 Class Image-Windowing-Tool : 196
A.5 Class House-Object : 197
A.6 Class Extruded-Object : 199
A.7 Class Cylinder : 201
A.8 Class Half-Cylinder : 203
A.9 Class View-Hacking-Object : 205
A.10 Class Superellipse : 206
A.11 Class Color-Map-Hacking-Object : 208
A.12 Class Superquadric : 209
A.13 Class Camera-Model-Object : 211
A.14 Class Sun-Ray-Object : 213
A.15 Class Conjugate-Point-Object : 215

xi

Chapter 1

Introduction

1.1 Purpose

This document is intended as a user's manual for the RADIUS Common Development
Environment (RCDE), which is an interactive workstation environment and standard toolset
for manipulating imagery and constructing 3-D site models. The User's Manual will provide
a description and several examples of the various stages of constructing site models. In
addition, this document describes an interface between CLOS and C++ that permits a Lisp
or C++ programmer to extend the functionality of the RCDE.

This User's Manual is addressed principally to researchers within the Image Understand-
ing (IU) community, and is sponsored by the O�ce of Research and Development (ORD) and
the Advanced Research Projects Agency (ARPA). The environment will be made available
to all industry and university contractors who perform IU research for the U.S. Government,
and is to be used for developing and comparing image understanding algorithms.

1.2 Scope of the Document

This manual is intended to aid IU researchers in understanding the RCDE user interface,
data representations, and programming requirements. The beginning chapters of this doc-
ument will assume that the user wishes to manipulate objects from the interactive window
display and is not familiarwith a Lisp or C++ programming environment. In order to extend
the capabilities of the RCDE, the user must understand how to use the programmer's inter-
face, which will be described in su�cient detail so that the interested reader/programmer
can add additional functionality to the RCDE. A description of the RCDE at the functional
level is supplied in the RCDE Programmer's Reference Manual.

The RCDE, when utilized to its full potential, will provide the user with the following
capabilities;

1

2 RCDE User's Manual

Interactivity: Commands and menus, with mouse and context sensitivity.

Extensibility: Large and small scale system integration support.

Standard Operations and Representations: Functionality that is widely used by the
IU community.

Reusable Concepts: Encouraged through object-oriented methodologies and a consis-
tent data exchange format.

Seamless and Consistent Integration: Intuitively usable basic operations for all enti-
ties (e.g., Images, Objects and Graphs) in the user interface.

Integrated Support for Imagery and 3-D Models: The ability to create a site model
from imagery. The system provides interactive, three-dimensional features capable of
being associated with imagery. Camera models are used to establish the relation
between the imagery and the site model on a mathematical basis.

1.3 Applicable Documents

The following documents provide supplementary information:

� RCDE Programmer's Reference Manual

� RCDE Installation Guide

� Tutorial on image understanding environments, presented by D.T. Lawton at 1990
DARPA IU Workshop

� Sun Microsystem OpenWindows 3.0 Manual

� Sun Systems User Guide - (Desktop SPARCstation)

1.4 Document Organization

This document is organized into chapters that are summarized below. In the earlier part of
the document, chapters are presented in pairs; the �rst contains a step-by-step scenario of
how to use the RCDE, and the second lists and describes the menu items individually. The
user is �rst exposed to application-speci�c examples before the details of each function are
fully discussed. This approach is intended to serve those users who like a tutorial approach
and those users who prefer to use the manual only as a reference.

� Chapter 1 - Introduction { This chapter describes the intended purpose and scope
of the RCDE User's Manual.

Introduction 3

� Chapter 2 - RCDE Overview { This chapter describes the RCDE architecture and
user interface at a systems level.

� Chapter 3 - Stack Usage Scenario { This chapter describes a short scenario that
introduces the user to the RCDE screen layout. It will also introduce the concept
of data stacks and how to remove, copy, inspect, delete, and undelete the underlying
data that is manipulated and viewed from the RCDE windows.

� Chapter 4 - Stack Manipulation { This chapter describes each stack manipulation
option { what it does and how to invoke it.

� Chapter 5 - Geometric View Transform Scenario { This chapter describes a
short scenario that demonstrates zooming, repositioning, and other window opera-
tions.

� Chapter 6 - Geometric View Transforms { This chapter describes the geometric
operations that can be performed on images and site models.

� Chapter 7 - Arithmetic Image Transform Scenarios { This chapter describes a
short step by step example of Boolean image operations such as xor, intersection, and
negation. The scenario demonstrates the arithmetic e�ects in visual manner that are
recognizable to the user.

� Chapter 8 - Arithmetic Image Transforms { This chapter describes each Arith-
metic Image Photometric Transform menu option, what it does, and how to invoke
it.

� Chapter 9 - Enhancement Image Transforms { This chapter describes pixel
intensity manipulation and image window function menu options, what they do, and
how to invoke them. No scenarios are required. By following each procedure, the user
can execute the function. The user is introduced to the notion of an object with menu
options (e.g., the view-object-hacking tool)

� Chapter 10 - Graph, I/O, and Miscellaneous Operations { This chapter de-
scribes other operations such as how to create histograms, plot a horizontal or vertical
line of pixel intensities (line amplitude pro�le), save site models, load and save images,
and adjust color maps.

� Chapter 11 - Introduction to 3-D Modeling { This chapter introduces the
RCDE's 3-D site modeling capabilities and presents a simple scenario for creating
and manipulating model objects.

� Chapter 12 - The RCDE Objects { This chapter presents how objects are created,
grouped, and viewed within a pane. It introduces the concept of 2-D and 3-D worlds,
3-D objects and camera objects via a site model scenario.

4 RCDE User's Manual

� Chapter 13 - The Camera Model { This chapter describes the RCDE camera
model in detail, including its creation and adjustment.

� Chapter 14 - Terrain Data Integration { This chapter describes the integration
and manipulation of terrain data within the RCDE site model.

� Chapter 15 - Building A Site Model { This chapter integrates the previous four
chapters by presenting a comprehensive view of the site modeling process.

� Chapter 16 - Data Exchange { This chapter discusses the �le formats and data
requirements necessary to transfer site models between systems.

� Chapter 17 - Lisp-C/C++ Interface { This chapter discusses the architecture
supporting the programmer's interface between Lisp and C/C++. A scenario describ-
ing the interface is presented, as well as an overview of its operation and su�cient
detail to allow the user to integrate C/C++ code with the RCDE.

� Chapter 18 - On-line Documentation { This chapter presents the RCDE's hy-
pertext documentation reference system.

Chapter 2

RCDE Overview

2.1 Introduction

The RCDE is based on the Cartographic Modeling Environment (CME) software developed
by SRI International, which allows a user to interactively derive 3-D models of the world
using imagery and geometric constraints. The RCDE incorporates a Lisp-C/C++ (LCI)
programming interface, developed at Martin Marietta, that permits IU researchers to de-
velop new algorithms in C or C++ and integrate them into the baseline RCDE architecture.
A robust language bridge allows data interchange and parameter passing between C/C++,
Lisp/CLOS, and the RCDE baseline. The RCDE is currently hosted on the Sun SPARC-
station platform under the UNIX operating system. Figure 2.1 illustrates the basic RCDE
concept.

2.1.1 Historical Overview

The Cartographic Modeling Environment, developed at SRI, serves as the basis for the
RCDE System. Figure 2.2 supplies a historical perspective of CME's development. Imag-
Calc was initially developed as a stand-alone system, providing facilities for image display,
\electronic light-table" functionality, image processing, and a robust user interface. On top
of ImagCalc, the Object system was designed to generate three-dimensional models (wire
frame models), incorporating the pinhole camera model and geographic coordinate systems.
A third component, TerrainCalc, was incorporated to render and display terrain features,
including tiling of DTM data and texture mapping of digital imagery onto the terrain grid.
When combined with Terrain-Calc, the Object system allows the 3-D model to be melded
with the terrain model (built with TerrainCalc) and then rendered, including simulated

y-through sequences over arbitrary
ight paths.

5

6 RCDE User's Manual

RCDE-024b

Sun SPARCstation

UNIX

Window Support

C / C++ Lisp / CLOS

Lisp 2Lisp 1

C++ 2C++ 1 User Layer

RCDE Layer

System Layer

Figure 2.1: An Overview of the RCDE System { In the user layer, the C/C++ applications
may be coupled to each other via Inter-Process Communication (IPC), while the applications
are coupled to the RCDE via the Lisp-C/C++ Interface (LCI). Lisp applications may be
loaded directly into the Lisp/CLOS process. The RCDE layer includes facilities and libraries
accessible to Lisp, C and C++ programmers.

2.1.2 Architecture

The RCDE architecture, illustrated in Figure 2.3, is similar to CME, but contains two
additional elements. The System Utilities are used by the RCDE to execute on the Sun
platform and windowing system. The Programming Interface allows both Common Lisp
Object System (CLOS) and C++ programmers to access RCDE objects when developing
their own algorithms.

The RCDE System is divided into subsystems, which are de�ned as groups of objects
that share similar functionality. Figure 2.4 lists the subsystems of the RCDE, grouping
them functionally as de�ned in Figure 2.3.

2.2 Design Philosophy and Overview

This discussion should provide insight into the usage of the RCDE. It discusses the main
design areas associated with the RCDE: data usage, representations, user interaction, and
the programming environment.

2.2.1 Data Manipulation

The RCDE is designed to combine information from a variety of sources to support the
construction of site models: imagery, terrain data, wire frame models, and collateral con-

RCDE Overview 7

TerrainCalc

ImagCalc

Object

CME
RCDE-001c

Figure 2.2: The CME System Developed at SRI

straints. In doing so, the system incorporates a mix of manual and automatic construction
methods.

Figure 2.5 illustrates a typical approach for building a site model using the RCDE. Many
paths through the system are possible depending on which site parameters are known; the
diagram illustrates a few alternate paths. The user starts by loading an image of interest into
a blank pane. Multiple image operations (e.g., contrast stretch, enhance) can be performed
on the image to suit the viewer. When the user is ready to begin building a model, he
creates a view transform, which creates a 3-D World (which includes a coordinate system
and camera model). This transform data structure can be blank or oaded from another
source such as a �le. The user then creates model objects, overlaying their wire frames on
the image. From this state, the user can perform image operations and model operations in
each subsequent state; the notations are deleted from later states for convenience.

After the view transform is created, the user must load and align the Digital Terrain
Model (DTM) with the image to ensure that the terrain data and the image occurs at the
correct coordinates (e.g., Latitude/Longitude) of the image. The �nal step in creating a fully
aligned model is to correct the default camera model by resectioning the camera with the
image and DTM. Manual Adjustment of the objects in the scene produces a fully registered
site model whose objects are in the correct 3-D location. The image then represents a
snapshot of the model (objects and DTM) as taken from the given camera.

Multiple images of a site can be aligned to a single site model to generate multiple
views from multiple cameras. If the camera parameters are already known, a new view
transform (camera) can be created and speci�ed explicitly, as illustrated in the right fork
of Figure 2.5. This produces a second view of the scene that is already aligned; by copying
selected collections of model objects (feature sets) into the new view, a fully aligned, multiple

8 RCDE User's Manual

RCDE-010a

Programming Interface

System Utilities

Rendering

2-D
Support

3-D
Support

Figure 2.3: The RCDE Architecture { The programming interface enables C, C++ and Lisp
applications to access the RCDE Capabilities.

view site model is produced. If the camera parameters are not known, a new blank view
is created and the model feature sets are copied into it. The camera is then aligned either
by manipulating it manually through the user interface or by using a resection technique,
as illustrated in the left fork of Figure 2.5. More views of the scene can be generated by
repeating the above procedure.

Finally, simple model rendering is available as a veri�cation aid. The texture of each
model face can assume a default shading to produce a realistic e�ect. The user then speci�es
an arbitrary number of rendering viewpoints (through the user interface) and the model is
rendered. Viewing the model from multiple locations allows the user to review his model
for consistency.

2.2.2 Data Representations

The View is a fundamental component of the 3d-World, which uni�es the RCDE data
structures for viewing on the display. The world contains objects that are viewed through
a simple camera, which transforms the world coordinates to image coordinates. Objects in
the scene are mapped to the image plane (�lm plane) of the camera.

The major components of a view are related as illustrated in Figure 2.6. The white
boxes represent data objects, which include model elements (e.g., house, image), groupings
of objects (e.g., feature sets), and transformations. The shaded boxes denote coordinate
systems, which are numerical values stored in a separate container object.

From the left side of the �gure, we can see that a view is associated with a number of
3-D feature sets, 2-D feature sets, tool feature sets, images, and view stacks. Each type of

RCDE Overview 9

RCDE-009b

Lisp-C/C++ Interface

Image Utilities

Image Representation

Image User Interface

Image Display

Image Operators

Rendering

Model Declaration

Model Utilities

Model Representation

Model Transforms

Model User Interface

Lisp Environment Extension Window System Support

Figure 2.4: The RCDE Subsystems

feature set (3-D, 2-D, tool) is associated with a number of objects. Each object has its own
internal coordinate system (object coordinates) and a transform matrix that maps object
coordinates to some other coordinate system.

For example, follow the �gure from the bottom, moving toward the right. Three-D mod-
els (e.g., houses) have their own object-centered coordinate system and a 4x4-transform
that maps object coordinates into a set of 3-D world coordinates. The 3-D world coordi-
nates are stored by a 3d-world object as a local vertical coordinate system (LVCS), whose
origin is de�ned relative to a given site. A 3-D world has additional transformations to
convert the LVCS to a universally recognized World Coordinate system, such as Universal
Transverse Mercator (UTM), . Latitude-Longitude-Elevation, or geocentric coordinates.

The view is associated with a sensor (camera) model that maps 3-D world coordinates
to 2-D world coordinates. The camera model is labeled \3-D!2-D Projection" in the �gure.
Chapter 13 presents more details of the camera model.

Views are also composed of images and 2-D feature sets, which contain 2-D objects.
Both have transformations to transform local object or image coordinates to 2-D world
coordinates, in common with the output of the camera model.

The 2-D world coordinates are then mapped into window (pane) coordinates by another
2-D transformation (\2-D Transform" in the �gure). This transformation is necessary for

10 RCDE User's Manual

RCDE-025b

Rendered
Model

Load
Image

Load View
Transform

Load and
Align DTM

Align Camera
by Resection

Load new
Image

Image
Operations

Image
Operations

Image
Operations

Add & Adjust
Model Objects

Add & Adjust
Model Objects

Model and
Unaligned View

Model and
Aligned View

Adjust Camera with
Known Parameters

Create Blank View and
Copy Site Feature Set

Aligned
Multiple View

Site Model

Specify Texture and
Viewpoint, then Render

Model and
Unregistered

Image

Image
Operations

Add & Adjust
Model Objects

Fully Registered
Site Model

DTM Registered
to Image

Image and
Objects

Image
Only

Blank
Pane

Specify Texture and
Viewpoint, then Render

Copy Feature SetAlign New Camera

Figure 2.5: Example RCDE Functional Flow { Illustrates how the RCDE is typically used
to manipulate images and to construct site models

RCDE Overview 11

3-D -> 2-D
Projection

3-D World
Coordinates

2-D World
Coordinates

2-D
Transform

Window
Coordinates

WINDOW

2-D
Transform

Image
Coordinates

IMAGES

3-D
Transform

3-D Object
Coordinates

3-D MODELS

3-D
Feature

Sets

2-D
Transform

2-D Object
Coordinates

2-D MODELS

2-D
Feature

Sets

2-D
Transform

Tool Object
Coordinates

TOOLS

Tool
Feature

Sets

VIEW
STACK

View

RCDE-040a

Figure 2.6: RCDE Data Representations

12 RCDE User's Manual

translations of the 2-D data within the window such as panning and zooming. The view
may also contain Tool objects, which are designed to remain �xed in the pane even when
the underlying data is panned or zoomed. All types of objects are therefore mapped to
window coordinates in a similar way. A window-world object is responsible for storing
the window coordinate data; note that the window has a stack associated with it, which
contains a number of views.

2.2.3 User Interface Overview

The RCDE was designed as a development environment; as such, the user is able to access
visual elements of a scene and then perform new operations on them using his own code.
For example, each display pane contains a stack of views, which are mouse sensitive in a
variety of ways. When the mouse \points" at a particular object, it becomes highlighted.
The object can then be manipulated directly or programmatically because an actual pointer
to the object is made available in the Lisp Listener.

The RCDE user interface was originally developed as a standard pulldown menu driven
interface. A command key (shortcut) interface was then added to use keyboard and mouse
button interactions | the Bucky keys. The object-oriented nature of the user interface
implies that each object instance contains its own particular set of functions. The Bucky
key system therefore evolved from the need to create multiple identical objects which may
react di�erently to the same system stimulus (e.g., camera motion). Hence, a function
selection capability was given to each object instance.

When an object is highlighted, a set of functions are available that are specialized to
that object. This context-sensitive environment is enhanced by the persistent nature of the
Lucid Lisp environment. The most striking example of this is the Eval Cache facility, which
is a mechanism to control the execution of display operations. It avoids replicating identical
computations by storing a list of previously executed operational sequences and reusing the
result, if available. The Eval Cache greatly increases system performance, especially for
image operations.

Both keyboard and mouse input are used to drive the interface components, which are
detailed in the following sections and �gures.

2.2.3.1 Windows

The RCDE screen provides visual feedback to the user and provides a means of human
interaction and control at various phases of the site modeling process. Through interac-
tion with the RCDE, the user is able to control, manipulate, and view site model objects
(houses, terrain models, buildings, images) within the 2-D and 3-D worlds associated with
appropriate coordinate systems. The RCDE screen layout provides an e�cient tool to study
the site modeling process.

By default, the RCDE dedicates most of the screen to a regular array of display areas
called panes, each of which contains a stack of displayable objects called views. The top view

RCDE Overview 13

on each stack is displayed on the pane. This array of panes is grouped in a display window
called a frame. The panes are used to display all of the RCDE displayable objects, including
images, graphs, geometric objects, and textual messages. Figure 2.7 illustrates an example
frame, labeled CME 2x2. The frame contains four panes that each display a di�erent view
of a common site model. It also shows that multiple overlapping windows are available.

Menu Bar and Message Area The RCDE Menu Bar appears by default at the top of
the screen. Just above the main menu buttons are two critical documentation areas. The
top line, usually referred to as the Documentation Line, performs the following functions:

� Object Name and Mouse Commands { If the mouse is within the sensitivity
radius of a sensitive object, the name of that object and the current choices for the
left, middle, and right mouse buttons are described in the Documentation Line.

� Image Pane Mouse Button Commands { If the mouse is not in an object con-
text, the choices for the left, middle, and right mouse buttons are described in the
Documentation Line.

� Menu Item Description { When the Main Menu or any other pop-up menu is on
the screen, the Documentation Line displays a one-line description of the menu choice
that is under the mouse.

� User Prompt { Most main menu selections prompt the user for more information,
such as which image or object to use for the operation and which pane to use for the
result. The Documentation Line is used to display the prompt messages.

The second text line in the Menu bar displays important information about an object or
pane whenever a selection occurs. The information depends on the context, but generally
includes the the pixel location in image coordinates, the pixel value selected, the pixel
location in 2-D (u; v) coordinates, and the 3-D coordinates of a point on the terrain, if one
exists.

On the bottom of the Menu Bar is a row of pulldown menu buttons, which can be
selected depending on the window manager being used. Selecting a menu item can result in
three actions: 1) the function will be immediately executed, 2) a popup menu will appear
that requires the user to supply some auxiliary information, or 3) another submenu will
appear that requires the user to select an option. In Figure 2.7, the Create Object menu has
been pinned and the Geom menu is in the process of being pulled down. The RCDE menu
options will be described later in the context of views, transforms, and objects.

2.2.4 Object Sensitivity

Each object instance has its own mouse sensitivity method which de�nes how that object
responds to the presence of the mouse. Usually, an object sensitivity method computes the

14 RCDE User's Manual

Figure 2.7: The RCDE User Interface

RCDE Overview 15

distance from the mouse cursor to visible parts of the wire frame depiction of the object
in the window. When the mouse is positioned within the sensitivity radius of a sensitive
object, the object is highlighted on the view and the documentation line is updated to
indicate the name of the object and the operations accessible via the left, middle, and right
mouse buttons for the current state of the RCDE Control, Meta, Super, and Hyper keys
(sometimes referred to as the Bucky keys). When the mouse is within the sensitivity radius
of more than one object, the nearest object is chosen. When no object is selected, the pane
Bucky menu is active.

The sensitivity of entire feature sets of objects may be turned on and o� using the
View menu Feature Set commands. The mouse sensitivity of individual objects cannot be
controlled from the user interface directly, but can be changed through Lisp.

2.2.4.1 Bucky Keys and Menus

Certain key functions are supported by a second menu system called the Bucky menus. On a
pane, this Bucky menu can be invoked by depressing the right mouse button. A Bucky menu
will appear, allowing the user to simply left mouse click on the functions that are identi�ed
within the menu system. The Bucky menus support Objects,Views and Image functions.
Please refer to the RCDE Installation Guide for Bucky key mappings. These Bucky keys
are intended to be a shortcut alternative to menu selections. In order to use the Bucky
keys, ensure that you have correctly modi�ed your environment variables as described in
the RCDE Installation Guide. These variables change the functionality of the keys listed
above.

Bucky commands provide a very e�cient graphical interface to objects. To invoke a
Bucky menu command, the user moves the mouse to select a particular object, then invokes
the Bucky menu command by depressing some combination of the Bucky keys and then
clicking one of the three mouse buttons (while the Bucky keys are still depressed).

Each object has a Bucky menu that speci�es the menu of operations appropriate to
objects of that object class. The current Bucky menu may be invoked for a given object
by holding down the Hyper and Control keys and clicking the right mouse button while
pointing to the object. A shorthand for that action is [H - - C! - - R].

2.2.4.2 Lisp Interaction Window

The Lisp Interaction window, illustrated in Figure 2.8, is an Emacs bu�er in a separate
window that will accept any Lisp form and pass it to the Lucid interpreter. This Lisp
form may be viewed as a command or instruction to the RCDE, and therefore the window
can be used as a command line interface. Most operations, whether initiated through the
command line interface or by other means, return pointers (and printed representations) to
the Lisp Interaction Window. These pointers are useful as a means of referencing speci�c
intermediate results.

16 RCDE User's Manual

Figure 2.8: The Lisp Interaction Window

RCDE Overview 17

The Lisp Interaction window provides a means of controlling the RCDE via Lisp com-
mand functions. The Lisp interactive window also provides a means of presenting the user
with text output as part of the RCDE feedback when the user invokes RCDE operations
via the user interface or as part of a Lisp form.

When the RCDE is invoked, a separate Emacs bu�er is created that interfaces to the
Lucid interpreter. Any runtime error that is detected is passed along to the user in the form
of an abort alert. The user may then choose to \inspect" the stream of Lisp commands in
order to determine the source of the error. This interface with the Lucid debugger allows
the user to quickly prototype new algorithms and reload code without tedious compilation.

2.2.5 Development Environment

The RCDE was prototyped as an object-oriented system over a period of more than 15 years.
As a prototype, it was a research tool, designed for the user to develop code while using the
system. As a result, the RCDE supplies a seamlessly coupled set of tools for application
development. The coupling is based on the �ne grained code-reuse philosophy of the object-
oriented paradigm. The user interface provides direct access to some of these objects. Those
objects are in turn supported by more abstract objects in the RCDE environment.

2.2.5.1 Extensible Object Hierarchies

The RCDE provides a comprehensive hierarchy of object classes for program development.
It is relatively easy to navigate through that hierarchy and attach new objects to extend
the hierarchy for specialized applications. Speci�cally, the RCDE includes hierarchies for
the following application support areas:

� Images

� 3-D Wire Frame Models, Terrain Objects

� Coordinate Systems, Transforms between Coordinate Systems

� 2-D Display objects, Views, Feature Sets

� Menu objects

2.2.5.2 Lisp/C++ Interface

As part of the RCDE, Martin Marietta has developed a robust Lisp-C/C++ Interface (LCI).
This interface allows the user to compile, link, load, run, and debug code written in C/C++.
As a result, the LCI provides a mechanism that allows previously developed RCDE code
to be reuseable by the C/C++ programmer. Conversely, code written in C/C++ can be
reused by the Lisp programmer via this interface.

18 RCDE User's Manual

Lisp C/C++

Foreign
Function

C/C++ Function

return

CME User C/C++ Code

call

return

call

Foreign
Callable

C/C++
Function

User C/C++ Code

C/C++
Function

IH

IH

call

IPC

C/C++ Function

RCDE-030a

IH

IH

Figure 2.9: A Top-Level View of the Lisp/C++ Interface Design

RCDE Overview 19

The RCDE system provides a library of interface modules and a means of generating the
Lisp code to couple the C/C++ module with Lisp. The LCI menu option provides a menu
interface to the development and debugging interface and is fully described in Chapter 17.
This functionality is provided using the Lucid Foreign Function Interface, which provides
for the conversion of C/C++ argument parameters into equivalent Lisp arguments and
vice-versa.

The LCI provides two modes of communication. The �rst mode is a performance mode in
which user application code is loaded into the same process as the RCDE process. The code
is linked to the RCDE and can be run in that process. The second mode is a debugging
mode, in which the application code is loaded into a separate process from the RCDE
process. In this mode, the user may run the application code in any chosen debugger.

Figure 2.9 illustrates the overall design of the LCI. The �gure illustrates both modes of
operation, which do not occur at the same time. In Performance mode, the shaded func-
tions are loaded into the Lisp address space and execute through the Lisp foreign function
facilities. In Debugging mode, the user code executes in a separate process (on the far right)
and an interprocess communications module transfers data between the two processes.

20 RCDE User's Manual

Chapter 3

Stack Usage Scenario

The RCDE Installation Guide contains a con�dence test scenario that should be executed
by every user. If you have successfully executed the con�dence test scenario, you will notice
that you can move a graphic object (house model) by simply left clicking on the object
(selecting it), and moving the cursor. The house object will track (move with) the cursor
movement within the pane. Having experienced some degree of success with the RCDE user
interface, you are now ready to move on to the next phase which guides you through some
practical scenarios that explore the RCDE in greater detail.

3.1 Taking Charge

To check the response of Lisp, move the cursor to the Lisp Interaction window and select
the *cme* bu�er. Find the Lisp prompt (a greater-than sign), which is at the end of the
bu�er. You can go to the end of the bu�er using M->. Type

()

followed by a carriage return. The Lisp Interaction window should return NIL.
If the Lisp debugger window responds, but the menu items appear to be unresponsive,

type the following command in the Lisp Interaction window (followed by a carriage return):

> (ic::repl)

Note | If you are sure that the system is con�gured properly and if you select a menu
item and the system does not respond, you probably need to respond to a Lisp function via
the Lisp Interaction window. Look to either the Documentation Line or the Lisp Interaction
window for prompts that can assist you in resolving this condition. Further error recovery
measures are documented in the RCDE Installation Guide.

21

22 RCDE User's Manual

3.2 Scenario Initialization

Begin the scenario by loading the ALV site model, which will be used throughout the
document:

1. Select the Load Site Model function from the I/O menu. A popup menu of available
site models will appear.

2. Select the ALV entry from the menu. The popup menu will disappear, and a frame
with four panes will appear. The frame contains four views of Martin Marietta's
Autonomous Land Vehicle site in Denver. (The upper right pane is an image repre-
sentation of the site's terrain.)

During the course of any scenario, you maymake a mistake which alters the appearance
of a display pane beyond that of the scenario description. You can always get back to
the initial starting position and restart by clearing the frame and reloading the stored
site model. To do so, follow the procedures detailed below:

3. Select the Misc menu option from the Menu Bar by positioning the cursor on the menu
option and clicking with the left mouse button. A menu should appear.

4. From the pulldown menu choices, place the cursor on the menu choice labeled Clear
all Panes and left mouse click.

5. Select the frame, by placing the cursor in one of the panels and left mouse click. Four
blank panes should appear in the Alv 2x2 frame, and theMisc menu should disappear.

6. Select the I/O menu option from the horizontal menu bar by positioning the cursor on
the menu and clicking with the left mouse button. A pull down menu should appear.

7. From the pulldown menu choices, place the cursor on the menu choice labeled Load
Site Model and left mouse click. A menu should appear.

8. From the pulldown menu choices, place the cursor on the menu choice labeled ALV and
left mouse click. The I/O submenu should disappear and the ALV site model should
appear in the four frames.

3.3 Stack Scenario

This introductory scenario illustrates how objects and viewable data are managed by the
RCDE environment. Each of the four panes in the CME 2x2 frame is a stack of views
that may contain 3-D objects, 2-D objects, tool objects, and imagery. Operations for ma-
nipulating these stacks are found in the Stacks menu. As the mouse moves over the menu
items, context-sensitive documentation appears in the Documentation Line. In addition to

Stack Usage Scenario 23

moving views from pane to pane, the user can get information on the stack contents as well
as refresh the panes if necessary.

This scenario is not exhaustive, but it does give the user a feel for the kind of functionality
the Stack operations provide. The next chapter discusses all of the stack operations in detail,
and is intended to be used as reference. In summary, this chapter conveys that:

� Each pane has a stack of views

� The views in a stack can be copied, moved, or deleted from stacks.

� The views in a stack can be described using the Lisp environment.

� The views can be moved between stacks, added, or deleted.

� Some heavily used functions may be invoked by Bucky menus, Bucky keys or the
Stacks menu.

� The Bucky key functions serve as \command accelerators", often assuming default
parameters.

� The Bucky menu can be used as \cue card" for identifying Bucky key combinations
as Bucky keys are the preferred way to initiate actions.

Begin the scenario as follows. Since a site model is already loaded, model, you can get
text descriptions of the views within the panes:

1. Select the upper left pane (titled Alv-2-44-win) with the left mouse button. This
performs the Select function on the image in that view. Notice that the border of the
pane is outlined to indicate that it is selected. Also the Lisp Interaction window will
print out something similar to this:

>

#<Alv-2-44-win BLOCKED-ARRAY-MAPPED-IMAGE 252 x 245 (UNSIGNED-BYTE

8) #X3D7725E>

>

This function describes the image and retuns a Lisp pointer to it. The Documentation
Line will also display information about the selected pixel in the image: its location
in image coordinates, the intensity value, the pixel location in 2-D (u; v) coordinates,
and the 3-D coordinates of a point on the terrain, if one exists.

You can also get Lisp descriptions of pane items:

1. Select the Describe Image function from the Stack menu. Note that the Documentation
Line describes the menu functions when the cursor is moved over the menu items.

24 RCDE User's Manual

2. Next, select the lower left pane (titled Alv-Oblique-Tower) with the left mouse
button. This description appears in the Lisp Interaction window, as follows:

>

(LOAD-IMAGE "$CMEHOME1/alv/alv-oblique-tower.pic")

>

This indicates that the pane contains an image that has been loaded with the load-
image function. If you try this command later after a number of other functions have
been performed on a pane, you will see that the consecutive Lisp function calls are
saved by the Eval Cache mechanism.

The panes of a frame are stacks that keep the results of many operations. The lower
panes of the ALV site contain other views below the visible ones, which can be retrieved
with stack operations:

1. Select the Fwd Cycle command from the Stacks menu, then select the lower left pane
with the left mouse button. The lower left pane should change to re
ect a new view,
labeled Alv-3-42.

There may be multiple ways to select the same function. Place the cursor on a pane and
click the right mouse button. Another menu will appear, which is called the Bucky menu.
Functions on images or panes can be performed by selecting the entries of the menu. Notice
that many of the functions in the menu also appear in the Stacks submenu.

1. Select Cycle Stack from the Bucky menu, then select the lower right pane (titled Alv-
Oblique-Quanset). The pane should reveal the Alv-3-41 view. In this case, the
Bucky menu item Cycle Stack and the menu function Fwd Cycle perform the same
functions. In other cases, the menu is intended as a short cut and some default
function arguments are supplied.

2. Now explore how the Bucky keys work. Notice the column named \Bucky keys" on
the left side of the Bucky menu. This designates the key combinations Hyper, Super,
Meta, and Control2. The top of the Bucky menu contains the words Left, Middle, and
Right, which refer to the mouse buttons. When the keys are pressed in conjunction
with a mouse click, the function is executed. The Bucky keys implement a short cut
to selecting functions on the main menu, and more functions are available there.

3. Depress and hold the Meta and Control keys simultaneously and click the left mouse
button with the cursor in the lower right pane. A shorthand for this sequence which
speci�es the Bucky key/mouse combination is [- -M C! L - -]. (The letters on the left

1Substitute the appropriate path for $CMEHOME at your site
2Refer to the RCDE Installation Guide for details of the Bucky key locations

Stack Usage Scenario 25

side of the arrow represent the Bucky keys, and the letters on the right represent the
mouse buttons. Dashes represent the keys not selected.) With each mouse click you
should see the view change, indicating the stack is cycling.

You can copy the views from stack to stack:

1. Select the Copy View function from the Stacks menu item. The Documentation Line
will prompt you to pick a source view.

2. Select the pane titled Alv-2-44-win. The Documentation Line will prompt you to
pick a destination view.

3. Select the lower left pane, which contains the view Alv-3-42. The view in the upper
left pane should now appear in the lower left pane. Both left panes should contain the
Alv-2-44-win image. You have copied a view from one pane to another.

4. Note the Bucky menu option Copy to Here. This Bucky menu function is identical to
the Stacks menu option Copy View, except that the currently active (highlighted) pane
is assumed to be the source pane.

Suppose at this time, we wish to inspect the stack in the lower left pane, without cycling
through it.

1. Invoke the Inspect Stack function from the Stacks submenu, then select the desired
stack.

2. A message similar to the following will appear within the Lisp interaction window:

> #<List 3CAE899>

[0] (LOAD-IMAGE "$CMEHOME/alv/alv-2-44-win.g0")

[1] (LOAD-IMAGE "$CMEHOME/alv/alv-oblique-tower.pic")

[2] (LOAD-IMAGE "$CMEHOME/alv/alv-3-42.g0")

>>

3. After you have reviewed the stack contents, move the cursor to the Lisp Interaction
window and type :q followed by a carriage return.

Try invoking the same function from the Bucky keys.

1. Simultaneously, hold down the Hyper, Super, and Meta keys, move the cursor to the
lower left pane, and depress the left mouse button [H SM -! L - -].

2. The same message as before should appear in the Lisp Interaction window.

3. Move the cursor to the Lisp Interaction window and type :q followed by a carriage
return when you have reviewed the stack contents.

26 RCDE User's Manual

Now explore some of the di�erences between menus and Bucky keys. We will move the
view in the lower left corner to the pane in the upper right.

1. Select the lower left corner pane by moving the cursor to this pane and left mouse
clicking in it. Note that the selected pane is highlighted.

2. Next, position the cursor in the upper right corner pane. Hold down the Meta button
and click the right mouse button [- -M -! - -R]. The view in the lower left corner
should move to the upper right.

3. Cycle through the stack on the upper right corner pane by holding down the Meta
and Control keys and clicking the left mouse button [- -MC! L - -]. Make sure the
cursor is within the pane you wish to cycle.

4. Now move the cursor to the lower left pane, hold down Meta and Control simultane-
ously, and left mouse click several times to cycle through this stack. You will notice
that the view has moved panes.

Now move the view back to the lower left corner using a function from the Menu Bar.

1. Select the Move Object menu item. Notice that you are able to select a source and
destination pane when using the command from a menu, but you must have previously
selected the source pane when you use the Bucky keys. That is, Bucky operations often
assume a default source and/or destination pane.

2. Following the prompt, left mouse click in the upper right corner, then move the cursor
to the lower left corner and left mouse click again. The view will again be moved to
the lower left corner pane.

You can pop the stack, which removes the view from the pane. The view is not perma-
nently removed, however, and can be recovered with the Unkill Top function.

1. Select the Pop Stack function from the Stacks menu, then select the view in the lower
left pane. The view will be removed from the stack.

2. You can view the stack via the Fwd Cycle, Rev Cycle or Inspect Stack commands to
ensure that you have indeed removed the view.

3. To get the view back, select the Unkill Top function from the Stacks menu, then select
the pane to restore.

4. You can perform more drastic kill operations, but please read the next chapter before
you Pop Expunge, or Kill Stack.

Chapter 4

Stack Manipulation

The Stacks menu provides a list of functions directed toward pane and pane display man-
agement. Each pane contains a storage mechanism called a stack, which is a list of views.
Conventional stack operations such as push, pop, and copy are can be performed with
respect to the views on the stack.

Name Image { Associate a name with the selected image.

Menu Bar: Select the Name Image function from the Stacks menu. Following the
Documentation Line prompt, select the pane containing the desired image. A
popup menu will appear; enter the reference name followed by a carriage return.
The named image can now be referenced by the speci�ed name.

Inspect Image { Display the instance variables (slots) associated with the selected image
using the Lisp Inspector.

The Lisp Inspector is a tool for examining Lisp data structures, as illustrated in Figure
4.1. Since Lisp is engaged while in the Inspector, subsequent attempts to use other
RCDE menu selections without exiting the Inspector will queue up menu selections.
Therefore, the user is cautioned to type q: followed by a carriage return to exit the
Lisp inspector and return control to the Lisp top level.

Menu Bar: Select the Inspect Image function from the Stacks menu. Following the
Documentation Line prompt, select the pane containing the desired image. The
Lisp Interaction window should appear similar to the one listed in Figure 4.1.
To exit the Lisp Inspector, type :q followed by a carriage return at the \>>"
prompt.

Bucky Keys: Holding down the Hyper, Super, and Meta Bucky keys, click the left
mouse button in the pane of choice [H SM -! L - -]. window will enter the Lisp

27

28 RCDE User's Manual

Inspector. To exit the Lisp Inspector, type :q followed by a carriage return at
the \>>" prompt.

Bucky Menu: Invoke the Bucky menu with a right mouse click and select the function
Inspect Image from the Bucky menu. Following the Documentation Line prompt,
select the pane containing the desired image. The Lisp Interaction window should
appear similar to the one listed in Figure 4.1. To exit the Lisp Inspector, type
:q followed by a carriage return at the \>>" prompt.

Describe Image { Display a description of the form stored for the given image in the Lisp In-
teraction window. A Lisp form will be displayed that describes the series of operations
performed on that stack item, such as:

(LOAD-IMAGE ``$CMEHOME/alv/alv-oblique-tower.pic'')

Menu Bar: Select the Describe Image function from the Stacks menu. Following the
Documentation Line prompt, select the pane containing the desired image. A
Lisp form similar to the above will appear in the Lisp Interaction window.

Bucky Keys: Holding down the Hyper, Super, and Meta Bucky keys, select the pane
containing the desired image with the middle mouse button. [H SMC! -M -].
A Lisp form similar to the above will appear in the Lisp Interaction window.

Bucky Menu: Invoke the Bucky menu with a right mouse click and select the
Describe Image function from the Bucky menu. Following the Documentation
Line prompt, select the pane containing the desired image. A Lisp form similar
to the above will appear in the Lisp Interaction window.

Inspect Stack { Display a description of each view on the stack in the Lisp Inspector.

The Lisp Inspector is a tool for examining Lisp data structures, as illustrated in Figure
4.1. Since Lisp is engaged while in the Inspector, subsequent attempts to use other
RCDE menu selections without exiting the Inspector will queue up menu selections.
Therefore, the user is cautioned to type q: followed by a carriage return to exit the
Lisp inspector and return control to the Lisp top level.

Menu Bar: Select the Inspect Stack function from the Stacks menu. Following the
Documentation Line prompt, select the pane containing the desired image. All
views on the stack will be described in the Lisp Interaction window. To exit the
Lisp Inspector, type :q followed by a carriage return at the \>>" prompt.

Bucky Keys: Holding down the Hyper, Super, and Meta Bucky keys, select the
pane containing the desired image with the left mouse button [H SMC! - - R].
All views on the stack will be described in the Lisp Interaction window. To exit
the Lisp Inspector, type :q followed by a carriage return at the \>>" prompt.

Stack Manipulation 29

[0: CLASS] #<Standard-Class IC::BLOCKED-ARRAY-MAPPED-IMAGE>

Slots:

[1: PROPERTY-LIST] (:3D-WORLD #<Alv 3d World 3D-WORLD #X416CB66>

:IMAGE-TO-2D-TRANSFORM

#<4X4-COORDINATE-TRANSFORM (NIL to NIL)

#X416FDFE> :SUN-VECTOR (0.6082805 -0.1486257 0.7796828)

:PATHNAME

#P"/home/lippy/toolset/RCDE/alpha2/alv/alv-2-44-win.g0" :NAME "Alv-2-44-win" ...)

[2: IC::INTERNAL-PROPERTY-LIST]

(:XIMAGE 33083248 :INFERIORS NIL :TIME-TAG 4

:TIME-OF-LAST-ACCESS 2934116255 :TIME-OF-CREATION 2934116255)

[3: IC::X-DIM] 252

[4: IC::Y-DIM] 245

[5: IC::ELEMENT-TYPE] (UNSIGNED-BYTE 8)

[6: IC::ELEMENT-SIZE] 8

[7: IC::INITIAL-VALUE] 0

[8: IC::WRITE-ACTION] IC::WRITE-LOCK-ERROR

[9: IC::WRITE-LOCK] T

[10: IC::X-MAP] #<Simple-Vector T 252 21BF8CE>

[11: IC::Y-MAP] #<Simple-Vector T 245 21BFCCE>

[12: IC::BLOCK-X-DIM] 128

[13: IC::BLOCK-Y-DIM] -62

[14: IC::PADDED-BLOCK-X-DIM] 128

[15: IC::BLOCK-SIZE] 7936

[16: IC::BLOCK-RADICES] NIL

[17: IC::BLOCKS-WIDE] 2

[18: IC::BLOCKS-HI] 4

[19: IC::BITBLTABLE] T

[20: IC::BITBLT-X-OFFSET] 0

[21: IC::BITBLT-Y-OFFSET] 0

[22: IC::IMAGE-STRUCT] #S(IC::ARRAY-IMAGE-STRUCT X-DIM 252 Y-DIM 245

X-MAP #<Simple-Vector T 252 21BF8CE> Y-MAP #<Simple-Vector T 245 21BFCCE>

IREF-FN #<Compiled-Function IC::ARRAY-IMAGE-UNSIGNED-8BIT-IREF 6C304E>

ISET-FN #<Compiled-Function IC::ARRAY-IMAGE-UNSIGNED-8BIT-ISET 6C307E>

SIMPLE-ARRAY #<Simple-Vector (UNSIGNED-BYTE 8) 63488 21B00BE>

ARRAY #<Vector (UNSIGNED-BYTE 8) 63488 416BC3E> EXTRA1 NIL EXTRA2 NIL)

[23: IC::IMAGE_STRUCT] #<Foreign-Pointer 1F89E04 (:POINTER IC::IMAGE_STRUCT)>

[24: IC::ELEMENT-TYPE-CODE] 3

[25: ARRAY] #<Vector (UNSIGNED-BYTE 8) 63488 416BC3E>

>>

Figure 4.1: An Example of the Lisp Inspector

30 RCDE User's Manual

Bucky Menu: Invoke the Bucky menu with a right mouse click and select the
Describe Image function from the Bucky menu. Following the Documentation
Line prompt, select the pane containing the desired image. All views on the stack
will be described in the Lisp Interaction window. To exit the Lisp Inspector, type
:q followed by a carriage return at the \>>" prompt.

Refresh Pane { Refresh the display of the selected pane and return a Lisp pointer to the
pane in the Lisp Interaction window.

Menu Bar: Select the Refresh Pane function from the Stacks menu. Following the
Documentation Line prompt, select the desired pane. The pane will be refreshed
and a pointer to the pane will appear in the Lisp Interaction window.

Bucky Keys: Select the desired pane with the middle mouse button [- - - -! -M -].
The pane will be refreshed and a pointer to the pane will appear in the Lisp
Interaction window.

Bucky Menu: Invoke the Bucky menu with a right mouse click and select the
Describe Image function from the Bucky menu. Following the Documentation
Line prompt, select the desired pane. The pane will be refreshed and a pointer
to the pane will appear in the Lisp Interaction window.

Select { Select a pane for future operations, dropping a pointer to the pane's image or
graph into the Lisp Interaction window.

Menu Bar: Select the Select function from the Stacks menu. Following the Docu-
mentation Line prompt, select the desired pane. The pane will be refreshed and
a pointer to its contents will appear in the Lisp Interaction window.

Bucky Keys: Select the desired pane with the left mouse button [- - - -! L - -].
The pane will be refreshed and a pointer to its contents will appear in the Lisp
Interaction window.

Bucky Menu: Invoke the Bucky menu with a right mouse click and select the Select
function from the Bucky menu. Following the Documentation Line prompt, select
the desired pane. The pane will be refreshed and a pointer to its contents will
appear in the Lisp Interaction window.

Fwd Cycle { Cycle the selected stack in the forward direction (top of stack to bottom).

Menu Bar: Select the Fwd Cycle function from the Stacks menu. Following the
Documentation Line prompt, select the desired pane. The pane will be cycled
and a pointer to its contents will appear in the Lisp Interaction window.

Bucky Keys: Holding down the Meta and Control Bucky keys, select the pane
containing the desired image with the left mouse button [- -MC! L - -]. The
pane will be cycled and a pointer to its contents will appear in the Lisp Interaction
window.

Stack Manipulation 31

Bucky Menu: Invoke the Bucky menu with a right mouse click and select the Cycle
Stack function from the Bucky menu. Following the Documentation Line prompt,
select the desired pane. The pane will be cycled and a pointer to its contents will
appear in the Lisp Interaction window.

Rev Cycle { Cycle the selected stack in the reverse direction (bottom of stack to top).

Menu Bar: Select the Rev Cycle function from the Stacks menu. Following the
Documentation Line prompt, select the desired pane. The pane will be cycled
and a pointer to its contents will appear in the Lisp Interaction window.

Bucky Keys: Holding down the Super, Meta, and Control Bucky keys, select the
pane containing the desired image with the left mouse button [- SMC! L - -].
The pane will be cycled and a pointer to its contents will appear in the Lisp
Interaction window.

Bucky Menu: Invoke the Bucky menu with a right mouse click and select the Rev
Cycle function from the Bucky menu. Following the Documentation Line prompt,
select the desired pane. The pane will be cycled and a pointer to its contents will
appear in the Lisp Interaction window.

Move View { Move the view from the top of one pane stack to another pane.

Menu Bar: Select the Move View function from the Stacks menu. Following the
Documentation Line prompt, select the source and destination panes. The view
will be popped from the top of the source stack and pushed onto the destination
stack.

Bucky Keys: Holding down the Meta Bucky key, select the destination pane with the
right mouse button [- -M -! - - R]. The source pane will default to the previously
selected pane (the highlighted pane), which will be copied onto the destination
stack.

Bucky Menu: Invoke the Bucky menu with a right mouse click and select theMove To
Here function from the Bucky menu. Following the Documentation Line prompt,
select the source and destination panes. The view will be copied from the top of
the source stack and pushed onto the destination stack.

Copy View { Copy a view from one pane stack to the top of another.

Menu Bar: Select the Copy View function from the Stacks menu. Following the
Documentation Line prompt, select the source and destination panes. The view
will be copied from the top of the source stack and pushed onto the destination
stack.

32 RCDE User's Manual

Bucky Keys: Holding down the Meta Bucky key, select the destination pane with
the middle mouse button [- -M -! -M -]. The source pane will default to the
previously selected pane (the highlighted pane), which will be copied onto the
destination stack.

Bucky Menu: Invoke the Bucky menu with a right mouse click and select the Copy To
Here function from the Bucky menu. Following the Documentation Line prompt,
select the source and destination panes. The view will be copied from the top of
the source stack and pushed onto the destination stack.

Pop Stack { Remove the top view from the selected stack. The removed view is stored in
an invisible temporary storage stack and can be restored (see Unkill Top).

Menu Bar: Select the Pop Stack function from the Stacks menu. Following the Doc-
umentation Line prompt, select the desired pane. The top view will be removed
from the chosen stack.

Bucky Keys: Holding down the Meta and Control Bucky keys, select the desired pane
with the middle mouse button [- -M -! -M -]. The top view will be removed
from the chosen stack.

Bucky Menu: Invoke the Bucky menu with a right mouse click and select the Pop
Stack function from the Bucky menu. Following the Documentation Line prompt,
select the desired pane. The top view will be removed from the chosen stack.

Unkill Top { Restore the most recently popped view to the selected pane.

Menu Bar: Select the Unkill Top function from the Stacks menu. Following the
Documentation Line prompt, select the destination pane. The most recently
popped view is retrieved from the invisible temporary storage stack and pushed
onto the selected pane.

Pop Expunge { Permanently remove the view from the top of the selected stack. The
expunged object is permanently destroyed and can not be recovered.

Menu Bar: Select the Pop Expunge function from the Stacks menu. Following
the Documentation Line prompt, select the desired pane. The top view will be
permanently removed from the chosen stack.

Bucky Keys: Holding down the Meta and Control Bucky keys, select the desired pane
with the right mouse button [- -M -! - - R]. The top view will be permanently
removed from the chosen stack.

Bucky Menu: Invoke the Bucky menu with a right mouse click and select the Expunge
Top function from the Bucky menu. Following the Documentation Line prompt,
select the desired pane. The top view will be removed from the chosen stack.

Stack Manipulation 33

Copy Stack { Copy all views from one pane stack to the top of another. selected stack.

Menu Bar: Select the Copy Stack function from the Stacks menu. Following the
Documentation Line prompt, select the source and destination panes. The en-
tire source pane stack will be cleared of views, which will be pushed onto the
destination pane stack.

Kill Stack { Remove all views from the selected stack. The removed views are stored in an
invisible temporary storage stack and can be restored (see Unkill Stack).

Menu Bar: Select the Kill Stack function from the Stacks menu. Following the Docu-
mentation Line prompt, select the desired pane. The entire stack will be cleared
of views. The killed stack views will be pushed together onto the temporary
storage stack, so that they can be restored in their entirety using Unkill Stack.

Unkill Stack { Restore the most recently killed stack of views to the selected pane.

Menu Bar: Select the Unkill Stack function from the Stacks menu. Following the
Documentation Line prompt, select the destination pane. The most recently
killed stack will be restored to the selected pane. Multiple Unkill Stack operations
will restore previously killed stacks. Unkill Stack.

34 RCDE User's Manual

Chapter 5

Geometric Image Transform

Scenario

The user may be interested in multiple areas of multiple images, which can be accessed by
zooming and scrolling. The Zoom commands (In and Out) use an interpolated zoom algo-
rithm, while Fast Zoom uses pixel replication instead of interpolation. Related commands
include % Reposition, which enables the user to move anywhere in a given image, and Re-
center which moves the selected point to the center of the pane. As previously stated, the
viewing area is divided up into panes. Each pane contains a stack of views. The top of the
stack view is what the user sees in each pane. A view can contain wire frame models as
well as imagery, so be sure to position the cursor on a section of imagery free of the models,
otherwise the wrong function will be executed. The desired context is the image, not an
object.

The scenarios listed below illustrate how to load a site model and/or imagery into a
pane. The imagery is zoomed in, zoomed out, repositioned, scrolled about the screen and
partitioned into an image chip via the window function.

1. First, load the ALV site model by selecting the Load Site Model from the I/O menu.
A second submenu should appear.

2. Select the ALV �eld from the menu. After a few moments the ALV site model should
appear on the screen, and the site model menu should disappear.

3. Select the Zoom In function from the Geom menu. Following the Documentation Line
prompt, select the pane containing the desired image to zoom.

4. Select the view in the upper left pane, labeled Alv-2-44-win.

5. Following the Documentation Line prompt, select the destination pane for the zoomed
image; choose the view in the lower left pane, labeledAlv-Oblique-Tower. Note that

35

36 RCDE User's Manual

the selection point will become the zoom focus. An image twice the size of the original
will appear in lower left corner of the pane.

6. Now visually inspect the stack of the lower left corner pane by simultaneously holding
down the Meta and Control keys while left clicking the mouse key. You will observe
that this pane contains three images as the a new zoomed image view was copied on
the lower left pane.

7. Now let us use the Bucky keys to perform the same function. Move the cursor to the
upper left corner pane and hold down the Control key and depress the middle mouse
button. You will notice that the original has been replaced by the zoomed image if
you inspect the upper left corner pane stack.

We will now re-zoom the upper left image to its original resolution. Move the cursor
to the upper left corner pane and hold down the Control key and depress the right mouse
button. You will notice that the zoomed out image has been replaced by the original image,
if you inspect the upper left pane stack. Notice that if the function is selected by menu, you
have the option to select a source and destination pane. When using the Bucky commands,
the selected (highlighted) pane is used as the default source pane.

For optimal use of the % Reposition function, it is best to use the cursor in conjunction
with the Bucky keys:

1. Hold down the Control key, press and hold the left mouse button, and move the cursor
about in the pane. You will observe the image scrolling along with the cursor.

2. To place the image in the desired position, release the mouse button.

The Window command supplies an interactive interface for cutting one image out of
another or viewing a zoomed in image with respect to the original image. We will �rst use
the window function to view the same image in two resolutions.

1. Create an Image Windowing Tool by selecting the Window function from the Geom
menu.

2. Then position the cursor in the lower left corner pane. The top pane should contain
the original image and the bottom pane directly underneath it should contain the
zoomed image.

3. Left mouse click in the zoomed image. A yellow box (the Window Tool) should appear
in the both panes. Notice that as you move the cursor, the window object moves in
both the zoomed pane and the original image pane. Drop the window by clicking the
left mouse button in the pane.

Geometric Image Transform Scenario 37

4. Place the cursor on the upper horizontal window edge. The window edge should turn
green. Then resize the box by holding down the middle mouse button and moving the
horizontal edge upward or downward to change the size of the window. Let go of the
mouse button to drop the window edge.

5. Note that you can use one of two move modes: 1) move an edge by pressing and
holding the mouse button, and letting go when you are done, or 2) clicking (pressing
and letting go immediately), moving the edge as needed, then clicking the same mouse
button again.

6. You can move two edges of the window at the same time by placing the cursor near a
corner so that two of the edges turn green.

7. Note that as you touch and resize the object in one pane, it turns green and is resized
in the other pane, indicating that we have two views of the same window. Because
the window is proportional to the image no matter what resolution, you can use this
technique to locate expanded portions of a large image.

8. You can delete this Window object at any time by placing the cursor on the window
edge until it turns green, holding the Hyper key, and pressing the middlemouse button.
(Note that the Documentation line reveals that this function is Delete).

You can also use the Windowing Tool to cut out a portion of an image.

1. Use the Bucky keys this time to create a new Window Tool: hold down the Hyper
Bucky key and click with the left mouse button in the lower right pane. Click with
the left mouse button to place the window, then adjust the size of the tool as before.

2. Place the cursor on the window box edge until the edge turns green, then press the
right mouse button. The window will crop the image to the dimensions of the outlined
in the box.

Another scenario allows the user to scroll and view several images at di�erent resolution
levels. First, load an image into the upper left pane using the procedures listed below:

1. Select the Load Image function from the I/O menu. A popup menu should appear.

2. Left click in the �eld labeled Directory and type $CMEHOME/alv/ followed by a
carriage return. (The trailing slash is optional).

3. Next, left click in the Pathname �eld and type alv-3-42.g0 followed by a carriage
return. The Format �eld should read IU-TEST-BED-IMAGE-FILE. If you do
not see this message in the format �eld, rekey in the directory and pathname entry,
ensuring that there are no errors and that entries have been accepted by the system.
If the path name is incorrect, the �eld should say something like \File not found".

38 RCDE User's Manual

4. Then push the Load Image button at the bottom of the menu. Following the Docu-
mentation Line prompt, select the destination pane for the image being loaded; choose
the view in the upper left pane. The image should appear in the pane.

Now copy the views between adjacent panes by the following procedures.

1. Place the cursor in the upper left pane and depress the left mouse button. Notice that
this pane now has a highlighted border indicating it has been selected.

2. Next, move the cursor to the pane where you want the image to be copied; choose
the lower left pane. While pressing the Meta key, hit the middle mouse button. The
image will be copied into that pane.

3. Release the Meta key and left mouse click to select the pane.

4. Hold down the Control key and click the middle mouse button; the image should be
zoomed.

5. Release the mouse key and Meta key, then select the upper left pane again.

6. Move the cursor to the pane where you want the next image to be copied; choose the
upper right pane.

7. Depress the Meta key and hit the middle mouse button. The image will be copied
into that pane.

8. Select another pane. Hold down the Control key and depress the right mouse key
twice. The image should have gotten smaller indicating that you \zoomed out".

9. Now reposition the \zoomed out" image so that it is in the middle of the screen. To
do this, position the cursor on the zoomed out image, and depress the Control key and
hold it down. Now move the mouse cursor; you will �nd that the image moves with
the cursor. When you are satis�ed with the position of the image within the pane,
release the Control key.

Now that we have copies of the same image in three di�erent panes at di�erent resolu-
tions, we will tandem the images. Tandem implies that one image view is a master while
the other is slave. Thus, when a window is moved in a master it is also position in the slave.
We will make the zoomed out image the master and the other two images the slave.

1. Select the Tandem function from the Misc menu, and pin the resulting menu to the
screen.

2. Select the Set Tandem View function from the Tandem menu. The Documentation
Line will prompt you to select a master view.

Geometric Image Transform Scenario 39

3. Select the image with the smallest resolution (upper right) with the left mouse button.
The Documentation Line will ask you to pick a slave view.

4. Move the cursor to the pane that contains the original image (upper left) and select
it with a left mouse click.

5. Select the Set Tandem View function from the pinned Tandem menu. The documen-
tation window will prompt you to select a master view.

6. Select the image with the lowest resolution with the left mouse button. The docu-
mentation window will ask you to pick a slave view.

7. Move the cursor to the pane that contains the zoomed image (lower left) and select it
via a left mouse click.

8. Now go to the Tandem menu and select Tandem On.

9. Create a window to view the tandem images. Place the cursor on Geom and select it
by left mouse click.

10. Create an Image Windowing Tool by selecting the Window command from the Geom
submenu.

11. Select Window via left mouse click then position the cursor in the lower left corner
pane. A yellow box should appear in the pane. Notice that as you move the cursor,
the window object moves in the image pane.

12. You can resize the window by placing the cursor on the upper horizontal window edge.
The window edge should turn green.

13. Now you can resize the box by holding down the middle mouse button and moving
the horizontal edge upward or downward, thus changing the length of the window.
You can resize the width of the window by placing the cursor on the left or right
vertical edge and depressing and holding the middle mouse button. Make sure the
edge turns green before you move the cursor while holding down the middle mouse
button. Releasing the middle mouse button will set the width of the window. Notice
how the vertical edges and horizontal edges can be positioned to resize the shape of
the window. You have now created a window object.

14. Each object has a feature set. Move the cursor to the View horizontal menu bar and
select View by left mouse clicking on the View menu item.

15. A second submenu will appear. Move the cursor to the menu item named Feature Sets
and left mouse click. You will be prompted to select an image.

16. Select the image in the upper right hand corner.

40 RCDE User's Manual

17. Another pop up menu will appear. There are three horizontal �elds labeled PRES,
SENS, and SEL. PRES indicates that the feature set is present in the view. SENS
indicates that the feature set is mouse sensitive in the view. SEL indicates that the
feature set is selected for object creation in the current world. Since you have created
a 2-D feature, move the mouse cursor to the PRES �eld and left mouse click on it. A
yellow box will appear.

18. Move the cursor to the box edge. You will notice that it turned green indicating you
have selected it. Now move the mouse cursor back to the menu and mouse click on
the SENS �eld. Move the cursor back to the box. You have desensitized the window
to mouse selection. When you place the cursor on the PRES or SEL, you hide or turn
on the box for view.

19. In a similar manner, go to the pane that that does not have a window outline visible
and make its feature set visible and mouse selectable as previously illustrated. Close
the view menu and feature set menu choices.

20. Now select the window in the smallest image window view by placing the cursor on
the window outline and left mouse click.

21. Notice that you can move the window around the screen as you move the cursor.
The window goes out of view sometimes in the larger images. A way to remedy this
situation is via the Bucky key command TScroll, which copies regions of the larger
image and displays those portions within the pane as the window moves. Thus you
always capture the position of the window in the larger images that occupy more space
than a pane.

22. To invoke TScroll place the mouse cursor on the window edge until it turns green.

23. Then depress the Control key and left mouse click. As you move the cursor the window
will follow, repainting the screen with the proper image region in the panes where the
imagery exceeds the pane size.

24. To \drop" the object, simply left mouse click twice or depress Hyper and right mouse
click once.

In summary, this chapter has presented a simple scenario to load imagery, then manip-
ulate it geometrically using zooming, scrolling, and windowing operations.

Chapter 6

Geometric View Transforms

While most of the operations in the previous chapters manipulate image data, the functions
in this chapter apply to the view as a whole. They perform geometric operations on the
view, including:

Recenter %Reposition

Zoom in Zoom out

Fast Zoom in Fast Zoom out

Mirror X Mirror Y

Rotate CW Rotate CCW

Scale Rotate Window

Recenter { Move the view to put the selected point at the center of the pane. If this
function is accessed through the Bucky keys, dragging the mouse with the button
pressed causes the view to scroll interactively.

Menu Bar: Select the Recenter function from the Geom menu. Following the Docu-
mentation Line prompt, select the desired center point; the view will be reposi-
tioned to center this point in the pane.

Bucky Keys: Holding down the Meta Bucky key, select the desired center point with
the left mouse button [- -M -! L - -]; the view will be repositioned to center this
point in the pane. Dragging the mouse with the button pressed causes the view
to scroll interactively.

Bucky Menu: Invoke the Bucky menu with a right mouse click and select the Recenter
function from the Bucky menu. Following the Documentation Line prompt, select
the desired center point; the view will be repositioned to center this point in the
pane.

41

42 RCDE User's Manual

% Reposition { Recenter the view based on the percentage of the cursor's position in the
pane.

This function is useful for panning around a large image without having to zoom. For
example, if the image is much larger than the pane, you can move to the top left corner
of the image by selecting the top left corner of the pane. If this function is accessed
through the Bucky keys, dragging the mouse with the button pressed causes the pane
to scroll interactively.

Menu Bar: Select the % Reposition function from the Geom menu. Following the
Documentation Line prompt, select a point in the pane to reposition the view
based on percentage.

Bucky Keys: Holding down the Control Bucky key, select a point in the pane to
reposition the view with the left mouse button [- - -C! L - -]. Dragging the
mouse with the button pressed causes the view to scroll interactively.

Bucky Menu: Invoke the Bucky menu with a right mouse click and select the %
Reposition function from the Bucky menu. Following the Documentation Line
prompt, select a point in the pane to reposition the view based on percentage.

Zoom In { Enlarge the view by a factor of two, using pixel interpolation.

Menu Bar: Select the Zoom In function from the Geom menu. Following the Docu-
mentation Line prompt, select a point on the source pane to be the zoom focus,
then select the destination pane. The view will be enlarged by a factor of two.

Bucky Keys: Holding down the Control Bucky key, select a point in the view to be
the zoom focus with the middle mouse button [- - -C! -M -]. The view will be
enlarged by a factor of two.

Bucky Menu: Invoke the Bucky menu with a right mouse click and select the Zoom
In function from the Bucky menu. Following the Documentation Line prompt,
select a point on the source pane to be the zoom focus, then select the destination
pane. The view will be enlarged by a factor of two.

Zoom Out { Reduce the view by a factor of two, using Gaussian blur as anti-aliasing �lter
prior to subsampling.

Menu Bar: Select the Zoom Out function from the Geom menu. Following the
Documentation Line prompt, select a point on the source pane to be the zoom
focus, then select the destination pane. The view will be reduced by a factor of
two.

Bucky Keys: Holding down the Control Bucky key, select a point in the view to
be the zoom focus with the right mouse button [- - - C! - -R]. The view will be
enlarged by a factor of two.

Geometric View Transforms 43

Bucky Menu: Invoke the Bucky menu with a right mouse click and select the Zoom
Out function from the Bucky menu. Following the Documentation Line prompt,
select a point on the source pane to be the zoom focus, then select the destination
pane. The view will be enlarged by a factor of two.

Fast Zoom In { In-place zoom in by pixel replication, without interpolation.

Menu Bar: Select the Fast Zoom In function from the Geom menu. Following the
Documentation Line prompt, select a point on the view to be the zoom focus.
The view will be enlarged by a factor of two.

Bucky Keys: Holding down the Super and Meta Bucky keys, select a point in the
view to be the zoom focus with the middle mouse button [- - -C! -M -]. The
view will be enlarged by a factor of two.

Bucky Menu: Invoke the Bucky menu with a right mouse click and select the Fast
Zoom In function from the Bucky menu. Following the Documentation Line
prompt, select a point on the pane to be the zoom focus. The view will be
enlarged by a factor of two.

Fast Zoom Out { In-place zoom out without antialiasing �lter.

Menu Bar: Select the Fast Zoom Out function from the Geom menu. Following the
Documentation Line prompt, select a point on the view to be the zoom focus.
The view will be enlarged by a factor of two.

Bucky Keys: Holding down the Super and Meta Bucky keys, select a point in the
view to be the zoom focus with the right mouse button [- - - C! - - R]. The view
will be enlarged by a factor of two.

Bucky Menu: Invoke the Bucky menu with a right mouse click and select the Fast
Zoom In function from the Bucky menu. Following the Documentation Line
prompt, select a point on the pane to be the zoom focus. The view will be
enlarged by a factor of two.

Mirror X { Reverse the view left to right about the selected axis.

Menu Bar: Select the Mirror X function from the Geom menu. Following the Doc-
umentation Line prompts, select a point on the source pane to determine the
mirror axis, then select the destination pane. The view will be rotated about a
vertical axis.

Bucky Keys: Holding down the Hyper and Super Bucky keys, select a point in the
view to be mirror axis with the left mouse button [H S - -! L - -]. The view will
be rotated about a vertical axis.

44 RCDE User's Manual

Bucky Menu: Invoke the Bucky menu with a right mouse click and select the Flip
X function from the Bucky menu. Following the Documentation Line prompts,
select a point on the source pane to determine the mirror axis, then select the
destination pane. The view will be rotated about a vertical axis.

Mirror Y { Reverse the view top to bottom about the selected axis.

Menu Bar: Select the Mirror Y function from the Geom menu. Following the Doc-
umentation Line prompts, select a point on the source pane to determine the
mirror axis, then select the destination pane. The view will be rotated about a
horizontal axis.

Bucky Keys: Holding down the Hyper and Super Bucky keys, select a point in the
view to be mirror axis with the left mouse button [H S - -! L - -]. The view will
be rotated about a horizontal axis.

Bucky Menu: Invoke the Bucky menu with a right mouse click and select the Flip
Y function from the Bucky menu. Following the Documentation Line prompts,
select a point on the source pane to determine the mirror axis, then select the
destination pane. The view will be rotated about a horizontal axis.

Rotate CW { Rotate the view 90� in the clockwise direction about the selected point.

Menu Bar: Select the Rotate CW function from the Geom menu. Following the
Documentation Line prompts, select a point on the source pane to determine the
rotation point, then select the destination pane. The view will be rotated 90� in
the clockwise direction about the selected point.

Bucky Keys: Holding down the Hyper and Super Bucky keys, select a point in the
view to be mirror axis with the left mouse button [H S - -! - - R]. The view will
be rotated 90� in the clockwise direction about the selected point.

Bucky Menu: Invoke the Bucky menu with a right mouse click and select the Rotate
function from the Bucky menu. Following the Documentation Line prompts,
select a point on the source pane to determine the rotation point, then select the
destination pane. The view will be rotated 90� in the clockwise direction about
the selected point.

Rotate CCW { Rotate the view 90� in the counter-clockwise direction about the selected
point.

Menu Bar: Select the Rotate CCW function from the Geom menu. Following the
Documentation Line prompts, select a point on the source pane to determine the
rotation point, then select the destination pane. The view will be rotated 90� in
the counter-clockwise direction about the selected point.

Geometric View Transforms 45

Scale Rotate { Scale the X and Y dimensions of an view by independent scale factors, then
rotate by a speci�ed number of degrees.

Menu Bar: Select the Scale Rotate function from the Geom menu, which invokes a
pop-up menu for specifying the view, x scale, y scale, degrees of rotation (clock-
wise), and pixel intensity value of the background. Default values are taken from
the last time Scale Rotate was invoked. On the �rst invocation, default values
are x scale = 1, y scale = 1, and rotation = 0, making it an identity oper-
ation. Scales with magnitude less than one shrink the view, while those with
magnitude greater than one magnify the view. Negative scale values cause axis
reversal. For eight-bit images, the background (the area vacated after the view
has been rotated) pixel intensity can be set to an integer between 0 (black) and
255 (white).

The following items appear on the Scale Rotate popup menu:

� Status - This �eld displays information and prompts that are relevant to the
operation.

� Image - To set a view for the operation, select the button to the right of
the IMAGE: label, then select the desired pane. The image ID should be
displayed on the button.

� X scale - Enter the scale factor for the X dimension.

� Y scale - Enter the scale factor for the Y dimension.

� CW Rotate - Enter the amount of rotation in degrees.

� Background - When a view with a rectangular image is rotated, it is bounded
by a larger rectangle. The four empty triangular areas that result from this
bounding rectangle can be set to a gray scale level between 0 and 2n � 1,
where n is the number of bits per pixel. The default is zero (black).

� DOIT - Push this button to perform the operation. Following the Documen-
tation Line prompt, select a destination pane for the scaled, rotated view.

Window { Cut out a subimage from the given view.

This function creates an Image Window tool, which is really a 2-D object placed in the
view for performing a specialized set of window operations. Refer to Chapter 12 for
more details of using this object.

The Image Window tool can be created three ways:

Menu Bar: Select the Window function from the Geom menu. Following the Docu-
mentation Line prompt, select the view to place the Image Window tool, which
will be created at the selected point.

Bucky Keys: Holding down the Hyper Bucky key, select the point to place the Image
Window tool with the left mouse button [H - - -! L - -].

46 RCDE User's Manual

Bucky Menu: Invoke the Bucky menu with a right mouse click and select theWindow
function from the Bucky menu. Following the Documentation Line prompt, select
the view to place the Image Window tool, which will be created at the selected
point.

When the tool is created, a green window outline should appear on the pane. Move the
mouse cursor and you will notice that the newly created window follows the movement
of the cursor. Click the left mouse button to place the window. The window outline
should turn yellow. You can resize the window by placing the cursor on the a horizontal
or vertical yellow line until it turns green. Note the status bar { there are three choices:

Left: Move Middle: Move Edges Right: Make Window

Hold down the middle mouse button and move the edge to resize the window. Release
the mouse button when you have �nished. You must resize the horizontal and vertical
edges separately. To move the box about the window, simply place the cursor on the
box outline until the box turns green. Left mouse click to pick the box. the box should
turn green and should follow the mouse movement. To deselect the box outline, left
mouse click again.

If a parent view is duplicated, manipulated, and moved to another pane, a window
outline should be seen in all other views of that scene, since theWindow is a 2-D object
in that view. For example, this allows one to view zoomed views with respect to the
original view.

To crop an image to the size of the window, select the window by placing the cursor
on the box outline. When the box turns green, depress the right mouse button. An
image the size of the box outline will be produced in the pane. Note that the view
objects outside the window still appear after the windowing operation.

If the Tandem function (Chapter 10) is set up properly, the Tandem Scroll (TScroll) is
enabled from the Bucky keys for the Image Window. Holding down the Control Bucky
key and pressing the left mouse button while the window is selected will scroll the
tandem views. Note that the view is scrolled behind the window, which remains �xed
in the pane.

Note | If you have created a window in a view and the window does not appear in other
panes of the same scene, it is probably because that feature set of the newly created view
has not been enabled (refer to Chapter 10 for details). To do this, select the Feature Sets
command from the View menu. The Documentation Line will prompt you to select a view,
which invokes a new panel. Select the Sel �elds with the left mouse button until the window
appears in the desired pane.

Chapter 7

Arithmetic Image Transform

Scenarios

The next scenario illustrates the usefulness of arithmetic functions in image exploitation and
processing. These functions include boolean operators, such as union(or), intersection(and),
exclusive or, Complement, and thresholding (clipping to a binary value within speci�ed
limits), 2-D fast fourier transforms, pixel data conversions (truncate, round, convert to

oat, change pixel integer bit size), linear transform the image in the form ax+ b, add two
images, subtract two images, or linear combine two images.

The rules for Arithmetic operations are:

� The dimensions of the smallest image dimensions (x and y direction) will also be the
size of the resultant image view operation in the event that the images are of di�erent
sizes.

� The lower left corner of the image de�nes the �rst pixel of each image.

It is easy to see how logical functions can be used to process images and extract infor-
mation. Several scenarios illustrate the power of arithmetic operations in terms of image
operators. In order to demonstrate the Boolean capabilities of the RCDE system, a refer-
ence image needs to be generated. Included on the distribution tape is a C program that
writes a Sun raster�le image to a �le; the image is a pattern consisting of a small black
square (50 x 50 pixels of intensity zero) within a larger block of white pixels (252 x 245
pixels of intensity 255). The generated test pattern is then loaded into a pane and several
operations are boolean demonstrated.

1. To generate the test pattern, �rst compile and execute the C �le

$CMEHOME/lci/examples/square.c

47

48 RCDE User's Manual

This program generates a Sun raster�le called image pattern.pix with an image
pattern to be used as an example.

2. Next, load the ALV site model by positioning the cursor on the the I/O menu choice
and left mouse clicking. A second submenu should appear.

3. Position the cursor on the Load Site Model menu option and left mouse click.

4. Another Submenu will appear. Position the cursor over the ALV choice and left mouse
click. After a few moments the ALV site model should have been loaded on the screen.

5. Bring the I/O menu option to the RCDE foreground by left mouse clicking in the I/O
vertical pulldown menu near the I/O lettering.

6. Choose the Load Image menu option. Another text entry menu will appear. You will
need to �ll in the directory and the Name of the �le to be loaded.

(a) If the there is text in the directory �eld you may need to delete it. To delete the
text, place the cursor to the right of the text. click on the arrow entry until the
last letter of the directory is found and left mouse click. Continue to press the
\Delete key on the keyboard until the text has disappeared.

(b) Enter the directory where the image pattern.pix �le resides (you generated
this with the executable code from the C source above). Be sure to end the
directory path with a slash character \/".

(c) Similarly, enter the �lename in the Pathname entry �eld. You do not need to
end the �le name with a slash character \/".

(d) Place the mouse cursor on the Load image button and left mouse click. Choose
the upper right hand pane as the destination of the test pattern.

As an example of a boolean operation, let us exclusive-or an image with the test pattern
you loaded. Recall that a binary one \xor'ed" with an unknown binary value, will invert the
unknown binary value. Now imagine a pixel as a vector n-tuple of binary values of length n.
If we exclusive or an 8 bit per pixel image of equal height and width with the test pattern
image, the white shaded area (length 8 { all ones) when \xored" an image should invert the
corresponding pixels, while the dark shaded pixels (length 8 { all zeros) should preserve the
original value of the pixels.

1. Place the cursor on the Arith option and left mouse click. A Second submenu should
appear. Place the cursor on the Boole option and left mouse click. A third menu
choice should appear with the following choices.

To perform the Union, Intersection, and Xor functions, select the function by placing
the cursor on this menu option and left mouse click. Then pick a �rst image by placing
the cursor in the pane of choice, followed by a left mouse click. Do the same for the

Arithmetic Image Transform Scenarios 49

second image of choice. Then select a destination pane for the result. by left mouse
clicking in the destination pane. The procedure for Complement is similar, except that
only one image is involved.

� Union - Or the pixel values of two images.

� Intersection - and the pixel intensity values of two images.

� Xor - Exclusive or pixel intensity values of two images.

� Complement { Complement pixel intensity values an image.

� Threshold - Creates a binary image, having value 0 for all pixel intensities below
the speci�ed threshold and 1 for all other pixels. This function invokes a separate
popup menu. Select the button marked IMAGE:, then select an image with the
left mouse button. Use the left mouse button to move the slider to the desired
image threshold, push the DOIT button, and select a result pane with the left
mouse button.

2. Take the image view in the lower left pane and exclusive or it with the test pattern
image in the upper right hand corner pane. Place the result in the lower right pane.

3. You should see a photographic negative of the image except for the 50 x 50 pixel area
which has remained the same intensity as the original image.

4. Select the intersection function. Take the image view in the lower left pane and select
the intersection of it with the test pattern image in the upper right hand corner pane.
Place the result in the lower right pane.

5. The resultant image should look similar to the original image in the lower left pane
except for the 50 x 50 pixel section which will appear as a black square. The black
square represents an all zero pattern.

6. Select the Union function. Take the image view in the lower left pane and select the
Union of it with the test pattern image in the upper right hand corner pane. Place
the result in the lower right pane.

7. The resultant image should appear as an all white square except for the 50 x 50 pixel
section on which will appear as the 50 x 50 pixel intensities of the original image.

8. Select the Complement function, using the view in the lower left pane as the source
image. Place the result in the lower right pane. The resulting image should look like
a photographic negative of the original image.

The following scenario will demonstrate how to add two images and subtract two images.
This scenario is useful when processing multiple images (e.g., multispectral imagery).

1. Reload the ALV site model as described previously.

50 RCDE User's Manual

2. Select the Add function on the Arith menu.

3. Add the upper right view to the lower left view and place the result in lower right
pane. (Follow the documentation line prompts if you are not sure of how to select
source images and destination pane). Notice that the resultant image is about the
same size as the upper right image view (in terms of width and height), but looks like
the lower left view.

4. Select the Subtract function from the Arith function.

5. Choose the lower right view �rst, then the lower left, putting the result in the upper
left pane.

6. Notice that the composite image before the subtraction did not even remotely resemble
the image in the upper right hand corner, but yet we were successfully able to recover
the upper right image.

Note: for the above addition/subtraction scenario to operate properly, it is imperative that
at least one image view is in
oating point format. Note that that the result of the addition
and/or subtraction is a
oating point image; you can tell this by selecting a pixel in the
image, and noting that its pixel value in the Documentation Line is a
oating point number.
Integer images can be converted to
oating point by utilizing the Float menu option.

Another scenario

1. Select the FFT function from the Arith submenu.

2. Select the image in the upper left hand corner pane to be the source of the FFT data.

3. Select the lower right hand corner pane for the destination.

4. Select the Magnitude Squared and the current pane as the destination(lower right
pane).

5. Place the cursor within the pane, left mouse click and observe the documentation line.

6. Notice the magnitude of the pixel intensities. You will have to scale them.

7. Select the Linear Xform menu option and use the lower right pane as the source and
destination pane.

8. A submenu will appear. Mouse click left in image button.

9. Enter the number 10000 in the scale factor �eld.

10. Next select the Round menu option and again select the lower right pane as the des-
tination.

Arithmetic Image Transform Scenarios 51

11. Select the center zero option from the menu choices.

12. Choose the lower right pane for the results.

13. The view you see should be the familiar 2-D FFT plot.

The above steps were necessary for you to view the FFT data in a meaningful way. To
calculate an FFT you just need to invoke the FFT function with an image as its argument.
The resultant complex image is placed on the stack.

52 RCDE User's Manual

Chapter 8

Arithmetic Image Transforms

These functions perform arithmetic operations on image intensities. The menu choices are:

Boole Linear Transform

FFT Clip

Float Threshold

Fix Add

Round Subtract

Resize Pixel Linear Combine

Negate

Boole { Produce a submenu of boolean image operations.

These operations perform logical (Boolean) operations on one-bit images or multi-bit
images. Each bit position within a pixel is treated on a bitwise basis with respect to
Boolean operations. The Boolean operations include:

� Union - Perform the pixelwise union (logical OR) of two images, where a '1'
is an indication of set membership (logical TRUE) and a '0' is an indication
of set exclusion (logical FALSE). Rules for handling images of di�ering sizes
are the same as for binary arithmetic operations (Missing bit positions are zero
extended.)

Select the Union function from the Boole submenu. Following the Documentation
Line prompts, select the two source panes and the destination pane. The resulting
image will appear in the destination pane.

� Intersect - Perform the pixelwise intersection (logical AND) of two images, where
a '1' is an indication of set membership (logical TRUE) and a '0' is an indication

53

54 RCDE User's Manual

of set exclusion (logical FALSE). Rules for handling images of di�ering sizes are
the same as for binary arithmetic operations.

Select the Intersect function from the Boole submenu. Following the Documen-
tation Line prompts, select the two source panes and the destination pane. The
resulting image will appear in the destination pane.

� Xor - Perform the pixelwise exclusive OR operation of two images, where '1' is
logical TRUE and '0' is logical FALSE. Rules for handling images of di�ering
sizes are the same as for binary arithmetic operations. The truth table for XOR
is

a b a
 b

0 0 0

0 1 1
1 0 1

1 1 0

Select the Xor function from the Boole submenu. Following the Documentation
Line prompts, select the two source panes and the destination pane. The resulting
image will appear in the destination pane.

� Complement - Pixelwise complement (logical NOT) of a single image. This func-
tion performs negation on a pixel by pixel basis by binary complementing each
bit in the pixel width.

Select the Complement function from the Boole submenu. Following the Doc-
umentation Line prompts, select the source and and destination panes. The
resulting complemented image will appear in the destination pane.

� Threshold - Create a binary image from a numeric image by thresholding.

Select the Threshold function from the Boole menu item to invoke a submenu.
Designate the desired image by pushing the button labeled Image, then selecting
the pane containing the image. Next, adjust the threshold by moving the slider
bar labeled Threshold. To perform the operation, push the button DOIT, then
select the desired destination pane. The Status �eld displays relevant information
and prompts throughout the process.

FFT { Produce a submenu of Fast Fourier Transform operations.

� FFT: - Perform a two-dimensional Fast Fourier Transform on an image. The
resulting image will have a complex
oating point data type. The width and
length of the data set will be rounded upward to the nearest 2n; those values
that are added as a result of the upward rounding will be padded with zeros
prior to the FFT operation. Select the FFT function from the FFT submenu.
Following the Documentation Line prompts, select the source and destination
panes. The resulting FFT is pushed onto the destination pane.

Arithmetic Image Transforms 55

� Inverse FFT - Perform a two dimensional Inverse Fast Fourier Transform on an
image. The input image will have a complex
oating point data type. The width
and length of the data set will be rounded upward to the nearest 2n; those values
that are added as a result of the upward rounding will be padded with zeros
prior to the Inverse FFT operation. Select the Inverse FFT function from
the FFT submenu. Following the Documentation Line prompts, select the source
and destination panes. The resulting inverse FFT is pushed onto the destination
pane.

� Magnitude - Produce a magnitude image from a complex image. Complex pixel
values are de�ned as a + bi, where a is the real part and b is the imaginary
part. The magnitude is de�ned as

p
a2 + b2. On a real image, this is the identity

operation. Select the Magnitude function from the FFT submenu. Following
the Documentation Line prompts, select the source and destination panes. The
resulting magnitude image is pushed onto the destination pane.

� Magnitude Squared - Produce a magnitude squared image from a complex image.
Complex pixel values are de�ned as a + bi, where a is the real part and b is the
imaginary part. The magnitude squared is de�ned as a2 + b2. Select the Mag-
nitude Squared function from the FFT submenu. Following the Documentation
Line prompts, select the source and destination panes. The resulting magnitude
image is pushed onto the destination pane.

� Center Zero Rotate the image toroidally (divide the image into quarters, and
swap the blocks diagonally) to center the outermost pixels in the image. Usually,
this function is performed on data that has undergone an FFT transformation
to move the DC component to the center of the image. Select the Magnitude
Squared function from the FFT submenu. Following the Documentation Line
prompts, select the source and destination panes. The resulting image is pushed
onto the destination pane.

Float { Create a new image whose pixel values are converted to
oating point numbers.

Select the Float function from the Arith menu. Following the Documentation Line
prompts, select the source and destination panes. The resulting
oating point image
is pushed onto the destination pane.

Fix { Create a new image whose pixel values are converted to integers by truncating values
below the decimal point.

Select the Fix function from the Arith menu. Following the Documentation Line
prompts, select the source and destination panes. The resulting �xed-representation
image is pushed onto the destination pane.

Round { Coerce
oating point pixel values to integers by adding 1 to the integer part if the
decimal part is greater than or equal to 0.5; otherwise truncate the decimal part.

56 RCDE User's Manual

Select the Round function from the Arith menu. Following the Documentation Line
prompts, select the source and destination panes. The resulting �xed-representation
image is pushed onto the destination pane.

Resize Pixel { Create a new image having the same numerical values at all pixels (where
possible), but having di�erent pixel data types.

Select the Resize Pixel function from the Arith menu, which causes a popup window
to appear. Designate the desired image by pushing the button labeled Image, then
selecting the pane containing the image. Select the desired new pixel size from the
row of buttons; choices for number of bits/pixel are 1, 2, 4, 8, 16, and 32. The default
value is the number used on the last invocation of this function. When decreasing the
number of bits per pixel, intensities above the range of the new representation are set
to the maximum value of the new representation. To perform the operation, push the
button DOIT, then select the desired destination pane.

Negate { Perform a \photographic negative" operation.

On
oating-point images, this corresponds to a numerical negation of each pixel. On
�xed-point images, this corresponds to subtracting each pixel value from the maximum
representable pixel value.

Select the Negate function from the Arith menu. Following the Documentation Line
prompts, select the source and destination panes. The resulting �xed-representation
image is pushed onto the destination pane.

Menu Bar: Select the Negate function from the Arith menu. Following the Docu-
mentation Line prompts, select the source and destination panes. The resulting
negated image is pushed onto the destination pane.

Bucky Keys: Holding down the Hyper and Meta Bucky keys, select the destination
pane with the right mouse button [H -M -! - - R]. The resulting negated image
is pushed onto the destination pane.

Bucky Menu: Invoke the Bucky menu with a right mouse click and select the Negate
function from the Bucky menu. Following the Documentation Line prompts,
select the source and destination panes. The resulting negated image is pushed
onto the destination pane.

Linear Xform { Replace each pixel value x by ax + b, where a and b are user-speci�able
scale and o�set values, respectively.

Default values are taken from the last invocation of this function. On the �rst invo-
cation, default values are a = 1 and b = 0, making this the identity operation.

Select the Linear Xform function from the Arith menu, which causes a popup window
to appear. Designate the desired image by pushing the button labeled Image, then
selecting the pane containing the image. Enter a numeric value in the Scale Factor

Arithmetic Image Transforms 57

and O�set �elds representing a and b in the equation ax+ b. X is the pixel value, a is
scale factor and b is the o�set. To perform the operation, push the button DOIT, then
select the desired destination pane. The Status �eld displays relevant information and
prompts throughout the process.

Clip { Perform a \hard-limit" function at each pixel location.

This function performs an identity mapping on pixels which fall between the limiting
values, maps all of the pixels above the top limiting value to the top limiting value,
and maps all of the pixels below the bottom limiting value to the bottom limiting
value. Menu options specify the two limiting values. Default values are taken from
the last invocation of this function. On the �rst invocation, default values are 0 and
255, making this the identity operator for 8-bit images.

Select the Clip function from the Arith menu, which causes a popup window to appear.
Designate the desired image by pushing the button labeled Image, then selecting the
pane containing the image. Adjust the Lower Clip value and Upper Clip Value �elds
by moving the slider bars. To perform the operation, push the button DOIT, then
select the desired destination pane. The Status �eld displays relevant information and
prompts throughout the process.

Threshold { Create a binary image by setting each pixel below a threshold to the pixel
value zero and those pixel values above the threshold to 1.

Select the Threshold function from the Arith menu, which causes a popup window to
appear.

Designate the desired image by pushing the button labeled Image, then selecting the
pane containing the image. Next, adjust the threshold by moving the slider bar la-
beled Threshold. To perform the operation, push the button DOIT, then select the
desired destination pane. The Status �eld displays relevant information and prompts
throughout the process.

Add { Add corresponding pixel intensities in two images.

Numeric over
ows cause saturation at the maximum value of the pixel representa-
tion. If the pixel representations are di�erent, the output image will have the \more
expressive" of the two input images pixel representations, where
oating point repre-
sentations are considered \more expressive" than �xed point representations, and a
�xed point representation is \more expressive" than other �xed point representations
of fewer bits per pixel. If the images to be added are of di�ering sizes, the output will
be of size min(l1; l2) by min(w1; w2), where li is the length of the ith image in pixels
and wi is the width of the ith image in pixels. The area added will be the area of
overlap if the two images were put on top of each other with the bottom left corners
coinciding.

58 RCDE User's Manual

Select the Add function from the Arith menu. Following the Documentation Line
prompts, select the source and destination panes. The resulting sum image is pushed
onto the destination pane.

Subtract { Subtract corresponding pixel intensities in two images.

Numeric under
ows cause saturation at 0. If the pixel representations are di�erent,
the output image will have the \more expressive" of the two input images pixel repre-
sentations, where
oating point representations are considered \more expressive" than
�xed point representations, and a �xed point representation is \more expressive" than
other �xed point representations of fewer bits per pixel. If the images to be subtracted
are of di�ering sizes, the output will be of size min(l1; l2) by min(w1; w2), where li is
the length of the ith image in pixels and wi is the width of the ith image in pixels.
The area subtracted will be the area of overlap if the two images were put on top of
each other with the bottom left corners coinciding.

Select the Subtract function from the Arith menu. Following the Documentation Line
prompts, select the source and destination panes. The resulting di�erence image is
pushed onto the destination pane.

Linear Combine { Weighted addition of two images, with user speci�able weights.

The initial defaults for this algorithm are 1 and -1, making this the subtraction oper-
ation. The rules for sizing and handling over
ows and under
ows are the same as for
other binary arithmetic operations.

Select the Linear Combine function from the Arith menu, which causes a popup window
to appear. Designate one of the source views by pushing the button labeled Image A,
then selecting the pane containing the image. Repeat for Image B. Adjust the Factor A
and Factor B �elds by moving the labeled slider bars. Enter the O�set value by typing
the desired value in the �eld. To perform the operation, push the button DOIT, then
select the desired destination pane. The Status �eld displays relevant information and
prompts throughout the process.

Chapter 9

Enhancement Image

Transforms

This chapter describes a set of operations that \enhance" the visual display of an image by
emphasizing either the contrast or the edges of the image. The functions include:

Contrast Stretch Zero Cross Image

Di� of Gauss Sobel Edges

Gauss Blur Canny Edges

Zero Cross Overlay

Contrast Stretch { Perform a pixelwise linear remap of existing intensity values to the full
range of the pixel representation.

Pixel values outside the maximum range are mapped to the closest range extreme.
This function is similar to the Linear Transform function discussed in Chapter 8 but is
an interactive function. The gain and o�set of each pixel is de�ned by the relation:

(gain) � (pixelvalue) + (offset)

This operation is similar to the Image Window operation since it performs the oper-
ations using a special tool, the view-hacking-object. Since more general capabilities
of the RCDE objects will be presented further in Chapter 12, this discussion will
concentrate on simple contrast manipulation.

Select the Contrast Stretch function from the Geom menu. Following the Documen-
tation Line prompt, select the view to place the Image Window tool. The tool will
be created at the selected point, appearing as a small box with the text designation

59

60 RCDE User's Manual

\View". This icon is an object having a set of associated methods, and is called a
view-hacking-object.

A number of operations can be performed on the selected view using this object.
For example, the Brt & Cont function allows interactive adjustment of the brightness
and contrast of the view's appearance. Enter this mode by by moving the cursor
into the object (the icon must turn green) and clicking the middle mouse button.
The brightness (gain) and contrast(o�set) will change as a linear function of mouse
movement, using the following convention:

� Mouse vertically up - increase gain

� Mouse vertically down - decrease gain

� Mouse horizontally to the right - increase o�set

� Mouse horizontally to the left - decrease o�set

� Mouse movement in both directions - increase/decrease both parameters.

The Documentation Line will display brightness and contrast parameters interactively
as the operation is performed. Note that the entire screen appears to be a�ected while
the operation is in progress, but only the desired pane is changed when the operation
is �nished. This is because the colormap is directly manipulated for fast interactive
feedback, but a new image is calculated and the colormap restored when the operation
is completed.

To see the other operations available from the view-hacking-object, press the Hyper and
Control Bucky keys while the cursor is on the object (it must be highlighted), then
click the right mouse button. This invokes the object Bucky menu, which can not be
used to execute operations but serves as documentation for the Bucky key commands
available on the object.

Di� of Gauss (Di�erence of Gaussians) { Subtract two smoothed versions of the same image.

This operator functions as an edge detector, which approximates the Laplacian of a
Gaussian (r2G) operator for an appropriate selection of parameters. The menu pa-
rameters specify the pyramid levels for the images to be di�erenced. This convolution
uses the technique of hierarchical convolution developed by Peter Burt of SRI1. Each
level in the hierarchy approximately doubles the standard deviation of the kernel. The
coe�cients of the kernel are approximately:

coe�x;y =
exp(�:5(x2

�2
x

+ y2

�2
y

))

2��x�y

1P. Burt, \Fast Filter Transforms for Image Processing," Computer Graphics and Image Processing, No.
16, pp. 20-51, 1981)

Enhancement Image Transforms 61

Default values are taken from the last invocation of this function. Initial invocation
defaults are level 0 and level 1.

Select the Di� of Gauss function from the Enhance menu, which causes a popup window
to appear. Designate the desired image by pushing the button labeled Image, then
selecting the pane containing the image. Next, select one of nine levels in each of the
�elds marked Level-1 and Level-2, which determine the size of the Gaussian kernels
used (a larger number implies a larger standard deviation). Keeping Level 2 larger
than Level 1 avoids reversing the image. To perform the operation, push the button
DOIT, then select the desired destination pane. The Status �eld displays relevant
information and prompts throughout the process.

Gauss Blur { Convolve with a Gaussian to get a low-pass �ltered version of the image.

Select the Gauss blur function from the Enhance menu, which causes a popup window
to appear. Designate the desired image by pushing the button labeled Image, then
selecting the pane containing the image. Next, select one of nine levels in the �eld
marked Level, which determine the size of the Gaussian kernel used (a larger number
implies a larger standard deviation). To perform the operation, push the button DOIT,
then select the desired destination pane. The Status �eld displays relevant information
and prompts throughout the process.

Zero Cross Overlay { Overlay the image with \zero crossings" of the image. The crossing
level parameter is the pixel intensity to be taken as zero.

Select the Zero Cross Overlay function from the Enhance menu, which causes a popup
window to appear. Designate the desired view by pushing the button labeled View,
then selecting the desired pane. Note that the pane must contain a view, not just
an image, because the zero crossings are marked as an overlay. Next, enter the pixel
intensity to be used as zero by typing a value into the Crossing Level �eld. This
threshold value will determine the boundary state for pixel intensity (e.g., equal to
or above threshold a binary one, below the threshold a binary zero). To perform the
operation, push the button DOIT, and the results of the operation will be displayed
in the selected view. The Status �eld displays relevant information and prompts
throughout the process.

Zero Cross Image { Compute zero crossings of an image, returning a Boolean image showing
where the zero crossings occur. The crossing level parameter is the pixel intensity to
be taken as zero.

Select the Zero Cross Image function from the Enhance menu, which causes a popup
window to appear. Designate the desired image by pushing the button labeled Image,
then selecting the pane containing the image. Next, enter the pixel intensity to be
used as zero by typing a value into the Crossing Level �eld. This threshold value will
determine the boundary state for pixel intensity (e.g., equal to or above threshold
a binary one, below the threshold a binary zero). To perform the operation, push

62 RCDE User's Manual

the button DOIT, then select the desired destination pane. The Status �eld displays
relevant information and prompts throughout the process.

Sobel Edges { Perform edge detection on a given image using the Sobel operator.

The Sobel Edge Operator approximates the two directional derivatives at each point
in the image. The pixelwise output of the Sobel operator is the gradient magnitudes

@I

@x

2

+
@I

@y

2

;

where I is the image intensity at a point.

Select the Sobel Edges function from the Enhance menu. Following the Documentation
Line prompts, select the source and destination panes. The resulting edge image is
pushed onto the destination pane.

Canny Edges { Perform edge detection on a given image using the a Canny edge operator.

This edge operator is useful for feature extraction and site modeling as it produces a
binary image whose line curves are of a uniform width.

Select the Canny Edges function from the Enhance menu, which causes a popup window
to appear. Designate the desired image by pushing the button labeled Image, then se-
lecting the pane containing the image. Three sliders control the algorithm parameters.
As implemented, the Canny algorithm uses the following steps:

1. Smoothing is the �rst step of the algorithm, and is accomplished with a Gaus-
sian blur. The kernel of the Gaussian is determined by the Filt Size slider on the
popup panel.

2. The Gradient operator is then applied to the smoothed image. Since r is a
vector operator, the result can be expressed as magnitude and direction images.
The Mag button displays the magnitude image as an intermediate result.

3. The third stage is NMS, which performs Non-Maximum Suppression. Its results
are fed into a Threshold operation to determine which pixels of the strength
image are selected as edges. Both the Lo Thresh and Hi Thresh sliders are used
to specify the high and low thresholds. The resulting edge image can be viewed
using the Edges button. Selecting the Strengths button produces an image that
displays values of the magnitude image for every edge pixel identi�ed in the �nal
edge image, setting all other pixels to zero.

Chapter 10

Graph, I/O, and Miscellaneous

Operations

This chapter summarizes the Graph, I/O, and Miscellaneous menus, which provide assorted
graphing capabilities, input/output operations, and system level services.

10.1 The Graph Menu

The functions performed by this menu selection display image intensity information in a
graphical form.

X Slice { Plot pixel intensity as a function of position for a given horizontal line in the
image.

The X Slice and Y Slice functions are also called line amplitude pro�les. Only the
portion of the image visible in the pane will be graphed.

Menu Bar: Select the X Slice function from the Graph menu. After the Documen-
tation Line prompts to select a horizontal line to graph, select any pixel in the
desired image line. When the Documentation Line prompts for a destination
pane, select the desired pane. The plot of pixel intensity versus pixel position in
the horizontal direction is then displayed in the destination pane.

Bucky Keys: Depress the Super Bucky key and select any pixel in the desired
image line within the desired image using the left mouse button. When the
Documentation Line prompts for a destination pane, select the desired pane.
The plot of pixel intensity versus pixel position in the horizontal direction is then
displayed in the destination pane.

63

64 RCDE User's Manual

Bucky Menu: Invoke the Bucky menu with a right mouse click on the image, then
select the X Slice function from the Bucky menu options. After the Documen-
tation Line prompts to select a horizontal line to graph, select any pixel in the
desired image line. When the Documentation Line prompts for a destination
pane, select the desired pane. The plot of pixel intensity versus pixel position in
the horizontal direction is then displayed in the destination pane.

Y Slice { Plot pixel intensity as a function of position for a given vertical line in the image.

The Y Slice and Y Slice functions are also called line amplitude pro�les. Only the
portion of the image visible in the pane will be graphed.

Menu Bar: Select the Y Slice function from the Graph menu. After the Documenta-
tion Line prompts to select a vertical line to graph, select any pixel in the desired
image line. When the Documentation Line prompts for a destination pane, select
the desired pane. The plot of pixel intensity versus pixel position in the vertical
direction is then displayed in the destination pane.

Bucky Keys: Depress the Super Bucky key and select any pixel in the desired
image line within the desired image using the middle mouse button. When the
Documentation Line prompts for a destination pane, select the desired pane.
The plot of pixel intensity versus pixel position in the vertical direction is then
displayed in the destination pane.

Bucky Menu: Invoke the Bucky menu with a right mouse click on the image, then
select the Y Slice function from the Bucky menu options. After the Documenta-
tion Line prompts to select a vertical line to graph, select any pixel in the desired
image line. When the Documentation Line prompts for a destination pane, select
the desired pane. The plot of pixel intensity versus pixel position in the vertical
direction is then displayed in the destination pane.

Histogram { Plot a histogram of the pixel intensities of the selected image.

The menu version of the command allows extra control of the histogram display. The
histogram is calculated for the entire image, not just the part visible in the pane. Note
that the image representation in the pane is used for the histogram; image operations
such as zooming may a�ect the statistics of the resulting histogram.

Menu Bar: Select the Histogram function from the Graph menu, which causes a
popup window to appear. Designate the desired image by pushing the button
labeled Image, then selecting the pane containing the image. To display the
histogram, push the button labeled Window, then select the desired pane for the
result.

The amount of the histogram to be displayed can be controlled by moving the
slider bars labeled Left start value, Right end value, and Tail factor. The left

Graph, I/O, and Miscellaneous Operations 65

mouse button is typically used to manipulate the sliders. If the Tail factor is
zero, a histogram will be displayed between the grey level values speci�ed by Left
start value and Right end value. The Tail factor is a number between 0 and .5. It
represents the fraction of data points that will be eliminated from each end of
the histogram display. Note that adjusting the Tail factor a�ects the start and
end values, but not vice versa.

The resolution of the histogram can be controlled by the Number of Buckets �eld,
which speci�es the number of bins for the histogram calculation. After adjusting
the histogram display parameters, the histogram can be redisplayed by pushing
the Window button and selecting a result pane. The Status �eld displays relevant
information throughout the process.

Bucky Keys: Depress the Super Bucky key and select the desired image using the
right mouse button. (Be sure not to select another object inadvertently.) When
the Documentation Line prompts for a destination pane, select the desired pane.
The histogram will be plotted without bene�t of the tail control features.

Bucky Menu: Invoke the Bucky menu with a right mouse click on the image,
then select the Histogram function from the Bucky menu options. Following the
Documentation Line prompts, select the image source and destination panes.
The histogram will be plotted without bene�t of the tail control features.

10.2 The I/O Menu

This section describes the RCDE system utilities for loading/saving feature sets, images,
and site models to/from the RCDE environment. Hardcopy and directory capabilities are
also described.

Save Image { Select an image and save it to a �le.

Select the Save Image function from the I/O menu, which causes a popup window
to appear. Designate the desired image by pushing the button labeled Image, then
selecting the pane containing the image. Next, specify the UNIX path and �lename
for storing the image in the Pathname �eld. Finally, press the Save Image button to
perform the operation. The Status �eld displays relevant information throughout the
process.

Load Image { Specify an image �le and load it into a pane.

Select the Load Image function from the I/O menu, which causes a popup window to
appear. Two �elds are available for entering �le names: the Directory �eld and the
Pathname �eld. Enter the directory path where the desired �le resides in the Directory
�eld, then enter the �le name in the Pathname �eld. Although it is not required,
entering a carriage return after entering the �lename will cause the RCDE to search

66 RCDE User's Manual

the directory for the �le, read the image header, and determine what type of image
is to be read. Press the Load Image button to perform the operation; following the
Documentation Line prompt, select the desired destination pane.

If the image format is unrecognized, the other �elds in the panel may be used to specify
the appropriate image parameters. The Format �eld allows the image �le format to
be speci�ed directly, and the Element Type sets the pixel type. Each is a multiple-
choice popup menu that is selected with the left mouse button. The remaining �elds
allow numeric image parameters to be speci�ed, which is useful for images without
�le headers. The �elds are X Dimension, Y Dimension, Block X Dimension, Block Y
Dimension, and Header Length. Finally, the Status �eld displays relevant information
throughout the image loading process.

Dired Image { Search a directory for image �les, select an image from the directory list,
and load it into a pane.

Select the Dired Image (DIRectory EDit) function from the I/O menu, which causes
a popup menu to appear. Type a directory path name into the Filter �eld, which is
used to search the directory for �les. Enter a carriage return or push the Filter button
to initiate the �le search. The search will terminate with the last slash (\/"), so end
the path with a slash to go into the deepest directory.

The directories and �les matching the search string will appear in the Directories and
Files scrolling lists. The Directory list may be used to move around the directory
structure by double-clicking with the left mouse button on one of the entries. Single
click on one of the �le entries to select an image for input and display its full path
name in the Selection �eld. Press the Load Image button to load the image; following
the Documentation Line prompt, select the desired destination pane.

To display the image header �elds (e.g., Block X Dimension), push the Read Header
button. It is not necessary to read the header information to load an image. Note
that the image header �elds in this panel are read-only, and do not a�ect the header
values themselves. All of the text �elds in this panel can be scrolled using the arrow
keys on the keypad.

Alternately, double-click on one of the �le entries to completely select the image for
input, which includes reading the image header, displaying the image header values in
the �elds below (e.g., Block X Dimension), and displaying the full path name of the
selection in the Selection �eld.

Hardcopy Image { Select an image and send it to a hardcopy device, such as a Kodak or
PostScript printer.

This commandwrites a PostScript �le to the temporary �le directory1, which can saved
for later printing. Note that the printer environment variable is used to specify the
print device.

1De�ned by *host-default-mapped-�le-allocation-directory*.

Graph, I/O, and Miscellaneous Operations 67

Select the Hardcopy Image function from the I/O menu, which causes a popup window
to appear. Designate the desired image by pushing the button labeled Image, then
selecting the pane containing the image. The image label and its pixel type should
be displayed in the Title and Status �elds, respectively. The Width and Height �elds
specify the size of the image on the page, and the Orient �eld speci�es the orientation
of the output. Finally, press the Hardcopy Image button to perform the operation.
The Status �eld displays relevant information throughout the process.

Save Feature Sets { Selectively save feature sets from a view.

Select the Save Feature Sets function from the I/Omenu. Following the Documentation
Line prompt, select a view containing the desired feature sets. A popup panel will be
invoked. The top of the panel will contain a row of buttons, one for each feature set in
the selected view. Press any number of buttons to select the feature sets to be saved.
As the buttons are pressed, the Count �eld will display the sum of the objects within
the selected feature sets. Likewise, the Status �eld will display how many feature sets
have been selected. Specify the UNIX path and �lename for storing the image in the
Pathname �eld, then press the Save Feature Sets button to save the selected feature
sets.

Load Feature Sets { Load a feature set into a pane from a �le.

Select the Load Feature Sets function from the I/Omenu, which causes a popup window
to appear. Two �elds are available for entering �le names: the Directory �eld and the
Pathname �eld. Enter the directory path where the desired �le resides in the Directory
�eld, then enter the �le name in the Pathname �eld. Although it is not required,
entering a carriage return after entering the �lename will initiate a search for the �le,
displaying information about the �le in the Date, Author, and File Length �elds of
the panel. Press the Load Feature Sets button to perform the operation; following
the Documentation Line prompt, select the desired destination view. The Status �eld
displays relevant information throughout the process.

Save Site Model { Save a site model to a �le.

Select the Save Site Model function from the I/O menu, which causes a popup window
to appear. Designate the desired model by pushing the button labeled Push Me, then
selecting the pane containing the model. The Count �eld will display the number of
objects found in the selected model. Next, specify the UNIX path and �lename for
storing the site in the Pathname �eld. Finally, press the Save Site button to perform
the operation. The Status �eld displays relevant information throughout the process.

Load Site Model { Load a site model from a �le.

Select the Load Site Model function from the I/O menu, which causes a small popup
panel to appear. The popup presents a list of site models 2 that can be loaded directly

2The list is stored in the variable *cme-site-model-list*, which the user can augment.

68 RCDE User's Manual

by selecting the button, plus the entries None and Other. The None entry dismisses
the panel and aborts the Load Site Model operation, while the Other command invokes
a second popup menu for loading site models from a �le. Two �elds are available for
entering �le names: the Directory �eld and the Pathname �eld. Enter the directory
path where the desired �le resides in the Directory �eld, then enter the �le name
in the Pathname �eld. Although it is not required, entering a carriage return after
entering the �lename will initiate a search for the �le, displaying information about
the �le in the Date, Author, and File Length �elds of the panel. Press the Load Site
Model button to perform the operation; following the Documentation Line prompt,
select the desired destination pane. The Status �eld displays relevant information
throughout the process.

10.3 The Misc Menu

This section contains a collection of miscellaneous functions for controlling the user interface.

Tandem { Synchronize multiple views for performing simultaneous operations.

The Tandem functions allows the user to slave two or more views to a master view
so that operations performed in the master view are simultaneously executed in each
of the slave views.Select the Tandem function from the Misc menu, which causes a
pullright menu to appear. The menu, which can be pinned, presents a list of functions
for implementing the Tandem mode:

� Tandem On { Enable the tandem function.

� Tandem O� { Disable the tandem function.

� Set Tandem View { Establish a master/slave relationship between two views. The
default position used for the slave operation is the 3-D point selected in the master
view.

� Clear Tandem View { Clear the master/slave relationship.

� Show Tandem View { Indicate (via a
ashing square) which views are associated.

� Set Tandem Pane { Establish a master/slave relationship between two panes.

� Clear Tandem Pane { Clear the master/slave relationship.

� Show Tandem Pane { Indicate (via a
ashing square) which panes are associated.

For the Tandem On and Tandem O� functions, select the appropriate menu item. For
the Set Tandem View, Clear Tandem View, Set Tandem Pane, and Clear Tandem Pane
commands, select the appropriate menu item, select the master pane, then select the
slave pane. For the Show Tandem View and Show Tandem Pane commands, select the
appropriate menu item, then select the master pane.

Graph, I/O, and Miscellaneous Operations 69

CME Frames { Select existing RCDE frame or create/delete a frame.

Select the Pick CME Frame function from the Misc menu, which causes a small popup
panel to appear. The popup presents a list of active CME frames and the buttons
Make Frame and Kill Frame. Selecting one of the active frame entries causes the frame
to be opened, if necessary, and brought to the foreground. The Make Frame and Kill
Frame buttons allow the user to kill existing frames and create new ones, respectively.

The Make Frame command causes a popup panel to appear, which presents a list of
parameters for specifying how the new frame will appear:

� N panes horiz/vert - These two buttons together determine the tiling of panes
within the frame.

� Window Type - Determines the type of graphics operations that can be performed
within the pane. An X11 pane is used for normal RCDE site models. XGL frames
are required to render model scenes (using the XGL library).

� Screen - Speci�es on which screen the new frame will appear, if the worksta-
tion has multiple screens and/or screen types. These buttons are determined
by the system con�guration; for example, a two monitor system having one
8-bit color screen and one one-bit monochrome screen might have the options

8-bit :0.1 1-bit :0.0 .

� Frame Name - Labels the frame on its window decoration with the speci�ed string.
The default label describes the window type and tiling arrangement.

If no defaults appear, a value must be chosen for all parameters except Frame Name.
Press the DOIT button to perform the operation.

Globals Control panel { Set a number of user interface display options.

Select the Globals Control Panel function from the Misc menu, which causes a popup
panel to appear. The popup present a list of parameters a�ecting the RCDE user
interface:

� Enable Multi Colors - Enables the display of wire-frame objects in colors other
than the default yellow. Object colors are set in the object parameters menu.
Default is No.

� Continuous Object Menu Update - Enables continuous updating of values on the
object parameters menu, such as the position of the selected point or the object
dimensions. Default is Yes.

� Screen for Menu Popup - Designates the screen on which the Bucky menus are
drawn. Options are Mouse, the screen on which the object resides, or Other, a
second display (if any). Default is Mouse.

� Tandem Enabled - De�nes the default state of the Tandem command. If the
Tandem is enabled, Tandem mode defaults to Tandem On. Default is No.

70 RCDE User's Manual

� Sensitive Arcs and Faces - Enables the mode where individual arcs and faces of
polyhedral objects are sensitive to mouse selection. Default is No. In addition
to setting this toggle, the vertices of the object must be opened with the Open
Verts [H -M -! L - -] command.

� Undo History Length - Determines the number of object manipulation operations
that can be undone with the Undo operation [H - - C! L - -]. Default is 5.

Import Public Color Map { Copy the colors added to the public color map into the RCDE
color map.

Select the Import Public Color Map function from the Misc menu; if enough space is
available, the public color map colors will be transferred to the RCDE color map in
an attempt to minimize colormap
ashing.

Reset Color Map { Reset the RCDE color map to default values.

Select the Reset Color Map function from the Misc menu; the color map will be reset
to its default state, which is de�ned by the variable ic::*color-map-grey-ramp-
defaults*.

Clear All Panes { Clear all panes in the selected frame.

Select the Clear All Panes function from the Misc menu, then select the desired frame.
All panes in the selected frame will be cleared.

Command Apropos { Initiate a key word search on Documentation Line parameter or sub-
menu command.

Select the Command Apropos function from the Misc menu. The Lisp Interaction Win-
dow will enter a new mode; enter a text string, and the RCDE menu documentation
strings will be searched for a command that contains that string. A list of commands
associated with the keyword will be displayed in the Lisp interaction window. Enter
q at the prompt to quit.

Set Emacs Window { Instruct the RCDE to direct keystrokes to a given Emacs window.
RCDE frames or Menu Bar.

When keystrokes are typed while the mouse cursor is on an RCDE frame, the RCDE
can direct them to the Lisp Interaction Window. This command enables that mode.

Select the Set Emacs Window function from the Misc menu. Move the cursor to the
Lisp prompt, then type T and a carriage return. Keystrokes should then be directed
to that window whenever the mouse cursor is positioned over an RCDE frame. Note
that this function is disabled, as are all RCDE functions, whenever Lisp enters the
debugger.

Quit CME { Exit the RCDE.

Graph, I/O, and Miscellaneous Operations 71

Select the Quit CME function from the Misc menu, which causes a popup menu to
appear. Select Yes to exit the RCDE, or No to abort the exit.

72 RCDE User's Manual

Chapter 11

Introduction to 3-D Modeling

In the preceding chapters, the reader was introduced to the RCDE user interface in the
context of manipulating images. The true power of the RCDE is in its ability to use
imagery to create and manipulate 3-D site models. The next several chapters are dedicated
to describing the RCDE's three-dimensional capabilities. The RCDE data structures are
su�ciently complex, however, that this document will only summarize some important
details. For more information, use the RCDE Programmer's Reference Manual together
with the Lisp Listener to explore the RCDE representations directly.

11.1 Representations

As introduced in Chapter 2, the RCDE 3-D world is composed of the following components:

� Images { a set of data derived from some sensing event.

� Views { fundamental RCDE data structures that allow the user to observe the 3-D
world on the display.

� Feature Sets { a collection of objects, logically grouped for some purpose (e.g.,
common manipulation).

� IlluminationModel { a representation of site illumination, used for shading the faces
of rendered polyhedral objects, and for computing values based on the sun position
(e.g., building height from shadows).

� Objects { 2-D, 3-D, or Tool visual representations that populate or help build a site
model.

73

74 RCDE User's Manual

� Camera Model { a view component that speci�es a transformation from 3-D world
coordinates to 2-D view coordinates.

� Terrain Model { terrain data associated with a given 3-D world. Objects are often
manipulated relative to the ground level.

� Site { a collection of feature sets in a common geographic area. All feature sets for a
given site share a common local coordinate system referenced to the site.

Image operations have already been addressed in earlier chapters. This chapter will
present views, feature sets, and the illumination model. Subsequent chapters describe the
RCDE cameras, terrain, and site models.

11.2 Views

The view is a fundamental component of the 3d-world, which uni�es the RCDE data
structures for viewing on the display. The world contains objects that are viewed through a
simple camera, as illustrated in Figure 11.1. The camera transforms the world coordinates
(x; y; z) to image coordinates (u; v). Objects in the scene are mapped to the image plane
(�lm plane) of the camera as shown in the drawing.

The major components of a view are related as illustrated in Figure 11.2. The white
boxes represent data objects, which include model elements (e.g., house, image), groupings
of objects (e.g., feature sets), and transformations. The shaded boxes denote coordinate
systems, which are numerical values stored in a separate container object.

The solid lines in the �gure represent association (a \has-a" relation) between object
classes, while dotted lines indicate a logical connection between the objects and related
coordinate representations. The arrows on the solid lines indicate some interaction between
the objects in the direction of the arrows, but do not imply a speci�c implementation. The
small, �lled circles indicate a multiplicity for a given relation. The association notation is
commonly used for describing object and database systems, while the arrow notation has
been added to imply object interaction.

From the left side of the �gure, we can see that a view (class object-view) is associated
with a number of 3-D feature sets, 2-D feature sets, tool feature sets, images, and view stacks.
Each type of feature set (3-D, 2-D, tool) is associated with a number of objects. Each object
has its own internal coordinate system (object coordinates) and a transform matrix that
maps object coordinates to some other coordinate system.

For example, follow the �gure from the bottom, moving toward the right. Three-D mod-
els (e.g., houses) have their own object-centered coordinate system and a 4x4-transform
that maps object coordinates into a set of 3-D world coordinates.

The 3-D world coordinates are stored by a 3d-world object as a local vertical coordinate
system (LVCS), whose origin is de�ned relative to a given site. A 3-D world has additional
transformations to convert the LVCS to a universally recognized World Coordinate system,

Introduction to 3-D Modeling 75

..............

..............

..............

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........

...

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
....

..
........
.......
........
.......
........
.......
........
........
.......
........
.......
........
.......
........
.......
........
.

...........
............
...........
...........
...........
...

........
........
......................

...
........

......

......
......
....................

...

.........................
....................

........
........
........
...

.......
.......
........................

.......
.......
...............
..

.......
.......
..

..
.........
........

P

stare point

principal ray

image plane

y
z

x

u
v

focal point

Figure 11.1: A simple 3-D world. The world is viewed through a camera aimed through
the principal point P, which lies at the intersection of the image plane and the principal
ray. The stare point is the intersection of the principal ray with the terrain model, or the
z = 0 plane if the site does not have a terrain model. Objects in the world are projected
onto the image plane through the camera, which maps world coordinates (x, y, z) to image
coordinates (u,v).

76 RCDE User's Manual

3-D -> 2-D
Projection

3-D World
Coordinates

2-D World
Coordinates

2-D
Transform

Window
Coordinates

WINDOW

2-D
Transform

Image
Coordinates

IMAGES

3-D
Transform

3-D Object
Coordinates

3-D MODELS

3-D
Feature

Sets

2-D
Transform

2-D Object
Coordinates

2-D MODELS

2-D
Feature

Sets

2-D
Transform

Tool Object
Coordinates

TOOLS

Tool
Feature

Sets

VIEW
STACK

View

RCDE-040a

Figure 11.2: RCDE Data Representations

Introduction to 3-D Modeling 77

such as Universal Transverse Mercator (UTM), Latitude-Longitude-Elevation, or geocentric
coordinates.

The view is also associated with a sensor (camera) model that maps 3-D world coordi-
nates to 2-D world coordinates. The camera model is labeled \3-D!2-D Projection" in the
�gure. Chapter 13 presents more details of the camera model,

Views are also composed of images and 2-D feature sets, which contain 2-D objects.
Both have transformations to transform local object or image coordinates to 2-D world
coordinates, in common with the output of the camera model. The 2-D world coordinate
values are stored by a 2d-world object.

The 2-D world coordinates are then mapped into window (pane) coordinates by another
2-D transformation (\2-D Transform" in the �gure). This transformation is necessary for
translations of the 2-D data within the window such as panning and zooming. The view
may also contain Tool objects, which are designed to remain �xed in the pane even when
the underlying data is panned or zoomed. All types of objects are therefore mapped to
window coordinates in a similar way. A window-world object is responsible for storing
the window coordinate data. To complete the �gure, note that the window has a stack
associated with it, which contains a number of views.

11.3 The Transforms Menu

The Transforms menu supplies operations to create di�erent types of views, either from
scratch or from an existing view.

Exact Copy { Create a copy of an existing view with the same camera but without an
image.

This function copies all elements of a view except the image into the speci�ed pane:
the feature sets, the association with terrain and illumination models, and the camera
model. To copy a view entirely, including the image, use the Stacks!Copy View
command.

Select the Exact Copy function from the Transforms menu. Following the Documenta-
tion Line prompt, select the source and destination panes. The view will be copied
from the top of the source stack and pushed onto the destination stack.

New View Transform on Image { Create a new view using the speci�ed image.

Select the New View Transform on Image function from the Transformsmenu. Following
the Documentation Line prompt, select the desired pane. A popup menu will appear
for selecting the 3d-world into which the view will be inserted. If you wish to use
an existing 3d-world, select the desired world from the list. If no world exists or you
wish to make a new one, select the Make 3d World button, which invokes another
popup panel. Enter a string to label the new world, then press Do It to create the new
world and new view transform. The new camera has a default set of parameters and

78 RCDE User's Manual

places the stare point so that it appears in the bottom left corner of the image. The
transform is adjustable.

Make Transform Adjustable { Allow the selected view's camera to be adjusted.

Some camera models, such as in the ALV model, have purposely been created so that
the camera model cannot be adjusted. This command allows the user to make the
transform adjustable so that the camera parameters can be changed.

Select the Make Transform Adjustable function from the Transforms menu. Following
the Documentation Line prompt, select the desired pane. The existing view transform
will be made adjustable, and a camera icon and a stare point object will be created in
the frame. Note that you may have to refresh the pane if the objects do not appear
in the pane.

Sun View { Create a new view with an orthographic camera model at the sun position.

To create a new view from the sun position, a sun ray object must be present and set
in the view to de�ne the illumination model. The new view will not have an associated
image.

Select the Sun View function from the Transformsmenu. Following the Documentation
Line prompt, select the center point of the new transform (where the stare point will
be located), then select the destination pane. The new view will be created in the
selected pane.

Vertical View { Create a new nadir (vertical) view.

The new view will use a perspective camera with the same focal length and camera
elevation as the speci�ed view. The new view will not have an associated image.

Select the Vertical View function from the Transforms menu. Following the Documen-
tation Line prompt, select the center point of the new transform (where the stare point
will be located), then select the destination pane. The new view will be created in the
selected pane.

11.4 Feature Sets

Feature sets are a mechanism to group modeling objects within the RCDE. Objects in a
common feature set can be made visible or invisible as a group in a single view. They can
also be sensitized or desensitized as a whole; sensitized objects can be selected by the mouse,
whereas desensitized objects ignore mouse events.

When an object is created, it is automaticallyplaced into the selected feature set. Though
the user may not have explicitly created or selected a feature set, both actions are automat-
ically executed when a view is created.

Introduction to 3-D Modeling 79

In addition to resection and displaying selected groups of objects, feature sets are useful
for other purposes, such as saving groups of objects to �le and reading them back into the
RCDE.

11.5 The View Menu

This menu allows access to a view's feature sets and controls its rendering parameters.

Feature Sets { Con�gure or create feature sets for a given view.

Select the Feature Sets function from the View menu, which causes a popup panel to
appear. Designate the desired view by pushing the button labeled View, then selecting
the pane containing the view. A list of the feature sets that currently exist in the world
will be displayed in the panel. If no image nor a view exists in a pane, then no feature
sets will appear. Once an image is loaded, the pane will contain at least one tool and
one 2-D feature set. After a view transform is created, the pane will contain at least
one 3-D feature set.

Each feature set is associated with three buttons:

Pres { Toggles whether the objects in a given feature set are displayed (present) in
the view.

Sens { Toggles whether the objects in a given feature set can be modi�ed (sensitive)
in the view.

Sel { Selects the feature set into which newly created objects will be placed. Only
one each of 3-D, 2-D, and tool (window) feature sets can be selected at one time.

To create a new feature set, press the button for the desired type at the bottom of the
panel. A new feature set will be created and added to the list.

3D Feature Sets { Con�gure or create 3-D feature sets for a given view.

Select the 3D Feature Sets function from the View menu, which causes a popup panel to
appear. Designate the desired view by pushing the button labeled View, then selecting
the pane containing the view. A list of the 3-D feature sets that currently exist in the
world will be displayed in the panel, and the name of that world appears in the 3D
World �eld. If a view transform has not yet been created for that view, no world nor
feature sets will be listed.

Each feature set is associated with three buttons:

Pres { Toggles whether the objects in a given feature set are displayed (present) in
the view.

Sens { Toggles whether the objects in a given feature set can be modi�ed (sensitive)
in the view.

80 RCDE User's Manual

Sel { Selects the feature set into which newly created objects will be placed. Only
one 3-D feature set can be selected at one time.

The Other Views toggle controls the scope of the feature set buttons:

None { Changes made to the feature set buttons a�ect the selected view only.

3d World { Changes made to the feature set buttons a�ect all views in the selected
world.

Frame { Changes made to the feature set buttons a�ect all views in the same frame
having the selected world.

To create a new 3-D feature set, press the New3DFS button at the bottom of the panel.
A new feature set will be created and added to the list.

Render { Control the rendering parameters for a view.

Select the Render function from the View menu, which causes a popup panel to appear.
Designate the desired view by pushing the button labeled Pick View, then selecting
the pane containing the view. Specify which type of rendering is desired using the
Mode menu:

Wire Frame { Draw the site objects as wire frame objects, performing hidden line
removal within each object but not between objects. This mode, the default, is
available in all types of frames.

HLR Wire Frame { Draw the site objects as wire frame objects, performing hidden
line removal within each object and between objects. This mode is enabled only
in an XGL frame.

HSR Shaded Surface { Draw the site objects using shaded surfaces, performing hidden
surface removal within each object and between objects. This mode is enabled
only in an XGL frame.

Select which mode of refresh is desired using the When button. Choosing Done implies
that wire frames are used to indicate the objects' positions when they are being moved,
and the scene is re-rendered whenever the object is dropped. Continuous allows the
rendering process to be performed continuously as objects are modi�ed. The Status
�eld displays relevant information throughout the process.

The following steps summarize the process of rendering an existing site model:

1. Create a new XGL frame using Misc!CME Frames!Make Frame.

2. Copy an existing view into the new frame.

3. Create a sun ray object in the scene using the Create Object menu.

4. De�ne the illumination model by using the Set Sun Ray command [- -M -! L - -]
on the Sun Ray.

Introduction to 3-D Modeling 81

5. Invoke the rendering panel (View!Render), choose a view, then choose the HSR
Shaded Surface mode.

6. If the view is not rendered automatically, refresh the pane [- - - -! -M -]. The
view should be displayed in rendered form. To adjust the illumination of a
shaded rendering, move the vertices of the Sun Ray object, Set Sun Ray again,
then refresh the pane.

82 RCDE User's Manual

Chapter 12

The RCDE Objects

The RCDE contains a set of object primitives that are useful for building site models and
annotating imagery. This chapter �rst presents a simple object manipulation scenario, then
details the speci�c properties of each object and its functionality.

12.1 Site Model Update Scenario

A camera's image plane contains a picture that is a 2-D representation of a given scene. The
purpose of the RCDE is to use imagery to support building site models. That is, the user
must reconstruct the 3-D model given one or more 2-D views of a scene plus some additional
information such as the camera parameters or ground truth with image correspondences.
The following scenario illustrates the process of adding model objects to an existing scene
and modifying the scene.

12.1.1 Creating a New View

To get a feel for the 3-D modeling system, the user can copy an existing view into a pane
which does not contain an image. This is not normally done when creating a site model,
but is instructive.

1. Select the CME Frames option from the Misc menu, which invokes a small popup menu.

2. Select Make Frame, which invokes another panel.

3. Select two horizontal panes and one vertical pane, and other options if you wish (be
sure that one button is pressed in each row), then select DOIT to make a new frame.
After the frame is created, you can reduce its size using standard window manager
functions.

83

84 RCDE User's Manual

4. Invoke a new version of the ALV frame from the Load Site Model command on the I/O
menu.

5. Select Exact Copy on the Transformsmenu, then left click on the bottom left ALV pane
as the source pane and the left pane of your new frame as the destination pane. You
have created a new view of the ALV site in your frame, but the view does not have
an image.

6. If you wish, you can use the % Reposition or Recenter commands to center the buildings
in the pane, so that your left pane looks like the left pane in Figure 12.1 (without the
ball-shaped object). Note how the box with the word \Camera" returns to a �xed
point in the pane; it is a tool for manipulating the camera parameters.

7. Now create a second view in the right-hand pane using Exact Copy on the Transforms
menu again, and perform the rest of the scenario using the right pane.

12.1.2 Instantiating Model Object Primitives

The next step is to place model objects in the scene. The available objects can be found
in the Create Object menu, and placed in the scene by selecting the object and choosing its
position in the pane.

Each object serves as a separate context, and as such has a set of functions associated
with that context. These functions are available only through the Bucky keys in combination
with the mouse. Chapter 12 details the functions available for each object. Although each
object has functions unique to it, many functions are common to all objects. For example,
the House object has resizing options that are common to all 3-D objects (such as X-Y Scale),
but also allows the user to adjust the angle of the roof using Roof Pitch [- S - C! - - R].

1. Select Superquadric from the Create Object menu and choose a point near the botton
of the pane 1 to place the object. Note how the Documentation Line changes { the
object name appears at the far left, followed by the Bucky key documentation. After
the object appears in the scene, it remains selected for manipulation; the default Bucky
function is Move UV@Z, allowing you to move the object around while keeping its Z
position constant. To drop the object, either left click again or choose Drop/Obj from
the Bucky menus [H - - -! - - R].

2. Experiment with changing the size of the object using:

� Z Size [- -M -! - -R] { Scale the Z dimension of the object with respect to the
selected point, keeping that point �xed in site coordinates.

1By default, objects are placed onto the terrain. Therefore, select the point to place the object so that
a ray from the viewpoint intersects the terrain, otherwise an error will be generated.

The RCDE Objects 85

Figure 12.1: A simple scene of model objects. The left pane shows the objects as created,
while the right pane shows the same scene from another camera.

86 RCDE User's Manual

� Rotate/Scale [- -M -! -M -] { Change the object's size and orientation, keeping
the selected point �xed in site coordinates. Left-right mouse motions perform
one action, up-down motions perform the other action.

� Move Z [- - - -! -M -] { Move the object in the site coordinate Z direction,
keeping the selected point �xed in site coordinate X and Y.

12.1.3 Moving Model Objects

To understand how objects are moved in the scene, it is necessary to understand the camera
model viewing the scene. Figure 11.1 shows that the U and V axes lie in the image plane
and describe coordinates in 2-D. The W axis, not shown in the �gure, is perpendicular to
the image plane (orthogonal to u and v). Many of the operations for moving model objects
are performed with respect to these axes. Some examples include:

� Move UV @ Z { Move the selected point on the object in the image (UV) plane while
keeping the object's Z value (in site coordinates) constant.

� Move W { Move the object along a ray from camera's W axis (toward or away from
the user in the given view).

� UV Roll { Rotate the object about the U and V axes, keeping the selected point �xed
in site coordinates. Up-down motions roll the object around the U (horizontal) axis,
while left-right mouse motions roll around the V axis (vertical).

More details regarding the RCDE camera model can be found in Chapter 13.

12.1.4 Adjusting the Model View

The camera parameters can be adjusted to view the model objects from another angle.
The camera itself may be manipulated either from its icon (the small box with the word
\Camera") or via the stare point object (a particular type of (x; y; z) axis representation):

1. Move the cursor to the camera icon and invoke the Bucky menu panel [H - - C! - - R].

2. Similarly, invoke the Bucky menu for the stare-point.

3. Note the di�erences in the two menus. The camera icon allows you to adjust the
camera parameters from camera-centered coordinates, while the stare point supplies
a point in the view around which the camera can be rotated. The camera icon is a
tool and remains �xed in the pane, while the stare point can be positioned in 3-D. In
particular, the Az-Elev command allows the user to adjust both the azimuth and the
elevation of the camera simultaneously, with respect to the stare point.

4. Move the cursor to highlight the stare point object, and invoke the Az-Elev command
[- SM -! L - -]. Move the cursor slowly to see the view change. After repositioning,
your right pane may look something like the right pane of Figure 12.1.

The RCDE Objects 87

12.2 Object Classi�cation

The RCDE has several categories of objects, which are loosely grouped here for convenience.

12.2.1 2-D Objects

The following objects exist only in the image plane, associated with a given point in the
image. They appear only in the pane where they are created, and as such are not part of
the site model per se.

� 2d Composite | An object that serves to group other 2-D objects, allowing
them to be manipulated together. Note that this object does not have a wire frame
representation per se.

� 2d Conj Pt| A 2-D conjugate point object is used to establish a correspondence
between 2-D points in images where there is no 3-D world (e.g., stereo correspon-
dences).

� 2d Crosshair| A cross-shaped object used to mark locations in the image plane.

� 2d Network | A collection of line segments and vertices that can be manipulated
as a group in the image plane.

� 2d Point| A zero-dimensional object used to mark locations in the image plane.

� 2d Ribbon| A pair of parallel connected line segments in the image plane.

� 2d Ruler| An open 2-D curve used for performing mensuration in the image plane.

� 2d Text | A text object typically used as a label in the image plane.

� Closed 2d Curve | A set of connected line segments, forming a closed region, in
the image plane; commonly used to delineate region boundaries.

� Open 2d Curve | A set of connected line segments in the image plane.

12.2.2 3-D Feature Objects

The following objects, although not necessarily three-dimensional themselves, are associated
with a given point in 3-space. They appear in all views of a given scene.

� 3d Composite | An object that serves to group other 3-D objects, allowing
them to be manipulated together. Note that this object does not have a wire frame
representation per se.

� 3d Crosshair| A cross-shaped object used to mark locations in 3-space.

88 RCDE User's Manual

� 3d Network | A collection of line segments and vertices that can be manipulated
as a group in 3-space, and whose vertices can be moved individually in 3-space.

� 3d Point| A zero-dimensional object used to mark locations in 3-space.

� 3d Ribbon| A pair of parallel open curves for representing lines of communication
such as roads and rivers in a scene.

� 3d Ruler| An open 3-D curve used for performing mensuration in 3-space.

� 3d Text | A text object typically used as a label in 3-space.

� Closed 3d Curve| A set of connected 3-D line segments that form a closed region;
commonly used to delineate 3-D boundaries.

� DTM Mesh| A rectangular grid of lines used to reveal the DTM data underlying
a given site.

� Open 3d Curve | A set of connected line segments in 3-space.

� Ribbon | pairs of near parallel lines used for modeling roads, rivers, and other
ribbon-like objects; each vertex may take a separate 3-D position.

� Star | A set of 3-D line segments sharing a common end point. This object exists
in 3-space and is visible in all views.

12.2.3 3-D Face Objects

The following objects are fully three-dimensional and are associated with a given point in
3-space. They appear in all views of a given scene, and are capable of being shaded or
having texture mapped to their faces.

� Box | A rectangular, prism-like 3-D object having three degrees of freedom (X, Y,
and Z).

� Cylinder | A cylindrical 3-D object having two degrees of freedom (height and
radius).

� Extrusion | A 3-D object whose base is a closed 3-D curve, used for extruding
buildings with complex geometry.

� House | A box with two sloping roof surfaces in place of the upper face whose roof
angle can be speci�ed separately.

� Quanset | a half-cylindrical 3-D object having two degrees of freedom (height and
radius); its canonical direction is
at side down.

The RCDE Objects 89

� Superellipse| A closed 3-D object having two degrees of freedom that is described
by the equation �x

a

�m
+
�y
b

�m
+
�z
c

�n
= 1

� Superquadric | A closed 3-D object having three degrees of freedom that is de-
scribed by the equation �x

a

�l
+
�y
b

�m
+
�z
c

�n
= 1

12.2.4 Tool Objects

The following objects exist only in the two-dimensional window space. That is, they are
attached to a given point in a pane, independent of image or model projections behind them.
They are intended to remain �xed in the work space, and appear only in the pane where
they are created.

� Color Map Tool | A rectangular object used to manipulate the global color map
(pixel values); stationary in the pane.

� Image Window| A rectangular 2-D object used to manipulate rectangular regions
of imagery.

� North Arrow | A linear object indicating the direction de�ned as North within
the given view.

� View Tool | A rectangular pane object used to manipulate the grey-level values
associated with a given view; stationary in the pane.

� Window Text | A text object that remains stationary in the pane.

12.2.5 Miscellaneous Objects

The following objects are mixed in functionality, attachment, and visibility.

� Axis | A set of orthogonal directed line segments that intersect at a point, used to
represent coordinate frame orientation and location. This object exists in 3-space and
is visible in all views.

� Camera| A wire frame object that illustrates the position of another view's camera
within the current view. This object exists in 3-space but is only visible in the view
where it was created.

� Conj Pt| A conjugate point object is used to establish a correspondence between a
point in space and a location in one or more images. Therefore, one end of the object
is attached to an image point, and the other end is attached to a 3-D point. Only the
3-D attachment point is displayed in other views.

90 RCDE User's Manual

� Corner | A wire frame object to indicate the location and direction of a trihedral
corner in 3-space.

� Scroll Bar | A scroll bar object is automatically created in a pane whenever the
image in a pane is larger than or scrolled outside of the pane. This object cannot
be instantiated from the Create Object menu, but has a number of Bucky commands
available to it.

� Sun Ray| A pair of 3-D line segments sharing a common end point; used to specify
the direction of illumination. This object exists in 3-space and is visible in all views.

12.3 Methods on Objects

Because the RCDE is an object-oriented system, each object has a number of operations
that are inherited from its predecessors. This section describes the current list of operations
(culled from the system) that can be performed using the Bucky keys on the objects. Please
also refer to Appendix A for a mapping of these functions to the objects. Some attempt has
been made to organize the following methods from general to speci�c.

12.3.1 Basic Methods

The following methods can be performed on all objects.

� Blank | Temporarily remove the object from all views, until the pane is refreshed.
Note that the object still exists and is still sensitive to selection.

� Bucky Menu | Invoke the Bucky menu for the selected object (to be used only as
a mnemonic for objects).

� Clone | Create an identical copy of an object.

� Delete| Delete the object.

� Drop/Obj| Stop modi�cations to the selected object, and return a pointer to the
object instance in the Lisp Interaction Window.

� Edit Hier | Edit the composite object hierarchy of the selected object.

� Menu | Bring up a panel to adjust object parameters menu for the selected object.

� Redo | Redo the last action. Note that the Undo History Length can be changed
using the Globals Control Panel.

� Undo | Undo the last action. Note that the Undo History Length can be changed
using the Globals Control Panel.

The RCDE Objects 91

12.3.2 Common Methods

The following methods are common to many objects.

� Rotate/Scale| Change the object's size and orientation, keeping the selected point
�xed in site coordinates. Left-right mouse motions perform one action, up-down mo-
tions perform the other action.

� Scale | Scale the object with respect to the selected point, keeping that point �xed
in site coordinates.

� XY Sizes | Change the object's size with respect to site coordinate X and Y di-
rection, keeping the selected point �xed in site coordinates. Left-right mouse motions
perform one action, up-down motions perform the other action.

12.3.3 3-D Methods

The following additional methods may be performed in a 3-D world.

� @Vertex | Move the indicated vertex to the selected point. For conjugate point
objects, move the 3-D part of the conjugate point to the selected vertex.

� Az-Elev| Rotate the object in two dimensions: left-right mouse motions rotate the
object about the site Z axis, and up-down motions rotate the object about the object's
X axis. If specialized to stare point objects, mouse motions rotate the scene about
the stare point, keeping that point centered in the view.

� Close Object| Desensitize the selected object from mouse sensitivity, and open its
superior for operations (for a simple object, enter Feature Set selection).

� Drop W | Move the object to the DTM along a ray from the camera's focal point
through the selected point. The base of the object is placed on the DTM.

� Drop Z | Move the object along a ray from the camera's W axis (toward or away
from the user in the given view). This is valid for 3-D objects and cameras.

� Move UV on DTM | Move the object in the image (UV) plane while keeping the
object on the Digital Terrain Model (DTM).

� Move UV@Z | Move the selected point on the object in the image (UV) plane
while keeping the object's Z value (in site coordinates) constant. This is valid for 3-D
objects and cameras.

� Move W | Move the object to the DTM along a ray from the camera's focal point
through the selected point. The base of the object is placed on the DTM.

92 RCDE User's Manual

� Move Z | Move the object in the site coordinate Z direction, keeping the selected
point �xed in site coordinate X and Y. This is valid for 3-D objects and cameras.

� Re Orient|Reset to Canonical orientation, in which the object coordinate system is
aligned with the site coordinate system. The selected point is kept in site coordinates.

� Sun Z | Adjust the object's height using its shadow, which is a ray drawn from the
selected point to the DTM in the direction speci�ed by the illumination model. The
illumination model must be de�ned for the speci�ed view (see Set Sun Ray

� Taper Rate|Change the object's shape to be tapered around an axis that is parallel
to the object's Z axis and intersects the object's center. Neither the Z dimension nor
the site position of the object are a�ected, and the object's cross-sectional shape is
unchanged.

� UV-Roll | Rotate the object about the U and V axes, keeping the selected point
�xed in site coordinates. Up-down motions roll the object around the U (Horizontal)
axis, while left-right mouse motions roll around the V axis (vertical).

� W Rot | Rotate object about a ray from the camera's focal point through the
selected point, keeping that point �xed in site coordinates.

� Z Rotate | Rotate the object about the world Z.

� Z Size | Scale the Z dimension of the object with respect to the selected point,
keeping that point �xed in site coordinates.

� Z' Rotate| Rotate the world about the object Z. Set the selected point at vertex.

12.3.4 2-D Methods

The following additional methods may be performed for 2-D objects.

� Move UV | Move the selected point on the object in the image (UV) plane.

� Rotate | Change the object's orientation, keeping the selected point �xed in site
coordinates.

12.3.5 Vertex Manipulation Methods

The following additional methods may be used to manipulate object vertices.

� Open Verts | Open the vertices of an object to allow for vertex modi�cation.

� Close Verts| Close vertex modi�cation of opened objects.

� Add Vert | Add a vertex to a curve or network object.

The RCDE Objects 93

� Del Vert/Arc | Delete a vertex or an arc in a network object.

� Del Vert | Delete a vertex in a curve or network object.

� Merge Vert | Merge vertices of a basic network.

� Reset Verts|Restore the vertices to default positions for basic curves and extruded
objects.

� Split Vertex | Split the vertex in a basic network.

� Vert UV on DTM | Move the vertex of an extruded or 3-D curve object in the
image (UV) plane onto the Digital Terrain Model (DTM).

� Vert UVXY | Moves a selected vertex of an object in the X-Y plane (at constant
Z). Note that a vertex cannot be selected unless the vertices for the object have been
\opened" using the Open Verts command.

� Vert W | Move a selected vertex of an object in the direction of the camera (W)
axis.

� Vert Z | Moves a selected vertex of an object in the direction of the local vertical
(Z) axis.

12.3.6 Color Mapping Methods

The following additional methods are available for color-map-hacking objects.

� -Overlays| Remove overlays for an object.

� Blue| Change blue range of colormap.

� Brt&Cont| Change brightness and contrast of view or pane.

� Gain| Change attenuation (contrast) of view or pane.

� Gamma | Change gamma of colormap.

� Green| Change green range of colormap.

� Hue | Change hue of colormap.

� Intensity| Change intensity of colormap.

� Move Me | Move a tool object around in the pane.

� O�set | Change o�set(brightness) of view or pane.

� Red | Change red range of colormap.

94 RCDE User's Manual

� Reset|Reset object to initial setting. For colormap tools, reset the colormap values.
For curve objects, reset to one vertex.

� Saturation| Change saturation of view or pane.

12.3.7 Conjugate Point Methods

� Move Conj UV | Move the conjugate point UV position (X). The following addi-
tional methods are available for conjugate point objects.

� @Image UV | Set the conjugate point UV position in the given view.

� Delete UV | Delete the 2-D conjugate point constraint.

� Resection Improve| Improve the resection conjugate point.

� Resection Menu | Display the resection conjugate point menu.

12.3.8 View Tool Methods

The following additional methods are available for view-hacking objects.

� Auto Stretch| Perform automatic contrast stretch for the given view.

� Neg Contrast | Perform automatic contrast stretch for the given view using a
negative ramp.

� Reset G&O | Normalize stretch limits of the given view's colormap.

� Threshold| Interactively threshold the given view.

12.3.9 Super Methods

The following additional methods are available for superellipse and/or superquadric
objects.

� XY Exponent | Change the X and Y exponents of a superellipse.

� X Exponent | Change the X exponent of a superquadric.

� Y Exponent | Change the Y exponent of a superquadric.

� Z Exponent | Change the Z exponent of either a superellipse or superquadric.

The RCDE Objects 95

12.3.10 Camera Methods

The following additional methods are available for camera objects.

� Move Cam W | Move the camera along its axis (W axis). This method is also
available for perspective transform objects.

� Focal Length| Change the focal length of a camera. This method is also available
for perspective transform objects.

� Force Z Up | Reset the camera to its canonical orientation.. This method is also
available for perspective transform objects.

� Princ Pt | Move the principal point of a camera. This method is also available for
perspective transform objects.

12.3.11 House Methods

The following additional methods are available for house objects.

� Roof Pitch| Adjust the pitch of a house's roof.

12.3.12 Cylinder Methods

The following additional methods are available for cylinder objects.

� XY Scale | Adjust the radius of a cylinder.

12.3.13 Rectangle Methods

The following additional methods are available for rectangle objects.

� Change Size | Change the size of a rectangle object.

� Move Edge | Move the edge of a rectangle object. If a corner of the object is
selected, two edges can be moved simultaneously.

� Move | Move a rectangle object in the pane.

12.3.14 Scroll Bar Methods

The following additional methods are available for scroll bar objects.

� Scroll| Scroll the indicated view.

� Scroll2d| Scroll the view in 2-D.

96 RCDE User's Manual

12.3.15 Window Methods

The following additional methods are available forwindow and image windowing objects.

� Make Window| Make a new view whose image is the subimage inside the selected
window.

� TScroll| Scrolls the view in Tandem mode.

12.3.16 Feature Set Methods

The following additional methods are available for feature set objects.

� Desensitize | Desensitize the feature set, making all objects in the set insensitive
to the mouse.

� Hide | Hide the feature set, making the feature set not present in that view.

� Sensitize | Sensitize the feature set, making all objects in the set sensitive to the
mouse.

12.3.17 Composite Methods

The following additional methods are available for composite objects.

� Desel Superiors| Deselect the superiors of an object.

� Open Inferiors| Open the inferior objects of an object.

� Sel Superiors| Select the superiors of an object.

12.3.18 Perspective Transform Methods

The following additional methods are available for perspective transform and stare

point objects.

� Range/Focal Length| Set the range/focal length of the camera.

� Stare Pt UV | Move the stare point in the UV plane of the camera.

� UV Aspect | Change the UV aspect ratio of the image plane.

� UV Skew | Skew the image plane.

The RCDE Objects 97

12.3.19 Curve Methods

The following additional methods are available for open and closed 2-D and 3-D curve
objects.

� Every Z to Ground| Move every vertex in Z down to the terrain.

� Extrude Object| Extrude a curve into a 3-D object. See also the extrude object.

� Object UVXY | Move the entire object in the image plane.

12.3.20 Half Cylinder

The following additional methods are available for half cylinder objects.

� Radius/Length| Change the radius and length of a half cylinder object simulta-
neously.

� Rotate/Scale | Change the orientation and size of a half cylinder object simulta-
neously.

12.3.21 Sun Ray Methods

The following additional methods are available for sun ray objects.

� Set Sun Ray | Set the illumination model to use the current con�guration of the
sun ray, so that rendering and Sun Z operations work properly.

98 RCDE User's Manual

Chapter 13

The Camera Model

A critical step in constructing a site model is the determination of accurate or approximate
camera models for the imagery to be used in the model construction process. This chapter
describes RCDE's representation of transforms and projections in detail, followed by the
default RCDE camera model and techniques to adjust its parameters.

13.1 Coordinate Transforms

Coordinate transformations are the fundamental representations of geometric relationships
between objects in the RCDE. Each object in a site has its own coordinate system in which
the locations of its components (vertices, faces, etc.) are de�ned. In turn, the site itself has
a coordinate system that serves as a reference system for all objects and images related to
that site. The site coordinate system may be registered to a location on the Earth with
a geographic transform. The rotation and position of an object coordinate system with
respect to the site coordinate system is expressed as the matrix that transforms the world
coordinate system into the object coordinate system.

Homogeneous coordinate transforms for geometric objects in the RCDE are often main-
tained in the transform-matrix slot of the class 4x4-coordinate-transform or any of
its subclasses. Each 3D object in a site has a slot object-to-world-transform for an in-
stance of 4x4-coordinate-transform, which has its transform-matrix slot �lled with
the appropriate 4 � 4 homogeneous transformation matrix de�ning the geometric relation
between the object and site coordinate systems.

Projections de�ning the relationship between an image and the site are represented by the
class coordinate-projection or any of its subclasses, or 4x4-coordinate-projection.
These classes are described in the section on the RCDE pinhole camera.

99

100 RCDE User's Manual

13.1.1 The Transform Matrix

Coordinate transforms have two main components, a rotation and a translation. In three
dimensions, the translation can be represented by a simple three-dimensional vector. The
rotational component can be represented by a 3 � 3 matrix, in which the three columns
contain the components of the unit vectors of the new coordinate system with respect to
the reference coordinate system in the x, y and z directions, respectively.

The two components are usually combined into a single 4�4 homogeneous transformation
matrix that can be applied in a single matrix multiplication. The structure of the matrix is
de�ned as 2

664
ux vx wx tx
uy vy wy ty
uz vz wz tz
0 0 0 1

3
775

where the transformed coordinate system has axes de�ned by the unit vectors u; v andw with
respect to the reference coordinate system, and (tx; ty; tz) is the origin of the transformed
coordinate system with respect to the reference coordinate system. This transform matrix
converts points in the transformed coordinate system into their equivalent coordinates in
the reference coordinate system when the matrix is premultiplied to the point.

The RCDE represents the rotational component of coordinate transforms according to
the photogrammetry standard, the omega-phi-kappa (!-�-�) matrix. Conceptually, the
matrix describes the rotation from some coordinate system A to a second coordinate system
B (in the context of photogrammetry,A is the world coordinate system, and B is the camera
coordinate system) as a sequential set of three rotations. Beginning with the B coordinate
system aligned with the A coordinate system, the B system is �rst rotated by ! about
the A x-axis, then rotated by � about the resulting y-axis, and lastly rotated by � about
the resulting z-axis. The �nal matrix rotates points expressed in B coordinates into points
expressed in A coordinates when the matrix is premultiplied to the point.

Mathematically, this matrix R!;�;� can be computed as

2
4 cos � cos� cos! sin�+ sin! sin� cos� sin! sin�� cos ! sin� cos�
� cos � sin� cos! cos �� sin! sin� sin� sin! cos�+ cos! sin� sin�

sin� � sin! cos � cos ! cos �

3
5

There are a number of top-level functions available to the user for the creation and
adjustment of transformation matrices (see the services relating to transformations in the
Programmers' Reference Manual). In particular, the function make-orientation-matrix
creates a 4 � 4 matrix with its rotational component set according to the input values of
!; � and �.

The Camera Model 101

13.2 The Pinhole Camera

The RCDE contains a
exible implementation of a pinhole camera model that allows both
perspective and orthographic projection to be represented by the same equations. With
traditional pinhole camera models, the equations for perspective projection are

u = x
f

z
+ u0

v = y
f

z
+ v0

where (x; y; z) are the world coordinates of a point, (u; v) are the projected image coordi-
nates, (u0; v0) are the displacement in the image plane and f is the focal length.

Orthographic projection, on the other hand, is de�ned by the condition f =1. There-
fore, the general orthographic projection equations state that a point's (u; v) coordinates do
not depend on the point's z coordinate. Instead, (x; y) and (u; v) are related by a simple
proportion,

u = � x+ u0

v = � y + v0

where � is a constant, often related to the focal length of the sensor.

Because the perspective projection equations depend on f , but f = 1 in orthographic
projection, the perspective equations cannot be used directly to model orthographic pro-
jection. However, if the singularity at f = 1 is removed, it is possible to use the same
equations for the two projection models.

The RCDE accomplishes this uni�cation of projection models by de�ning the camera
coordinate system to have its origin at an arbitrary distance r along the principal ray of
the camera, rather than at the camera's center of projection (the center of the lens) as the
standard projection equations imply (see Figure 13.1). The RCDE projection equations
then become

u = x
f

z � r
+ u0

v = y
f

z � r
+ v0

which can be written as

u = x
1

z 1

f
� r

f

+ u0

v = y
1

z 1

f
� r

f

+ v0

102 RCDE User's Manual

...............

........
.................................
..

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

.......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

.......

......

...

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
........
........
......................

..
........
.......
........
.......
........
.......
........
.......
........
.......
........
.......
........
.......
........
.......
..

...
.........
.

..
......................................

......

......

......
....................

...

........................
......................

.......
........
.......
........
........
.......
.

......
.......
.........................

.......
........
.......
.......
.....

.......
.......
........................

........................
..............P

w v

f

r

O

principal ray

image plane

y

z

x

v

focal point

u

u

Figure 13.1: The pinhole camera model. The focal length f is the distance from the image
plane to the focal point. The origin of the camera coordinate system, O, lies on the principal
ray at a distance r from the focal point; the axes u and v are drawn on the image plane to
show that the u-v plane is parallel to the image plane. The w axis is perpendicular to the
image plane, and the principal point P lies at the intersection of the principal ray and the
image plane.

The Camera Model 103

As f ! 1 these equations still present a singularity, unless the ratio r=f is known to be
constant. If that is assumed, then at f = 1, or the case of orthographic projection, the
equations are

u = x
1

0� r
f

= �x f

r

v = y
1

0� r
f

= �y f

r

which is equivalent to the orthographic equations above when � = �f=r and f=r is constant.
Note that �1=(r=f) is the scale factor between coordinate frames; this is particularly useful
when using orthographic projection to represent a simple transform from one 3-D system
to another (no actual projection is performed). In this case, the w coordinate is computed
in a symmetric manner:

w = �z f

r

For perspective projection, the parameter r also behaves as a scaling parameter, but in a
di�erent way. Since the w coordinates of points visible in a view are de�ned to be negative,
positive values of r will decrease the scaling; in e�ect, the larger the value of r, the smaller
the object will be in the projection. Setting r to negative values is not advisable, because
that moves the origin of the camera coordinate system toward objects in the scene. As the
values of r and the w coordinates of objects approach equality, the projection equations
degenerate toward in�nity.

This mathematical representation thus allows a continuous transition from a perspective
projection model to an orthographic projection model as the focal length increases, without
an unde�ned condition as the focal length approaches in�nity. Orthographic projection
is modeled by setting 1=f = 0 and r=f to some nonzero value. Perspective projection is
modeled by using the focal length of the camera for f , and setting r to a nonnegative value
based on the desired scaling of the projection.

In a more general sense, the equations governing many forms of camera projection can
be formulated as a matrix multiplication:2

664
u

v

w

1

3
775 = T

2
664

x

y

z

1

3
775

where the matrix T contains the transformation to camera coordinates, the modeled pro-
jection e�ects and scaling. In its default camera model, the RCDE maintains homogeneous
transformation matrices without projection or scaling. These two e�ects are applied after a
point has been transformed to the camera coordinate system.

In implementing the RCDE camera model, the 4x4-coordinate-projection class does
not have a slot for the focal length; rather, it contains a slot for the multiplicative inverse of

104 RCDE User's Manual

the focal length, 1/f. Similarly, the distance of the origin of the camera coordinate system
along the principal ray, r, is represented only as the ratio r/f, since it must be constant.

The 4x4-coordinate-projection class also has a transform-matrix slot for the !-
�-� transformation matrix describing the relation between the camera coordinate system
and the world coordinate system. This matrix transforms points in the camera coordinate
system into points in the world coordinate system; the inverse matrix is used to transform
points in the other direction. The translation embedded in the transform-matrix is the
location of the focal point of the camera (the center of the lens) with respect to the site
coordinate system.

The camera coordinate system in the RCDE is de�ned to have its U axis horizontal and
pointing to the right as the user looks at the associated image, or along increasing column
indices in the image. The V axis is vertical and pointing up as the user looks at the image,
or along increasing row indices. The w axis is perpendicular to the U � V image plane,
and points out of the image, toward the user, to maintain a right-handed camera coordinate
system. Thus w camera coordinates of objects visible in the view are always negative.

By default, the origin in the image plane is at the lower left corner of the image. By
de�nition, the projection of the principal point into the image plane gives the camera origin's
location in the u and v dimensions. Recall that the camera origin's location on the w axis
is determined by the parameter r.

The RCDE requires that the transformationmatrix contained in the transform-matrix
slot of the class 4x4-coordinate-projection has a rotational component consisting of
unit vectors. If there is a change in scale between two coordinate systems in addition
to the change prescribed by the transformation matrix, then each coordinate of points
being transformed from one coordinate system to the other must also be multiplied by the
scale factor. If the coordinate transform is de�ned by an orthographic 4x4-coordinate-
projection, then the scale factor is simply r/f.

If a coordinate transform is not de�ned by a 4x4-coordinate-projection, then the
scale factor must be included directly in the matrix representation. For example, the class
basic-4x4-transform does not have a speci�c slot for a scale parameter; it assumes that
the scaling is incorporated into the matrix. Mathematically, this is accomplished by mul-
tiplying each element of the 3 � 3 rotation matrix embedded in the upper left portion of
the transform matrix by the scale factor. Points transformed by multiplying them with this
matrix will be rotated, scaled and translated in one matrix operation, saving a signi�cant
amount of
oating point computation.

13.3 Camera Re�nement

A critical step in constructing the site model is building an accurate camera model for each
image of the scene. If the position, orientation and focal length of the camera used to
photograph a particular image are known, the RCDE provides a simple menu interface, the
camera object menu, for specifying camera parameters directly.

The Camera Model 105

For many images, however, the focal length of the camera used to photograph a partic-
ular image is known but the position and orientation of the camera when the image was
taken are only approximated at best. For cameras with unknown rotation and orientation
parameters, the RCDE provides resectioning techniques to automatically recover the po-
sition and orientation of the camera relative to a special set of 3-D points, referred to as
conjugate points.

13.3.1 Entering a Known Camera

The camera position and orientation can be described by the six parameters, three angles
and three scalars, used to calculate the transform matrix. These parameters can be entered
by the user directly on the screen, once the associated image is loaded and a camera object
has been initialized.

� Load the ALV image \$CMEHOME/alv/alv-3-42.g0" with I/O!Load Image.

� Create an unregistered camera for the loaded image with Transforms!New View Trans-
form on Image. Since a view must be contained within a site, a pop-up menu giving
a choice of existing world objects appears. Select the ALV world to indicate that the
view belongs in this particular site (the world object must have been created already
by loading the ALV site).

A box containing the text string \Camera" should appear in the upper left corner of
the pane { this is the camera object associated with the camera model in that view.

� Move the mouse onto the camera object and click the right mouse button. The camera
object menu should appear on the screen.

� Enter the six camera pose parameters and the camera focal length f by clicking the
mouse on each and typing in the appropriate numbers. For this camera, the parameters
have been calculated to be

! 0:00286348
� 0:0015922
� �1:563783
xcam 5194:016
ycam 4149:6226
zcam 11993:813
1=f �0:00054202342

� Exit the menu. The camera model and the view are automatically updated, possibly
changing the apparent orientation of any visible features.

106 RCDE User's Manual

If the camera parameters were not derived by the RCDE, then the rotation angles may
not follow the same convention for transforming coordinate systems. However, if the com-
plete transform matrix is available, the RCDE contains functions to recover the three angles
!, � and � by matrix decomposition. See the Programmers' Reference Manual for details
and related functionality.

13.3.2 Manually Adjusting Camera Positions

The RCDE provides two resectioning algorithms. The �rst assumes that the initial camera
position is unknown, and attempts to converge from a selected set of initial viewpoints.
The second assumes that the existing camera model has been placed in approximately the
correct location by the user. While the second method requires more user interaction, it is
more robust, and should yield better results in cases where the approximate camera position
is known.

The initial manual camera positioning process is more of an art than a science { there
is no standard procedure to follow. Since the resectioning routines are based on mathemat-
ical methods that can fail if the solution is in too distant a con�guration from the initial
parameter set, it is important in some cases for the user to set a model that is roughly
accurate.

When adjusting a camera's position, it is important to remember that any modeled
objects in the site are �xed relative to the site coordinate system while the camera is being
moved about the site. The goal of resection, manual or automatic, is to move the camera
into the position from which the image was taken, so that the modeled objects correctly
overlay their locations in the image.

To understand the motions of the camera, the user must understand the functions of
the components of the system camera model, shown in Figure 13.2. The camera has its
own coordinate system, with the u axis in the horizontal direction and the v axis in the
vertical direction as the user looks at the pane. The w axis of the camera is perpendicular
to the image plane, and points out of the image toward the user. The origin of the camera
coordinate system lies on the principal ray, at a distance r as explained in the above section
on camera models.

The principal point de�nes the direction of the optical axis, or where the camera is
pointing relative to the site { more rigorously, it is the intersection of the image plane
and the principal ray (the optical axis). Since the principal point can be anywhere on the
image plane, it does not necessarily have to be visible in the image; the user may move the
principal point beyond the visible part of the image plane with the Princ Pt menu button on
the camera menu. The principal ray is always perpendicular to the image plane, however,
so that moving the principal point also moves the camera location because the image plane
is kept constant.

The stare point is, by default, the location of the intersection of the principal ray with the
DTM, or the z = 0 plane in the site coordinate system if no DTM is registered. Graphically,
it is identical to an axis object, which shows the directions of the site coordinate axes. The

The Camera Model 107

..............

............................

..
......................................

...

...

..
........
.......
........
.......
........
.......
........
.......
........
........
.......
........
.......
........
.......
........
.

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

.......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

.......

......

......

......

......

......

......

......

......

......

......

...

...
..

.....................................
.

......
......
......
....................

.......
.......
......
.......
......
.......
.......
......
.......
......
.....

.......
.......
........................

........................
......................

........
........
.......
........
........
.....

.......
.......
........................

........
.......
........
.......
........
........
......

.......
.......
........................

........................
.....................

......
.......
......
.......
......
.......
.......
......
.......
.....

.......
.......
........................

f

r

O

P

focal point

z

image plane

principal ray

stare point

y
x

w

u

v

v

u

w

Figure 13.2: The pinhole camera model when the stare point and the principal point are
separated. The focal length f is the distance from the image plane to the focal point. The
origin of the camera coordinate system, O, lies on the principal ray at a distance r from
the focal point. The principal point P lies at the intersection of the principal ray and the
image plane. The axes u and v are drawn on the image plane to show that the u� v plane
is parallel to the image plane. Note that the w axis is, by de�nition, always perpendicular
to the image plane, implying that the ray from the focal point to the stare point is not
perpendicular to the image plane.

108 RCDE User's Manual

primary purpose of the stare point is to provide a mechanism for moving the camera relative
to an arbitrary point in the model, resulting in a more intuitive set of camera manipulation
tools. When a blank view is �rst created with the New View Transform on Image option
on the Transforms menu, the projection of the stare point and the principal point are at
the same location in the image (recall that the principal point is de�ned in the camera
coordinate system, while the location of the stare point in the image is the projection of its
location in the site).

The stare point can be moved in the image plane without adjusting the camera by using
Stare Point!Stare Pt UV. Once it is moved, though, the stare point will no longer be on
the principal ray, and the letter \P" will appear on the image, next to a \+" indicating
the new position of the principal point. The camera can be rotated and translated with
respect to the site by selecting the stare point object (the visible set of coordinate axes that
appears when the view is created), and using the Move UV @Z, Move Z, Drop Z, Move W,
Drop W and Az-El commands, all of which keep the stare point at the same position on the
pane while moving the modeled objects on the screen. Contrary to appearances, though,
it is actually the camera position that is being adjusted with respect to the site coordinate
system.

Moving the principal point with the Princ Pt option causes a more complex interaction
with the model that is not immediately obvious. As the principal point is moved the camera
location is also adjusted, according to two constraints. The �rst requires that the stare point
remains in the same u; v position in the view. The second constraint forces the principal
ray to remain perpendicular to the image plane; in e�ect, the focal point of the camera is
moved to be directly above the principal point while the image plane is held constant. The
orientation of the camera remains unchanged (see Figure 13.3).

Geometrically, these two conditions cause the view to rotate about the model and the
perspective distortion to increase as the principal point is moved further away from the
image center, because the optical axis is being moved away from the visible portion of the
image plane. This is useful when modeling a camera that has a high perspective distortion,
or when the image has been windowed from a region near the border of a larger image (and
hence has signi�cant perspective distortion).

The following steps describe the beginning of a scenario to perform camera resection. To
obtain an initial camera model, the ALV site is used. A view from the site is copied, then
slightly adjusted so that it is out of alignment. Resection is employed to adjust the camera
parameters of the copy, using the original view as a reference. On completion, the copied
view should once again have the same camera parameters as the original.

� Load the ALV site with I/O!Load Site Model.

� Copy the view containing the image $CMEHOME/alv/alv-3-42.g0 to a new pane
using Stacks!Copy View. Make the copied view adjustable using Transforms!Make
Transform Adjustable. This should automatically set the copied camera model to be
adjustable. Visually, the camera object, or a box containing the text string \Camera",

The Camera Model 109

............................

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...

..

.............................

..

.................................

......

......

......

.......

......

......

......

.......

......

......

.......

......

......

.......

......

......

.......

......

......

......

.......

......

......

.......

......

......

.......

......

......

......

.......

......

......

.......

......

......

.......

......

......

......

.......

......

......

.......

......

......

.......

..

..
......................................

...

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
..

.......
......
.......
......
.......
.......
......
.......
......
.......
.....

.......
.......
........................

.......................
.......................

.......
........
.......
........
........
......

......
.......
.........................

......
......
......
....................

..
.....................................
.

...
........

..
.......
......
.......
.......
.......
.......
.......
......
.......
.......
.......
.......
......
.......
.

Image Plane

r

O

focal point

principal ray

w

u

v

P

x
y

stare point

z

Figure 13.3: The pinhole camera model when the stare point is visible in the view, but
the principal point has been moved beyond the visible portion of the image plane (the
rectangular region inside the larger region labeled \Image Plane"). The principal ray is
perpendicular to the image plane, so that the perspective distortion in the view will increase
as the principal point is moved farther away from the visible portion of the image plane.

110 RCDE User's Manual

should appear in the upper left corner of the new view. The new view will be a view
of the same site, and hence will have a registered terrain model.

� Create an Axis object on the registered image (i.e., the original view from which the
copy was made). This set of axes shows the orientation of the site coordinate system
relative to the camera in its view. It serves as a reference between the images, showing
a common point as seen from both views.

� If the Axis is not visible in the unregistered image, zoom out until it can be seen. Be
careful not to confuse the axis object with the camera's stare point; although they
appear identical on the screen, only the axis should be highlighted in green in both
images when selected.

� Place the mouse on the camera object or the stare point in the unregistered image, and
move the camera about using Stare Point!Az-El (azimuth-elevation) or Camera!UV
Roll. When the axis object is approximately in the same position in both images, click
the left mouse button twice to deselect the camera object. The axis should now be
on the same image feature in both images, but its orientation in the two images will
not be the same. The new camera is now ready for automatic adjustment with the
resection routine.

13.4 Applying Camera Resection

Resection is usually applied to camera models, rather than terrain data or maps. In most
cases the terrain data transform is known, and data taken from maps can be accurately
placed in the site coordinate system. In some cases the camera parameters are known for
an image (the image is said to be registered); additional camera models for more images
of the site can be resected using conjugate points visible in the registered image and the
unregistered images. In either situation, resection of an unknown camera is performed with
respect to data from a known (or simply �xed) source, such as another camera or the DTM.

The resection process has four major steps, which are detailed in this chapter (see Fig-
ure 13.4). First, the camera to be resected must be manually placed in a position close to its
actual location (this step may not be necessary if adequate results can be obtained from the
resection algorithm using random starting locations). Second, conjugate points are created
and placed at their known locations in the site, using the DTM and a correctly registered
image. Since the camera to be adjusted has a view of the site, the conjugate points should
be visible in its view, but they are probably not in the correct positions. Next, the points
are manually moved to their proper locations using a special menu option that moves the
points only in the view of the camera to be resected. This di�erence in locations is the
critical input for the resection routine. Finally, the resection algorithm is called to �nd the
best set of camera parameters that aligns the projected locations of the conjugate points
with the speci�ed correct locations.

The Camera Model 111

Load an unregistered image. I/O!Load Image
Create a view on the image. Transforms!New View Transform On Image
Adjust the new camera into approximate Camera!UV Roll, etc.
position.
Create conj. pts. in reference image. Create Object!Conjugate Pt
Position conj. pts. in second image. Conjugate Pt!Move Conj Pt
Call the resection function. Conjugate Pt!Resect

Figure 13.4: The Steps in Executing Automatic Camera Resection.

13.4.1 Conjugate Points

In the simplest terms, conjugate points are 3-D locations that can be identi�ed and correlated
between multiple views of the same site. For example, the corners of a building that are
visible in two images could be used as conjugate points between the two images. More
generally, conjugate points are points whose locations can be identi�ed in multiple sources
of information about the same site, such as images, terrain data and maps. For example, if
a map of a site shows the location of a building, and this same building is visible in an image
of the site, then the visible corners of the building may serve as conjugate points between
the map and the image.

Conjugate points are assumed to be known and �xed relative to the site coordinate
system and one data source. This implies that the transform between the data source
and the site is �xed and assumed to be correct. The resection process uses conjugate points
between the known data source and a second data source to adjust the transform parameters
de�ning the location of the second data source relative to the �rst.

In the best case the positions of conjugate points are known relative to some absolute
coordinate system, such as the geographic coordinate system. If the position of the DTM in
geographic coordinates is known, then any of the points on the DTM can serve as conjugate
points, provided that they can be identi�ed in another data source. When camera models
are resected using points on the DTM, the cameras will then be in positions at which
geographic coordinates can be computed. In many cases, however, accurate absolute data
is not available. While this situation does not prevent resection, it does limit the camera
models to be solved only with respect to one another; they may not be properly scaled in
absolute units (such as meters).

13.4.1.1 Creating Conjugate Points

Once the camera to be resected is in approximately the correct position, the conjugate points
must be set in the image associated with that camera. For this example, the alignment and
resection will be between two images, one of which is assumed to be correctly registered

112 RCDE User's Manual

to the ALV world. As mentioned above, accurate registration of one image is important,
because it provides precise 3-D locations in the site coordinate system for the conjugate
points. If no images were registered, the 3-D coordinates could be obtained from the DTM
or a map.

The purpose of conjugate points is to quantize the error in a camera model (referred to
as the unregistered camera) relative to a known camera model, so that this error can be
minimized by adjusting the position of the unknown camera. The user creates conjugate
points in the image associated to the �xed camera model with the Conjugate Point option
on the Create Object menu. This will place a new conjugate point at the position pointed
to by the mouse when the left button is pressed. However, for this point to be correct in
three dimensions, a DTM must be registered to the same site as the registered image.

It is essential that conjugate points are given correct coordinates in three dimensions. If
no DTM is registered to the site, the default z coordinate will be set to zero. This will lead
to a set of coplanar conjugate points, which will most likely cause the resection algorithm
to fail. Without a registered DTM, the z coordinate can be manually set for each point by
entering the appropriate value in the Conjugate Pt!Menu.

The conjugate points must be at locations that are visible in both images, such as
corners of buildings or roads that are clearly displayed from both viewpoints. For reasonable
resection performance, at least six conjugate points should be de�ned for an image pair. The
points should not lie in the same plane, and they should span the registered image so that a
reasonable perspective model can be approximated. The conjugate points relating the two
images must also be included in the same Feature Set.

13.4.1.2 Aligning Conjugate Points

Unless the unregistered camera is already in perfect position, the conjugate points will not
appear to be in exactly the correct locations in the unregistered image. For example, a
conjugate point on an upper corner of an imaged building in the registered image may be
projected onto the center of the roof of the same building in the unregistered image. Some
points will have greater apparent error than others because of the nonlinear nature of the
projective model.

With the conjugate points visible in the unregistered image, the user can see where the
points are relative to world coordinates and also where they should be according to the
image. Using the Move Conj Pt option on the Conjugate Point menu, the correct location in
the image plane for each conjugate point is speci�ed with the mouse by moving the mouse
from the crosshair to the proper location. Once the mouse moves away from the crosshair, a
small \x" should appear and move interactively. Clicking the left mouse button will secure
the \x" in place.

All conjugate points that are created (and are in the same feature set) must also be
corrected, or else they will be taken to be properly positioned in both images (i.e. the error
in the uncorrected points will be taken as zero).

The Camera Model 113

� Conjugate points are created interactively using the Create Object menu option Con-
jugate Point. By observing the point locations in the registered views, create and
position a number of conjugate points on prominent site features that are also visible
in the unregistered image. The DTM must be registered to the site, and both the
registered view and the unregistered view must be views of the site.

With the Conjugate Pt!Move Conj Pt option, mark the correct location of each con-
jugate point in the unregistered image. The corrected locations, marked by an \x",
will only be visible in the unregistered view.

13.4.2 Executing Camera Resection

When all the conjugate points are prepared, the resection algorithm is executed by selecting
the Resection Menu option on the Conjugate Pt menu of any of the created conjugate points.
All of the conjugate points in the same feature set as that point will be applied in the resec-
tion, while existing conjugate points in other feature sets will be ignored. This constraint
imposed by the resection routine allows multiple sets of conjugate points, perhaps pertaining
to di�erent images, to coexist simultaneously if they are grouped into independent feature
sets.

The execution may take a few seconds, but the camera model, and the positioning of
objects in its view, will be updated automatically when the new camera parameters have
been computed.

Resection can be run multiple times to achieve more accurate re�nements of the same
camera model as more conjugate points are created. When new images are added to the site,
previous camera models may be updated because of improved views of common features in
the new image.

� Create the resection menu by clicking on Conjugate Pt!Resection Menu for a conjugate
point in the view to be resected, or its equivalent in the registered image. Only
conjugate points in the same Feature Set as the selected conjugate point will be used
for resection.

Two resection search modes are available, depending on the desired initial state of
the camera model. \Random" mode searches for a resection solution beginning from
a number of viewpoints distributed over the viewing hemisphere. This number is
entered in the menu item \Number of Random Starting Estimates=". \Improve"
mode begins with the existing camera model as its only starting estimate. The menu
entries for focal length and principal point coordinates allow the user to enter initial
estimates for these values. The convergence threshold menu item allows the user to
specify a desired accuracy in pixels to be achieved by the iterative resection algorithm.

� Execute resection by setting the \Search Mode" to \Random" and clicking on the
DOIT button. When the resection has completed, the view should be updated auto-

114 RCDE User's Manual

matically with the new camera model. The crosshairs of the actual conjugate point
locations should be noticeably closer to their correct positions.

Change the Search Mode to \Improve" and click on DOIT again. This time, the �nal
camera position should be more accurate than with random starting positions.

Chapter 14

Terrain Data Integration

At any time during the model-building process the user may choose to integrate digital
terrain data with the current site model. A digital terrain grid is a set of known elevations
spaced at regular intervals over a speci�ed region (usually square). Once the digital terrain
model (DTM) is registered to the site, the user may take advantage of the knowledge
of ground-truth when placing objects in the site (Move UV on DTM, Drop Z), creating
additional camera models by resection and rendering complete scenes. The DTM points are
not usually shown in a view, but by creating a DTM Mesh object the user can see a movable
grid overlaid on a portion of the DTM. It is suggested that the terrain model integration
should be completed as soon as possible in the site modeling process, so that subsequent
additions to the model can take advantage of the DTM features.

Currently there is no menu support for registering terrain data to the local coordinate
system. In general, the user must supply terrain data in a known image format, and must
register the terrain image to the model by applying the RCDE functions that rely on a
priori knowledge of the relationship of the site to the terrain data. Because of the possible
complexity of this process and the variety of forms of input terrain data, it is recommended
that the user must make use of the Lisp command line, or a �le of Lisp or C/C++ code, to
load the data into the system's DTM object. Once created, however, this object is essentially
just an image containing elevation data instead of intensity values.

Direct support is provided for US Geological Survey Digital Elevation Map (DEM) �les,
which have a standardized format. Functionality exists to read DEM �le headers and
terrain image data into an RCDE structure and an RCDE image, respectively. See the
Programmer's Reference Manual, Section USGS-DEM for details.

Whichever format of terrain image is used, the DTM registration process can be divided
into the following steps:

1. Load the terrain image as a standard RCDE
oating-point image.

2. De�ne the DTM coordinate transformmapping the terrain image to the site coordinate

115

116 RCDE User's Manual

system, including appropriate scaling.

3. Create an RCDE terrain model object with the DTM transform and the DTM image.

4. Link the created terrain model to a world.

The next section of this chapter contains an explicit description of the complete process
required to integrate USGS DEM �les. This is included as a brief scenario to illustrate some
of the concepts and functionality used to register terrain data to a site. The remaining
sections detail how a user might integrate a terrain �le format that cannot be directly read
by the RCDE.

14.1 Registering USGS DEM Files

Because it can read the header format, the RCDE can extract image data and other in-
formation, such as scaling and latitude-longitude position, from USGS DEM Files. This
collateral information provides most of the data needed to integrate a DEM �le into a site;
the only remaining piece that must be supplied by the user is the transform describing the
mapping between the terrain data location and the site coordinate system.

For example purposes, a DEM �le, $CMEHOME/alv/usgs.dem, is provided with the
ALV data set. This �le is loaded and registered in this scenario. Although programming
commands in this section are given in Lisp syntax, it should be noted that all functions
called here may be called from C/C++.

Step 1 above, loading the terrain image, is accomplished by a pair of function calls.
The �rst loads the header of a DEM �le, and saves the result in a temporary variable
usgs-header:

(setq dem-header

(cme::read-usgs-dem-header "$CMEHOME/alv/usgs.dem"))

#<Usgs-Utm-Dem-Header #X2F6A3CE>

>

The second loads the corresponding DEM image data into an RCDE image:

(setq dem-image (cme::make-dem-image dem-header))

#<BLOCKED-ARRAY-MAPPED-IMAGE 402 x 466 SINGLE-FLOAT #X30BF306>

>

The terrain image should appear as an image of type SINGLE-FLOAT in the selected
pane.

Step 2 requires the user to provide information regarding the mapping of the terrain
image to the site coordinate system. Since this information is dependent on the user's

Terrain Data Integration 117

choice of the position and orientation of the site coordinate system, it cannot be provided
by the RCDE. The information must be encoded in a transform object, of the class 4x4-
coordinate-transform or one of its subclasses. See Section14.3 below for more details.

Step 3 consists of a single function call to a function specialized to work on USGS
DEM images. If the DEM transform is pointed to by a variable (or c handle) named dem-
transform, then the following function call creates an RCDE terrain model:

(setq terrain-model

(cme::make-usgs-terrain-model dem-image dem-transform "USGS DEM CS"))

#<Non-Linear-Mapped-Regular-Grid-Terrain-Model #X37390DE>

>

The string argument is a textual name given to the DEM coordinate system.
Step 4, linking the resulting terrain model into a world, is accomplished for any terrain

model object (not just USGS-derived ones) by setting the terrain model property of the
chosen world. If the world is named *alv-3d-world*, then the following function call adds
the terrain model to the world:

(setf (get-prop *alv-3d-world* :terrain-model) terrain-model)

#<Non-Linear-Mapped-Regular-Grid-Terrain-Model #X37390DE> >

The terrain model should now be completely integrated into the world. The elevation
of points visible in registered should be available by clicking with the left mouse button,
buildings may be moved on the DTM, and so on.

14.2 Preparing a DTM Image

With terrain data in a �le format unknown to RCDE, the user must supply certain informa-
tion that RCDE automatically extracts from known �le formats, such as the actual distance
between data points, the units of distance used, and so on.

Even with this information, the elevation data must be read into RCDE. It is the user's
responsibility to supply the elevation image in a form that the RCDE understands. This can
be accomplished in two ways. The �rst involves independently creating an elevation image
�le in a format that the RCDE can read, such as a Sun raster �le, which is then loaded into
the RCDE in the same manner as a normal intensity image. The second method, which can
be applied to input �le formats not supported by the RCDE, involves writing a C, C++ or
Lisp function to read the speci�c input format, creating an internal RCDE image structure
of the appropriate size, and copying the data into the RCDE image. It can then be saved
in a standard RCDE format, so that the RCDE I/O functions can be used to load it in
later. Since the second method uses internal RCDE structures, it must be coupled (loosely

118 RCDE User's Manual

or tightly) to the Lisp process; the �rst method can be an independent program, since it
outputs a �le.

With either technique, before the RCDE can use the elevation data it must be trans-
formed such that the units of elevation are in the same scale as the indices of the array (i.e.,
the x, y, and z axes of the elevation data are all on the same scale). Because of the variety of
elevation image �le formats, the RCDE does not provide functional support to accomplish
this step for �le formats other than USGS. To demonstrate the concepts involved, though,
an example of how a standard DMA Digital Terrain Elevation Data (DTED) Level 1 �le
would be prepared is presented here.

14.2.1 Loading a DTED File as a RCDE Image

DTED �les have a header containing information on the latitude and longitude of the
position of the lower left corner of the elevation data image, and all Level 1 �les cover an
area of one degree by one degree on the Earth's surface. In this context it is assumed that
the DTED �le contains data at the maximum Level 1 resolution, or one data point every
3 arc-seconds in both latitude and longitude. Since the elevation is given in meters, while
the x and y coordinates are in the geographic coordinate system, the x and y coordinates
will be converted into meters with the local origin at the lower left corner of the elevation
image. Then the elevation values will be scaled to be expressed in units equal to the size of
x-y pixels.

First, an RCDE
oating-point image is created to store the terrain data. In this example,
the image is 1201 by 1201 pixels, because there are 1200 3-second intervals in one degree,
and DTED �les have an extra row and column on two of the image borders. Floating-point
data values are used for greater accuracy during interpolation between known data points.
The image can be created, with all pixels initialized to zero, and stored in the variable
dtm-image with the command

(setq dtm-image

(ic::make-image '(1201 1201) :element-type 'single-float))

The symbol dtm-image now points to an allocated image structure prepared to receive

oating-point values.

Next, the scaling factor for the elevation data is calculated. Each elevation value must
be multiplied by this factor before it is entered into the elevation image. DTED �les,
being delineated by latitude and longitude lines, do not actually cover square regions on
the Earth's surface, as their symmetric structure would indicate. However, approximating
the DTED area as a square does not introduce large error if the latitude is relatively near
the equator. Assuming this, the 3-second spacing between data points on the same latitude
corresponds to about 100 meters on the Earth's surface. As the latitude approaches the
poles, this distance decreases to zero. The 3-second spacing between points of the same

Terrain Data Integration 119

longitude is also approximately 100 meters, but this distance remains constant for DTED
at any latitude.

For the DTED �le, then, the z values must be expressed in terms of units of 100 meters,
the spacing in the x-y plane. Programmatically, this corresponds to dividing each elevation
in the DTED �le by 100 before it is entered in the RCDE DTM image.

Though the programming details are not given here, in pseudo-code the central routine
to transfer the points from DTED format into the RCDE image looks something like this:

For each column c of DTED points

For each row r in c

value = dted(c,r) / 100;

(iset value dtm-image c r)

The function dted(r,c) returns the value of the elevation at the appropriate point in the
DTED �le. The RCDE function iset, which sets the value of a pixel in an image, is given
in exact Lisp syntax. The corresponding C/C++ iset() function call would be

iset float(value,dtm image,c,r);

where dtm image is a c handle that points to the RCDE image.
Reading the DTED �le by column, then row from the beginning of the DTED input

ensures that the image will have the correct orientation in the RCDE. The origin of the
image coordinate system is at the lower left corner of the image, with the u-axis pointing to
the right and the v-axis pointing up. Since columns of DTED data are ordered from west
to east, and rows are ordered from south to north, reading the DTED �le as shown above
will create an image with its v-axis pointing north, and its u-axis pointing east.

It is not necessary to align the DTM along geographic lines, but doing so simpli�es the
transformation from the DTM to the site, if the site is also aligned along geographic lines.
The DTM transform can have a signi�cant impact on performance, since it is often used in
calculations for real-time graphics.

14.2.2 Loading a RCDE-Compatible DTM Image

Elevation data stored in an image �le format that RCDE supports can be read into the
system using the load-image command. No special syntax is required to accommodate
elevation images, but the �le header information indicates that the data is in
oating point
format.

� To load the ALV terrain data image, which is in IU Testbed image format, enter the
following expression into the Lisp Lisp command line:

120 RCDE User's Manual

(setq alv-dtm (load-image "$CMEHOME/alv/alv-dtm.g0"))

This will create a variable alv-dtm which points to the image structure automatically
created and �lled by load-image.

For easier identi�cation, the image can be given the literal name \Alv-Dtm" with the
Lisp statement

(setf (image-prop alv-dtm :name) "Alv-Dtm")

It should be emphasized that once the image is loaded in
oating-point format, the
original format of the image �le is no longer signi�cant. This allows any
oating point
image to be used as a terrain map, regardless of how the data is stored on disk.

14.3 The DTM Transform

With the terrain data loaded into an RCDE image, the user must de�ne the spatial rela-
tionship between the terrain and the site. This transformation from the DTM coordinate
system to the site coordinate system can be established using a priori knowledge, or may be
estimated if no absolute is available. In either case, the transform may be updated at any
later time as the site develops; however, objects placed according to the DTM's previous
position will not be automatically adjusted so that they remain on the DTM. Thus it is
strongly recommended that the DTM transform be �xed early in the model construction
process.

The spatial relationship between the DTM and the site coordinate system is encapsulated
in the transform-matrix slot of a 4x4-coordinate-transform object associated with
the DTM. Both the translation and the rotation of the DTM are encoded in the matrix.

The translation component describes the position of the lower left corner of the DTM
image relative to the site (or world) coordinate system. Referring to the notation used in
Chapter 13 for transformation matrices, the matrix translation elements tx; ty and tz are
xdtm; ydtm and zdtm, respectively, where the point (xdtm; ydtm; zdtm) is the location in world
coordinates of the lower left corner of the DTM image.

The rotational component of the DTM transform matrix describes the orientation in 3D
of the DTM image relative to the site coordinate frame. Although the x-y planes of the
DTM and site are usually set to be parallel, it is not required by the RCDE; the transform
matrix may contain rotations about all three axes. In general it is advisable to align the
DTM and site coordinate systems as much as possible, since there is heavy computational
dependence on the DTM matrix.

The DTM-to-site axis alignment can be accomplished in two ways, depending on whether
the DTM is available before the site modeling process is begun. In that case, the site
coordinate frame can simply be de�ned to be in alignment with the DTM coordinate frame,

Terrain Data Integration 121

i.e. the two frames would have the same axes, and the origin of the site coordinate frame
would be at the lower left corner of the DTM image. If DTM data is acquired after the site
coordinate frame has been established, then axis alignment in the x-y plane can be achieved
by rotating the DTM image using the RCDE Rotate operator, before the DTM image is
registered as the elevation image for the site.

Given that the geometric relation between the DTM and the site is known, the user can
encode this relationship in a transform matrix created by using RCDE matrix functionality
(see the Programmer's Reference Manual).

For the ALV data set, the DTM transformmatrixmay be de�ned with the Lisp statement

(make-and-fill-2d-array

`((0.9999981 -0.0013416967 -0.0014063651 -7890.5878999999995)

(0.0013461612 0.9999933 0.0016050119 176.01)

(0.0011754258 -0.0037573292 0.9992737 4.999999999883585)

(0.0 0.0 0.0 1.0)))

This matrix implies that the lower left corner of the DTM is located at the world point
(�7890:5879; 176:01;5:0), in world units. The rotational component indicates that the axes
are closely aligned with the world coordinate system, since the unit vectors embedded in
the transform are approximately (1; 0; 0)T , (0; 1; 0)T and (0; 0; 1)T .

This matrix should then be used to construct an instance of 4x4-coordinate-transform
or 4x4-coordinate-projection, which will be the DTM transform object. For example,
the Lisp form

(MAKE-INSTANCE '4X4-COORDINATE-PROJECTION

:R/F

0.0

:1/F

0.0

:PRINCIPAL-POINT-U

0.0

:PRINCIPAL-POINT-V

0.0

:POSITIVE-W-CLIP-PLANE

0.0

:TRANSFORM-MATRIX

(make-and-fill-2d-array

`((0.9999981 -0.0013416967 -0.0014063651 -7890.5878999999995)

(0.0013461612 0.9999933 0.0016050119 176.01)

(0.0011754258 -0.0037573292 0.9992737 4.999999999883585)

(0.0 0.0 0.0 1.0)))

:PROPERTY-LIST

nil)

122 RCDE User's Manual

creates an instance of the class 4x4-coordinate-projection containing the ALV DTM
transform.

14.4 Creating a DTM Object

With the DTM image created and the DTM transform de�ned, the next step in the DTM
registration process is to create the RCDE terrain model object that associates the transform
and DTM image (Step 3). Because the RCDE contains functionality speci�c to the DTM,
the system must be explicitly told which image contains the elevation data and which
transform de�nes the registration of that image. An instance of the class regular-grid-
terrain-model, or one of its subclasses, is created to provide a framework for these DTM
system components.

The function make-terrain-model takes an elevation image dtm-image and a trans-
form dtm-frame-or-matrix, which is a matrix (two-dimensional array) or an instance of
the class 4x4-coordinate-transform. It creates a regular-grid-terrain-model con-
taining the parameters. The elevation image becomes the DTM data set, while the input
transform describes the relationship between the DTM image and the site.

The DTM input matrixmust have scaling incorporated into the rotation component (this
also provides a more e�cient DTM transform). The translation component is unchanged,
as it is originally speci�ed in site units. This scaled transform matrix is used in most
computations relating to the DTM, such as those required when moving objects about on
the DTM surface, or interpolating elevation values for selected pixels.

14.5 Linking the DTM to the Site

The �nal step in the terrain registration process is associating the DTM image and its
transform to a world (Step 4). A 3d-world object may contain a terrain model as an
element on its property list. Adding the terrain model to the world's property list establishes
the terrain model as ground truth for that site. This is accomplished with standard property-
list syntax in Lisp, and with the function put prop in C/C++.

For example, in Lisp syntax the following form establishes *alv-windowed-terrain-
model* as the terrain model for *alv-3d-world*:

(setf (get-prop *alv-3d-world* :terrain-model) *alv-windowed-terrain-model*)

In addition, the terrain image may be registered to the world as an image itself, so that
it may be displayed as a normal image in the world (i.e. any modeled objects in the site
will appear on the DTM image). The function setup-image-worlds creates the proper
entries in the various slots of the image and the world objects so that the view containing
the image is included as part of the given world. This function can be used to associate any
image-transform pair with an existing world, thereby creating a view of that world.

Terrain Data Integration 123

For example, the Lisp call to link the ALV terrain image into the ALV world *alv-3d-
world* is

(setup-image-worlds alv-dtm :3d-to-2d-projection alv-dtm-projection

:3d-world *alv-3d-world*

:2d-world nil)

These variables (and this function call) are de�ned in the ALV �le $CMEHOME/alv/alv-

camera-models.lisp.
The terrain model registration for the ALV data set should now be complete. From

any view of the site, it should be possible to move objects on the DTM, and to �nd the
elevation at any visible point in a view with DTM coverage. The terrain image can also be
viewed in a pane by using the push-image function (this must be performed after the call
to setup-image-worlds).

124 RCDE User's Manual

Chapter 15

Building a Site Model

This chapter contains a comprehensive overview of the complete process of building a site
model in the RCDE. While other chapters have detailed each part of the RCDE covered
in this chapter, an end-to-end scenario illustrating the precise steps necessary to build site
models may be helpful to those unfamiliar with the RCDE and Lisp programming.

For those who prefer to examine Lisp code directly, the �les containing site model \def-
initions" are helpful. For the ALV site, the �le \$CMEHOME/alv/alv-camera-models.lisp"
contains de�nitions and function calls to build the ALV site from a few �les of Lisp code.

There are six major stages of site model construction covered in the following sections:

1. Creating a new site object;

2. Registering images to the site;

3. Registering a terrain model to the site;

4. Constructing 3-D models of site objects; and

5. Saving the site model; and

6. Reloading the site model.

Figure 2.5 provides a graphical overview of the site model construction process.

15.1 Creating a New Site Object

The site object, or 3d-world, provides a means for grouping objects within a session of
the RCDE into distinct sites. All objects within a site have a pointer to the site object
containing them.

125

126 RCDE User's Manual

Initializing the Frame, View and Image For a site to be visible to the user, it must
have at least one view of the site loaded into a pane. Make a frame using the menu
option Misc!CME Frames!Make Frame. This frame will contain the views of the new site,
although they could also be placed in any existing frame. Frames are purely I/O devices,
and are not associated to worlds directly.

Load an image containing a non-nadir view of a building using I/O!Load Image, placing
it in a pane in the new frame.

Initializing the Site and Camera Model The next step involves creating a new 3d-
world object, and a default camera model for the loaded image.

Select Transforms!New View Transform on Image. Look for a cue on the documentation
line to \Pick Image For New Transform". Select the pane containing the recently loaded
image, and a menu of all existing 3d-worlds will appear. At the base of the menu, there is
an option to Make 3d World. Select this button; another menu should appear with a string
editor to enter the name of the new 3d-world object. Type in the name \Outland" (or
whatever is appropriate) and press Do It. When the menu disappears, refresh the selected
pane by clicking the middle mouse button while the mouse is on the pane. The camera icon
and a coordinate system axis will then appear in the pane containing the image.

This process explicitly creates a new 3d-world, but it also creates a new camera model for
the image and a new 2d-world object to associate the new camera model with the image. The
site coordinate system and model-to-image transform (camera model) are \default" values
at this point. The user must specify that information later, either by typing in known
camera parameters or by solving for a camera model using the resectioning functionality
described in Chapter 13.

15.2 Registering Images

The details of operating the resectioning functionality within the RCDE are described in
Chapter 13. Rather than repeating them here, this section focuses on how the �rst image
of a site may be resected, so that it can be used as the reference camera model for resecting
additional images later.

It is assumed in this example that terrain data or other absolute information is not
available. Thus the camera models produced will be relative to one another, but will not
be speci�ed in world units such as meters.

In the view containing the loaded image, choose a prominent cultural feature, such as a
large rectangular building, that has easily identi�able corners. Using Create Object!Box,
create a building in the site near the stare point. Select the box by placing the mouse on
one of its lower vertices. Using the box's object menu, set the (x; y; z) location of the box
to be (0; 0; 0). This operation will place a ground-level corner of the building at the site
origin, providing a convenient landmark for the site coordinate system.

Building and Manipulating a Site Model 127

For convenience, the building's local coordinate system may be aligned with the site
coordinate system. This is the default con�guration, and does not need to be changed.

Using the same selected vertex of the box, resize it so that it is approximately shaped like
the chosen building in the image. The image may now be resected by using the proportions
of the building dimensions as a reference.

First, create a new 3D feature set using View!Feature Sets!New3DFS. Select this fea-
ture set, so that newly created objects will be grouped into it automatically. Next, for each
corner of the building visible in the image, create a conjugate point directly on the corre-
sponding corner of the building model. Note that the 3-D positions of the conjugate points
must be speci�ed { this can be done precisely by using the conjugate point object menus,
or by using the @Vertex bucky option for the conjugate point. For each conjugate point,
identify the image location of the correct position of the point using Conjugate Point!Move
Conj Pt. The \X" for each conjugate point should be placed on the image location of the
building corner corresponding to its model corner. Conjugate points should only be created
for visible building corners, since conjugate points without adjusted 2D image locations will
be assumed to be in their correct image location.

Resection may now be applied to the camera model through the menu option Conjugate
Point!Resection Menu. The feature set containing the conjugate points may not contain
any other objects, or an error will result. Initially, the \Random" search mode should be
used, since no e�ort was made to manually position the camera at the correct orientation.
Once a reasonable solution has been found, the \Improve" mode should be used to avoid
throwing away the approximate solution.

More buildings may be added to the scene, and more conjugate points may be added on
them to improve the camera model. Since ground truth is not known in this scenario, the
distance between buildings must be judged relative to the size of the buildings as estimated
from the imagery. The chosen buildings and their conjugate points should span the image,
so that a more accurate camera solution can be derived.

When additional images are introduced, they may be resected with respect to the �rst
image. New images are added to the site by using the same functionality described above
{ the image is loaded, a new view transform is created on the image, and the created site
is selected as the world containing the new view. If site objects are not immediately visible
in the new view, then the menu View!Feature Sets may be used to make the site feature
sets visible in the new view by selecting the new view and pressing the Pres option for each
3-D feature set. The camera model for the �rst image may also be improved as additional
images are introduced to the site.

15.3 Registering a Terrain Model

This step in site model construction is covered in detail in Chapter 14. The main di�culty in
associating terrain to an existing site is �nding the proper transform relating the position of
the terrain grid to the site coordinate system, including the proper scaling factor. However,

128 RCDE User's Manual

there is no systematic means of doing this within RCDE; some a priori knowledge must be
used, such as the latitude and longitude coordinates of the terrain grid in coordination with
a geographically referenced site coordinate system.

15.4 Constructing 3-D Models

The world data structure is composed of collections of objects placed on the image pane.
These collections are contained in the world as a slot called a Feature Set. Feature sets
can be created using the menu interface; View!Feature Sets prompts for a view, and then
provides a menu of feature sets associated with the world containing the view with options
to create new feature sets. Create a new 3d feature set, or select an existing 3d feature set
that does not contain the conjugate points created for resection.

The new view is now prepared to allow the creation of 3d objects using the menu inter-
face. By default, objects created through the menus are automatically placed in the selected
feature set. Only one 3d feature set may be selected per site.

Select the Create Object menu, and choose the House option to create a default house
object. Look for a cue on the documentation line to \Pick a Pane and Position for New
Object". Move the mouse to the pane and click left at the position where you wish to place
the object; wait for the object to appear on the pane. Click left to drop the object. There
may be a warning that the feature set is not visible on the view, but this may be ignored.
Then select View!Feature Sets to toggle the visibility of the feature sets. Note that the
house was placed in the feature set named \3d home," which is the selected feature set.

Repeat this creation process for other object types as desired. A feature set of the site
may be completely populated in this fashion. New feature sets may be created using the
View!Feature Sets menu, and any new feature sets may be selected to group additional
objects separately.

15.5 Saving a Site Model

To save the site that has been created, use the menu option I/O!Save Site Model option.
The Save Site menu that pops up allows a mouse selection of the chosen site to save by
pushing the site slot. Look for a cue on the documentation pane to select the site by mouse
or keyboard. Specify the site by mouse clicking left in the image where the site has been
connected. Note the number of objects created; it should match with with total number
of objects in the union of all the feature sets for the site. Specify the full pathname of the
site with the �le name ending with extension site, if you wish, then click on the SAVE SITE
button. A message will indicate when the save operation is complete. The Lisp Listener
will provide a message similar to the following:

Saving

#<Outland 3D-WORLD #X3228056>

Building and Manipulating a Site Model 129

to File /home/zippy/RCDE/users/wsb/outland.site

Finished writing /home/zippy/RCDE/users/wsb/outland.site

>

The �le containing the site is in FASD format, which is ASCII Lisp code that will reconstruct
the site objects when evaluated by loading it back into Lisp. For more information on FASD
�les, see Chapter 16.

15.6 Loading a Site Model

Currently, menu support for loading site models is incomplete. While the FASD �les output
by the RCDE contain su�cient information for recreating the site and objects in the site,
no information about the display of the site is explicitly stored. For example, the site �les
do not contain data giving the frame dimensions, which views are present in which panes,
etc. The available menu options allow the loading of a site FASD �le, but do not provide
for display of the site.

For purposes of this scenario, it is assumed that this is a di�erent session of the RCDE,
so that the created world and its objects are not present in the system. If this is not so,
there is no reason to load the site, because the associated data structures will be cached
in the RCDE (even if they are explicitly deleted). If a copy of the stored world is to be
loaded into the same session of the RCDE in which the world was created (or previously
loaded), a new world may be created by editing the site �le; just change the string names
of the world objects, i.e. by appending \-new" onto all string names (\Outland" becomes
\Outland-new").

15.6.1 Initialize The Frame

Create a new frame to hold the image and world that is stored, using the Misc!New CME
Frame option. Con�gure the window with the desired number of panes and push the DOIT
button. Select a pane where the site model image will appear.

15.6.2 Initialize The Site Model

Select the menu option I/O!Load Site Model. Use the choice of Other to get a �le load
menu called Load Site Model. Specify the directory and pathname of the site model �le.
Push the LOAD SITE MODEL button. This will load the site into the environment but not
display it, because it has not been associated with a view. The Lisp bu�er should contain
a message similar to the following in response to the load command:

;;; Loading source file "/home/zippy/RCDE/users/wsb/outland.site"

130 RCDE User's Manual

15.6.3 Display the Site Model

Each image of the site may be displayed with site object overlays by pushing the 2d-world
containing the image onto a pane. Initially, however, the images must be directly loaded into
the RCDE. To load the images associated with a site, use the function load-site-images
as follows:

> (load-site-images (get-3d-world-named "Outland"))

NIL

This function loads all the images contained in the site \Outland". It does not make them
visible in any pane, however.

To display an image and its associated view of the site, it is necessary to return the
image from a function call. This may be accomplished with the function base-image:

> (base-image (first (2d-worlds (get-3d-world-named "Outland"))))

#<BLOCKED-ARRAY-MAPPED-IMAGE 362 x 253 (UNSIGNED-BYTE 8) #X35531EE>

The image will be displayed in the selected pane, with its name at the top of the pane. The
image is fully integrated with the \Outland" site. If any other 2d-worlds exist in the site,
this procedure may be repeated for each of them, replacing \�rst" in the Lisp statement
with \second", \third", etc. They may be displayed in separate panes by selecting di�erent
panes between calls to base-image.

To see the site objects in the loaded view, select the menu option View!Feature Sets
and click on the pane containing the view. Click on the Pres button for the 3d feature sets
in the site to see all of the 3d objects created for this site. Each 3-D feature set created in
the original site should have an entry on the menu.

Chapter 16

Data Exchange

This chapter describes methods for capturing objects within a �le for the purpose of sub-
sequent restoration or insertion into the RCDE. The methods described are extensible and
may be used on objects native to the RCDE Lisp environment or on data structures de�ned
in a C or C++ process not native to the RCDE. Methods for handling such non-native
objects are described in Section 16.2.

The following sections examine three approaches to RCDE data exchange. The �rst is a
direct transfer mechanism of native RCDE data. The second uses the RCDE's Lisp-C/C++
interface to allow the direct programmatic transfer of such objects within the RCDE, while
the third approach uses �le-to-�le transfer external to the RCDE.

16.1 Transfer Between RCDE Sites: FASD Files

Currently, the fundamental means of permanently storing native RCDE objects is FASt-
Dump (FASD). Given a set of RCDE object instances, this Lisp facility creates Lisp forms
that are saved to a �le. The Lisp forms can then be loaded back into the system at a later
date. The term FASD is a holdover from the Symbolics environment, where the concept
of a FASD was integral to how the Lisp compiler worked1. The basic idea behind FASD is
that every object should be able to create a textual expression (S-expression), that, when
evaluated, produces a deep copy (i.e., no common sub-components) of the original object.

16.1.1 Creating FASD Files

A FASD �le may be programmatically created using a command script illustrated below, but
the RCDE environment also provides a menu interface to load and save particular FASD

1FASD-FORM is the Lisp command which is used to invoke the FASD functionality.

131

132 RCDE User's Manual

�les. Speci�cally, the menu functions Save/Load Feature Sets and Save/Load Site Model
provide the user interface to the RCDE's FASD facility.

The RCDE currently implements the FASD facility. When a user executes

(fasd-form thing)

the FASD command outputs Lisp forms which, when executed, restore the object (i.e.,
thing) within the RCDE. To create an ASCII �le containing these Lisp forms for subsequent
object restoration, the user must explicitly save the FASD output to �le using the RCDE
menus, editor commands, Lisp commands, or C function calls. If the RCDE is being run
under Emacs, then the user may simply employ editor commands to manually cut the
text of a FASD form from the RCDE Emacs bu�er and paste it into another bu�er. Lisp
programmers may use Lisp syntax to redirect FASD output to a �le, since FASD produces a
Lisp expression. For C/C++ programmers, the fasd-form command can be called from C
directly; it returns a character string containing the FASD form, which can then be routed
to �le using C/C++ syntax. This again saves objects in the Lisp environment.

For instance, a simple Lisp statement that saves the FASD form of thing to the �le
�lename.lisp is

(with-open-file (stream "filename.lisp") (write `(setq *restored-thing*

,(fasd-form thing)) :stream stream))

C/C++ FASD Formatting FASD �les may also be produced using an independent
program written in any language, such as C or C++. The �le format must be written
so that Lisp can e�ectively execute the data as code, but the Lisp loader allows some

exibility, in that whitespace is ignored and the order of slots within a FASD class instance
is not speci�ed.

16.1.2 Loading a FASD File Into The RCDE

An ASCII �le containing FASD forms may be loaded during a subsequent interactive RCDE
session to reproduce the environment in virtually the same state as it was saved. This ability
can signi�cantly reduce development time and improve research productivity. The RCDE
does not require any special naming conventions for these �les, so the developer is free to
choose a name which best describes its content2.

Since a FASD �le is an ASCII �le of Lisp executable commands, it can be loaded directly
into the Lisp environment as Lisp code. This is done by executing the the following command
sequence on the Lisp command line:

(load "filename.lisp")

Alternatively, a C/C++ programmer could call the C version of the RCDE function:

2The use of the .lisp su�x is recommended.

Data Exchange 133

(in-package 'cme)

(append cme::*object-feature-sets* (list

(MAKE-INSTANCE '3D-FEATURE-SET ;; Feature Set - a collection of related

;; Objects. There are currently 3 types:

;; 3D-FEATURE-SET

;; 2D-FEATURE-SET

;; WINDOW-FEATURE-SET

:WORLD (GET-3D-WORLD-NAMED "Alv 3d World")

:INFERIORS

(LIST

(MAKE-INSTANCE HOUSE_OBJECT ...) ;; see related tables

(MAKE-INSTANCE HALF-CYLINDER ...) ;; see related tables

(MAKE-INSTANCE SUPERQUADRIC ...) ;; see related tables

(MAKE-INSTANCE RIBBON-CURVE ...) ;; see related tables

:PROPERTY-LIST

(LIST ':DRAWING-COMPLEXITY 'NIL)))

))

Figure 16.1: Generic FASD Example

load file("filename.lisp");

If a developer has many such �les to load, it is recommended that a command script be
created containing the names of the �les. This command can then be executed within the
Lisp environment to load selected FASD �les.

16.1.3 FASD File Format

The following sections detail the contents of a FASD �le, and how to re-instantiate its
contents within the RCDE. The �le format of each object is a Lisp form that begins with
the symbol make-instance. This is the CLOS command for creation of class instances3.
Figure 16.1 shows the form for making multiple instances (the actual object code has been
elided for clarity).

The make-instance form creates class instances. Tables 16.1 through 16.4 illustrate
the FASD representations of several basic 3-D objects, along with a description of the object
slots. Note that the Lisp forms should be inserted into Figure16.1 for completeness. Each
word preceded with a colon corresponds to a slot within that class. The values shown are
instance-dependent and will change between applications. The order of the slots within a
class is also arbitrary. The make-instance Lisp form is followed by the symbol quote,

3For a deeper insight into CLOS, it is suggested that the text Understanding CLOS The Common Lisp
Object System by J.A. Lawless, and Molly M. Miller and published by Digital Press be examined.

134 RCDE User's Manual

then the Lisp class name in parentheses. This is the textual representation of the Lisp
quote function and is used to prevent the Lisp interpreter from attempting to evaluate
what follows as a function, a variable, or a constant expression.

16.1.4 FASD Limitations

The FASD facility does not handle data structures with circular references in a general
way. In the version of Common Lisp described in the 2nd Edition of Steele's Common
Lisp: the Language, there is a function make-load-form that addresses the whole issue
with a more complete perspective. Additionally, Lisp data representations not native to the
RCDE will not be loadable through this mechanism. It will be necessary for Lisp users to
implement the de�nitions and FASD Generators of non-native RCDE representations in the
RCDE environment, or Lisp users will have to implement code translators to native RCDE
representations.

16.2 Transferring Objects To and From C/C++ Sys-

tems

There are two methods to transfer data fromC/C++ systems into the RCDE: �le-to-internal
and �le-to-FASD. Transfer e�ciency and code reuse are deciding factors for which method
to use.

File-to-internal Typically, the user's C/C++ system already contains routines to read
and write a speci�c non-FASD �le format. In this case, the existing user routine to read the
user's �le format may be loaded directly into the RCDE, with the appropriate �les including
the user's internal data structures (*.h �les).

The user then adds code to copy the internal data representations into native RCDE data
structures, this process will have to happen regardless of the transfer mechanism, if the data
are going to be used by the RCDE. The reverse process to copy from the RCDE to internal
user representations may also be implemented to allow the exporting of data. The coding
e�ciency and reuse are maximized with this technique if the internal data transfer is easier
to implement than a direct routine to produce FASD output from C data �les. In general,
the representational transformation is being performed between internal representations,
rather than through the FASD �le format mechanism.

File-to-FASD The user could write specialized data translators to transform user data
�les directly into a FASD �le. The FASD �le could then be loaded directly into the RCDE.
This alternative may be more expedient than the File-to-internal method. However, it is
clear that this method is not as e�cient because of its �le-to-�le nature, and it requires the
production of \Lisp-Like" data �les which are foreign to C and C++.

Data Exchange 135

16.2.1 Restoring Objects from C/C++ Files or Programs

The RCDE will permit two alternative approaches to loading image �les or on-line objects
produced in C-based systems into the RCDE environment. One method, called �le-to-FASD,
involves the C developer writing a program which creates a FASD �le with the format and
content described in Section 16.1.3. The C program may read an existing �le and translate
it into FASD format, or it may be a subroutine attached to an image or modeling system
containing the data to be transferred to the RCDE. The FASD �le so produced can than
be loaded into the RCDE environment. For IU researchers not working in Lisp, the RCDE
supports object archival and restoration by calling the fasd-form function from C or C++.

An alternative to the �le-to-�le transfer strategy is the direct link strategy, called �le-to-
internal method. With this approach, the C user would still be expected to supply interface
software, but would not be required to create a FASD �le with its associated Lisp command
structure. More speci�cally, the user must supply C or C++ code to copy his internal
data structures into the RCDE's internal data structures. This is a standard data transfer
between di�erent representations, but since the C code is loaded into Lisp it takes place
within the Lisp process, without �le overhead.

Once this is done, normal C calls to routines within the RCDE environment will be
su�cient to load all existing C based �les and/or system resident data into the RCDE for
display and analysis. To assist in the implementation of this strategy, the RCDE provides
both hard and on-line documentation of each interface routine and its associated calling
sequence. Using this strategy, the Lisp nature of the RCDE environment will be made
totally transparent to the C developer.

The advantages to this scheme include performance and code reuse. While the data-
intensive nature of image processing can cause �le-to-�le transfer to be unacceptably slow,
the inter-process connection created by the LCI Loosely-Coupled mode allows approximately
average Ethernet speeds (2 MBits/sec) for image transfer between Lisp and C.

136 RCDE User's Manual

Table 16.1: House FASD Example

;;; FASD EXAMPLE

(MAKE-INSTANCE (QUOTE HOUSE-OBJECT)

:ROOF-PITCH (QUOTE 0.5)

:ALBEDO (QUOTE 1.0)

:X-SIZE 19.837037984153995

:Y-SIZE 19.52734631894257

:Z-SIZE 15.064418246990208

:TAPER-RATE (QUOTE NIL)

:OBJECT-TO-WORLD-TRANSFORM

(MAKE-INSTANCE (QUOTE 4X4-COORDINATE-TRANSFORM)

:TRANSFORM-MATRIX

(MAKE-AND-FILL-4X4-MATRIX

0.86086789054 0.5083565589 0.02191081935 -123.2596374

-0.50869196365 0.8608361500 0.01391433934 4820.974567

-0.01178817971 -0.0231242656 0.99966309682 6072.100011

0.0 0.0 0.0 1.0))

:WORLD (GET-3D-WORLD-NAMED (QUOTE "Alv 3d World")))

ROOF-PITCH Roof angle in radians

ALBEDO Ratio of Re
ection to Incidence (value between 0 and 1)

X-SIZE Length of side X measured in site units

Y-SIZE Length of side Y measured in site units
Z-SIZE Length of side Z measured in site units

TAPER-RATE Rate of object taper moving along the z axis. Default is no taper (i.e.,

taper rate = 0)

OBJECT-TO-WORLD-

TRANSFORM

The rotation and position of an object coordinate system with respect

to a world coordinate system expressed in matrix form. This matrix is

used to transform the given object instances coordinate system to that
of its attached world.

WORLD Name of the site model containing the object

Data Exchange 137

Table 16.2: Half-Cylinder FASD Example

(MAKE-INSTANCE (QUOTE HALF-CYLINDER)

:ORDER (QUOTE (3 12))

:TESSELLATION-MODE (QUOTE :LAT-LONG)

:X-SIZE 35.212728995926014

:Y-SIZE 46.29628560002381

:Z-SIZE 17.606364497963007

:TAPER-RATE (QUOTE NIL)

:ALBEDO (QUOTE 1.0)

:OBJECT-TO-WORLD-TRANSFORM

(MAKE-INSTANCE (QUOTE 4X4-COORDINATE-TRANSFORM)

:TRANSFORM-MATRIX

(MAKE-COORD-FRAME-MATRIX

-223.90225672421684

4729.971732020333

6068.8284088525015

:Z-ROT -0.5333900014026516))

:WORLD (GET-3D-WORLD-NAMED (QUOTE "Alv 3d World")))

X-SIZE Length of side X measured in site units
Y-SIZE Length of side Y measured in site units

Z-SIZE Length of side Z measured in site units

TAPER-RATE Rate of object taper moving along the z axis. Default is no taper (i.e.,
taper rate = 0)

ALBEDO Ratio of light re
ection to incidence (value between 0 and 1)

OBJECT-TO-WORLD-

TRANSFORM

The rotation and position of an object coordinate system with respect
to a world coordinate system expressed in matrix form. This matrix is

used to transform the given object instances coordinate system to that

of its attached world.
WORLD Name of the site model containing the object.

138 RCDE User's Manual

Table 16.3: Superquadric FASD Example

(MAKE-INSTANCE (QUOTE SUPERQUADRIC)

:X-EXPT (QUOTE 1.0)

:Y-EXPT (QUOTE 1.0)

:Z-EXPT (QUOTE 1.0)

:ORDER (QUOTE 6)

:TESSELATION-MODE (QUOTE :LAT-LONG)

:X-SIZE 20.0

:Y-SIZE 20.0

:Z-SIZE 20.0

:TAPER-RATE (QUOTE NIL)

:ALBEDO (QUOTE 1.0)

:OBJECT-TO-WORLD-TRANSFORM

(MAKE-INSTANCE (QUOTE 4X4-COORDINATE-TRANSFORM)

:TRANSFORM-MATRIX

(MAKE-COORD-FRAME-MATRIX

-127.43829409356406

4711.981430409669

6051.898915464119))

:WORLD (GET-3D-WORLD-NAMED (QUOTE "Alv 3d World")))

X-EXPT Exponent of X component of superquadric equation. (default = 1.0)

Y-EXPT Exponent of Y component of superquadric equation. (default = 1.0)

Z-EXPT Exponent of Z component of superquadric equation. (default = 1.0)

ORDER The number of faces used to approximate a complex 3-D object. The

greater the value of order, the more accurate the representation.

TESSELATION-MODE Amapping of rectangular graph coordinates into the coordinate points of
a surface. (Possible Values: :LAT-LONG, :GEODESIC) (default LAT-

LONG)

X-SIZE Magnitude of the X coe�cient of the superquadric equation measured
in site units

Y-SIZE Magnitude of the Y coe�cient of the superquadric equation measured

in site units
Z-SIZE Magnitude of the Z coe�cient of the superquadric equation measured in

site units

ALBEDO Ratio of light Re
ection to Incidence (value between 0 and 1)
OBJECT-TO-WORLD-

TRANSFORM

The rotation and position of an object coordinate system with respect to

a site/world coordinate system expressed in matrix form. This matrix is

used to transform the given object instances coordinate system to that

of its attached world.

WORLD Name of the site model containing the object.

Data Exchange 139

Table 16.4: Ribbon-Curve FASD Example

(MAKE-INSTANCE (QUOTE RIBBON-CURVE)

:VERTICES (MAKE-RIBBON-VERTEX-ARRAY-FROM-LIST

(QUOTE ((0.0 0.0 0.0 24.0)

(87.07990264892578

-32.76338577270508

-15.647439956665039

24.0))))

:CLOSED-P (QUOTE NIL)

:FILL-P (QUOTE NIL)

:OPEN-FOR-VERTEX-MODIFICATION (QUOTE T)

:OBJECT-TO-WORLD-TRANSFORM (MAKE-INSTANCE

(QUOTE 4X4-COORDINATE-TRANSFORM)

:TRANSFORM-MATRIX

(MAKE-COORD-FRAME-MATRIX

-294.8896620587175

4556.413122432717

6074.948873798788))

:WORLD (GET-3D-WORLD-NAMED (QUOTE "Alv 3d World"))

:PROPERTY-LIST (LIST (QUOTE RENDER-MODE) (QUOTE FILL)))

VERTICES Points within a ribbon corresponding to the extreme points at either end
of the ribbon and points of in
ection within the ribbon

CLOSED-P Whether or not the given ribbon is closed (i.e., the end points are joined)

(default T)
FILL-P Whether the given ribbon is graphically �lled; default is nil.

OPEN-FOR-VERTEX-

MODIFICATION

Whether or not the given ribbon can have its shape changed by mouse

actions on its vertices (default T)

OBJECT-TO-WORLD-

TRANSFORM

The rotation and position of an object coordinate system with respect to

a site/world coordinate system expressed in matrix form. This matrix is

used to transform the given object instances coordinate system to that
of its attached world.

WORLD Name of the site model containing the object.

140 RCDE User's Manual

Chapter 17

Lisp-C/C++ Interface

A primary goal of the RCDE is to support the two major programming language families
used within the IU community: Lisp/CLOS and C/C++. Code developed in one language
must be shared with the other language in a natural way. In doing so, the system must also
supply developers with their accustomed level of debugging support. Since the RCDE is an
object-oriented system, cross-language support is available for both the object-oriented and
structured programming paradigms.

This chapter supplies an overview of the RCDE Lisp-C/C++ Interface (LCI) from a
user's and programmer's perspective. That is, details of the interface's construction are
provided only where necessary for an understanding of executing and programming the
environment. More programming details may be found in the Lisp/C++ Interface chapter
of the Programmer's Reference Manual and in the Lucid Lisp Advanced User's Guide.

17.1 LCI Overview

The LCI is based on the Lucid Common Lisp Foreign Function Interface1(FFI), which
provides a means for interacting with other programming languages. The FFI gives Lisp
the capability to load and execute C/C++ functions within the Lisp process, to dynamically
link C/C++ modules and libraries, and to directly declare and access C data structures in
Lisp. Using the FFI, C/C++ functions may be called from Lisp, and Lisp functions may
be called from C/C++. The main limitations of the FFI are that it does not directly
support C++ classes, although it will execute C++ code, and it does not provide support
for debugging C or C++ code executing within the Lisp process.

The LCI provides three major enhancements to the FFI. The �rst is the ability to execute
C/C++ code in a separate process, allowing the use of standard C/C++ debuggers. The
user may seamlessly switch between execution in a separate debugging process and execution

1The FFI is detailed in the Lucid Common Lisp Advanced User's Guide.

141

142 RCDE User's Manual

within the Lisp process. The second is the introduction of several special data types to
support the natural programming style in both language families. The third is special
support for passing large blocks of data between Lisp and C/C++ at average Ethernet
rates when C/C++ code is executed in a separate process.

To allow execution of C/C++ code in a separate process, the LCI provides two main
code development modes and a way to switch between the modes without any code changes.
In either mode, the LCI allows a natural programming style for C/C++ as well as for Lisp.
Both modes support the data types introduced to enhance the FFI.

The �rst LCI mode, Performance mode, executes the user's C/C++ code within the Lisp
process. This is accomplished by loading C/C++ code compiled into object form directly
into the Lisp process. Compilation is �rst performed by standard C and C++ compilers,
then all linking is provided by the Lisp system during the loading of object �les. Since
Lisp performs dynamic linking on C/C++ code, individual C/C++ �les can be compiled,
reloaded, and executed independently.

The second LCI mode, Debugging mode, executes the user's code in a user-controlled
process separate from the Lisp process. Compilation and linking of C and C++ is performed
by standard C and C++ compilers, while the Lisp process initiates control of these opera-
tions through interprocess communication. Because C/C++ code is executed in a separate
process, standard C/C++ debuggers or development environments may be used for code
development.

A system-level view of the LCI is illustrated in Figure 17.1. In the �gure, the arrows
indicate the direction of a function call or data communication. The terms used in the �gure
are explained in the following sections.

Both of the main modes allow the user to program a �ne-grained interaction between
languages or coarse-grained interaction between languages. The \graininess" of the interac-
tion is the programmer's option, as it is unrestricted by the mode of coupling between the
languages. In �ne-grained interactions, a program makes frequent calls across the language
interface, as one might use to access and modify single pixels of an image, one at a time.
In coarse grained interactions, an entire image might be passed across the interface and be
processed entirely in one language before it is passed back.

In either execution mode, C and C++ �les may be compiled and linked or loaded to-
gether. K&R syntax is expected of C �les, while ANSI C and AT&T C++ syntax is expected
of C++ �les. Function calls and data structures that are managed by the LCI do not require
any syntax that is di�erent from the language standards. To accommodate the di�erences
among Lisp, K&R C, ANSI C, and C++ function calling paradigms, a set of conventions
have been introduced and are itemized in this chapter and in the RCDE Programmer's Ref-
erence Manual. These conventions remain consistent with the proper programming styles
of each of the languages.

Lisp-C/C++ Interface 143

Lisp C/C++

Foreign
Function

C/C++ Function

return

CME User C/C++ Code

call

return

call

Foreign
Callable

C/C++
Function

User C/C++ Code

C/C++
Function

IH

IH

call

IPC

C/C++ Function

RCDE-030a

IH

IH

Figure 17.1: System Level View of Lisp C/C++ Interface Architecture. The �gure shows
both LCI modes and the switch between modes. C/C++ code can exist within the Lisp
process and within a separate user process.

144 RCDE User's Manual

17.1.1 Executing C and C++ within Lisp: Performance Mode

The �rst LCI mode, more commonly called the Tightly-Coupled mode, makes use of the LCI
to link Lisp and C/C++ code at the compiled-code level. The C/C++ code shares the same
address space with Lisp, thereby providing a highly e�cient way to couple the two languages
from a run-time perspective. The Lisp environment supplies the linking facilities normally
available through Unix. In addition, Lisp controls the execution of C/C++ code, replacing
the standard C function main() with its own generic version. The user must rename the
main() function in his source code to prevent a Lisp loading error.

It is di�cult to debug tightly-coupled code because Lucid Lisp does not support an
integrated debugger at this time. The existing Lisp debugger does not provide access to the
C run-time stack, nor to C data that is not explicitly declared in Lisp. Therefore, the Lucid
debugger does not o�er much help in debugging C/C++ code. Run-time errors within the
user's C/C++ code send the system into the Lisp debugger with very limited C information.
Standard C debuggers such as xdbx cannot be used directly since tightly-coupled C/C++
code is embedded within the Lisp address space.

One potential solution is to debug the entire Lisp process with a standard C/C++
debugger. This strategy is currently infeasible because existing C/C++ debuggers cannot
decipher how Lisp maintains C data in its foreign symbol table. In addition, a huge amount
of debugging overhead would created; sorting through all of the Lisp process information to
�nd the actual foreign C code and symbol table information would require detailed coding
within the core Lisp implementation.

17.1.2 Executing C and C++ Outside Lisp: Debugging Mode

Amore viable solution for debugging is to execute Lisp and C/C++ code in separate address
spaces with some invisible means of communication between address spaces. This type of
execution is provided by the LCI in the RCDE, and is usually called the Loosely-Coupled
mode. C/C++ code that will be tightly coupled in its �nal form is temporarily executed
outside of the Lisp process at the programmer's request. Control of the normal execution

ow is maintained by Lisp through interprocess communication (IPC), but when the C/C++
process is executing it can be interrupted by the user for debugging purposes. The Lisp
process waits, undisturbed by the interruption in program sequence; when execution is
resumed, the program control
ow continues normally.

The main advantage of this approach is that C/C++ code can be linked and debugged
using standard UNIX tools, providing a familiar environment to the non-Lisp programmer.
In addition, errors in the C/C++ process do not crash the Lisp process, and performance
may bene�t from multithreaded architectures. The Loosely-Coupled mode provides a trade-
o� between debugging functionality and reduced execution speed. However, the Loosely-
Coupled mode may provide satisfactory performance for most development activities. It is
assumed that the typical user will switch to the Tightly-Coupled mode for �nal execution
and demonstration purposes.

Lisp-C/C++ Interface 145

17.1.3 Switching Between Modes

A key feature of the Lisp-C++ interface is that the user can switch easily and invisibly
between Tightly-Coupled and Loosely-Coupled modes without modi�cation of the user's
code. The LCI either provides or automatically generates the interface functions necessary
for communicating between the Lisp and C/C++ processes. Although there is signi�cant
overhead in communicating between the processes, the Loosely-Coupled mode is designed
primarily for debugging. After the user �nishes debugging, the C/C++ modules are then
tightly coupled for performance. The switch actually takes place by selecting a menu option
to change between Performance mode and Debugging mode. That switch simply changes a
global Lisp variable causing the interface to change its mode of communication.

17.1.4 Programming C and C++ in the RCDE

The enhancements made to the basic Lucid FFI include: handles, Lisp types that C does not
support directly (symbols and forms), and syntax for automatically passing arrays. Because
of these enhancements, several new concepts were de�ned for the LCI. This section brie
y
describes these concepts and related terminology. At this point it should be clear that there
are two ways to refer to the coupling modes: the Tightly-Coupled mode is also called the
Performance mode in the menu options, while the Loosely-Coupled mode is also called the
Debugging mode in the menu options.

Code Reuse: Proxies In either couplingmode, variables, functions, methods, and classes
may be declared in one language that serve only to communicate with corresponding real
variables, functions, methods and classes in another language. Such stand-in functions and
classes are called Proxies, and support the concept of code reuse. A C++ proxy class
looks and acts like a real C++ class. A Lisp proxy class looks and acts like a real Lisp class.
Such class proxies may be used in the same manner as any normal class in the language. To
access this reuse capability, the declaration header (*.h) �les for these classes are included in
the code, as any external library would be. In Lisp these de�nitions are loaded as standard
Lisp de�nitions.

Proxy classes in either language have similar structure and format. All methods of
a proxy class are functions that communicate through the interface; proxies derive their
functionality from a real function in the other language. Proxy classes have only one direct
slot, a pointer to the corresponding object in the other language, and access data slots
through accessor functions that communicate through the interface.

Callables and Foreign Functions Callable functions are functions that have an interface
function de�ned specially for communication between languages; they provide direct access
from one language to a function written in the other. As described above, callable functions
are one kind of proxy (proxy functions). Lisp-Callable functions allow the user to make a

146 RCDE User's Manual

Lisp function call to a C/C++ function. Each C/C++ system integrated into Lisp must
have at least one Lisp-callable de�ned to initiate C/C++ execution from Lisp.

C-Callable functions allow the user to make a C or C++ function call to a Lisp function.
The RCDE Programmers Reference Manual describes the RCDE C-Callables and conven-
tions for calling them. These C-Callables are described as \manual page" entries and may
be viewed as a library of C functions providing the basis of C/C++ access to RCDE. More
generally, any Lisp function (even non-RCDE) may be called if a C-Callable form is created
for it. The RCDE provides a menu interface to extend (by automatic code generation) the
language interface by adding any new Callables the user needs to access functionality in the
other language.

When Callable forms are created, they are evaluated by Lisp. Their textual textual
forms may be extracted from the Lisp bu�er (when running the RCDE through Emacs) and
placed in a �le for later loading as part of the interface layer.

A System Level view of the LCI Performance mode is illustrated in Figure 17.2. The
diagram graphically illustrates the major concepts discussed in this section. In the �gure,
the arrows indicate the direction of a function call while the oval tails indicate where the
return value is deposited. The return value may be a symbolic handle or actual data that
is shared depending upon the return type de�ned for that function call.

Returned Data: Handles or Shared Structures In Figures 17.2, 17.3 and 17.4
the oval tails on the arrows indicate where returned values are deposited from a function
call. The LCI provides the user with the ability to manage returned data in two ways,
using handles and shared structures. A handle is a symbolic reference to a data structure
or an object instance that resides in the other language. The language maintaining the
handle does not have an explicit representation for the data structure in the other language.
Instead, the handle provides a way to uniquely identify a data object in the other language.
When this identi�er is passed as a parameter to a function in the other language, the object
speci�ed by the handle is automatically retrieved and may be used normally in the function.
When a handle is speci�ed as a return value from a Callable function, a unique identi�er
(handle instance) for the returned object is created and returned to the calling language.

Handles are de�ned in both C/C++ and Lisp to point to objects in the two languages.
When a C-Callable has an argument or return value that is a handle, its type is identi�ed in
C/C++ as a c handle. The Lisp type lisp-handle declares a pointer to a C structure. Such a
handle is used to pass C structures to Lisp-Callables or as a return value for a Lisp-Callable
function.

A handle \points" to a single copy of a data structure, object or symbol. The data
content is changed by providing a function or writer method to call the other language with
new values to replace the old values. Since a single copy of the data exists, no question of
consistency between copies arises.

Shared Structures are explicitly declared types provided by the LCI to allow large or
complex data structures to be passed between languages easily, in a single function call.

Lisp-C/C++ Interface 147

...

C-Object-2
and code

Accessor-21

Method-21

Accessor-22

...

Method-22
...

Slots

...

...

...

C-Function-5
and Code

C-Object-P1
and code

Accessor-11

Method-11

Accessor-12
...

Method-12

...

Foreign
Functions

Foreign
Callables

...

...

...

Lisp-Object-1
and code

Accessor-11

Method-11

Accessor-12
...

Method-12

Slots

...

...

......

Lisp-Object-P3
and code

Accessor-21

Method-21

Accessor-22

...

Method-22

...

Lisp-Function-3
and Code

...

...
...

...

...

Single Lisp Process

RCDE and
User Lisp Code Proxies

User
C/C++ CodeProxies

Coupling
Code

...

C-Function-4
and Code

Lisp-Function-P4
and Code

...

...
C-Function-P2

and Code
Lisp-Function-2

and Code

RCDE-037b

Figure 17.2: System-level view of Performance (Tight Coupling) Mode

148 RCDE User's Manual

Foreign
Functions

Foreign
Callables

...

...

...

Lisp-Object-1
and code

Accessor-11

Method-13

Accessor-12
...

Method-14

Slots

...

...

......

Lisp-Object-P2
and code

Accessor-21

Method-23

Accessor-22

...

Method-24

...

Lisp-Function-3
and Code

...

...
...

...

...

Single Lisp Process

RCDE and
User Lisp Code

Phantoms
and Stubs

Interface
CodeProxies

Coupling
Code

Lisp-Function-P5
and Code

Lisp-Function-2
and Code

Lisp-Phantom-11

Lisp-Phantom-13

Lisp-Phantom-11

Lisp-Stub-21

Lisp-Stub-23

Lisp-Stub-5

Function
Dispatcher

Interface
Handler

RCDE-036b

Figure 17.3: System-level view of Debugging Mode (Loose Coupling) in the Lisp Process

Lisp-C/C++ Interface 149

RCDE-036c

...

C-Object-3
and code

Accessor-31

Method-33

Accessor-32

...

Method-34

...

Slots

...

...

...

C-Function-5
and Code

...

C-Function-4
and Code

...

...

Single C/C++ Process

Interface
Code Proxies

User
C/C++ Code

C-Object-P1
and code

Accessor-11

Method-13

Accessor-12
...

Method-14

...

C-Function-P2
and Code

Interface
Handler

Function
Dispatcher

C-Phantom-11

C-Phantom-13

C-Phantom-2

C-Stub-31

C-Stub-33

C-Stub-4

Phantoms
and Stubs

Figure 17.4: System Level View of Debugging Mode (Loose Coupling) in the C/C++ Process

150 RCDE User's Manual

They are declared as C structures, so that C and C++ may access their slots (data �elds)
using standard C operators. Through the FFI, Lisp may also directly access slots of shared
structures using only Lisp function calls. The FFI provides the capability for shared struc-
tures to be passed between languages in Tightly Coupled mode, while the LCI adds this
capability for Loosely Coupled mode. They are supported as parameter and return types
for functions calls in both directions between languages.

Unlike handles, shared structure representations are completely declared in each lan-
guage, so that both Lisp and C/C++ have detailed knowledge of the structures. This
allows entire structures to be exchanged between languages, rather than only basic types or
pointers (handles). Many shared structures are de�ned in the RCDE; most are for returning
multiple values from RCDE functions, but there are also shared structures for transferring
images, transforms, and polyhedral vertices between languages. In addition to the supplied
shared structures, the user may add his own shared structures to the LCI.

In Tightly-Coupled mode, shared structures are passed by reference between functions.
Changes made to the data structure by C/C++ are immediately visible from Lisp, since
only one copy of the data structure exists, and both languages have direct access to it. In
Loosely-Coupled mode, shared structures are passed by value. For an instance of shared
structure passed between languages, two copies of the data exist, one in Lisp and one in
C/C++. When the content of the shared structure is changed in the native language,
no corresponding change takes place in the other language. It is necessary to return the
updated copy of the content to the original language to maintain consistency. It is the user's
responsibility to maintain this consistency.

Loose Communication Layer: Phantoms and Stubs When the user switches from
Performance mode to Debugging mode, direct calls to functions across the language barrier
must be redirected through the interprocess communication layer set up by the LCI as
illustrated in Figures 17.3 and 17.4. The following sections explain the new terms in the
�gures in more detail. The notation is the same as that of Figure 17.2 where the arrows are
function calls and the ovals are the returns of the calls.

In Debugging Mode, any C/C++ function loaded into the Lisp process is no longer
executed when its Lisp-Callable function is called (although its de�nition is not deleted).
Instead, each C/C++ function call is routed to a stub function that transfers the function
call and parameter data through the IPC to the C/C++ process. Similarly, calls to Lisp
functions from C/C++ are routed to phantom functions resident in the C/C++ process to
manage data transfer and program control
ow to and from the Lisp process. Together, the
phantoms and stubs provide the Loosely-Coupled IPC communication layer. Stub functions
manage calls from Lisp to C/C++, and phantom functions manage calls from C/C++ to
Lisp.

The communication layer needs to be generated and loaded before the user executes
C/C++ code in Debugging mode. As long as the Callable function names and argument
lists are not changed, or Callable functions are not added or deleted, the communication

Lisp-C/C++ Interface 151

layer (phantoms and stubs) does not have be regenerated, recompiled or reloaded. But if
the user changes the function names being used, or the parameter lists of the functions, or
adds calls to new functions between the languages, then the compilation process must also
recreate the phantoms and stubs. The phantoms and stubs are generated automatically,
and stored in the user's directory as C and object �les.

The Loose Communication Layer communicates with the C/C++ process through a
socket created by an RCDE-supplied main() function in the �le debug-main.c. This socket
port must be established by executing the C/C++ process before Lisp tries to make a
communication link with the C/C++ process. Once Lisp triggers the communication
ow,
The main() function acts as a server, awaiting C/C++ calls from Lisp (client requests) and
executing them as they are received. Calls to Lisp from C/C++ code, or callbacks, are
managed as they are encountered. The LCI can handle any level of nesting of calls between
Lisp and C/C++.

17.2 Operations Concept

This section is a description of how the user sets up the LCI and its parameter values as a
development environment for C/C++ code. The LCI provides a menu interface to manage
C/C++ code compilation, loading and execution. All LCI parameters, such as execution
mode, lists of user source �les, name of user's make�le, etc., may be set using the menus.
All LCI operations, such as C/C++ code compilation and C/C++ function execution, may
be performed by pressing LCI menu buttons. The details of the menu interface and LCI
programming are described in later sections; this section is concerned with the conceptual
process of integrating C/C++ into the RCDE.

The general steps for code development and execution using the LCI are:

1. Write C/C++ code that calls C-callable Lisp functions (e.g., any RCDE function) or
uses the C++ proxy hierarchy (described below).

2. Specify the C/C++ (and possibly Lisp) �les containing user source code, including
compiled library �les.

3. Create Lisp-callable functions for any C/C++ functions to be called from Lisp, or
specify a Lisp �le containing previously-created Lisp-callable de�nitions.

4. Set the LCI parameters as desired for compilation mode, working directory, make�le,
etc.

5. Compile code; compiled �les are automatically loaded according to compilation mode.

6. Execute code by calling speci�c C/C++ functions.

7. Edit code as desired.

152 RCDE User's Manual

8. Repeat to 5.

The user's C/C++ code should contain calls to the RCDE functionality, which can be
viewed as a large library of functions, classes and type declarations. The RCDE functions
and classes available to C/C++ are given in the RCDE Programmer's Reference Manual.
The user may also supply Lisp source code to be integrated with the RCDE and/or the
user's C/C++ code. Details of C/C++ and Lisp programming with the LCI are speci�ed
in Section 17.5 below.

The names of all source �les are provided by the user through the LCI!Filesmenu, either
relative to the working directory or with a complete pathname. The working directory may
be speci�ed on the LCI!Parameters menu. When using Performance mode, all C/C++
libraries (except libc and libm) must be speci�ed for loading into the Lisp process.

Before user code is compiled through the LCI, Callable forms (C-callables and Lisp-
callables) must be generated for any C/C++ functions to be called from Lisp, and any
user-supplied Lisp functions to be called from C/C++. The C-callable forms for the RCDE
functions listed in the RCDE Programmer's Reference Manual are distributed with the
RCDE and do not need to be regenerated by the user. Both types of Callable forms may be
created using the LCI!Functions menu. Generally, C/C++ users create Lisp-callable forms,
which allow Lisp to call their C/C++ functions. Each C/C++ program integrated with
the RCDE must have at least one Lisp-callable, so that C/C++ execution can be initiated
(Lisp does not allow C/C++ code containing a main() function to be loaded).

When C-callables and Lisp-callables are created with the menu interface, the output Lisp
form is printed in the Lisp bu�er. If the RCDE is being run through Emacs, these textual
Callable forms may be saved in a �le by pasting the text into another Emacs bu�er using
standard Emacs editing commands. The �le(s) of Callable forms should then be speci�ed
as Lisp source �les, and loaded into the RCDE instead of recreating the Callable forms {
i.e., Step 3 becomes the loading of a Lisp source �le (LCI!Control Panel!Load Lisp Files).
In any case, Callable forms must be de�ned before compilation by creating them or loading
them from �le.

The next step involves specifying the LCI parameters controlling compilation and execu-
tion. With the LCI!Parameters menu, the user determines the execution mode (Debugging
or Performance) and compilation options. These parameters may be set or changed at any
time. For details, see the LCI Parameters section below.

With the source �les speci�ed, Callable forms de�ned and parameter values set, the
user is prepared for compilation (LCI!Control Panel!Compile). In Performance mode, only
user C/C++ �les are compiled, and the resulting object �les are automatically loaded into
Lisp. In Debugging mode, the LCI (optionally) generates and compiles four C �les from
the de�ned Callable forms, compiles user C/C++ code, and links them with other static
object �les into the external C/C++ executable. Compilation feedback output to stdout
and stderr are displayed in the Lisp bu�er. The compilation process will abort if a failure
is encountered at any stage (such as a syntax or linking error).

When compiling in Performance mode and C/C++ libraries have been speci�ed, the

Lisp-C/C++ Interface 153

libraries should be explicitly loaded after compilation has completed with the menu option
LCI!Control Panel!Load C/C++ Files. This need only be done once in any RCDE session
(unless the libraries are recompiled).

Once compilation has successfully completed, the LCI is prepared to execute C/C++
code. If executing in Debugging mode, two extra steps must be performed before any
C/C++ functions are called: the C/C++ process must be started by running the generated
executable, either in a debugger or from a Unix shell; and the link between the RCDE and
the C/C++ process must be created by pressing LCI!Control Panel!Establish Interface.
These two steps must be repeated each time the LCI compiles in Debugging mode.

Each C-callable function may be called from the menus using LCI!Functions!Lisp-
Callable C/C++ Functions!Execute. C-callables may be called in any order, with arguments
entered by the user. When an error occurs in user C/C++ code, the LCI response depends
on the execution mode. In Performance mode, a C/C++ error will cause the RCDE to
trap into the Lisp debugger (with printed instructions on how to restore Lisp to its normal
operation). In debugging mode, the error may occur in the Lisp process or the C/C++
process. In the former case, the RCDE again traps into the Lisp debugger. In the latter
case, the C/C++ process will halt (possibly with a core dump), returning to Unix or to an
enclosing debugger.

The user may edit source code and recompile, completing the development subcycle. The
LCI makes no restrictions on the user's choice of editor (although Emacs is recommended
because of its ability to run the RCDE as an inferior process). The execution mode may be
switched at any time, but this may require recompilation before executing functions in the
new mode if Callable functions have changed.

17.2.1 Projects

An LCI project is a set of source �les and LCI parameters de�ning the integration of a
C/C++ program with the RCDE. It is intended as a convenient means to package lists
of source �les and other information, so that the user does not have to explicitly enter
this data each time a new RCDE session is begun. Projects also provide a quick way to
switch between C/C++ programs integrated with the RCDE without starting a new RCDE
process.

Project �les may be created by manually setting all source �les and LCI parameters,
then saving a project �le using LCI!Projects!Save Project. With a project �le, steps 2 and
4 above are replaced by loading the project �le (LCI!Projects!Load Project). Note that
loading the project does not load the source �les into Lisp, however { this must be done
during compilation or by using LCI!Control Panel!Load C/C++ Files and LCI!Control
Panel!Load Lisp Files.

154 RCDE User's Manual

17.2.2 Executing without Compiling

Once user C/C++ code has reached a certain level of maturity, it may be desirable to
execute it without recompiling in a new RCDE session. This requires a slightly di�erent
sequence of operations than those listed above. Assuming that a project �le is de�ned and
that Callable forms have been stored in a Lisp source �le, the following steps may be used
to execute C/C++ code:

1. Specify and load the project �le (LCI!Projects).

2. Load all source �les (C/C++ and Lisp).

3. Execute code by calling speci�c C/C++ functions.

17.3 LCI Scenarios

This section contains a set of examples of how to use the LCI, with emphasis on menu
interactions. A running example is intended to guide the user through the menu structure.
The menu structure is detailed in Section 17.4.

17.3.1 Preparation and Example 1

Example 1: Image handles, Image creation, Image modi�cation, Simple Shared

Structures

Example Overview To get started by using an example, copy the �le

$CMEHOME/lci/examples/create and change.c2

into your working directory and then load it into an Emacs bu�er. The header on the �le
should identify it as Example 1. The sample code contains programming examples that
demonstrate usage of the LCI and the RCDE C library. Notice that the programming style
does not reveal any calls to Lisp and adheres to conventional C syntax. The include �le
rcde types.h contains de�nitions for all RCDE C types.

The �rst type declarations are c handles for two images and two panes. The next dec-
larations are a keyword argument pair for the C-Callable function make image which will
set all the initial pixel values for the image being created. Notice that the initializer sets
all pixel values to the gray level 128. When make image runs it returns a c handle to the
image in the RCDE.

After it runs, a function to choose where to display the image is called. This is a C
function which in turn calls an RCDE function that prompts the user to select an RCDE
window. Upon selecting a pane to display the image the RCDE call push image puts the

2Substitute the path at your site for $CMEHOME

Lisp-C/C++ Interface 155

image on the pane stack and displays the image. Note: the second keyword, refresh, is used
to make the pane refresh itself. Its boolean value was set to true in the declarations.

Next the C-Callable function image scale rotate is called with keywords one and two.
This function produces more than just scaling and rotation when called with these argu-
ments. Try calling it without the �nal y scale keyword pair.

In the last two calls to push image notice that the duplicate keyword is used to make
sure that a copy of the image is pushed onto the stack. Try running this example without
the third keyword pair for duplication of the image.

Finally, notice the second C function in this �le, pause and select pane. Above it is
an extern declaration of a shared structure. That shared structure is returned by the C-
Callable RCDE function pick a pane and x y. That function returns a pointer to a shared
structure containing a single handle to the pane chosen by mouse click, and two integers at
the mouse location at the time of click and a third integer, hence the name c handle 1 int 3.
Notice that the handle component of the shared structure is called h1 and is obtained using
conventional C syntax. This example should be run with the variations suggested in both
Performance and Debugging mode.

Preparation The following preparatory steps are independent of the interface mode:

1. Write the desired C, C++, and Lisp code, keeping it in one working directory. The
RCDE Programmer's Reference Manual de�nes the functions that interface to the
RCDE. This chapter uses example code from the directory

$CMEHOME/lci/examples

You may substitute your own code in place of the examples.

2. To use RCDE-de�ned types such as handles, user C and C++ code must contain the
declaration

#include "rcde types.h"

Any �les containing this include statement should be compiled with the following
option:

-I$CMEHOME/lci

3. If you are using a Make�le, you must add a few lines to it to compile the interface-
generated code and to link the object modules. Details of this process can be found
in the �le

$CMEHOME/examples/make-c-debug

156 RCDE User's Manual

Set the Run Make�le switch accordingly.

4. Select LCI on the Menu Panel, which invokes the main interface panel.

17.3.2 Tightly-Coupled Example

Now load and run code in the Tightly-Coupled mode to demonstrate the basics of the
interface:

1. Set compilation and execution parameters (be sure to hit enter on all menu string
entries:

� Select Parameters on the main interface panel to invoke the Parameters menu,
which is described in Section 17.4.2.

� On the Parameters menu, set the working directory to re
ect where your code is
located.

� Set the Execution Mode to Performance (Tightly-Coupled mode).

� Set the Run Make�le button to No.

2. Specify the user �les to be compiled:

(a) Choose Files on the main interface panel to invoke the Files menu, which is
described in Section 17.4.1.

(b) Choose C Files on the IF Files menu.

(c) Type the �le name

create and change.c

(d) Select Add File to register the �le name. The �le name should appear in the large
window on the menu.

3. Compile and load code:

(a) Invoke the Control Panel from the main interface menu.

(b) Compile the code by selecting Compile on the Control Panel. The resulting object
code is automatically loaded into Lisp.

4. Create Lisp-Callable functions:

(a) Select Functions from the main interface menu.

(b) On the resulting menu, select Lisp-Callable C/C++ Functions since we want to
access user C code.

Lisp-C/C++ Interface 157

(c) The resulting menu should have a place for function names on it. Since we do
not have any yet, the entry is blank.

(d) On the menu, type the function name:

create and change image

Then select the Create option to get creation menu.

(e) Enter the function name and specify whether you have given a mangled name
(No) and the number of parameters (zero, or you can leave it blank).

(f) Push the button labeled Create Entry Panel

(g) On the resulting menu, specify the types of each function argument and return
type. In this case, there are no arguments and the return type is int.

(h) Create the interface function by selecting the button marked Create Lisp-Callable.

(i) Note that a Lisp form was generated in the *cme* Emacs bu�er and loaded
into Lisp. You may yank the Lisp-callable into another Emacs bu�er and save
it to a Lisp �le containing all Callable functions for later reference, but it is not
necessary.

5. The foreign function has the same name as you speci�ed in the Functions menu above.
To execute the compiled C function, select the Lisp-Callable C/C++ Functions to see
the list of functions in operation. Push the button by the function name; after the
name appears on the line, select Execute to invoke another menu. Select it and watch
for the prompts. Or you may run the function from the Lisp prompt using a Lisp
form:

(create and change image)

Follow the instructions in the RCDE Documentation Line to �nish the example. (This
example will ask you to select an RCDE pane twice.) If your Menu Bar is covered, you
will not see the prompts; just select a pane twice to see the resulting images. Expose
the menu bar, then repeat the Lisp call.

6. To repeat the cycle, edit your code in an editor, recompile it with the Compile button,
and run it again from Lisp. The editing can be done based upon the suggested changes
to the code made above. Try other variations of your own invention.

17.3.3 Loose Example

Once the Tight Example is running smoothly, try compiling and executing the same program
in Debugging mode:

1. Recon�gure the Parameters menu:

158 RCDE User's Manual

(a) Set the Execution Mode to Debugging.

(b) Set the Load User Object Code button to Yes.

(c) Set the Run Executable button to No.

2. Compile again using the Compile button on the Control Panel. In this case, four �les
are generated: c-stubs.c, lisp-stubs.c, c-phantoms.c, and lisp-phantoms.c. These are
then compiled, and the two lisp-*.c �les are loaded into Lisp. The two c-*.c �les are
linked into the executable created from the user's own code, plus some other (static)
LCI �les.

3. In an independent shell, run the executable produced by the compilation (the default
name is debug-main, as de�ned on the Parameters menu). This can be done under any
debugger. A message should tell you that a socket was created by giving you the port
number (you do not need this information, however). You can even run the function
without a debugger. Just type debug-main at a prompt in a UNIX shell.

4. Click on Establish Interface. Some handshaking messages should be printed in the
cme bu�er and in the shell telling you that the connection was safely established.
This gives you evidence that everything is still operating as it should.

5. To execute the compiled C function, select the Lisp-Callable C/C++ Functions button
to see the list of functions in operation. Push the button by the function name; after
the name appears on the line, select Execute to invoke another menu. Select it and
watch for the prompts. Or type

(create and change image)

on the Lisp command line to run the same function as earlier. Once the IPC connection
is made, the execution is the same at the top level as it is in tight mode. After running
this smoothly in Debugging mode, simply select Performance mode and run it again,
and back to Debugging mode and repeat. Do this sequence to verify that you can
switch back and forth with no other changes and get the same functionality.

You may then try the suggested edits to change the code. Each time you recompile,
you must re-run debug-main, and push the Establish Interface button again. You can
avoid the killing/restarting cycle by setting the Run Executable option, but then the
C/C++ process will not be run inside a debugger, and its printed output will be
dumped to the *cme* bu�er.

The Lucid FFI occasionally has trouble with C's standard output. Often a print
statement in C code does not display any text, but in fact it is bu�ered by Lisp and
never displayed. To see what has been collected this way, type (if::
ush-em) in Lisp.
This dumps what is left of the C stdout bu�er.

Lisp-C/C++ Interface 159

17.3.4 Example 2: Image I/O, Shared Image Array Structures, and

Image Modi�cation

The second example demonstrates how Lisp images are managed from C in both coupling
modes. Copy the �le

$CMEHOME/lci/examples/load and blur.c

into your working directory and load the copy into an Emacs bu�er. The header on the
�le should identify it as Example 2. The include �le rcde types.h contains de�nitions for all
RCDE C types, including the shared image structure array image struct.

Notice the extern statement for get image struct() containing the array image struct
pointer. This is the data structure used by the RCDE for array images, that is, images small
enough to reside entirely in RAM. In this example the C-Callable function get image struct()
is used to access a shared image structure.

The �rst function de�nition in the �le, get image pixel(), is not a C-Callable function.
It is a pure C function to set the pixel values of the image array. A copy of the image
structure is passed by reference to this function and the pixel values at (x,y) are set to the
value. In addition, adjoining pixels are re-set to the given value. Note that values from the
xmap and ymap arrays must be right-shifted by two bits; this is necessary because of bit-
level di�erences between the C and Lisp representations of integer data. It is not necessary,
however, for the character data contained in the image array itself.

The primary function (in this �le) is called access and blur image. The �rst step is to
provide a pathname to the C-Callable load image. Note that even though no keywords
are used in this call, since the function does have keywords, it is necessary to add a numeric
zero at the end of the argument list. The return value is a c handle pointing to the Lisp
image. It is then displayed using the C-Callable from the source �le create and change.c.
It is necessary to load this �le into Lisp by adding it to the C �les list using LCI!Files!C
Files. However, if you are continuing from the �rst example, it is already loaded.

The second step is an image manipulation call to gauss image using the c handle
pointing to the loaded image. The result is then displayed on the chosen pane. Note that
there are no optionals parameters used by this call, though the function accepts them. Thus
the �nal argument is a numeric zero (just as a keyword list must end with a numeric zero).

The third step is to access the shared structure using the function get image struct,
which takes only a c handle and returns a copy of the complete image data structure. The
next few lines of the example examine some of the components of the structure. Then a for
loop is used to set the diagonal pixels of the image to 255. Note that the C function to set
pixel values utilizes the xmap and ymap of the RCDE to quickly access the correct elements
of the image array.

Next, the original image is displayed by pushing it onto the stack. In Tight Coupling, the
white diagonal stripe will be visible in this image, since the original image data is modi�ed.
In Loose Coupling, however, this image will not have the stripe, since the pixel data in the
local copy in the C process is modi�ed, but not the original data in the Lisp process.

160 RCDE User's Manual

The two �nal steps copy the image data from the local image structure into a single-
dimensional character array, then pass this array to Lisp to be converted into a Lisp image.
In both coupling modes this creates a copy of the modi�ed image with the diagonal stripe.
In Loose Coupling, though, the data is passed between processes as a means of returning
the modi�ed image data to Lisp. Note that the nested for loops indicate how indexing must
be done on the image array to produce a linear array in row-major order.

Initialize Interface and Execute Add the �le load and blur.c to the list of C �les. Add
the �le create and change.c also if it is not already there. Create a Lisp-callable form for the
function access and blur image using the same process as in the previous example. Compile
the �les in Performance mode.

To execute the compiled C function, select the Lisp-Callable C/C++ Functions button to
see the list of functions in operation. Push the button by the function name; after the name
appears on the line, select Execute to invoke the execution menu for that function. Then
press the Execute button. The C function may also be executed from Lisp by typing

(access and blur image)

into the Lisp Listener. Wait for and respond to the prompts for mouse selection of image
panes in the RCDE documentation window. The instructions may be missed, in which case
you may try to click a RCDE pane and look for a response.

Once the function executes in Tight Coupling, switch to Loose Coupling as you did
with Example 1, then recompile and execute. Note that you must start the C process in a
separate shell unless Parameters!Run Executable is set to \Yes".

17.3.5 Example 3: Object Creation and Manipulation in C++

Example Overview To continue with the scenario, copy the �le

$CMEHOME/lci/examples/c proxy house.C

into your working directory and load the copy into an Emacs bu�er. The header on the �le
should identify it as Example 3. The ALV Site must be loaded before proceeding further
with this example. The sample code contains calls to RCDE using both C and C++ syntax.
Now notice the two include �les. The second, house object proxy.h, is necessary to include
part of the C++ Proxy Class Hierarchy. It contains nested include statements de�ning other
applicable classes in the hierarchy. This �le, and any C++ �les using the C++ Proxy Class
Hierarchy, must be compiled with the include option \-I$CMEHOME/lci/proxy-objects".

The next area to notice is the extern statement areas. All function calls and structures
that are not part of the include �les must be externed in C++. These extern functions were
automatically generated using a Lisp function called

(if::create-extern-statement 'lisp-name-without-package "v")

Lisp-C/C++ Interface 161

However, these extern statements are available in the �le $CMEHOME/lci/extern-

statements, which contains extern statements for all the RCDE C-Callable functions. This
is a text �le; it is not intended to be included in source code, but rather for textual cutting
and pasting of selected statements.

The next area is the C call pause and select pane modi�ed to work in C++. The only
di�erences are the argument list and the documentation string delimiters. In this example,
this code is being used to pause between example steps.

The next area is the main routine, create and change house. This function shows the
steps in accessing the programming elements of the RCDE. Once these elements are present,
any one of several experiments can be performed:

1. A pane, the top view and from it the ALV world are extracted from the ALV frame,
after the ALV site data have been loaded.

2. The coordinate system and a feature set ($3d-FS 1) is extracted from the world.

3. A coordinate transform is constructed which transforms from a object centered coor-
dinate system (for the house) to the world coordinate system, placing the origin of the
house at (-35, 4567, 6050).

4. Next, a C++ house object is created associated with the world and the coordinate
transform. The dimensions of the house and the roof pitch are supplied as keywords.
The constructor is named the same as its class: house object pr. Note that the
object has pr appended to signify that it is a proxy object and constructor. At this
point, the object will not appear on the display because it is not part of a feature set.

5. So the next step is to put the object into a feature set using the RCDE function call
add object. Note that the �rst argument is a Lisp symbol accessor for the house1
object. It gets the Lisp pointer to the Lisp house object. The moment this function
is executed, the object created appears on the screen. The pause and select option is
placed before this call to allow you to look at this display at the time that is happens.

6. To rotate the object, a rotation matrix is created using a call tomake orientation matrix.
The only argument is the eleventh keyword, which allows us to specify the rotation
angle about the z axis in degrees. In this case, a rotation of 90 degrees is speci�ed.

7. Finally, the C++ house Class indirect method house1.rotate relative to world by pr is
called to rotate by the speci�ed angle and axis. Note that the C function to accomplish
this same activity is called rotate relative to world by and takes one more argument
�rst. That argument is the Lisp symbol as in the call to add object, which is a C call.

Initialize Interface and Execute Add the c proxy house.C �le to the interface list of
C++ �les. Compile the �le in Performance mode. Create a Lisp-callable form for the C++
function create and change house Fv. Note that Fv is added as the mangled name of the

162 RCDE User's Manual

interface function. To execute the compiled C++ function, select the Lisp-Callable C/C++
Functions button to see the list of functions in operation. Push the button by the function
name; after the name appears on the line, select Execute and invoke another menu. Or run
the C code by typing

(create and change house Fv)

into the Lisp Listener. Wait for and respond to the prompts for mouse selection of image
panes in the RCDE documentation window. The �rst prompt is just to select a pane and
nothing happens. The instructions may be missed, in which case you may try to click a
RCDE pane and look for a response. At this point you can proceed with the Loose Coupling
preparation as you did with Example 1. Recall that you must interrupt the Lisp process
and the Debugger process, rerun the debug-main, and re-establish the interface.

17.4 The Menu Interface

This section summarizes the Lisp-C/C++ Interface menus for quick reference. Note: all of
the string editor options on the menus require careful attention. First, the user must select
the string editor line. Then the user may type and edit the string into the menu bu�er.
Finally, to enter the string, the user must use a carriage return.

Menu panels are invoked by selecting the main interface menu, LCI, as detailed in the
following sections.

17.4.1 Control Panel

This menu contains buttons that perform loading and execution functions. Although the
Establish Interface button is only applicable in Debugging Mode, all other buttons function
in both execution modes.

Establish Interface { Establishes socket communications between Lisp and an external C or
C++ process for Loosely-Coupled mode. If Parameters!Run Executable is set to \No",
then this button should be pressed only after the external process is started manually
(possibly within a debugger). If Parameters!Run Executable is set to \Yes", then the
C/C++ process will be started by Lisp automatically, directing standard output to
the Lisp bu�er. In this case, the value of Parameters!Executable should give the name
of the C/C++ executable in a pathname that is complete or relative to the current
working directory given in Parameters!Working Directory. In either coupling mode,
this button must be pressed before any C/C++ code is executed from Lisp.

Compile { Compiles a prede�ned set of user �les using the compiler and compile options
speci�ed on the Parameters menu, then loads those �les into Lisp according to execu-
tion mode. Additionally, a set of interface �les are generated, compiled, and loaded

Lisp-C/C++ Interface 163

when Loosely-Coupled mode is in e�ect. Note that compilation depends heavily on
the parameters speci�ed in the Parameters menu.

Load C/C++ Files { Loads the set of user C and C++ �les speci�ed on the Filesmenu. The
�les must be compiled into object code before loading. If Parameters!Execution Mode
is set to \Performance", then all C and C++ �les and libraries are loaded. Otherwise,
only the generated �les lisp-phantoms.o and lisp-stubs.o are loaded from the current
working directory, if they exist. This option allows execution of previously generated
projects without regenerating or recompiling source code.

Load Lisp Files { Loads the set of user Lisp �les speci�ed on the Files menu into the Lisp
environment. These �les may include the �les of Callable functions created by the
user. The pathnames must be complete, or speci�ed relative to the current working
directory.

Create a c-handle { Creates a c-handle object pointing to a Lisp object to be used as a
parameter or argument in a C call. The Lisp object is the last value returned by
a function call, or the last object \dropped" into the Lisp bu�er. The name of the
c-handle object and the printed representation of the object pointed to are printed in
the Lisp bu�er. The name of the c-handle may then be entered as an argument to a
Lisp-Callable taking a c-handle parameter, either on a function execution menu or at
the Lisp command line.

17.4.2 Parameters Menu

This menu allows the user to control the interface modes and specify the parameters for
compilation and execution. The Run Executable and Executable parameters a�ect the Estab-
lish Interface button on the Control Panel, the Execution Mode parameter a�ects the Load
C/C++ Files control button, and all other parameters (except Run Executable) a�ect code
compilation.

The parameters Compilation Level, Load User Object Code, Run Executable and Executable
only apply in Debugging Mode.

.

Execution Mode { A button for specifying the coupling mode of the interface: \Debugging"
for Loosely-Coupled mode, \Performance" for Tightly-Coupled mode.

Compilation Level { A button for specifying the level of compilation. The Regenerate In-
terface option causes the �les containing phantom and stub functions to be automat-
ically generated and compiled. The User Code Only option indicates that only user
code should be compiled, omitting the code generation stage. Once the interface
functions have been generated, they do not need to be regenerated again unless new
Callable functions are added or existing Callable function parameter or return types

164 RCDE User's Manual

are changed. Although it is the user's responsibility to monitor these changes, setting
the User Code Only option can signi�cantly decrease compile time.

Load User Object Code { A button for specifying whether user object code is loaded imme-
diately after compilation. In Tightly-Coupled mode, code is automatically loaded into
Lisp after compilation. In Loosely-Coupled mode, loading can be disabled by setting
this button to \No". This option may be useful when switching between modes for
performance testing.

Run Make�le { A button for specifying whether the user has supplied a Make�le. If set,
then the compile routine looks for the �le speci�ed by the Make�le parameter and
executes the UNIX make command using the given make�le name.

In Performance Mode, the make�le must provide instructions for compiling each user
source �le; however, all linking and compilation of generated �les is done by the LCI.
In Debugging Mode, the make�le must produce a complete executable named by the
Executable parameter. The make�le must compile all user source �les into object or
library �les, then link user �les with the generated �les c-stubs.o and c-phantoms.o, and
the LCI �les socket-lib.o, debug-main.o, rcde-c-phantoms.o and rcde types xdr.o from
the directory $CMEHOME/lci. See the example make�le $CMEHOME/lci/make-c-
debug for further details.

If Run Make�le is not set, then each user C/C++ source �le is compiled using the
speci�ed C or C++ compiler commands and options. The resulting user object �les
are linked with the generated object �les and the LCI object �les listed above to
produce the executable named by the Executable parameter.

Make�le { A string editor for specifying a Make�le �lename. If no make�le name is speci�ed,
make is executed with the default �le Make�le when Run Make�le is set.

C Compile Command { A string editor for specifying the command to be used for C com-
pilation (e.g., cc, gcc). Note that only cc is currently supported by the interface.

C Compile Options { A string editor for specifying the command-line options to be used for
C compilation (e.g., -lm, -I$CMEHOME/lci). The options are copied directly onto
the compilation command line. The -lm option is required for linking the LCI object
�les.

C++ Compile Command { A string editor for specifying the command to be used for C++
compilation (e.g., CC). Note that only AT&T C++ Version 2.1 is currently supported
by the interface.

C++ Compile Options { A string editor for specifying the command-line options to be used
for C compilation (e.g., -lm, -I$CMEHOME/lci). The options are copied directly onto
the compilation command line. The -lm option is required for linking the LCI object
�les.

Lisp-C/C++ Interface 165

Working Directory { A string editor for specifying the default directory where the interface
reads the user �les and writes the generated interface �les and compiled object �les.
All user source �les are expected to be in this directory, speci�ed by a pathname
relative to this directory, or speci�ed by a complete pathname.

Run Executable { A button for specifying if the executable (speci�ed by the Executable pa-
rameter) is run automatically by the LCI when in Debugging Mode (this parameter has
no e�ect in Performance Mode). If the option is \No", the user must run the C/C++
executable as a separate UNIX process, possibly under a debugger, before pressing
Control Panel!Establish Interface. If the option is \Yes", then the LCI executes the
executable and connects it with the Lisp process when Control Panel!Establish Inter-
face is pressed. In this case, printed output from the C/C++ process will appear in
the Lisp bu�er. This mode is useful when executing code in Debugging Mode without
using a debugger, because the user does not need to initiate the C/C++ process by
hand.

Executable { A string editor for specifying the executable �le name. This �le is produced
by compiling user and LCI �les; it performs socket communications and implements
the main() function. The default value for the �le name is \debug-main".

17.4.3 Files Menu

Each entry in the Files Menu is a button that invokes a panel for specifying source �le
names. The source �le pathnames must be de�ned relative to the current working directory
(this also applies to loading operations) or as complete pathnames. For the C/C++ Libraries
option, the complete or relative pathname of the archive (*.a) �le must be given.

After the name is entered in the File Name option, the Add File button may be pressed
to append the �le name to the current list of �les. A �le may be deleted from the list by
clicking on the line in the scrollable window containing the �le name, then pressing the
Delete File button. The �le name should appear in the File Name slot when the �le name is
selected.

These menus are used to set the source �les to be compiled, linked and loaded during
LCI compilation. No immediate action is taken by these menu options.

For C and C++ �les, the names of source �les should be entered. If a Lisp �le is speci�ed
and no extension is used, Lisp will �rst look for a .sbin extension with the name of the �le;
otherwise it will look for a .lisp extension. If the .lisp extension is used, it may not use the
most recent version of the Lisp code, because it uses the simple-load command for loading
Lisp �les.

17.4.4 Functions Menu

.

166 RCDE User's Manual

This menu has three options: Lisp-Callable C/C++ Functions for Lisp-Callable creation,
C-Callable Lisp Functions for C-Callable creation, and Lisp Variables for Variable Accessor
creation. The �rst two set up the communications necessary for inter-language function
calls. The menus display the forms currently de�ned, and also can be used to create new
forms (which are automatically evaluated and printed to the Emacs bu�er). The forms can
be pasted into a �le for future reloading.

Lisp-Callable C/C++ Functions { Manages Lisp-callable forms through a menu/entry panel
sequence. The button creates the Lisp-Callable C/C++ Functions menu with the op-
tions to Create, Edit, Delete, Execute.

C-Callable Lisp Functions { Manages C-callable forms through a menu sequence. The button
creates the C/C++-Callable Lisp Functions menu with the options to Create, Create
Target Header, Edit, Delete.

Lisp Variables { Creates an entry panel to specify the name and type for a reader (get-
...) and a writer (set-...) C-callable to manage the Lisp global variables used by the
RCDE.

17.4.4.1 Lisp-Callable C/C++ Functions Menu

The �rst menu item is a list of Lisp-callables currently de�ned within the Lisp environment.
Each Lisp-callable shown here must have a corresponding C/C++ function de�nition, or an
error will result when compiling in Debugging mode. When a new Lisp-callable is created
or loaded, this menu must be reinvoked to display the new entry.

The next item is a string edit line to enter the name of a new Lisp-callable. If a Lisp-
callable is selected from the list, that Lisp-callable name will appear on string edit line. A
Lisp-callable must be selected for the Edit, Delete and Execute operations.

Create { brings up an entry panel, Create New Function Header, to structure the Lisp-
callable function creation panel which follows in this menu sequence. The �rst line is
the Function Name string edit line. The name of the Lisp-callable function appears
on this line and can be edited. The second line is a boolean switch to specify if
the name on the function line is a mangled name. If \yes", the entry panel created
will generate the argument list as speci�ed in the mangled name. However, the Sun
demangling utility dem must be on your Unix path (before the RCDE is started) to
use this option. If \no", the entry panel created will generate the argument list from
the Number of Parameters item that follows the mangled name entry. Selecting the
Create Entry Panel button at the bottom of this menu will generate a customized entry
panel for the Lisp-callable.

Function Header Entry Panel { opens a panel for entering information de�ning a
Lisp-callable form. The �rst line of the panel is the Function Name (C/C++)

Lisp-C/C++ Interface 167

string edit line. The speci�ed name must be in proper C/C++ syntax, and
should exactly match the name visible to the C/C++ linker. If the function is a
C++ function, then the mangled name must be used; it may be found by running
the Sun utility nm or nm++ on the compiled object �le containing the function
de�nition.

The second menu item is a pull-right menu specifying the Lisp-callable return
type. A list of possible types appears for user selection when the item button is
pressed.

The remaining entries are pairs of parameter name and parameter type. If a
mangled function name is used, the number of parameters and their types are set
according to the mangled name. Otherwise, default argument types are assigned.
Although the names of Callable function parameters are not important, their
types must be correctly identi�ed. The parameter types may be set using the
same pull-right menu as for the return type.

The Create Lisp-Callable button will create a Lisp-callable function, evaluate it,
and print it in the Lisp bu�er. The textual form may be pasted into another
Emacs bu�er, creating a Lisp source �le of Callable functions. This �le may be
loaded rather than regenerating each Callable function for each RCDE session.

Edit { allows an existing Lisp-callable to be edited. The selected Lisp-callable is used to
create a menu identical to the Function Header Entry Panel for changing the name,
return type, parameter names and parameter types. The changes will not take e�ect,
however, until the Create Lisp-Callable button is pressed.

Delete { removes the Lisp-callable function de�nition from the LCI, enabling recompilation
in Debugging mode without the deleted function. This is useful for removing invalid
functions when switching to a new set of C/C++ �les (i.e. a new project).

Execute { provides a means to execute an existing C/C++ Function (through its Lisp-
callable). Selection of this option brings up a menu containing one string edit line for
each parameter of the function to be called. The user may type in parameter values,
and may execute the function by pressing the Execute button. Parameters whose
names begin with a colon are keyword parameters. If the function does not exist or is
not identi�ed correctly, the entry panel is not created.

17.4.4.2 C-Callable Lisp Functions Menu

The �rst menu item is a list of C-callables currently de�ned within the Lisp environment.
Each C-callable shown here is a Lisp function that may be called from C/C++. When a
new C-callable is created or loaded, this menu must be reinvoked to display the new entry.

The next item is a string edit line to enter the name of a C-callable. If a C-callable is
selected from the list, that C-callable name will appear on string edit line. A C-callable must

168 RCDE User's Manual

be selected for the Edit and Delete operations, and a Lisp function name (not a C-callable
name) must be entered for the Create Target Header option.

Create { invokes the Create New Function Header panel, which is described in the above
section on the Lisp-Callable Functions Menu. The same sequence of operations is
followed to create a C-callable form, except that the �nal step is to press the Create
C-Callable button instead of Create Lisp-Callable.

However, a C-callable produced through the Create menu will not have a body, since
there is no speci�cation of what the function should do. C-callables are complete Lisp
functions, and so cannot be easily de�ned through a menu interface. The resulting
form is only intended to be enhanced with functionality by direct editing, rather than
being executed immediately. This option should only be used by programmers familiar
with Lisp and LCI programming.

Create Target Header { opens an entry panel for creating a C-callable function that calls
an existing Lisp function (such as an RCDE function). The �rst line of the panel is
the Function Name (C/C++) string edit line. The second menu item is a pull-right
menu specifying the C-callable return type. A list of possible types appears for user
selection when the return type button is pressed. The remaining entries are parameter
types that may be speci�ed by using the same pull-right menu as for the return type.
The names and number of the parameters are extracted from the target Lisp function.
The body of the C-callable consists of a call to the target Lisp function, and should
not be edited.

Edit { allows an existing C-callable to be edited. The selected C-callable is used to create a
menu identical to the Create Target Header menu for changing the name, return type,
and parameter types of the C-callable. The changes will not take e�ect, however, until
the Create Header button is pressed.

Delete { removes the C-callable function de�nition from the LCI, enabling recompilation
in Debugging mode without the deleted function. This is useful for removing invalid
functions when switching to a new set of C/C++ �les (i.e. a new project).

17.4.4.3 Lisp Variables

The variables menu creates two accessor functions, a reader and a writer, that are callable
from C. They both operate on the speci�ed variable. These functions are named the same
as the corresponding Lisp global variable with the asterisks removed, hyphens changed to
underscores, and a \get-" and \set-" pre�x. With these functions, the C/C++ user can
access and change the Lisp globals. Lisp globals usually establish the default behavior
of the environment. These functions are created when the Create C-Callable Accessors is
selected.

Lisp-C/C++ Interface 169

17.4.5 Project Files Menu

The Project Files menu manages the loading, storing and deleting of project �les. Projects
are a convenient means of storing LCI parameters, such as all the items on the Parameters
menu and all lists of source �les and libraries. The Projects menu contains the following
options:

Load Project { loads the project �le named by the Project File: item at the top of the
menu. This �le must have been created earlier using the Save Project option. All LCI
parameters are set to their values stored in the project �le, and any existing Lisp-
callable and C-callable forms are deleted. Source �les are not loaded into the Lisp
process, however.

Save Project { creates and saves the current state of the LCI in the project �le named by
the Project File: item at the top of the menu. Current values of all LCI parameters
and lists of source �les and libraries are saved.

Delete Project { removes any settings within the LCI that may overlap di�erent projects.
In particular, all Lisp-callable, C-callable and source �le list entries are deleted.

17.5 C/C++ Programming Details

Most of the LCI concepts presented in this chapter apply to both C and C++; many of the
di�erences have been demonstrated in the examples. The menu options are clearly marked
where C and C++ are handled di�erently. Programming enhancements and conventions for
C and C++ added to the Lucid FFI by the LCI are listed in this section. Additional details
may be found in the LCI sections of the Programmer's Reference Manual.

17.5.1 Parameter Passing

Because of di�erences in function calling syntax and paradigms between Lisp and C/C++, it
is necessary to establish special conventions to de�ne equivalent parameter passing options.
The LCI establishes the following requirements and capabilities:

� Use of C-handles | C-handles are de�ned as the type c handle in C/C++ for
declaring parameter and return types or C/C++ variables. Although a c handle is
simply an integer in C, a c handle instance may uniquely point to a Lisp construct or
object through the LCI. Some Lisp constructs have �xed addresses (static allocation)
and some constructs are relocated by the Lisp garbage collection process. The c handle
system manages these di�erences without the need for user intervention.

� Shared Structures| Any C-Callable function with shared structures as parameters
or return values must pass pointers to the structures, rather than instances of the
structures. In Performance mode, these pointers refer to the same object in memory.

170 RCDE User's Manual

In Debugging mode, though, only an exact copy of the structure is passed between
languages.

The user may add shared structures to the system, but this requires three steps:

1. The structure must have a Lisp foreign-structure de�nition created using the
Lucid FFI macro def-foreign-struct, in addition to its C/C++ de�nition. This
Lisp structure de�nition must match the C/C++ structure de�nition exactly.

2. The structure must have an associated XDR routine that formats the structure
in binary form for transfer between the processes. This function may be auto-
matically generated from the C struct de�nition using the Sun utility rpcgen.

3. The structure must be registered in the LCI. This is accomplished with a call to
the LCI function register-shared-type. See the �le $CMEHOME/lci/shared-

types.lisp for examples.

During LCI Debugging mode compilation and loading, the user C/C++ source �le(s)
containing his XDR routines must be speci�ed as a C source �le, and must be loaded
into the Lisp process. Unlike other source �les, those containing XDR routines used
to pass data between Lisp and C/C++ must be linked into both processes when
compiling in Debugging mode. For a compiled object �le named my xdr routines.o
containing XDR routines, this may be explicitly accomplished by typing

(load-foreign-files "my_xdr_routines.o" nil)

at the Lisp prompt after normal Debugging mode compilation has completed. Once
these steps are accomplished, then the structure may be passed between the languages
as a single parameter or return value.

� Optional Arguments| C-Callable functions may have optional parameters. Each
such C-Callable function has a parameter named optionals used, which follows the
list of required arguments. The optionals used parameter contains a value giving the
number of optional parameters to be used on a given function call. If no optional
parameters are used, then optionals used must be zero, i.e., the optionals used pa-
rameter itself is required. C-Callable Lisp functions may not have both optional and
keyword parameters.

� Keyword Arguments| C-Callable functions may have keyword parameters, which
are arguments speci�ed by an identi�er-value pair in the argument list. Although
standard Lisp allows keywords, C and C++ do not explicitly support any equivalent
function-calling syntax. Any keyword in a keyword list is speci�ed by two arguments.
The �rst, the keyword identi�er, is an integer specifying the ordinal position in the
keyword list (e.g., the �rst keyword position is numeric one) given in the Programmer's
Reference Manual, or in the Lisp de�nition of the C-Callable function. The second is
a pointer to the actual value to be passed according to the type in the keyword list.

Lisp-C/C++ Interface 171

The utility of the keyword syntax is that it allows any order among the keyword
arguments (as long as the identi�er-pair order is maintained for each keyword pair),
and any number of them (including zero) may be used on a given function call. To
achieve this polymorphism, though, all keywords must be passed as pointers. However,
string parameters may be passed by using char* types, not char** types. Unless all
keyword parameters are used, the argument list must be terminated by an additional
numeric zero argument, whether any keyword arguments are used or not. Within the
body of the C-Callable function, keywords are automatically bundled into a property
list. See the Programmer's Reference Manual entry on def-foreign-callable-switch
for more details.

Because of the unusual syntax for keyword arguments, the C/C++ calling convention
di�ers from what may be assumed given the function listings in the Programmer's
Reference Manual. Each keyword pair must be listed as an integer parameter, followed
by a void* parameter. Thus each keyword given in the C-Callable documentation
becomes two parameters in the C/C++function declaration. For examples, examine
the C++ proxy class header �les, which contain extern statements for each C-Callable
used in the classes.

When programming the RCDE, a situation may arise where the C/C++ programmer
receives a c handle return value when he desires a vector of data. The LCI provides a set of
data conversion utilities to convert between c handle and value representations, as well as
routines to create and access simple Lisp arrays and lists. These functions are described in
the Interface Utilities section of the Programmer's Reference Manual.

17.5.2 LCI Compilation and Linking

The LCI supplies a few �les for C/C++ compilation and linking, and a library of include
�les de�ning the C++ proxy hierarchy.

Most of the RCDE types available to C and C++ programs are de�ned in the �le
$CMEHOME/lci/rcde types.h. This �le contains de�nitions for most of the RCDE
shared structures, and includes the �les:

� $CMEHOME/ic/c/image.h, containing the shared structure de�nition for images,
array image struct;

� $CMEHOME/cme/c/transform.h, containing the shared structure de�nition for
transforms, transform 4x4 struct; and

� $CMEHOME/cme/c/poly.h, containing the shared structure de�nition for poly-
hedral vertices, vertex struct.

When a �le including rcde types.h is compiled, the include option \-I$CMEHOME/lci"
should be used.

172 RCDE User's Manual

The �le $CMEHOME/lci/de�ne-statements contains #de�ne statements for key-
word identi�er arguments of the RCDE C-callable library; this �le may be included in user
source code, but is not included in $CMEHOME/lci/rcde types.h to avoid name con-

icts. Since many RCDE keyword parameters have the same name, but di�erent keyword
identi�er values, the function name is prepended to the keyword name when this occurs.
Using these de�ned constants instead of integer arguments should yield code that is easier
to understand.

Any C-Callable function must be declared in an extern statement in the �le using the
C-Callable. Any C-Callable function that is not part of an include �le must be externed in
C++ (standard C++ practice). The �le $CMEHOME/lci/extern-statements contains
extern statements for all of the functions in the RCDE C-callable library. Since extern
statements for C-callables taking keyword and optional arguments are not straightforward
(as explained above), this �le serves as a reference for all de�ned C-callables. It may be
included in user C/C++ �les, or used as a text source for individual extern statements in
user source code.

The C++ proxy classes de�ning the C++ proxy class hierarchy are stored in three
directories:

$CMEHOME/lci/proxy-images contains proxies for the image, pane, view and frame
hierarchies

$CMEHOME/lci/proxy-objects contains proxies for all geometric and graphical ob-
jects, and

$CMEHOME/lci/proxy-transforms contains proxies for coordinate transforms and co-
ordinate systems.

See Section 17.5.6 for details on the class hierarchy.
The user may also recompile the LCI source �les coded in C. This may be desirable if the

value of certain static system parameters needs to be changed. To recompile the C source
�les, execute the following line:

make -f make-debug-source-files

at a Unix shell prompt in the directory $CMEHOME/lci. The RCDE must be restarted for
the compiled changes to take e�ect.

One system parameter that may need to be adjusted on-site is the size of the XDR
bu�ers, XDR BUFFER LENGTH, declared in $CMEHOME/lci/debug.h. This parameter
de�nes the upper limit in bytes of the total size of all the arguments that may be passed
between Lisp and C/C++ in Debugging mode. Two bu�ers of this size are allocated in each
process when they are started. By default, XDR BUFFER LENGTH is set to 2 MB. If large
images are being passed between languages, or if memory allowances must be reduced, this
value may be inadequate. To change this setting, edit the �le $CMEHOME/lci/debug.h
and remake the LCI source �les as described just above.

Lisp-C/C++ Interface 173

17.5.3 Notational Conventions

The conversion of Lisp symbol names into C/C++ syntax requires that the result be in
legal C/C++ syntax. The LCI de�nes the following naming conventions:

� Leading Integers in Lisp function names | Leading digits in Lisp names are
converted to use the textual name of the integer in C/C++. For example, 2d-object
becomes two d object.

� Structure Component Names | Typical RCDE-provided structure types (shared
structures) are given names which contain the types of the components followed by
the number of such types (e.g., c handle 2 int 2 double 2). The handle components
would be called h1, h2, etc. Likewise, the integer components would be called i1,i2
and the double components d1, d2.

� C versus C++ Arguments|Each C-Callable Lisp Function has a typed argument
list, as listed in the Programmer's Reference Manual. The corresponding C++ member
function (within a C++ proxy class) has the same argument list with the �rst entry
removed. This entry is the pointer to the object itself, and is inherently supplied by
the proxy class.

� Proxy Names in C++| Any C-Callable Lisp function name has a \ pr" appended
when called as a member function in C++. C++ proxy class names are the same as
their RCDE counterparts, except that the su�x \ pr" is appended, and any hyphens
in the Lisp names are converted to underscores.

17.5.4 Calling C/C++ from Lisp

To call from Lisp to a C or C++ function, a Lisp-Callable function must be created using
the menu sequence indicated above (i.e., LCI! Functions!Lisp-Callable C/C++ Functions!
Create!Create Entry Panel!Create Lisp-Callable). The result will be the creation of a
communication layer Lisp function called a DFFS (Def-Foreign-Function-Switch), or Lisp-
callable function. In this sequence of menus, you must specify the name of the Lisp function,
the name of the corresponding C or mangled C++ name and number and types of the ar-
guments and the return type. The supported types include the following:

� int, unsigned int, char, char*, void, void*, string,
oat, double, boolean | All of these
basic types are familiar C or C++ data types. Arrays of the non-pointer types are
also supported.

� c handle (C/C++), c-handle (Lisp) | A special LCI type that is an index or pointer
to a Lisp construct. It is used to manipulate Lisp objects without moving the object
through the interface.

174 RCDE User's Manual

� lisp-handle| A special LCI Lisp type that is e�ectively a pointer to a C construct.
It is used to provide Lisp with a pointer to a C structure or C++ class.

If the handle classes are used properly, there is no need for the programmer to understand
the underlying representation or implementation. The general principle in using handles is
to allow the LCI to manage all encoding and decoding, while the programmer simply passes
handles between languages as if they were objects. If a Lisp function returns a c-handle,
then the C program only needs to know to expect a return type of c handle. The returned
value can then be used as a parameter to other C-callable Lisp functions that use a c-handle
parameter, without the C program ever examining or otherwise using the c handle directly.

A facility to pass C/C++ arrays between Lisp and C/C++ is also provided. C arrays
are often represented as pointers, with no direct reference to the number of elements in the
array. Similarly, Lisp can accept foreign pointers that point to the �rst of an unspeci�ed
number of array elements. For automatic transfer of these data types between processes, the
RCDE de�nes a syntactic link between the pointer variable and a length variable giving the
number of elements in the array. This syntax is de�ned such that a pointer will be treated
as an array if the next parameter in the parameter list has the same name as the pointer,
but with the su�x \ length" appended. For example, the foreign pointer foreign-array will
be passed as an array if the next parameter is named foreign-array length. This length
parameter gives the number of array elements to pass on a given function call.

After the Lisp-callable has been created, the user may execute the function by using the
LCI!Functions!Lisp-callable C/C++ Functions menu as described in the Menu Interface
section above.

17.5.5 Calling Lisp from C/C++

To call from C or C++ to Lisp, a C-Callable function must be created using the menu
sequence indicated above (i.e., LCI!Functions!C-Callable Lisp Functions!Create!Create
Entry Panel!Create C-callable Header). The result will be the creation of a communication
layer function called a DFCS (Def-Foreign-Callable-Switch), or C-callable. In this sequence
of menus, you must specify the name of the Lisp function (only used in the Lisp symbol
table), the name of the corresponding C or mangled C++ function, the return type, and
the number and types of the arguments. C-callable forms have been created for most of the
RCDE functions in the public interface; see the Programmers Reference Manual. In addition
to the data types supported by Lisp-callable functions, C-callable functions support three
more data types:

� lisp-symbol (Lisp), lisp symbol (C/C++) | A special LCI type that is interpreted
as a Lisp symbol. The lisp-symbol may be given as a parameter or return type in
a C-callable. Equivalent to char* variables in C/C++, lisp-symbol parameters are
decoded into a lisp symbol automatically via one level of Lisp evaluation.

� lisp-form (Lisp), lisp form (C/C++) | A special LCI type that evaluates its value
as a complete Lisp form. The lisp-form is only valid as a parameter type. It enables a

Lisp-C/C++ Interface 175

C/C++ programmer to pass a string argument (char*) containing a Lisp expression.
It may be used as an argument to Lisp macros or functions which require such forms.

� simple-vector-type (Lisp), char* (C/C++) | This return type allows Lisp simple
one-dimensional arrays (vectors) to be returned to C directly. The corresponding Lisp
array, however, must be static, or immune to garbage collection. Otherwise, the array
might be moved, and the pointer would no longer be valid in tight coupling, and
garbage collection might move the array during the copying phase in loose coupling.
For the RCDE C-callables, any returned vectors are statically allocated.

The length of the result array in bytes is returned in the value of the global C integer
variable sv return length, while the type of the elements of the array is returned in the
integer value of sv return type. The decoding of the value of sv return type is given
in the �le $CMEHOME/lci/sv return.h. Both variables are automatically linked with
user's C/C++ �les, and should be declared as extern variables. Each vector transfer
rewrites the value of these variables. The type of the returned data is not statically de-
clared, since any function may return vectors with di�erent element types. Therefore,
C must cast the result appropriately for proper indexing, using sv return type to obtain
the array type. Simple-vector-type is only valid as a return type in C-callables.

17.5.5.1 Conventions Used in Creating Target Headers for RCDE Functions

C-callable Lisp functions can be created in two di�erent ways, with an existing Lisp function
and without an existing Lisp function. When there is an existing Lisp function, it is referred
to as the Target function. After the menu sequence Functions ! C-Callable Lisp Functions,
there is a choice to either Create a DFCS without a Lisp Function or Create Target Header
DFCS with a Lisp Function.

Opting to Create a DFCS will produce a \empty" DFCS form. The user is expected to
yank the form into a bu�er and edit it to contain a desired sequence of Lisp expressions.

Opting to Create Target Header requires the speci�cation of the name of an existing Lisp
function along with its package pre�x into the menu. The menu that follows reveals a C
name for the function being called. It also shows a list of all of the arguments to the Lisp
function, including keywords and optionals. It is the user's responsibility to specify the C
types for each, including the return type for the function. The created form has a Lisp body
consisting of a call to the target function and possibly some optional or keyword parameter
decoding.

Special naming is useful for struct type speci�ers. Typical RCDE-provided structure
types are given names which contain the types of the components followed by the number
of such types (e.g., c handle 2 int 2 double 2).

While Lisp functions may return multiple values, C/C++ functions do not have the
ability to collect these values after a call to Lisp. Instead, multiple return values are bundled
into C structures de�ned for this purpose and returned as shared structures. The C/C++
function must then extract the individual values from the C structure.

176 RCDE User's Manual

Lisp functions have no restriction on the data types of their return values, allowing a
Lisp function to return a value of any type on a given call. Since C/C++ is more strongly
typed, RCDE functions returning multiple return types are proxied with multiple C-Callable
functions, one for each type. The return type of a particular C-Callable function is included
in its name, as a su�x. The C/C++ program must speci�cally select one of the C-Callable
versions, based on the desired return type.

Similarly, Lisp functions have no restrictions on the types of their arguments (except in
CLOS, which is used to some advantage where possible). RCDE functions that can take
multiple parameter types for the same parameter are also proxied with multiple C functions,
one for each possible type. Again, the parameter type of a particular C-Callable function is
included in its name, as a su�x.

17.5.6 C++ Proxy Classes

The RCDE provides C++ proxy classes for many of the RCDE CLOS classes comprising
the basic objects in the system. While C++ programmers may call the C-Callable library
functions directly, as C functions, most of those functions are included as C++ member
functions in the C++ proxy classes. The RCDE provides a full hierarchy of proxies necessary
to utilize the RCDE Classes as a C++ Class Library. The C++ inheritance and function
dispatching mirror that of the class hierarchies in the RCDE. Since the C++ Proxy Classes
are full-
edged C++ classes, member functions with native C++ code may be added to the
classes. Also, new classes may be attached to the inheritance hierarchy.

Each proxy class consists of standard C++ components, but these generally refer to Lisp
for their true functionality.

� Data Slots | Each proxy class has at least one data slot, of type c handle, that
points to a corresponding instance of the Lisp class being proxied. Additional data
slots may be added, as in the case of blocked array mapped image, for local copies of
data to be accessed directly from C++. In most cases, however, all data slots are
maintained in Lisp, while data accessors are provided as member functions in C++.
This is consistent with data hiding techniques, with the addition that the data is kept
in another language.

� Member Functions|Proxy classes contain member functions that correspond to direct
methods on the equivalent RCDE classes. If an RCDE generic function in the public
interface has a method on a particular RCDE class, then the proxy class for that
RCDE class will have a corresponding member function which calls the method.

The member functions have a consistent functionality, since they simply call through
the LCI to execute the corresponding Lisp class method. Each has an argument list
that is the same as the C-Callable's argument list, except that the �rst argument,
which is the class object, is removed. The body of the function is a call to the C-
Callable function, with the proxy's local c handle slot inserted as the �rst argument.

Lisp-C/C++ Interface 177

There are a few exceptions to this format, since Lisp does not require the �rst argument
to be the class object. The syntax given in the header �les should be noted before
member functions are used.

Where possible, member function overloading has been used to accommodate RCDE
generic functions that accept multiple parameter types. In these cases, C++ dispatch-
ing is used to select the proper C-Callable function, rather than forcing the program-
mer to explicitly determine which C-Callable must be used (e.g., the iref function).
The equivalent technique cannot be applied to return types, however, since C++ does
not allow overloading based solely on return types.

� Constructors | Each proxy class has at least two constructors, a default constructor
which is empty and a constructor that accepts a c handle argument. The latter may
be used when a C++ class is instantiated to proxy a Lisp object already in existence.
The local c handle slot of the proxy is set to the given c handle, so that calls to member
functions will operate on the given Lisp object.

Many C++ proxy classes have a third constructor that calls the equivalent Lisp con-
structor for that class. In most cases, the argument list given to the constructor is
exactly the same as the argument list of the corresponding C-Callable for the con-
structor. Occasionally, however, the Lisp constructor has no required parameters,
but only keyword arguments. In this situation, the Lisp-calling constructor cannot
be distinguished from the default constructor, since keyword parameters are imple-
mented as optional parameters in C++. To resolve this ambiguity, each Lisp-calling
constructor with only keyword parameters has one added required argument, of type
LCI CONSTRUCTOR TYPE, to distinguish it from the default C++ constructor.
The Lisp-calling constructor may be called by giving the value LCI CONSTRUCTOR
as the �rst argument.

The two variables LCI CONSTRUCTOR TYPE and LCI CONSTRUCTOR are de-
�ned in rcde types.h.

17.5.7 C/C++ Programming Hints and Suggestions

While considerable e�ort has been made to facilitate C/C++ code development using the
LCI, some aspects of compiling, linking and executing C/C++ code through Lisp can be
problematic. C++ code, in particular, may cause di�culty when executed within the Lisp
process because of its memory management techniques. Debugging mode can introduce
extra complications, because parameter typing errors in user code may lead to apparent
errors in the automatically generated C code, which is unfamiliar to the programmer.

Some common errors and idiosyncracies of executing C/C++ though Lisp can be an-
ticipated. Here is a list of problems or potential problems the C/C++ programmer might
encounter:

178 RCDE User's Manual

Unde�ned Foreign Symbols: When the RCDE is started, the LCI is loaded last. A
warning may be printed, stating that there are linking symbols that have not been
resolved:

;;; Warning: The following foreign symbols are undefined: (_dlsym

_lisp_function_table _dlclose _dlopen)

The three dl * symbols are derived from the loading of C libraries, and can be ignored.
The lisp function table symbol is created by the LCI, but it should be resolved when
the user compiles anything in Debugging mode. Initially, though, it is supposed to be
unde�ned.

The unde�ned foreign symbols list is the primary feedback from the Lisp linker. Since
Lisp attempts to resolve all linking symbols in C/C++ code as it is loaded, unde�ned
foreign symbols often mean that modules are missing or function names are incorrect.
In particular, if the C/C++ name given to a Lisp-callable or C-callable is not accurate,
i.e. it does not correspond to the function name in the C/C++ code, then compilation
will fail, and the misnamed symbol will be added to the unde�ned foreign symbols
list.

In some situations, symbols may be added to the unde�ned foreign symbols list during
a successful compilation. When a Lisp-callable form is evaluated in Lisp, two foreign
symbols are created { one for Performance mode execution, and one for Debugging
mode execution. If the user executes in Debugging mode without loading his C/C++
code into the Lisp process (which is not necessary and probably not desirable), then
the symbols created for Performance mode execution are not resolved. In this case, the
C/C++ name given in the Lisp-callable will appear on the unde�ned foreign symbols
list. If the user never compiles in Debugging mode, then each Lisp-callable will produce
one unresolved symbol { the C/C++ name given in the Lisp-callable with the su�x
\ stub" appended. These symbols are expected to be unresolved, and will not cause
errors.

c function table Compiler Error: When compiling in Debugging mode, the LCI expects
to �nd at least one de�ned Lisp-callable. If one does not exist, a linking error will
appear, reporting that c function table is an unresolved symbol. This is easily �xed
by creating (or loading) a Lisp-callable function for the C/C++ function called to
initiate C/C++ execution.

C++ Libraries: The RCDE loads the standard C libraries libc.a and libm.a when it is
initialized. The standard C++ libraries are not loaded, however. To execute C++
code in Performance mode, any referenced C++ libraries must be loaded directly into
the Lisp process, including libC.a and libOstream.a. This can be accomplished by
adding the complete pathnames of the archive �les to the C/C++ libraries list, and
loading C/C++ �les while in Performance mode.

Lisp-C/C++ Interface 179

C++ Initializations: When C++ is compiled, it is generally translated into C, either
symbolically or textually. During this process, some default initializations are added
to the main() function in the user's code. However, since the main() function cannot
be in user code compiled under the LCI, these initializations are never encoded by the
C++ compiler, and hence are never executed. This can lead to seemingly inexplicable
bugs and crashes when executing C++ programs in both execution modes.

One essential initialization is for the default C++ output stream cout. Without an
initialization statement, a program may hang or simply crash at the �rst attempt to
direct output to cout. To avoid this, the user should place the C++ statement

Iostream_init init;

in a function that is called before cout is used. The variable init is not itself important,
but serves to open the necessary streams.

Other initialization errors may be encountered, depending on the behavior of the C++
compiler being used. The user may identify them by running the C++ compiler and
directing its output to a C �le, rather than an object �le. The main() function in this
C �le may be inspected for initialization statements placed there by the compiler, not
the user.

180 RCDE User's Manual

Chapter 18

On-line Documentation

18.1 RCDE's Online Documentation System

Indices to all of the RCDE documentation of interest to users of the system are available
on-line and accessible by using the Info facility of GNU Emacs. These Info indices are
organized in a hierarchy that re
ects the available documents. The top node of the Info
index is a menu selection when the Info facility is invoked. Each Info index contains the same
information as the corresponding index in the printed version. This Info facility allows one to
jump directly to any page number in an xdvi text previewer containing the corresponding
document by doing anyone of several string searches in the on-line Info index, and then
invoking the corresponding page search in the xdvi viewer. This facility when coupled with
the xdvi viewer is extremely useful in quickly accessing the available information about a
given function, concept, class, or variable.

18.2 The GNU Emacs Info facility

The on-line index system makes use of the Info facility of GNU Emacs. To enter the on-line
index, use the key sequence C-h i, (control-h i). The control-h is the standard Emacs key for
accessing any help facility, and the \i" gets one the Info facility within Emacs. To exit the
on-line , type \q". This will restore your original Emacs Bu�er. Alternatively, enter meta-x
help-for-help, then enter \i" to get the Info facility.

If you have not previously accessed the Info facility in your current editor invocation,
perform this command to create an Emacs bu�er that looks like Figure 18.1. Note: Some
of the table has been left out to �t on the �gure.

If what you see now does not include the last line of Figure 18.1, type \g(dir)" to get
the appropriate menu. If this does not work, see your systems administrator to review
the installation of the GNU Emacs Info system and the RCDE installation. What you

181

182 RCDE User's Manual

File: dir Node: Top This is the top of the INFO tree

This (the Directory node) gives a menu of major topics.

Typing "d" returns here, "q" exits, "?" lists all INFO commands,

"h" gives a primer for first-timers,

"mTexinfo<Return>" visits Texinfo topic, etc.

Clicking middle on a highlighted word follows that crossreference.

Clicking right anywhere brings up a menu of commands and references to

follow.

--- PLEASE ADD DOCUMENTATION TO THIS TREE. (See INFO topic first.) ---

* Menu: The list of major topics begins on the next line.

* Info: (info). Documentation browsing system.

* Emacs: (emacs). The extensible self-documenting text editor.

This manual is for Lucid GNU Emacs 19.3.

...

* CVS: (pcl-cvs). The front end to CVS.

* RCDE: (rcde.info). RCDE Documentation.

Figure 18.1: The GNU Emacs Top-Level Directory

On-line Documentation 183

File: rcde.info Node: Top

*Menu:

* prm: (idd.info). The Programmer's Reference Manual.

* ig: (ig.info). The Installation Guide.

* ugd: (ugd.info). The User's Manual.

Figure 18.2: The Menu of RCDE Documents

are looking at is the top-level directory into the GNU Emacs Info facility. At the top is a
section giving a brief synopsis of commands which are available in Info mode. Note that this
section says that by typing \h," one can take the Info mode tutorial. The tutorial introduces
most of the commands which are available to navigate through on-line documentation, and
gives one enough practice in using them to enable one to use the facility with some level of
con�dence.

The rest of the Info top-level directory is a menu of Info topics. Most of these topics
correspond to documents for software products put out by the Free Software Foundation
(FSF), which developed GNU Emacs. One of the manuals on the list is for the Info system.
This is convenient should you forget one of the commands you learned in taking the tutorial,
or you want more detail on one of the commands.

The RCDE Info File If your system has had the RCDE installed according to the
instructions in the RCDE Installation Guide, one of the menu items should read * RCDE:
(rcde.info)." To get to the menu of The RCDE documentation, type \m RCDE." The \m"
is the command for accessing a menu item, and the \RCDE" accesses the menu item giving
the directory of RCDE documentation. The same thing could have been accomplished by
pointing to the RCDE menu item with the mouse and clicking, then typing \m< return >."

When you have selected the RCDE menu, you should see the menu of Figure 18.2.

To get to this text in the RCDE User's Manual, point to the \User's Manual" entry on
the RCDE menu with the mouse, click left, then type \m< return >." This gets you to a
menu for the index and table of contents of the RCDE User's Manual. Select the table of
contents menu item and type \m < return >." String search for GNU Emacs. The index
will then reveal the page number. Search for that page in the xdvi previewer containing
this manual.

Note | The Version 1.0 release does not have the complete text of the documents available
on-line. Tables of Contents and Indices are available for the Version 1.0 release. We suggest
that you use this facility to assist you in �nding where to look for information, and use a
viewer such as xdvi, which is distributed with LaTeX. To view a document using xdvi, type

184 RCDE User's Manual

Dir

Info Emacs gdb CVS RCDE

FSF Documentation

RCDE Documentation
RCDE-041a

User Programmer Design Installation

Figure 18.3: Top Level Nodes of RCDE Documentation

xdvi < filename >, substituting the �lename of the document for < filename >. The
spacebar and del keys can be used to page through the document. Once you are viewing a
numbered page, you can set the pagenumber by typing the number, then \P", the set page
number command. Once this is done, you can jump to any desired page by typing in the
page number, then \g", the goto page command. This could be a page number obtained
from one of our Info indices or tables of contents, or it could be one of your choosing. The
Emacs list-matching-lines command, executed by typing M-x list-matching-lines, is
useful for getting a subset of an index or table of contents containing a search target.

18.3 Organization of RCDE Nodes

Figure 18.3 shows the GNU Info document hierarchy graphically, and within the �gure the
�rst level of the RCDE document hierarchy is illustrated. Each menu and index is referred
to as a node in the hierarchy.

The directory node supplied by the FSF has been modi�ed during the RCDE installation
procedure to add a menu item pointing to the RCDE documentation. This menu item selects
the next lower level node, a node which gives a menu of the RCDE indices in an Info menu.
Selection of one of these menu items will provide access to a particular RCDE index, table
of contents or menu.

Within an Info hierarchy, the node at the top will be a menu or \Table of Contents",
which is a menu allowing one to directly access any node of the Info hierarchy, since it con-

On-line Documentation 185

AAA
AAA
AAA

Top Node
(Table of Contents)

Chapter
Nodes

Section
Nodes

Subsection Nodes

Indices

RCDE-042c

Legend

Menu/up
Next/previous
Menu

Figure 18.4: Documentation Node Relationships

tains all the nodes. Figure 18.4 shows these relationships graphically. The �gure illustrates
another set of key nodes, indices, corresponding to menus allowing direct access to the node
containing the selected index entry. Other document nodes are arranged into a hierarchy
which re
ects the sectioning of the Info hierarchy. A menu is provided to access the sub-
ordinates of any node that has subordinates, and \previous," \next," and \up" nodes are
provided to access the previous and next nodes at the same level, and the parent node,
respectively. If the document has \Parts," the part nodes will be at the level above the
chapter level in the hierarchy. Experiment using the menus to get to deeper nodes of the
Info hierarchy, \u," the \Up" command to return to higher nodes, and \p" and \n" to get
to the previous and next node, respectively, at the same level.

18.4 Synopsis of Info Commands

The RCDE key Info commands are:

m: menu Select the menu item indicated. The indication can be chosen by typing in the
menu item name (or enough to disambiguate it from others), or by taking as default
the menu line in which the Emacs cursor resides. Partial item names are a handy way
to �nd other menu items in a long list, because a <space> bar will cause a list of
completions to appear in a pop-up bu�er. It will disappear when a speci�c choice is
typed in.

186 RCDE User's Manual

p: previous Select the \previous" node to a given node. In the RCDE, the previous node
is a node at the same hierarchical level as the current node, having the same parent.

n: next Select the \next" node to a given node. In the RCDE, the next node is a node at
the same hierarchical level as the current node, having the same parent.

u: up Select the \up" node to a given node. In the RCDE, the up node is always the
parent of the node in the sectioning hierarchy.

f: follow Follow a cross reference. If a cross reference is present in the document, it will
show up as a \See such and such" item within the document. It can be selected in the
same way as a menu item.

l: last Return to the node being visited just prior to the current node. A reliable way to
retrace your hypertext travel path.

< space >: page down Scroll down slightly less than a screenful of text. Note: < space >

is context sensitive. As an Emacs command in a mini bu�er it usually means try to
complete this partial string.

< delete >: page up Scroll up slightly less than a screenful of text.

h: help Bring up the Info tutorial.

?: What? Give list of Info commands.

g: goto Go directly to the named node.

b: beginning Go to the beginning of the current node.

q: quit Exit from Info, restoring previously viewed bu�er in window currently used by
Info. Next entry into Info will be to the same current node.

18.5 Other Means of Obtaining Online Information

The CommonLisp environment has its own means of providing informationabout the system
and user code. One such means is through the association of document strings with the
key components of the system. These document strings can be viewed by calling the Lisp
function documentation. For instance, to get the documentation string for the function
image-di�erence, type

(documentation 'ic:image-difference 'function)

at the Lisp prompt. Documentation types that are available are

1. Function,

On-line Documentation 187

2. Macro,

3. Variable, and

4. Class.

If you are using GNU Emacs with ILisp to run your RCDE process, the same thing can be
done by typing

(ic:gauss-convolve-image

followed by <control-d> either at the Lisp prompt or in a Lisp mode editing bu�er. Simi-
larly, argument lists can be obtained using the arglist Lisp function or the Emacs command
lisp-arglist, which is bound to <control-c a> in the Lisp and Ilisp modes. Much of the
Programmers' Reference Manual is automatically generated by functions which use calls to
documentation and arglist to ensure that the printed manuals are consistent with the
documentation strings and true argument lists.

The Lisp function apropos is another means of gathering information about the system.
If you know part of the name of a Lisp symbol, apropos will give a list of matching names.
For instance, the call

(apropos 'house 'cme)

gives a list of all symbols in package cme containing the string \house" in their names. A
similar function is available to ILisp users through the lisp-complete command <meta-
TAB>, which will complete typing a partially-typed symbol name.

188 RCDE User's Manual

Appendix A

Bucky Menu Functionality

Each RCDE object is manipulated by a number of commands that are accessed from the
Bucky keys or Bucky menus. Because the requirements of objects vary, each kind of object
will have a di�erent set of available commands. This is a result of the object-oriented nature
of the RCDE; each object inherits characteristics from its ancestors.

The following tables summarize the Bucky menu commands available on each of the
RCDE objects. Refer to the Programmer's Reference Manual for details on programming
with these functions. Note that each table ends with a double horizontal line, which helps
the reader distinguish where multiple-page tables end.

189

190 RCDE

Table A.1: Bucky Menu Functionality for Class 3d-Curve

Bucky Label Documentation Line Keys Mouse

Menu Menu of Object Parameters R
Blank Temporarily Remove Object from

Views.

HS L

Close Object Close Object to Mouse Sensitivity,

Open Superior.

H M M

Edit Hier Edit Composite Object Hierarchy H M R
Undo | H C L
Redo | H C M
Bucky Menu | H C R
Clone Create an Identical Copy of Object. H L
Delete Delete this Object. H M
Drop/Obj Stop Modi�cations to this Object, re-

turn Object Instance to Listener.

H R

Move UV @Z Move Object by Projecting UV Mouse

Motion to World XY @ Constant Z.

L

Move Z Move Object along World Z. M
Move UV on DTM | C L
Move W Move Object Along Ray from View. C M
Drop Z Drop Object Vertically to Surface. MC L
Sun Z Adjust Object Height using Sun Model

and Shadow on DEM

MC M

Drop W Place Object at Intersection of Ray

from View with DEM

MC R

Az-Elev Mouse X Rotates about World Z,

Mouse Y Rotates about Object X

SM L

Z Rot Rotate about World Z SM M
Z' Rot Rotate about Object Z SM R
UV Roll Rotate Object as rolling ball S L
Re Orient Reset to Canonical Orientation (Z axis

up).

S M

W Rot Rotate Object about the Ray from

View

S R

@Vertex | SMC R
Close Verts Close Vertex Modi�cation H M M
Reset Verts Restore Vertices to Default Positions

for Object

H M L

Scale Change x,y,z sizes. C R

User's Manual 191

Add Vert Add a new Vertex M L
Del Vert Delete Vertex M M
Reset Delete All Vertices Except the First M R
Vert UVXY | L
Vert Z | M
Vert UV On Dtm | C L
Vert W | C M
Object UVXY | C R
Every Z to Ground | SMC M

192 RCDE

Table A.2: Bucky Menu Functionality for Class 3d-Closed-Curve

Bucky Label Documentation Line Keys Mouse

Menu Menu of Object Parameters R
Blank Temporarily Remove Object from

Views.

HS L

Close Object Close Object to Mouse Sensitivity,

Open Superior.

H M M

Edit Hier Edit Composite Object Hierarchy H M R
Undo | H C L
Redo | H C M
Bucky Menu | H C R
Clone Create an Identical Copy of Object. H L
Delete Delete this Object. H M
Drop/Obj Stop Modi�cations to this Object, re-

turn Object Instance to Listener.

H R

Move UV @Z Move Object by Projecting UV Mouse

Motion to World XY @ Constant Z.

L

Move Z Move Object along World Z. M
Move UV on DTM | C L
Move W Move Object Along Ray from View. C M
Drop Z Drop Object Vertically to Surface. MC L
Sun Z Adjust Object Height using Sun Model

and Shadow on DEM

MC M

Drop W Place Object at Intersection of Ray

from View with DEM

MC R

Az-Elev Mouse X Rotates about World Z,

Mouse Y Rotates about Object X

SM L

Z Rot Rotate about World Z SM M
Z' Rot Rotate about Object Z SM R
UV Roll Rotate Object as rolling ball S L
Re Orient Reset to Canonical Orientation (Z axis

up).

S M

W Rot Rotate Object about the Ray from

View

S R

@Vertex | SMC R
Close Verts Close Vertex Modi�cation H M M
Reset Verts Restore Vertices to Default Positions

for Object

H M L

Scale Change x,y,z sizes. C R

User's Manual 193

Add Vert Add a new Vertex M L
Del Vert Delete Vertex M M
Reset Delete All Vertices Except the First M R
Vert UVXY | L
Vert Z | M
Vert UV On Dtm | C L
Vert W | C M
Object UVXY | C R
Every Z to Ground | SMC M
Every Z to Ground | SMC M
Extrude Object | SMC L

194 RCDE

Table A.3: Bucky Menu Functionality for Class 3d-Ruler-Object

Bucky Label Documentation Line Keys Mouse

Menu Menu of Object Parameters R
Blank Temporarily Remove Object from

Views.

HS L

Close Object Close Object to Mouse Sensitivity,

Open Superior.

H M M

Edit Hier Edit Composite Object Hierarchy H M R
Undo | H C L
Redo | H C M
Bucky Menu | H C R
Clone Create an Identical Copy of Object. H L
Delete Delete this Object. H M
Drop/Obj Stop Modi�cations to this Object, re-

turn Object Instance to Listener.

H R

Move UV @Z Move Object by Projecting UV Mouse

Motion to World XY @ Constant Z.

L

Move Z Move Object along World Z. M
Move UV on DTM | C L
Move W Move Object Along Ray from View. C M
Drop Z Drop Object Vertically to Surface. MC L
Sun Z Adjust Object Height using Sun Model

and Shadow on DEM

MC M

Drop W Place Object at Intersection of Ray

from View with DEM

MC R

Az-Elev Mouse X Rotates about World Z,

Mouse Y Rotates about Object X

SM L

Z Rot Rotate about World Z SM M
Z' Rot Rotate about Object Z SM R
UV Roll Rotate Object as rolling ball S L
Re Orient Reset to Canonical Orientation (Z axis

up).

S M

W Rot Rotate Object about the Ray from

View

S R

@Vertex | SMC R
Close Verts Close Vertex Modi�cation H M M
Reset Verts Restore Vertices to Default Positions

for Object

H M L

Scale Change x,y,z sizes. C R

User's Manual 195

Add Vert Add a new Vertex M L
Del Vert Delete Vertex M M
Reset Delete All Vertices Except the First M R
Vert UVXY | L
Vert Z | M
Vert UV On Dtm | C L
Vert W | C M
Object UVXY | C R
Every Z to Ground | SMC M
Set Sun Ray | M M

196 RCDE

Table A.4: Bucky Menu Functionality for Class Image-Windowing-
Tool

Bucky Label Documentation Line Keys Mouse

Menu Menu of Object Parameters R
Blank Temporarily Remove Object from

Views.

HS L

Close Object Close Object to Mouse Sensitivity,

Open Superior.

H M M

Edit Hier Edit Composite Object Hierarchy H M R
Undo | H C L
Redo | H C M
Bucky Menu | H C R
Clone Create an Identical Copy of Object. H L
Delete Delete this Object. H M
Drop/Obj Stop Modi�cations to this Object, re-

turn Object Instance to Listener.

H R

Move UV | L
| M
| C L
| C M
| MC L
| MC M
| MC R
| SM L

Rotate Rotate SM M
| SM R
| S L
| S M
| S R

Move | L
Change Size | C M
Move Edge | M
Make Window | R
Scroll | C M
TScroll Scroll Tandem Views C L

User's Manual 197

Table A.5: Bucky Menu Functionality for Class House-Object

Bucky Label Documentation Line Keys Mouse

Menu Menu of Object Parameters R
Blank Temporarily Remove Object from

Views.

HS L

Close Object Close Object to Mouse Sensitivity,

Open Superior.

H M M

Edit Hier Edit Composite Object Hierarchy H M R
Undo | H C L
Redo | H C M
Bucky Menu | H C R
Clone Create an Identical Copy of Object. H L
Delete Delete this Object. H M
Drop/Obj Stop Modi�cations to this Object, re-

turn Object Instance to Listener.

H R

Move UV @Z Move Object by Projecting UV Mouse

Motion to World XY @ Constant Z.

L

Move Z Move Object along World Z. M
Move UV on DTM | C L
Move W Move Object Along Ray from View. C M
Drop Z Drop Object Vertically to Surface. MC L
Sun Z Adjust Object Height using Sun Model

and Shadow on DEM

MC M

Drop W Place Object at Intersection of Ray

from View with DEM

MC R

Az-Elev Mouse X Rotates about World Z,

Mouse Y Rotates about Object X

SM L

Z Rot Rotate about World Z SM M
Z' Rot Rotate about Object Z SM R
UV Roll Rotate Object as rolling ball S L
Re Orient Reset to Canonical Orientation (Z axis

up).

S M

W Rot Rotate Object about the Ray from

View

S R

@Vertex | SMC R
Open Verts Allow Vertex Modi�cation H M L
Close Object Open Superior to Object H M M
Scale Change x,y,z sizes. C R
XY sizes | M L

198 RCDE

Rotate/Scale | M M
Z size | M R
Taper rate | S C R
Roof Pitch | S C R

User's Manual 199

Table A.6: Bucky Menu Functionality for Class Extruded-Object

Bucky Label Documentation Line Keys Mouse

Menu Menu of Object Parameters R
Blank Temporarily Remove Object from

Views.

HS L

Close Object Close Object to Mouse Sensitivity,

Open Superior.

H M M

Edit Hier Edit Composite Object Hierarchy H M R
Undo | H C L
Redo | H C M
Bucky Menu | H C R
Clone Create an Identical Copy of Object. H L
Delete Delete this Object. H M
Drop/Obj Stop Modi�cations to this Object, re-

turn Object Instance to Listener.

H R

Move UV @Z Move Object by Projecting UV Mouse

Motion to World XY @ Constant Z.

L

Move Z Move Object along World Z. M
Move UV on DTM | C L
Move W Move Object Along Ray from View. C M
Drop Z Drop Object Vertically to Surface. MC L
Sun Z Adjust Object Height using Sun Model

and Shadow on DEM

MC M

Drop W Place Object at Intersection of Ray

from View with DEM

MC R

Az-Elev Mouse X Rotates about World Z,

Mouse Y Rotates about Object X

SM L

Z Rot Rotate about World Z SM M
Z' Rot Rotate about Object Z SM R
UV Roll Rotate Object as rolling ball S L
Re Orient Reset to Canonical Orientation (Z axis

up).

S M

W Rot Rotate Object about the Ray from

View

S R

@Vertex | SMC R
Close Verts Close Vertex Modi�cation H M M
Reset Verts Restore Vertices to Default Positions

for Object

H M L

Scale Change x,y,z sizes. C R

200 RCDE

XY sizes | M L
Rotate/Scale | M M
Z size | M R
Taper rate | S C R
Vert UVXY | L
Vert Z | M
Vert UV On Dtm | C L
Vert W | C M
Object UVXY | C R
Add Vert Add a new Vertex M L
Del Vert Delete Vertex M M

User's Manual 201

Table A.7: Bucky Menu Functionality for Class Cylinder

Bucky Label Documentation Line Keys Mouse

Menu Menu of Object Parameters R
Blank Temporarily Remove Object from

Views.

HS L

Close Object Close Object to Mouse Sensitivity,

Open Superior.

H M M

Edit Hier Edit Composite Object Hierarchy H M R
Undo | H C L
Redo | H C M
Bucky Menu | H C R
Clone Create an Identical Copy of Object. H L
Delete Delete this Object. H M
Drop/Obj Stop Modi�cations to this Object, re-

turn Object Instance to Listener.

H R

Move UV @Z Move Object by Projecting UV Mouse

Motion to World XY @ Constant Z.

L

Move Z Move Object along World Z. M
Move UV on DTM | C L
Move W Move Object Along Ray from View. C M
Drop Z Drop Object Vertically to Surface. MC L
Sun Z Adjust Object Height using Sun Model

and Shadow on DEM

MC M

Drop W Place Object at Intersection of Ray

from View with DEM

MC R

Az-Elev Mouse X Rotates about World Z,

Mouse Y Rotates about Object X

SM L

Z Rot Rotate about World Z SM M
Z' Rot Rotate about Object Z SM R
UV Roll Rotate Object as rolling ball S L
Re Orient Reset to Canonical Orientation (Z axis

up).

S M

W Rot Rotate Object about the Ray from

View

S R

@Vertex | SMC R
Open Verts Allow Vertex Modi�cation H M L
Close Object Open Superior to Object H M M
Scale Change x,y,z sizes. C R
XY sizes | M L

202 RCDE

Rotate/Scale | M M
Z size | M R
Taper rate | S C R
XY Scale | M L

| M M

User's Manual 203

Table A.8: Bucky Menu Functionality for Class Half-Cylinder

Bucky Label Documentation Line Keys Mouse

Menu Menu of Object Parameters R
Blank Temporarily Remove Object from

Views.

HS L

Close Object Close Object to Mouse Sensitivity,

Open Superior.

H M M

Edit Hier Edit Composite Object Hierarchy H M R
Undo | H C L
Redo | H C M
Bucky Menu | H C R
Clone Create an Identical Copy of Object. H L
Delete Delete this Object. H M
Drop/Obj Stop Modi�cations to this Object, re-

turn Object Instance to Listener.

H R

Move UV @Z Move Object by Projecting UV Mouse

Motion to World XY @ Constant Z.

L

Move Z Move Object along World Z. M
Move UV on DTM | C L
Move W Move Object Along Ray from View. C M
Drop Z Drop Object Vertically to Surface. MC L
Sun Z Adjust Object Height using Sun Model

and Shadow on DEM

MC M

Drop W Place Object at Intersection of Ray

from View with DEM

MC R

Az-Elev Mouse X Rotates about World Z,

Mouse Y Rotates about Object X

SM L

Z Rot Rotate about World Z SM M
Z' Rot Rotate about Object Z SM R
UV Roll Rotate Object as rolling ball S L
Re Orient Reset to Canonical Orientation (Z axis

up).

S M

W Rot Rotate Object about the Ray from

View

S R

@Vertex | SMC R
Open Verts Allow Vertex Modi�cation H M L
Close Object Open Superior to Object H M M
Scale Change x,y,z sizes. C R
XY sizes | M L

204 RCDE

Rotate/Scale | M M
Z size | M R
Taper rate | S C R
XY Scale | M L

| M M
Radius/Length | M L
Rotate/Scale | M M

User's Manual 205

Table A.9: Bucky Menu Functionality for Class View-Hacking-
Object

Bucky Label Documentation Line Keys Mouse

Menu Menu of Object Parameters R
Blank Temporarily Remove Object from

Views.

HS L

Close Object Close Object to Mouse Sensitivity,

Open Superior.

H M M

Edit Hier Edit Composite Object Hierarchy H M R
Undo | H C L
Redo | H C M
Bucky Menu | H C R
Clone Create an Identical Copy of Object. H L
Delete Delete this Object. H M
Drop/Obj Stop Modi�cations to this Object, re-

turn Object Instance to Listener.

H R

Move XY | L
O�set | C L
Gain | C M

| L
Brt&Cont | M
Reset G&O | C R
Neg Contrast | M R
Auto Stretch | M M
Threshold | M L
Move Me | SM L

206 RCDE

Table A.10: Bucky Menu Functionality for Class Superellipse

Bucky Label Documentation Line Keys Mouse

Menu Menu of Object Parameters R
Blank Temporarily Remove Object from

Views.

HS L

Close Object Close Object to Mouse Sensitivity,

Open Superior.

H M M

Edit Hier Edit Composite Object Hierarchy H M R
Undo | H C L
Redo | H C M
Bucky Menu | H C R
Clone Create an Identical Copy of Object. H L
Delete Delete this Object. H M
Drop/Obj Stop Modi�cations to this Object, re-

turn Object Instance to Listener.

H R

Move UV @Z Move Object by Projecting UV Mouse

Motion to World XY @ Constant Z.

L

Move Z Move Object along World Z. M
Move UV on DTM | C L
Move W Move Object Along Ray from View. C M
Drop Z Drop Object Vertically to Surface. MC L
Sun Z Adjust Object Height using Sun Model

and Shadow on DEM

MC M

Drop W Place Object at Intersection of Ray

from View with DEM

MC R

Az-Elev Mouse X Rotates about World Z,

Mouse Y Rotates about Object X

SM L

Z Rot Rotate about World Z SM M
Z' Rot Rotate about Object Z SM R
UV Roll Rotate Object as rolling ball S L
Re Orient Reset to Canonical Orientation (Z axis

up).

S M

W Rot Rotate Object about the Ray from

View

S R

@Vertex | SMC R
Open Verts Allow Vertex Modi�cation H M L
Close Object Open Superior to Object H M M
Scale Change x,y,z sizes. C R
XY sizes | M L

User's Manual 207

Rotate/Scale | M M
Z size | M R
Taper rate | S C R
XY exponent | SMC L
Z exponent | SMC M
Exponents | SMC R

208 RCDE

Table A.11: Bucky Menu Functionality for Class Color-Map-
Hacking-Object

Bucky Label Documentation Line Keys Mouse

Menu Menu of Object Parameters R
Blank Temporarily Remove Object from

Views.

HS L

Close Object Close Object to Mouse Sensitivity,

Open Superior.

H M M

Edit Hier Edit Composite Object Hierarchy H M R
Undo | H C L
Redo | H C M
Bucky Menu | H C R
Clone Create an Identical Copy of Object. H L
Delete Delete this Object. H M
Drop/Obj Stop Modi�cations to this Object, re-

turn Object Instance to Listener.

H R

Move XY | L
Red | SM L
Green | SM M
Blue | SM R
Intensity | S L
Hue | S M
Saturation | S R
O�set | C L
Gain | C M
Reset | C R
Gamma | L
Brt&Cont | M
-Overlays | M L
Move Me | SM L

User's Manual 209

Table A.12: Bucky Menu Functionality for Class Superquadric

Bucky Label Documentation Line Keys Mouse

Menu Menu of Object Parameters R
Blank Temporarily Remove Object from

Views.

HS L

Close Object Close Object to Mouse Sensitivity,

Open Superior.

H M M

Edit Hier Edit Composite Object Hierarchy H M R
Undo | H C L
Redo | H C M
Bucky Menu | H C R
Clone Create an Identical Copy of Object. H L
Delete Delete this Object. H M
Drop/Obj Stop Modi�cations to this Object, re-

turn Object Instance to Listener.

H R

Move UV @Z Move Object by Projecting UV Mouse

Motion to World XY @ Constant Z.

L

Move Z Move Object along World Z. M
Move UV on DTM | C L
Move W Move Object Along Ray from View. C M
Drop Z Drop Object Vertically to Surface. MC L
Sun Z Adjust Object Height using Sun Model

and Shadow on DEM

MC M

Drop W Place Object at Intersection of Ray

from View with DEM

MC R

Az-Elev Mouse X Rotates about World Z,

Mouse Y Rotates about Object X

SM L

Z Rot Rotate about World Z SM M
Z' Rot Rotate about Object Z SM R
UV Roll Rotate Object as rolling ball S L
Re Orient Reset to Canonical Orientation (Z axis

up).

S M

W Rot Rotate Object about the Ray from

View

S R

@Vertex | SMC R
Open Verts Allow Vertex Modi�cation H M L
Close Object Open Superior to Object H M M
Scale Change x,y,z sizes. C R
XY sizes | M L

210 RCDE

Rotate/Scale | M M
Z size | M R
Taper rate | S C R
X exponent | SMC L
Y exponent | SMC M
Z exponent | SMC R

User's Manual 211

Table A.13: Bucky Menu Functionality for Class Camera-Model-
Object

Bucky Label Documentation Line Keys Mouse

Menu Menu of Object Parameters R
Blank Temporarily Remove Object from

Views.

HS L

Close Object Close Object to Mouse Sensitivity,

Open Superior.

H M M

Edit Hier Edit Composite Object Hierarchy H M R
Undo | H C L
Redo | H C M
Bucky Menu | H C R
Clone Create an Identical Copy of Object. H L
Delete Delete this Object. H M
Drop/Obj Stop Modi�cations to this Object, re-

turn Object Instance to Listener.

H R

Move UV @Z Move Object by Projecting UV Mouse

Motion to World XY @ Constant Z.

L

Move Z Move Object along World Z. M
Move UV on DTM | C L
Move W Move Object Along Ray from View. C M
Drop Z Drop Object Vertically to Surface. MC L
Sun Z Adjust Object Height using Sun Model

and Shadow on DEM

MC M

Drop W Place Object at Intersection of Ray

from View with DEM

MC R

Az-Elev Mouse X Rotates about World Z,

Mouse Y Rotates about Object X

SM L

Z Rot Rotate about World Z SM M
Z' Rot Rotate about Object Z SM R
UV Roll Rotate Object as rolling ball S L
Re Orient Reset to Canonical Orientation (Z axis

up).

S M

W Rot Rotate Object about the Ray from

View

S R

@Vertex | SMC R
Move UV @Z | L
Move Z | M
Move Cam W | C R

212 RCDE

Princ Pt | M L
Focal Length | M M
Drop Z Drop Object Vertically to Surface. MC L

| C M
| SM L
| H L
| C L
| MC M
| MC R

UV Roll | S L
Force Z Up Reset to Canonical Orientation (Z axis

up).

S M

W Rot | S R
Show Image | HS M

User's Manual 213

Table A.14: Bucky Menu Functionality for Class Sun-Ray-Object

Bucky Label Documentation Line Keys Mouse

Menu Menu of Object Parameters R
Blank Temporarily Remove Object from

Views.

HS L

Close Object Close Object to Mouse Sensitivity,

Open Superior.

H M M

Edit Hier Edit Composite Object Hierarchy H M R
Undo | H C L
Redo | H C M
Bucky Menu | H C R
Clone Create an Identical Copy of Object. H L
Delete Delete this Object. H M
Drop/Obj Stop Modi�cations to this Object, re-

turn Object Instance to Listener.

H R

Move UV @Z Move Object by Projecting UV Mouse

Motion to World XY @ Constant Z.

L

Move Z Move Object along World Z. M
Move UV on DTM | C L
Move W Move Object Along Ray from View. C M
Drop Z Drop Object Vertically to Surface. MC L
Sun Z Adjust Object Height using Sun Model

and Shadow on DEM

MC M

Drop W Place Object at Intersection of Ray

from View with DEM

MC R

Az-Elev Mouse X Rotates about World Z,

Mouse Y Rotates about Object X

SM L

Z Rot Rotate about World Z SM M
Z' Rot Rotate about Object Z SM R
UV Roll Rotate Object as rolling ball S L
Re Orient Reset to Canonical Orientation (Z axis

up).

S M

W Rot Rotate Object about the Ray from

View

S R

@Vertex | SMC R
Close Verts Close Vertex Modi�cation H M M
Reset Verts Restore Vertices to Default Positions

for Object

H M L

Scale Change x,y,z sizes. C R

214 RCDE

Add Vert Add a new Vertex M L
Del Vert Delete Vertex M M
Reset Delete All Vertices Except the First M R
Vert UVXY | L
Vert Z | M
Vert UV On Dtm | C L
Vert W | C M
Object UVXY | C R
Every Z to Ground | SMC M
Set Sun Ray | M L
Scale | M M

User's Manual 215

Table A.15: Bucky Menu Functionality for Class Conjugate-Point-
Object

Bucky Label Documentation Line Keys Mouse

Menu Menu of Object Parameters R
Blank Temporarily Remove Object from

Views.

HS L

Close Object Close Object to Mouse Sensitivity,

Open Superior.

H M M

Edit Hier Edit Composite Object Hierarchy H M R
Undo | H C L
Redo | H C M
Bucky Menu | H C R
Clone Create an Identical Copy of Object. H L
Delete Delete this Object. H M
Drop/Obj Stop Modi�cations to this Object, re-

turn Object Instance to Listener.

H R

Move UV @Z Move Object by Projecting UV Mouse

Motion to World XY @ Constant Z.

L

Move Z Move Object along World Z. M
Move UV on DTM | C L
Move W Move Object Along Ray from View. C M
Drop Z Drop Object Vertically to Surface. MC L
Sun Z Adjust Object Height using Sun Model

and Shadow on DEM

MC M

Drop W Place Object at Intersection of Ray

from View with DEM

MC R

Az-Elev Mouse X Rotates about World Z,

Mouse Y Rotates about Object X

SM L

Z Rot Rotate about World Z SM M
Z' Rot Rotate about Object Z SM R
UV Roll Rotate Object as rolling ball S L
Re Orient Reset to Canonical Orientation (Z axis

up).

S M

W Rot Rotate Object about the Ray from

View

S R

@Vertex | SMC R
Move Conj UV | C R
@Vertex | M M
@Image UV | M R

216 RCDE

Resection Improve | M L
Resection Menu | SMC L
Delete UV | SMC M

Appendix B

Glossary

ARPA Advanced Research Projects Agency. One of the sponsors of the RADIUS program
and other basic IU research that will be the primary source of technology for RADIUS.

Bucky Keys A set of four keys (Hyper, Super, Meta, and Control) on the RCDE keyboard
that serve to modify system key codes.

Bucky Menus A feature of the RCDE that employs the Bucky keys to alter the command
menu structure, allowing access to a wide range of functions with few keystrokes or
mouse actions.

CASE Computer-Aided Software Engineering

Class A Class is a description of a group of Objects with similar properties, common be-
havior, common relationships, and common semantics.

CME Cartographic Modeling Environment. A software package developed at SRI for pro-
ducing three-dimensional models of areas of interest using image data. CME is the
basis of the RCDE system.

CLOS Common Lisp Object System. An extension to the CommonLisp computer language
speci�cation to support programming in an object-oriented style.

DEM Digital Elevation Model. A format for digital elevation data supported by the USGS.

DMA Defense Mapping Agency.

DTED Digital Terrain Elevation Data. A speci�c DTM product line supported by the
DMA.

DTM Digital Terrain Map.

217

218 RCDE

FASD FASt Dump. Mechanism to produce a Lisp form from an object that produces a
copy of the object when evaluated.

FFI Foreign Function Interface. Basic functionality supplied by Lucid Lisp allowing single-
process interfacing between Lisp and C.

FFT Fast Fourier Transform.

FSF Free Software Foundation.

IPC InterProcess Communication.

IU Image Understanding. The science and engineering endeavor of attempting to imbue
machines with sight-related cognitive abilities. Also an ARPA research program that
has image understanding in this sense as one of its goals.

LCI Lisp-C/C++ Interface. The language interface module built into RCDE allowing C
and C++ programs to access RCDE functionality and data.

LVCS Local Vertical Coordinate System. In standard photogrammetric usage, refers to
the local interpretation of altitude with respect to a reference (height=0) datum. In
the RCDE, LVCS refers to a local 3-D coordinate frame attached to the site being
modeled.

Mixin A class de�ned for the purpose of contributing properties via inheritance, which is
not instantiated directly. For example, a class named shaded-house might inherit
from shaded-face-mixin, which gives the house the ability to shade its faces.

Module A generic term for a software component (e.g., Class, Service, or Subsystem).

Object A concept, abstraction, or thing with crisp boundaries and meanings for the prob-
lem at hand; an instance of a Class.

OMT Object Modeling Tool. A CASE tool developed at GE to support the discipline of
object-oriented analysis and design, particularly of software.

ORD O�ce of Research and Development. The primary sponsor of the RADIUS and
RCDE programs.

RADIUS Research and Development for Image Understanding Systems. A program ad-
ministered by ORD and ARPA for investigatingModel-Supported Exploitation (MSE).

RAM Random Access Memory.

RCDE RADIUS Common Development Environment. An interactive workstation envi-
ronment and standard toolset for supporting Image Understanding research. It is the
development environment upon which the RADIUS Phase 2 testbed will be built.

User's Manual 219

Resection The process of simultaneously adjusting camera parameters to resolve discrep-
ancies between the apparent image locations and known world locations of a set of
conjugate points.

Service A group of related functions (or operations) that work together to provide a func-
tional capability.

Subsystem A major component of a system organized around some coherent theme.

System An organized collection of components that interact. Speci�cally, the RCDE itself.

USGS Unites States Geologic Survey.

UTM Universal Transverse Mercator. A standard set of map projections onto cylinders
that are tangent to longitude circles (meridians).

XDR eXternal Data Representation. A machine-independent, byte-level representation
de�ned by Sun Microsystems for basic data types. Intended to be duplicated by other
vendors to facilitate data passing between di�ering architectures.

Index

-
-Overlays 93

@
@Image UV 94
@Vertex 91

2
2-D Methods 92
2-D Objects 87
2D Closed Curve 87
2D Composite 87
2D Conjugate Points 87
2D Crosshair 87
2D Network 87
2D Open Curve 87
2D Point 87
2d Ribbon 87
2D Ruler 87
2D Text 87

3
3-D Closed Curve 88
3-D Composite 87
3-D Crosshair 87
3-D Face Objects 88
3-D Methods 91
3-D Network 88
3-D Objects 87
3-D Open Curve 88
3-D Point 88
3-D Ribbon 88
3-D Ruler 88
3-D Text 88
3-D World 73
3D Feature Sets Function 79

3D World 8
A

Absolute Value 55
Active Pane 30
Add Function 57
Add Vert 92
Adding to a Site Model 125
Addition of Images 57
Amplitude Pro�les 63, 64
And, Logical 54
Apropos 70
Architecture 6
Arithmetic ImageTransformDescrip-

tions 53
Arithmetic Menu Output Image Sizes

47
Arithmetic Menu Submenus: Boolean

53
Arithmetic Scenarios 47
Arrow, North 89
Auto Stretch 94
Axis 89
Az-Elev 91

B
Basic Methods 90
Binary Image Creation 54, 57
Blank 90
Blending of Images 58
Blue 93
Blurring Images 61
Boolean Menu 53
Box 88
Brt&Cont 93

220

User's Manual 221

Bucky Keys 15, 23
Bucky Menu 90
Bucky Menus 15, 23
Building a Site Model 125

C
C Compile Command Field 164
C Compile Options Field 164
C++ Compile Command Field 164
C++ Compile Options Field 164
C++ Proxy Classes 176
C-Callable Lisp Functions 166
C-Callable Lisp Functions Menu: Lisp

to C/C++ Interface 167
C-handle Type 173
C/C++ Programming 145, 169
C/C++ Systems: Data Transfer 134
C/C++ to Lisp Interface 17
Callables, Foreign 145
Calling C/C++ from Lisp 173
Calling Lisp From C 174
Calling Lisp From C++ 174
Calling Lisp From C/C++ 174
Camera 89
Camera Location: Finding 104
Camera Location: Manual Adjustment

106
Camera Location: Setting 105
Camera Methods 95
Camera Model 9, 74, 99
Camera Parameters, Finding 104
Camera Re�nement 104
Camera, Pinhole 5, 101
Canny Edges Function 62
Center Zero Function 55
Change Size 95
Changing a Site Model 125
Clear All Panes Function 70
Clearing A Stack 33
Clip Function 57
Clone 90
Close Object 91
Close Verts 92

Closed 2D Curve 87
Closed 3-D Curve 88
Code Reuse 145
Color Map Importation 70
Color Map Resetting 70
Color Map Tool 89
Color Mapping Methods 93
Command Apropos Function 70
Command Line 15
Command Line Interface 15
Common Methods 91
Compilation Level Function 163
Compile Function 162
Complement Function 54
Complex Magnitude 55
Composite Methods 96
Composite, 2D 87
Composite, 3-D 87
Condition, Unresponsive 21
Conditions, Error 21
Conjugate Point 89
Conjugate Point Methods 94
Conjugate Points 111
Conjugate Points, 2D 87
Control Key 15
Control Panel Menu: Lisp to C/C++

Interface 162
Converting Image to Fixed Point 55
Converting Image to Floating Point

55
Convolution, Gaussian 61
Coordinate System, World 9
Coordinate Systems 8, 74
Coordinate Sytem, Local Vertical 9
Coordinate Transforms 99
Coordinates, Geocentric 9
Coordinates, Latitude-Longitude-Elevation

9
Coordinates, Universal Transverse Mer-

cator 9
Coordinates, UTM 9
Copy View Function 31

222 RCDE

Corner, Trihedral 90
Correspondences between Images 87
Correspondences, Showing 111
Covered Images, Viewing 30, 31
Create a c-handle Function 163
Creating a Binary Image 54, 57
Creating a Frame 69
Creation of FASD Files 131
Crosshair, 2D 87
Crosshair, 3-D 87
Curve Methods 97
Curve, Closed 2D 87
Curve, Closed 3-D 88
Curve, Open 2D 87
Curve, Open 3-D 88
Customization of Environment 69
Cycling the Stack 30, 31
Cylinder 88
Cylinder Methods 95

D
Data Exchange 131
Data Manipulation Philosophy 6
Data Proxies 145
Data Representations 8, 73
Debugging Mode 17, 142
Debugging Mode Execution 144
Defocusing Images 61
Del Vert 93
Del Vert/Arc 93
Delete 90
Delete UV 94
Describe Image Function 28
Descriptions of Views 23
Desel Superiors 96
Desensitize 96
Design Philosophy 6
Development Environment 17
Digital Terrain Map Mesh 88
Directory Edit of Images 66
Dired Image Function 66
Disk Search for Images 66
Document Organization 2

Document Scope 1
Documentation: Online 181
Drop W 91
Drop Z 91
Drop/Obj 90
DTM Mesh 88

E
Edge Detection 62
Edit Hier 90
Emacs 181
Enhancement Image Transforms 59
Enhancement, Image 59
Environment Customization 69
Environment, Development 17
Error Conditions 21, 70
Establish Interface Function 162
Establishing Correspondences 111
Establishing Image Correspondences

87
Eval Cache 12, 24
Every Z to Ground 97
Exact Copy Function 77
Exchange, Data 131
Executable Field 165
Execution in Debugging Mode 144
Execution in Performance Mode 144
Execution Mode Function 163
Exiting 70
Expunge Top Function 32
Extensibility 17
Extrude Object 97

F
FASD 131
FASD File Creation 131
FASD Files 131
FASD Files, Reading 132
FASD Format 133
FASD Limitations 134
Fast Dump 131
Fast Fourier Transform 54, 55
Fast Fourier TransformDisplay Remap-

ping 55

User's Manual 223

feature set 74
Feature Set 8, 73
Feature Set Loading 67
Feature Set Methods 96
Feature Set Storage 67
Feature Sets 15, 78
Feature Sets Function 79
Feature Sets, 3-D 79
Feature Sets, General 79
FFT Display Remapping 55
FFT Function 54
FFT Submenu 54
Files Menu: Lisp to C/C++ Interface

165
Finding Camera Parameters 104
Finding Images on Disk 66
Fix Function 55
Fixed Point: Converting Image Pix-

els 55
Float Function 55
Floating Point: Converting Image Pix-

els 55
Focal Length 95
Force Z Up 95
Foreign Callables 145
Foreign Functions 145
Forms 145
Fourier Transform 54, 55
Fourier TransformDisplay Remapping

55
Frame 13
Frame Creation 69
Frequency Domain 54, 55
Frequency Domain Display Remap-

ping 55
Functions Menu: Lisp to C/C++ In-

terface 165
Functions, Foreign 145
Fwd Cycle Function 30

G
Gain 93
Gamma 93

Gauss Blur Function 61
Geocentric Coordinates 9
Geographic Transforms 99
Getting Image to Interactor 30
Getting InformationAbout Menu Func-

tions 70
Getting Out of Trouble 70
Global Control Panel Function 69
GNU Emacs 181
Graphing Functions 63
Green 93
Grouping 3-D Objects 87
Grouping Image Features 87
Grouping Objects 78, 87
Grouping Spatial Features 88

H
Hacking, View 59
Half Cylinder 97
Handles 145, 146
Hard Limiting 57
Hardcopy Image Function 66
Hidden Images, Viewing 30, 31
Hide 96
Hiding Objects 78
Hierarchies, Object 17
Histogram Function 64
Horizontal Intensity Plot 63
House 88
House Methods 95
Hue 93
Hyper Key 15
Hypertext 181
Hypertext Documentation 181
Hypertext Navigation 185

I
I/O Functions 63
I/O Menu 65
Illumination Model 73
Illumination Source 90
ImagCalc Frames Function 69
Image 73
Image Addition 57

224 RCDE

Image Arithmetic Scenarios 47
Image Blending 58
Image Correspondences 87
Image Defocus 61
Image Description 28
Image Directory Edit 66
Image Edge Detection 62
Image Enhancement 59
Image Hardcopy 66
Image Histogram 64
Image Inspecting 27
Image Naming 27
Image Restoration 32
Image Slots 27, 28
Image Subtraction 58
Image Thresholding 54, 57
Image Transforms: Arithmetic 53
Image Window 89
Import Public Color Map Function

70
Info 181
Info Beginning of Node Command 186
Info Command List Command 186
Info Commands 185
Info Follow Xref Command 186
Info for RCDE 183
Info Goto Command 186
Info Indices 181
Info Last Command 186
Info Menu Command 185
Info Next Command 186
Info Node Organization for RCDE 184
Info Previous Command 186
Info Quit Command 186
Info Scroll Down Command 186
Info Scroll Up Command 186
Info Tutorial Command 186
Info Up Command 186
Input/Output Functions 63
Input/Output Operations 65
Inputting an Image 65
Inputting Feature Sets 67

Inputting Site Models 67
Inspect Image Function 27
Inspect Stack Function 28
Inspecting Views 23
Integer: Converting Image Pixels 55
Intensity 93
Intensity Plot, Horizontal 63
Intensity Plot, Vertical 64
Interaction Window 15
Interface, Command Line 15
Interface, Language 17, 141
Interface, Lisp to C/C++ 141
Interface, User 12
Intersect Function 54
Inverse FFT Function 55

J
Jumping to an Info Menu Entry 185

K
Key, Control 15
Key, Hyper 15
Key, Meta 15
Key, Super 15
Keys, Bucky 15, 23
Kill Stack Function 33

L
Labeling an Image 87, 88
Language Interface 17, 141
Language Interface C-Callable Lisp Func-

tions Menu 167
Language Interface Files Menu 165
Language Interface Functions Menu

165
Language Interface Lisp Variables Menu

168
Language Interface Lisp-Callable C/C++

Functions Menu 166
Language Interface Parameters Menu

163
Language Interface Project Files Menu

169
Language Mode Switching 145

User's Manual 225

Latitude-Longitude-Elevation Coordi-
nates 9

LCI C-Callable Lisp Functions Menu
167

LCI Control Panel Menu 162
LCI Files Menu 165
LCI Functions Menu 165
LCI Lisp Variables Menu 168
LCI Lisp-Callable C/C++ Functions

Menu 166
LCI Menu Interface 162
LCI Notation Conventions 173
LCI Parameters Menu 163
LCI Project Files Menu 169
LCI Scenarios 154
Limitations of FASD 134
Limiting, Hard 57
Linear Combine Function 58
Linear Xform Function 56
Linking Views 68
Lisp Interaction Window 15
Lisp Symbol Type 174
Lisp to C/C++ Interface 17, 141
Lisp to C/C++ Interface Control Panel

Menu 162
Lisp to C/C++ Interface Menu In-

terface 162
Lisp to C/C++ Interface Parameters

Menu 163, 165, 166, 167, 168,
169

Lisp to C/C++ Interface Scenarios
154

Lisp to C/C++ Ops Concept 151
Lisp Variables 166
Lisp Variables Menu: Lisp to C/C++

Interface 168
Lisp-Callable C/C++ Functions 166
Lisp-Callable C/C++ Functions Menu:

Lisp to C/C++ Interface 166
Lisp-form Type 174
Lisp-handle Type 174
Load C/C++ Files Function 163

Load Feature Sets Function 67
Load Image Function 65
Load Lisp Files Function 163
Load Site Model Function 67
Load User Object Code Function 164
Loading FASD Files 132
Local Vertical Coordinate System 9
Locating Cameras Spatially 104
Logical And 54
Logical Not 54, 56
Logical Or 53
Logical Xor 54
Loose Coupling Mode 142
Loose-coupled Mode Execution 144
LVCS 9

M
Magnitude Function 55
Magnitude Squared Function 55
Make TransformAdjustable Function

78
Make Window 96
Make�le Field 164
Making a Frame 69
Making Correspondences 111
Manipulating a Site Model 125
Manipulations, Stack 23
Manual Camera Location Adjustment

106
Marking Image Locations 87
Marking Spatial Locations 87
Master-Slave Views 68
Matrices, Transform 100
Mensuration 87, 88
Menu 2, 90
Menu Bar 13, 21
Menu Entries in Info: Jumping Tl

185
Menu Interface: Lisp to C/C++ In-

terface 162
Menu: Lisp to C/C++ Interface C-

Callable Lisp Functions 167

226 RCDE

Menu: Lisp to C/C++ Interface Con-
trol Panel 162

Menu: Lisp to C/C++ Interface Files
165

Menu: Lisp to C/C++ Interface Func-
tions 165

Menu: Lisp to C/C++ Interface Lisp
Variables 168

Menu: Lisp to C/C++ Interface Lisp-
Callable C/C++ Functions 166

Menu: Lisp to C/C++ Interface Pa-
rameters 163

Menu: Lisp to C/C++ Interface Project
Files 169

Menus, Bucky 23
Merge Vert 93
Mesh, DTM 88
Message Area 13
Meta Key 15
Model, Camera 9, 99
Model, Sensor 9
Modifying a Site Model 125
Mouse 2, 12
Move 95
Move Cam W 95
Move Conj UV 94
Move Edge 95
Move Me 93
Move Object Function 31
Move UV 92
Move UV on DTM 91
Move UV@Z 91
Move W 91
Move Z 92

N
Name Image Function 27
Neg Contrast 94
Negate Function 56
Negative, Photographic 54, 56
Network, 2D 87
Network, 3-D 88
New Frames 69

New View Transform on Image Func-
tion 77

North Arrow 89
Not, Logical 54, 56
Notational Conventions for LCI 173

O
Object 73
Object Creation Scenario 83
Object Grouping 78
Object Hiding 78
Object Hierarchies 17
Object Orientation 17
Object Sensitivity 13
Object Sensitization 78
Object UVXY 97
Objects 83
Objects, 2-D 87
Objects, 3-D 87
O�set 93
On-line Documentation 181
On-line Indices 181
Online InformationAbout Menu Func-

tions 70
Open 2D Curve 87
Open 3-D Curve 88
Open Inferiors 96
Open Verts 92
Ops Concept: Lisp to C/C++ Inter-

face 151
Or, Logical 53
Organization of Document 2
Organization of RCDE Info Nodes 184
Output Functions 63
Output Operations 65
Outputting an Image 65
Outputting Feature Sets 67
Outputting Site Models 67

P
Pane 12
Pane Redraw 30
Pane Refresh 30
Pane Reinitialization 70

User's Manual 227

Pane-Fixed Objects 89
Panes 23
Parameters Menu: Lisp to C/C++

Interface 163
Performance Mode 142
Performance Mode Execution 144
Perspective Transform Methods 96
Phantoms 150
Philosophy of Data Manipulation 6
Philosophy of Design 6
Photographic Negative 54, 56
Photometric Remapping, Linear 56
Pinhole Camera 5, 101
Pixel Representation Conversion 55,

56
Point, 2D 87
Point, 3-D 88
Point, Conjugate 89
Points, Conjugate 111
Polygon 87
Polyhedra 88
Polyline 87
Pop Stack Function 32
Princ Pt 95
Printing an Image 66
Programming in C/C++ 145, 169
Project Files Menu: Lisp to C/C++

Interface 169
Proxies for Data 145
Proxy Classes for C++ 176

Q
Quit CME 70

R
Radius/Length 97
Range/Focal Length 96
Ray, Sun 90
RCDE Info 183
RCDE Info Node Organization 184
RCDE Objects 83
Re Orient 92
Read Eval Print Loop 21
Reading an Image 65

Reading FASD Files 132
Reading Feature Sets 67
Reading Site Models 67
Recalling Feature Sets 67
Rectangle Methods 95
Rectangular Parallelepiped 88
Red 93
Redo 90
Redrawing a Pane 30
Refresh Pane Function 30
Remapping Display for FFT 55
Remapping, Linear Photometric 56
Removing Top Stack View 32
Render Function 80
Rendering 8, 97
REPL 21
Representations 73
Representations of Data 8
Resection 104, 110, 113
Resection Improve 94
Resection Menu 94
Reset 94
Reset Color Map Function 70
Reset G&O 94
Reset Verts 93
Resize Pixel Function 56
Restoring a Killed Image 32
Restoring a Killed Stack 33
Restoring and Saving 65
Reuse of Code 145
Rev Cycle Function 31
Roof Pitch 95
Rotate 92
Rotate/Scale 91, 97
Round Function 55
Ruler, 2D 87
Ruler, 3-D 88
Run Executable Function 165
Run Make�le Function 164

S
Saturation 94
Save Feature Set Function 67

228 RCDE

Save Image Function 65
Save Site Model Function 67
Saving and Restoring 65
Scale 91
Scenario, Object Creation 83
Scenario, Stack Usage 21
Scenarios, Image Arithmetic 47
Scenarios: Lisp to C/C++ Interface

154
Scope of Document 1
Scroll 95
Scroll Bar 90
Scroll Bar Methods 95
Scroll2d 95
Sel Superiors 96
Select Function 30
Sending Images to Printers 66
Sensitivity, Object 13
Sensitization of Objects 78
Sensitize 96
Sensor 89
Sensor Model 9, 74
Set Emacs Window Function 70
Set Sun Ray 97
Sets, Feature 78
Setting Known Camera Location 105
Shared Structures 146
Simple-vector-type 175
Site 74
Site Model Building 125
Site Model Loading 67
Site Model Manipulation 125
Site Model Saving 67
Site Model Updates 83
Sizes of Output Images, Arithmetic

47
Slots, Image 27, 28
Sobel Edges Function 62
Software Development 17
Source, Illumination 90
Spatially Locating Cameras 104
Split Vertex 93

Stack 12
Stack Clearing 33
Stack Cycling 30, 31
Stack Inspection 28
Stack Manipulations 23
Stack Restoration 33
Stack to Stack View Copy 31
Stack to Stack View Movement 31
Stack Usage Scenario 21
Stacks 23
Star 88
Stare Pt UV 96
Storing an Image 65
Storing Feature Sets 67
Storing Site Models 67
Stubs 150
Subtract Function 58
Subtraction of Images 58
Sun Ray 90
Sun Ray Methods 97
Sun View Function 78
Sun Z 92
Super Key 15
Super Methods 94
Superellipse 89
Superquadric 89
Switching Between Language Modes

145
Symbols 145
Synchronizing Views 68

T
Tandem Operations 68
Taper Rate 92
Terrain 5
Terrain Model 7, 74
Text, 2D 87
Text, 3-D 88
Text, Window 89
Three Dimensional Closed Curve 88
Three Dimensional Composite 87
Three Dimensional Crosshair 87
Three Dimensional Open Curve 88

User's Manual 229

Three Dimensional Point 88
Three Dimensional Ruler 88
Three Dimensional Text 88
Three-Dimensional World 73
Threshold 94
Threshold Function 54, 57
Tight Coupling Mode 142
Tight-coupling Mode Execution 144
Tool Objects 89
Tool, Color Map 89
Tool, View 89
Transfer Between RCDE Sites 131
Transferring Data to/fromC/C++ Sys-

tems 134
Transform Matrices 100
Transforms, Coordinate 99
TScroll 96
Two Dimensional Composite 87
Two Dimensional Conjugate Points

87
Two Dimensional Crosshair 87
Two Dimensional Objects 87
Two Dimensional Point 87
Two Dimensional Ruler 87
Two Dimensional Text 87

U
Undo 90
Union Function 53
Universal Transverse Mercator 9
Unkill Stack Function 33
Unkill Top Function 32
Unresponsive Condition 21
Updating a Site Model 125
user interface 85
User Interface 12, 14
UTM Coordinate 9
UV Aspect 96
UV Skew 96
UV-Roll 92

V
Vert UV on DTM 93
Vert UVXY 93

Vert W 93
Vert Z 93
Vertex Manipulation Methods 92
Vertical Intensity Plot 64
Vertical View Function 78
View 8, 12, 73, 74
View Descriptions 23
View Hacking Object 59
View Inspecting 23
View Menu 15
View Tool 89
View Tool Methods 94
View, Adjusting 78
View, Copying 31, 77
View, Creating 77
View, Feature Sets 79
View, Moving 31
View, Nadir 78
View, Orthographic 78
View, Popping 32
View, Removing 32
View, Rendering 80
View, Sun 78
View, Vertical 78
Viewing Covered Images 30, 31
Views 23

W
W Rot 92
Window Methods 96
Window Text 89
Window, Image 89
Window, Lisp Interaction 15
Working Directory Field 165
World Coordinate System 9
World, 3-D 73
World, 3D 8

X
X Exponent 94
X Slice Function 63
Xor Function 54
XY Exponent 94
XY Scale 95

230 RCDE

XY Sizes 91
Y

Y Exponent 94
Y Slice Function 64

Z
Z Exponent 94
Z Rotate 92
Z Size 92
Z' Rotate 92
Zero Cross Image Function 61
Zero Cross Overlay Function 61

