FortMP Manual

Last Update
23 April 2008

JpliRisk

SYSTEMS

()

ISVESTOR IX FEOPLE

BS EN 150 9000 : 2000

Manual Prepared by

E F D Ellison

M Hajian

H Jones

R Levkovitz

| Maros

G Mitra

D Sayers (NAG Ltd)

Preface to Release 2

A) Changes Made Since Release 1

Many improvements have been made throughout the system and new fegtures have been introduced.
The mgor new features introduced are in the input, in Mixed Integer Programming, and in the Calable
Library (externa datainterface) asfollows:

Input Data

Standard data input is extended by new fesatures permitting free-form layout and long data names,
enlarged from 8 to 16 characters.

Mixed Integer Programming

MIP has been subgtantialy revised in order to permit addition of advanced new methods and to solve
models irrepective of the limitations imposed by maximum storage condraints. A system for recovery
of 'dead’ space enables large search trees to be developed with comparatively little memory.

A powerful dgorithm for MIP pre-processng has been added with substantid time improvement in the
solution of many MIP problems.

A feature has been added for the users to classify the MIP congtraint-types in their models.

Cdldble Library and Externd Data Interface

Many users of Externa Data Interface - module SUBMPL - have been obliged to write their own data
input procedures based on MPS-form data layout. The detailed checking and more complex features
are usualy omitted as a consequence. Now there is a new input festure available which reads from
MPS-form or from any other FortMP data form and makes the data available to a user via the externa
data interface in the same layout as that used for passng data to SUBMPL. Features are added to
enable users to look up names or classes of name o that they can program according to the data
dructure.

Miscellaneous additions

In the PRIMAL dgorithm a weighted column-sdection procedure (DEVEX) has been added as an
option (good for some models).

In the DUAL dgorithm a pivot-choice to counter degeneracy has been added as an option.

In the IPM dgorithm the chances of ingtability occurring are greatly reduced by Conjugate Gradient
iterations added as a refinement to the main iterative process.

The crossover from IPM to SSX (basis recovery or BASREC) has been substantialy improved and no
longer extends solution-time by a large amount.

Interna data interfacing routines are augmented by facilities to access the updated tableau.

Research programs

Newly developed dgorithms include Quadratic Programming, Stochastic Programming, and a suite of
CUT generating procedures for MIP. These are not yet a part of the standard FortM P release but may
be made available on application to the developers.

B) ChangesMadeln ThisManual

A variety of minor corrections have been put in which are not described here. Significant changes are
described - chapter by chapter

Chapter 1:- Introduction and background

This chapter is not changed

Chapter 2:- Elementary use of FortMP

This chapter is not changed

Chapter 3:- Overview of the Stand-Alone FortMP System

3.1 Introduction and overview
3.1.1 The algorithms employed
Mention is added of supporting dgorithms

BASREC (IPM-SSX crossover)
MIP Pre-processor

3.1.5 Overall structure of the system

The diagram, Figure 3, is amended to include:

following "Primal",

The existing section 3.2.3 isrenumbered as 3.2.4 and a new section 3.2.3 is added
3.2.3 Free Format MPS and Long Data Names
This newly added section introduces commands:

INPUT TYPE FREE
INPUT LONG NAMES

and describes the corresponding changes in MPS-form inpuit.
3.2.4 Other types of input data

Previoudy thiswas section 3.2.3

3.3.4 Running Mixed Integer

The following new commands are described here:

MIP PREPROCESS <ON/OFF>
MIP PRIORITY UP <ON/OFF>

introducing new features together with:

MAXIMUM MIPNODES=n
MAXIMUM MIPTIME =v

introducing new limits, and
NODE LOG FREQUENCY =n

to provide for reduced volume of node logging

3.3.5 Using the PRESOLVE algorithm

Presolve level maximum is changed to 5 (new default) and the following command is added:
PRESOLVE LOG LEVEL =n

3.4.3 Log File Output

Minimum log leve isnow zero instead of one. Level zero suppresses al logs except for error messages.

The following new command is described:

LOGDISPLAY LEVEL =n
and the description of ‘LOG DISPLAY’ commandsis clarified.
3.4.4 Suppressing Output
Thisisanew section describing how to avoid unnecessary outpuit.
The following new commands are described:

OUTPUT <ON/OFF>
OUTPUT SUPPRESS ZERO

3.5.1 Saving and Restarting

Default frequencies are changed. Frequency O (zero) has the effect of cancelling SAVE'.

3.7.1 Data Errors
Up to 50 data errors before hdting.
3.7.3 Numerical Difficulties and Instability

Dud infeaghility or unrecoverable numericd error in the DUAL dgorithm result in a revert to the primal
dgorithm.

The new commands mentioned above are added to this section.

Chapter 4:- Sparse Smplex (SSX) Solver

4.6.1 The Principal controls
The following enhancements are described

- DEVEX dgorithm (description in 4.3.2)
- Automatic Forrest-Tomlin activation
- Dud anti-degeneracy procedures (description in 4.4)

The following commands are added--

PRIMAL DEVEX <ON/OFF/SINGLE/DOUBLE>
FORTOM AUTO
DUAL ADEGEN =n

together with descriptions.

4.6.3 Tolerances and other parameters

Thetitle of this section is extended to include 'parameters

The following commands to change tolerances and parameters are pecified:

PRIMAL DEVEX RATIO=v
FORTOM ACTIVATE PERCENT =n
FORTOM ACTIVATE GROWTH =n
DPROGRESS CRITERION =v
DPROGRESS FREQUENCY =n
DUAL PIVOT THRESHOLD =v

4.6.6 Miscellaneous Controls

Log levels are now 0-4, default is 1.

This section is reduced to summarise only the commands described in chapter 4. Reference is made to
3.8 for the previous summary and to gppendix B for the complete lis.

Chapter 5:- The Interior Point Method

The exigting section 5.2.4 is deleted and replaced by the new section 5.2.4 described below
5.2.1 Using the Algorithms

The default for 'ITPM RELATIVE EPSILON' is changed to 1.0e-9.

5.2.3 Choice of Solution Algorithm for the Equations

The default for 'ITPM SOLVER' is changed to 'XSUPERNODE'. Also the following new command is
described:

IPM TOFIX =v

5.2.4 Refinement by Conjugate Gradient Iterations

Describes how CG iterations are used to improve the accuracy of each iteration. The following controls
are specified:

CHOLESKY CG TOLERANCE =v
CHOLESKY ERROR TOLERANCE =V
MAXIMUM CG ITERATIONS=n

5.2.51PM Save and Restart: Iteration Limit

Default SAVE frequency isincreased

5.2.6 IPM-SSX Crossover Options. BASREC

The following new command is described:
DUAL PUSH <ON/OFF>

5.2.7 Miscellaneous IPM Commands

The following new commands are described:

PUSH LOG FREQUENCY =n
PUSH LOG LEVEL =n

Save-files mode.a/b/c/d are described for graphica output display.

This section is reduced to summarise only the commands described in chapter 5. Reference is made to
3.8 for the previous summary and to gppendix B for the complete ligt.

Chapter 6:- Mixed Integer Programming (MIP)

This chapter has been extensively re-written and the text cannot redlistically be correlated with chapter 6
of release 1. The generd description of MIP remains with certain corrections to clarify the meaning and
the datainput is unchanged in outline but with the example presented differently.

Section 6.6 described the new version of FIXMIX and PRIORITY features - now changed and made
more flexible. The AUTO-ROUND festure is also changed - see 6.8.1

Elsawhere the reader will find additions as follows:

- UP node-choice priority feature (6.5.3)
- AGENDA data given by name (6.6.3)
- FIXMIX output feature (6.6.4)

- Advanced dgorithms (6.7)

- Cutoff controls (6.8.2)
- New search limits (6.8.3)

Because of memory savings made, the MIP DISK featureis no longer used.

Chapter 7:- FortMP Subroutine Library and Externd Data Interface

The existing release 1 features described in Chapter 7 are retained as before (7.1 and 7.2) with certain
improvementsto the text.

Readers should note the change in specification for REAL-type arguments which become DOUBLE
PRECISION in the new release standard version (see 7.2.3). Specid versons using single precison
(REAL) arguments can be ddlivered to customers who need compatibility with their exigting programs.

The new interface features are described in sections 7.3 to 7.6 and asummary isgivenin 7.7.

Chapter 8:- Data Interfacing Service Utilities

Mog of the materid in this chapter is unchanged from release 1. Readers should note the change in
specification for REAL-type arguments which become DOUBLE PRECISION in the new release
gandard version (see 8.1.6). With double precison the criterion for infinite bounds is increased (see
8.3.7 notes 4. and 5.)

Subroutines GTABLR and GTABLC are added to enable user to obtain vectors from the updated
tableau after execution of PRIMAL or DUAL agorithm (see8.1.2, 8.1.3, 8.1.4, 8.2.4 and 8.3.5 with
arguments added to 8.3.1).

A change is added to mixed integer type-codes to enable users to recognise the beginning of each SOS
(see description of MIT in8.3.1)

Appendices
Chapter 9 of release 1 has been re-cast as appendicesto dlow addition of new chaptersin the future.

Included in Appendix A (Input/Output Data Layouts) is the detailed specification of newly added free-
format input and long data names, together with the layout of MIP Agendafiles.

Appendix B (SPECS Commands - formerly section 9.3) isthoroughly revised and brought up to date
with dl commands, including minor commands not described before in the manud. This gppendix acts
as an index, giving references to those sections of the manua where acommand is described.

Preface to Release 3

A) Changes M ade Since Release 2

Generd Improvements

Release 3 of FortmP (March 1999) is provided with means to adapt its memory usage dynamicaly to
the sze of the problem being solved. 1t will no longer require user to pecify machine-size or problem-
Szein order to have averson specidly tailored.

Two versons now cover the needs of virtudly al users.
DS Double precison, Short Indexing for problems with no more than 32k constraints
DL Double precison, Long Indexing for larger congraint-size (virtualy unlimited).

Single precison versons are aso available but thar use is not recommended in view of the loss of
accuracy.

Memory adaptation is now available dso for pardld versons and for caling as a DLL from other
systems such as MPL. Standard subroutine libraries are delivered replacing separate modules.

Input Data Moddling

A better integration with the MPL moddling sysem has been developed permitting direct, internd
communication of files, and with a dialogue developed for the entry of SPECS commands (Appendix
D).

Primd Algorithm

New procedures are added to facilitate research, particularly in connection with pardld execution
(AppendicesF, H).

Dud Algorithm

Dua Phase | has been added together with better control of numerical accuracy and additional SPECS
controls (Sections 4.4, 4.6.7).

Mixed Integer Programnming

An auto-rounding heurigic festure has been developed with consequent changes to its previous
description in Release 2 (Section 6.8.1).

Extensions have been added to the cutoff controls (Section 6.8.3).

Interna Specs Communication

New features are now available for the subroutine library user to smplify the preparation of SPECS
commands by including common sections that are reed by dl callsto the solver (Section 7.4.4).

Quadratic Programming

The chapter on QP is added to this manua (Chapter 9). FortMP-QP is an IPM based solver for
convex quadratic objectives (Q-matrix positive semi-definite). It has been extended to solve integer QP
using a branch and bound agorithm.

'CRASH' Features

The specid CRASH(SOR) fegture is added in this manud together with other CRASH extensons
(Chapter 10).

New Appendices

New appendices are added as follows:

- Appendix C on ingtalation procedures

- Appendix D on moddling systems

- Appendix E on C-language usage

- Appendix F on pardld execution

- Appendix G on memory management

- Appendix H on specid testing and other miscellaneous extras.

B) ChangesMadelIn ThisManual

A variety of minor corrections have been put in which are not described here. Significant changes are
described - chapter by chapter

Chapter 1:- Introduction and background

A gatement of the QP problem is added (Section 1.7) with introduction (Section 1.1) and reference to
the author (Section 1.2). New platforms are mentioned (Section 1.6).

Chapter 2:- Elementary use of FortMP

This chapter is not changed

Chapter 3:- Overview of the Stand-Alone FortM P System

3.7.4 Running Out of Memory

This section is re-written

Chapter 4:- Sparse Smplex (SSX) Solver

4.3.2 Column Selection
Additiona column selection procedures are mentioned

This section has been re-written and considerabley enlarged, with sub-sections corresponding to those
of the PRIMAL agorithm - section 4.3.

4.6.1 The Principal controls

'‘DUAL DEVEX' controls are added and the 'DOUBLE' option for primal devex now has a new
meening:- apply DEVEX in phase 1.

4.6.3 Tolerances and Parameters

The pivot-control commands are changed so as to be less confusing and to provide separate PRIMAL,
DUAL and INVERT application. New commands specified in section 4.6.7 complete the picture.

4.6.7 Special Pivoting and Update Commands
This section is added so as to describe additiona new commands.
Revised to incorporate the earlier corrections and additions.

Chapter 5:- The Interior Point Method

This chapter is not changed.

Chapter 6:- Mixed Integer Programming (MIP)

6.8 Miscellaneous MIP. Controls

6.8.1 Automatic Rounding Heuristics

This section is re-written. Auto-rounding is now re-desgned as a heuridtic for finding integer solutions
quickly, before the main tree is developed. 'PROBE' rounding is discontinued.

6.8.2 Cutoff and Tolerance Control

New controls on the bound and the cutoff tolerance are added and a more complete description is
given.

6.8.3 Placing Limits on the Tree Search
'MAXIMUM' controls are added for the auto-rounding heuristic.
Revised to incorporate the earlier corrections and additions.

Chapter 7:- FortMP Subroutine Library and Externd Data Interface

7.2 External Data Interface

7.2.5 An Example

'MAXIMIZE' is added to the sample SPECS-commands. Thiswas an error in the previous version.
7.4 Internal SPECS Commands

7.4.2 Once-off Entry of SPECS Commands

The specification of 'CALL SPCINT is corrected.

7.4.3 Default Initialization

The wording of this section is darified

7.4.4 Common Sections in the SPECSfile

Thisisanewly added section describing the use of 'ALL" and 'DEFAULT" sections.

Chapter 8:- Data Intarfacing Sarvice Utilities

This chapter is not changed

Chapter 9:- The Interior Point Method for Quadratic Programming

Newly added chapter.

Chapter 10:- Advanced Starting Bases

Newly added chapter.

Appendix A:- Input/Output Data L ayouts

This gppendix is not changed

Appendix B:- SPECS Commands

B1.3 BEGIN and END Commands

Revised to include description of 'ALL" and 'DEFAULT" sections

B2.4 Maximum Limits

Control ' DUAL DEVEX <ON/ OFF>' added:

B2.7 SSX Controls: Parameters

Pivot tolerance controls changed - separate versionsintroduced for Primal, Dud and Invert.
New controls added for numerical accuracy and checking.

New control ' M P AROUND SOLVER <SSX/ | PM>' added. ' M P PROBE ROUNDI NG
IS deleted.

B2.11 MIP Controls: Parameters

Bound and Cutoff controls extended.

New Appendices Added

- Appendix C on ingtallation procedures

- Appendix D on modelling sysems

- Appendix E on C-language usage

- Appendix F on pardld execution

- Appendix G on memory management

- Appendix H on specid testing and other miscellaneous extras.

Contents

1. Introduction and Background -1
1.1 Introduction I-2
1.2 Background I-2
1.3 Scope and Purpose I-3
1.4 Related Documents I-4
1.5 Outline I-4
1.6 Platforms I-4
1.7 Statement of the Definitive Problem I-5
1.8 References I-8

PART1

2. Elementary Use of FortMP -1
2.1 Initial Tutorial -2
2.2 Simple Controls -9
2.3 Additional Data Preparation Features I-11
2.4 An Example: Binary and Integer Variables II-15
2.5 Summary of SPECS File Controls I1-19

PART 2

3. Overview of the Stand-alone FortMP System -1
3.1 Introduction and Overview -2
3.2 Data Preparation -7
3.3 Running the System l1-10
3.4 Output Descriptions l-14
3.5 Further Topics l-16
3.6 Input and Output Files in FortMP l-18
3.7 Errors and Recovery l-19
3.8 Summary of SPECS Commands l-22

4. Sparse Simplex (SSX) Solver V-1
4.1 Internal Problem Statement V-2
4.2 Introduction to the Algorithms V-4

4.3 PRIMAL Algorithm V-4

4.4 DUAL Algorithm V-9

4.5 INVERT IV-10
4.6 SSX Algorithm Controls IvV-11
4.7 Summary of SPECS Commands IvV-17
5. The Interior Point Method V-1
5.1 Introduction to the IPM Algorithm V-2
5.2 Controls on the IPM Algorithms V-7
5.3 Summary of SPECS Commands V-13
6. Mixed Integer Programming (MIP) VI-1
6.1 Introduction to MIP VI-3
6.2 MIP Problem, Data Types and problem definition VI-4
6.3 MIP Data Preparation: Marker Lines VI-12
6.4 Branch and Bound Algorithm VI-19
6.5 Controlling the Tree Development VI-22
6.6 Detailed User-control of the Tree Search VI-25
6.7 Advanced Algorithms for MIP VI-30
6.8 Miscellaneous MIP Controls VI-34
6.9 Logged Output and Screen Dispolay VI-39
6.10 MIP Constraint Classification VI-41
6.11 Summary of MIP SPECS Commands VI-48
PART 3
7. FortMP Subroutine Library and External Data Interface VII-1
7.1 Using FortMP as a Subsystem to Solve Linear Problems VII-2
7.2 External Data Interface VII-7
7.3 Standard Data Input to the Interface VII-18
7.4 Internal SPECS Commands VII-23
7.5 How to Avoid Miscellaneous 1/0 VII-25
7.6 MPS-form Output VII-27
7.7 Summary of Callable Library, External Data Interface and associated commands VII-28
8. Internal Data Interfacing Service Utilities VIII-1
8.1 Introduction to the Data Interfacing Service Utilities VII-2
8.2 The Facilities Available VIII-6

8.3 Specifications VII-8

PART 4

9. The Interior Point Method for Quadratic Programming IX-1
9.1 Statement of the QP Problem IX-2
9.2 IPM Solution Procedure IX-4
9.3 Input Data Layout IX-7
9.4 Worked Examples IX-10
9.5 Branch and Bound Algoritghm for MIQP IX-18
9.6 Summary of SPECS Commands IX-20

10. Advanced Starting Bases X-1
10.1 Introduction X-2
10.2 Primary Crash Algorithm X-3
10.3 Crossover Algorithms. Purify and Basis Recovery X-6
10.4 Iterative Crash Algorithm X-9
10.5 Summary of SPECS Commands X-12

APPENDICES

Appendix A. Input/Output Data Layouts A-1
Al. Mps-Form Data Layouts A-2
A2. Free-Form Layout and Long Names A-17
A3. Tabular Layouts (MG/RW Interface) A-21
A4. MIP Agenda Layouts A-27

Appendix B. SPECS Commands B-1
B1l. Syntax B-3
B2. Command Descriptions B-5

B3. Alphabetic List of Commands B-22

(This page intentionally left blank)

1. Introduction and Background

Contents

1. INTRODUCTION AND BACKGROUND
1.1Introduction
1.2 Background
1.3 Scope and Purpose
1.4 Related Documents
1.50utline
1.6 Platforms
1.7 Statement of the Definitive Problem

1.8 References

1.1 Introduction

FortMP isa Mahematica Programming system designed to solve large scale Linear Programming (LP),
Quadratic Programming (QP), Integer Programming (I1P) and variable separable programming including
specia ordered sets of Type 1 and Type 2 (SOS1 and SOS2) problems. It has been developed at
Brund University by the Mathematicd Programming Research Group headed by Professor G Mitra,
and is marketed by NAG Ltd.

FortMP is used in Management Science or Operaions Research and covers applications such as
transportation, chemicad engineering product blending, economic modelling, energy sysems and
networks. In short, most industrid applications or research problems involving linear or discrete
optimisation are handled by this system.

The main dgorithms used by FortMP are the Sparse Smplex (SSX) PRIMAL and DUAL dgorithms.
These are supplemented for large problems or QP problems by dternative Interior Point Method (IPM)
dgorithms (Barrier, Affine and Predictor-Corrector) based on the Prima-Dua Logarithmic Barrier
Method. Mixed Integer Programming (MIP) problems (including SOS1 and SOS2) are solved using a
Branch and Bound tree search agorithm.

Back to Chapter contents

1.2 Background

FortMP is an update of the FortL P system and has been developed through continuing research at the
Department of Mathematics and Statistics, Brund University, under the leadership of Professor Gautam
Mitra. A number of funding bodies and industriad partners have supported this research. The Science
and Engineering Research Council of the UK and the Department of Trade and Indusiry UK have
funded some of the research and development work. NAG Ltd has been an active collaborator on this
project snce 1985. Other industrid organisations whose funding and contributions have helped this
devdlopment indude Digitd Equipment Corporation's European research initiative, British Gas plc,
Parsytec Ltd and the US Army’ s European Research Office.

A number of people have worked at various stages of this project. Some of the work on inversion was
started by Dr K Darby-Dowman [10] and was extended by Dr M Tamiz in his PhD as wdl as his
postdoctoral work [11], [12]. The Interior Point Method was developed by Dr R Levkovitz
[13] during and after his PhD work. Dr R Levkovitz has dso helped in various vectorisation and
pardldisation sudies[14], [19]. Mot of the integer programming development is due to Dr M Hgjian
[15] and the work on paralld Branch and Bound has been undertaken by M Hgjian and | Hai [16] on
a clugter of workgations usng PVM (Pardld Virtud Maching). Many recent agorithmic extensions to
SSX are dueto Professor | Maros [17], [18] who has worked closely with the development team. Dr
H Jones has been respongible for extending the IPM dgorithm to QP [25]. In integrating the interior
point method (IPM) and Sparse Smplex (SSX) and MIP, E F D Ellison has put in consderable effort.
The subgtantia system development effort put in by him, with the able support of al the developers, has
turned the research codes into an integrated system covering SSX, IPM and MIP running on many
platforms. Dr D Sayers of NAG has worked on many areas of the system and provided enormous

support in al aspects of system production and testing. D Winganley at University of London Computer
Centre has implemented and tuned many versons of the system.

Back to Chapter contents

1.3 Scope and Purpose

FortMP is designed to fulfill the needs of users at different levels of sophistication: beginner, intermediate
and advanced.

Thismanud is therefore subdivided into three parts:
Part 1. Introductory and smple use of FortMP

This part provides a smple introductory tutorid on the use of FortMP. It is intended for users
who are not interested in the mechanics of the solution and who smply require a black box to
solve their problems.

Part 2: Intermediate level use of FortM P

In this part the mgor dgorithmic capabilities of FortMP are explained. The maerid in this
section addresses the requirements of users with very large or very difficult problems who need
the stand-alone system and in addition the power to use controls that overcome the difficulties.

Knowledge of LP and IP techniques would be useful to readers in understanding this manua
and in usng the stand-alone system, but is not a prerequisite.

Part 3: Advanced use of FortMP
This part describes the advanced use of the system by andysts who wish to

0) ether congtruct a specidist optimisation gpplication,
or (i) use the system as aresearch tool.

A typicd user may have multiple problems and may wish to integrate the solver within a system
of its own in order to improve processing efficiency. For example a series of problems can be
handled making use of the solution to one problem as the starting point for the next.

In such an integration provision is made to communicate the problem data and solution by an
interna interface rather than by externd files (athough externd files can be used). Controls can
aso be supplied interndly, externally or be defaulted. Research workers interested in developing
dgorithms for themsdves who need to make use of the internd subroutines of the FortMP
sysem will find this part vaueble.

Back to Chapter contents

1.4 Related Documents

Users of the FortMP system are assumed to possess a basic knowledge of linear programming. In order
to access dl the rdevant information covering the capability, performance, inddlation and usage of
FortM P system, the following supporting documents should be consulted as appropriate:

1. FortMP brochure
2. This User Manud
3. Ingtdlation Guide
4. Technica Reports and Research Papers

The FortM P brochure defines the functiondity and scope of use in summary form, whilst the manud is
intended to serve both as a User Guide and as a Reference Manual. The Ingalation Guide isintended to
help ingdlers to implement and test the FortMP system.

A number of Technica Reports and Research Papers are listed in the reference section. These may be
vauable for investigators who wish to use FortM P as a development and research tool.

Back to Chapter contents

1.5 Outline

Part 1 of this manua comprises only Chapter 2 and explains the d ementary use of FortMP. In this part
most of the concepts and controls are introduced through examples. Examples are given for solving
bounded Linear Programming (LP) and Integer Programming (IP) problems where the integer variables
have binary vaues or have generd integer vaues. This is dl that is needed for most users a the
eementary levd.

Chapter 3 through to Chapter 6 make up Part 2, the intermediate level. Chapter 3 of this manua
introduces the solution agorithms and the advanced use of controls and aso gives a decription of the
printable output files, solution output and log. Thisintroduction is expanded in Chapters 4, 5and 6 into a
fuller description of how to use the three main agorithm groups which are Sparse Smplex (SSX),
Interior Point Method (IPM) and Mixed Integer Programming (MIP).

Chapter 7 and Chapter 8 aswell asthe materid in the Appendix make up Part 3 of the manudl.

This part is designed for experienced users such as an gpplication developer or a research investigator
who wishes to use FortM P as a development or aresearch toal.

Although the definitive modd is introduced in Section 1.7, it is dso revisted in Part 2 of the manudl.
FortM P employs an extended M PS data format; thisis introduced by example in both Part 1 and Part 2
of the manua. A complete specification of the industry standard MPS data formats and also extensions
to cover SOS1, SOS2 and integer programming, is supplied in the Appendix. The emerging sparse
matrix data structure standard is also set out in this Appendix.

Back to Chapter contents

1.6 Platforms

The FortM P system is developed in away such that it is readily adaptable to a wide range of hardware
and software environments, both serid and pardld. ANSI FORTRAN 77 is used for the widest
possible portability between sysems. The following are environments for which a particular version has
been developed:

PC386/486/586 using the Saford FTN77 FORTRAN system

PC386/486/585 using the Watcom FORTRAN compiler

PC Win32 using the MS Development Studio with C compiler and Digitd Fortran.
Miscellaneous UNIX based operating systems

DEC VAX sygemsusng VMS and the VAX FORTRAN compiler

Intel 1860 hardware usng Microway 1860 FORTRAN with automaticaly vectorised
subroutines

CONVEX hardware using specid optimisng FORTRAN compiler with vectorised subroutines
CRAY hardware usng the CRAY FORTRAN compiler

The digtributed material may be an executable program (for the stand-alone system) or a mixture of
compiled and source text materid subroutine library. With the latter the user has the option of adapting
the memory Sze avalable to FortMP. See the Ingtalation Guide for further details.

Back to Chapter contents

1.7 Statement of the Definitive Problem

The generd linear programming problem with smple upper bounds may be stated as follows.

Given asat of n variables x,x,,...,x, ad a set of ncorresponding congtants c,,c,....,G,,
minimise (or maximise) the linear function

X TCX, +...+CX,
subject to thefollowing m linear condraints:
Q1% 8%, oo+ X
fori=212...,.m

where a,,...,a,,IS & m” n malrix of condant condraint coefficients and b,b,,...,b, are
constant right-hand sides and where the symbol *::” in the above represents any of the rdlations.

£ less than or equd to
3 greater than or equa to
= equd to

~ anon-binding condraint

and aso subject to the following bounds:

Ij £ X £ u, forj =12...,n.

Thisform of problem statement isillusirated in Figure 1 below.

C,C .. G,
W Uy ... U,
£
3 bl
£ b,
a.ij _ |
3 b,
£
Ly,

Figure 1. Generd LP problem with smple upper bounds

In aproblem with ‘two-sded linear’ condraints the problem statement is dightly different, as follows.

Given varidbles x;and congtants ¢;,a;, |, and u; as before, minimise (or maximise) the same

ijro

objective as before, subject to the following congraints:
Li £ QX T X, et X, £ Ui
fori=12...,.m

where L,...,L, ad U,...,U,, ae consant lower and upper bounds respectively for esch
congtraint row. The bounds on variables x; remain as before.

Thisisilludraed in Figure 2 below.

C, C,....C,

Uy Uy ... Uy

Figure 2. Generd LP problem with Simple Upper Bounds and RHS ranges

It isimplicit in both the above statements that wherever a bound does not exist the corresponding bound
vaues (u;,U,, 1, orL,)is + ¥ as gppropriate. The user Sgnifies each case by the use of type codes in

the input data.
In aMixed Integer problem the following classes of nonlinear variables are dlowed.
Binary varidbles
A binary variable has only two legd vaues, zero and one.
Integer variables

Aninteger variable may take only integer vaues withinits given bound range, |, £ x; £ u; .

Specia Ordered Sets, type 1 (SOS1)

An SOS1 is a consecutive subset of varigbles in the problem of which only one can be non-
zero.

Specia Ordered Sets, type 2 (SOS2)

An SOS2 is a consecutive subset of variables in the problem of which a most two can be non-
zero and when non-zero these two variables must be adjacent.

Semi-continuous variables

A semi-continuous varigble may take the vaue zero or lie in the range |, £ x; £ u where
I, and u; are both positive.

The generd statement of the Convex QP problem is smilar to that of the generad LP problem with the
following change permitting the objective to be a quadratic function

Minimize Sci. x; + ¥8SQqjk. Xj. Xk

Or:

Maximize Scj. Xj - YBSQjk. Xj. Xk

Summed for j and k over the range 1 to n, where the ‘q; are dements of asymmetric matrix Q having
n rows and columns that is either pogtive definite or positive semi-definite.

The QP solver is aso capable of solving problems having binary variables by applying asmplified form
of Branch and Bound.

Back to Chapter contents

1.8 References

[1] MITRA,G
Theory and Application of Mathematical Programming
Academic Press, 1976.

[2] ORCHARD-HAYES, W
Advanced Linear Programming Computing Techniques
McGraw-Hill, 1968

[3] BEALEEML
Mathematical Programming in Practice
Pitman, 1968

[4 MPSX-Mathematical Programming System.
Extended (MPSX), program number 5734 XM4
IBM Trade Corporation, New Y ork, 1971.

[5] MITRA,G
Investigation of some Branch and Bound Strategies for the Solution of Mixed Integer

Linear Programs
Mathematical Programming, 4, 155-710, 1973.

[6] BENICHOU,BM ead.
Experimentsin Mixed Integer Linear Programming
Mathematicd Programming, 1, 76-94, 1971.

[7] FORREST,JJH and TOMLIN,JA
Updated Triangular Factors of the Basis to Maintain Sparsity in the Product Form Smplex
Method
Mathematicd Programming, 3, 263-278, 1972.

[8] MITRA, Gand TAMIZ, M
Alternative Methods for Representing the Inverse of Linear Programming Basis Matrices
Recent Developmentsin Mathematica Programming, 273-302, Edited by Santosh Kumar,
Gordon & Breach, 1989.

[9] MURTAGH, B A and SAUNDERS, M A
MINOS 5.1 User’s Guide
Technica Report SOL 83-20R, Department of Operational Research, Stanford Universty, 1983.

[10] DARBY-DOWMAN, K
An Investigation of Algorithms used in the Restructuring of Linear Programming Basis

Matrices Prior to Inversion
PhD Thes's, Brund University, 1979.

[11] TAMIZ, M
Design, Implementation and Testing of a General Linear Programming System Exploiting
Sparsity
PhD Thes's, Brund University, December 1986.

[12] TAMIZ, M and MITRA, G
FortLP: A Linear and Integer Programming System
NAG Newsletter, October 1989.

[13] LEVKOVITZ, R
An Investigation of Interior Point Methods for Large Scale Linear Programs: Theory and
Computational Algorithms
PhD Thed's, Brund University 1992,

[14] LEVKOVITZ, R
Solving Large Scale Linear Programming Problems using an Interior Point Method on
Vector Processors
Departmental Report, Brund University, 1993.

[15] HAJAN,M
Computational Methods for Discrete Programming Problems
PhD Thesis, Brund University, 1992.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

HAI, I, HAJAN, M and MITRA, G

A Distributed Processing Algorithm for Solving Integer Programs using a Cluster of
Wor kstations

To gppear in Pardldl Computing, Elsevier Press, 1997

MAROS, |
A General Phase-| Method in Linear Programming
European Journa of Operational Research, 23, 6477, 1986.

MAROS, |

Adaptivity in Linear Programming, I1, (in Hungarian),

Alkamazott Matematikal Lapok (Journal of Applied Mathematics, Budapest) 7, 1-71,
1981.

LEVKOVITZ, Rand MITRA, G

Solution of Large-scale Linear Programs. A Review of Hardware, Software and
Algorithmic Issues

Optimisation in Industry, 1993.

MAROS, | and MITRA, G
Recent advancesin Linear and Integer Programming
From *Simplex Algorithms’, Chapter 1 (Oxford University Press, editor: JBEASLEY).

MARQOS, | and MITRA, G
Strategies for Creating Advanced Bases for Large Scale Linear Programming Problems
INFORMS Journa on Computing, USA (submitted, now under revision).

FORREST, JJH, HIRST, JPH and TOMLIN, JA
Practical Solutions of Large Mixed Integer Programming Problems with UPMPIRE
Management Science, 20(5), 1974, pp736-773.

GAUTHIER, JM and RIBIERE, G
Experimentsin Mixed Integer Programming using Pseudo-Costs
Mathematical Programming, 12, 1977, pp26-47.

HAJAN, M T and MITRA, G

Design Implementation and Testing of an Integrated Branch and Bound Algorithm for
Piece-wise Linear and Discrete Programming Problems within an LP Framework
Departmentd Report, Brunel University 1991.

Jones, H

IPM Solution of the Convex QP Problem, Chapter 8 of: A computational Investigation of the
Solution of Large Scale Optimization Problems

PhD Thes's, Brund University 1997.

Back to Chapter contents

2. Elementary Use of FortMP

Contents

. ELEMENTARY USE OF FORTMP

2.1Initial Tutorial
21.1LPModelling
2.1.2 Elementary Data Preparation
2.1.3 Simple Use of FortMP
2.1.4 The Complete Example

2.2 Simple Controals
2.2.1 The SPECS Controls
2.2.2 Controlling the Input and the Output
2.2.3 Additional Useful Controls

2.3 Additional Data Preparation Features

2.4 An Example: Binary and Integer Variables

2.5 Summary of SPECSFile Controls

N NN

© © ©

10

11

15

20

2.1 Initial Tutorial

2.1.1 LPModdling
The following is a smple example of a problem that has been moddled for solution by an LP system.

Minimize the cost function:

4x, +6x, + 5%, +16X, + 2X; +5X, + X,

subject to the following condraints:

X, + X =2
X, +3X, =5
2%, +3x, =4
X+ X, + X, +4x, + %X, =11
X, +2X, +2X3 +3X, + X5 +2X, + X, =14

and to the following bounds:

05£ X,
05 £ x,
00£x,£10
X, =10
00£ x; £60
10£ x,

Back to Chapter contents

2.1.2 Elementary Data Preparation

Data such as the above is entered by using a standardised layout, widely accepted as the norm for LP
systems, which is referred to as MPS format. In Appendix AL.1 there is given a proforma layout for
MPS data entry forms and these forms provide the smplest way to code problem data such as the
above.

Dataisin five sections: ROWS section, COLUMNS section, RHS section, RANGES section (optiond,
not used in the example) and BOUNDS section (optiond).

In the ROWS section each congraint row including the objective row is named and its type is specified.
The ROWS <section of the example may be encoded as in Table 1 beow.

Field 6

50—61

o~ | —C __ __ __ __ -
. < - - - - - -
0 mw _ _ _ _ _ _
L — - — — — —
< © | _C __ _ _ _Z _
- (99) - - - - - -
0 Lu _ _ _ _ _ _
L N - - - - - -
oo | - __ _ _ _ _
5 N - - - - - -
0 LV _ _ _ _ _ _
L A - - - - - -

Field 2

5—12

COST

R1

R3

R4

R5

Field 1

EQ

EQ

EQ

EQ

EQ

Greater than or Equa
Non-binding (objective)

GE
N

Less than or Equa
Equal

Feld 1, Row type:
LE=

EQ=
Fdd 2, Row name

Tablel. The ROWS Section

In the COLUMNS section the coefficient vaues on the left-hand Sde of the condraints is given plus the

objective row coefficients. Only non-zero vaues need to be entered. The sequence of entry is column-
wise, that is dl the vaues for one column (or variable) must be kept together. The COLUMNS section

of the example may be encoded asin Table 2 below.

Field 1 Field 2 Field 3 Field 4 Fidd 5 Field 6
2—3 5—12 15—22 25—36 40—47 50—61
it | XL COST 4.0 R1 1.0
Piitiiin | XL R2 1.0 R4 1.0
it | X1 R5 1.0
Pititiir | X2 COST 6.0 R2 3.0
Piiiiii | X2 R4 1.0 R5 2.0
Piitiiin | X3 COST 5.0 R3 2.0
Piititin | X3 R4 1.0 R5 2.0
it | X4 COST 16.0 R3 3.0
it | X4 R4 4.0 R5 3.0
Lititii1 | X5 COST 2.0 R4 1.0
Liiiiii1 | X5 R5 1.0
Litiiii1 | X6 COST 5.0 R1 1.0
Liitiiin | X6 R5 2.0
it | X7 COST 1.0 R5 1.0

Fdd 2, Column name
Fidd 3, Row name Fidd 4, Vdue
Fidd 5, Row name Fidd 6, Vdue

Table2. The COLUMNS Section

Note that a column is never solit up with data from another column in between. Records may hold one
or two entries a will; if there is only one entry then fields 5 and 6 are left blank. The order of rows within
acolumn isimmeterid.

In the RHS section right-hand side values are entered in the same way as the vaues of the COLUMNS
section. The column name in fidd 2 is replaced by a name for the RHS itsdlf. The RHS section of the
example may be encoded asin Table 3 below.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6

2—3 5—12 15—22 25—36 40—A47 50—61
1111111 | RHS R1 2.0 R2 5.0
liiii111 | RHS R3 4.0 R4 110
Liitii11 | RHS R5 14.0

Fdd 2, RHS st name
Fdd 3, Row name Fdd 4, Vdue
Fdd 5, Row name Fdd 6, Vaue

Table3. The RHS Section

In the BOUNDS section each non-zero bound vaue must be given singly. Fidd 3 here names the
column (variable) to which the bound applies and fild 2 names the bound-set. In fidld 1 a code is
entered to specify the bound type. The BOUNDS section of the example may be encoded asin Table
4,

Field 1 Field 2 Field 3 Fidd 4 Fidd 5 Fidd 6

2-3 512 15—22 25— 36 40—47 50—61

LO BND X1 0.5 biiiinr it
|

LO BND X2 0.5 SRR R
|

UP BND X3 1.0 SRR R
|

FX BND X4 1.0 R R R R AR
|

UP BND X5 6.0 SRR R
|

LO BND X7 1.0 Pitttoor [iiniiiti
|
|

Field 1, Bound type code

LO = Lower bound UP = Upper bound

FX = Fixed vdue FR = Free varidble

MI = Minustype PL = Plustype (defaullt)

LI = Integer variable, lower bound Ul = Integer variable, upper bound
BV = Binary variable SC = Semi-continuous, upper bound

Fdd 2, Bound st name
Fdd 3, Column name
Fdd 4, Vdue

Table4. The BOUNDS Section

Note that in all the above tables, names are entered at the left of their fields while values are
entered at theright. In fact values need not be coded to the right so long as the decimal point
appearsbut it isbetter to stick to this convention anyway.

At the beginning of the datathereisa‘NAME record which has the keyword ‘NAME' in positions 1—
4 and amode name of up to 8 charactersin field 3.

Each section is headed by an indicator record comprising the section name beginning a position 1.

After the last data record in the last section there is an indicator record having ‘ENDATA’ in postions
1-6.

The completefile of input datain MPS format isillusrated in Table 5.

Back to Chapter contents

2.1.3 Simple Use of FortM P

To execute the stand-alone FortM P system and solve this example the following preparations are made.

The input dataiis placed in afile named ‘MODEL.MPS .
A st of control commands known as ‘ SPECS controls' or as * SPECS commands ' is placed in
afile named ‘FORTMP.SPC'.

No specid controls are needed to solve the smple example but the file FORTMP.SPC should contain
the following two commeands as a minimum:

BEGIN
END

With thisal controls are set to default vaues and the input and output files are named by default to be

MODEL.MPS Theinput data file in MPS format.
MODEL .RES The solution output file

With the two input filesin place it is only necessary to execute the stand-alone FortMP program in order
to solve the problem and obtain the outpuits.

Back to Chapter contents

2.1.4 The Complete Example

The input, the SPECS controls and the solution output for the complete example set out in Section 2.1.1
aegvenin Table 5, Table 6 and Table 7 below.

NANE TESTI N

ROV

N CosT

EQ R1

EQ R2

EQ R3

EQ R4

EQ R5

COLUWNS
X1 cosT 4.0 RIL 1.0
X1 R2 1.0 R4 1.0
X1 R5 1.0
X2 cosT 6.0 R2 3.0
X2 R4 1.0 RS 2.0
X3 cosT 5.0 R3 2.0
X3 R4 1.0 RS 2.0

X4
X4
X5
X5
X6
X6
X7
RHS
RHS
RHS
RHS
BOUNDS
LO BND
LO BND
UP BND
FX BND
UP BND
LO BND
ENDATA

BEG N
END

FORTMP SOLUTI ON REPORT: (TOTAL | TERATI ONS=

LP: OPTI MAL
I P: NONE

PROBLEM NAME

OBJECTI VE NAME

RHS NAME
BOUNDS NAME
MROW =
NCCL =

LP OPTI MUM VALU

COST
R4
COST
R5
COST
R5
COST

R1
R3
R5

X1
X2
X3
X4
X5
X7

X
o

PNOEN S e
cocoooooo

PR eE
cocoocouwu

o o

R3
R5
R4
R1

R5

R4

e ee
oo

Table5. Simple example: Problem datain file MODEL.MPS

Table6. Simple example: SPECS controlsin file FORTMP.SPC

6
7
E

NO STATE NAME

COST

~NOoO ok WN B
Wr WMo W

X1
X2
X3
X4
X5
X6
X7

NAME
COST

R1

TESTI N
COST
RHS
BND

= 0. 420000D+02

VALUE

ROW VALUE
42.
2

N WP PN

5

5

5

LOG CAL VARI ABLES

STRUCTURAL VARI ABLES

2)

LOVNER BND

[62N¢)

—eereee

LOVNER RHS

NONE

2

UPPER BND

NONE
NONE
1.
1.
6
NONE
NONE

UPPER RHS
NONE
2

REDUCED

PNEE9E

SHADOW PRI CE
1.
- 1.

3 F R2 5. 5. 5. =l
4 F R3 4. 4. 4. =l
5 F R4 11. 11. 11. =l
6 F R5 14. 14. 14. =l

Table7. Smple example: Solution output

Back to Chapter contents

2.2 Simple Controls

2.2.1 The SPECS Controls

Thefile named FORTMP.SPC provides the FortMP system with the controls that it needs to execute a
run. In principle no controls are grictly necessary provided that the input data is in MPS forma and
resdes in the file MODEL.MPS. However, the user will most probably wish to change the filenames for
arun and may need to change other defaults aswell.

Controls which change the default settings are referred to as SPECS commands or as SPECS controls.
Each command is presented on one line comprising one or more keywords followed, where needed, by
the appropriate data. Examples are:

MODEL NAME (testin)

MAXI M ZE

PRESOLVE ON

FEASI Bl LI TY TOLERANCE = 1. 0d-6
| NVERT FREQUENCY = 75

The SPECS commands are listed on the FORTMP.SPC file between the indicator lines

BEG N
END

which delimit the active part of thefile.

Back to Chapter contents

2.2.2 Controlling the Input and the Output

The input and output file names can be changed by the following commands:

I NPUT FILE NAME (fil enane)
OUTPUT FILE NAME (fil enane)
LOG FI LE NAME (fil enane)

with the desired name for each file placed between the parentheses. However, it is not usualy necessary
to use these commands because it is easier to use default names.

By default these filenames are
nodel . nps

nmodel . res
nodel . | og

where ‘modd’ isaname of up to 8 characters which can itsdf be changed by the following command:
MODEL NAME (hodnane)

With this one command default names are assigned to dl input and output files by adding the appropriate
extension after ‘modname . Specific names for individud files need to be changed only when necessary.

Back to Chapter contents

2.2.3 Additional Useful Controls

Thefollowing commands s=t the direction of optimisation for the objective function:

MAXI M ZE
M N M ZE

ThedefaultisM NI M ZE

The commands given below dter the default dgorithms applied in the solution.

PRESOLVE ON

The PRESOLVE adgorithm examines for any possible reductions and smplifications that may be gpplied
directly to the problem. It should be fairly easy for the user to experiment with its use in order to decide
whether solution times can be improved in this way.

SCALE OFF

SCALE is an dgorithm that applies factors to the rows and columns of the congtraint matrix in order to
reduce the extremes of variation in the vaues of coefficients which may cause numericd difficulties in
solution dgorithms.

ALGORI THM | PM
The IPM dgorithm will dmost dways be found useful for the larger problems (1000 rows or more).

However, it may 4ill require a good understanding for setting the controls in the most efficient way
depending on the problem structure and the user is referred to Chapter 5 of this manud.

| PM BASREC OFF
If IPM isused and is successful then the solution obtained is employed in a crossover procedure termed
‘BASREC’ (basis recovery) for the final optimisation since IPM itsdlf does not provide a basic solution
to the origind problem. This can be stopped, and the IPM solution printed as the find solution, with the
command ‘' IPM BASREC OFF .

ALGORI THM PRI MAL
ALGORI THM DUAL
If IPM is not used then PRIMAL is the normd solution dgorithm. The DUAL dgorithm is employed

normaly to solve the subproblems created in the Branch and Bound dgorithm for MIP (in an MIP
problem the LP solution is obtained as a first step before Branch and Bound is caled). DUAL can dso

be used as an dternative to PRIMAL for the LP solution. Problems that are ‘DUAL feasble’ or that
have a large number of rows in proportion to the number of columns benefit from the use of DUAL.
After DUAL the system dwaysrevertsto PRIMAL for afina check on optimdlity.

The following SPECS commands are ussful in modifying the output written to the logfile
LOG DI SPLAY

This command causes the log (which includes progress information and gatistics) to be duplicated on the
standard display.

SI MPLEX LOG LEVEL = n

Where‘'n’ isanumber 0, 1, 2, 3or 4. The SMPLEX iteration log is normaly produced &t leve 1, only
ligting the important events such asre-inversons. At higher levdsan iteration log islisted in
progressively more and more detail.

SI MPLEX LOG FREQUENCY = n

The SIMPLEX iteration log is normdly produced at every iteration (levels 2 or above). This would
produce far too much for alarge problem and so the user may reduce the frequency of output with this
ingruction.

Back to Chapter contents

2.3 Additional Data Preparation Features

An example: Bounded variablesand RHS ranges

The following is a smple example of a problem having both bounds on the varigbles and ranges on the
RHS.

Minimize the cogt function:

4x, +3x, +2x,

subject to the following condraints:

2EX +2X,+X, £6
83 x,+3x;3% 4
33X, +x,=4

and to the following bounds:

05£x £50
X, =20

X, 1S unbounded (free)
X, £00 (i.e isnegative)

The ROWS section of the example may be encoded asin Table 8 below.

Field 6

50—61

n N - - - -
— < —— _— —_ —_
0 nr _ _ _ _
L < — —_ - _
< © | —= _ _ __
- § - - - -
0 :r __ _ _ _C
L N - - - -
m o | -Z _ _ _
- - - - -
0 :_u __ _ __ _
L - - - -
S Y
©
D
24 w
— ™

O & & &
—
s ™
2«

L LL
prd — o m\

Feld 1, Row-type:

Greater than or Equa
Non-binding (objective)

GE
N

Lessthan or Equa
Equa

LE
EQ

Fidd 2, Row name

Table8. Example of ROWS Section

The COLUMNS section of the example may be encoded asin Table 9 below.

Fidd 1 Fidd 2 Fied 3 Fied 4 Field 5 Field 6
2—3 5—-12 15—22 25—36 40—47 50—61
i | XL COST 4.0 R1 1.0
il | X1 R2 1.0
LT | X2 COST 3.0 R1 2.0
i | X2 R3 3.0
il | X3 COST 2.0 R2 3.0
il | x4 R1 1.0 R3 1.0
Fdd 2, Column name
Fdd 3, Row name Fdd 4, Vdue
Fdd 5, Row name Fdd 6, Vaue
Table9. Example of COLUMNS Section
The RHS section of the example may be encoded asin Table 10 below.
Fied 1 Field 2 Fied 3 Fied 4 Fied 5 Field 6
2—3 5—-12 15—22 25—36 40—A47 50—61
11l | RHS R1 6.0
11l | RHS R2 4.0
it | RHS R3 4.0
Fdd 2, RHS st name
Fdd 3, Row name Fdd 4, Vdue
Fdd 5, Row name Fdd 6, Vdue

Table 10. Example of RHS Section

The RANGES s=ction that follows is amilar in form to the right-hand side section. The vdue entered is

the difference between the upper and lower vaues for each congraint that has arange. In the example it
would be encoded asin Table 11 below.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
2—3 5—12 15—22 25—36 40—47 50—61

Feld 2, Range set name
Fidd 3, Row name Fdd 4, Vdue
Fidd 5, Row name Fdd 6, Vdue

Table11. Example of Ranges Section

The BOUNDS section of the example may be encoded asin Table 12 below.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
23 512 15—22 2536 40—47 50—61
LO BND X1 0.5 AR R
|
UP BND X1 5.0 SRR R
|
FX BND X2 2.0 AR ER R
:
FR BND X3 AR R
:
MI BND X4 AR EE R
I
|
Field 1, Bound type code
LO = Lower bound UP = Upper bound

FX = Fixed vdue
MI = Minustype
LI = Integer variable, lower bound

BV = Binary variable

Fdd 2, Bound s&t name

Fdd 3, Column name

Fed4, Vdue

Back to Chapter contents

FR = Freevaridble

PL = Plustype (default)
Ul = Integer variable, upper bound
SC = Semi-continuous, upper bound

2.4 An Example: Binary and Integer Variables

For this example we shdl largdly repeat the example of Section 2.1.1 but with additiond binary and
integer condraints aso conddered. The problem statement becomes the following.

Minimize the cogt function:

subject to the following condraints:

Table12. Example of BOUNDS Section

4X, +6X, +5X; +16x, + 2%, +5X4 + X,

X, +Xg =2
X, +3X, =5
2%, +3x,% 4
X+ X, + X, +4x, + %X, =11
X, +2X, +2X3 +3X, + X5 +2X, + X, =14

and to the following bounds and discrete value congraints:

05 £ x,

05 £ x,

X, isabinary variable (zero or one)

X, =10

X isaninteger variadbleintherange 0.0 £ x, £ 6.0
X, isaninteger variable with lower bound 1.0

Readers will note that row R3 has become an inequality — it is relaxed because otherwise the problem
does not have any solution that satisfies the binary and integer congraints.

The ROWS section of the example may be encoded asin Table 13 below.

od | __ _C _C __ _C _C
©8 |z o - - o -
o nw __ __ __ __ __ -
L © - - - - - -
o~ | ZC __ __ __ __ -
LS|z o - o o -
O Mw __ __ __ __ __ __
LL - — . - . e
< © | _C __ __ __ __ __
I® | o - o o o
O Lv __ __ __ __ __ __
L N _ _— - - _— -
o~ | _Z __ __ __ __ __
RUEN el o - - o -
O Lq __ __ __ __ __ __
LL — —— __ —— —— _— ——
Iy
o
5
2 w
— o™ <t L0
O T e i & (7
—
™
©
5
[E (@ (@4 L (@ o
=] I O I I

Gresater than or Equal
Non-binding (objective)

GE
N

LE = Lessthan or Equa

Fied 1, Row type:

= Equal

EQ
Fdd 2, Row name

Table 13. Example of ROWS Section

The COLUMNS and RHS sections have not been changed in any way and remain exactly as shown in

Table 9 and Table 10. Thereis no RANGES section.

The new BOUNDS section of the example may be encoded asin Table 14 below.

Field 1 Field 2 Field 3 Fidd 4 Fidd 5 Fidd 6

2-3 512 15—22 25— 36 40—47 50—61

LO BND X1 0.5 Piitiinr [t
|

LO BND X2 0.5 AR R
|

BV BND X3 SRR R
|

FX BND X4 1.0 SRR R
|

ul BND X5 6.0 SRR R
|

LI BND X7 1.0 Pittieer [Pttt
|
|

Field 1, Bound type code

LO = Lower bound UP = Upper bound

FX = Fixed vdue FR = Free varidble

MI = Minustype PL = Plustype (defaullt)

LI = Integer variable, lower bound Ul = Integer variable, upper bound
BV = Binary variable SC = Semi-continuous, upper bound

Fdd 2, Bound st name

Fdd 3, Column name Fdd 4, Vdue

Table 14. Example of BOUNDS Section

Having prepared the data there are no SPECS controls to consder other than giving a name to the
mode with the‘MODEL NAME command. We shall use the name BININT for this example.

To execute the stand-aone FortM P system and solve this exampl e the following preparations are made.

Theinput datais placed in afile named ‘BININT.MPS .
‘SPECS controls' are placed in the file named ‘ FORTMP.SPC’ as before.

No speciad controls are necessary because the Mixed Integer dgorithm is invoked automaticdly by the
presence of discrete value condraints in the problem. The file FORTMP.SPC contains the three
commands

BEG N
MODEL NANME (BI NI NT)
END

All other controls are set to default values and the input and output files are named as.

BININT.MPS Theinput data filein MPS format.
BININT.RES The solution output file.

With these files in place it is only necessary to cdl execution of the stand-done FortMP program in
order to solve the problem and obtain the outputs. The input, the SPECS controls and the solution
output for thisexample are given in Table 15, Table 16 and Table 17 below.

NAVE BI NI NT

ROWS

N COST

EQ R1L

EQ R2

GE R3

EQ R4

EQ R5

COLUWNS
X1 cosT 4.0 R1L 1.0
X1 R2 1.0 R4 1.0
X1 R5 1.0
X2 cosT 6.0 R2 3.0
X2 R4 1.0 R5 2.0
X3 cosT 5.0 R3 2.0
X3 R4 1.0 R5 2.0
X4 cosT 16.0 R3 3.0
X4 R4 4.0 R5 3.0
X5 cosT 2.0 R4 1.0
X5 R5 1.0
X6 cosT 5.0 R1 1.0
X6 R5 2.0
X7 cosT 1.0 R5 1.0

RHS
RHS R1 2.0 R2 5.0
RHS R3 4.0 R4 11.0
RHS R5 14. 0

BOUNDS

LO BND X1 0.5

LO BND X2 0.5

BV BND X3 1.0

FX BND X4 1.0

U BND X5 6.0

LI BND X7 1.0

ENDATA

Table15. Problem DataFile

BEG N

MODEL NAME (BI NI NT)

END

Table 16. Problem SPECS Fle

FORTMP SOLUTI ON REPORT: (TOTAL | TERATI ONS= 3)
LP: OPTI MAL
| P; OPTI MAL
PROBLEM NAME = BI NI NT
OBJECTI VE NAME = COST
RHS NAMVE = RHS
BOUNDS NANME = BND
MROW = 6
NCOL = 7

LP OPTI MUM VALUE
I P OPTI MUM VALUE

0. 420000D+02
0. 430000D+02

COLUMNS. STRUCTURAL VARI ABLES
NO STATE NAME VALUE LOVNER BND UPPER BND REDUCED
CCST
1 B Xl 2 0.5 NONE 0.
2 B X2 1 0.5 NONE 0.
3 F X3 1 1. 1. 2.
4 F X4 1 1. 1. 9.
5 B X5 3 0. 6. 0.
6 L X6 0. 0. NONE 2.
7 B X7 2. 1. NONE 0.
ROAS. LOG CAL VARI ABLES
NO STATE NAME ROW VALUE LOVNER RHS UPPER RHS SHADOW PRI CE
1 B COST 43. NONE NONE 1.
2 F R1 2. 2. 2. - 1.
3 F R2 5. 5. 5. - 1.
4 B R3 5. 4. NONE 0.
5 F R4 11. 11. 11. - 1.
6 F R5 14. 14. 14. - 1.

Table 17 * Problem Output’

Back to Chapter contents

2.5 Summary of SPECS File Controls

The following SPECS commands have been introduced so far in this manua. Those introduced in this
chapter are underlined thus

This command supplies a default for the names of input files and output files in the run which are built by
adding an extenson asfollows.

MODNAME. MPS | nput dat a.
MODNAME. RES Qut put results.
MODNANME. LOG Log file and nessages.

The default modd nameis‘ MODEL'.

This command assgns a speciad namefor thelog file.

M N M ZE

This command specifies that the objective is to be minimised. NB: ‘MINIMIZE' is the default so this
command is not actualy needed.

This command specifies that the objective is to be maximised.
PRESOLVE ON

This command activates a‘PRESOLVE’ operation prior to optimisation.

SCALE OFF

This command cancdsinitid scaing of the data

ALGORI THM PRI MAL

One of these commandsis used to specify the primary solution agorithm for the continuous LP problem.
‘PRIMAL’ isthe default and need not be specified.

FEASI BI LI TY TOLERANCE = val ue

This command assigns a tolerance usad in the adgorithms. The default for ‘vaue is 1.0d-5. Other
tolerances are introduced in Chapter Error! Reference sour ce not found. of this manud.

This command assigns a frequency, in terms of the iteration count, for reinverson during SIMPLEX
dgorithms. The default for ‘n’ is 50.

SI MPLEX LOG LEVEL = n

This command determines in what level of detall to print the iteration log during SMPLEX dgorithms.
The default for ‘n’ is 1 giving only outstanding events, but higher levels dso give details of each iteration

This command assigns a frequency for printing the iteration log during SIMPLEX dgorithms. The default
for‘n’ isl.
| PM BASREC OFF

When ‘ALGORITHM IPM’ has been sdected the user can use this command to halt execution and
print the output immediately on reaching the IPM solution.

LOG DI SPLAY

This command causes al logged output, not just important diagnostic messages, to be duplicated on the
online display (or written to the standard output stream).

This command terminates the SPECS commands. Anything beyond it isignored. \

Back to Chapter contents

3. Overview of the Stand-alone FortMP System

Contents

3. OVERVIEW OF THE STAND-ALONE FORTMP SYSTEM 1
3.1 Introduction and Overview 2
311 TheAlgorithms Employed by FortMP 2
312 Sparse Simplex (SSX): PRIMAL, DUAL and INVERT 2
313 Interior Point Method (IPM) — When and When Not to Use 3
314 Mixed Integer (MIP) with the Branch and Bound Method 4
315 Overal Structure of the System 5
316 Providing Controlsonthe SPECSFile 7
3.2 DataPreparation 8
321 MPSFormat 8
322 Matrix Generator Format 10
323 Free Format MPS and Long Data Names 10
324 Other Typesof Input Data 11
3.3 Runningthe System 11
331 Using SSX 11
332 Setting up a Starting Basisfor SSX 12
333 Using IPM 13
334 Running Mixed Integer 13
335 Usingthe PRESOLVE Algorithm 14
336 Usingthe SCALE Algorithm 15
3.4 Output Descriptions 16
341 Standard Output Description 16
342 Report Writer Output 16
343 Log File Output 17
344 Suppressing Output 18
3.5 Further Topics 18
351 Saving and Restarting 18
352 Bypassing theInitial MPS Input 19
353 BASISInput and Output 19
3.6 Input and Output Filesin FortMP 20
3.7 Errorsand Recovery 21
371 Data Errors 21
372 Maximum Iterations Reached or Other Limit Exceeded 21
373 Numerica Difficulties and Instability 22
374 Running Out of Memory 22
375 SoftwareErrors 23

3.8 Summary of SPECS Commands 24

it 1

3.1 Introduction and Overview

3.1.1 TheAlgorithms Employed by FortMP

FortMP is a highly advanced system for the solution of Linear Programming (LP) and related problems.
It can solve problems of dl szes and has specid features which enable it to find a solution even in the
case of degeneracy and numerica difficulties.

There are three main classes of dgorithm employed by FortMP.

The Sparse Smplex (SSX) dgorithms comprises PRIMAL and DUAL. Both of these
agorithms employ INVERT.

The Interior Point Method (IPM) dgorithms are based on the Prima Dud logarithmic barrier
method.

A Branch and Bound technique for the solution of Mixed Integer (MIP) problems dlows Binary,
Integer, SOS1, SOS2, and Semi-continuous variable types and a variety of choice drategies.

In addition there is a full supporting set of minor agorithms and procedures enabling user to achieve the
mogt efficient solution possible. Examples are;

SCALE

PRESOLVE

CRASH

BASREC (IPM-SSX crossover)
MIP pre-processor

SAVE and RESTART features
BASIS input and output

Input data is normaly presented in the standardised MPS format with extensons for MIP variable types.
Other formats are dso available.

The stand-alone version of FortMP begins by reading a set of control commands (SPECS) supplied by
the user to define which agorithms are to be used and to supply any specid tolerances, weights or other
necessary parameters needed to control the run. However, the user does not need to supply dl such
controls as the system will use defaults that have been judged as best for a variety of problem types.

Back to Chapter contents

3.1.2 Sparse Simplex (SSX): PRIMAL, DUAL and INVERT

The revisad SSX dgorithms comprisng PRIMAL and DUAL together with the INVERT procedure,
which is used in both dgorithms, form the centrd core of the sysem. By default PRIMAL is used for the
solution and PRIMAL is dways used to complete the solution process and verify that any other solution
(eg. that supplied by DUAL) isindeed a vdid solution before terminating.

i1 N

A rather amplified view of the SSX dgorithms is given here; the reeder will find a fuller discusson in
Chapter 4.

SSX proceeds via a progression of ‘basc’ solutions. In a basic solution there is a set of M ‘basic
variables (where M isthe row sze of the problem including the objective row) and al other varigbles are
fixed ether to the lower bound or to the upper bound.

One gtep in the progression, or one ‘iteration’, exchanges one basic for one non-basic variable and this
proceeds until one of the following three outcomes takes place.

The problem is shown to have no feasble solution (infessible).
It is shown that the objective can be improved without limit (unbounded).
An optimum solution is found.

Knowledge of the basis enables procedure INVERT to provide a set of factors termed ‘ETA vectors
with which the current solution is caculated. During PRIMAL or DUAL iterations the lig of ETA
vectors is extended, zero, one or two being added for each iteration. This growth of the ETAS requires
that INVERT be repested periodicaly to reduce the storage used. INVERT & so reduces the volume of
caculation and improves accuracy.

Back to Chapter contents

3.1.3 Interior Point Method (IPM) — When and When Not to Use

IPM is an entirdy different gpproach from SSX which does not proceed via a progresson of ‘badc
solutions. Instead it proceeds via a progression of ‘interior’ points — an interior point being a set of
vaues that satisfy the bounds and ranges but are not necessarily feasible in the sense of satisfying the
equations.

Oneiterative step proceeds by choosing adirection, a set of changes to apply to the variable vaues, and
going a certain distance in that direction without causing any bound or range to be violated so that the
point remains ‘interior’. The direction is chosen in such away as to ensure that the total infeagbility is
reduced and that there is progress towards an optimal objective vaue.

In mogt indudtrid optimisation problems the optimum solution is by no means unique. The optimum
solution obtained by IPM usudly differs from one obtained by SSX in not being a‘basic’ solution. Only
in rare text book examples does the IPM optimum have exactly M variables with intermediate vaues
between lower and upper bound.

Thisis a disadvantage to many users because a non-basic solution cannot be used for andyd's, nor can it
provide an advanced basis for the solution of another problem. Hence in FortMP there is an dgorithm
caled BASREC which does the job of recovering a basic optimum solution from the non-basic 1PM
solution. As with the DUAL dgorithm, PRIMAL is cdled to aoply the find verification before the
solution is accepted.

The other main difference between SSX and IPM is that with [PM the number of iterations required is a
function of the problem’s complexity rather than its Sze. Experience shows that, for smilar problems,
IPM solution times grow in a nearly linear fashion with problem size while SSX solution times grow
quadratically because both the number of iterations and the time per iteration increase linearly with

i N

problem sze. Thus there is a cetan Sze beyond which it usudly pays the user to employ IPM.
Problems with 1000 or more congtraint rows can probably be solved more quickly with IPM athough
users may need to experiment in order to find the best set of control parameters to suit their model
structures.

If you do not need a basic solution and can be satisfied with the IPM solution then the system can be
halted at that point reducing the solution time even further.

Back to Chapter contents

3.1.4 Mixed Integer (MIP) with the Branch and Bound M ethod

Before entering the MIP solver (Branch and Bound) the sysem must obtain the basic optimum solution
to the continuous problem — that is the origind problem with al integer and other discrete congraints
ignored.

The continuous optimum forms the root node of a branching tree which is then developed by the MIP
agorithm. At each node (starting with the root node) some MIP variable is chosen which as yet does
not have a lega discrete vaue. Two branches are formed with the variable restricted one way on the
first branch and the opposite way on the second branch. This regtriction works differently for different
MIP variable types.

A binary varigble is regtricted to zero on one branch, and to one on the other branch.

An integer variable having a value between two integers K and K+1 is restricted to an upper
bound of K on one branch and alower bound of K+ 1 on the other branch.

An SOS is divided in two contiguous subsets. On one branch the lower set is redtricted dl to
zero and on the other branch the upper set is restricted al to zero.

A semi-continuous variableis restricted to zero on one branch and to its continuous range on the
other branch.

It is dear that by progressvely branching in this manner and solving the subproblems so obtained to
derive new nodes on which to branch again, the agorithm can eventudly reach dl possble integer
solutions and select the best. However, this would be impossibly long. The agorithm succeeds in a
reasonable length of time by *bounding’, that is by cutting off any branch with a solution value worse
than the current best available integer solution. No bounding is possible until an integer solution is known
and 0 the initid policy is to continue down one branch to the first integer solution in order to find a
bound quickly.

Each subproblem is solved by using the SSX solver. The bounding process works because no
subproblem can have a better solution vaue than its parent node since an extra redtriction has been
added.

Back to Chapter contents

i A

3.1.5 Overall Structure of the System
Fgure 1. bdow illugtrates in smplified form the block structure of the system.

i

i r~

Dual

START

Read Specs ’

Y

I nput]

Y

Preparation
(Presolve)
(Scae)

Y

-

Starting
Basis

Dual

Algorithm

Starting
Basis

V{ Primal

Y

{ (Postsolve) ’

P IPM

Yes

Basrec

END

Figure 1. Block structure of the system

No

As can be seen, the execution path through the system is controlled by three main switches.

The ALGORITHM switch selects one of the three main procedures PRIMAL, DUAL or IPM
to employ for the LP solution.

The BASREC switch isonly active after IPM and causes BASREC to be executed followed by
PRIMAL. If it isBASREC is OFF then IPM isfollowed immediately by IPM OUTPUT and the
run terminates.

The ‘Discrete Variables or MIP switch causes the MIP dgorithm, Branch and Bound, to be
executed. The MIP switch is dways set OFF if the problem has no MIP variables.

Back to Chapter contents

3.1.6 Providing Controlson the SPECS File

At the outset FortMP reeds dl of the control commands that it needs for the run from the file named
‘FORTMP.SPC’. Every control has a default vdue so that in the amplest case the user need not
provide SPECS commands.

Each SPECS command is presented on one line and conssts of one or more keywords followed by a
vaue which, depending on the command, may be either:

aname or text string enclosed in parentheses,
anumerica vaue, optiondly after an *="dgn, or
aswitch ON or OFF (if omitted then ON is assumed).

Examplesare:

MODEL NAME (testin)
MAXI M ZE

PRESOLVE ON

I NVERT FREQUENCY = 75

Additiona examples have been given in Chapter 2, Section 2.2,
Detalls of the syntax of every SPECS command are given in the Appendix B.

All keywords may be abbreviated to the first four or more letters and the first keyword (only) may be
abbreviated to the firgt three letters. The asterisk character (*) acts as a line terminator so that the user
may include comments to the right. Users may aso include whole comment lines by putting an agterisk in
column 1. The above commands could be written as.

MOD NAME (testin)

* Filenanes are testin.nps, testin.res, testin.log

MAX

PRE
I NV FREQ 75 * NB: default is 50

However, for the sake of clarity it is better not to abbreviate too much.

it =z

The system does not use every line in the SPECS file regardiess, but only that part of the file which is
delimited between the two indicator commands ‘BEGIN’ and ‘END’. The complete example without
abbreviation would be

BEGH N

MODEL NAME (testin)
MAXI M ZE

PRESOLVE ON

| NVERT FREQUENCY = 75
END

A comment is added to show the range of alowable vaues (if needed) and the default (where it
goplies). In Section 3.8 thereisasummary of dl the commands introduced so far.

Back to Chapter contents

3.2 Data Preparation

3.2.1 MPS Format

The sandard means for encoding externd problem data is MPS format which has aready been
described in Chapter 2, Section 2.1.2 with further examples in Sections 2.3 and 24. Here we give
some further rules and examples. A fully detailed specification is given in Appendix A.

MPS format datais invoked by the SPECS command
| NPUT TYPE MPS

However, thisisthe standard default and need not be given.
Comment Lines
Any line beginning with an agterisk (*) in column 1isignored by the input.

The Format of aName

A name is 8 characters long and may contain any letter, digit or pecia character, upper and lower case
being consdered different. Leading blanks are ignored but internd blanks are counted — for example the
following names are dl different:

ROWM 11
ROM 11
rowl 11.

Alternative Row Type Codes

Alternative codes, such as ‘G’ or *>' in the place of ‘GE’ may be used for row types in the ROWS
section. See Appendix A, section A1.1 for details.

Rhs Range Coding

I 0

In the RANGES section dl GE type and LE type rows have only postive or zero range vaues. A zero
range vaue on these row typesimplies that the row is changed in type to become an EQ type row.

Rows defined as EQ type may have postive or negative range vaues which effectively change the row
type asfollows.

A positive range implies row type GE
A negdive range impliesrow type LE

Congder the following example row with an RHS range:

100£ § ax, £200

This can be coded in four dternative ways.

1) ROWS : UsetypeLE
RHS vaue 20.0
RANGES: vaue +10.0

2) ROWS : Usetype GE
RHS : vdue 10.0
RANGES: vaue +10.0

3) ROWS : Usetype EQ
RHS vaue 10.0
RANGES: vaue +10.0

4) ROWS : Usetype EQ
RHS : vdue 20.0

RANGES: value-10.0

Multiple Rhs Sets, Range Sets and Bound Sets

An important option for the user is to provide severd dternative modes in the same data file. This is
done by making use of multiple sets in the RHS, RANGES and BOUNDS sections of the data with
diginct namesin field 2 of the input records.

The following SPECS commands specify the sdlection of particular sets:

RHS NAME (rhsnane)
RANGES NAME (rngnane)
BOUNDS NAME (bndnane)

By default the first set to gppear will be sdlected for any section where the command is not given.

These satsfollow the same rule as for columnsin the COLUMNS section; a set may not be split. All the
data for any one set must be presented consecutively. In addition no set name should be entirely blank
because ‘blank’ is used internally to select the default. 1t is possible for a set to be empty, i.e. to have no
datarecords at dl with that set name.

I N

Objective Row Sdlection

The following SPECS command names the row to be used as objective row in the problem data:
OBJECTI VE NAME (obj nane)

where ‘objname represents the name of a free row in the modd. By default the system sdects as
objective row the first row to be defined with type FREE (code ‘N’) in the ROWS section.

Back to Chapter contents

3.2.2 Matrix Generator Format

Problem data prepared for input to FortM P by a matrix generator (MG) such as MPL is quite different
from MPS format data. The objective of such data is to achieve a more efficient interfacing between
FortMP and the MG in which external matters, such as names, are handled by the MG and not by
FortMP.

The MG is expected to act in conjunction with a Report Writer (RW) which reads a specidly formatted
solution output from FortM P and identifies the rows and columns on the basis of index number.

Detailed layouts for MG input and RW output are given in Appendix A, section A3.1. To invoke this
form of datainput the following SPECS command is used:

I NPUT TYPE MG

Back to Chapter contents

3.2.3 FreeFormat MPSand Long Data Names

The standard MPS format of data is based upon ‘Fixed form’ data entry under which every fidd is
postioned at a given place in the input data line. Ultimately this derives from data entry on punched
cards where the fixed form is naturd.

In modern data entry it is not natural for an operator to use the keyboard in thisway. Rather the dataiis
seen as a series of items or ‘tokens' to be entered in a particular order, where the tokens correspond to
the fields of fixed form data entry. Data ‘lines replace ‘cards, these being separated by new-line
entries on the keyboard, and the tokens are separated from each other by using certain specid
characters that cannot be used in atoken.

In Free Format MPS data input for FortMP the firg fidd (postions 2-3) remains in fixed form,
completely unchanged. Fields 2 to 6 from postion 5 to the end of a line are replaced by tokens with
blank spaces acting as separator. Any number of spaces are equivaent to a sSingle space o that the
data may be ‘padded’ out with blanks to arrange in columns for better viewing. In fact most ordinary
fixed-form MPS data files are dso quite valid as free format data files provided the unused gaps
between fields are blank and provided there are no blank names or names with interior blank spaces.

Free format datais invoked with the SPECS command:
| NPUT TYPE FREE

I 1N

which must be given asthe default typeis‘MPS. Some additiond points are to be noted:
Comment Lines
Any line beginning with agterisk (*) in pogtion 1 isignored by the input.

Row and Column Names

Row and column names are normally redtricted to 8 characters. This can be enlarged to 16 characters
with the following SPECS command:

| NPUT LONG NAMES ON

where ‘OFF isthe default. Other types of name such as problem name, RHS/Range/Bound set names
etc. remain limited to 8 characters.

Heading Keywords

Thefollowing are specid heading keywords as in Fixed-form MPS:

NAME RHS ENDATA
ROWS RANGES
COLUMNS BOUNDS

and these must dway's be entered starting at position 1 of aline with no preceding blanks.

Input type with Long Names

When INPUT LONG NAMES ON is specified the type of input data is necessarily free format MPS.
Long names must therefore conform to the rules for tokens (i.e. no interior blank spaces).

Back to Chapter contents

3.2.4 Other Typesof Input Data

Various dternative input features have been provided in the FortMP system. Details of these
mechanisms are given in Appendix A (or for specia reasons may be supplied in separate documents).

Back to Chapter contents

3.3 Running the System

3.3.1 Using SSX

The SSX dgorithms are invoked for LP with the SPECS commands

ALGORI THM PRI MAL
ALGORI THM DUAL

it 11

PRIMAL isthe default so ‘ALGORITHM PRIMAL’ need not be specified. In fact DUAL is followed
anyway by PRIMAL to verify the optima solution.

A full description of SSX is given in Chapter 4, but the user may find the following commands useful
without reading further.

SI MPLEX LOG LEVEL = n *n = 0-4, default 1
I NVERT LOG LEVEL = n *n = 0-4, default 1
SI MPLEX LOG FREQUENCY = n * default n=1

These commands determine the nature and frequency of outputs to the log file (frequency refers to the
iteration log). Log level zeroislimited to error messages only.

| NVERT FREQUENCY = n * default n=50
This sgts a maximum to the number of iterations dlowed before an automatic renvert is invoked.

However this applies at the start only, as the system increases the number when Forrest-Tomlin update
begins (see Chapter 4, section 4.6.1).

MAXI MUM SI MPLEX | TERATI ONS = n * default n=50000

After this number of iterations the SSX dgorithms save a basis for restart and then terminate (see
Sections 3.5.1 and 4.6.4 on saving and restarting).

Back to Chapter contents

3.3.2 Setting up a Starting Basis for SSX

As dready dated, a darting bass must exist before either PRIMAL or DUAL can execute. The
following dternative mechanisms are available for this

The garting basis can be built by the CRASH dgorithm.

The garting bas's can be read from an externd file.

The user can use RESTART, which employs SAVE information from aprevious run. A basis is
included as part of the saved data.

The user can dart from the al logica bads, dso known asthe UNIT basis.

The method chosen is according to a ‘SIMPLEX START' command which may be one of the
fallowing:

SI MPLEX START CRASH * This is the default
SI MPLEX START | NPUT BASI S

SI MPLEX START RESTART

SI MPLEX START UNI'T BASI S

A decription of the INPUT BASIS mechanism is given in Section 3.5.3 on BASIS input and outpuit.
Details of the MPS format layout of an externa bass are given in Appendix A, section A1.3.

The SAVE/RESTART mechanism is described in Section 3.5.1.

When the garting basis has been ingtdled the FortMP system cdls INVERT and calculates the basic
solution so that PRIMAL or DUAL can then execute directly.

I 1N

Back to Chapter contents

3.3.3 UsngIPM

The IPM dgorithms are invoked with the command:
ALGORI THM | PM

A variety of controls direct which specific IPM dgorithms are to be used and supply parameters. To use
these controls the user should read the descriptions given in Chapter 5 of this manud.

The following SPECS commands determine the log level of IPM and the execution limit in the same
manner asfor PRIMAL and DUAL.

| PM LOG LEVEL = n *n = 1-4, default 1
MAXI MUM | PM | TERATI ONS = n * default n=80

After this number of iterations the IPM agorithm saves the current solution for restart and terminates
(see Section 3.5.1 on saving and restarting).

The following SPECS command is only available in certain versons of FortMP. It invokes a graphica
display which shows the density pattern of the matrices and the progress of the iterations. Copies of the
digplay will beleft infiles*model.a, ‘model.b’, ‘model.c’ and ‘model.d’ if this command is successfully
activated.

| PM GRAPHI CAL DI SPLAY ON

| PM GRAPHI CAL DI SPLAY OFF * This is the default

After execution of |PM the system has a choice: to stop there and print the solution or to recover abasis
from the IPM solution and use it as an advanced starting basis to the SSX solver.

If the basis recovery option is taken then the printed solution will be abasic optimum (if thet is possble)
whereas the IPM solution is only rarely basic. Basis recovery is the default option of the system; to stop
with the IPM solution the following command is used:

| PM BASREC OFF

Back to Chapter contents

3.3.4 Running Mixed Integer

Before starting the Branch and Bound dgorithm for MIP problems, the system must obtain a basic
optimum solution to the LP problem, that is the problem with dl MIP variables dlowed their continuous
range. Either SSX or IPM can be used for this purpose; if IPM is used the BASREC switch must be
ON (which isthe defaullt).

Entry to Branch and Bound is normaly automatic, dependent only on whether the problem contains any
MIP variable types. However, the user can prevent the system from entering Branch and Bound, for
example to give time for examining the LP optimum, by setting the MIP switch to OFF asfollows.

M P OFF

i1 1N

An important ad to finding the solution for MIP problemsiis the pre-processor which is invoked with the
following SPECS command:

M P PREPROCESS ON

(default is OFF). Not every problem is improved with the pre-processor, however, and it is most
effective when the problem has binary or integer variables. It isworthwhile for the user to experiment in
order to determine whether to use it as anorma method for al his problems.

Anacther useful command, important for many MIP problemsis the following:
MP PRIORITY UP ON

(default is OFF). This is very useful for problems related to scheduling and resource alocation for
reasons explained later in chapter 6 of this manual.

A variety of other controls direct the branching choices in MIP and supply parameters. To find out
about these controls the user should read the descriptions given in Chapter 6 of this manual.

The following SPECS commands determine the log levd of MIP and the execution limit in the same
manner asfor PRIMAL and DUAL.

M P LOG LEVEL = n n = 0-4, default 1

NODE LOG FREQUENCY = n default 1
MAXI MUM M P | NTEGER = nnn default 300
MAXI MUM M P I NTSOL = nnn default 300

MAXI MUM M P NODES = nnn
MAXIMUM M P TI ME = vvv

default 50000
default 50000.0

* ok ok ok * *

Limits are applied to the number of integer solutions reached (‘INTEGER' and ‘INTSOL’ are the
same), to the number of nodes (i.e. sub-problems) to be solved, and to the tota time (given in seconds)
that may be spent executing the MIP dgorithm. At each limit the MIP dgorithm saves the current tree
for restart and terminates (see Section 3.5.1 on saving and restarting).

Back to Chapter contents

3.3.5 Using the PRESOLVE Algorithm

PRESOLVE is an dgorithm which can often smplify the problem interndly and reduce the time needed
to reach the solution. If employed, it takes place after input and before execution of any other agorithm.

The following SPECS commands invoke or cancel execution of PRESOLVE:

PRESOLVE ON
PRESOLVE OFF * This is the default

PRESOLVE seeks any smplifications that can be made to the problem by looking for the obvious
solutions implicit in the condraints as they stand. Eliminaion of redundant rows and fixed variables
reduces the size of the problem to be solved and thereby improves efficiency.

it 1 2

For example, if dl fixed variable vaues are subgtituted in the condraints one or more equations may be
left with only one varigble. These variables are then fixed, the equations become redundant and their row
types are made free. The subdtitution of the newly fixed variables may then lead to more smplifications
of the same kind.

Thisisasmple ‘Level 1’ technique; other more complex techniques designated as‘Levd 2, ‘Leve 3
and so on are available. The user can select a maximum leve to use, once the PRESOLVE switch has
been set ON, by the following command:

PRESOLVE LEVEL = n * n=1-5, default is 5

At solution time there is an option to print the presolved solution as it stands or to apply POSTSOLVE
which expands back to the origind problem in order to obtain a basc solution (Smilar to usng
BASREC after IPM). Thisexpangon isinvoked or cancelled with the following SPECS commands:

POSTSOLVE ON * This is the default
POSTSOLVE OFF

The amount of information sent to the log during execution of PRESOLVE and POSTSOLVE can be
controlled with the following command:

PRESOLVE LOG LEVEL = n * n=0-4, default is 1

Back to Chapter contents

3.3.6 Usngthe SCALE Algorithm

The SCALE dgorithm finds a set of factors, one per row and one per column, which reduce the
vaiation in data vaues s0 that the solution process is numerically more stable. The resulting scaed
solution vaues are unscaed before the find output.

SCALE normdly takes place after INPUT (or after PRESOLVE) and before execution of any
agorithm. It isinvoked or cancdled with the following SPECS commands.

SCALE ON * This is the default
SCALE OFF

Two further SPECS commands control the operation of SCALE when it is switched ON:
SCALE PASSES = n * n=1-4, Default is 4
SCALE VARI ANCE = v * Default v = 10.0

Each ‘pass of SCALE is an atempt to reduce the variation of the matrix coefficients, sarting from the
previous results. If the given target variance is reeched SCALE ends immediately, otherwise it continues
for the given maximum number of passes.

Quite often the variance does not reduce after the first pass and may on the contrary increase again.
Reaults are given on the log file and the user may use these to determine the best vaues for the
commands.

Back to Chapter contents

it ar

3.4 Output Descriptions

3.4.1 Standard Output Description

Table 17 on page 11-19 shows the standard output from the smple example of Chapter 2. There the
heading gives details of the modd and of the solution that follows. Thisis followed by atable of column
vaues showing each structurd variable in the problem. Outputs under each heading are:

NO Index number of the variable

STATE Codes for the prima and dud datus
(‘B’ meansBASIC; ‘F means FIXED; ‘L’ means at Lower bound;
‘U’ means a Upper bound)

NAME Name of varigble as given in the input

VALUE Solution vdue

LOWERBOUND Lower bound as given in the data

UPPER BOUND Upper bound as given in the data

REDUCED COST Reduced cost or ‘DJ of the variable

When an integer (IP) solution is printed the lower and upper bound values that are printed reflect the
branching applied to each variable and not necessarily the original bounds.

The next section is a table of row vaues showing each congraint (or logica varigble) in the problem.
Outputs under each heading are:

NO Index number of the row

STATE Codesfor the atus of the dack variables
(‘B’ meansBASIC; ‘F means FIXED; ‘L’ means a Lower bound,
‘U means at Upper bound)

NAME Name of the row as given in the input

ROW VALUE Vdue of the condraint |eft-hand Sde
i.e thevaueof § a;X;

LOWER RHS Lower bound of § &,

UPPER RHS Upper bound of & a,x,

SHADOW PRICE Shadow price of the row
(equal to the reduced cost of the logicd)

Standard output isinvoked by the following SPECS command:
OUTPUT TYPE STD

However, this command is the default and need not be given.

Back to Chapter contents

3.4.2 Report Writer Output

Output for a Report Writer such as MPL is a smplified form of standard output. Headings are not
printed and the initid heading materia is compressed to a single record.

i 1~

Names are not printed, only the index number of each column and row.

The layout comprises FORTRAN formatted records but is designed for easy input when using C. For
details see Appendix A, section A3.2.

The RW format of output isinvoked with the following SPECS command:
OUTPUT TYPE RW

Back to Chapter contents

3.4.3 Log File Output

Each mgor agorithm of FortMP is associated with alog ‘level’” which controls the information written to
the log file. There are five levels which can be gpplied in each case :

Levd O Error messages only

Levd 1 Errors and important messages only.

Leve 2 Important messages and a primary log (e.g. iteration log).
Levd 3 A more detailed log (if relevant) and useful generd daidtics.
Levd 4 Leve 3 plusmore detailed Setidtics.

Variaions on this generd scheme and other specid features are described in the following chapters
devoted to theindividud agorithms. Log file examples are given with explanations if needed.

The following SPECS commands specify the log levels for each dgorithm:

SI MPLEX LOG LEVEL = n 0-4, default is 1
I NVERT LOG LEVEL = n 0-4, default is 1
| PM LOG LEVEL n 0-4, default is 1
M P LOG LEVEL n 0-4, default is 1

* X X X
35 353 3535
I T |

A duplicate log can dso be displayed when running on-line in interactive mode. This is invoked with the
following commands

LOG DI SPLAY
LOG DI SPLAY LEVEL = n *n =0-4, default is 1
LOG DI SPLAY ONLY

The system copies some of the logged messages onto the standard output (or the display screen when
running on-line). In default the levels copied are 0 and 1 (errors and main events). With the LOG
DISPLAY command the maximum level copied in this way can be changed to a specific levd 0 as
ether to digplay more or to reduce the display (errors cannot be suppressed). If ‘LEVEL =n' is
omitted then al messages are copied - thisis equivdent to ‘LEVEL = 4. If ‘ONLY’ is specified then
the log file itsdlf is suppressed and dl logs are written solely to the standard output. These commands
do not change the level of messages actually issued in the firgt place.

Back to Chapter contents

it 1=7

3.4.4 Suppressng Output

It frequently happens that the entire output is not needed by the user and for large problems in particular
it can be useful to reduceit by iminating al variables with solution value zero. If the user does not need
to know the dud solution values this means tha output is reduced Smply to those variables with a non-
zero prima solution vaue.

Thisis achieved with the following SPECS command:
OUTPUT SUPPRESS ZERO * default: not suppressed.

In addition it is possble to suppress the output atogether - for example to restart and print in alater run
- with the fallowing command

OUTPUT OFF * default ON
(ON may dso be given).

Back to Chapter contents

3.5 Further Topics

3.5.1 Saving and Restarting

It is inevitable that some users will need to experiment or will have some difficulties in determining how
best to apply the system to their problems. In some cases a run may exceed its time or memory
alocation so the user has to make adjustments and rerun the problem.

FortMP is provided with several save and restart features which enable a rerun to begin from a point
close to the termination of the previous run, thus avoiding a waste of computer time. The save features
are asfollows.

INPUT save Theinput datais saved after an initid passin which dl names are identified and
indexed. The internd datafile has dl names replaced by indices so that amuch
faster INPUT can be used in aretart.

SIMPLEX save A periodic save of the bas's takes place during the SSX agorithms. The saved
basis can form an advanced starting basisin arestart.

IPM save Periodically during IPM iterations the solution is saved and this solution
can form an advanced initid solution point in aredtart.

MIP save Periodicaly during Branch and Bound the tree is saved and can then be
used to bypass previous node development in arestart.

The associated SPECS commands comprise controls to specify the frequency of saving and restart
switches to specify where any restart is to apply. These commands are:

SI MPLEX SAVE FREQUENCY = n * default 10, each 10th
reinvert
SI MPLEX START RESTART

I 10

| PM SAVE FREQUENCY = n * default 10, each 10th
iteration

| PM RESTART ON

M P SAVE FREQUENCY = n * default n=500, each 500th

node.
M P RESTART ON

By sting the frequency n to zero in one of the above SAVE commands the corresponding SAVE
feature is switched off entirdly.

Usars must be aware that certain internd files from the previous run are needed in a restart, not just the
file created by the particular kind of restarts invoked. The origina controls from the previous run are
aways reread and gpply as defaults in the restart run.

Back to Chapter contents

3.5.2 Bypassing thelnitial MPS Input

It is not necessary to specify any ‘SAVE' for the origind MPS data. Input data is saved in an interna
form during an initid pass when reading MPS format data. With the command

| NPUT RESTART ON
the initia input pass which looks up al names and creates the data indexing is bypassed.

Back to Chapter contents

3.5.3 BASISInput and Output

There is a mechanism whereby the user can supply an initid bads in MPS format, usng the externa
names for the variables.

In this format the input basis data comprises:

NAME record

BASIS header record (optional)
BASIS data section

ENDATA record

The BASIS data section has records of type XL, XU, LL and UL. Therationae behind thisis that each
record of type XL or XU gives an exchange between a column varigble (structura) which becomes
basic and arow variable (logica) which becomes non-basic. Initidly dl row variables are basc and dl
column variables are non-basic a lower bound. The UL and LL records smply name non-basic
columns and only UL records actualy need to be entered.

An externd basis is intended for use even when the input problem has been revised so that a variety of
incongstencies in MPS format bass data are dlowed. For example if a name is not recognised then a
warning message is given on the log but the system carries on by smply ignoring that record.

Precise details of the layout are given in Appendix A, section A1.3.

I 1N

The fallowing SPECS command (dready introduced in Section 3.3.2) is used to input the externd basis
and st it up asthe sarting basisfor PRIMAL or DUAL.

SI MPLEX START | NPUT BASI S

There is a SPECS command to create an output MPS format bass when the LP optimum is reached
after completing the SSX dgorithm. This command is an ON/OFF switch as follows.

OUTPUT BASI S ON
OUTPUT BASI S OFF * This is the default

The switch ON creates output to afile with extenson BAS (modd .bas) and this file can subsequently be
used for the *“SIMPLEX START BASIS INPUT’ command. Note however that both BASIS INPUT
and OUTPUT BASIS can co-exig is the same run and that OUTPUT BASIS may overwrite the
previous input file. To overcome this problem, the user should copy the file between runs, or rename the
fileand useaBASIS FILE NAME command as described in Section 3.6.

Back to Chapter contents

3.6 Input and Output Files in FortMP

For the convenience of UNIX and other operating systems which distinguish lowercase letters from
uppercase, FortMP uses lowercase lettering for dl default filenames and extensons in the sygem. We
will follow this convention in this section.

Asdready explained, the MPS format data is presented to the program on afile named
model.mps

where ‘modd’ isthe name of the data modd. Y ou can specify the name of the modd with the following
SPECS command:

MODEL NAME (ndl nane)

where ‘mdiname’ isaname of 8 characters or less that must be acceptable as afile name to the
operating system after the addition of an extenson. The default for *mdiname’ is‘mode’.

This convention is followed for dl other inputs and outputs, including the internd files, with the exception
of the SPECS file which is named smply ‘FORTMP.SPC'. Thefollowing isalis of thesefiles

model.mps MPS format input datafile

modd .bas MPS format bags datafile
modd.res Standard output file

modd.log Standard log file

modd.mat Internd metrix file

mode.nam Internd namesfile

modd.sav Internd savefile

mode! .bbf SIMPLEX save (binary bass) file
model.isv IPM solution savefile

modd.msv MIP Branch and Bound tree savefile

i1 AN

In addition to providing the modd name you can change the file naming structure by using a directory
name and by setting individud file names.

The DIRECTORY or equivdent PATH command is as follows.

DI RECTORY NAME (dirname)
PATH NAME (dirnane)

where ‘dirname is a text string of maximum length 50 characters which is used as a prefix to every
filename with the exception of ‘specs (The SPECS file cannot of course define its own prefix). Any
gpecid separator such as*\' or */' to appear between ‘dirname’ and the model name must be included
by the user in the *dirname argument.

Findly some of the input and output files can be given individua names with one of the following SPECS
commands:

I NPUT FI LE NAME (fil enane)
OUTPUT FILE NAME (fil enane)
LOG FILE NAME (fil enane)
BASI S FI LE NAME (fil enane)

The filename supplied in this case may be up to 70 characters long and will not be prefixed by the
directory name (if any).

Back to Chapter contents

3.7 Errors and Recovery

3.7.1 DataErrors

During the data input stage the system checks for errors in the data and will provide you with diagnostic
messages, including the input line number, text or other available information to assst in locating an error.
When one has been found, the systlem may continue checking to find more errors (up to 50) but unless
the errors found have an obvious remedy the system then halts without attempting a solution.

Back to Chapter contents

3.7.2 Maximum lterations Reached or Other Limit Exceeded

The following SPECS commands have aready been introduced (see Section 3.3) and control the
bounds upon the dgorithm’s execution.

MAXI MUM SI MPLEX | TERATI ONS = n * default 50000
MAXI MUM | PM | TERATI ONS = n default 80

MAXI MUM M P <I NTEGER/ | NTSOL> = n default 300

MAXI MUM M P NODES = n default 50000
MAXIMUM MP TIME = v default 50000.0

* * X *

On reaching such a limit the FortMP system makes a SAVE using the type of SAVE reevant to the
current algorithm and terminates with an error message.

I N1

The user will need to check whether an adjustment to parameters is necessary to avoid looping or
gdling before rerunning the problem. Thisis done by using the gppropriate ‘RESTART’ command, one
of the fallowing:

SI MPLEX START RESTART
| PM RESTART ON
M P RESTART ON

Input time can aso be saved with the command:
| NPUT RESTART ON

Back to Chapter contents

3.7.3 Numerical Difficultiesand Instability

With the advantage of coefficient scaling provided by the SCALE dgorithm (see Section 3.3.6)
numericd difficulties and indability should arise only rardy in FortMP and then they are usudly
overcome without troubling the user.

Some intractable cases of numericd difficulty are detectable and cause premature termination of the
solvers. An explanatory message is written to the log and to the standard output (e.g. displayed on the
screen). In the case of the Dud agorithm unrecoverable errors are overcome by reverting to Prima in
order to continue the optimisation process.

Certan cases may, in very rare Stuations, cause the system to cycle, without any progress in the
iterations, or with only very dow progress towards the optimum.

When the system is hated the usar’s main technique for overcoming these problems is to change the
controls in some way and restart the run. A control is available to alow user to watch the iteration log
online so that the run can be hdted before excessve time is wasted. In any case there is a maximum
iteration limit for both SSX and IPM solvers.

When the maximum iteration limit is reached the system aways saves a restart point before exit and the
user can aso set controls to save restart points periodicaly to guard againgt a crash or to dlow arunto
be halted without wasting the time used o far.

Back to Chapter contents

3.7.4 Running Out of Memory

There are few computer ingdlations where users can completely disregard the amount of memory they
use, even with virtud memory available. Many users will attempt the largest possible problems with the
memory available whilst others will wish to limit their memory usage for operationd reasons.

In order to supprt these requirements FortMP is loaded for execution in a minimum size memory region
and will use the system to dlocate additiond memory according to the problem size.

However in some rare cases the required memory is impossible to predict, while in other casestoo little
memory can cause serious congestion and inefficiency because of frequent data compresson. Hence

11 NN

the system is provided with severa emergency controls to assst with memory management. These are
described in Appendix G.

Back to Chapter contents

3.7.5 SoftwareErrors

The user is protected by a great ded of defensve programming so as to detect internd inconsistencies
and hdt as soon as they occur. In such a case there is an explanatory diagnostic and a ‘FATAL
ERROR message written to the log and to the standard output (display).

In this unlikely event you should contact your supplier and provide details so that the fault can be
corrected.

Back to Chapter contents

11 AN

3.8 Summary of SPECS Commands

The following SPECS commands have been introduced to dete in this manud.

BEG N
Thismust be the firsd command line.

MODEL NAME (nodnane)

This command supplies a default for the names of input files and output files in the run which are built by
adding an extenson asfollows:

nodname. nps MPS format input datafile
nodname. bas MPS format besis datafile
nodnamne. r es Standard outpuit file

nodnane. | og Standard log file

nodname. mat Internd métrix file

nmodname. nam Internd namesfile

nodname. sav Internd savefile

nodnane. bbf Smplex savefile

nodname. i sv IPM solution savefile

nodname. nsv MIP Branch and Bound tree savefile

The default modd nameis‘MODEL’.

| NPUT FI LE NAME (fil enane)
OUTPUT FI LE NAME (fil enanme)
LOG FILE NAME (fil enane)

BASI S FILE NAME (fil enane)

These commands assign a specid name to the various input and output files.

These two aternative commands prefix dl filenames other than those introduced with an explicit ‘FILE
NAME' command.

| NPUT TYPE MPS

These commands salect appropriate items in the MPS format input data.

1I Na

M NI M ZE
MAXI M ZE

These two commands specify the direction of optimisation. ‘MINIMIZE' is the default so this command
is not actualy needed.

SCALE OFF
These two commands st the SCALE switch. The default is ON

SCALE PASSES = n

These commands set parameters for scaling, to apply when the SCALE switch is ON. The range for
‘Pases’ is 1-4 and the default valueis 4. The default target variance is 10.0.

PRESOLVE ON
PRESOLVE OFF

These two commands set the ‘ PRESOLVE' switch. The default is OFF.

PRESOLVE LEVEL = n

This command specifies the PRESOLVE leve when the PRESOLVE switch has been st ON. The
range is 1-5 with default value 5.

POSTSOLVE ON
POSTSOLVE OFF

These two commands set the ‘POSTSOLVE' switch (active when PRESOLVE is ON). The default is
ON.

PRESOLVE LOG LEVEL = n

This command specifies the log level for PRESOLVE and POSTSOLVE. The range is 0-4 with default
value 1.

ALGORI THM PRI MAL
ALGORI THM DUAL
ALGORI THM | PM

One of these commandsis used to pecify the primary solution agorithm for the continuous LP problem.
‘PRIMAL’ isthe default and need not be specified.

MAXI MUM SI MPLEX | TERATIONS = nnn * default 50000

MAXIMUM I PM I TERATIONS = nnn * default 80

MAXI MUM M P <I NTEGER/ INTSOL> = nnn * default 300
MAXIMUM M P NODES = nnn_ * _default 50000
MAXIMUM M P TIME = vvv * _default 50000.0

These commands st the termination limits for each mgor dgorithm. A SAVE is made before exit at
termination.

SIMPLEX LOG LEVEL = n

11 Ar

| PM LOG LEVEL = n

These commands specify the ‘levd’ of the output to be sent to the log file in each mgor adgorithm. The
range is 04 with default vaue 1 in each case.

SI MPLEX SAVE FREQUENCY = n * default 10, each 10th

reinvert
| PM_SAVE FREQUENCY = n * default 10, each 10th
iteration
M P SAVE FREQUENCY = n * default 10, each 500th node

These commands specify the frequency for making a SAVE in eech mgor agorithm.

SI MPLEX START RESTART

These commands specify ‘RESTART in each mgor adgorithm. For the SIMPLEX dgorithms
‘RESTART is an dterndtive to other starting basis options. Otherwise there is an ON/OFF switch
(default OFF).

SI MPLEX START CRASH

These commands sdect the mechanism for setting up the starting basis when the main dgorithm is
PRIMAL or DUAL. CRASH isthe defaullt.

FEASI Bl LI TY TOLERANCE = val ue

This command assgns a tolerance used in the agorithms. The default for ‘vaue is 1.0d-5. Other
tolerances are introduced later in this manudl.

I NVERT FREQUENCY = n

This command assgns a frequency, in terms of the iteration count, for reinverson during SIMPLEX
dgorithms. The default for ‘n’ is50.

SI MPLEX LOG FREQUENCY = n

These commands assign a frequency for printing the iteration log during SIMPLEX dgorithms or the
node log during MIP. Default for ‘n’ is 1.

| PM BASREC ON

| PM BASREC OFF

When ‘ALGORITHM IPM’ has been sdected the user can sat this switch OFF in order to hdt
execution and print the output immediately on reaching the IPM solution. The default is ON.

i1 Ar

If there are no discrete variables this switch is dways OFF. When there are discrete variables the default
is ON and setting to OFF cancels execution of MIP o0 that user can examine the continuous LP
solution.

M P PREPROCESS ON

These commands control important agorithmic festures of MIP. Both switches are OFF by defauilt.

OUTPUT TYPE STD

These commands control the amount written to the output file. Default is *ON’ with zeros not
suppressed.

LOG DI SPLAY

LOG DI SPLAY ONLY
This command causes dl logged output, not just important diagnostic messages of leve 1, to be
displayed online (or written to the standard output-stream). With the keyword ‘ONLY’ the normal log
fileis suppressed.

LOG DI SPLAY LEVEL = n

This command causes logged output up to level n to be displayed online. Default for nis 1.
END

This command terminates the SPECS commands. Anything beyond it isignored.

Back to Chapter contents

i N=7

4. Sparse Simplex (SSX) Solver

Contents

4. SPARSE SIMPLEX (SSX) SOLVER
41 Internal Problem Statement
4.2 Introduction tothe Algorithms

4.3 PRIMAL Algorithm
431 Starting Procedures
432 Column Selection
433 Phasel
434 Handling Degeneracy
435 Numerica Features
436 Issues of Efficiency

4.4 DUAL Algorithm
441 Starting Procedures
442 Row Selection
443 DUAL Phasel
444 Handling Degeneracy
445 Numerical Features

45 INVERT

4,6 SSX Algorithm Controls
46.1 ThePrincipa Controls
462 Starting Basis Controls
463 Tolerancesand parameters
464 Saveand Restart
465 Processing an External Basis
466 LogLising Controls
46.7 Specia Pivoting and Update Controls

4.7 Summary of SPECS Commands

© oo~N~NOOoDd ES

©

10
10
10
10
10

11

11

GH&ER

16
17

18

Ins7 1

4.1 Internal Problem Statement

We begin this chapter by studying the FortMP SSX interna representation of LP problems.

Let m denote the number of congraints and n the number of origind variables. All the condraints are
converted into equdity form by adding gppropriate variables to each congraint. This will result in the
following LP problem.

Minimise (or Maximise) the objective function
o]
a c;x,
subject to the condraints:
y +é gx =hfori=1....m

and bound congtraints (if any) on 'y, and x; .

Thex; variables (that were obtained from the origina problem by linear transformations) are referred to
as dructurd variableswhile the y, variables added to the rows are called logicd varigbles. Thus, the total
number of variables the agorithm works with is m+n.

As areault of the linear transformations (done during input), dl finite lower bounds of varigbles will be
zero. Inthe above formulation, al the variables (x; and y, dike) can be handled in auniform way.

Both the x; and the y; conform to one of the following types:

Fixed (variable=0.0)

Bounded (0.0 £ variable £ upper bound)
Fus (O £ vaiadle)

Free (varidble can take any vaue)

The amplified dructure of the problem is illusrated in Figure 5 below, where the upper bounds
U; and u, exist only for bounded varibles.

N7 N

G Objective
Logicals Structurals
U, U Upper bounds
£ £
Unit matrix | | Coefficient Matrix| _
=| b | rhs
£ £
Zexro Zexro L ower bounds
Type codes Type codes

Figure5 ‘Internal SSX problem structure

In practice, the c; of the objective row appear as coefficients of arow (namely, the objective row) in the
MPS form of the input data and this idea is retained internally so that no separate ¢, vector is actudly
needed.

A st of vaues of the variables is cdled a solution if it satisfies the condraints. A solution is caled a
feasble solution if, additiondly, it satisfies the bound condraints too. Using this terminology, the purpose
of the smplex method isto find a'the best feasible solution if such exigs.

In the smplex method, the variables are divided into two separate categories. thereare m basic and n
non-basic variables. The main digtinction is that the value of a non-basic variable may be temporarily
fixed (usudly a zero, or upper bound) while the value of a basic variable may change at each iteration.
The st of vaues of the actua non-basic variables uniquely determines the values of the basic variables
in such a way that they together form a solution. This set of vaues is cdled a basic solution A basic
solution can be computed by the inverse of the matrix formed from the columns corresponding to the
basc variables. Sometimes this matrix is referred to as a‘bass matrix’ or assmply a‘bass .

An iteration of the smplex method makes either abass change or a bound change. In the first case one
basc variadble is replaced by one non-basic variable, while in the second case the basis remains
unchanged but a non-basic variable moves from its lower bound to the upper bound or the other way

N7 N

around. If there is a bas's change then the vaue of the objective function will improve or reman the
same, while a bound change dways results in an improvement of the objective vaue.

Back to Chapter contents

4.2 Introduction to the Algorithms

Large scde LP problems tend to have reatively very few non-zero coefficients in the matrix of
congdraints. Thereis an observation that the average number of non-zeros per column is between 5 and
10, independent of the size of the problem. This means that as problem szes increase the densty (the
ratio of non-zeros to the tota number of possible entries) decreases. For problems with around 1000
condraintsthe densty is typicdly lessthan 1%. The low densty is often referred to as sparsity.

Spargity is the main feature that enables the solution of very large LP problems. The solution dgorithms
take full advantage of sparsty of the origind problem and dso keep the creation of new non-zeros
during the solution under control.

The Sparse Simplex dgorithm of FortMP is a state-of-the-art implementation of the most advanced
sparse LP techniques. This makes FortMP capable of solving large scde LP problems efficiently,
religbly and accuratdly.

Spargty is exploited throughout dl the dgorithms of SSX. This requires the application of sophiticated
data structures and manipulations which are transparent to the user of the stand-adone verson of
FortMP.

The main agorithm in SSX of FortMP is PRIMAL. This addresses any LP problem. There is a dud
agorithm dso available, caled DUAL. It requires the presence of a dud feasible solution. Thisis dways
available at the nodes of the MIP dgorithm and the main intended usage of DUAL is to assgt the
efficient solution of the subproblems arising in MIP.

The proper operation of both of these algorithms is supported by some additional procedures (such as
SCALE, CRASH and INVERT) and these will dso be discussed briefly.

Back to Chapter contents

4.3 PRIMAL Algorithm

The smplex method is an iteraive procedure making basis/bound changes at each step. The prima
amplex firgt atempts to find a feasble solution (Phase 1), i.e. one that satisfies al condraints and
bounds. This is achieved by smplex iterations (basisbound changes). After a feasible solution has been
found, it makes further iterations that maintain feasibility and result in a better (or, in case of degeneracy,
not worse) objective vaue (Phase I1) until an optima solution is encountered or the problem is found
unbounded.

Optimdity is decdlared if the solution is feasible and no further improving variable can be found. Similarly,
infeagbility of the problem is declared if no improving variable can be found while the solution isin Phase
l.

InN7 2

The primd agorithm of FortMP is a verson of the revised amplex method. The inverse of the basis
matrix is kept as a product of alower and an upper triangular matrix (dimination form of the inverse).
This form is generated by a re-factorization (reinverson) step and can optionaly be maintained during
the smplex iterations.

Back to Chapter contents

4.3.1 Starting Procedures
A solution procedure can start from the dl logical (UNIT) basis, crash basis, or supplied basis.

The UNIT basis is created in such a way that a logica variable and a corresponding unit vector are
added to every condraint in the LP problem. They, together, form aunit matrix which is chosen as afirs
bass with dl the structurd variables set to zero. The basic solution for this bass is equd to the right-

hand-side vector. This is the sSmplest starting basis and the fastest to obtain. Another advantage is that
the subsequent first amplex iterations are very fast. The disadvantage is that it does not contain any of
the structurd variables that must be introduced into the basis one by one during the smplex iterations.

Another disadvantage is that the sarting solution may be infeasible, requiring many iterations to find a
feasble solution (if one exists).

The crash basis is created with some work but this is carried out rdatively very quickly since the mgor
part of it is done symbolicaly. This crash procedure attempts to replace as many logical vectors as
possible by structurd ones. The vectors are selected 0 that they can symbolically be rearranged to form
atriangular basis (i.e. they can enter the basi's without transforming them). Additiondly, if thereisatiein
the sdection of the incoming structura varigbles (column tie), variables (vectors) with larger feaghility
range are given priority. In the case of row tie, logica variables with smaler feasbility range are sdected
to be replaced. The resulting triangular basis is easy and efficient to handle and has a greater chance to
being feasible or near feasible. Experience shows that using this basis requires fewer smplex iterations to
solve awide range of problems. Consequently it has been chosen as a defaullt.

By supplied bass we mean one of two posshilities. One is the case when the basis is given in MPS
format as a text (ASCII) file prepared by the user or by an earlier run of FortMP. The bass is
interpreted and amended by logica variables as necessary. The other case is a binary basis created by
FortMP earier. The qudity of such gtarting bases is completely dependent on factors known by the
user. Algorithmicaly they can be extremely good (e.g. to re-optimize a dightly modified problem starting
from the previous optimum) or just poor. In any case, when users are prepared to supply a basis they
may have some knowledge about the problem and the basis and, therefore, can judge the usefulness of
this starting procedure.

Back to Chapter contents

4.3.2 Column Sdection

Column sdection refers to the choice of an improving vaidble to bring into the basis or to change its
bound setting. The sdection is made from among non-basic vectors that show a rate of improvement
(candidate vectors). The rate of improvement is reflected by the sign and magnitude of the reduced cost
(d;) of the variable corresponding to a vector. The positivity (or in some cases the negativity) of the
reduced cost is interpreted with atolerance (DJ TOLERANCE, default value is 1.0d-5). It means that a

N7 r-

computed d; vaue is consdered negdtive if it is less than -(DJ TOLERANCE), i.e. the negative of the
tolerance.

The ultimate god would be to select the best candidate. By best we mean the one by which optimality
can be achieved in the least number of iterations. Unfortunately, it is theoretically impossible to identify
such a candidate. At column selection only the rate of improvement can be determined but not the
amount of improvement in the objective function. A good rate does not necessrily give large
improvement. The only thing that can be done is to increase the probability of selecting good candidates.

However, even this modified god is hard to achieve. Column sdlection is based on a step called pricing
the non-basic variables. It involves a computation of a dot product of each non-basic column and a
pricing vector (Smplex multiplier). If the Sze of the problem is large there can be many non-basic
columns having many non-zero dements and the pricing operation can be very expendve in terms of
computation (and time). Thus, economizing column salection is not an easy exercise.

PRIMAL applies a sophigticated column selection procedure that attempts to compromise in finding
good candidates and reduce the work per sdlection. The procedure can be characterized by the
following. Usudly, only a part of the non-basic variables is scanned (partid pricing). In a pricing step,
scanning starts from where it was previoudy terminated. Having reached the end of the matrix, pricing
continues at the beginning (cyclic pricing). The number of variables to be scanned is determined after
each reinverson (dynamic partid pricing). During one scanning pass, severa candidates are selected
(multiple pricing). The number of them is controlled by the SPECS command

PRI MAL MSUB = n

where n is given by the user if needed. The default vaue for MSUB is 4. Since 4 is satisfactory for a
large number of cases this command can smply be omitted from the SPECSfile. The selected candidate
columns are updated (expressed in terms of the current basis) and are stored in explicit (dense) form.

Thisoperation iscaled FTRAN.

PRIMAL temporarily consders a smdler LP problem conssting of the sdected variables and the
current basic variables and finds the optima solution of it (sub-optimization). The variable to enter the
beds is sdlected by the criterion of grestest improvement. This is expensive for the whole problem but
moderate for the sub-optimization. At the same time, it results in a very good iteration from amongst the
selected variables.

Sdection of candidates for sub-optimization is caled mgor iteration, while iterations in the sub-
optimization are cadled minor iterations. Minor iterations are the actua Smplex iterations.

The user may want to experiment with the vaue of MSUB. He should be warned that increasing its
vaue results in increased memory requirement and steps in sub-optimization tend to dow down.

PRIMAL is aso equipped with a more sophisticated column sdlection strategy which is widely known
as DEVEX. This technique attempts to estimate the progress that can be achieved by a potentid
candidate variable. 1t is based on an gpproximation of the column norms which requires consderable
extra computations that has to be traded off agangt the possible reduction in number of iterations
needed. At every iteration the quality of the gpproximation is checked and when it becomes too
inaccurate, column norms are reingated. Such an event is triggered when the ratio of the accurately
computed to the estimated column norm of the entering column fdls below a tolerance (DEVEX

N7

RATIO) which has a default vaue is 04. This vaue can be anything between 0 and 1 but vaues
outsde the range (0.2 - 0.6) are not recommended. Higher vaue will result in a more frequent
recaculaion of the normswhich is codly.

Certain additiona column sdlection procedures are provided for use in pardld processng and in
research studies:

- Sectiondised partid pricing
- Dynamic scding
- Adaptive composite phase 1 weighting
- Anti-degenerate wighting
These are described in Appendices F and G.

Back to Chapter contents

4.3.3 Phasel

PRIMAL is equipped with a particularly efficient dgorithm to find a first feasble solution or to detect
that one does not exist (problem infeasble). This dgorithm takes full advantage of the features of the
badi's created by the crash procedure outlined above. Namdly, it can take more efficient stepsif the basis
contains variadles with reaively large feashility ranges. The important characteristic feeture of this
procedure is that it dlows feasible basic variables to become infeasible but the sum of infeashilities is
kept monotonic decreasing in modulus. This increased freedom of the basic variables usudly results in
much more efficient bas's changes reducing the sum of infeasibilities to a maximum possble extent per
iteration.

Feasibility is interpreted with a tolerance. It means that if a variable violates one of its bounds by more
than FEASIBILITY TOLERANCE (user-accessible parameter, with default vaue of 1.0d-5) then it is
treated asinfeasible.

Before each iteration in Phase |, before each mgor iteration in Phase |1, and after each reinversion, the
feasbility of the actual solution is checked. If it is found infeasible, the Phase | procedure is activated,
otherwise a Phase Il iteration is executed. The main difference between these two types of sepsliesin
setting up the smplex multiplier and determining the variable to leave the bas's (outgoing variable).

With numericdly difficult problems, it may hgppen occasondly that after a Phase Il reinverson the
newly computed solution becomes infeasible. Checking feasibility detects such a case and handles it
automdticaly.

Back to Chapter contents

4.3.4 Handling Degeneracy

Degeneracy in linear programming has long been known as a phenomenon that can cause troubles for
the smplex dgorithm. A solution is degenerate if a least one badc variable is at its lower or upper

s =7

bound. An iteration is degenerate if the vaue of the objective function does not change. Degeneracy of
an intermediate solution may (but does not necessarily) result in a degenerate iteration. We talk about
ddling if degenerate (non-improving) steps are made for alarge number of iterations. In the worst case,
ddling can become cycling if the procedure returns to an earlier bass and this sequence of iterations is
repeated an infinite number of times.

Since large scale red-life problems — even after PRESOLVE — tend to be rather degenerate, proper
handling of degeneracy is an important issue.

PRIMAL iswell prepared to solve degenerate LP problems efficiently. Its Phase | procedure provides
some automatism to reduce the chance of degenerate steps by maximizing the progress towards
feasbility. In the case of MSUB > 1 when the principle of greatest change is gpplied this chance is
further increased. This latter remark is valid for Phase |1, as well, i.e. whenever a non-degenerate step is
possible with the candidate vectors, PRIMAL will find it.

In Phase Il, PRIMAL applies a specid technique to avoid the repetition of a previous bass. It makes
arrangements to improve the objective at each iteration, a least by a very smdl amount even if it may
result in the dight violaion of feaghility. Such smdl vidlations, if they arise, are kept under control and
are completdly eiminated before termination This anti-degeneracy technique is very chegp (hardly
requires any additiona operations per iteration), contributes to an increased numericd sability of the
solution and does not requiire the identification of the presence of degeneracy.

The anti-degeneracy drategy is automatic and is transparent to the user.

Back to Chapter contents

4.3.5 Numerical Features

The revised amplex method works with red (floating point) numbers. During operations with such
numbers, different types of numerica errors may occur. The two main types are cancellation error (in
subtraction or addition) and rounding error (loang least Sgnificant digitsin any of the operations). At one
extreme, these errors may remain unnoticed but, on the other, they may cause serious troubles.

Good numerica procedures try to minimize the occurrence of numericd errors and, if they ill occur,
can fficiently cope with the stuation. In the case of the Smplex method, numerica problems can have
quite serious effects on the solution. They can dow down progress towards feasibility/optimdlity, or, in
the worst case, can prevent convergence.

FortMP, and within it PRIMAL, is equipped with a wide range of techniques aming a guaranteaing
smooth progress, without numerical problems.

The fird is scding. The adaptive scaing dgorithm of FortMP reduces the range of magnitude of the
coefficients.

The second is the careful use of tolerances. This means that whenever a numerica vaue is to be tested
againg 0 (zero) a smal tolerance is used ingtead of 0. The appropriate vaue of a tolerance is Stuation
dependent. This is the reason PRIMAL uses severd different tolerances. (Note that some tolerances
may have identical default values)

nns7 o

In addition to the above, PRIMAL regularly checks accuracy a some well-defined points and takes
gppropriate actions (usudly carries out a reinverson to restore accuracy) to avoid serious
consequences. The agorithm works with the assumption that the INVERT procedure of PRIMAL
produces the most accurate numerical values.

Back to Chapter contents

4.3.6 Issuesof Efficiency

The totd computationa effort needed to solve an LP problem defines the efficiency. Since
computationd effort cannot easly be measured, the CPU time can be used as a measure of efficiency.

Since PRIMAL works entirely in the CPU (it does not use disk communication during optimization), its
performance can be traced. There are severd factors that affect performance.

The number of candidates in sub-optimization (MSUB) is one of them. If MSUB is 1 then only one
vector is selected & each pricing operation (Sngle pricing). Since pricing is expendgve, usng sngle
pricing will lengthen the overdl solution time. If we go to the other extreme, namely increese MSUB
beyond 6, the memory requirement goes up considerably (each sdected column must be stored
explicitly in double precison) and later minor iterations in the sub-optimization tend to be locally good
and globdly less vduable. This usudly resultsin an increase of the total number of iterations that may not
be offset by the increased iteration speed. At the same time, it dso may happen that only a smdler part
of the selected and updated vectors can finaly enter the bas's rendering alarge part of the computational
work useless. MSUB = 4 seems to be a good compromise.

Back to Chapter contents

4.4 DUAL Algorithm

The DUAL dgorithm aims to solve the DUAL problem that is associated with the (primad) problem to
be solved. However it does not smply congtruct this DUAL problem and use the prima agorithm to
solve it, instead it retains the primd data structure interndly and adopts the DUAL argument for every
gep of its procedure. DUAL lacks any equivdent of the mgor/minor iteration structure and sub-
optimization in PRIMAL, but is otherwise entirely equivdent and is, dmosgt, equaly capable as a solver
for LP problems.

DUAL is of particular use for solving MIP sub-problems since each sub-problem has an initid basic
solution that is DUAL-feasible but PRIMAL-infeasible. Hence DUAL can begin immediately in Phase
2 and often requires only a few iterations to reach the optimum. As a further advantage the objective
vaue progresses monotonicaly from a better to aworse vaue, o that MIP cutoff considerations apply,
and we may never need to complete the solution process.

DUAL sauffers the disadvantage that its caculations may be less accurate than with PRIMAL and it may
abort through staling or through unrecoverable numerica error. In this case the FortMP system aways
revertsto PRIMAL to overcome the difficulty and solve the problem with its greater rdiablility.

Back to Chapter contents

N/ N

4.4.1 Starting Procedures

For solving an originad LP problem from scratch DUAL has the same gtarting procedures as those of
PRIMAL (see section 4.3.1).

Back to Chapter contents

4.4.2 Row Sdlection

This is andogous to Column Sdection in the prima agorithm. The sdection is based on prima
infeasibility and can be modified by goplying DUAL DEVEX, which is entirely andogous to DEVEX in
the prima agorithm (see 4.3.2). DUAL DEVEX is a much better choice for DUAL than PRIMAL
DEVEX isfor PRIMAL. Thisis because the cdculatiion overhead is much less, and so the option is
recommended for al larger or more difficult MIP problems.

DUAL DEVEX employs the same DEVEX RATIO asfor the primal case (see 4.3.2).

Back to Chapter contents

4.4.3 DUAL Phase1

Since DUAL is usudly employed when the starting basic solution is dud-feesible, any DUAL phase 1
may not be necessary. However as with PRIMAL the phase sometimes switches back after are-invert,
paticularly in harder problems. The ability to recover with phase 1 is therefore an important feature,
and much time may be saved, especidly in MIP problems.

Back to Chapter contents

4.4.4 Handling Degeneracy

FortMP DUAL is provided with an anti-degenracy option based on nested reduction of the degenerate
positions S0 as to make a unique pivot-choice. There is dso a progress-check on the objective to
counter persistant saling. These techniques are controlled by SPECS commands described below.

Back to Chapter contents

445 Numerical Features

Severd SPECS commands are available to adjust the controls on pivot tolerance, updating accuracy,
and accuracy check by comparing results evauated separately by the forward and backward
tandformations. The standard default setting for these controls have been chosen to baance the
demands of efficiency and rdidblilityfor the great mgority of problems. In cases of specid difficulty it
may be possible to obtain better performance by changing them.

Back to Chapter contents

N7 1N

4.5 INVERT

At each bas's change the representation of the inverse of the basis (‘ETA file, which is not redly afile
but a set of arrays in the main memory) gets appended by some newly created vector(s). After severd
iterations this representation can grow quite large which may become a problem in itsdf because of the
limited memory available. However, there are two other problems arising here. The operations with the
inverse become more and more time consuming because of the growing number of non-zero dementsin
the inverse. Furthermore, the newly created components are computed from earlier ones and therefore
inherit their inaccuracies in addition to their own. As a result, as we make more iterations after a
reinversion, operations become dower and less accurate. When this reaches a critical level, areinverson
must be carried out.

The main purpose of INVERT isto ‘refresh’ the representation of the inverse of the basis. This resultsin
a shorter and more accurate ETA file. Thus, right after a reinversgon, iterations are faster and more
accurate. However, reinversion itsdf isjust areproduction step and is not for free. Its time complexity is
problem dependent but never negligible. It means tha reinverson should not be performed too
frequently.

In PRIMAL, the need for reinversion depends aso on the way the new vector(s) of abasis change are
created. There are two possibilities. The first is the Product Form (PF) update. This usudly generates a
relatively large number of new non-zero dementsin the ETA file but the computations themsalves do not
require additional memory. If PF update is used then agood value for reinversion frequency is 50, i.e.
make areinverson after every 50 basis changes. The other possibility isto use the Forres—Tomlin
(FORTOM) update scheme which usudly resultsin a very modest growth of non-zerosin the ETA file.
However, it requires the explicit storage of MSUB vectors (increased memory requirement) and
involves some additiona computation. Usualy the system begins with FP-update and switches at some
sage to FORTOM when ETA-growth becomes large. At the same time the re-inversion frequency is
increased by haf - from 50 to 75 - so as to take advantage of the reduced growth. This can be
controlled with SPECS commands as described below.

Back to Chapter contents

4.6 SSX Algorithm Controls

4.6.1 ThePrincipal Controls

A description of the syntax of SPECS commands which control the run has been given in Chapter 3,
Section 3.1.6.

The following commands state the direction of optimisation, i.e. how the objective row is to be treated:

M NI M ZE
MAXI M ZE

The defaultis*MINIMIZE' .

The following commands invoke either PRIMAL or DUAL astheinitid solver for LP problems
ALGORI THM PRI MAL

N7 11

ALGORI THM DUAL
The default isPRIMAL.

The following command specifies the maximum number of candidate columns used by PRIMAL in sub-
optimisation and extracted by multiple pricing:

PRI MAL MSUB = n

The default is MSUB = 4 with possble values 1 to 10. Single pricing (MSUB = 1) will lengthen the
overal solution time because only one minor iteration takes place to every mgor iteration. If we go to
the other extreme, namely increase MSUB beyond 6, the memory requirement goes up considerably
(with FORTOM ON each selected column is stored twice in double precision) and later minor iterations
in the sub-optimization tend to have very little vaue. The totd number of iterations increases but without
any corresponding increase in iteration peed. At the same time, it dso may happen that only a smdler
pat of the selected and updated vectors can findly enter the bass rendering a large pat of the
computationa work useless. MSUB = 4 seems to be a good compromise.

The following commands control the use of DEVEX column sdlection procedure in the PRIMAL
dgorithm:

PRI MAL DEVEX OFF

PRI VAL DEVEX ON

PRI MAL DEVEX SI NGLE

PRI MAL DEVEX DOUBLE

the default being ‘OFF. ‘ON’ and ‘SINGLE’ are the same and indicate that DEVEX should apply
only in Phase 2 (i.e. when feasble). ‘DOUBLE’ indicates that DEVEX should apply in both Phase 1
and Phase 2.

The corresponding commands for DUAL are:

DUAL DEVEX OFF
DUAL DEVEX ON

the default being ‘OFF . *ON’ indicates that DEVEX should gpply only in Phase 2 (i.e. when DUAL
feasble).

The following commands set or cancel Forrest—Tomlin update of the ETA file:

FORTOM OFF
FORTOM ON
FORTOM AUTO

When Forres—Tomlin is cancelled with *OFF the smple product form update is used in its place. The
default is ‘FORTOM AUTO’ under which Forrest-Tomlin is initialy OFF but will be set to ON - i.e.
become active - when certain criteria are satisfied concerning the proportion of structuras in the basis
and growth of the ETA-file during SSX iterations. At the same time when Forrest-Tomlin is AUTO-
activated the invert frequency is increased by one hdf (actudly from 50 to 75 in default). Thus*ON'’ is
really unnecessary except for experimentd reasons. It should not be necessary to use ‘OFF except for
very dense problems in which the extra cdculations outweigh the savings. Usars may suspect the

N7 1N

Forrest—Tomlin update as being of no red benefit if growth figures of 200% or more show up on the
INVERT log (with the stlandard INVERT frequency increased to 76 iterations).

The following command sets a maximum to the number of SSX iterations between re-INVERTS.
I NVERT FREQUENCY = n

The default is 50 which will increase to 76 at Forrest-Tomlin auto-activation. Reinverson will take
place a earlier intervas if a demand arises for some other reason, e.g. lack of memory or signs that the
inaccuracy is growing too large. The user should use alower vaue if the switch FORTOM is set OFF.

For the DUAL dgorithm the anti-degeneracy procedure can be employed with the following SPECS
command:

DUAL ADEGEN = n * Default is n=0 inplying OFF

Vaues 1 and 2 can be given both specifying ON. Option 2 is faster. When this option is OFF there is
a progress-check applied during DUAL iterations which stops DUAL if it becomes very dow. The
system revertsto PRIMAL in this case.

Back to Chapter contents

4.6.2 Starting BasisControls

The control switches for the arting bass are set by the following commands:

SI MPLEX START CRASH

SI MPLEX START | NPUT BASI S
SI MPLEX START RESTART

SI MPLEX START UNI T BASI S

‘CRASH' isthe default if no command isgiven. ‘RESTART’ isdescribed in Section 4.6.4 and ‘' INPUT
BASIS isdescribed in Section 4.6.5. ‘UNIT BASIS may be used to set up an dl logicd starting basis
rather than ‘CRASH'.

When IPM is used the Sarting basis for the find check by PRIMAL is provided by BASREC as will be
described in the next chapter.

Back to Chapter contents

4.6.3 Tolerancesand parameters

A tolerance is a smdl numericad range. Two numbers whose difference lies within this range are
considered to be equal. Tolerances are used throughout FortMP to overcome the effects of computer
arithmetic, which, for caculaionsinvolving rea and double precison quantities, isimprecise.

Various tolerances can be set by SPECS commands; however, the user should be aware that the default
vaues have been the subject of careful research and should not be lightly changed. The defaults are
expected to be effective provided that the problem coefficients have been normalised with the SCALE
procedure.

N7 1N

The following tolerances affect feasibility control:

FEASI Bl LI TY TOLERANCE = val ue * Default is 1.0d-5
RHS TOLERANCE = val ue * Default is 1.0d-5
DJ TOLERANCE = val ue * Default is 1.0d-5

where the default vaue is given in each case. ‘FEASIBILITY’ and ‘RHS’ tolerances are in fact
synonyms for the same tolerance vaue which defines how far any prima variable solution value may go
outsde its range without being deemed infeasible. DJtoleranceisthe equivaent for any dud solution
vaue. Thismeansin effect how far ad, may become negative if the primal variableis at lower bound or
how far positive if the primd is a upper bound.

The following controls affect pivot selection, which is vitd in mantaining sability and restraining the
growth of non-zeros on the ETA file.

PRI MAL PIVOT ADM T THRESHOLD = v * Default v = 1.0d-8

DUAL PI'VOT ADM T THRESHOLD = v * Default v = 1.0d-
8
I NVERT PI VOT ZERO TOLERANCE = v * Default v = 1.0d-
7
| NVERT PIVOT ADM T RELATIVE = v * Default v = 1.0d-
2

The default vaues are as given above. Pivot control dways avoids sdecting any pivot less than the
‘ADMIT threshold, and ‘ZERO' tolerance refersto the level considered indistinguishable from zero.

INVERT pivoting is protected both by alarge zero tolerance - the criterion for singularity - and adso by
the ‘ADMIT’ threshold, given as ‘RELATIVE' which in fact is more important. This is a factor that,
when multiplied into the largest absolute value on the current row or column being conddered for
pivoting, defines the minimum admissible pivot Sze. Relative thresholds between 0.001 and 0.1 may be
auitable. Larger vaues lead to a higher growth of non-zeros on the ETA file but lower vaues may lead
to ingability or inaccuracy.

A wider choice of pivoting controlsis described below in section 4.6.7.

The following tolerance is used generally to test for zero or to test whether two vaues are equd:
ZERO TOLERANCE = val ue * Default is 1.0d-15

The following command sets the parameter used by the DEVEX dgorithm (both in PRIMAL and in
DUAL):

DEVEX RATI O = val ue * Default is 0.4

! The four commands given here have been changed from their formsin previous versions of FortMP. Thisisto
clarify their meaning and name the algorithm to which each applies. Old formsareincluded in Appendix B as
alternates and remain usable, however users should revise them if possible.

IN7 14

which determines when to trigger re-cdculation of column-norms (see 4.3.2 above) for PRIMAL, or
row-norms for DUAL. Vaues outside the range (0.2 - 0.6) are not recommended.

Forrest-Tomlin auto-activation is controlled by the following SPECS commands:
FORTOM ACTI VATE PERCENT = n * Default is 40
FORTOM ACTI VATE GROWIH = n * Default is 100

The ‘PERCENT’ in the first of these commands refers to percentage of structurd variables in the basis
which must reach this leve for activation. In addition ‘GROWTH’, the amount of increase during SSX
iterations after an INVERT, must be this percentage of the ETA-sze immediady after the invert. The
default value 100 implies that ETA-sze must double before auto-activation can take place.

The DUAL dgorithm is subject to a progress-check for which controls may be entered with the
following SPECS commands:

DPROGRESS FREQUENCY n * Default is 1

DPROGRESS CRI TERI ON = val ue * Default = 1.0d-25

Checks are made after re-inverson and the ‘FREQUENCY’ refers to the number of inversons made
between checks. If the progress made in the dua objective does not exceed the criterion given in this
time then DUAL is consdered as stdled and the system reverts to PRIMAL. The check is necessarily
dow to operate, even with comparisons a every re-invert. Hence if dua degeneracy occurs frequently
it is better to invoke the anti-degeneracy procedure (DUAL ADEGEN = 1 or 2) which should improve
progress anyway. However anti-degeneracy is itsdf rather dower than normd iterating.

Back to Chapter contents

4.6.4 Save and Restart

The following command provides necessary SAVEsfor re-starting a subsequent run.
SI MPLEX SAVE FREQUENCY = n * Default is 10

SAVEs take place during reinverson. The given frequency defines how many reinversons take place
between successve SAVES.

The restart procedure using such a save operates by providing the saved basis as a darting basis for the
next run. The necessary command is

SI MPLEX START RESTART
which has dready been described in Section 4.6.2

The following commeand specifies the limiting number of SSX iterations.
MAXI MUM SI MPLEX | TERATIONS = n * Default is 10000

IN/7 11

When this limit is reached both PRIMAL and DUAL will terminae after doing a SAVE operation to
provide for a restart. The given limit is added to any previous iterations in a restart o that you do not
need to change the limit. Iteration numbering continues from the previous run.

Back to Chapter contents

4.6.5 Processing an External Basis

An externd bassin MPS form can be used to provide the gtarting basis. The command is
SI MPLEX START | NPUT BASI S

which has aready been described in Section 4.6.2

The following commands set or clear a switch to provide an output basis for starting a subsequent run.

OUTPUT BASI S ON
OUTPUT BASI S OFF

The ‘OUTPUT BASIS ON’ command invokes output of an MPS format basis when the SSX solver
(whether PRIMAL or DUAL) has completed normaly. This basis can be used as a sarting bas's for
smilar problems with the same names for rows and columns — the identity being on the bass of names
rather than indices.

For the layout of MPS format basis records see Section 3.5.1 and Appendix A1.3. The corresponding
‘BASIS INPUT’ procedure does not require every name to be matched but it ignores any record which
cannot be matched and in the case of upper bound status it ignores any record where the new varigble
no longer has an upper bound.

Back to Chapter contents

4.6.6 LogLisngControls
Logged output from SSX dgorithms s controlled with the following commands.

SI MPLEX LOG LEVEL = n * n=0-4, Default is 1
I NVERT LOG LEVEL = n * n=0-4, Default is 1
SI MPLEX LOG FREQUENCY = n * Default is 1

where the defaults are as shown. The ‘LOG FREQUENCY"’ defines at what iteration frequency the
prima log is issued (levels 2 and above). This log is dso issued by DUAL and shows the Phase | and
Phase Il objective vaues plus other items of interest.

The INVERT log gives details of the ETA counts and non-zero counts both before and after each
reinverson.

Back to Chapter contents

N7 10

4.6.7 Special Pivoting and Update Controls

Some of the controls on pivoting have aready been described in section 4.6.3 above. 1t has been found
convenient to extend these contrals to cover dl three SSX adgorithms, and to make additiona controls
avallable for research testing and for ‘tuning’ the mogt difficult problems. In what follows a SPECS
command is prescribed for each operation, however not al of these are, in fact, available for use. Those
not available are fixed a a default leve, which is gpplied as a congtant, or if zero, is not gpplied a dl (in
the current release). They are indicated by the annotation ‘ Fixed' for the vaue in the command.

The following tolerances reate to pivoting:

PRI MAL PI VOT ZERO TOLERANCE = v * Fixed v = 1.0d-35
DUAL PI VOT ZERO TOLERANCE = v * Default v = 1.0d-14
I NVERT PI VOT ZERO TOLERANCE = v * Default v = 1.0d-

7

These commands dl refer to the level consdered as zero by the corresponding agorithm.

The following commands specify an acceptance leved for pivoting:
PRI MAL PI VOT ADM T THRESHOLD = v * Default v = 1.0d-8

DUAL PI'VOT ADM T THRESHOLD = v * Default v = 1.0d-
8

I NVERT PIVOT ADM T THRESHOLD = v * Fixed v = 0

PRI MAL PI VOT ADM T RELATI VE = v * Fixed v =0

DUAL PI'VOT ADM T RELATIVE = v * Default v = 0.0

I NVERT PI VOT ADM T RELATIVE = v * Default v = 1.0d-

2

(Keyword ‘THRESHOLD’ may be added after ‘RELATIVE'). PFivots fadling between the ‘ADMIT
level and the ‘ZERO' level are postponed, hopefully so as to avoid their use completely. In the case of
INVERT these pivots cannot be selected until no other dternative remains - the ZERO leve then defines
the criterion for Sngularity.

In the case of PRIMAL and DUAL postponed pivots are flagged - that is the corresponding row or
column sdlection is temporarily ruled out until a fresh re-invert occurs. When dl possible sdlections are
flagged out in thisway an early re-inversion can be invoked so asto correct the numerica error asfar as
possible before trying again. However, if al sdections become flagged immediately after re-invert, then
the algorithm is blocked and is hdted. DUAL then reverts to PRIMAL, but such an error in PRIMAL
is not resolvable.

The following tolerance applies to the forward/backward pivot comparisons made as a check on
numerica accuracy:
Pl VOT DI FFERENCE EPSI LON = v * Default v = 1.0d-
2

The tolerance is relative - that is to say the difference should not be greater in magnitude than this
multiple of the origind caculaions (usng forward transform or backward transform). In case of
violation the system may re-invert directly or flag the sdection as with pivots below the admit leve.

INns7 177

The following zero tolerances gpply to update cdculations:

PRI MAL RELATI VE EPSI LON = v * Fixed v = 0.0
DUAL RELATI VE EPSI LON = v * Default v = 0.0
| NVERT RELATI VE EPSI LON = v * Fixed v = 0.0

Which specify that the result of a subtraction equates to zero if its magnitude is less than a certain
fraction of the origina magnitudes subtracted.

Back to Chapter contents

4.7 Summary of SPECS Commands
The following SPECS commands relate to the SSX dgorithm. Those introduced in this chepter are

written in parentheses and have ‘Fixed' values.
M N M ZE
MAXI M ZE

These two commands specify the direction of optimisation. ‘“MINIMIZE' is the default so this command
isnot actudly needed.

ALGORI THM PRI MAL
ALGORI THM DUAL

One of these commands is used to specify which SSX agorithmisto beused. ‘PRIMAL’ is the default
and need not be specified.

MAXI MUM SI MPLEX | TERATIONS = nnn * default 10000

This command sets the termination limit for SSX dgorithms. A SAVE is made before exit at
termination.

SI MPLEX LOG LEVEL = n
I NVERT LOG LEVEL = n

These commands specify the ‘leve’ of the output to be sent to the log file in each mgor dgorithm. The
rangeis 1-4, with default value 1 in each case.

SI MPLEX SAVE FREQUENCY = n * default n=10,
each 10t h reinvert

This command specifies the frequency for making a SAVE in SSX dgorithms.

SI MPLEX START RESTART

This command specifies ‘RESTART’ for the SMPLEX dgorithms. ‘RESTART’ is an dternative to
other starting basis options.

SI MPLEX START CRASH

SI MPLEX START | NPUT BASI S
SI MPLEX START RESTART

SI MPLEX START UNI'T BASI S

N7 10

These commands sdect the mechanism for setting up the garting bass when the man adgorithm is
PRIMAL or DUAL. CRASH isthe defaullt.

PRI MAL MSUB = n

This command sets the number of priced candidates in PRIMAL sub-optimisation. The range for ‘n’ is
1-10, with default value 4.

PRI MAL DEVEX OFF

The above commands control use of DEVEX agorithm, the default being ‘OFF for both PRIMAL and
DUAL. ‘DOUBLE’ causes DEVEX to be active in both phases of the PRIMAL dgorithm. ‘ON’ and
‘SINGLE are equivaent.

DEVEX RATI O = val ue * Default = 0.4

This command sets the ratio-criterion for reca culating column-norms or row-normsin DEVEX.

I NVERT FREQUENCY = n

This command assgns a frequency, in terms of the iteration count, for reinverson during SIMPLEX
agorithms. The default for ‘n’ is 50.

The above commands set or cancel Forrest-Tomlin update of the ETA file. Default is AUTO implying
initially OFF and subsequently becomes ON when the auto-activate creteria are satified.

FORTOM ACTI VATE PERCENT = n * Default = 40

These commands control the auto-activation of Forrest-Tomlin update. ‘PERCENT’ is the required
percentage of structurals in the basis and ‘GROWTH' is the (percent) increase to ETAS during SSX
iterations between inverts. Both criteriamust be satisfied before auto-activation can occur.

DPROGRESS CRI TERI ON = val ue * Default = 1.0d-25

These commands control the progress-check made in the DUAL agorithm when there is no anti-
degeneracy procedure specified (default DUAL ADEGEN = 0). ‘FREQUENCY’ refers to the
separaion betweencomparisons, counted in number of re-inverts, and ‘CRITERION’ is the minimum
progress to be made - otherwise DUAL is stopped and the system revertsto PRIMAL.

DUAL ADEGEN = n * Default is O

N7 1N

Controls use of anti-degeneracy in the DUAL dgorithm. Zero specifies progress-checking (the default).
Vaues 1 and 2 specify anti-degenerate pivoting.

FEASI Bl LI TY TOLERANCE = val ue * Default is 1.0d05

RHS TOLERANCE = value * Default is 1.0d-5

DJ TOLERANCE = value . * Default is 1.0d-5
ZERO TOLERANCE = value * Default is 1.0d-15
(PRIMAL PIVOT ZERO TOLERANCE = v * Fixed v = 1.0d-35)
DUAL PIVOT ZERO TOLERANCE = v * Default v = 1.0d-14

| NVERT PIVOT ZERO TOLERANCE = v * Default v = 1.0d-
7

The above commands assign tolerances used in the dgorithms.

PRIMAL PIVOT ADMT THRESHOLD = v * Default v = 1.0d-8

DUAL PIVOT ADMT RELATIVE = v * Default v = 0.0
| NVERT PIVOT ADM T RELATIVE = v % Default v =1.0d-
2

(PRIMAL RELATIVE EPSILON = v * Fixed v = 0.0)
DUAL RELATIVE EPSILON = v . X Default v = 0.0
(INVERT RELATIVE EPSILON = v * Fixed v = 0.0)

The above commands specify reative zero levels in subtractions performed during update or caculation
of vectors.

This command assigns a frequency for printing the iteration log during SIMPLEX dgorithms. The default
for‘n’ isl.

Back to Chapter contents

N7 AN

Contents

5. The Interior Point Method

5. THE INTERIOR POINT METHOD

5.1 Introduction tothelPM Algorithm

511
512
513
514
515

IPM Problem Statement

Introduction to the Solution Procedures

Affine, Barrier and Predictor—Corrector Algorithms
Solving the System of Equations

Determining the Starting Point

52 Controlson thelPM Algorithms

521
522
523
524
525
526
527

Using the Algorithms

Control and Choice of the Starting Point Methods
Choice of Solution Algorithm for the Equations
Refinement by Conjugate Gradient iterations

IPM Save and Restart: Iteration Limit.

IPM-SSX Crossover Option: BASREC
Miscellaneous IPM and BASREC Commands

53 Summary of SPECS Commands

~N~No b~ WNDN

[o0]

10
11
11

13
13

14

5.1 Introduction to the IPM Algorithm

5.1.1 IPM Problem Statement

FortMP IPM is a prima dud approach to the solution of an LP problem; that is to say it takes note of
the origind problem (prima) and of the corresponding dua problem in which the coefficient matrix is
trangposed (rows become columns and columns rows), the right-hand sides become objective
coefficients and the objective coefficients become right-hand sides.

The prima problem may be stated at follows.

Minimise the expression é C; X; subject to the conditions:

é a;X; =b fori=12...,m
X, +s =u forj =12,...,n

wherethe x; arethe structurd variable and the variables s; (j = 1,2,...,n) are complements of the X;
with respect to the upper bounds u; .

We date the equations this way dthough naturdly varidbles s; only exigt for those x; which are
bounded in both senses. For the sake of smplicity this complication is ignored in dl the equations that
follow.

These equations are derived from the origind problem statement (see Chapter 1, Section 1.7) by
dropping dl fixed variables and free rows and by adding dack variables to convert inequdities into
equdities.

The dud problem may be stated asfollows.

Maximise the expression é by, - é U,w; subject to the conditions:
é a;y,tz,- W, =¢ forj=12,...,n

where the variables y (i =1,--,m) are dual variables complementary to the original
rows of the primal statement above, z () =1,...,n) aredual variables complementary to
the x;and w; (j =1,...,n) aredual variables complementary to the s; .

All of the varisbles x;,s;,z; andw; (j =1,2,...,n) must be non-negetive; this criterion defines an

interior point for the system.

According to LP theory any feasible solution to the above equations will dso be optima if the dudity
gap (i.e. the difference between prima and dud objective functions) is zero. This dudity gep is given by
the sum:

n

[o]
X;Zpta Sw;
1 j=1

. QJO:,

j
in which every term must be separately zero because dl the variables are positive or zero.
In the logarithmic barrier method these conditions are restated as.

Xz =m for j =12,---,n

sw, =n for j =12,---,n

where m is a poditive congtant that must reduce to zero a the find stage of the iterative solution process.
mis referred to as the ' Barrier parameter’.

Back to Chapter contents

5.1.2 Introduction to the Solution Procedures

In each of the solution algorithms one iteration considers an interior point to be a set of fixed vaues and
looks for aset of ‘changes or ‘directions asfollows.

Dx;, changestothex; forj =12,---,n
Ds;, changestothes; forj =1,2,---,n
Dy,, changestothey, forj=12,---,m
Dz;, changestothez; forj =12,;--,n

Dw;, changesto thew; forj =12,---,n

If we now substitute (x; +Dx;) for x; in the equations above, and smilarly subdiitute (s; +Ds;) for
s;, (y; +Dy,) for y;, (z; +Dz;) for z; and (w; +Dw;) for w; then new equations are derived.
These equations are now rearranged with the delta terms on the left and everything €se (congtant terms)
on the right. The equations then become:

a a;Dx; =D - a g;X; fori =12,---,m

Dx; +Ds =u, - x; - s forj=12,--,n

é a;Dy, +Dz; - Dw; =c; - é a;y, - z;+w; forj=12---,n
Dx,Dz; +z,Dx; + x,Dz; =m - x;z, forj=12,--,n

Bs,Dw; +w,Ds; +s,Dw; =m- s;w,; for j- 12,---,n

The congtant m(barrier parameter) is estimated by taking a certain proportion of the dudity gap. The
precise formulafor this proportion can be controlled by the user.

There are various means for gpproximating these equations so as to obtain a viable iterative procedure.
Three dternatives are available in FortMP IPM asfollows:

Affinedgorithm
Barrier dgorithm
Predictor-corrector dgorithm

Each is described below.

Once the ddlta terms have been determined then the new interior point for the next iteration is obtained
asfollows

New point = Previous point + Delta * Factor

where the Factor is made as large as possible without taking any variable outsde its bound range so
that the new point remains an interior point. Actudly the new point is only dlowed to gpproach the
boundary and never quite to reach it since to be on a boundary could make the whole process fail.

As will be seen, the essentid step in the solution process involves finding the inverse of a large,
symmetric matrix and this in fact is much the mogt time consuming part of the whole IPM procedure.

Remembering that at each iteration the current vaues of the x;,s;, y;, z; and w, must be interior, an
obvious requirement is to find a good interior Sarting point for the firg iteration. Different methods are
available for this and the user can specify which method should be used.

Back to Chapter contents

5.1.3 Affine, Barrier and Predictor—Corrector Algorithms
Affine Algorithm

In the affine dgorithm we gpproximate by setting mto zero in the equations o asto get the following:
é 31ij1 =b- é &;X; fori=12,---,m
Dx; +Ds; =u, - X, - S, forj=212,---,n
é a;Dy, +Dz; - Dw, =g; - é a;y, - z,+w; forj=12,---,n
Dx;Dz; +z,Dx; +x,Dz; =- x;z, forj =12,---,n
Ds,Dw; + w,Ds; +s,Dw, =-sw; for j- 12,---,n

In the 4th and 5th equations the 2nd order, quadratic terms have been dropped — this is a common
aoproximation used in dl the dgorithms.

This may be thought of as attempting to go dl the way — forcemto zero in one step — athough
afterwards of course the related duality gap is recaculated on the next iteration to evauate actud
progress made.

A darting point is derived by one of the three stlandard methods which can be sdlected by the user.

Barrier Algorithm

In the barrier dgorithm the equations for Dx;, Ds;, Dyi, Dz and Dw; are approximated as follows:
é a;,Dx; =0fori =12,---,m
Dx; +Ds; =0forj=12,---,n

& a,Dy, +Dz, - Dw, =0forj=12,--,n

z,Dx; +x,Dz; = - x;z, forj=12,--,n

w,Ds; +s,Dw; =m- s;w, for j- 12,---,n

Herethepaint (x;,s;,Y;,z;,w;) isassumed to be so far feasble asto satisfy the origind equations so
that the firgt three right-hand sides above are dl zero. Thisis guaranteed by a suitable choice of starting
point so that the barrier dgorithm has a sarting point method of its own — different from the affine and
predictor—corrector adgorithms.

As before the quadratic terms have been dropped in the 4th and 5th equations.

Predictor—Corrector Algorithm

The predictor—corrector agorithm computes the direction of change, the D, twice. For the firg
computation the same equations are used as for the Affine dgorithm. This gives the *predictor’ direction
which may be denoted (Dx;, Ds/", Dy[, Dz}, Dw;"). When this is substituted in the origind and
subtracted from the equations above we get the following equations for the ‘ corrector’ direction.

éaijj =0fori =12,---,m
Dx; +Ds; =0forj=12,---,n
a a;Dy, +Dz; - Dw; =0forj=12,---,n
z,Dx; +x,Dz; = m- Dx{Dz} forj =12,--,n
w,Ds; + s,Dw, =m- Ds’Dw; for j =1,2,---,n

mis cdculated after taking the full affine step on an experimental bads. Then when the corrector
direction has been cdculated the predictor and corrector directions are added and a fresh departure is
made from the origina point using the compodte direction.

Fortunately these new equations do not require a new factorisation so that the extra time involved is
relatively modest and the improvement in number of iterations will usudly compensate for the extra
cdculations.

The user is recommended for the most part to employ the predictor-corrector dgorithm as it will
geneardly solve in fewer iterations than ether the affine or barrier method. However certain problems,
particularly those that are unusudly sparse, may be soeeded up by the affine agorithm sufficiently for the
user to consder this a better dternative. Barrier should not be used except as a back up in case the
other dgorithmsfail for one reason or another.

Back to Chapter contents

5.1.4 Solving the System of Equations
To show how the equations are solved we firg restate them using matrices.
The following vectors and matrices are defined.

A The m” n matrix of coefficients ;.

Ac The n” m matrix of trangposed coefficients ag (= a;, rows become columns and
columns become rows).

X The n” n diagond matrix comprisng solution point vaues x;,X,,---,%, on the

diagond and zeros e sawhere.

n

Z,Sand W
Diagonad n” n matrices comprising dua solution point values from the z;, the s; and

the w; on the diagonal and zeros elsewhere.

Dx n-vector of variables Dx,,Dx,,--,Dx

n*

Dy m-vector of variables Dy,,Dy,,--,Dy

m-*

Dz, Ds and Dw
n-vectors of variables constructed from the Dz, , the Ds; and the Dw; in the same
way.
R, R, Ry, Ry and Ry
Congtant right-hand side vectors of Sze n except for R, whichisof Sze m.
Then the equations become:
ADx = R (1)
Dx +Ds= R, (2
Ay +Dz- Dw=R, (3)
ZDx + XDz = R, (4)

WDs+ SDw = R, (5)

where R, R,, R;, R, and R, vary according to the algorithm used.

To solve these equations we may begin by diminating dl the varidbles Ds, Dz and Dw from equations
(2, (3), (4 ad (5
When thisis done the system is reduced to two equations as follows:

-(X'Z+ S'W)Dx + A®y = R¢ (new RHS for 3rd equation)
ADx = R
This system could now be solved by finding the inverse of the matrix:

2D A®
§A 0p
where D isthe diagond matrix (X 'Z + S'W).

However, the number of equations can be reduced ill further by diminating the varidbles Dx across
these two equations. Thiswill result in the following:

(AD'AQDy = R (new RHS).

Here we have to invert the matrix AD *Ac, where Acdenotes Atrangpose. The matrix is symmetric
positive-definite matrix and so is inverted by the Cholesky procedure.

Back to Chapter contents

5.1.5 Determining the Starting Point

It is vitd in the IPM dgorithm to have a good darting interior point from which to begin iterations.
Failure in this will increase the number of iterations necessary and may indeed lead to divergence or
cycling so that a solution can never be found.

In the barrier agorithm a specia procedure is used since the starting point, in addition to being ‘interior’,
mugt aso sisfy feasihility in the prima equations. To ensure this a centrdised gtarting point is chosen
and one extra row and column are added to the modd with large coefficients based on a‘Big M’ vaue
designed to make the extended starting point feasble. The extra variable must converge to zero in the
find solution. Users can control this procedure by weighting the Big M vaue as described in Section
5.2.2.

Affine and predictor—corrector dgorithms can employ one of three starting point methods based on a
quadrétic formula to maximise the distance from boundaries in the initid interior point. The choice of
method is described in Section 5.2.2.

Back to Chapter contents

5.2 Controls on the IPM Algorithms

5.2.1 Usingthe Algorithms

IPM isinvoked in thefirg place with the SPECS command.
ALGORI THM | PM

which has adready been described in previous chapters.

The primary contral for selecting an dgorithm within IPM is by one of the following SPECS commands.

| PM ALGORI THM AFFI NE
| PM ALGORI THM BARRI ER
| PM ALGORI THM PDC

(where ‘PDC’ isfor * Predictor—Corrector’)

Three generd features of the agorithms are controllable:

The caculation of barrier parameter, .
The gpproach to a boundary when a step is made after caculating the change directions.
The feasbility and termination criteria.

The Barrier Parameter — 1

mis determined by one of two dternative formulae at each iteration step.

Thefirg isasmple formula
nm = DGAPI (N)

where DGAP isthe current dudity gap and f (N) is a vaue dependent on a user controllable parameter
PHI and the column size N of the problem. For large N (greater than 5000 columns) we use;

f(N)=PHI = N’
and for smdler N we use
f(N)=PHI~ N" ON

This smple formula is dways used by the barrier dgorithm. Users can give the value of PHI with the
following SPECS command:

|PM PH = v *default v = 10.0

In the affine dgorithm mis taken to be zero and itsimplicit value is never used.

In the predictor—corrector agorithm the user can enforce the use of the smple formula above
(controllable as before) or can specify a more complicated, adjustable formula as follows:

(PGAP)(M ~ IGAP)

where:

IGAP represents the dudity ggp a the dat of the iterdion,
thatisé X, Z, +§_ A

PGAP represents the predicted gap after the first step has been taken with the variables
incremented as they would be in a completed affine iteration step.

M is the row size of the problem

P isapower that can be supplied by the user.

The user can specify the power P with the following SPECS command:
| PM POVNER = n * n=0-4 default is 4

If the power is specified as zero then the smple formula is aways used in any case. The more
complicated formula will aso be replaced by the smpler formula when the dudity gap reaches a low
vaue.

With the vaue 3 for the power the system is in effect placing rdatively less importance on reducing
infeasibility, and this vaue has been found generdly suitable. However, it may be necessary touse 2 or 1
for a problem if infeasbility takes a large number of iterations to be eiminated (or indeed is never
diminated within the maximum number of iterations alowed).

Option 4 isamodified formula, smilar to option 3 but found usualy to perform the best.
Power 1 should be used only if the model is numericaly sable.

Approach to the Boundary

After cdculating the direction of change, the system ca culates how much change can be applied without
having any individua variable go outsde the interior point region. One change factor gppliesto dl prima
variables and another change factor to dl dud variables. The factor in each case is derived from the
variable which first reaches the boundary.

However the system never goes al the way using these factors, but only a fixed proportion of the
disance which is given by the DARE parameter.

Users can specify DARE with the following SPECS command.

| PM DARE = v * 0 < v <1.0. Default is
0. 9995

Lower vaues of DARE will result in more iterations, but a value that is too high results in ingability. The
process no longer converges normaly and may diverge instead.

Feasbility and Termination Criteria

There are two tolerances (EPSILON values) which the user can set to control termination.

| PM RELATI VE EPSI LON = v * Default is 1.0e-9
| PM FEASI BI LI TY EPSILON = v * Default is 1.0e-4

The relative epslon vaue goplies to the reaive dudity gap — that isto say actud dudity gap normdised
by the following formula,

RGAP = DGAP/(|DOBJ + 1)

where:
RGAP isthe rdaive dudity gap
DGAP isthe actua dudlity gap (difference between prima and dud objective vaues)
DOBJ isthe dud objective vaue

The vaue of feasibility epsilon specifies the feaghility tolerance used in testing the equations.

The coarser the values specified, the earlier the termination. However, the solution may become rather
inaccurate. The defaults given have been found achievable without specid difficultiesin most cases.

Back to Chapter contents

5.2.2 Control and Choice of the Starting Point M ethods

In the barrier dgorithm a single standard starting point method is dways used. Thisis the so-cdled ‘Big
M’ procedure for choosing astarting point (described in Section 5.1.5) to satisfy the prima equations.

The Big M vaue to be used is controlled by the user with the parameter WEIGHT (which is a ample
multiplier in the formula). WEIGHT can be set by the user with the SPECS command

| PM Bl GM WEI GHT = val ue

where ‘vaue isthe value to be used. The default vaue is 0.1 and recommended vaues are from 0.1 to
10.0. Larger vauesresult in greater numerica stability but aso lead to increased number of iterations.

In the affine and predictor—corrector agorithms one of three starting point methods can be used as
follows

(@) A standard procedure seeks to minimize the infeasibility in the prima eguations.
2 A smplified procedure has a separate treatment for upper bounds.
(3) A smilar to method (2) has scaling gpplied to baance the prima and dud values.

The method can be specified with the SPECS command
| PM STARTI NG PO NT METHOD = n

where ‘n’ is 1, 2 or 3. The default is method 1 and this should be retained unless you find the result
unsatisfactory or you wish to experiment.

Back to Chapter contents

5.2.3 Choice of Solution Algorithm for the Equations

Since the matrix inversion procedure that is used to solve the equations occupies much the largest part of
the execution time, more than 90% in many cases, you should congder carefully which verson to use.

There are 3 versons avalable

Standard Cholesky procedure
Cholesky with supernodes
Cholesky with extended supernodes

‘Supernodes’ is a procedure whereby dense patternsin the matrix AD *Ac (see Section 5.1.4) can be
exploited so as to take advantage of special hardware — for example vector registers.

The extended supernodes verson carries these idess further and can run significantly faster by making
better use of vector registers in the hardware. Speed gains up to five times faster have been observed.
However, it has the disadvantage of needing significantly more memory in order to run.

The verson to use is specified with the following SPECS commands:

| PM SOLVER CHOLESKY
| PM SOLVER SUPERNODE
| PM SOLVER XSUPERNODE

The default is XSSUPERNODE.

Although the matrix to be inverted is postive definite, numericad dtability can be a problem. It is
controlled by checking the pivot-sze a each step with a criterion that is set by the following SPECS
command:

IPM TOFI X = n * Default = 1.0e-12

This is smilar to the pivot tolerances used in SSX agorithms but is not quite the same because here
there is no other choice available if the pivot istoo smal. Instead the pivot is Smply changed to 1.0.
This of course results in a somewhat inaccurate solution and at a later stage the solution is refined with
Conjugate Gradient iterations - see the next section below.

Back to Chapter contents

5.2.4 Refinement by Conjugate Gradient iterations

The solution to the equations a each iteration, once found, is subject to a degree of error that may be
caculated by subgtitution and comparing with the RHS. If the error is not too large it can usudly be
reduced by Conjugate Gradient (CG) iterations and two levels are defined:

- CG tolerance levd
- Error tolerance leve

The lower tolerance leve is the criterion for sufficient accuracy, while the upper error levd is the highest
level a which CG iterations may be tried. Between these levels CG iterations are performed up to a
certain maximum. The system is controlled by the following SPECS commands

CHOLESKY CG TOLERANCE = v * default = 1.0e-4
which setsthe lower leve,

CHOLESKY ERROR TOLERANCE = v * default = 10.0
which sets the upper leve, and

MAXI MUM CG | TERATI ONS = n * 0-3, default is 3

which limits how many CG steps can be used for each mgor IPM iteration. Zero necessarily implies
OFF.

Back to Chapter contents

5.25 IPM Saveand Restart: Iteration Limit.

IPM regtart is amilar to binary bads restart in the SSX dgorithm. In other words the IPM agorithm
periodicaly savesits current solution to an output file that can then be used in a subsequent run to retart
the process at an advanced gstarting point.

With the IPM RESTART switch set ON the procedure bypasses cdculation of the starting point and
uses ingtead the solution supplied from a previous run. The following SPECS commands control this
switch:

| PM RESTART ON

| PM RESTART OFF

The default is OFF.

The normd frequency for making SAVESs of the solution is a every 10 iterations. This may be modified
with the command

| PM SAVE FREQUENCY = n
where‘n’ is a pogtive integer (default 10). The system aso performs a SAVE when the IPM iteration
limit is reached. The iteration limit may be changed with the command

MAXI MUM | PM | TERATI ONS = n

where ‘n’ is a postive integer, the default being 80. In a restart the previous iteration count is added to
the limit of the new run so that there is no need to increase it when arestart is made.

When a previous solution is to be used in a restart you must remember to duplicate exactly the data
preparation from the previous run. The user must repeat SCALE and/or PRESOLVE if these were used
and must repest the setting of the IPM PREFIX switch. A normd rule to follow would be to repeet al
the previous controls exactly and smply add the necessary RESTART commands.

Back to Chapter contents

5.2.6 IPM-SSX Crossover Option: BASREC

The user has the option either to terminate immediately after IPM or to develop the IPM solution into a
basi ¢ solution with the BASREC procedure. This recovered basis then forms an advanced arting basis
for the SSX procedure —it is usudly near optima anyway.

The option is exercised viathe IPM BASREC switch asfollows.

| PM BASREC ON
| PM BASREC OFF

The default is ON. When the switch is set OFF the system writes the IPM solution to the output unless
OUTPUT is cancelled with the OUTPUT OFF switch.

The BASREC dgorithm itsef comprises prima and dua ‘PUSH’ iterations preceded by a‘CRASH’ to
set up a darting bass. Norma CRASH controls apply here and in addition the user can avoid use of
dua PUSH with the following command:

DUAL PUSH OFF * Default is ON
(ON may aso be specified). It isnot recommended to use OFF here because the final basis must be

corrected with the PRIMAL dgorithm which can take many more iterations. Dua PUSH iterations are
dower but limited in number.

The following command may be used to restart BASREC from the IPM solution of a previous run.
BASREC RESTART ON
BASREC RESTART OFF
the switch being OFF by default. If set to ON the whole IPM procedure is skipped, including the rather
lengthy initidistions

FortMP IPM carries out an automatic IPM SAVE when it terminates so that the BASREC RESTART
feature can be used in alaer run. Thiswill be found very useful if the user wishes to stop after IPM and
then do the BASREC and optimisation with SSX in a subsequent run.

Back to Chapter contents

5.2.7 Miscdlaneous|PM and BASREC Commands

The following SPECS command determines the log level of IPM in the same manner as for PRIMAL
and DUAL.

| PM LOG LEVEL = n *n = 0-4, default 1
For the BASREC (crossover to SSX) stage the following commands are used:
PUSH LOG LEVEL = n *n = 0-4, default 1

PUSH LOG FREQUENCY = n * default: n = 10

these commands being smilar to ‘PRIMAL LOG LEVEL’ and ‘PRIMAL LOG FREQUENCY".

The following SPECS commands are only available in certain versons of FortMP. (Please see the
Implementation Guide for details) A switch is set to invoke a graphica display which shows the density
pattern of the matrices and the progress of the iterations. Copies of the disolay will be left in files
‘model.a, ‘model.b’, ‘model.c’ and ‘model.d’ if this command is successfully activated.

| PM GRAPHI CAL DI SPLAY ON
| PM GRAPHI CAL DI SPLAY OFF

The default is OFF.

Back to Chapter contents

5.3 Summary of SPECS Commands

The following SPECS commands have been introduced so far in this manud. Those introduced in this
chapter are highlighted thus:

| PM ALGORI THM AFFI NE

ALGORI THM | PM

Thise command is used to specify IPM as the primary solution agorithm for the continuous LP
problem..

| PM ALGORI THM AFFI NE

These commands invoke the dgorithm to be used within IPM. The default is PDC (Predictor-
Corrector). See5.2.1

| PM PH = v * Default is 10.0

This command sets the PHI contral in the eementary formulafor caculating m. See 5.2.1.

| PM POAER = n * n=0-3. Default is 4

This parameter sets the 'POWER' gpplied to the numerator in the more advanced formula for m which
isused in the earlier phase of the predictor-corrector algorithm. See 5.2.1.

| PM DARE = v * Default is 0.9995

‘DARE’ is afraction between 0 and 1 controlling how closely to approach the nearest boundary when
moving from oneinterior point to the next. See5.2.1.

| PM RELATI VE EPSI LON = v * Default is 1.0e-7

The relative epglon is the tolerance within which the dudity gap can be considered to be zero. Thus the
optimum solution is reached provided the point isfeasble. See5.2.1.

| PM FEASIBILITY EPSILON = v * Default is 1.0e-4

The feashility epslon is the tolerance governing feagbility of the current prima and dud solutions. See
5.2.1.

| PM Bl GM VEI GHT = v * Default is 0.1

Thisvaueisthe BIGM weight used in the starting point method for the barrier dgorithm. See5.2.2.

| PM STARTI NG PO NT METHOD = n * Default is 3

This command selects one of three starting point methods for the predictor—corrector agorithm. See
5.2.2.

| PM SOLVER CHOLESKY

These commands sdect the solution mechaniam to be used. The default is ‘XSUPERNODE'. See
5.2.3.

I PM TOFI X = n * default = 1.0e-12

This command sets the criterion for minimum pivot sze in the Cholesky factorisation. See5.2.3.

CHOLESKY CG TOLERANCE = v * default = 1.0e-4

These commands set lower and upper levels to the solution error between which CG iterations are used
to refinethe mgor IPM iterations. See 5.2.4.

MAXI MUM CG | TERATI ONS = n * 0-3, default is 3

This command limits the number of CG steps taken at each mgjor IPM iteration. See 5.2.4.

| PM RESTART ON
| PM RESTART OFF

This command specifies whether to ‘RESTART’ the IPM dgorithm. Default is OFF. See5.2.5.

| PM SAVE FREQUENCY = n * default n=10
This command specifies the frequency for makingaSAVE in IPM. See5.2.5.

MAXI MUM | PM | TERATI ONS = nnn * default 80

This command sats the termination limit for IPM. A SAVE is made before exit at termination. See
5.25.

| PM BASREC ON
| PM BASREC OFF

When ‘ALGORITHM IPM’ has been sdected the user can set this switch OFF in order to hat
execution and print the output immediately on reaching the IPM solution. The default iSON. See 5.2.6.

DUAL PUSH OFF * default ON

The OFF option cancels execution of DUAL PUSH (not recommended). See5.2.6

BASREC RESTART ON * default OFF

Provided that the IPM agorithm has completed with an optimum solution then BASREC can be
restarted in a subsequent run without repesting the IPM cdculaions again. See 5.2.6.

| PM LOG LEVEL = n

These commands specify the ‘level’ of the output to be sent to the log file in each mgor agorithm.
Rangeis 14, defaultis1in each case. See5.2.7.

PUSH LOG LEVEL = n * 0-4, default is 1

These commands control the log leve and frequency of ‘PUSH’ iterations during the BASREC
(crossover to SSX) agorithm. See5.2.7

| PM GRAPHI CAL DI SPLAY ON

Certain implementations of FortMP have the graphical feature which displays the pattern of non-zerosin
the matrices followed by a progress display of the iterations. The default is OFF. See5.2.7.

Back to Chapter contents

Chapter 6. Mixed Integer Programming (MIP)

Chapter 6 : Mixed Integer Programming (MIP)

Contents

6.1 IntroductiontoMIP

6.2 MIP Problem, data types, and problem definition
6.2.1 Binary and Integer Variables
6.22 Semi-Continuous Variables
6.23 Specia Ordered Sets of Type One
6.24 Specia Ordered Sets of Type Two
6.25 MIP model definition

6.3 MIP DataPreparation; Marker lines

6.3.1 Defining Binary, Integer and Semi-continuous variablesin the BOUNDS section

6.32 Marker lines

6.3.3 Defining Integer and Binary Variables with Markers
6.34 Defining a Specia Ordered Set

635 AnExample

6.4 Branch and Bound algorithm
6.4.1 Branch and Bound - the Background
6.4.2 Branch and Bound - the Algorithm
6.4.3 TheBranching Mechanism, UP and DOWN branching

6.5 Controllingthe Tree Development
6.5.1 Definition of Tree Search Heuristics
6.5.2 Provision of choice criteria by the user
653 UP-direction priority option

6.6 Detailed User-control of the Tree Search
6.6.1 User control of variable choice
6.6.2 Control of node choice - Fixing an Integer Solution
6.6.3 AGENDA datafor variable priorities or 'FIX" solutions
6.64 SPECScommandsfor AGENDA input
6.65 SPECScommandsfor AGENDA output
6.66 Un-named AgendaFiles

6.7 Advanced Algorithmsfor MIP
6.7.1 Recent advances
6.7.2 Pre-processing - Variable Fixing and Constraint Relaxing
6.7.3 Cut Generation
6.74 Fixing Variablesby Dua Solution Analysis

6.8 MiscellaneousMIP controls
6.81 Automatic rounding heuristics

w

o ~No oA~ P

RRRRN

14
15

19
19
19
21

RNRR

25
25
25
26
28
28
29

BRE883

34

Vi-1

FortMP - Part 2

6.8.2
6.8.3
684
6.85
6.8.6

Bound, Cutoff and Tolerance control
Placing Limits on the Tree Search
Saving the tree and restarting MIP
Bypassing Mixed Integer

Making use of the PRIMAL algorithm

6.9 Logged Output and Screen Display

6.10

6.10.1
6.10.2
6.10.3
6.104
6.10.5

6.11

VI-2

MIP Constraint Classification
Introduction and SPECS command
Knapsack Constraint Classification
Mixed Less or Equals Constraint Classification
Equality constraints
Full Classification Hierarchy

Summary of MIP SPECS Commands

SRR S

37

39

42
V)

R&HERD

49

Chapter 6. Mixed Integer Programming (MIP)

6.1 Introduction to MIP

In many red-world problems, it is often impossible to represent certain features of a problem using
only linear condraints and continuous variables. In modelling a red world problem it is often
necessary to represent discrete activities by variables which are redricted to take only integer
vaues. Moreover, there are non-linear variable separable functions of one variable which can be
gpproximated by a piecewise linear function. Within Mahematical Programming, these modes are
often given the generic name of Mixed/Integer Programming (MIF/IP).

The diversity of gpplicable MIP/IP modds stems from the fact that in many practicad problems,
activities and resources, like machines and operators are indivisble. Many problems require the
determination of yes-no decisons, which can modelled by introducing binary variables which are
integer variables restricted to the values zero and one representing 'no’ and 'yes respectively. Also,
many optimisation problems of a combinatoria nature can be formulated as IPs. The range of
gpplications includes problems such as the didtribution of goods, production scheduling and machine
sequencing. They dso include planning problems such as capitd budgeting, facility location, crew
and aircraft scheduling, design problems such as communications and transportation network design,
very large scae integrated circuit (VL Sl) design and the design of automated production systems.

Back to Chapter contents

VI-3

FortMP - Part 2

6.2 MIP Problem, data types, and problem definition

An MIP is a mathematical program which in addition to its usud linear restrictions includes some
discrete (integer) redtrictions on some or al the variables of the modd. These redrictions can be
categorised as one of the following:

(i)Zero-One or Binary variables, x;1 {01},
(i)General Integer variables, x1 Z
(iif)Semi-Continuous variables, X;=0or O< [Ex; £y,

(iv)Special Ordered Sets of type One, See6.2.3
(V)Special Ordered Sets of type Two. See 6.2.4

The definition and the modelling gpplications of each group of variables and sets are given separatedy
in the following sections.

Back to Chapter contents

6.2.1 Binary and Integer Variables

A zero-one or binary variable (BV) is a varigble which can take ether the value zero or onein a
given model. An important and common use of zero-one varigbles is to represent binary, yes or no
choices. Condder a Situation where one has to make a decision whether or no to perform a number
of activities and suppose that the problem (or a least part of the problem) is to decide which
activities to sdect. To represent such a condition in a model we use a binary varigble x; for each
activity and let

X = 1if activity j is performed,
X = 0if activity j isnot performed.

Knapsack, Facility location, Network flow, Set covering, Set packing, Set partitioning, Travelling
sdesman, Scheduling and Logic programming provide instances of models which include binary
variables.

General Integer variables are used to modd entities where non-integer values are not meaningful.
For example, the production of items in batches of a fixed Sze can only be redigtically modelled if
the modd excludes the possibility of non-integer numbers of batches being produced.

Back to Chapter contents

Vi-4

Chapter 6. Mixed Integer Programming (MIP)

6.2.2 Semi-Continuous Variables

A Semi-Continuous variable (SC) is a varidble which may take the vaue zero or any vadue within
a certain range bounded by postive finite lower and upper bounds (figure 1). Thus, these variables
are used to represent activities which, if used a dl, mugt have a usage above a gpecified minimum
leve.

Oe

Figure 1

The dtuation arises (for example) in certain blending problems where materids must be excluded
from the blend if they cannot be used in ggnificant quantities. It has been modeled by the
introduction of a decision-variablesto represent whether or not a materia isto beincluded.

Consider ablending problem which has the requirement that, if the | materid is used a dl then it
must be used & alevel between|; and u. Define a zero-one varigble d; in connection with each
materid amount x;. The semi-continuous requirement is established by the two constraints:

|jdj £ Xj
Xj £ Ujdj

of a type known respectively as variable lower bound and variable upper bound. However by
defining X, as a semi-continuous variable this complexity can be avoided and the solution process is
more efficient.

In the present verson of FortMP the continuous-range lower bound must be 1.0. Thisisnot ared
regtriction however as the modeler may easily scale x; by the lower bound reciproca 1.0/; (it 0) so
that thisis achieved.

VI-5

FortMP - Part 2

Back to Chapter contents

6.2.3 Special Ordered Setsof Type One

A Soecial Ordered Set of type One (SOSL) is defined to be a set of variables for which not more
than one member from the set may be non-zero in a feasble solution. All such sets are mutudly
exclusve of each other, the members are not subject to any other discrete conditions and are
grouped together consecutively in the data

The normd use of an SOSL is to represent a set of mutudly exclusve dternatives ordered in
increasing vaues of Size, cost or some other suitable units appropriate to the context of the modd.
This representation is a discrete programming extension of the separable programming model.
Thereisastrong implied assumption that a nonlinear function represented in thisway is single vaued
over the range of its argument.

Congder afunction g(y) represented by the points P,...,P« as shown in figure 2.

I:)k
) o f
*
PZ
P, ¥ P,

* * P4

*
o) | 99| 99)| 9¥) 9y | 9y

y, Y, 2 V. Ve: Y y
Figure 2

VI-6

Chapter 6. Mixed Integer Programming (MIP)

Given the tabulated coordinates (9,, 9(9,)) k=1,...K, thefunction g(y) may be represented as

g(y) = 9(91)X1+ 9(92)X2+ +g(9K)XK (1)
where

X H Y X+ s + Y X -y=0, y3 0 2

X +X + - +x, =1 %30 k=12,...,K (3

The discrete function can take only one of the K possible values weighted by the variables x, , of
which only one can be non-zero, and that must have the vaue one.

This requirement could be expressed by regtricting each X to be a binary varigble but the dternative
of defining them collectively as a specid ordered set of type one, which is a direct statement of their
nature, leads to a more efficient solution process.

Theweighting variables x, are called special ordered set type one variables and the rows (1), (2),
and (3) are called function rows, reference rowsand convexity rows respectively. Should the
SOSI's not represent a moddlling of discrete, separable variables then none of these rows need
actudly exigt, but there is an advantage to the system if it is aware of the reference rows at lesst.

Back to Chapter contents

6.2.4 Special Ordered Setsof Type Two

A Special Ordered Set of type Two (SOS2) is a st of consecutive variables in which not more
than two adjacent members may be non-zero in a feasble solution. All such sets are mutudly
exclusive of each other, the members are not subject to any other discrete conditions and each st is
grouped together consecutively in the data

SOS2s were introduced to make it easer to find globa optimum solutions to problems containing
piecewise linear gpproximations to a nonlinear function of a sngle argument (as in cassca
Separable Programming). The overal problem has an otherwise LP or an IP structure except for
such nonlinear functions.

Congder thefunction f (y) illugtrated in Figure 3 as a piecewise linear function in one varigble
defined over the dlosed intervals [9, ,¥,.,], K=1,...,K - 1, where the coordinates
Ve, T(9)), k=1,...,K, represent points Pi,...,Px.

VI-7

FortMP - Part 2

f Py
h
P,
P, P,
1 P,
t@)) f@)| o, f9)| f@)
yl yZ yg, 94 yk . yk -

Figure 3

Any point y intheclosed interve [9,, §,.,] may bewritten as

Y =X Y + X Yin
where

X, X, =landx,, X, % 0.
Smilarly, as f(y) islinear inthe intervd, it can be written as

FOY)=F (9 X + F(Pira WX -

Thisleadsto the representation of f (y) usng aset of weighting varibles, x,, k=1,...,K, by the
equdity

FOY)= (9% + F ()% + - + T (9)% 4)
where

91X1+y2X2+ +yKXK - y:O, y3 0 (5)

X +X + - +x,=1 %30 k=12,... K. (6)

VI-8

Chapter 6. Mixed Integer Programming (MIP)

Plus the added condition that not more than two adjacent variables can be non-zero a any one time.

Theweighting variables x are called the special ordered set type two variables and the rows (4),
(5), and (6) are cdled function rows, reference rows and the convexity rows respectively, as in
equations (1), (2) and (3) of section 6.2.3. Should the SOS2's not represent separable functions
then none of these rows need actudly exig, but there is an advantage to the system if it is aware of
the reference rows at least.

Back to Chapter contents

6.2.5 MIP modd definition

The classes of discrete variables are described in the previous sections, as Binary, Generd integer,
Semi-Continuous variables and Specid Ordered Set variables of type One and type Two. A
satement of the generd discrete programming problem (DPP), which contains the above types of
variables and sets as wdll as continuous variables is set out below. Consider the index sets N1,...,
N7 which are used to specify the different variable types.

N, = sat of indices of bounded varigbles

LLEx Euy, jT N, (7)
where either |; or u; may be infinite but not both

N, = set of indices of free varigbles
-¥<xj<+¥,jTN2. ®

N, = set of indices of binary variables
x; =0orl, jT N,. (9)

N, = set of indices of generd integer variables
l,£x,£u; , and x; integer, jT N,. (10)

N, = satof indices of semi-continuous variables
either j0<1£X; £y,

i1 N 11
or} X, =0 R (1)

Ng = U N Where Ny, isthe st of indices of the |, SOS1-type variable-st, these sets
|

being mutualy exclusive of each other,
X; 30, jl Ng, I=1..., L« (12)

VI-9

FortMP - Part 2

L ¢ = Number of SOSls.
and only one x; can be non-zero in each set.
N, = JN; where N,, isthe set of indices of thel, SOS2 type varisble-set - these sets
being nlwutudly exclusve of each other.

X; 30, jT Ny, I =1..., L« (13)
L« = Number of SO2s.

and at most two adjacent x;’ s can be non-zero in each st.

These index sets are mutudly excusive, thet is Npﬂ N,=/forp* g, p=1.,7 landthusthe
total numbet of variables defined is n where:

7
n=a N,| (14)
p=1
where [N | isthe cardindity of theset N ;.
Using these set definitions a generd discrete programming modd may be presented as
Minimise é C;X; (15)
j=1
subject to condrants:
| .
é_a}jxj}3yq, i=1...,P (16)
j=1 I:'[)
I
where:
I, £Xx; £u,
I J J N
-¥ <l u, <+¥ AT NN,
¥ <X <+¥ TN, (17)
0£x £1 C TN,
O£ X, £u; ,Ajl N,
x; %0 , J1T NgUN,
with further discrete redtrictions

VI-10

Chapter 6. Mixed Integer Programming (MIP)

x;=0orl , ifjT N,

X; integer , ifjT N,

eitheriO<l; £x; £y, FTN 18
or ’l\ X-:0 IJ 5" ()

| j
Only one x; can be non-zero if jT Ng, and at most
two adjacent x; can be non-zero if jT Ny

The modd therefore has m rows given by (16) and n columns given by (14)

In the normal usage of specia ordered sets to represent separable variables (discrete or piecewise
linear) the congraints (16) include function rows, reference rows and convexity rows as defined in
6.2.3and 6.2.4

Back to Chapter contents

VI-11

FortMP - Part 2

6.3 MIP Data Preparation; Marker lines

Integer, binary and semi-continuous variables may be specified in the MPS form input data by using
codesin the BOUNDS section asillustrated in table 14 of Chapter 2.

As an dterndive the user may employ 'MARKER' lines in the COLUMNS section to specify alist
of consecutively sequenced binary or integer variadbles. 'MARKER' linesin the COLUMNS section
are aso the means whereby specia ordered sets of type SOS1 and SOS2 are defined. Their usage
in FortMP corresponds to IBM's extenson to MPS format in ther MPSX sysem. Certan
variations are aso available to conform with usage by other systems.

Back to Chapter contents

6.3.1 Defining Binary, Integer and Semi-continuous variablesin the BOUNDS section

Binary, Integer and Semi-continuous varigbles can be defined in the BOUNDS section of the MPS
file usng the following type codesin fidd 1:

BV indicates that the varidble in Fidld 3 is a binary variable redtricted to discrete vaues
zero and one,

ul indicates that the variable defined in Fidd 3 is an integer variable with upper bound
given by the value in fidld 4 rounded down to the nearest integer. The lower bound
is 0, unless explicitly defined with a record that has LO or LI as the type code in
field one.

LI indicates that the variable defined in Fidd 3 is an integer variable with lower bound
given by the vaue in field 4 rounded up to the nearest integer. The upper bound is
infinite, unless explicitly defined with a record that has UP or Ul as the type code in
field one.

SC Indicates that the variable named in Fidd 3 is semi-continuous with upper bound of
the continuous range given by the vaue in Field 4. An SC specification cannot be
combined with any other BOUNDS specification for that variable. Lower bound of
the continuous range isimplicitly set to 1.0 (see section 6.2.2).

Back to Chapter contents

6.3.2 Marker lines

Marker lines are used in the COLUMNS section of the input data to define a list of consecutively
sequenced variables. Four types of marker line can be used as follows:

VI-12

Chapter 6. Mixed Integer Programming (MIP)

INTORG' I ndiicates the beginning of a consecutive sequence of Integer or Binary
varigbles

INTEND' Indicates the end of a consecutive sequence of Integer or Binary variables

'SOSORG' Indicates the beginning of a gpecia ordered set (type SOS1 or SOS2)

'SOSEND' Indicates the end of aspecia ordered set (type SOS1 or SOS2)

A marker line has the keyword 'MARKER' (quotes included) in Field 3 of the standard MPS-form
layout and the type keyword XxxORG' or XxxEND' ether in Fidd 4 or in Fidd 5 (with quotes
included).

The full layout isasfollows

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
(2-3) (5-12) (15-22) (25-32) (40-47) (50-61)
Blark Labe | 'MARKER | 'INTORG blank blank
Blark Label | 'MARKER | 'INTEND' blank blank
SOStype Label | 'MARKER | 'SOSORG | REF-row blank
Blark Label | 'MARKER | 'SOSEND' blank blank

Each marker line must appear between one column and another - a column may not be split by a
marker.

It is not dlowed to overlgp sections of the data with marker lines since al sets must be mutualy
exclusve. Thus markers are dways to be in pars with the 'ORG' type marker followed by its
corresponding 'END' type marker before any other marker can appear.

Fields 4 and 5 are interchangeable - the marker type keyword may be placed in fiedld 5 and when
'SOSORG' is placed in fidld 5 the 'REF-row' datais placed in field 4.

Blank fields should be left blank (but may contain unused materid).

The 'Labd’ fidd is intended for the user to attach a name or label to a set. For this purpose the
'END' marker should have the same label as its corresponding ‘'ORG' marker. However thisis quite
optiond.

'SOStype in Field 1 is described below.

Back to Chapter contents

VI-13

FortMP - Part 2

6.3.3 Defining Integer and Binary Variableswith Markers

INTORG' and 'INTEND' markers define a list of consecutively sequenced binary or integer
variables. The integer bounds may be defined with 'LO' and '"UP records in the BOUNDS section
of the data, and the system distinguishes binary variables as those with a bound range zero to one.

If no records in the BOUNDS section are provided for one or more of the variables outlined by
'INTORG' and 'INTEND' then these variables receive a default bound specification LO-vaue zero,
UP-vaueinfinite. Thusthey become smple non-negetive variables redricted to integer vauesin any
feasble solution.

The default bound can be changed with the following dternative SPECS-commands:

INPUT INTORG UPPER BOUND =n (efauit infinity)
INPUT INTORG BOUND =n (defauit infinity)

which in effect supplies an implicit UP record in the BOUNDS section. By setting n = 1 with the
command

INPUT INTORG BOUND =1
the default specification becomes binary (BV) rather than integer (UI).

Back to Chapter contents

6.3.4 Defining a Special Ordered Set
'SOSORG' and 'SOSEND' markers are used to outline each Specia Ordered Set in the modd.

In Field 1 of the 'SOSORG' marker there is a 2-character code which specifies the SOS-type as
follows

S1 indicates type 1
S2 indicates type 2

InFField 5 (or in Fidd 4 if Fied 5 contains 'SOSORG') the user can enter the name of the reference
row of the SOS. If it is left blank the system assumes an implicit reference row having whole
number coefficients 1, 2, 3,.... for the set membersin their order.

Back to Chapter contents

VI-14

Chapter 6. Mixed Integer Programming (MIP)

6.3.5 An Example

A smdl Discrete Programming modd is set out here to show how binary, integer, semi-continuous
and SOS type variables are presented in MPSX format. Consider the following modd M(i):

Minimise
3X1 + 4X2 + 5X3 -Xg+ f]_(X5) + fz(Xe) + f3(X7)
subject to:

2X1+ 3X2-4X3+ Xg+ X5+ 2X6+ 3X7 £ 25
SXo + 3X3-Xs4+ 3Xs 2 50

6X1 + 3X2 + 2X5 + X7 = 100

X1-100x, £ O

where:

- O£ x, £ 100

- Xz isinteger,and O £ x; £ 20

- X3 ISsemi-continuous X3 = 0or 1 £ x3 £ 10

- Xqishinay: x,=0o0r 1

- f1(xs) is adiscrete separable function comprising the following co-ordinates

=1 0|1|2)|3|4
fi=12 131432

undefined otherwise

- f2(Xe) isapiecewise linear form connecting the following set of co-ordinates:

X= | 0| 2] 3
f= 10121

undefined for Xg < 0 and for xg > 3

- f3(x7) isa piecawise linear form connecting the following set of co-ordinates:

= 1| 5| 10 15

f= | 1|10 25| -75

undefined for x; < 1 and for x; > 15

Using SOS type variables f1(xs), f2(Xs) and f3(x7) are individudly moddled asfollows:

VI-15

FortMP - Part 2

- Let X11, X12, X13, X14 @nd X35 be a special ordered set of type SOS1 where:

1 = Xuut Xppt Xzt Xyt Xis
Xs = X12 + 2Xg3+ 3Xaa + 4Xs5
fi(Xs) = 2Xg1 + 3X12 + 4Xy3+ 3Xpa + 215

- Let X201, X22 and Xo3 be a specid ordered set of type SOS2 where:

1 = Xt Xpt Xos
X6 = 2X2 + 3Xo3
fo(Xe) = 2+ X3

- Let Xa1, X32, X33 and X34 be a specia ordered set of type SOS2 where:
1 = Xait Xzt Xgzt+ X
X7 = Xg1 + 5Xgp+ 10Xgz3 + 15Xa
f3(X7) = Xzt 10X32 + 25X33 - 75X34
By appending the above SOS formulation to M(i) the DPP modd can be stated as M(ii):
Minimise

33Xy + 4X, + BX3- X4

+ 2X11 + 3X12 + 4X13 + 3X14 + 2X15 (funCtion rOW)
+ 22 + X23 (function row)
+ X3 + 1OX32 + 25X33 - 7.5%X (funCtion rOW)

subject to:

2X1+ 3X2-4X3+ Xg+ X5+ 2X6+ 3X7 £ 25
SXp+ 3X3-Xa+ 3Xg 2 50
6X1+ 3X2+ 2X5+ X7 = 100

X1-100x, £ O

Xu+ Xzt Xig+ Xaa+ X5 = 1 (convexity row)
X2+ 2X13+ 3Xya+ 4X5-%X5 = 0 (reference row)

Xa1+ X2+ X3 = 1 (convexity row)

22+ 3Xzz-Xs = 0 (reference row)

X1+ Xz2+ Xa3+ Xag = 1 (convexity row)

X31 + 5X3p + 10X33 + 15Xz -X7 = 0 (reference row)

where:

VI-16

Chapter 6. Mixed Integer Programming (MIP)

- O£ x, £ 100

- Xz isinteger, and O £ x, £ 20

- X3 iIssemi-continuous: X3 = 0or 1 £ x3 £ 10

- Xq4ishbinay: x,= 0or 1

- X11, X12, X13, X14 @Nd X35 are a set of type SOS1
- Xo1, X22 @Nd X3 are a set of type SOS2

- Xa1, X32, X33 and X34 are a set of type SOS2

The input datafor the above modd M(ii) is shown below,

NAME MG NT
ROWS
N OBJ
N ' MARKER
L COs1
G C0s2
E COS3
L CC4
E CONL
E CON2
E CON3
E REF1
E REF2
E REF3
COLUMNS
X1 oBJ 3.0 COs1 2.0
X1 COS3 6.0 CCos4 1.0
X2 oBJ 4.0 COs1 3.0
X2 COs2 5.0 COS3 3.0
X3 oBJ 5.0 COs2 3.0
X3 COs1 -4.0
X4 oBJ -1.0 COs1 1.0
X4 C0s2 -1.0 CCos4 -100.0
X5 COs1 1.0 COS3 2.0
X5 REF1 -1.0
X6 COs1 2.0 COs2 3.0
X6 REF2 -1.0
X7 COs1 3.0 COS3 1.0
X7 REF3 -1.0
S1 S1SET1 ' MARKER' ' SETORG REF1 1.0
X11 oBJ 2.0
X11 CON1 1.0
X12 oBJ 3.0 REF1 1.0
X12 CON1 1.0
X13 oBJ 4.0 REF1 2.0
X13 CON1 1.0
X14 oBJ 3.0 REF1 3.0
X14 CON1 1.0
X15 oBJ 2.0 REF1 4.0
X15 CON1 1.0

VI-17

FortMP - Part 2

S1SET1E
S2 S1SET2
X21
X22
X22
X23
X23
S1SET2E
S2 S1SET3
X31
X31
X32
X32
X33
X33
X34
X34
S1SET3E
RHS
MOZ1
MOZ1
MOZ1
BOUNDS
UP MOZ2
u Moz2
SC MoZ2
BV MOZ2
ENDATA

VI1-18

' MARKER'
' MARKER'
CON2
oBJ
CON2
oBJ
CON2

' MARKER'
' MARKER'
oBJ
CON3
oBJ
CON3
oBJ
CON3
oBJ
CON3

' MARKER'

COs1
COs2
COS3

X1
X2
X3
X4

' SETEND'
' SETORG

PRPNE
coooo

' SETEND'
' SETORG
1.0

1.0
10.0
1.0
25.0
1.0
-7.5
1.0

' SETEND'

25.0
50.0
100. 0

100. 0
20.0
10.0
1.0

REF2

REF2

REF2

REF3

REF3

REF3

REF3

REF3

CON1
CON2
CON3

1.0

2.0

3.0

B

=P
oo

S PP
ooo

Chapter 6. Mixed Integer Programming (MIP)

6.4 Branch and Bound algorithm

6.4.1 Branch and Bound - the Background

Branch and Bound (B&B) is a technique for solving certain congtrained optimisation problems. It
is particularly important for solving those problems whose solution by complete enumeration would
be prohibitively expensve. A wide variety of problems of this kind arise in Operationd Research,
Combinatorid Optimisation and Artificid Inteligence. Taking into account practical computationa
experiences, B&B is consdered to be the most robust and widdy used technique for solving
MIP/IP problems.

The B&B dgorithm carries out a progressive partitioned search of the solution space of a given
problem. This is done by exploring a search tree and usualy only a small proportion of the solution
gpace is searched. The remainder of the search tree can be partly diminated using the bound
derived from a good discrete/integer feasible solution. Such a solution is proven to be optimal when
the rest of thetreeis fully diminated.

Back to Chapter contents

6.4.2 Branch and Bound - the Algorithm

In order to describe the B&B adgorithm we firgt introduce a few definitions. We consder an MIP
problem defined by relations (16), (17) and (18) in section 6.2.5 and note thet it is a minimisation
problem. The objective function is aways specified as minimisation for the purpose of these
discussons.

A solution is said to be LP feasible if it satisfies dl the linear condraints (16, and 17 of section
6.2.5). The problem with only these constraints and al discrete redtrictions ignored is referred to as
the Relaxed LP or LPR The objective vaue of the LPR is denoted 2, pg.

A solution issaid to be integer feasible if it satifies dl the discrete restrictions (18 of section 6.2.5)
aswell asdl thelinear congraints (16, 17 of section 6.2.5).

An [P optimum solution is an integer feasble solution of the problem (if one exists) which in
respect of the objective function value, is either better or at least as good as dl other integer feasble
solutions of that problem.

Theterm discrete entity is used to represent any binary, generd integer or semi-continuous variable
and any st of type SOS1 and SOS2 (not an individua set member). If the solution does not satisfy
the discrete redtrictions of an entity then that entity is considered violated in the solution.

Z\p iscdled the cut off value. It isinitialy fixed to alarge positive number and during the tree search
it is updated by the objective function vaue of the best integer feasible solution found so far.

VI-19

FortMP - Part 2

The gteps of the B& B dgorithm can be stated as follows:
Step 0) Initial Step:

If an optimum solution to the LPR does not exist then go to Exit, elseif the solution is
integer feasible go to Exit. Otherwise set the cutoff value Zp to a large positive
value, prepare a space for the list of sub-problems (nodes) of the search tree and
continue.

Step 1) Variable selection:
Select a discrete entity that is violated in the solution of the current node Py.
Step 2) Branching:

Partition the continuous range of this entity and create two new sub-problems, nodes
Pw1 and Py, of the tree linked to the parent P.. Sore the current basis as starting
point for the solution of Py.; and Py.».

Step 3) Node Selection:

If the list of unsolved sub-problems is empty then go to Exit, else select an unsolved
sub-problem Py from the list of nodes.

Step 4) Solving:

Recover the starting basis for the selected node and solve the selected sub-problem
with the Primal or the Dual algorithm. If Dual is used the sub-problem may be
discontinued should its objective function value become greater than or equal to Zp;
in this case repeat from step 3. Denote the eventual optimum solution Zp.

Step 5) Bounding:

If the sub-problem has no feasible solution or if Zp is greater than or equal to 2, then
delete the node and repeat from step 3. If the solution is not integer feasible then
repeat from step 1.

Step 6) I nteger Solution:

Set integer solution marker. If Zp islessthan Z, then update Z,» and save the current
problem bounds and basis for the final solution. If Zp is equal to Z,er then go to Exit.
Otherwise the node is deleted and we repeat from step 3.

VI1-20

Chapter 6. Mixed Integer Programming (MIP)

Exit)

If the integer solution marker is not set to any integer feasible solution and the list is
empty then no feasible (integer) solution exists to the problem. Otherwise output the
best integer solution.

Back to Chapter contents

6.4.3 TheBranching Mechanism, UP and DOWN branching

Branching (Step 2 above) partitions the data space by adding a congraint or congtraints in such a
way that the sdlected discrete entity is forced to a feasble date. In some cases two or more
branches may be needed for the same discrete entity.

When branching is performed the two sub-nodes correspond to an UP branch and a DOWN
branch. For the different types of discrete entity these branches are formed as follows:

Binary varigble branching
A binary variable isfixed to one on the UP branch, to zero on the DOWN branch.
Integer variable branching

The fractiond solution-vaue to an integer variable forms a divison-point. On the UP branch the
lower bound is increased to the next integer above, on the DOWN branch the upper bound is
decreased to the next integer below.

Semi-continuous branching

On the UP branch the lower bound is set to 1.0. On the DOWN branch the variable is fixed to
Zexo.

SOS branching

The reference row function is evauated which determines a point between two set members. On
the UP branch lower-numbered set members are fixed to zero and on the DOWN branch higher-
numbered set members are fixed to zero. For SOS2 the member nearest to the evduation is
allowed to be non-zero on both branches.

If no reference row is given in the data then a series 1,2,..k is assumed for the reference row
coefficients.
Back to Chapter contents

VI-21

FortMP - Part 2

6.5 Controlling the Tree Development

6.5.1 Definition of Tree Search Heuristics

In the Branch and Bound agorithm described above there are two major steps where a choice has
to be made

Step 1 inwhich agloba entity is selected for partitioning the solution space -
thisistermed variable choice

Step 2 in which an unsolved node is selected for solution -
thisistermed node choice

We may condder a solution 'strategy’ to be the combination of criteria whereby these two choices
ae made. Experiments on red life problems using different srategies show that each individud
drategy behaves differently on different problems. FortMP-MIP therefore provides a number of
dternative criteria for variable and node choice. Moreover, the node choice criterion can change
after the firgt integer solution has been found.

In principle, the node choice may be consdered separately from the variable choice criterion. But
not dl such choices can be carried out independently of the information provided by the variable
choice procedure. However, the node choice criterion is usudly changed after the first integer
feasble solution is achieved in order to provide a more flexible tree search. In FortMP-MIP the
following parameters are used to set the variable and node choice criteria. These parameters are as
follows

MIPVARCHOICE = n
MIP FNODCHOICE = n
MIP SNODCHOICE =n

where nis an integer specifying dternative choices

Back to Chapter contents

6.5.2 Provision of choicecriteria by the user

A complete tree search drategy is defined by a unique combination of variable and node choice
criteria. Variable choice criterion is sdlected by the following SPECS command:

M P VARCHO CE = n *1-5, default n =1

In order to specify the options available we define the following terms:

VI-22

Chapter 6. Mixed Integer Programming (MIP)

Fractionality Measure of non-discreteness associated with an entity.
Cost Evaluation: Absolute value of variable cost multiplied by fractiondity.

where the ‘measure of non-discreteness is a formula for each type of globd entity which is zero
when the entity isinteger feasble and increases with the degree of violation.

Now the ‘VARCHOICE command has the following options:

SHect the entity with minimum fractiondity. Thisisthe defaullt.
Sdect the entity with maximum fractiondity

Not currently available (reserved for future enhancement)
Sdect the entity with maximum cost evaduation

Sdect the entity with minimum cost eva uation.

5 53 3 3 S
1
a b~ wdNPEF

Node choice criterion is sdlected by the following two commands:

M P FNODCHO CE
M P SNODCHOI CE

1
=

n * n=1-7, default n
n * n=1-7, default n

where ‘FNODCHOICE governs the initid search up to the firg integer solution and
‘SNODCHOICE' governs the search thereafter.

Both commands have the same options and in order to specify them we define the following terms
relating to each node:

Number Non-integer Number of violated globd entities in the solution.

Fractional Sum Sum of fractiondities associated with dl the violated entities
in the solution
Deterioration Difference between the objective vaues of the node solution and the

solution a the root node (Z.pr ~ Zp).

Projection The predicted integer solution (based on a heuristic) when the
current branch is pursued to its end.

The projection heurigtic assumes that fractiona sum will decrease uniformly with further deterioration
in the objective as the branching proceeds.

Now the options for ‘FNODCHOICE' and ‘SNODCHOICE' are:

Lagt infirg out. Thisisthe default for ‘FNODCHOICE'
Frd in fird out

Choose a node with minimum deterioration

Choose a node with maximum deterioration

5 5 3 S
]
A WNP

VI1-23

FortMP - Part 2

Choose a hode with minimum number non-integer

Choose a node with minimum fractiondity

'‘Best projection criterion’: that is choose node on a branch predicted to reach the
best integer solution. Thisis the default for * SNODCHOICE

S5 35 S
1
~N O O

The user isreferred to references [5], [19], [16], [22], [23] and [24] given in Chapter 1, section 1.8
for definitions and theoretical discussion of choice Srategies.

Back to Chapter contents

6.5.3 UP-direction priority option

In a large number of problems there is an advantage to selecting the UP direction branch for sub-
problem solution in preference to the opposite DOWN branch. This may have the effect of forcing
other variables to zero and thus reaching an integer solution quicker than if the choice is open.

Problems that benefit in thisway arise in dlocation and scheduling moddls, and dsawhere. They
may, for example, have alarge number of congraints Smilar to the convexity row of an SOS, that is:

é X; £1
ig

where B; isasubset of the binary variables appearing inrow i.

To enforce this priority the following SPECS command is used
MP PRIORITY UP ON * default OFF

(OFF may dso be given). With PRIORITY UP activated (ON) the variable choice options
become modified so asto congder fractiond vaues only in the UP sense. This prevents selection of
abinary closeto zero in preference to one that is close to one which would have a damaging effect.

UP priority is mainly intended for use with binary variables and has little relevance to generd integer
variables or specia ordered sets.

Back to Chapter contents

VI-24

Chapter 6. Mixed Integer Programming (MIP)

6.6 Detailed User-control of the Tree Search

6.6.1 Usa control of variable choice

Very often amoddler will have information about the variables that can be used in variable selection
- sep 1 of the dgorithm described above in 6.4.2. For example some binary varigbles may
represent drategic decisons and others represent minor decisons - meaningful only when the
drategic decisons have been made. Although the agorithm is probably unable to diginguish the
two, if it can be made to branch on srategic decisonsfirst the search time can be grestly reduced.

In genera the modéller is not expected to specify atotal ordering of the variables and so to force a
specific choice a every node. All the same the modeller may be able to classify variables according
to their importance and give every class of varigble a corresponding priority.

These user-priorities are used in step 1 as the primary choice criterion. If multiple choices are
available at the highest priority then the standard choice criterion, as set up by 'MIP VARCHOICE'
specs-command, is used to discriminate between them.

User priorities are input via a MIP 'AGENDA' file for which the layout is given below in section
6.6.3.

Back to Chapter contents

6.6.2 Control of node choice - Fixing an Integer Solution

The choice of next node (sub-problem) for solution is step 3 of the branch and bound agorithm.
The user can direct this choice towards an integer solution which is provided in the data.

An advance integer solution can be known in various ways, for instance:

- from a previous execution of FortM P with the same, or very Smilar, problem data,

- from a known Stuation in the redl world,

- from executing an independent, heurigtic program that does not necessarily
determine the integer optimum.

If the solution is good, that is close to the integer optimum, it is desirable for the system to establish it
as quickly as possible so asto provide a cutoff point which limits the tree search.

There are two waysto do this:
FI XTRY

VI1-25

FortMP - Part 2

Under the 'FIXTRY" option the system sets up the given integer solution immediately after entry asa
specid sub-problem entirely separate from the tree. The sub-problem is solved and if it does indeed
prove to be feasble (and satisfy dl the discrete restrictions) then its solution vaue providesthe initid
CUtOff.

FI XM X

Under the 'FIXMIX' option the system gives absolute priority at step 3 (node salection) to any node
in the tree for which the established condiraints at that stage of the branching do not conflict with the
given integer solution. When every discrete entity is given a vaue (set of vaues for an SOS) there
can be only one such node, unsolved, in the tree and the tree development must therefore follow a
direct path to the solution if it isin fact feasible.

Once the 'FIXMIX' solution has been established (or proved infeasible) then this priority ceases to
have effect and the normd criteria for node choice are followed (with priority 'UP if specified).

FIXMIX is preferable to FIXTRY if the given integer solution is known to be a good one - thet is
both feasible and either optima or close to optimal. In this case it creates an advanced tree leading
to reduced search time.

Datafor FIXTRY and FIXMIX isprovided in aMIP 'AGENDA' file described below.

Back to Chapter contents

6.6.3 AGENDA datafor variable prioritiesor 'FIX' solutions

A MIP'AGENDA' file provides the data for variable priorities or a'FIX' solution. The outline of
thisfileisasfollows

AGENDA

PRI ORI TY

. . . variable priorities .

FI XM X or FI XTRY

. . . "FIX solution .

ENDATA
where the header records begin in position 1 (as with other headers).
Thefile mugt have the following name:

nodnanme. agn

where 'modname is the modd namein use for the run.

VI1-26

Chapter 6. Mixed Integer Programming (MIP)

The two data sections are each optiona and may appear in either order. Once the MIP AGENDA
ON command has activated the input of the file it is the header record that activates the
corresponding procedure or priority select-criterion as described in the two previous sections.

The datalayout in either section isthe same, namdly:

Fidd 1 Fidd 2 Fidd 4 Fied5
(2-3) (5-12) (15-22) (25-36)
Column Column Vdue
name name

with amilar fiddsto MPS data input.

Felds 2 and 3 specify a sart-column and an end-column in the data. The vdue in Fidd 4 is
assigned to every variadle in this range inclusve of the sart and end column. All vaues are initidly
assigned to be zero and these defaults are over-written when a record provides data. The data of
one record may aso be over-written by a later record. These arrangements permit the modeller to
specify a default (or use default zero) for a wide range and smply enter exceptions. For
convenience the column range may include ordinary continuous variables which are just ignored.

The following is an example of agenda data for the modd example of section 6.3:

AGENDA
FI XM X
X2 X3 5.0
X4 X4 1.0
X15 X15 1.0
X22 X23 0.5
X33 X34 0.5
PRI ORI TY
X4 X4 3
X2 X2 2
X3 X3 1
ENDATA

In this example the binary variable has fird priority, the integer variable has second and the semi-
continuous variable hasthird. The specid ordered sets have zero priority and will not be branched if

VI1-27

FortMP - Part 2

achoice of another kind is available.

Also in this solution the FIX solution corresponds to the integer optimum. Precise values for the
adjacent pair to be non-zero in each SOS2 is not sgnificant and need not be given.

Back to Chapter contents

6.6.4 SPECScommandsfor AGENDA input

The agendafile will be input when the following SPECS command is given:
M P AGENDA | NPUT ON * default OFF

(OFF may aso be used).

Back to Chapter contents

6.6.5 SPECScommandsfor AGENDA output

An agenda file for the best integer solution found during a run may be crested with the SPECS
command:

M P AGENDA OUTPUT ON * default OFF

(OFF may dso be used). Each time an integer solution is found the system crestes an AGENDA
file with no PRIORITY section and with a FIXMIX section containing the solution. The previous
AGENDA file (if any) is over-written.

Anather option is provided by the following command:
M P AGENDA OUTPUT ALL

With this option multiple integer solutions are dl recorded in the output AGENDA file, later solutions
in successve sections separated by FIXMIX header lines. Thisis not avalid file for input in alater
run using MIP AGENDA ON. In order to use it for this purpose the modedler needs to sdect the
section of interest (usually the last one which is the best) and delete the remaining sections.

AGENDA OUTPUT commands provide a convenient way to record integer solutions when the
more detailed information of the standard output is not needed.

Back to Chapter contents

VI1-28

Chapter 6. Mixed Integer Programming (MIP)

6.6.6 Un-named Agenda Files

Agenda files can be used with the varidbles identified by index rather than by name. This can be
necessary, for example, when tabular form dataiis supplied or when using the externd datainterface.

The data layout is very amilar to named agenda files, it has the same header lines and a difference
only in the layout of datalineswhich isasfollows

Fidd1 Fidd 2 Fidd 3

(1-10) (11-20) (21-30)
Column Column Integer
index index Vdue

where fidds 1 and 2 specify start and end column and field 3 specifies the priority class or ‘FIX’
vaue as before. The numericd data must be entered with right judtification, this is because any
trailling blanksin afield are trested as zeros.

The associated SPECS commands are;

M P LI ST | NPUT ON * default OFF
M P LI ST OUTPUT ON * default OFF
M P LI ST OUTPUT ALL

(‘OFF may dso be used). These commands have the same meaning as the corresponding
‘AGENDA’ commands.

A ‘LIST’ agendafile must have the following name:
nodnane. agl

where 'modname is the modd name in use for the run.

VI1-29

FortMP - Part 2

6.7 Advanced Algorithms for MIP

6.7.1 Recent advances

Recently there have been considerable improvements to MIP solution procedures through the use of
features such as Pre-processing and Cut generation.

The am of these techniques is to determine additionad congraints that must be satisfied by any
integer solution but are not satisfied by the optimum solution to the relaxed LP or by the optimum
solution to an intermediate sub-problem of the Branch and Bound tree having partid LP relaxation.

If such acongraint is added to the relaxed LP at the root node the effect may well be to degrade its
optimum objective vaue and thus reduce the gap between that and the integer optimum with evident
beneficid effect on the search procedure. The same is true for any intermediate node in the tree,
where the optimum solution is LP feasible but not fully integer feasible.

The pre-processing procedures have another aim, namely, to release congtraints whenever they are
found to be redundant. As a smple example consder the common 'Clique-type congraint which
takes the form:

ax £l
g

where B; is a subset of the binary varidbles applying in the i'th row. If we discover one of its
members to have alower bound greater than zero then that member must be one and the remaining
members must be zero. Once these fixes have been applied the congraint itself is redundant and
may be released, which improves solution time by reducing both the time and the number of Sparse
Simplex steps needed to solve sub-problems.

Back to Chapter contents

6.7.2 Pre-processing - Variable Fixing and Congtraint Relaxing

The most direct technique to gpply is tha of PRESOLVE where the implications of primd
condraints:

a ;X i b

are sudied, whatever the varidble typesinvolved. Thisisagenerd and comprehensive technique for
fixing variables and relaxing condraints.

VI1-30

Chapter 6. Mixed Integer Programming (MIP)

In addition if a tightened bound can be discovered for an integer or binary variable, giving it a
fractiond bound in one sense or the other, then the fraction can be truncated which further tightens
the bound and gives an improved effect.

In FortMP this technique is activated with the following SPECS command:
M P PREPROCESS ON * default OFF

(MIP PREPROCESS OFF may aso be used). This causes MIP pre-processing to be carried out
at the outset (before the rlaxed LP is solved) and again before solving each sub-problem in Branch
and Bound.

Additional memory areas are required for this dgorithm o that the fixing of varigbles and relaxing of
condraints can be replicated a every point on the tree dlowing full freedom to branch in any
direction without requiring the MIP pre-processor execution to be repeated un-necessarily.

These areas are called FIX tables and are assigned together with the node tablesin theratio 10 to 1
(10 fixes to every node as an average). For some models this ratio is not enough and it can be
atered with the SPECS command:

M P FI X QUOTA = n * default = 10

While 10 is usudly suficient a ratio of 20 to 1 has been found necessary for some problems.
Extremdy high values should be avoided so as to dlow space for amaximum of nodes.

The following commands correspond to the same features in the Presolve agorithm:
M P PREPROCESS LEVEL = n * 1-3, default = 3
M P PREPROCESS LOG LEVEL = n * 0-4, default =1

Three levels are available in the pre-processor and the level of information logged can be controlled
as before. Note that log leve refers to the root node only, the leve for logging during branch and
bound is reduced by one.

In addition the MIP pre-processor can be used at the root node, and then be switched off during
branch and bound. The command for thisis.

M P PREPROCESS ROOT ONLY

With this command there is no need for any FIX quota

Back to Chapter contents

6.7.3 Cut Generation

Cuts, like fixes, are additiond condraints that may be applied to the problem. Unlike fixes,
however, they cannot be applied to the problem by a smple change to variable types and the

VI-31

FortMP - Part 2

bound-set.

A cut is acondraint, an inequdity (or an equdity) just like any other condraint in the problem. It
can aisein many different ways.

- asMaxima Clique or Minima Cover obtained by processng knapsack condraints
in the mode (condraints that have non-zero coefficients only on binary variables),

- Gomory cuts,

- Optimdlity cuts and Infeasihility cuts,

and many others.

Cuts are never added directly to the problem - rather they are stored separately in an areacdled the
Cut Pool which holds cut coefficients and cut right-hand-sdes. From the cut pool a cut may be
gpplied to the matrix whenever it is advantageous to do so. It is not advantageous to gpply a cut
when the optima solution to the current sub-problem (including the relaxed LP as a sub-problem in
this context) actudly satisfies that cut-constraint anyway. Consequently after every optima solution
has been found a search is made for 'Strong’ cuts - that is cuts which are violated by the current
solution. These cuts are added to the main problem congraint-set and the problem is then re-
solved.

The following SPECS command must be given in order to make cut-pool space available and
activate the FortM P cut-generator procedures:

GENERATE CUTS ON * default OFF
(GENERATE CUTS OFF may aso be specified).

The following SPECS commands are smilar to the 'MIP FIX QUOTA' command in that they
govern the amount of space that the system reserves for the cut pool and for applying cuts to the
problem:

CUT QUOTA = n * default = 10

This governs the amount of cut pool space provided in relation to the modd sze. By default the
system assigns space for 10 cut-congtraints per congraint-row in the origina model and for 10 cut
non-zero coefficients per non-zero coefficient in the origind matrix.

ACT QUOTA = n * default =5
This governs the extra gpace dlowed in the problem storage for applying cuts. It gppliesin the same
way as before:- The system (by default) assigns 5 extra congtraint-rows per origina constraint-row,

5 extra spare locations per origind non-zero for expanding the matrix and dso the same amount
spread over dl columns as extra row-space in each column so that rows can be added with a

VI-32

Chapter 6. Mixed Integer Programming (MIP)

minimum of delay. This extra gpare space in the matrix is essentia to ensure that the process is
efficient.

ACT quota aso governs the amount of space needed per node to record applied cuts - enabling
them to be replicated and not require re-caculation. Clearly the user may need to raise the quotas
for his problem but should avoid raising them too high in order to leave enough room for Branch and
Bound itsdf and for the other agorithms.

Back to Chapter contents

6.7.4 Fixing Variables by Dual Solution Analysis

When sdecting a discrete entity for branching only basic variables are considered (SOSs apart).
Non-basic variables, valued at zero or at bound, should not be sdlected because they may never
need it. In generd only asmall proportion of the discrete entities need to be branched on in order to
reach an integer solution.

However the dud value associated with a non-basic, discrete variable (binary, integer or semi-
continuous a zero) can be used to find a minimum change that would gpply to the objective if the
varigble shifted to another discrete value. If this minimum change increases the current optimum
above the cutoff levd then dearly it will be unnecessary. The variable may be fixed a its current
vaue.

To invoke the procedure the following SPECS command is used:
M P ANALYSE DUAL ON * default OFF

(OFF may aso be given). The user should employ this option with caution as not dl problems
benefit and the calculations require extratime.

VI-33

FortMP - Part 2

6.8 Miscellaneous MIP controls

6.8.1 Automatic rounding heuristics

At the rdlaxed LP optimum solution it may be expected that some of the discrete variables are
dready feasible or very near feasble in vdue. Automatic Rounding alows user to fix these variables
immediately at the nearest discrete value and consider the restricted branch and bound tree that
results. Given the likdihood of finding an integer solution in this restricted sub-tree the time required
to find a suitable solution to the problem may be very greatly reduced.

MIP can operate in two phases, a search of the restricted tree (auto-rounded) followed by a search
of the full tree and each tree may be controlled by its own independent limits.

In order to activate auto-rounding the following command is given:
M P AUTO ROUNDI NG ON * Default OFF

Control over what variables will be rounded is provided by the following command:
M P ROUNDI NG FRACTION = v * Default v = 0.001

where the default isin fact set from the integer tolerance. Any vaue up to 0.5 can be specified - the
auto-round procedure will fix any binary or integer variable that is closer than this amount to the
nearest integer vaue. Fixing covers both basic and non-badic variables, so implicitly dl binary and
integer varigbles that are non-basic in the relaxed LP optimum will be fixed.

Findly the agorithm used to solve the auto-rounded sub-problem, which is used as the root node
for the redtricted tree, may be governed with the following commands:

M P AROUND SOLVER SSX
M P AROUND SOLVER | PM * Default SSX

where'SSX' specifies the Dud agorithm (reverting to Primd if it fails).

Back to Chapter contents

6.8.2 Bound, Cutoff and Tolerance control

The following SPECS commands are useful to avoid searching unwanted parts of the tree or
searching in unnecessary detall.

| NTEGER TOLERANCE = v * default v=0.001

This tolerance supplies the largest deviation from an integer vaue for which a discrete entity is
deemed to be integer feasible. 1t should represent the maximum fraction considered by the user to

VI-34

Chapter 6. Mixed Integer Programming (MIP)

be tolerablein asolution. Very often it isfound that most or dl fractions drop to zero anyway below
the default levd.

Two concepts, the BOUND and the CUTOFF TOLERANCE, permit user to reduce unnecessary
searching of branches during MIP. They operate by controlling the TREE CUTOFF or maximum
GAP beyond the RLP optimum that is the region where solutions to MIP sub-problems may be
found. Once the solution vaue of a branch deteriorates beyond the limit set by this gap then that
branch is discontinued. Initidly the gap is st by the starting BOUND. This may be controlled by
the user with the following SPECS commands:

M P BOUND = v * default: High value
M P BOUND RELATI VE = v * default: High val ue

'MIP BOUND = V' may aso be written as ‘MIP BOUND ABSOLUTE = V, and it specifies an
actud initid gap. 'MIP BOUND RELATIVE = V' specifies gap sze rddive to the RLP optimum -
that is, the gap Sze is the RLP optimum vaue multiplied by the factor supplied. If the user supplies
both commands then the gap sze used will be the smaller of the two.

CUTOFF TOLERANCE becomes relevant once an integer solution has been found. From there
on amaximum gap is determined by the Best Integer Solution found so far (the BIS), and this gep is
amply the difference between the BIS and the RLP optimum. User can modify the gap by applying
a 'tolerance, which reduces the gap, thereby reducing search time. This may prevent the genuine
Optimum Integer Solution from being found, but ensures that the eventua BIS differs from the
optimum by no more than the tolerance.

Cutoff Tolerance can be controlled with the following SPECS commands:

M P CUTOFF TOLERANCE = v * default v=1.0e-12
M P CUTOFF RELATIVE = v * default v=0.0
M P CUTOFF RELI SOL = v * default v=0.0

Here 'CUTOFF TOLERANCE' specifies the actud amount of gap-reduction. 'CUTOFF
RELATIVE' specifies the reduction as a fraction of the gap itsdf, so that a large reduction will be
applied for poor solutions and the reduction will get less progressvely as the BIS improves.
'CUTOFF RELISOL' specifies the reduction as afraction of the BIS vaue.

Note that when the reduced gap becomes zero or negetive the tree search isimmediately concluded.

Back to Chapter contents

6.8.3 Placing Limitson the Tree Search

The SPECS commands given beow limit the tota extent of the tree search. When the limit is
exceeded there is a SAVE made of the tree (unless SAVES are cancelled) and a continued search
can be restarted in the following run.

VI-35

FortMP - Part 2

MAXI MUM M P NODES = n * default = 50,000

Specifies the maximum number of nodes, i.e. sub-problem solutions, that can be attempted.
MAXIMUM M P TIME = v * default = 50000.0

Gives the maximum number of seconds for which the MIP dgorithm may run.

MAXI MUM M P | NTEGER SOLUTI ONS = n
MAXI MUM M P | NTSOL = n * default = 300

Either of the above commands sets a limit to the number of integer feasible solutions, and the run
halts when this number is reached.

There may be separate limits given for the restricted AUTO ROUND tree developed fird in the
event that user pecifies auto-rounding. During auto-rounding no tree-saves are made. The
commands are;

MAXI MUM AROUND NODES = n * default = 5000

Specifies the maximum number of nodes, i.e. sub-problem solutions, that can be attempted. Auto-
round nodes do not count towards the MIP limit.

MAXI MUM AROUND TI ME = v * default = 5000.0

Gives the maximum number of seconds for which the auto-round tree-search may run. Auto-round
search time does not count towards the MIP limit.

MAXI MUM AROUND | NTEGER SOLUTI ONS = n
MAXI MUM AROUND | NTSOL = n * default =1

Either of the above commands sets a limit to the number of integer feasible solutions, and the auto-
rounded tree-search hats when this number is reached. The integer solutions found by auto-
rounding do count towards the maximum for MIP as awhole (unlike the other auto-round limits).

It isaso possible to place alimit on the total storage used with the following command:
MAXI MUM M P SPACE = n * default = 10,000 nodes

but this does not necessarily limit the search because the space for deleted nodes is recovered and
used over again any number of times. However the system may even so run out of node space.

The system in any case reduces this maximum if there is not enough room by caculaing how many
nodes the store can hold. There must be room enough for &t least one tenth the specified maximum
and otherwise MIP hdlts a the outset. Default minimum storage is therefore 1000 nodes when the
command is not given.

Back to Chapter contents

VI1-36

Chapter 6. Mixed Integer Programming (MIP)

6.8.4 Savingthetreeand restarting MIP

FortMP-MIP carries out an automatic save of the search tree a a frequency given in terms of the
number of nodes built. The SPECS command is:

M P SAVE FREQUENCY = n * Default = 500
By setting n to zero the facility is switched off.

If for any reason MIP fails to complete the search in one run then it is possible to restart the search
at or very close to the stopping point. To restart the search the following SPECS command is used:

M P RESTART ON

(OFF may dso be given). For a successful restart the files built in the previous run must be present
on the working directory, in particular the following file:

modname.msv
where 'modname is the modd name.

It isof course obvious that in order to continue running in arestart by this meansthe origind limit that
hdted the previous run must be rdaxed. A new time limit is st up anyway but the Maximum
NODES, INTEGER SOLUTIONS or SPACE may need to be increased (see the previous
section).

In the case of node storage limit exceeded the user may be able to increase the maximum but this
will not help if the maximum is dreedy redtricted by the store Sze. The user can attempt to run with
reduced quotas (FIX, CUT and ACT) but if this aso falsthen alarger memory is needed.

Back to Chapter contents

6.8.5 Bypassing Mixed I nteger

In many cases users prefer to see the solution to the linear programming relaxation of a MIP model
before the beginning of the branch and bound process. In this case the user can bypass the call to
MIP module with the following SPECS command

M P OFF * Default ON

(ON can ds0 be specified). Alternatively the user may limit the MIP run, for example with the
command' MAXI MUM M P NODES = 0'.

Note that it is possble to restart MIP after restarting the LPR stage with the saved optimal basis.
Commandsto use are:

| NPUT RESTART
SI MPLEX START RESTART

VI1-37

FortMP - Part 2

with the same SCALE and MIP PREPROCESS option as before but without usng PRESOLVE or
IPM.

Back to Chapter contents

6.8.6 Makinguseof the PRIMAL algorithm

DUAL is employed by default for solving sub-problems. The following SPECS command invokes
prima as an dternative:

M P DUAL OFF * default ON

(MIP DUAL ON can a0 be given). DUAL is numericdly less reliable than PRIMAL in certain
cases which may make this option desirable. However failure of DUAL due to numericd difficulty
causes the system to revert to PRIMAL in any case.

Back to Chapter contents

VI1-38

Chapter 6. Mixed Integer Programming (MIP)

6.9 Logged Output and Screen Display

Asin other FortMP procedures the output written to the log and the screen display can be varied to

suit the degree of detail required. The log output is controlled with the following SPECS command:
M P LOG LEVEL = n * n=0-4, default=1

In default, log levd 1, the screen display and log file record outstanding items, including the
occurrence of each integer solution.

With leve 2 or higher alog is shown of every node. Nodes are numbered following sdection for
sub-problem solution and so will appear in the log numbered in order 1,2,3,.... Users may find this
log much too long and it can be reduced to appear a node intervas given by the following SPECS
command:

NODE LOG FREQUENCY = n * default n=1

The various headings of the level 2 log are shown in the following teble:

Log Screen Description
Heading Text
Node N= Node number for identification
Parnt P= Parent node number
Obj.ve LP= Objective vadue of sub-problem solution
Fractn FR= 'Fractiondity’ - or measure of non-discreteness. Hereisdso givena
text indicating whether node is infeasible or cutoff
Bvar ‘Branch Variable':- index of the selected discrete entity (or set
member)
Typ Type of discrete entity partitioned:- BV, Ul, SC, S1 or S2
Dir Branch direction:- UP or DWN
NNI NI= Number non-integer:- remaining number of violated discrete entities
NCH CH= Node choice:- Current number of unsolved sub-problemsin the tree
Dpth Depth of the node in the tree

VI-39

FortMP - Part 2

| Pbest Bl= Best integer solution - the current cutoff (high vaueif no integer
solution found o far)
SET# SET# Index of selected SOS (when Typ'isS1 or S2)
FROM/ FROM/ Index range of sdlected SOS members alowed to be non-zero (dl
TO TO other members of the set fixed to zero at this node)

Other information is given with saif-explanatory text. The following isthe output to log file & leve 2

for the example problem given earlier:

IN TH S SEARCH

FI RST NCDE CHOI CE STRATEGY = 1
SECOND NCDE CHO CE STRATEGY = 7
VAR ABLE CHOI CE STRATEGY = 1

optimum|p solution is 0.9344E+02
Dual infeasibility: 3 -51.109671 Iter# 13
Node Parnt oj . ve Fractn Bvar Typ Dir NN
2 1 223.417 No feas sol 4 BV DWN 2
3 1 93.8205 0. 2720 4 BV UP 2
4 3 94.3363 0.1775 2 U DW 1
5 4 107.112 0. 5070E- 01 16 S2 WP 1
SET# 3, FROMTO 17/ 19, |Iterno=
6 5 138.369 No feas sol 17 s2 WP 2
SET# 3, FROMTO 18/ 19, |Iterno=
7 5 108. 000 0. 3970 17 S2 DWN 2
SET# 3, FROMTO 17/ 18, Iterno=
$$$$ | NTEGER SOLUTI ON: 0. 108000E+03, FOUND AT NODE#
Tinme since B&B start: 0.05 secs, Iter# =
Node Par nt bj . ve Fractn Bvar Typ Dir NN
8 4 95.1667 0. 5070E- 01 16 S2 DWN 1
SET# 3, FROMTO 16/ 17, Iterno=
$$$$ | NTEGER SOLUTI ON: 0. 951667E+02, FOUND AT NODE#
Time since B&B start: 0.05 secs, Iter# =
Node Parnt oj . ve Fractn Bvar Typ Dir NN
9 3 94.5185 0.1775 2 U UP 1
10 9 96.1667 Dual cut of f 14 2 WP 1
SET# 2, FROMTO 14/ 15, Iterno=
11 9 95.7051 Dual cut of f 14 S2 DW 1
SET# 2, FROMTO 13/ 14, Iterno=
kkkkkkhkkkk*k Search COerl eted kkkkkkhkkkhkhkkkkk*k
The IP optimumi s 95. 166667
Total nodes: opened = 11 processed = 10
Final iteration count = 24
$S55555$S Saving the tree $ESSSSSSSSS
No of nodes: 11 built 10 processed
St orage used: - Nodes 8, Bases 3, Fixes: 0

V1-40

NCH Dpt h
1 1
0 1
1 2
2 3
21, Prty=
3 4
21, Prty=
2 4
22, Prty=
7
22
NCH Dpt h
1 3
23, Prty=
8
23
NCH Dpt h
0 2
1 3
24, Prty=
0 3
24, Prty=

| pbest

0. 1000E+11

0. 1000E+11

0. 1000E+11

0. 1000E+11
0

0. 1000E+11
0

0. 1000E+11
0

| pbest
108. 0
0

| pbest

95. 17

95. 17
0

95. 17
0

Chapter 6. Mixed Integer Programming (MIP)

I nt eger sol utions 2 best = 951667
TI ME TAKEN FOR | NTECER = 0.16 SECS, TOTAL SO FAR = 0. 71 SECS

Back to Chapter contents

VI-41

FortMP - Part 2

6.10 MIP Constraint Classification

6.10.1 Introduction and SPECS command

A useful feature of FortMP leading to better understanding of modd types and more effective
decisons on how best to tackle them is congraint classfication. Classfication is used in the pre-
processing and cut generation procedures of the system.

The user may ask to have this classfication recorded in the output log with the following SPECS
command:

M P CLASSI FY ROWS ON * default OFF
(OFF can dso be given).

A decription follows of dl the various congraint classes distinguished by this command. In the
definitions given the notation 'N3' is used to represent a sub-set of the binary indices rather than the
full st defined by 'N3' in section 6.2.5. Smilarly for other index sats.

Back to Chapter contents

6.10.2 Knapsack Constraint Classification

Classfication literature refers to a Knapsack condraint as an inequality:

aax £b

il N,

where dl the rdlevant variables x; are binary and where the RHS b and dl the coefficients g are
positive and integer.

In fact we can consder any inequdity constraint that involves only binary variables to be a kngpsack
condraint by a combination of scading and complementing those variables that have negative
coefficients. Let the congtraint be:

a ax+ aax Eb

jiTNg iTN;

wnere N*3 and N'; are the sets for which a; is positive and negative respectively. The complement
variables (aso binary) are defined by

Xk =1 - Xk

V1-42

Chapter 6. Mixed Integer Programming (MIP)

and when we subgtitute for terms with negative coefficients the congtraint becomes:

é. a; X+ é(' ak)ZEb' éak

il N3 ki N3 kI N3

with al the coefficients on the left hand Side positive. Since dl coefficients are rationd this may now
be scaded to make them dl integers and the RHS-vaue, truncated if necessary, is integer aso.
Hence we have a knapsack constraint.

Bearing thisin mind, we give a classfication for congtraint-types on the basis that any such necessary
transformations are assumed to have been carried out, and the resulting positive/negative sub-
divison of the coefficients into N*5 and N3 refers to their vaues after complements have been
subgtituted in away to obtain the prescribed form.

Knapsack condraints are classfied into the following:
Knapsack (KNA)

Thisisthe generic type defined above

Invariant Knapsack (I NK)

Knapsack congtraint with al coefficients 1.0

axEtb

TN,

This congraint-type is dso known as acover.
Clique (CLQ)

Invariant knapsack with RHS equd to one.

éxj£1

i N,
Set Covering (SCV)
Invariant Knapsack with RHS equd to one less than the number of LHS terms.

a X, £|Nsl- 1

il N,

When each x; is complemented this becomes smilar to the dique but with opposite sense to the
inequdity:

V1-43

FortMP - Part 2

i
Bin Packing (BPK)
Knapsack congraint with RHS zero and exactly one negative coefficient.

aax -ax £0, ki Ni(a>0)

i Ng
Plant Location (PLK)
Bin Packing condraint with dl the positive coefficients equa to 1.0:

ax -ax£0, ki Ni(a>0)

itNg
Reverse Plant Location (RPL)

Knapsack condraint with RHS zero, exactly one postive coefficient and dl negeative coefficients
equal to -1.0:

aX- ax; £0, ki1 N3(a>0)

iTN;

Back to Chapter contents

6.10.3 Mixed Lessor Equals Constraint Classification
Variable Upper Bound (VUB) and Variable Lower Bound (VLB)

Weak knapsack constraint with one binary term, one non-binary term, and zero RHS:
ax, tax £b, jT Ns ki Ns
If ax > O thenwe have VLB, dseif a < 0 then we have VUB.

A combinaion of VUB and VLB for the same pairing of a decison varigble with a continuous
bounded variable is moddled in asmpler way by one semi-continuous varigble.

Weak Knapsack (WKN)

If we have amixed condraint:

Vi-44

Chapter 6. Mixed Integer Programming (MIP)
dax+aaxEb
iTN, Ki Ng

Then appropriate bounds on the non-binary variables may lead to a knapsack. If (ly,uy) is the
bound-range of x, and if:

I isfiniteforeach a,> 0
ucisfiniteforeach a, < 0

Now let the finite bound so indicated be [I|u] «. We can derive the following congtraint:

a ax £b- é_ak[llu]k

iTN, Ki N
which is ameaningful kngpsack congraint provided that the RHS is not too large.
Weak knapsack condraints are further sub-classified into the following condiraint types:
Weak | nvariant Knapsack (WIK)

Wesk Knapsack congraint with al binary terms having coefficient 1.0:

ax+aaxtb

JTNg ki Ng
with the same bound conditions as before and assuming that the derived knapsack is meaningful.

Back to Chapter contents

6.10.4 Equality congtraints

Although an equation might be considered as two inequdities, to be separately classfied asin 6.10.2
or 6.10.3 thisis not generaly useful and equations are consdered separately.

Various types of equation are highlighted as follows:
Diophantine Equations (DPQ)

An equation involving only binary and integer varidbles:

dax+aax=b

iT N3 K Ny

DPQ as origindly defined should have dl g; , ax and the RHS (b) integer-valued. This requirement
is omitted on the same argument as for knapsack congraints - the congtraint can be scaed up to

VI1-45

FortMP - Part 2

achieve this condition.
P-fold Alternative (PFLD)

Sum of binary variables equd to acongtant p:

ax=p

i NG

Exclusive OR (XOR)

P-fold dternativewith p = 1:

észl

TN
Note here that the convexity row of an SOSL1 (if it exists) isan XOR condraint.
Discrete Goal-Oriented Equations (DGOQ)

o
aax +%-x =b

iT N,
Where x, and X, are ‘singleton’ columns, not of binary type and not gppearing in any other
condraint. This congsts of an equation involving binary variables augmented by logical additions
that can specify apendty codt attached to any failure to achieve a solution such that:

aax =b

il N,

It is not necessary to have both the positive and the negative additiond terms. The following types
of congraint are dso classfied as DGOQ:

[o} + _b
aax +x, =
1N,

- =b
aaX; - X =
it N,

where x,, and X, are ‘singleton’ columns as before.

Back to Chapter contents

V1-46

Chapter 6. Mixed Integer Programming (MIP)

6.10.5 Full Classfication Hierarchy

Certain generd classes not yet mentioned may be named here:

LE The class of dl LE-type condraints (including GE-type which are converted
on input to LE-type)

EQ The dass of dl EQ-type condraints.

RNG All condraints with RHS range

oBJ Objectives and free rows

MLE Mixed LE condraints, part binary and part non-binary.

OLE Other LE condraints having no binary component

BDPQ Diophantine equationsinvolving only binary variables

IDPQ Diophantine equationsinvolving only Integer variables

MDPQ Mixed Diophantine equations, part binary and part integer

NDPQ Non-diophantine equations, i.e. incorporating one or more continuous
variables.

We include dso the following 'Other’ types:

SUB Simple Upper Bound:- where there is only one non-zero term giving a fixed
upper bound to that variable.

SB Smple Lower Bound:- where there is only one non-zero term giving a fixed
lower bound to that variable.

The following diagram illustrates the hierarchica relationship of al these dasses and (on the right)
lists the total sub-classification derived by the system. Note that the BGOQ class gppears as a sub-
st of both NDPQ and MDPQ classes. This is the only exception to the ordinary, hierarchica
Sructuring.

VI-47

FortMP - Part 2

Al'l Constraints

LE KNA NS CLQ (Clique)
’:SCV (Set Covering)
— | NK (Other Invariant K napsack)
—BPK PLN (Plant Location)

BPK (Other Bin Packing)
—RPL (Reverse Plant Location)
—KNA (Other Knapsack)

— MLE——F—VLB (Variable Lower Bound)

—VUB (Variabel Upper Bound)

—V\KN—[W K (Weak Invariant Knapsack)
VKN (Other Weak K napsack)

— MLE (Other Mixed LE constraints)

— OLE——7F—SLB (Simple Lower Bound)
—SUB (Simple Upper Bound)
—OLE (Other LE constraints)
EQ DPQ BDPQ PFL XOR (Exclusive OR)

‘ PFLD (Other P-fold Alternative)
—BDPQ (Other Binary Diophantine EQ)

— | DPQ (Integer Diophantine EQ)

— NIDPQi.
—— DGOQ (Discrete Goal-Oriented EQ)

—NDPQ

|—NDPQ (Other Non-diophantine EQ)

RNG (Range constraints not classified)

—OBJ (Objectives and free rows)

Diagram 1. Row Classficetion Hierarchy.

Back to Chapter contents

V1-48

Chapter 6. Mixed Integer Programming (MIP)

6.11 Summary of MIP SPECS Commands
The following SPECS-commands have been introduced in this chapter.

| NPUT | NTORG UPPER BOUND = n * default n is
infinite
| NPUT | NTORG BOUND = n * default nis infinite

Assigns a default upper bound to integer variables outlined by INTORG/INTEND markers. If n =
1 thevaridbles are binary. See section 6.3.3

M P VARCHO CE = n * Default n =1

Controls the choice of branching variable (or SOS) at each node. Valuesare:

Sdlect closest to integer vaue
Sdect farthest from integer value
Not in use (invaid)

5 53 53 3 S
]
a b~ wNPEF

=4 Sdect variable with highest cost
= Sealect on basis of absolute cost
See section 6.5.2.
M P FNODECHO CE = n * Default n =1
M P SNODECHOI CE = n * Default n = 7

Controls choice of node to be developed during the each phase of MIP. 'F-choiceis used prior to
the first integer solution 'S-choice thereafter. Possible choicesare:

Lagt infirgt out

Frg infirg out

Choose minimum deterioration in the objective.
Choose minimum percentage error

Choose node with fewest non-discrete va ues.
Choose node with minimum sum of fractions.
Choose according to best projection criterion.

>0 5 35 5 5 S O
[T I B |
No o~ WDNPR

See section 6.5.2.

MP PRIORI TY UP ON * default OFF
MP PRIORITY UP OFF

'ON' invokes UP priority node-selection. See section 6.5.3.

M P AGENDA | NPUT ON * default OFF
M P AGENDA | NPUT OFF

'ON' invokesinput of MIP AGENDA data. See section 6.6.4

V1-49

FortMP - Part 2

M P AGENDA OUTPUT ON * default OFF
M P AGENDA OUTPUT OFF
M P AGENDA OUTPUT ALL
'ON'" and 'ALL" activate output of FIX data representing integer solutions. See section 6.6.5.
M P LI ST | NPUT ON * default OFF
M P LI ST | NPUT OFF
'ON' invokes input of unnamed MIP AGENDA data. See section 6.6.6.

M P LI ST OUTPUT ON * default OFF
M P LI ST OUTPUT OFF
M P LI ST OUTPUT ALL

'ON' and 'ALL' activate output of un-named FIX data representing integer solutions. See section
6.6.6.

M P PREPROCESS ON * default OFF
M P PREPROCESS OFF
M P PREPROCESS ROOT ONLY

'ON' activates the MIP preprocessor throughout, ‘ROOT ONLY"’ for the relaxed LP and not for
sub-problems during branch and bound. See section 6.7.2.

M P PREPROCESS LEVEL = n * 1-3, default n =3

M P PREPROCESS LOG LEVEL = n * 0-4, default n =1
These commands are Smilar to corresponding ‘PRESOLVE' commands, See section 6.7.2.

MP FI X QUOTA = n * default n = 10

Assigns quota for number of stored 'fixes in relaion to the nodes. See section 6.7.2.

GENERATE CUTS ON * default OFF
GENERATE CUTS OFF

'ON' activates the cut-generation procedures and the gpplication of strong cuts before and during
Branch and Bound. See section 6.7.3.

CUT QUOTA
ACT QUOTA

10
5

n * default n
n * default n

These commands assign quotas for cut-storage and applied cuts in relation to the modd size. See
section 6.7.3.

M P ANALYSE DUAL ON * default OFF
M P ANALYSE DUAL OFF

'ON' activates the Dud Solution analysis and resultant fixing of non-basic discrete variables. See
section 6.7.4.

VI-50

Chapter 6. Mixed Integer Programming (MIP)

M P ROUNDI NG FRACTI ON = v * default v = 0.0

Criterion for a discrete variable to be rounded in the ' AUTO ROUND' option. See section 6.8.1.
M P AUTO ROUNDI NG ON * default OFF
M P AUTO ROUNDI NG OFF
'ON' activates the'AUTO ROUNDING' option. See section 6.8.1.
M P AROUND SOLVER | PM * default SSX
M P AROUND SOLVER SSX
These commands sdlect which solver to use for the root node of the auto-rounded tree. See section
6.8.1.
| NTEGER TOLERANCE = v * default v = 0.001

Criterion for approximation to an integer value. See section 6.8.2.

MP BOUND = v * default infinite
M P BOUND RELATI VE = v * default infinite

Assgns the garting gap beyond the RLP optimum to the initid tree cutoff bound. 'RELATIVE
impliesrelaive to the RLP optimum vaue. See section 6.8.2.

M P CUTOFF TOLERANCE = v * default v = 1.0e-12
M P CUTOFF RELATIVE = v * default v = 0.0
M P CUTOFF RELISOL = v * default v = 0.0

Measure by which the gap from RLP to tree cutoff is reduced, once an integer solution has been
found. 'RELATIVE implies rddtive to the gap, and 'RELISOL' implies relive to the integer
solution. See section 6.8.2

MAXI MUM M P NODES = n * default n = 50,000

MAXIMIM MP TIME = v * default v = 50,000.0

MAXI MUM M P | NTEGER SOLUTI ONS = n

MAXI MUM M P INTSOL = n * default n = 300
Limits placed on the tree search. See section 6.8.3.

MAXI MUM AROUND NODES = n * default n = 5000

MAXI MUM AROUND TIME = v * default v = 5000.0

MAXI MUM AROUND | NTEGER SOLUTI ONS = n

MAXI MUM AROUND | NTSOL = n * default n =1
Limits placed on the auto-rounded tree search. See section 6.8.3.

MAXI MUM M P SPACE = n * default n = 10,000

Limit on node storage (does not limit the execution). See section 6.8.3.

VI-51

FortMP - Part 2

M P SAVE FREQUENCY = n * default n = 500
Save intervd given in terms of the number of nodes built. All saving is cancelled if n is zero. See
section 6.8.4.

M P RESTART ON * default OFF
M P RESTART OFF

'ON' activates arestart, using save-files from a previous run. See section 6.8.4.

M P ON

M P OFF * default ON
'OFF causes Branch and Bound execution to be skipped. See section 6.8.5.

M P DUAL ON

M P DUAL OFF * default ON
'ON' causes Prima agorithm to be used in the place of Dud as solver for sub-problems. See
section 6.8.6.

MP LOG LEVEL = n * 0-4, default n =1
Leve of output written to the log. Levels 0 to 4 available. Leve 2 activates the node output log -
also to the screen. See section 6.9.1.

NODE LOG FREQUENCY = 1 * default n =1
Frequency of node output written to the log and displayed on screen with log level 2 or higher. See
section 6.9.1.

M P CLASSI FY ROAS ON * default OFF
M P CLASSI FY ROWNS OFF

'ON' causes the MIP condraint classfication to be carried out in full and written to the log. See
section 6.10.1.

Back to Chapter contents

VI-52

Chapter 7:- FortMP Subroutine Library and External Data Interface

Chapter 7. FortMP Subroutine Library and External Data I nterface

Contents

7.1 Using FortMP asa sub-system to solvelinear problems 2
711 Incorporating FortM P as a sub-system 2
712 Parameter specifications 3
713 Simple FORTMP subroutine with parameters 4
714 Subroutine cal-library specifications 5

7.2 External Datalnterface 7
721 Introduction 7
722 General description of the datainterface 8
723 Argument specifications 9
724 Cal specifications 12
725 Anexample 14

7.3 Sandard Data lnput tothe Interface 18
731 Caling the standard datainput 18
732 Accessto row-names and column-names 18
733 Looking up the index of anamed variable 19
734 Name pattern matching 20
735 Looking up the name of an indexed variable 21
736 Managing the constant term in the objective 21

7.4 Internal SPECS Commands 23
741 Theneed for faster command entry 23
742 Once-off entry of SPECS commands 23
743 Default initialisation 23
744 Common Sectionsin the SPECSfile 24

7.5 HowtoAvoid Miscellaneous|/O 25
751 Log channel 25
752 Controlling thelog 25
753 Avoiding theuse of SAVEfiles 26

7.6 MPSform Output 27

7.7 Summary of callablelitrary, external datainterface and associated commands 28
771 Summary of thecalablelibrary 28
772 Summary of arguments and parameters 31
773 Summary of relevant SPECS commands 3

VII-1

FortMP:- Part 3

7.1 Using FortMP as a sub-system to solve linear problems

7.1.1 Incorporating FortM P as a sub-system

The main program of the FortMP system is a module named FORTMP and has been included for
the users in source form so that they can adapt it to their own ends.

One dmple idea is to make it into a subroutine without arguments o that it can be caled with the
following program statement -

CALL FORTMP

This will now carry out exactly the function of the stand-done FortMP system each time that the
CALL is executed. The users build a complete program for execution by combining their own
programming together with the modified 'FORTMP module and the rest of the FortMP cadlable

library.

This smple procedure will not, however, suit many users. A more powerful use can be made of
subroutine FORTMP if its compogtion is sudied. It can then be re-organised with other user-
procedures interpol ated.

The study will be found quite smple because FORTMP is smply a driving routine that cals a
sequence of library subroutines in order to carry out the work.

Subroutines that can be called by FORTMP are-

MPTIME Routine to create time reports

INITAL Initidises and reads the SPECS control file
INPUT Reads the input data (including input basis, if any)
GETCTL Obtains the control switches

SCALE Performs scding

PREMIP MIP pre-processor

PRSLVE Carries out PRESOLVE

IPMCTL Controls execution of 1PM and basis recovery
INPBAS Sets up the input MPS-format basis
BBASIN Reads and sets up the saved binary basis
CRASH Carries out CRASH starting basis procedure
UNIBAS Sets up the UNIT darting basis

DUAL Executes the DUAL dgorithm

PRIMAL Executes the PRIMAL agorithm

PSTSLV Carries out POSTSOLVE

BASOUT Writes the output, MPS-format basis
BBASOT Writes the output binary save basis

VII-2

Chapter 7:- FortMP Subroutine Library and External Data Interface

MIPCTL Controls execution of MIP
OUTPUT Writes the solution output
FINIAL Finishes execution and closes any open files

Almos dl the execution is conditiond, controlled by the switches which the user can set to ON or
OFF in the SPECS commands. Those switches that control the main FORTMP operation are
recovered by subroutine GETCTL and their detalls may be clearly understood by reference to the
source code of the main control routine, of which a documented copy is provided.

Back to Chapter contents

7.1.2 Parameter specifications

Thefollowing three parameters appear as argumentsin the library subroutine cdls:
SPI D SPECS identity

This is a CHARACTER*8 variable (or constant) which sdlects a part of the SPECS file so0 that
different SPECS-commands may be provided for different cdls to the FortMP sub-system.
Sections of the SPECSHile are ddimited with BEGIN.....END commands and the identity of a
section is named on the BEGIN line asfollows:

BEG N (identity)
where the default identity is blank if omitted. The following specid vauesfor SPID should be noted:

'NOSPECS Defaults adl commands without any reference to the SPECSfile.
Blank Always sdlects the first section on the SPECS file even if the ' BEGIN'
identity is non-blank..

SPID isan argument to the INITAL subroutine
STSL Status of the solution

This is an INTEGER varidble, output from the solver routines DUAL, PRIMAL, IPMCTL and
MIPCTL which give the status of the solution obtained. Standard vaues are-

STSL=0 No solution has been obtained

STSL=1 The problemisinfeasble

STSL=2 The problem is unbounded

STSL =3 The optimum solution has been obtained

STSL=4 An integer solution has been obtained

STSL =5 The optimum integer solution has been obtained
TCTN Terminate criterion

Thisis an INTEGER variable, output from al subroutines with the exception of FINIAL. It States
whether the calculation can continue, or whether afata error took place and the run is aborted.

VII-3

FortMP:- Part 3

TCTN is st to zero by subroutine INITAL, which should never give afatd error. Theredfter it is
used as an input by the remaining subroutines which will hat immediatdy without executing anything
further if they find that TCTN hasanon-zero vdue. Thusit acts as a bypassto the find exit if afatd
error occurs a any point during the execution.

The following is aligt of the switches controlling the FORTMP main routine (in each case 1=YES,
0=NO):

| SCL Whether to scale the data

| PRE Whether to PRESOLVE

1 PM Whether to use IPM asthe principa solver

| BI N Whether to start SSX solvers from an MPSinput basis

| BBN Whether to re-start SSX solvers from a saved (binary) basis.

I CRS Whether to crash to astarting basis for SSX solvers

| DUL Whether to use DUAL asthe principa solver

| PST Whether to POSTSOLVE

| BOT Whether to output an MPS-form basis of the (LP) optima solution

IMP Whether Branch and Bound is to be applied after solving the
relaxed LP for a problem having discrete variable-types

| OUT Whether to output the fina solution.

There are ds0 two parameters associated with the timing routine as follows:

TTYP Type- Zero to start the timer at the outset, and One otherwise
TTEXT 12-character text to identify the execution that is timed.

Each cdl with TTY P=1 records the time taken since the previous call of the timer. In practice both
ttyp and ttext are passed to the timer routine (MPTIME) as congtants.

Back to Chapter contents

7.1.3 Simple FORTMP subroutine with parameters

In the main program FORTMP, the variables SPID, STSL and TCTN described in the previous
section are declared as locd variables. An effective way to use FortMP as a sub-system is to use
these three variables as arguments in the main subroutine call. The user could write-

SUBROUTI NE MYLP(SPI D, STSL, TCTN)

and follow this by copying dl the declarations without change. The initidisation Statement:
SPID =" '

Is omitted so that the external system can supply it for eech CALL. The the rest of the FORTMP
main program is then copied exactly asis.

The user may dso smplify the FORTMP main program by omitting calls to procedures that are not
needed and omitting unused switches. Thiswill have the benefit of reducing the number of FortMP
cdlable library routines that need to be linked for the user’ sfind executable system.

Vil-4

Chapter 7:- FortMP Subroutine Library and External Data Interface

The fallowing is an example of asmple subroutine to solve using the SSX primd agorithm:-

C

SUBROUTI NE MYLP(SPI D, STSL, TCTN)

CHARACTER* 8 SPI D

| NTEGER STSL, TCTN

EXTERNAL I NI TAL, | NPUT, SCALE, CRASH
EXTERNAL PRI MAL, OUTPUT, FI NI AL

STSL = 0

CALL | NI TAL(SPI D, TCTN)
CALL | NPUT(TCTN)

CALL SCALE(TCTN)

CALL CRASH(TCTN)

CALL PRI MAL(STSL, TCTN)
CALL OUTPUT(TCTN)

CALL FI NI AL

RETURN
END

Back to Chapter contents

7.1.4 Subroutine call-library specifications

The full ligt of cal-library specifications for those subroutines thet are caled from main FORTMP is
asfollows

CALL MPTI ME(TTYP, TTEXT)

CALL | NI TAL(SPI D, TCTN)

CALL | NPUT(TCTN)

CALL GETCTL(1SCL, IPRE, IIPM IBIN, IBBN, |CRS, |DUL,
| PST, 1OUT, IBOT, IMP

CALL SCALE(TCTN)

CALL PREM P(TCTN)

CALL PRSLVE(TCTN)

CALL | PMCTL(STSL, TCTN)

CALL | NPBAS(TCTN)

CALL BBASI N(TCTN)

CALL CRASH(TCTN)

CALL UNI BAS(TCTN)

CALL DUAL(STSL, TCTN)

CALL PRI MAL(STSL, TCTN)

CALL PSTSLV(TCTN)

CALL OUTBAS(TCTN)

CALL BBASOT(TCTN)

CALL M PCTL(STSL, TCTN)

CALL OUTPUT(TCTN)

CALL FI NI AL

where the arguments are as described above in 7.1.2.

VII-5

FortMP:- Part 3

Certain rules must be followed by the usersin building their own LP-control subroutine:
1) The generd sequence of CALLSs as given above must be respected.

2) Just one of the five routines IPMCTL, INPBAS, BBASIN, CRASH and UNIBAS,
which create a gtarting basis, must be called prior to executing DUAL or PRIMAL.

3) PRIMAL must be executed before MIPCTL (asimplied by rule 1).

Back to Chapter contents

VII-6

Chapter 7:- FortMP Subroutine Library and External Data Interface

7.2 External Data Interface

7.2.1 Introduction

The externd data interface is a supplement to the data input and solution output festures of FortMP.
Ingtead of using disk files for these items the data is entirely passed via the argument-lists of CALL-
satements which is both faster and in many cases much easier for the user snce MPS-form data

does not have to be built.

The term 'externd’ is used here to contrast with ‘interna’ for the data interface and not to indicate
use of a disk file (which could aso be congrued as an 'externd’ form of interface). The externd
data interface described in this chapter is the user's means to convey externally built problem datato
and from the FortM P sub-system via arguments.

In the next chapter, library routines are introduced that directly access the internd stored form of the
data which has been subject to various changes (Sgn-change, scaling, pre-processing ec). It is
tempting to use internal access for modifications, e.g. to supply changes to the RHS or bound-s,
before re-solving a problem. However, if this method is employed the user must be responsible for
converting the modifications from the externd form to the interna equivadent and this may not be
easy. Facilitiesto do thismay be provided in afuture release of FortMP.

Arguments comprise input tables and output tables. The input tables are prepared in advance by the
user's program and a smple protocol is used for the presentation of sparse matrix data. Once the
system is informed that externd data interface is being used, the OUTPUT module suppresses its
disk-file output in favour of tables containing solution vaues etc.

There are two ways to employ the externa data interface, by a single cdl or by separate input and
output calls.

In the single call method the user does not prepare any ‘MY LP subroutine as above. He makes a
cal to subroutine caled:

SUBMP1
with an argument list that includes both input tables and output tables

In the separate input and output cal method the user prepares a 'MYLP subroutine or smply
interpolates cdls to the FortMP subroutine library within his own main program (respecting the rules
given in 7.1.4 aove). The cdls to INPUT and OUTPUT are replaced by cdls to the following
subroutines:

INPMP1
OUTMP1

In addition when the user supplies a garting bass via the externd data interface the following
subroutineis used:

IBSMP1

VII-7

FortMP:- Part 3

with appropriate argument listsin each case.

Back to Chapter contents

7.2.2 General description of the datainterface

The generd form of problem statement to be used is that of "two Sded linear” condraints given in
Part |, Chapter 1, Section 1.7. For clarity thisis restated here asfollows:

Given aset of n variables Xy,X»,...,X, and a set of n corresponding congtants ¢4,C,,...,Ch. Minimize
(or maximize) the following linear function:

CiX1 + CoXp + ... + CoXpy

subject to the following m linear condraints.
Li £ anXg + X2 + ... + &anXn £ U,
fori=1,2,...m

where ay4,...,am iISan m xn matrix of consant constraint coefficientsand L;,...,L, and U4,...U, are
constant lower and upper bounds respectively for each congtraint row.

Also subject to the following bounds:
|j £ Xj £ U forj =12,..n

wherels,...,I, and uy,...U, are constant lower and upper bounds respectively for each variable.

VII-8

Chapter 7:- FortMP Subroutine Library and External Data Interface

Thisisillugrated in diagram 6-1 below

C,C,....C,
Uy U ... U,
£
Ll Ul
I—2 U2
£ . £
9
Lm Um
£
I Lyl

Diagram 6-1 Genera LP problem with Smple Upper Bounds and RHS ranges

Each of the bound values |j, u;, Li and U; in the above formulation may teke an infinite value to
indicate that that bound does not exist (negative infinite for alower bound or lower RHS). Unlike
the origind MPS-form input where such cases are indicated by type codes (row-types or bound-
types for columns) a standard 'big' value is defined and any vaue having this magnitude or larger is
treated asinfinite; that is the corresponding bound does not exigt.

For Mixed Integer data, additiond tables are provided in the interface which detall the specific
mixed-integer-types of each variable and provide the structure of any speciad ordered sets that may
be present. A description of these tablesisgivenin 7.2.3 below.

Back to Chapter contents

7.2.3 Argument specifications

In this section, certain arguments have their type specified as.

DOUBLE PRECISION/REAL

VII-9

FortMP:- Part 3

These arguments are DOUBLE PRECISION in a standard double precison verson of FortMP.
However some users with a need to conserve memory may be provided with a single precison
verson and for these usersthe type is REAL

Arrays specified smply as ' DOUBLE PRECISION' are dways of type double precision.

Thefollowing are INPUT arguments and will not be changed by a subroutine cal:

SCALARS:-

VR isthe INTEGER number of rows.

NC isthe INTEGER number of columns.

NAI J isthe INTEGER number of non-zero entries in the A-matrix.

NSET isthe INTEGER number of specid ordered sets.

PNAME isthe CHARACTER*8 mode name.

SPI D is the CHARACTER* (*) identity of the BEGIN-line in the SPECS file. If
blank then the firs BEGIN command is chosen whatever its identity.

TCTN is an INTEGER type variable (dso an OUTPUT argument) holding the
terminate criterion. A vaue zero indicates the execution can continue,
otherwise no execution takes place.

ARRAYS:-

Al J isaDOUBLE PRECISION/REAL type array of size NAIJwhich holds the
non-zero eements of the A-matrix.

ROW N isan INTEGER type array of sze NAIJ. This holds the row indices
of the A_matrix belonging to the corresponding entriesin AlJ.

COLI N is an INTEGER type aray of sze NAIJ. This holds the column

indices of the A_matrix belonging to the corresponding entriesin AlJ.

The arrays AlJ, ROWIN and COLIN do not need to be organised in any particular sequence so
long as the entries correspond to each other.

UPB isa DOUBLE PRECISION/REAL type array of sze NC. This holds the
upper bound values on columns. Any vaue grester than or equa to 10**
indicates that no upper bound exists.

VII-10

LOB

RHS

LHS

COST

M TYP

SREF

SFUN

SBEG

SEND

Chapter 7:- FortMP Subroutine Library and External Data Interface

isa DOUBLE PRECISION/REAL type aray of size NC. This holds the
lower bound values on columns. Any vaue less than or equd to -10**
indicates that no lower bound exists.

isa DOUBLE PRECISION/REAL type array of Sze MR. This holds the
upper bound values on rows (RHS). Any vaue greater than or equd to
10* indicates that no upper bound exists.

Is a DOUBLE PRECISION/REAL type aray of sSze MR. This holds the
lower bound values on rows (LHS). Any value less than or equa to -10**
indicates that no lower bound exigts.

isa DOUBLE PRECISION/REAL type array of sze NC. This holds the
cost coefficient values in the objective function.

is an INTEGER type aray of Sze nc. This holds a variable type
code for MIP asfollows-

CODE MEANING

Continuous variable

Binary Vaiable

Generd Integer variable
Semi Continuous variable
Member of an SOS type one
Member of an SOS type two

g b wWNPEFO

isan INTEGER type array of Sze NSET. This array holds the reference
row numbers of each sat.

isan INTEGER type array of Sze NSET. Thisarray holds the function row
number of the sets.

isan INTEGER type array of Ssize NSET. This array holds the first column
number in the set.

isan INTEGER type aray of Sze NSET. This array holds the last column
number of the set.

In the tables which transfer output values back to the user, both logica and structurd varigbles are
represented in this order, plus in addition one extra podtion for the objective function at the
beginning. Table-szeistherefore

1+ MR+ NC

where -

VII-11

FortMP:- Part 3

Position 1 refers to the objective
Postions 2 to (1+MR) refer to logicas
Positions (2+MR) to (1+MR+NC) refer to sructurds

Thetables are-

VCSOL iIsa DOUBLE PRECISION type array of sze (1+MR+NC). This
aray holdsthe prima solution vaues.

BSTAT Is an INTEGER array of sze (1+MR+NC). This array holds a
code vdue for the bass satus of each variable in the fina solution. Codes
are-

CODE MEANING

0 basc variable

-1 Vaiableisat its lower bound
+1 Vaiableisat its upper bound

BSTAT may aso be an INPUT argument - see note 5 of 7.2.4 below.

RSCOS iIsaDOUBLE PRECISION type aray of size (1+MR+NC). This
aray holds the dud solution values, that is shadow prices and reduced
costs.

In addition the following scalars are output -

STSL Is an INTEGER type variable holding solution status as dready Specified
abovein7.1.2

TCTN is an INTEGER type vaiadle (dso an INPUT argument) holding the
terminate criterion. A vaue zero indicates that the execution was successful,
subject to the value of STSL.

Back to Chapter contents

7.2.4 Call specifications
Full call specifications for the datarinterfacing subroutines are-

CALL SUBMP1(MR, NC, NAIJ, NSET, PNAME, SPID,
* AlJ, ROANN, COLIN, UPB, LOB, RHS, LHS,
COST, M TYPE, SREF, SFUN, SBEG, SEND,
VCSOL, BSTAT, RSCOS, STSL, TCTN)

This cdl is for the complete solution process with both problem data inputs and solution outputs
passed via the arguments (externa interface).

VII-12

Chapter 7:- FortMP Subroutine Library and External Data Interface

CALL I NPMP1(MR, NC, NAIJ, NSET, PNAME,
AlJ, ROA'N, COLIN, UPB, LOB, RHS, LHS,
COST, M TYPE, SREF, SFUN, SBEG, SEND, TCTN)

This cal converts users problem data to internal form.

CALL | BSMP1(MR, NC, BSTAT, TCTN)
This call sets up a garting bass for SSX solvers PRIMAL and DUAL.

CALL OUTMP1(MR, NC,
VCSOL, BSTAT, RSCOS, TCTN)

This cdl converts the solution back to externa form.

Within a users ' MYLP routine (not SUBMPL) it is legd to employ INPMPL in combination with
the standard OUTPUT or to employ standard INPUT in combination with OUTMPL. However in
the latter case the user must have precise knowledge of the row-size, MR, and column-size, NC, in
order to supply correct array-sizes in the argument list (a requirement of FORTRAN). This is
checked by the system.

A minor problem arises when the input data has no specid ordered sets of ether type. NSET
would be zero in this case. However many FORTRAN compilers do not dlow zero dimension
Szes and s0 the user needs a compromise. He should supply dimension size:

NSET = 1

together with dummy arrays SREF, SFUN, SBEG and SEND which will not be overwritten. The
systern compuites the correct value for NSET in any case from the input data.

The table MITY PE must be supplied whether or not the data has any MIP-type variables. If it has
none then MITY PE must be filled with zeros.

It is not necessary to specify input type and/or output type in the SPECS file. The system will
enforce correct settings for the combination of interface input and/or interface output after the
SPECS commands have been read in.

For the IBSMP1 subroutine BSTAT is an input argument. Its execution isinvoked within SUBMPL
by the SPECS command:

VII-13

FortMP:- Part 3

SI MPLEX START | NPUT BASI S

and inthiscase BSTAT isdso an input argument for SUBMPL.

Back to Chapter contents

7.25 Anexample

The following smple example is provided as part of the delivered software:

Modd: Sample

Maximize X1+ 2Xs - Xg
Subject to row bounds,

25E£ 33X+ X - 2%4- X5 - Xg
2X, + 1.1X3 £ 21
X3 + Xg =40
18£ 2.8%, -1.2%; £50
3.0£ 5.6x; + X5 + 1.9% £15.0

and column bounds.

25£ x4

0f£ X, £ 41
O0f X;
OFf X4

05£ x5 £ 4.0
Of Xs

Of Xx;

Of£ x3£ 4.3

The input scdar arguments to be supplied are asfollows:

MR = 5 (number of rows)

NC = 8 (number of columns)

NAIJ = 14 (number of non-zeros)

NSET = 1 (dummy in the absence of any specid ordered sets)
PNAME = 'SAMPLE ' (problem name)

SPID = ' " (1 'BEGIN' line in the SPECS command file)
TCTN = 0 (terminate criterion - dso an output)

Theinput array arguments to be supplied are as follows:

1) Matrix non-zeros
ROWIN COLIN AlJ
Row indices Column indices Non-zeros
1 1 1 3.0

VIl-14

Chapter 7:- FortMP Subroutine Library and External Data Interface

2 5 1 5.6
3 1 2 10
4 2 2 2.0
5 2 3 11
6 3 3 1.0
7 1 4 -2.0
8 4 4 2.8
9 1 5 -1.0
10 5 5 10
11 3 6 10
12 4 7 -1.2
13 1 8 -1.0
14 5 8 19
2) Column-vectors
LOB UPB COST MITYPE
Lower bounds Upper bounds Objective MIP types

1 25 1.0e31 1.0 0

2 0.0 4.1 0.0 0

3 0.0 1.0e31 0.0 0

4 0.0 1.0e31 0.0 0

5 0.5 4.0 2.0 0

6 0.0 1.0e31 0.0 0

7 0.0 1.0e31 0.0 0

8 0.0 4.3 -1.0 0

3) Row-vectors
LHS RHS
Row lower bounds Row upper bounds

VII-15

FortMP:- Part 3

1 2.5 1.0e31
2 -1.0e31 21
3 4.0 4.0
4 18 5.0
5 3.0 15.0

The remaining inputs are dummy SOS tables that may be single-cell integer arrays or integer scdars
whose contents are not materid.

The above inputs can be presented ether via caling SUBMPL or via cdling INPMPL. When this
is done the outputs returned via SUBMPL or via OUTMPL will be asfollows.

VCSOL BSTAT RSCOS
Primal solution Bads datus Dud solution
1 4.50 0 -1.0
2 6.26 0 0.00
3 2.10 0 0.00
4 4.00 -1 0.00
5 1.80 +1 0.00
6 15.00 -1 2.00
7 2.50 -1 10.20
8 1.05 -1 0.00
9 0.00 -1 0.00
10 0.64 0 0.00
11 1.00 0 0.00
12 4.00 0 0.00
13 0.00 -1 0.00
14 0.00 -1 4.80

The following scaar vaues are d o returned:

STSL = 3 (Solution gtatus code: Optimum)
TCTN (Termination: OK)

|
o

VIl-16

Chapter 7:- FortMP Subroutine Library and External Data Interface

Note that for the row-positions 1 to 6 (including objective in position 1) VCSOL represents the
vaue of therow itsdf (Sa;x;) whereas the code in BSTAT represents the attached logica variable.
When the row equds its lower RHS vaue the dack is a upper bound and viceversa The
exception to thisis a GE-type row with no upper RHS vaue which the system negates interndly in
order to avoid minus-type logicas. For both GE-type rows and LE-type rows the only non-basic
status codeis-1.

The associated file of SPECS-commands to be provided in file ‘fortmp.spc’ is asfollows.
BEG N
MODEL NAME (sanpl e)

MAXI M ZE
END

Back to Chapter contents

VII-17

FortMP:- Part 3

7.3 Standard Data Input to the Interface

7.3.1 Calling the sandard data input

In using the externd data interface, the user is obliged to build the problem data in his own data
gpace with his own coding. Frequently it happens that the origind deta for thisis provided in MPS-
form anyway so that the user would be obliged to write an input routine which exactly pardles the
input routine of FortMP itsalf.

Naturdly it is desrable to avoid this duplication of effort and FortMP provides a sub-routine
MPLINP in the library to do this. The specification is asfollows:

CALL MPL1I NP(MR, NC, NAIJ, NSET, PNAME, SPI D,
* AlJ, ROANN, COLIN, UPB, LOB, RHS, LHS,
COST, M TYPE, SREF, SFUN, SBEG, SEND,
BSTAT, TCTN)

The arguments here include al the arguments of INPMPL and of IBSMP1 with a reversa of roll:-
[nput-type arguments of INPMP1 and IBSMP1 become output-type arguments of MPLINP. In
addition, the following argument:

SPID SPECS identity (up to 8 characters)
enables the user to sdlect a specific section of the SPECS file to control the input process.
The actions of MP1INP are asfollows:

- Cal INITAL toinitidise and read the SPECS commands

- Cdl INPUT to read the problem data and sore it internaly

- Call one of the basis sart-up routines (INPBAS, BBASIN, CRASH or
UNIBAYS), asindicated by the SPECS. The default is UNIBAS (unit, all-
logicad basis).

- Trandfer the data now stored interndly to the layout of the externd interface

and return it viathe arguments to the user.

Subroutine MPLINP is coded in the same module as SUBMP1 and the user is provided with
documented source code.

Back to Chapter contents

7.3.2 Accessto row-namesand column-names

The INPUT subroutine of FortMP is the means whereby row and column names are entered and
become known to the sysem. Since the externd interface itsdf does not provide any
communication of names the user-access to names is based on the use of INPUT, or rather on the
use of MPLINP which cals INPUT.

VII-18

Chapter 7:- FortMP Subroutine Library and External Data Interface

The following SPECS command is to be used:
| NPUT SAVE NAMES ON * default OFF

(OFF may dso be given). When this feature is ON the system takes steps to ensure that not only
the names themsalves but a so the associated look-up tables remain available.

In subroutine MP1INP there is an additional step executed after creating the interface which re-
loads the names and look-up tables (over-writing the internal stored form of the modd) so that the
user can employ name look-up utilities provided in the subroutine library. This is conditiona on the
use of the above SPECS command.

Back to Chapter contents

7.3.3 Looking up theindex of a named variable

Given that the user knows the exact name of some variable, the corresponding row or column index
in the interface can be established with one of the following two functions:

| ROW = FI NDI R(RNAME)
JCOL = FI NDJC(CNANE)

where:
RNAME iIsarow name (8 characters)
| ROW is the corresponding row index (zero if not found)
CNAME isacolumn name (8 characters)
JCOL IS the corresponding column index (zero if not found)

Note that these operations can only take place after execution of MPLINP, the indices refer to the
row and column indices of the interface data in the arguments, and the command 'INPUT SAVE
NAMES ON' must have been given. It isdso possible to execute SUBMP1 with the same SPECS
command given and this will retrieve the same names and look-up tables as before, but will not be
able to recognize any change to the indexing that the user may have programmed between the cals
to MP1INP and SUBMPL. If two or more models have been entered with MPLINP the different
models mugt be digtinguished by providing the moded name in a SPECS 'MODEL NAME
command to SUBMPL.

In the case of long names (16 characters) the following two functions are to be used in the place of
FINDIR and FINDJC:

| ROW = FNDLI R(LRNAME)
JCOL = FNDLJC(LCNAME)

where:

LRNAME isarow name (16 characters)
LCNANME isacolumn name (16 characters)

Back to Chapter contents

VII-19

FortMP:- Part 3

7.3.4 Name pattern matching

In cases where the users do not know the exact name to be looked up they may nevertheless wish
to know the index-range corresponding to some pattern in order to program action for a particular
type of varidble or condraint.

A pdtern is atext of the same length as a name containing the characters '?, ‘&' or '# in positions
that do not need to be matched exactly. The sgnificance of these specid charactersisasfollows:

? meatches any character
‘&' matches any dphabetic character
meatches any digit

Pattern matching isinvoked by one of the following subroutine cals:

CALL MTCHI R(RPTTRN, | ROW
CALL MICHIC(CPTTRN, JCOL)

where:

RPTTRN IS arow-name pattern (8 characters)

IROW indicates the start point for the search and returns the next
following row-index of a matched postion (zero if not matched)

CPTTRN is a column-name pattern (8 characters)

JCOL indicates the start point for the search and returns the next
following column-index of ameatched postion (zero if not
matched)

Search begins a the next index-postion after the start-index and continues forward until a match is
reached. To dtart at pogition 1 initidise theindex to zero.

Note that pattern maiching is likely to be dow compared to exact name look-up. The same
conditions gpply, namdy that MP1INP must have been executed and the SPECS command
'INPUT SAVE NAMES ON' must have been given.

In the case of long (16 character) names the following subroutine-cals are to be used in the place of
MTCHIR, MTCHJC:

CALL MTCLIR(LRPTRN, IROW)
CALL MTCLJC(LCPTRN, JCOL)

where:

RPTTRN is arow-name pattern (8 characters)
CPTTRN Is a column-name pattern (8 characters)

Back to Chapter contents

VI1-20

Chapter 7:- FortMP Subroutine Library and External Data Interface

7.3.5 Looking up the name of an indexed variable

In order to look up the name corresponding to a row index or column index one of the following
functionsis employed:

RNAME = Gl RNAM | ROW
CNAME = GJCNAM JCOL)

for ordinary 8-character names, or

LRNAVE = Gl RLNM | ROW
LCNAME = GJCLNM JCOL)

for long 16-character names. These routines are smply the reverse of the name look-up functions
specified in 7.3.3 above.

The same conditions apply, namely that MPLINP must have been executed and the SPECS
command 'INPUT SAVE NAMES ON' must have been given.

Back to Chapter contents

7.3.6 Managing the constant term in the objective

Following the use of the input subroutines MPLINP it is expected that the user will employ
SUBMP1 to solve the modd. The entire modd is then passed to the solver with the single
exception of the congtant term in the objective.

The reason for this is that MPS-form data, by using an ordinary matrix row for the objective,
actudly dlows amore generd linear form:

N
o)
aCij - K

=1

to be minimised or maximised where K isa congant. K is given as the right hand side vaue for the
objective row.

On the other hand the arguments for SUBMPL have no such provision since the objective is given in
aseparae array from the matrix.

One way to overcome this problem is to use the following SPECS command in the cal to
SUBMPL.

OBJECTI VE OFFSET ON * default OFF

(OFF may dso be given). When ON is specified the offset K that was stored by MP1INP is used
asit sandsingtead of being zeroed as will happen in the default ‘'OFF Stuation.

The above will be satisfactory whenever the cdl to SUBMPL has been preceded by a
corresponding call to MPLINP which provides K. However if the user is dternately solving two or

VII-21

FortMP:- Part 3

more different models, then K must be provided explicitly for each cdl to SUBMPL. The user will
also need to retrieve the different values of K after each call to MPLINP.

Accessto read or write K is provided by the following subroutine calls:

CALL GTKOBJ(KOBJ)
CALL PTKOBJ(KOBJ)

where' KOBJ' isthe objective offset vaue (RHS congtant term) K. Subroutine GTKOBJ 'gets
K and PTKOBJ'puts K.

The use of PTKOBJ does not change the default for SPECS command 'OBJECTIVE OFFSET
ON' which remains OFF. If omitted the value of K is s&t to zero.

Back to Chapter contents

VII-22

Chapter 7:- FortMP Subroutine Library and External Data Interface

7.4 Internal SPECS Commands

7.4.1 Theneed for faster command entry

During a single run that employs SUBMPL to solve sub-problems, or uses some combination of
FortMP library cdls including a solver, a very large number of sub-problems may be solved in a
very short space of time. In one stochagtic programming example with sub-problems averaging 100
rows, 500 columns and 5000 non-zeros the solution rate achieved was approximately 100 sub-
problems per second.

Such rates areimpossible without diminating dl the repeated opening and closing of files that could
take place on every sub-problem, and in particular the I/O required for SPECS commands. Ways
to achieve this are described below - techniques to avoid the use of miscellaneous internd files are
given later in section 7.5

Back to Chapter contents

7.4.2 Once-off entry of SPECS commands

In order to avoid repeated 1/O from the SPECS-Hile (fortmp.soc), it is necessary to read the file and
dore it internaly. This read-in is executed in the user's main sysem as pat of the overdl
initidization before any other FortMP library cal is made.

Interna SPECS-command entry is invoked with the following subroutine cal:
CALL SPCI NT(TCTN)

Non-zero isreturned by TCTN if thereis any error.

Once SPCINT has been cdled the interna procedure INITAL automaticaly avoids file input for the
SPECS commands and uses the interna store, with no other change on the user's part.

Back to Chapter contents

7.4.3 Default initialisation

Defaults for dl SPECS commands are stored in a memory region that is initidized when the system
isloaded. A library routine is available for the user to change these defaults, and by this means the
necessty for a SPECS file may be entirdly avoided in many cases.

The library routine can only change defaults and not to actua parameters. Interference with the
actual control parameters would be dangerous because there are severad inter-dependencies
checked at the time of SPECS command entry. However changes to the defaults cannot cause any
harm provided that in every case the user respects the maximum and minimum limits given for each
Separate control.

In order to do thisthe following cdl is made:
CALL SPCDFT(COMVMND, TCTN)

VII-23

FortMP:- Part 3

where 'COMMND' is a text of up to 50 characters holding the actud SPECS-command, If the
command cannot be recognized then TCTN is returned with a non-zero value indicating the error as
folows

1-4 Corresponding keyword not recognized
5 Vaue out of range.

If this system is employed as a way to avoid use of a SPECS file then the parameter 'SPID" (8
characters) must be assgned asfollows:

SPI D = ' NOSPECS'
before each cal to library routines SUBMP1, MP1INP or INITAL.

One warning however:- If different controls are used for different entries then do not forget to reset
the standard defaults for unused controls as well as setting fresh defaults for each new entry to the
FortMP sub-system.

Back to Chapter contents

7.4.4 Common Sectionsin the SPECSfile

When the SPECSHile (fortmp.spc) is read in by the subroutine SPCINT there is areserved section-
heading for setting default vaues to the commands as follows:

BEGI N (DEFAULT)

This section is not stored for later interpretation but is acted on a once by invoking 'CALL
SPCDFT" for each command in the section (see section 7.4.3 of the manud). It is therefore useful
for reducing the number of repetitions of the same command in Stuations where the SPECS file must
have severd sections.

The ‘DEFAULT’ section is useful only when SPCINT is used to load the specs commands
internaly. Thereisaso the possibility of having one section used in dl entries to the solver (submpl)
in addition to the section designated by ‘SPID’ for each entry. The reserved heading for this section
iIsasfollows

BEGI N (ALL)

The ‘ALL’ section must appear first, or preceded only by the ‘DEFAULT’ section if that appears.
'ALL" section commands are lised on the log a the beginning, followed by the commands of the
section selected by parameter SPID (‘DEFAULT’ section commands are not listed).

Back to Chapter contents

VII-24

Chapter 7:- FortMP Subroutine Library and External Data Interface

7.5 How to Avoid Miscellaneous I/O

75.1 Logchannd

In FortMP dl 1/0 channels are initidised to negative numbers indicating that there is no
corresponding open file on that channd. To open a file FortMP must first negate the channd,
making it pogtive, and it will be negated again after closing.

With the following SPECS command:
LOG CHANNEL = n

where ‘n’ is a pogtive, vaid 1/0 unit-number, FortMP is forced to consider the file dready open
and it will not be closed upon exit by FINIAL routine,

Users must make sure thet the file is opened before making the firg cal to a FortMP sub-system
and should keep it open throughout the run.

Asaresult of this the logged output for one sub-problem is never over-written by that of alater sub-
problem and the log can usefully be studied after the run. The users can dso present the log of their
own operations on the samefile.

It can be useful to set the log channel by default as described in 7.4.3 above. This avoids the need
to set thelog channd in every section of the SPECSfile.

Back to Chapter contents

7.5.2 Controllingthelog
In FortMP the default levels of logging are as follows:

SI MPLEX LOG LEVEL = 1
I NVERT LOG LEVEL =1
| PM LOG LEVEL 1

M P LOG LEVEL 1

M P PREPROCESS LOG LEVEL =1
PRESOLVE LOG LEVEL =1

PUSH LOG LEVEL = 1

The output produced is generally much more than is needed by the user of the externd interface,
particularly when alarge number of cals are made to solve sub-problems. In order to reduce it the
levels can be set to zero which diminates dl output except for error reports. Thus the user should
employ the following SPECS commands.

SI MPLEX LOG LEVEL = 0
| NVERT LOG LEVEL = 0
| PM LOG LEVEL 0

M P LOG LEVEL 0
M P PREPROCESS LOG LEVEL = 0

VII-25

FortMP:- Part 3

PRESCLVE LOG LEVEL = 0
PUSH LOG LEVEL = O

Not dl of these commands will be needed - only those for the FortMP dgorithms actudly
employed.

As before it is possible to use default settings rather than SPECS commands - see section 7.4.3
above.

Back to Chapter contents

7.5.3 Avoiding theuse of SAVE files

It ismost unlikely that the user of the externd interface will require any SAVE files. Inthe SUBMPL
environment there are initid default settings different from those of sand-aone FortMP which cancel
dl SAVEs and avoid any opening/closing of SAVE files. These settings are:

SI MPLEX SAVE FREQUENCY = 0
| PM SAVE FREQUENCY = 0
M P SAVE FREQUENCY = 0

It is perfectly possible for the user to re-activate any SAVES that he may need - ether by command
or by assgning the default settings as stated in 7.4.3.

If the user amply wishes for a find save a termination then a high value should be given for the
frequency.

Back to Chapter contents

VII-26

Chapter 7:- FortMP Subroutine Library and External Data Interface

7.6 MPS-form Output

When a tabular form has been used for the input, or when input data is passed via the externd
interface, it may be desrable for the user to creste an MPS-form equivalent on a disk file. An
option to do this immediatdly after the input can be invoked by means of the following SPECS
command:

OQUTPUT MPS ON * Default: OFF

(OFF can dso be specified). If the model has no names MPSOUT creates row and column names
based on the indices with prefix 'R’ or 'C..

The slandard file-name given to this output is
<pr obnanme>. npo

where ‘probname refers to the problem-name. However the user may wish to distinguish outputs
from different cdls to SUBMPL without usng a different problem-name. This can be achieved by
encoding a subroutine library cal within a revissed SUBMPL routine, or within a revised FORTMP
main program.

Another reason for doing thisis that the modd is subject to changes as aresult of PRESOLVE, or if
it has discrete variables as a result of MIP pre-processing and the Branch and Bound agorithm. As
before the user may wish to preserve these changes in a form suitable for later re-entry and which
can be compared with the origind.

The library subroutine which does thistask is as follows.
CALL MPSOUT(EXTEN)

where
EXTEN (CHARACTER*3) isthe output file extenson.

The file name for output is formed by gppending ".exten' to the model name (and directory path if
used).

It is expected that the user will incorporate the cal to MPSOUT within the coding of FORTMP
main program or within SUBMPL sub-system control routine. An internd model must exig, crested
either by INPUT or by INPMPL. If INPUT was used and names have been stored then MPSOUT
must occur before thefind call to FINIAL which closes the namesfile.

The modd written to the output incorporates dl variable fixes or congraint relaxations current & the
time MPS output is cdled. The effect of scding is removed however and the origind sign for data
eements on MI-type rows and GE-type columns is restored (these are negated interndly by
applying a scae factor -1.0).

Back to Chapter contents

VII-27

FortMP:- Part 3

7.7 Summary of callable library, external data interface and associated
commands

7.7.1 Summary of thecallablelibrary
The following subroutines are caled from the main program of the sand-done FortM P system. See
section 7.1 for details.

CALL MPTI ME(TTYP, TTEXT)

reports processing time (TTY P=0 initidises the time).
CALL I NI TAL(SPI D, TCTN)

initiaises and reads the SPECS commands.
CALL | NPUT(TCTN)

inputs mode data from disk files and store it internaly together with basisinput data (if any).
CALL GETCTL(ISCL, IPRE, IIPM IBIN, IBBN, ICRS, |DUL,
* | PST, 1 OQUT, |IBOT, I MP)
getsthe principa dgorithm controls.
CALL SCALE(TCTN)

scaes the modd.
CALL PREM P(TCTN)

applies MIP pre-processor to the mode.
CALL PRSLVE(TCTN)

applies PRESOL VE to the mode and stores the operation sequence for a subsequent
POSTSOLVE.

CALL | PMCTL(STSL, TCTN)

appliesthe IPM solver and basis recovery (crossover).
CALL | NPBAS(TCTN)

sets up gtarting basis for PRIMAL or DUAL from the input basis (MPS-form).
CALL BBASI N(TCTN)

sets up starting basis from one saved in binary form by a previous run.
CALL CRASH(TCTN)

appliesthe CRASH agorithm to create a sarting basis
CALL UNI BAS(TCTN)

cregtesthe dl-logica sarting basis.
CALL DUAL(STSL, TCTN)

VII-28

Chapter 7:- FortMP Subroutine Library and External Data Interface

gopliesthe DUAL solver dgorithm (valid only of the basisis dud-feasble).
CALL PRI MAL(STSL, TCTN)

gopliesthe PRIMAL solver dgorithm.
CALL PSTSLV(TCTN)
gpplies POSTSOLVE to reverse the effect of PRESOL V E operations while maintaining an optimal
basis.
CALL OUTBAS(TCTN)
outputs the current basisin MPS proforma.
CALL BBASOT(TCTN)

outputs the current basis in binary form (for subsequent restart).
CALL M PCTL(STSL, TCTN)

gpplies the Branch and Bound agorithm to solve a modd with discrete variables.
CALL OUTPUT(TCTN)

outputs the fina solution.
CALL FI NI AL

Finishes execution and closes dl files before find exit.

The following subroutine cals relate to use of the externd interface. See section 7.2 for detalls,

CALL SUBMP1(MR, NC, NAIJ, NSET, PNAME, SPI D,
* AlJ, RONN, COLIN, UPB, LOB, RHS, LHS,
COST, M TYPE, SREF, SFUN, SBEG, SEND,
VCSOL, BSTAT, RSCOS, STSL, TCTN)
Principa sub-system to solve a problem passed via the externa (argument) interface.

CALL I NPMP1(MR, NC, NAIJ, NSET, PNAME,
* AlJ, ROA'N, COLIN, UPB, LOB, RHS, LHS,
COST, M TYPE, SREF, SFUN, SBEG, SEND, TCTN)

Sub-routine to input the externd data interface and store the problem interndly.
CALL I BSMP1(MR, NC, BSTAT, TCTN)

Set up garting basisfor PRIMAL or DUAL
CALL OUTMPL1(MR, NC,

* VCSOL, BSTAT, RSCOS, TCTN)
Output the solution and basis.
CALL MP1I NP(MR, NC, NAIJ, NSET, PNAME, SPID,
* AlJ, ROANN, COLIN, UPB, LOB, RHS, LHS,

VII-29

FortMP:- Part 3

COST, M TYPE, SREF, SFUN, SBEG, SEND,
BSTAT, TCTN)

Input a problem and convert it to the form of the externd (argument) interface returned to the calling
routine.

The following functions and subroutines enable access to names (after calling MPLINT). SPECS
command INPUT SAVE NAMES ON' must be given.

| ROW = FI NDI R(RNAVE)
JCOL = FI NDJC(CNANE)
| ROW = FNDLI R(LRNANE)
JCOL = FNDLJC(LCNANE)

These functions look up the index corresponding to arow or column name (8-character or 16-
character). See section 7.3.3.

CALL MTCHI R(RPTTRN, | ROW
CALL MTCHJC(CPTTRN, JCOL)
CALL MTCLI R(LRPTRN, | ROW
CALL MTCLJC(LCPTRN, JCOL)

The above subroutines find the next row index or column index corresponding to a pattern - see
section 7.3.4.

RNAME
CNAME
LRNAME
LCNAME

Gl RNAM | ROW
GJCNAM JCOL)

Gl RLNM | ROW
GJCLNM JCOL)

These functions ook up the name (8-character or 16-character) that corresponds to arow index or
columnindex. Seesection 7.3.5.

The following two functions enable read or write access to the objective congtant term. SPECS
command 'OBJECTIVE OFFSET ON' must be used.

CALL GTKOBJ(KOBJ)
CALL PTKOBJ(KOBJ)

GTKOBJ gets and PTKOBJ puits the objective constant term. See section 7.3.6.

The following subroutine is for once-off input of SPECS commands. Module SPCINT isto be
loaded in the place of SPECFY.

CALL SPCI NT(TCTN)

This subroutine reads the SPECS file and stores al the commandsinternaly. Command sections
are identified exactly as usua with the SPID parameter. See section 7.4.2.

The following subroutine sets up the default for a sngle SPECS command.
CALL SPCDFT(COMVND, TCTN)

See section 7.4.3.

VI11-30

Chapter 7:- FortMP Subroutine Library and External Data Interface

The following subroutine generates an output MPS-form disk-file from the interndly stored problem
data with modifications.

CALL MPSOUT(EXTEN)
See section 7.6.

Back to Chapter contents

7.7.2 Summary of argumentsand parameters

Thefollowing are arguments to main FortMP library calls. See section 7.1.2.

SPI D SPECS identity (CHARACTER*8). Specid vaduesare:
Blank for the firgt section on the SPECSfile
'NOSPECS' to cancd dl input of SPECS commands and use
defaullts,
STSL Solution status (INTEGER). Vduesare:

STSL=0 No solution has been obtained

STSL=1 The problemisinfeasible

STSL=2 The problem is unbounded

STSL=3 The optimum solution has been obtained

STSL =4 An integer solution has been obtained

STSL=5 The optimum integer solution has been obtained
TCTN Terminate criterion (INTEGER)

The following are parameters controlling the operationsin FORTMP and SUBMPL. All are
INTEGER, 1=YES, 0=NO. Seesection 7.1.2.

| SCL Whether to scale the data

| PRE Whether to PRESOLVE

1 PM Whether to use |PM as the principa solver

| BI N Whether to use an MPS input basis

| BBN Whether to use asaved (binary) bass

| CRS Whether to crash to agtarting basis

| DUL Whether to use DUAL asthe principa solver
| PST Whether to POSTSOLVE

| BOT Whether to output an MPS-form basis of the (LP) optima solution
IMP Whether Branch and Bound is to be applied

| OUT Whether to output the fina solution.

The following two parameters are associated with the timing routine. See section 7.1.2.

TTYP Zero to sart timer, One otherwise (INTEGER)
TTEXT Identification text (CHARACTER* 12)

VII-31

FortMP:- Part 3

The following arguments condtitute the externd datainterface. Those labdled as' DOUBLE
PRECISION/REAL' must be DOUBLE PRECISION or REAL according to version of FortMP
provided (standard delivery is DOUBLE PRECISION). See section 7.2.3.

VR Number of rows (INTEGER)

NC Number of columns (INTEGER)

NAI J Number of A-matrix non-zeros (INTEGER)

NSET Number of specia ordered sets (INTEGER)

PNAME Mode name (CHARACTER*8)

SPI D SPECS identity (CHARACTER*(*))

TCTN Terminate control number (INTEGER)

STSL Solution status (see above) (INTEGER)

Al J(NAI J) A-matrix non-zeros (DOUBLE PRECISION/REAL)

ROW N(NAI J) A-matrix row indices (INTEGER)
COLI N(NAI' J) A-matrix column indices (INTEGER)

UPB(NC) Variable upper bounds (DOUBLE PRECISION/REAL)
LOB(NC) Variable lower bounds (DOUBLE PRECISION/REAL)
RHS(VR) Upper right hand sides (DOUBLE PRECISION /REAL)
LHS(MR) Lower right hand sSides (DOUBLE PRECISION /REAL)
COST(NC) Objective coefficients (DOUBLE PRECISION /REAL)
M TYP(NC) MIP type code asfollows (INTEGER):

0 = Continuous

1=Binary

2 = Generd integer
3 = Semi-continuous
4 = SOS1 member
5 = SOS2 member

SREF(NSET) Reference-row indices of S.O.sets (INTEGER)
SFUN(NSET) Function-row indices of S.0.sets (INTEGER)
SBEG(NSET) Columnsindices beginning each S.O.set (INTEGER)
SEND(NSET) Columnsindices ending eech S.O.set (INTEGER)

VCSOL(1+MR+NC) Prima solution values (DOUBLE PRECISION)
BSTAT(1+MR+NC) Bads datusindicators (INTEGER):

0 =Basc

-1 = Non-basic at lower bound

+1 = Non-basic at upper bound
RSCOS(1+MR+NC) Dud solution values (DOUBLE PRECISION)

The following arguments and function outputs refer to the access features for model names. See
sections 7.3.3 - 7.3.5.

| ROW Row index (INTEGER)

RNANVE Row name (CHARACTER*8)
LRNAME Row name (CHARACTER* 16)
RPTTRN Row name pattern (CHARACTER*8)

VII-32

Chapter 7:- FortMP Subroutine Library and External Data Interface

LRPTRN Row name pattern (CHARACTER* 16)
JCOL Columnindex (INTEGER)

CNAME Column name (CHARACTER*8)

L CNAMVE Column name (CHARACTER* 16)
CPTTRN Column name pattern (CHARACTER* 8)
LCPTRN Column name pattern (CHARACTER* 16)

In apattern the following characters are wild (see 7.3.4):

2 meatches any character
‘&' matches any aphabetic character
meatches any digit

The following are miscellaneous arguments.

KOBJ Congtant term in the objective (DOUBLE PRECISION) - see 7.3.6.

SPCFI L SPECS file name (CHARACTER*n where nis any length up to
maximum 70) - see 7.4.2.

COMWND Command-line to set up a default vaue with subroutine SPCDFT -
see7.4.3

EXTEN File extension used by MPSOUT (CHARACTER*3) - see 7.6.

Back to Chapter contents

7.7.3 Summary of reevant SPECS commands
The following SPECS commands have been introduced in this chapter.

- To enable access to names (see section 7.3.2):

| NPUT SAVE NAMES ON * default OFF
| NPUT SAVE NAMES OFF

'ON' specifies that names and name look-up tables are to be saved and re-loaded as the fina
operation of MP1INP, SUBMP1 or FORTMP.

- To manage the objective constant term (see section 7.3.6):

OBJECTI VE OFFSET ON * default OFF
OBJECTI VE OFFSET OFF

'ON' indicates that the objective congtant term is not zeroed by the input of the externd interface
(subroutines SUBMP1 or INPMPL).

- To manage the log (see section 7.5.1):
LOG CHANNEL = n * default internal

This command assigns a channel number to the log file and indicates that it is dready opened by the
user and is not to be closed.

VII-33

Contents

8. Internal Data Interfacing Service Utilities

8. INTERNAL DATA INTERFACING SERVICE UTILITIES

8.1 Introductiontothelnternal Datalnterfacing Service Utilities

811
812
813
814
815
816

Objectives

Data Description

Description of the Utilities

How to Use the Utilities — Operating Modes

Necessary Preparation and Provision for Matrix Expansion
Single and Double precision versions of FortMP

8.2 TheFacilitiesAvailable

821
822
823
824
825

General Facilities
Matrix Facilities
RIM Facilities
Solution Facilities
Tableau Facilities

8.3 Specifications

831
832
833
834
835
836
837

Arguments

General Utility Specifications
Matrix Utility Specifications

RIM Utility Specifications
Solution Utility Specifications
Tableau Utility Specifications
Some Notes on the Specifications

0o ~N~NOO o bhNNDN

55RO R oo

8.1 Introduction to the Internal Data Interfacing Service Utilities

8.1.1 Objectives

The objective of the datainterfacing service utilities— DISERV tilities in brief — is to provide those who
employ FortMP as a subsystem with a means to access directly and modify the LP problem data as
seen by the dgorithms of the system.

Thus for example the writer of some cutting plane agorithm could use INPUT to read in a problem from
an MPS format file, then solve that problem and then, perhaps in an overal iterative procedure, modify
the condtraints or add new ones and re-solve the problem severd times.

As another example researchers into PRESOLVE procedures can gain access to the problem
congraints, objective and bounds in order to execute their dgorithms and can then apply any changesto
variable type or bounds before usng FortMP solution agorithms to test the efficiency of ther
procedures.

Back to Chapter contents

8.1.2 Data Description

It isimportant to note at the outset the distinction to be made between DISERV utilities described here
and the externd data interface described in the previous chapter. Wheress the externd data interface
relates to data which is external to FortMP, passed for example via arguments to subroutine SUBMPL,
DISERV Ltilities relate to data which is internal to FortMP after processing by procedures such as
INPUT, SCALE and PRESOLVE.

In both cases the generd form of problem statement is ‘two-sded linear’ as stated in the previous
chapter, Section 7.2.2. Some differences to be noted are as follows.

The objective row is presented as a separate vector in the internal data interface but is
an integra part of the A-matrix in DISERV utilities DISERV users do not need to
account for the extrarow in their indexing.

In DISERV utilities the corresponding row wise and column wise eements are
combined in asingle vector. Row positions are given first followed by column positions.

In DISERV uitilities the absence of any bound is not necessarily to be shown by an
infinite magnitude in the corresponding bound vector. It is indicated by atype codein a
separate vector of variable type codes.

Only the following four variable types are recognised by data interfacing service
routines.

[ERN
I

Flustypevaridble
Bounded variable

N
I

3 Fixed vaiable
4 = Free variable

This coding applies equdly to structurd and to logicd variables and may
be interpreted for logicals as follows.

1 = LE type row

2 = Row with RHS range
3 = EQ type row

4 = Free row

There is no interna recognition of a minus type sructurd or GE type
row.

The following diagrams illugtrate the data that can be accessed and modified with data interfacing service
routines:

Logicds Structuras
1. Matrix data
I Ajj

Objective row
2. RIM vectors
Upper RHS Upper bounds
Lower RHS Lower bounds

Variable type codes— 1,2,3,4

MIP type codes (cannot be modified)

3. Solution vectors (cannot be modified)

Row vdues

Structurd vaues

Prima solution status codes

Shadow prices Reduced costs
Dua solution status codes
4. Updated Tableau (cannot be modified)

B™[I,Aij]

Back to Chapter contents

8.1.3 Description of the Utilities

Each of the access utilities provided fdls into one of four categories:

Generd utilities provide necessary housekesping.

‘GET’ utilities retrieve data and present it to the user without making any change.

‘CHG' utilities change certain specific itemsin the data.

‘ADD’ utilities for matrix rows and columns do not actualy add new rows or columns to the
matrix but rather ‘activate an exising spare row or column which has been provided in
advance. See Section 8.1.5 below.

Utilities are provided in connection with the following deta categories.

1)

2

Matrix data

Utilities are provided to ‘GET’" or ‘CHG' by row or by column and individualy for
sngledements. ‘ADD’ utilities are provided for arow or for a column.

RIM data

Utilities are provided to ‘GET’ or ‘CHG’ dl the RIM vectors, or smply to ‘GET’ or
‘CHG’ a dngle podtion within the RIM vectors. Exceptiondly the MIP type code
vector may be accessed with ‘GET’ but cannot be changed with ‘CHG’

(3) PRIMAL and DUAL solutions

‘GET" utilities are provided for both prima and dua solutions, together with associated
status vectors.

(4 Updated Tableau

‘GET’ -type utilities are provided which caculate either a row-vector or a column-vector
in the updated tableau.

Back to Chapter contents

8.1.4 How to Usethe Utilities— Operating M odes

In any interface where the user has the ability to change aspects of the interna data there must be some
necessary housekesping to ensure that dl of the data is mutualy consistent. For example some changes
will render the ETA fileinvaid and therefore require that INVERT is executed before any dgorithms can
be caled.

However, it would be grosdy inefficient for such housekeeping to be performed after every cdl in order
to make some minor change. For this reason FortMP has two separate operating ‘modes which are as
follows.

PROBLEM CHANGE mode

During this mode the user may apply changes to the problem and may add new rows and columns.
Algorithms may not be executed.

ALGORITHM mode

During this mode agorithms may be executed but the user may not gpply changes. Retrieva access to
the prima or dud solution and to the updated tableau is available in this mode.

Retrievadl access to ‘GET’ an aspect of the problem data might conceptualy be carried out in ether
mode. For definiteness however there is a redtriction to execute these *‘GET’s only in the problem
change mode (thisis because the coding would be different in the two modes).

Following execution of the agorithms ‘INPUT’, ‘SCALE’, ‘CRASH’ ec. the system is in dgorithm
mode. To change from there the user executes a utility ‘BEGCHG' (begin change) to switch into
problem change mode and enable dl the access and changing utilities. Once these are completed the
user executes a utility ‘ENDCHG'’ (end change) to perform necessary housekeeping and enagble dl the
agorithmsto execute.

Back to Chapter contents

8.1.5 Necessary Preparation and Provision for Matrix Expansion

New rows and columns cannot physically be added to the data structure. Instead the system provides a
feature to make advance provison in the form of ‘inactive’ (dormant) rows and columns. The following
SPECS commands are used:

MAXI MUM EXTRA ROAS = nnn

MAXI MUM SPARE ROWSPACE = nnn
MAXI MUM EXTRA COLUMNS = nnn
MAXI MUM SPARE COLSPACE = nnn

Spare ‘ROWSPACE' and ‘COLSPACE’ is provided when the matrix is initidly built by leaving the
former number of positions unused at the end of each column (Spare rowspace) and leaving the latter
number of positions unused at the end of the whole matrix (spare colspace).

Any update which causes the spare capacity to overflow will be rgected by the system and will cause a
fatd error.

Back to Chapter contents

8.1.6 Singleand Double precision versions of FortMP

With release 2 of FortMP there is a change from single precison to double precison for storing dl
problem data interndly in order to give more rdiability, especidly for difficult problems. The user’'s
interface with the interna data is accordingly adso changed and REAL variables now become double
precison in the sandard verson..

Some users may wish to retain compatibility with their existing programs, or may prefer the older system
because it is more economical in Sorage. For these users a specid version can be delivered having
gngle precison for interna problem data storage and having corresponding arguments of type REAL
rather than DOUBLE PRECISION. These arguments have their type specified as.

DOUBLE PRECISION/REAL
in section 8.3.1 below.
Back to Chapter contents
8.2 The Facilities Available
8.2.1 General Facilities
BEGCHG Begins problem change mode execution.
ENDCHG Ends problem change mode execution and carries out necessary
housekeeping for re-entry into algorithm mode.
GETSIZ Retrieves problem gatidtics for the user. Thisisan initid utility which the
user must execute in order to be able to create arrays of the required
sze

Back to Chapter contents

8.2.2 Matrix Facilities

ADDCOL Adds a column by activating the next dormant column provided by the
user's ‘MAXIMUM EXTRA COLUMNS command. Insarts into the
matrix aset of coefficients supplied for that column by the user.

ADDROW Adds a row by activating the next dormant row provided by the user's
‘MAXIMUM EXTRA ROWS' command. Inserts into the matrix a set
of coefficients supplied for that row by the user.

CHGAIJ This may add or change one dement of the A matrix and, by seiting
AVAL=0.0 may delete the dement.

CHGCOL Deletes the exigting coefficients on one matrix column and replaces them
by an dternative set supplied by the user.

CHGOBJ Deletes the exigting cost coefficients on the objective row and replaces
them by an dternative st supplied by the user.

CHGROW Deletes the existing coefficients on one matrix row and replaces them by
an dternative set supplied by the user.

GETAIJ Retrieves asingle matrix element for the user.

GETCOL Retrieves one column of the matrix and places the coefficients in a user
supplied area.

GETOBJ Retrieves the objective row of the matrix and places the cost coefficients
inauser supplied area.

GETROW Retrieves one row of the matrix and places the coefficients in a user
supplied area.

There are no ‘DELETE’ fadilities corresponding to the ‘ADD’ facilities for matrix rows and columns. It
is not possible to delete any row or column physicaly from the data because the user would lose the
reaionship between row and column numbers and the externd naming given for condraints and
variables. However, the user can achieve the same result by changing row and column type codes. See
note at the end of Section 8.2.3.

Back to Chapter contents

8.2.3 RIM Facilities

CHGCTP (change column type). Changes the lower bound, upper bound and
vaiable type of asngle column.
CHGRIM Replaces dl three RIM vectors — Lower bounds, upper iunds and

variable types.

CHGRTP (change row type). Changes the lower RHS, upper RHS and row type
of asingle row.

GETCTP (get column type). Retrieves the lower bound, upper bound, variable
type and MIP varidble type of a single column.

GETRIM Retrieves dl three RIM vectors — Lower bounds, upper bounds and
variable types — together with the vector of MIP varidble types and
places them in user supplied aress.

GETRTP (get row type). Retrieves the lower RHS, upper RHS and row type of a
snglerow.

Note that the ‘deletion’ of a row or column can be accomplished in effect by usng CHGRTP or
CHGCTP. To delete arow give type ‘Free (code 4). To deete a column give type ‘Fixed' (code 3)
together with the associated fixed value stated both in lower bound and in upper bound.

Back to Chapter contents

8.2.4 Solution Facilities

GETDSL Retrieves the dua solution vector together with associated status codes
and places them in user supplied aress.

GETSOL Retrieves the prima solution vector together with associated atus
codes and places them in user-supplied areas.

Back to Chapter contents

8.2.5 Tableau Facilities

Tableau facities enable user to obtain acces to the updated ‘ Tableau’ or matrix after pre-multiplication
by the inverse basis matrix.

GTABLC Calculates one column of the updated tableau
GTABLR Calculates one row of the updated tableau

Back to Chapter contents

8.3 Specifications

In order to avoid repested specifications of the same item in this section, we will give argument
specifications separately in Section 8.3.1. In the subsequent utility subroutine specifications, arguments
will be listed with identica argument names.

8.3.1 Arguments

In this section certain arguments have their type specified as:

DOUBLE PRECISION/REAL

These arguments are DOUBLE PRECISION in a standard double-precison version of FortMP and
REAL inasngle-precison verson of FortMP

The scalar arguments used are as follows.

AVAL

CTP

10BJ

IROW

JCOL

VAR

LOV

LRHS

MAIJ

MIT

MRACT

MROW

DOUBLE PRECISION/REAL. Matrix e ement value.

INTEGER. Column type code:
1="Pus 2 = Bounded
3=Fixed 4 = Free

INTEGER. Row number of the objective function.
INTEGER. Matrix row number.
INTEGER. Matrix column number.

INTEGER. Problem varigble number. Variables comprise Logicals,
one per row, followed by Structuras, one per column. For a logica
VAR equds the row number and for a sructurd VAR equas
MROW plus the column number.

DOUBLE PRECISION/REAL. Lower bound value of acolumn.
DOUBLE PRECISION/REAL. Lower RHS vaue of arow.
INTEGER. Maximum available AlJ (matrix eement) space.

INTEGER. Mixed integer type code of astructurad variable. Coded as
follows

0 = Continuous variable

1 = Binary varidble

2 = Integer variable

3 = Semi-continuous variable

4 = Member of SOS, type 1 (not the 1<)

5 = Member of SOS, type 2 (not the 1st)

12 = 1¢t member of an SOS, type 1

13 = 1st member of an SOS, type 2

INTEGER. Number of active rows. This vaue increases by one each
time anew row is added.

INTEGER. Tota number of rows — including inactive rows and the
objective row.

NAIJ

NANZ

NCMAX

NCNZ

NCOL

NRNZ

OBJ

RTP

SLST

TCTN

UkPVv

URHS

INTEGER. Tota used AlJ space — including the spare unused space in
each column. The difference (MAIJ - NAIJ) is the space available for
new columns.

INTEGER. Number of AlJnon-zero dements.
INTEGER. Maximum number of columns
INTEGER. Number of non-zerosin one column.

INTEGER. Number of active columns. This vaue increases by one
each time a new column is added.

INTEGER. Number of non-zerosin one row.

DOUBLE PRECISION/REAL. Cost coefficient vaue on the objective
row.

INTEGER. Row type code:
1=Lessthan 2 = Bounded
3=Equds 4 = Free

INTEGER. Solution status code, coded as.
0 = Solver did not terminate
1 = No feasble solution
2 = Unbounded
3 = Optimd solution found
4 = Integer solution found
5 = Optimum integer solution found

INTEGER. This is an important argument used by ALL of the utility
subroutines. It gives the ‘Terminate Criterion’ and so long as it is zero
the execution continues normaly. On entry to any utility if its vaue is
non-zero then an immediae exit occurs without doing anything.
Otherwise if a fatd error occurs it will be given a non-zero vaue in
order to force a bypass through al subsequent stages straight to the find
exit of the program. Users should respect this convention and test
TCTN themselves before executing any agorithmic work of their own.

DOUBLE PRECISION/REAL. Upper bound value of acolumn.

DOUBLE PRECISION/REAL. Upper RHS vdue of arow.

The array arguments used are as follows.

BASTAB

INTEGER. Table of non-basic variable assgnment codes as follows:
0=Basc

- 1 = Non-basic at lower bound (row is a upper RHS vadue)

+1 = Non-basic a upper bound (row is at lower RHS vaue)

CVTAB

DSLVEC

DSSTAB

IRTAB

JCTAB

LOTAB

MITTAB

OBJTAB

RVTAB

SLSTAB

Row entries come firgt, followed a position (MROW+1) by column
entries. Dimengon/sizeis (MROW+NCOL).

DOUBLE PRECISION/REAL. Table of non-zero eement values in
one matrix column. When supplied for an ‘ADDCOL’ or ‘CHGCOL’
operation this table has the dimenson/sze NCNZ. When supplied as an
empty area to receive a column in ‘GETCOL’ it has dimenson/sze
NCOL.

DOUBLE PRECISION. Dud solution vector. Rows followed by
columns as before with dimension/sze (MROW+NCOL).

INTEGER. Table of dua solution status codes to correspond with
DSLVEC. Code vaues are asfollows:
1 =Zero. The primd variableisbasc
3=Badcfeashle
4 = Badc infeasble negative. The primd varidbleis at its
lower bound
5 = Badc infeasble pogtive. The primd variableisat its
upper bound

Row entries come firdt, followed a position (MROW+1) by column
entries. Dimengion/size is (MROW+NCOL).

INTEGER. Table of row index numbers corresponding to entries in
CVTAB described above. Dimension/size is the same as CVTAB.

INTEGER. Table of column index numbers corresponding to
entriesin RVTAB. Dimendon/szeisthe ssme as RVTAB.

DOUBLE PRECISION/REAL. Table of lower bound and lower RHS
vaues. Row entries come firs, followed a postion (MROW+1) by
column entries. Dimenson/sizeis (MROW+NCOL).

INTEGER. Table of mixed integer type code values coded as for scdar
MIT (see above). Dimenson/size (NCOL)

DOUBLE PRECISION/REAL. Table of objective vdues with one
position for each column. Dimension/sizeisNCOL.

DOUBLE PRECISION/REAL. Table of non-zero eement values in
one matrix row. When supplied for an ‘ADDROW’ or ‘CHGROW
operation this table has the dimenson/sze NRNZ. When supplied as an
empty area to receive a column in ‘GETCOL’ it has dimenson/sze
MROW.

INTEGER. Table of solution status codes to correspond with
SOLVEC. Code values are asfollows:

1 =Non-basc at lower bound

2 = Non-basic at upper bound

3 =Badcfeashle

4 = Bascinfeasble, less than lower bound

5 = Badcinfeasble, greater than upper bound

SOLVEC DOUBLE PRECISION. Solution vector. Rows followed by columns
with dimenson/sze (MROW+NCOL).

TCOL DOUBLE PRECISION. Column vector of the updated Tableau.
Dimenson 9zeis MROW.

TPTAB INTEGER. Table of variable type codes asfollows.
1=Plusor lessthan
2 = Bounded
3 =Fixed or equas
4 = Free
Row entries comefirgt, followed a position (MROW+1) by column
entries. Dimension/size is (MROW+NCOL).

TROW DOUBLE PRECISION. Row vector of the updated Tableau.
Dimension szeis (MROW+NCOL) with rows followed by columns.

UPTAB DOUBLE PRECISION/REAL. Table of upper bound and upper RHS
values. Row entries come fird, followed a postion (MROW+1) by
column entries. Dimenson/szeis (MROW+NCOL).

Back to Chapter contents

8.3.2 General Utility Specifications

Generd utility subroutines are specified asfollows.

CALL GETSI Z(MROW MRACT, NCOL, NCMAX, MAIJ, NAIJ, NANZ,
* | OBJ, TCTN)

This retrieves problem datistics for the user. It isan initid utility which the user must execute in order to
be able to creste arrays of the required size.

Input argumentsare: TCTN
Output arguments are: MROW, MRACT, NCOL, NCMAX, MAIJ, NAIJ, NANZ, IOBJ, TCTN

CALL BEGCHG (TCTN)
Begins problem change mode execution. TCTN is an input/output argument.

CALL ENDCHG (TCTN)

Ends problem change mode execution and carries out necessary housekeeping for re-entry into
agorithm mode. TCTN is an input/output argument.

Back to Chapter contents

8.3.3 Matrix Utility Specifications

Matrix utility subroutines are specified asfollows.

CALL GETCOL (MROW JCOL, CVTAB, | RTAB, NCNz, 0BJ, TCTN)

This retrieves one column of the matrix and places the coefficients in the user supplied areas CVTAB
and IRTAB. GETCOL aso extracts the column count (NCNZ) and objective value (OBJ). Note that
OBJ will not be among the coefficients placed in the areas CVTAB and IRTAB.

Input arguments are: MROW, JCOL, TCTN
Output arguments are: CVTAB(MROW), IRTAB(MROW), NCNZ, OBJ, TCTN
Only the firede NCNZ pogtionsin CVTAB and IRTAB arefilled. The remainder will not be used.

CALL GETROW (NCOL, | ROW RVTAB, JCTAB, NRNZ, TCTN)

This retrieves one row of the matrix and places the coefficients in the user supplied arees RVTAB and
JCTAB. GETROW dso retrieves the row count into the argument NRNZ.

Input arguments are: NCOL, IROW, TCTN
Output arguments are: RVTAB(NCOL), JCTAB(NCOL), NCNZ, OBJ, TCTN
Only thefirs NRNZ postionsin RVTAB and JCTAB arefilled. The remainder will not be used.

CALL GETAIJ (IROW JCOL, AVAL, TCTN)
Thisretrieves the matrix ement on row IROW column JCOL into the variable AVAL.
Input arguments are: IROW, JCOL, TCTN
Output arguments are: AVAL, TCTN

CALL GETOBJ (NCOL, OBJTAB, TCITN)

This retrieves the objective row of the matrix and places the cost coefficients in the user supplied area
OBJTAB. The table is zeroed first and then the non-zero entries are copied in from the matrix a ther
correct index pogtion.

Input argumentsare: NCOL, TCTN
Output arguments are: OBJTAB(NCOL), TCTN

CALL ADDCOL (NCNzZ, JCOL, CVTAB, |RTAB, 0OBJ, TCIN)

This adds a column by activating the next dormant column provided by the users‘MAXIMUM EXTRA
COLUMNS' command. It inserts into the mairix a set of coefficients supplied for that column by the
user in areas CVTAB and IRTAB and dso inserts the objective vaue supplied in cel OBJ. The column
number activated is returned in cell JCOL which is obtained by adding one to the number of columns
NCOL.

Input arguments are: NCNZ, CVTAB(NCNZ), IRTAB(NCNZ), OBJ, TCTN
Output arguments are: JCOL, TCTN

CALL ADDROW (NRNZ, | ROW RVTAB, JCTAB, TCTN)

This adds a row by activating the next dormant row provided by the user's ‘MAXIMUM EXTRA
ROWS' command. It inserts into the matrix a set of coefficients supplied for that row in arees RVTAB

and JCTAB. The row number activated is returned in cell IROW which is obtained by adding one to the
number of active rows MRACT.

Input arguments are: NRNZ, RVTAB(NRNZ), JCTAB(NRNZ), TCTN
Output arguments are: IROW, TCTN
CALL CHGCOL (NCNz, JCOL, CVTAB, |RTAB, 0OBJ, TCTN)

This deletes the exiging coefficients on matrix column JCOL and replaces them by an dternative set
supplied by the user in areas CVTAB and IRTAB with the objective coefficient in cell OBJ.

Input arguments are: NCNZ, JCOL, CVTAB(NCNZ), IRTAB(NCNZ), OBJ, TCTN
Output arguments are: TCTN

CALL CHGROW (NRNZ, | RON RVTAB, JCTAB, TCTN)

This deletes the exigting coefficients in matrix row IROW and replaces them by an dternative st
supplied inthe areas RVTAB and JCTAB.

Input arguments are: NRNZ, IROW, RVTAB(NRNZ), JCTAB(NRNZ), TCTN
Output arguments are: TCTN

CALL CHGAIJ (I ROW JCOL, AVAL, TCTN)

This changes the A matrix eement on row IROW, column JCOL to the vaue AVAL. This may add,
change or, by setting AVAL=0.0, delete the e ement.

Input arguments are: IROW, JCOL, AVAL, TCTN
Output arguments are: TCTN

CALL CHGOBJ (NCOL, OBJTAB, TCTN)

This ddletes the existing cost coefficients on the objective row and replaces them by an dternative set
supplied by the user in table OBJTAB (only non-zero ements are used).

Input arguments are: NCOL,, OBJTAB(NCOL), TCTN
Output argumentsare: TCTN

Back to Chapter contents

8.3.4 RIM Utility Specifications
RIM utility subroutine specifications are asfollows.

CALL GETRIM (MROW NCOL, LOTAB, UPTAB, TPTAB, M TTAB,
TCTN)

Retrieves dl the three RIM vectors — Lower bounds, upper bounds and variable types — and places
them in user supplied areas LOTAB, UPTAB and TPTAB. See notes (2) and (3) in Section 8.3.7
below.

Input arguments are: MROW, NCOL, TCTN
Output arguments are: LOTAB(MROW-+NCOL), UPTAB(MROW+NCOL),
TPTAB(MROW+NCOL), MITTAB(NCOL), TCTN

CALL GETCTP (JCOL, LOV, UPV, CTP, MT, TCTN)

This retrieves the lower bound, upper bound and variable type of a sngle column and places them in
cdlsLOV, UPV and CTP. See note (2) in Section 8.3.7 below.

Input arguments are: JCOL, TCTN
Output arguments are: LOV, UPV, CTP, MIT, TCTN

CALL GETRTP (I RON LRHS, URHS, RTP, TCTN)

Thisretrievesthe lower RHS, upper RHS and row type of a single row and places them in cells LRHS,
URHS and RTP. See note (3) in Section 8.3.7 below.

Input arguments are: IROW, TCTN
Output arguments are: LRHS, URHS, RTP
CALL CHGRI M (MROW NCOL, LOTAB, UPTAB, TPTAB, TCTN)

This replaces dl three RIM vectors — Lower bounds, upper bounds and variable types — with the user
supplied areas LOTAB, UPTAB and TPTAB. See notes (4), (5) and (6) in Section 8.3.7 below.

Input arguments are: MROW, NCOL, LOTAB(MROW+NCOL), UPTAB(MROW+NCOL),
TPTAB(MROW+NCOL), TCTN
Output arguments are: TCTN

CALL CHGCTP (JCOL, LOV, UPV, CTP, TCTN)

This changes the lower bound, upper bound and varigble type of asingle column, replacing them by cells
LOV, UPV and CTP. See notes (4) and (6) in Section 8.3.7 below.

Input arguments are; JCOL, LOV, UPV, CTP, TCTN
Output arguments are: TCTN

CALL CHGRTP (1 RON LRHS, URHS, RTP, TCTN)

This changes the lower RHS, upper RHS and row type of a single row, replacing them by cells LRHS,
URHS and RTP. See notes (5) and (6) in Section 8.3.7 below.

Input arguments are: IROW, LRHS, URHS, RTP, TCTN
Output argumentsare: TCTN

Back to Chapter contents

8.3.5 Solution Utility Specifications

Solution utulities are specified asfollows

CALL GETSOL (MROW NCOL, SLST, SOLVEC, SLSTAB, TCTN)

This retrieves the prima solution vector together with associated status codes and places them in user
supplied areas SOLVEC and SLSTAB. This utility cannot execute in problem change mode — see note
(7) in Section 8.3.7 below.

Input arguments are: MROW, NCOL, TCTN
Output arguments are; SLST, SOLVEC(MROW+NCOL), SLSTAB(MROW+NCOL), TCTN

CALL GETDSL (MROW NCOL, DSLVEC, DSSTAB, TCTN)

This retrieves the dua solution vector together with associated status codes and places them in user
supplied areas DSLVEC and DSSTAB. This utility cannot execute in problem change mode — see note
(7) in Section 8.3.7 below.

Input arguments are: MROW, NCOL, TCTN
Output arguments are: DSLVEC(MROW+NCOL), DSSTAB(MROW+NCOL), TCTN

Back to Chapter contents

8.3.6 Tableau Utility Specifications

Solution utulities are specified asfollows:

CALL GTABLC (MROW JVAR, TCOL, TCTN)

This subroutine calculates and retrieves one column-vector from the updated tableau in the user-supplied
area TCOL. It cannot be executed in problem change mode - see note (7) is Section 8.3.7 below.

Input arguments are:. MROW, VAR, TCTN
Output arguments are:. TCOL(MROW), TCTN

CALL GTABLR (MROW NCOL, | ROW TROW TCTN)

This subroutine calculates and retrieves one column-vector from the updated tableau in the user-supplied
area TCOL. It cannot be executed in problem change mode - see note (7) is Section 8.3.7 below.

Input arguments are:. MROW, NCOL, IROW, TCTN
Output arguments aree. TROW(MROW+NCOL), TCTN

Back to Chapter contents

8.3.7 Some Notes on the Specifications

(1) Inseverd of the utilities the user must supply MROW or NCOL as an input argument in order
to give the dimenson/sze of certan argument tables. Actudly the sysem dready knows the
vaues of MROW and NCOL and this is required only because of redrictions in
FORTRAN 77.The system checks to see that user has provided correct values and will return
an error (TCTN > 0) if not.

(20 For variables given as MINUS type in externd data, for example by code ‘MI" in the MPS
form bounds section, the quoted upper bound is negated (together with the matrix column) and
presented as lower bound in the DISERV uitilities Type codeis 1.

(3) The one-sded RHS vaue supplied externdly, for example in the RHS section of MPS form
data, is communicated in the upper RHS vaue after negating (together with the matrix row) if the
origind row type was GE. Both GE type and LE type rows become type coded as 1.

(4 Whenever the user supplies new variable bounds to the system the associated type coding must
be consgtent. A finite lower bound must be present for al type codes other than ‘Free (code

()

(6)

()

(8)

4). Lower and upper bounds must be equd for type ‘Fixed' (code 3). Finite lower and upper
bounds must be present for type ‘Bounded’ (code 2) with upper bound vaue greater than lower
bound value. For type ‘Plus (code 1) the upper bound is ignored whatever its value.

A system congtant with the value 10% is used to check for finite bound values (10%° for the
sngle-precison verson).

Type coding and bounds supplied must dso be consstent with the MIP data types (if non-zero).

Whenever the user supplies new row bounds to the system the associated row type coding must
be consgtent. A finite upper RHS must be present for al type codes other than ‘Free' (code 4).
Lower and upper RHS must be equd for type ‘Equd’ (code 3). Finite lower and upper RHS
must be present for type ‘Ranged’ (code 2) with upper RHS vaue greater than lower RHS
vaue. For type ‘LE’ (code 1) the lower RHS isignored whatever its vaue.

A system congtant with the value 10% is used to check for finite RHS values (10 for the
sgngle-precison verson).

The ‘deletion’ of a row or column can be accomplished in effect by usng CHGRTP or
CHGCTP. To delete a row give type ‘Free (code 4). To delete a column give type ‘Fixed
(code 3) with associated lower and upper bound values both equal.

It isnot possible to delete any row or column physicaly from the data

The solution access utilities GETSOL and GETDSL and the updated tableau utilities GTABLC
and GTABLR must execute in ALGORITHM mode and not in PROBLEM CHANGE mode.
This is because they require use of the ETA file which in generd is not valid during problem
change mode.

The user who needs solution vaues or updated tableau as part of a series of GETs and CHGs
etc. should execute GETSOL and GETDSL before making the call to BEGCHG.

The solution vector SOLVEC (obtained by CALL GETSOL) supplies the vaues of logica
variables in pogtions 1 to MROW. Position 10BJ (obtained by usng GETSIZ) is therefore the
logicad vaue on the objective row which is equd to the objective vaue reversed in sgn. No
Separate argument is needed to get the objective value.

Back to Chapter contents

Chapter 9.

The Interior Point Method for Quadratic Programming

Contents

9.1 Statement of the QP Problem
911 TheQPProblem:- Symmetric Qform
912 TheQPproblem:- Separable FF' Form
9.13 Mixed Integer QP with Binary Variables

9.2 |IPM Solution Procedure
921 Formulation
922 Solving the Sy stem of Equations
923 Determining the Starting Point

924 Controls on the Predictor-Corrector Algorithm for QP

9.3 Input Data Layout
931 Matrix Input for the symmetric Q form
932 Matrix Input for the separable FF' form

9.4 Worked Example
941 Worked example using the Q form
942 Worked exampleusing FF' form

9.5 Branch and Bound Algorithm for MIQP
95.1 Sub-problem Solution
95.2 Simplified Tree
953 User Controls

9.6 Summary of SPECS Commands
96.1 Controlsfor IPM
96.2 Controlsfor Branch and Bound

oo oo h~d W WNN

~ ~

10
10
14

& & &

20

21

9.1 Statement of the QP Problem
9.1.1 The QP Problem:- Symmetric Q form
FortMP IPM for QP isaprima dua approach to the solution of the separable convex QP problem.

The primal QP problem may be stated asfollows:
T
Minimise c x+§x Qx

subject to the conditions:
Ax=Db
X+Ss=Uu
X,52% 0
Where
A isanm’ n matrix of coefficients ajj .

C isan N vector of the cost coefficients c,, c,,...c,.

X isan N vector of the structurd varidbles X, X,,..., X .

u isan N vector of upper bounds u,,u,,...,u,.

S isan N vector of variables s, s,,...s, complimentto X with respect to the
upper bounds U .

Q isann’ n symmetric positive semi-definite matrix.

The dud problem may be stated as follows.
Maximise b'y - %xTQx- u'w

subject to the conditions:

A'y+z- Qx- w=c¢
zw?3 0

Wherethevariables y (i = 1,---,m) aredud variables complementary to the origind rows of the primal
statement above, z () =1,...,n) aredud variables complementary to the x;, andw; () =1,...,n) are
dua variables complementary tothe s, .

Back to Chapter contents

9.1.2 The QP problem:- SeparableFF' Form

FortMP currently only handles the case in which it is possible to reformulate Q as Q = FF'. This

leads to a separable formulation of the QP problem, which, in the case of the prima problem may be
stated as:

o 1
Minimise CTX+§ P’ p

Subject to the conditions:

Ax=b
F'x- p=0
X+s=u
x,s8% 0

-¥ <p<¥

In order that the separable formulation be possible, FortMP requires that either:

1) Q is positive definite and so can be Cholesky factored.

or
2) Thematrix F issuppliedingead of Q.

Back to Chapter contents

9.1.3 Mixed Integer QP with Binary Variables

By using Branch and Bound we may extend the QP problem statement to include modds where some
elements of vector x are congtrained to be binary variables (x; = 0 or x; = 1). At present the only
discrete congtraints handled by FortMP-QP are binary variables. Other discrete congtraint-types may
be added in afuture rdlease and in any case it is usudly possible to model such condraints entirely with
binary variables (suitably chosen).

The generd Branch and Bound mechanism has been described in chapter 6. A amplified verson is
used for Mixed Integer QP (MIQP), which is described below in section 9.5.

Back to Chapter contents

9.2 IPM Solution Procedure

9.2.1 Formulation

The IPM solution procedure is a modification of the predictor-corrector IPM solution for LP (see
Chapter 5). Each IPM iteration considers an interior point to be a set of fixed values and looks for a set
of ‘changes or ‘search directions':

Dx;, changestothex; forj =1,2,---,n
Ds;, changestothes; forj =1,2,---,n
Dy,, changestothey, forj =12,---,m
Dz;, changestothez, forj=12,---,n

Dw;, changestothew; forj =12,---,n

These search directions define anew interior point:
(x +abx ,s +abs,y +aDy,z +aDz ,w +aDw)

Where a is made as large as possible without taking any variable outside its bound range so that the
new point remains an interior point.

The predictor-corrector method first predicts the directions, and then corrector directions are
computed. The actud directions are acombination of both the predicted and corrector directions.

If in addition to the matrices and vectors previoudy defined, we define

X The n” n diagond matrix comprising solution point vaues X;,X,, -+, X on the
diagona and zeros dsawhere.

Z,Sand W
Diagonad n” n matrices comprising dua solution point values from the z;, the s; and

the w; onthe diagona and zeros elsewhere.

Dx n-vector of variables DX, DX, -+, DX

n-

Dy m-vector of varigbles Dy,, Dy, ,---,Dy

.
Dz, Ds and Dw

n-vectors of variables condtructed from the Dz, , the Ds; and the Dw; in the same
way.

And let the *predicted’ directionsbe (DxP, DsP, Dy?, Dz, Dw"), then solving the following system
of equations gives the predicted search directions.

ADx" =b- Ax
Dx” +Ds” =u- x- s
A'Dy? + Dz° - DWP - QDx? =c- ATy- z+w+Qx
ZDx" + XDz" = - XZe
WDs + SDwP = - SWe
The corrector search directions (Dx°, Ds®,Dy®, Dz®, DwW*) are found by solving
ADx° =b- AX
Dx°+Ds"=u- x- s
A'Dy*+Dz° - DW* - QDx°=c- A'y- z+w+Qx
ZDx® + XDz° = me- XZe- DXPDZP
WDs® + DWW = ne- SWVe- DS'DWP

The search directions (Dx ,Ds ,Dy ,Dz , Dw) arethen computed as.
(Dx? + Dx°,DsP + Ds®,Dy” + Dy°,Dz" + Dz° ,DwP + Dw°)

Back to Chapter contents

9.2.2 Solving the System of Equations

The sat of equations defining the predictor and corrector search directions respectively differs from each
other only in ther right hand Sde. Hence only asingle factorization is required for solving both systems.

If welgR, R,, R;, R, and R, define condtant right-hand side vectors of Sze n except for R, which is
of sze M, then both of the above sets of equations are of the form:

ADX = R, (1)
Dx + Ds=R, (2)
ADy+Dz- Dw- QDx=R, (3)
ZDx + XDz = R, (4)
WDs+ SDw = R, (5)

To solve these equations we may begin by diminaing dl the variables Ds, Dz and Dw from equations
(2), (3), (4) and (5). When thisis done the system is reduced to two equations as follows:

-(X'Z+S'W+Q)Dx+ A'Dy = R¢ (new RHS for 3rd equation)
ADXx = R,

This system could now be solved by finding the inverse of the matrix:

®(D+Q) A9
& A 0o
Where D isthediagond matrix (X 'Z + S 'W).

However, the number of equations can be reduced ill further by diminating the varidbles Dx across
these two equations. Thiswill result in the following:

(A(D+Q)*A")Dy =R (new RHS).
The matrix isasymmetric positive-definite matrix and so may be inverted by the Cholesky procedure.

Back to Chapter contents

9.2.3 Determining the Starting Point

It is vitd in the IPM dgorithm to have a good garting interior point from which to begin iteretions.
Falure in this will increase the number of iterations necessary and may indeed lead to divergence or
cycling so that a solution can never be found.

The predictor—corrector agorithm for QP computes a sarting point in exactly the same way as for LP.
Aswith LP, the predictor-corrector agorithm can employ one of three starting point methods based on
a quadratic formula to maximise the distance from boundaries in the initid interior point. The choice of
method is described in Section 5.2.2.

Back to Chapter contents

9.2.4 Controlson the Predictor-Corrector Algorithm for QP

The controls for the predictor-corrector algorithm for QP are exactly the same as those for the LP case,
except that there is no procedure to develop the IPM solution into a basic solution. On reaching the
IPM solution, the output is written and execution hats. The reader isreferred to Sections 5.2.1 - 5.2.5.

Back to Chapter contents

9.3 Input Data Layout

The data for the QP problem is entered by using an extension of the MPS format for LP, as described in
detail in Appendix A. The MPS layout is extended to include the data definition of the Q or F matrix,

(see Section 9.1.).

Back to Chapter contents

9.3.1 Matrix Input for the symmetric Q form

When the Q-matrix is to be entered, a separate ‘QDATA’ section is prepared by the user and
presented in the MPS datafile after the ‘COLUMNS' section and before the ‘ENDATA’ line. The
header keyword for this sectionis *‘QDATA’ and the layout is Smilar to that of the norma COLUMNS
data lines but with column names in the place of row names as follows:

Field 1 (cols 2-3) Blank

Fied 2 (cols 5-12) Column name

Field 3 (cols15-22) Column name

Fied 4 (cols25-36) Vdue

Field 5 (cols 15-22) Column name (optiond)
Field 6 (cols25-36) Vdue (if field 5 is entered)

The user enters only the diagona and upper triangular coefficients of the Q matrix with the name that

corresponds to the row in field 2 and names corresponding to columns in fidlds 3 and 5. It follows that
no coupling of columnsin fields 2 and 4 or in fields 2 and 5 can be repeated in the opposite order. The
normal rule of continuity o gpplies, that is:

- Rows of the Q-matrix defined by field 2 may not be split
The following regtriction dso goplies.

- Q-matrix rows, that is the columns named in field 2 must appear in the same order asin
the COLUMNS section even though this may differ from the natura triangular ordering
of the Q-matrix (field 3 and field 5 columns may be named in any order).

This redtriction is only necessary to support the present release of FortMP and may be removed in the
future.

Example

5
MinimiseX, + X, + = (xl,x)i 10§10
2

Subject to

X, +X,>10
3
X, X, 30

The input datafor the above problem is:

NAVE PROB2
ROWS
G RO1
N COST
COLUWNS
X01 RO1
X02 RO1
RHS
RHS RO1 10. 0
QDATA
X01 X01 5.0
X01 X02 5.0
X02 X02 10.0
ENDATA

Back to Chapter contents

9.3.2 Matrix Input for the separable FFT form

Giventhat Q= FF ", the user enters the coefficients of the F' matrix in the ROWS section of the
MPS-form input data. The rows are designated astype'F' (or ' F).

Example

Minimise X, + X, + = (Xl,X)é 21%5%2 313;?;10

Subject to

X, +X,>10

X, X, 30
Theinput data for the above problemiis:
NAME PROB1
ROWS
G RO1
F FO1
F FO2
N COST
COLUMNS
X01 RO1 1.0
X01 FO1 1.0
X01 FO2 2.0
X02 RO1 1.0
X02 FO1 3.0
X02 FO2 1.0
RHS
RHS RO1
ENDATA

Back to Chapter contents

9.4 Worked Example

The example presented here isthat of chapter 2, section 2.1.1 with the addition of quadratic termsin the
objective function. The problem is stated as.

Minimize
4x; + 6X, + B5Xz + 16xX4 + 2Xs5 + 5x + X7 + 1/ 2{ X'QX}
Subject to:
X1 + Xg = 2
X, + 3X2 =5
2X3 + 3X4 = 4
X1 + Xo + X3 + 4X4 + X5 = 11

X1+2X2+2X3+3X4+X5+2X6+X7:14
0.5 £ X1

Where Q is asymmetric matrix comprising the quadratic cost factors, possibly expressble as FF .

Back to Chapter contents

9.4.1 Worked example using theQ form

In this example the quadratic terms of the objective are asfollows:
2X12 + X1. X2 + X22 + X32 + X3. X4 + Xau

The Q-matrix isasfollows.

N
N -
- -I-O

O
o

N
N - -
|

MO O vO O vO
'Q.|. .'|. | 1 O

With the remaining postions dl zero.

Input data presented in a file ‘TESTQP.QDT’ is shown bdow in liging (1). Liging (2) shows the
associated SPECS commandsin file* FORTMP.SPC'.

NANE TESTQPQD

ROWS

N COsT

EQ R1

EQ R2

EQ R3

EQ R4

EQ R5

COLUWNS
X1 CosT 4.0 R1 1.0
X1 R2 1.0 R4 1.0
X1 R5 1.0
X2 CosT 6.0 R 3.0
X2 R4 1.0 R5 2.0
X3 CosT 5.0 R3 2.0
X3 R4 1.0 R5 2.0
X4 CosT 16.0 R3 3.0
X4 R4 4.0 R5 3.0
X5 CosT 2.0 R4 1.0
X5 R5 1.0
X6 CosT 5.0 R1L 1.0
X6 R5 2.0
X7 CosT 1.0 R5 1.0

RHS
RHS R1 2.0 R 5.0
RHS R3 4.0 R4 11.0
RHS R5 14.0

BOUNDS

LO BND X1 0.5

LO BND X2 0.5

UP BND X3 1.0

FX BND X4 1.0

UP BND X5 6.0

LO BND X7 1.0

QDATA
X1 X1 4.0 X2 1.0
X2 X2 2.0
X3 X3 2.0 X4 1.0
X4 X4 2.0

ENDATA

Ligting (1): Input datausing Q foominfile TESTQP. QDT’
BEG N

MODEL NAME (testgp)

I NPUT FI LE NAME (testqgp.qdt)
OUTPUT FI LE NAME (testqgp.qrs)
LOG FI LE NAME (testgp.ql 9)
END

Ligting (2): Specs commands for Q-forminfile*FORTMP. SPC'.

Outputs comprising the solution in file ‘“TESTQP.RES and the log in file ‘TESTQP.LOG' are shown

below in ligings (3) and (4).

FORTMP SOLUTI ON REPORT

PROBLEM NAME = TESTQPQD
OBJECTI VE NAME = COST

RHS NAME = RHS
BOUNDS NAMVE = BND
MROW = 6

NCOL = 7

OBJECTI VE VALUE
LOB/ FI X OFFSET

COLUMNS. STRUCTURAL VARI ABLES
NO *=I NF NAME VALUE
1 X1 1.56267
2 X2 1. 14578
3 X3 0.5
4 X4 1.
5 X5 3. 79156
6 X6 0. 43733
7 X7 1. 47956
ROWS. LOG CAL VARI ABLES
NO *=I NF NAME VALUE
1 COST 42. 87467
2 R1 2.
3 R2 5.
4 R3 4,
5 R4 11.
6 R5 14.

0.479124D+02
0.239717D+02

LOVNER BND
.5
.5

e e

LOVER RHS
NONE
2
5.
4,
11.
14.

UPPER BND REDUCED COST
NONE -3. 0999
NONE -3.29971

1. -2.60342
1. 2.09487
6. 0.
NONE 0.
NONE 0.
UPPER RHS SHADOW PRI CE
NONE 0.
2. - 3.
5. -2.0999
4, -2.30171
11. - 1.
14. - 1.

Ligting (3): Solution output for Q-forminfile TESTQP. QRS'.

FORTMP rel ease version 2.03a, Mar 1997
begi n
nodel nanme (testqp)
i nput file nane (testqgp.qdt)
output file name (testqp.qrs)
log file nane (testqgp.qlg)
MPS | NPUT PASS FI NI SHED
| NPUT DATA STATI STI CS:
PROBLEM NAME | S TESTQPQD
NUMBER OF ROWS (| NCLUDI NG OBJECTI VE) =
NUMBER OF COLUMNS =
NUMBER OF BOUNDED VAR =
NUMBER OF NONZERCS =
AVERAGE NUMBER OF NONZERGOS PER COLUMWN =
NUMBER OF ROWS | N Q MATRI X =
NUMBER OF NON- ZEROS | N Q MATRI X =
RUN TI ME OPTI ONS:
M N M ZE

N
O~ WO NO

TOTAL SO FAR

25

TOTAL SO FAR

TOTAL SO FAR

P- OBJVAL

35.
24.
24.
24.
24.
24.

495
605
548
539
536
535

TI ME TAKEN FOR | NPUT/ SETUP = 0. 93 SECS,
SCALI NG | N PROGRESS . ..
SCALI NG COWVPLETE
PRESOLVE .
Mat ri X non-zer os reduced to 21 from
TI ME TAKEN FOR SCALE/ PRSLVE = 0.11 SECs,
TI ME FACTORI ZI NG Q 0. 164835
Q MATRI X POSI Tl VE DEFI NI TE
Q chol esky factor nonzeros: 4
SOLVI NG SEPARABLE FORM - NORMAL SYSTEM
TI ME TAKEN FOR QPM PREPROC = 0. 38 SECS,
Symmetric Matrix U Non-Zeros 28
Chol esky Factor U Non-Zeros 28
| T# P-PHASE P-INFEZ D-PHASE D-|NFEZ
1 1 0. 68801 1 0. 10588
2 1 0. 43483E- 03 1 0. 69612E- 02
3 2 0. 21806E- 06 1 0. 15224E- 02
4 2 0. 10791E- 09 2 0. 22964E- 04
5 2 0. 63483E- 13 2 0. 11492E- 07
6 2 0. 56903E- 15 2 0. 57466E- 11
7 2 0. 44371E- 15 2 0. 29388E- 14

***| PMABC: Term nated, Snall

* ok Opti mum sol uti on obtai ned

| PM starting point saved ***

bj ective Function = 0.4853534E+02
(of fset = -0.2400000E+02)

Duality Gap ****

* k k%

* k%

El apsed structuring time = 0. 164835
El apsed solution tine = 0. 384615
IPMiteration count = 6
TI ME TAKEN FOR QPM PDSUBS = 0. 55 SECS,
TI ME TAKEN FOR | PM SOLUTI ON = 0. 16 SECS,
TI ME TAKEN FOR OUTPUT = 0.11 SECs,

24.

TOTAL SO FAR
TOTAL SO FAR
TOTAL SO FAR

535

O OO OO0oOOo

0. 93 SECS

1. 04 SECS

1. 43 SECS

REL GAP
1. 9557
. 18322
. 22496E- 01
. 10774E- 02
. 35992E- 04
. 12290E- 05
. 41985E- 07

1.98 SECS
2. 14 SECS
2. 25 SECS

Ligting (4): Log output for Q foominfile' TESTQP. QLG.

Back to Chapter contents

9.4.2 Worked exampleusing FF' form

The quadratic terms in the objective take the form
(1/2).(ps® + p2® + ps)

Wherethevaidblesp;, p2 and p; are defined by equations:

Theexpressonsx;, Xi+Xp, and X3+X, are thus to be entered as F-type rows in the data.

Input data presented in a file TESTQP. FDT’ is shown bedow in liging (5). Lising (6) shows the
associated SPECS commandsin file FORTMP. SPC'.

NAVE TESTQPFF

ROWS

N COsT

EQ R1

EQ R2

EQ R3

EQ R4

EQ R5

F F1

F F2

F F3

COLUWNS
X1 CosT 4.0 R1 1.0
X1 R2 1.0 R4 1.0
X1 R5 1.0
X1 F1 1.0 F2 1.0
X2 CosT 6.0 R 3.0
X2 R4 1.0 R5 2.0
X2 F2 1.0
X3 CosT 5.0 R3 2.0
X3 R4 1.0 R5 2.0
X3 F3 1.0
X4 CosT 16.0 R3 3.0
X4 R4 4.0 R5 3.0
X4 F3 1.0
X5 CosT 2.0 R4 1.0
X5 R5 1.0
X6 CosT 5.0 R1L 1.0
X6 R5 2.0
X7 CosT 1.0 R5 1.0

RHS
RHS R1 2.0 R 5.0
RHS R3 4.0 R4 11.0
RHS R5 14.0

BOUNDS

LO BND X1 0.5

LO BND X2 0.5

UP BND X3 1.0

FX BND X4 1.0

UP BND X5 6.0

LO BND X7 1.0

ENDATA

Listing (5): Input datausing FF' formin file* TESTQP. FDT’
BEG N

MODEL NAME (testgp)

I NPUT FI LE NAME (testqgp. fdt)
OUTPUT FI LE NAME (testqp.frs)
LOG FI LE NAME (testgp.fl Q)
END

Listing (6): Specs commands for FFT form in file FORTMP. SPC'.

Outputs comprising the solution infile TESTQP. FRS’ and thelog infile ' TESTQP. FLG are shown

below in ligings (7) and (8).

FORTMP SOLUTI ON REPORT

PROBLEM NAME = TEST
OBJECTI VE NAME = COST
RHS NAME = RHS
BOUNDS NAME = BND
MROW = ©
NCCL = 10

OBJECTI VE VALUE
LOB/ FI X OFFSET

COLUMNS. STRUCTURAL VARI ABLES

X7
Q 100001
Q 100002
Q 100003

OWOW~NOOULAWNPR
x
o

[EEN

ROWS. LOG CAL
NO *=I NF NAME
COST
R1

R3
R4
R5
F1
F2
F3

©oo~NoO o, WNPE

QPFF

0.468204D+02
0.220000D+02

VALUE

1. 62899
. 12367
5

. 714734
. 37101
. 63432
. 62899
. 715266
5

PNRPPRPOWROR

VARI ABLES

VALUE
42. 74201
2

5.

4,

11.

14.

0.

0.

0.

LOVNER BND
.5
.5

e e

NONE

NONE

LOVER RHS
NONE
2
5.
4,
11.
14.

UPPER BND

NONE
NONE
1.
1.
6
NONE
NONE
NONE
NONE
NONE

UPPER RHS
NONE
2
5.
4,
11.
14.

REDUCED COST
0.

25

Peuee

0.

- 0. 9405
-1.58925
-1.5

SHADOW PRI CE
0.
- 3.
-1.52975
-1.75
- 1.
- 1.
0. 9405
1. 58925
1.5

Listing (7): Solution output for FFT fominfile' TESTQP. FRS'.

FORTMP rel ease versi on 2.03a
begi n
nodel

name (testqgp)

1997

input file nanme (testqgp.fdt)
output file name (testqp.frs)
log file nane (testqgp.flg)

MPS | NPUT PASS FI NI SHED

| NPUT DATA STATI STI CS:

PROBLEM NAME | S TESTQPFF

NUMBER OF ROWS (| NCLUDI NG OBJECTI VE) =
NUMBER OF COLUMNS =
NUMBER OF BOUNDED VAR
NUMBER OF NONZERGCS =

TOTAL SO FAR

33

TOTAL SO FAR
TOTAL SO FAR

P- OBJVAL

35.
24.
24.
24.
24.
24.
24.

770
933
837
825
821
820
820

O OO OO0oOOo

AVERAGE NUMBER OF NONZERGOS PER COLUMWN =
NUMBER OF F- TYPE ROWS =
RUN TI ME OPTI ONS:
M N M ZE
TI ME TAKEN FOR | NPUT/ SETUP = 0. 38 SECS
SCALI NG | N PROGRESS . ..
SCALI NG COWVPLETE
PRESOLVE . .
Matri X non-zeros reduced to 28 from
TI ME TAKEN FOR SCALE/ PRSLVE = 0. 05 SECS
TI ME TAKEN FOR QPM PREPROC = 0. 00 SECS
Symmetric Matrix U Non-Zeros 28
Chol esky Factor U Non-Zeros 28
| T# P-PHASE P-INFEZ D-PHASE D-|NFEZ
1 1 0.57416 1 0. 12061
2 1 0. 35614E- 03 1 0. 10059E- 01
3 2 0. 17924E- 06 1 0. 14675E- 02
4 2 0. 88048E- 10 1 0. 26460E- 03
5 2 0. 37038E- 13 2 0. 13203E- 06
6 2 0. 15094E- 15 2 0. 66014E- 10
7 2 0. 80189E- 16 2 0. 33094E- 13
| PMABC: Termi nated, Small Duality Gap *
* ok Opti mum sol uti on obtai ned * ok kK

* k%

Obj ective Function =

(offset =
El apsed structuring tinme

El apsed solution tine
IPMiteration count =

TI ME TAKEN FOR QPM PDSUBS
TI ME TAKEN FOR | PM SOLUTI ON

TI ME TAKEN FOR OUTPUT

| PM starting point saved ***
0. 4682038E+02
- 0. 2200000E+02)

0. 329670
0. 054945

0. 38 SECS,
. 05 SECS,
0. 00 SECS,

o

TOTAL SO FAR
TOTAL SO FAR
TOTAL SO FAR

0. 38 SECS

0. 44 SECS
0. 44 SECS

REL GAP
1. 9567
. 20156
. 21546E- 01
. 20145E- 02
. 61993E- 04
. 21119E- 05
. 72143E- 07

0. 82 SECS
0. 88 SECS
0. 88 SECS

Listing (8): Log output for FFT forminfile' TESTQP. FLG.

Back to Chapter contents

9.5 Branch and Bound Algorithm for MIQP

9.5.1 Sub-problem Solution

The Branch and Bound technique is no different in principle when a quadratic objective is added from
the normal LP case (see chapter 6, section 6.4). Each sub-problem arising from the tree development is
solved by using |PM-QP (as described above) rather than by using sparse smplex (Dud or Primd).

Since the addition of afresh condraint at each branch must lead to a sub-node solution no better than its
parent, the same bounding techniques apply to limit the tree development.

Back to Chapter contents

9.5.2 Simplified Tree

IPM solution requires considerably more memory than sparse smplex and this consderation leads us to
consder asamplified Branch and Bound that itself uses less memory and can accommodate IPM for the
sub-problems.

The two most important smplifications are:

- Discrete congraint-types limited to binary variables (which can be used for other congraint-
types by specid moddlling)

- Tree development strategy limited to LIFO (Last In Firgt Out).

The latter amplification means that node storage never exceeds the maximum tree-depth, which is
usudly much less than the number of binary variables because integer solutions (or infeasible nodes)
appear well before dl the binary variables have been fixed.

Back to Chapter contents

9.5.3 Usar Controls

The main user-control available for tree development is the following:
MP PRIORITY UP ON * Default OFF

(OFF may dso be used). When 'ON' is specified the first sub-branch of each node to be developed is
aways the UP branch and variable sdection consders the UP fraction of the candidate binary variables
(See chapter 6, section 6.5.3). If the modd contains many CLQ-type (Sx; £ 1) or XOR-type (Sx; = 1)
congtraints - the x; in each case being binary - then this option will have an important effect.

Other dements of the tree development Strategy are fixed asfollows:
Variadle choice = 1 (minimum fraction)
First node choice=1 (LIFO)
Second node choice = 1 (LIFO)

User-control for these elements may be added in afuture release.

Control of the Bound and Cutoff can be obtained with the following commands:
M P BOUND = v * Default high val ue
M P CUTOFF TOLERANCE = v * Default 1.0e-12

Which are described in Chapter 6, section 6.8.2.

The criterion for fractiond pat conddered as zero in a binary vaiable is set with the following
command:

| NTEGER TOLERANCE = v * Default 0.001

The level of log-messagesissued may be controlled with:
MP LOG LEVEL = n * 0-4, default 1

It may aso be convenient to set the log leve for IPM to zero in order to prevent excessve output on the
log.

Other outputs can dso be obtained with the following commands:

M P AGENDA OUTPUT ON * Default OFF
M P AGENDA OUTPUT ALL
M P I NTSOL OUTPUT ON

Agenda outputs have aready been described - see Chapter 6, sections 6.6.3 and 6.6.5. However the
corresponding input festures are not available (as yet). Integer Solution output causes the complete set
of prima solution vaues to be listed in the log whenever an integer solution is found.

Back to Chapter contents

9.6 Summary of SPECS Commands

9.6.1 Controlsfor IPM

There are no SPECS commands specific to IPM for QP. On reading in the data, FortMP automatically
detects the problem is QP, and solves using predictor-corrector IPM. The following are dl the IPM
specific commands that are aso applicable to QP. They have dready been described in Chapter 5.

|PM PH = v * Default is 10.0
This command sets the PHI control in the e ementary formulafor cdculating m See5.2.1.
| PM POAER = n * n=0-3. Default is 4

This parameter sets the 'POWER' gpplied to the numerator in the more advanced formula for m which
isused in the earlier phase of the predictor-corrector algorithm. See5.2.1.

| PM DARE = v * Default is 0.9995
‘DARE’ is afraction between 0 and 1 controlling how closdly to approach the nearest boundary when
moving from oneinterior point to the next. See5.2.1.

| PM RELATI VE EPSI LON = v * Default is 1.0e-7

The relative epsgilon is the tolerance within which the dudity gap can be considered to be zero. Thus the
optimum solution is reached provided the point isfeasble. See5.2.1.

| PM FEASI BI LI TY EPSILON = v * Default is 1.0e-4
The feashility epslon is the tolerance governing feasibility of the current prima and dud
| PM STARTI NG PO NT METHOD = n * Default is 3

This command selects one of three starting point methods for the predictor—corrector agorithm.

| PM SOLVER CHOLESKY
| PM SOLVER SUPERNODE
| PM SOLVER XSUPERNCDE

These commands sdect the solution mechanism to be used. The default is XSUPERNODE' . See
5.2.3.

IPM TOFI X = n * default = 1.0e-12
This command sets the criterion for minimum pivot Sze in the Cholesky factorisation. See5.2.3.

CHOLESKY CG TOLERANCE = v * default = 1.0e-4

CHOLESKY ERROR TOLERANCE = v * default = 10.0

These commands set lower and upper levels to the solution error between which CG iterations are used
to refinethe mgjor IPM iterations. See 5.2.4.

MAXI MUM CG | TERATIONS = n * 0-3, default is 3
This command limits the number of CG steps taken at each mgor IPM iteration. See5.2.4.

| PM RESTART ON
| PM RESTART OFF

This command specifies whether to ‘RESTART’ the IPM agorithm. Default is OFF. See5.2.5.

| PM SAVE FREQUENCY = n * default n=10
This command specifies the frequency for making aSAVE in IPM. See5.2.5.

MAXI MUM | PM | TERATI ONS = n * default 80

This command sats the termination limit for IPM. A SAVE is made before exit at termination. See
5.25.

| PM LOG LEVEL = n * 1-4, default is 1
This command specifiesthe ‘leve’ of the output to be sent to thelog file. See5.2.7.

| PM GRAPHI CAL DI SPLAY ON
| PM GRAPHI CAL DI SPLAY OFF

Certain implementations of FortMP have the graphical festure, which displays the pattern of non-zeros
in the matrices followed by a progress display of theiterations. The default is OFF. See 5.2.7.

Back to Chapter contents

9.6.2 Controlsfor Branch and Bound

Only certain of the MIP controls described in Chapter 6 are available in the smplified Branch and
Bound (others may be added in afuture rdlease). The commands available are summarised below (see
section 9.5.3 above for more details).

MP PRIORITY UP ON * Default OFF
MP PRIORITY UP OFF

When 'ON' is specified the first sub-branch developed takes the UP direction (see chapter 6, section
6.5.3).

M P BOUND = v * Default high val ue
M P CUTOFF TOLERANCE = v * Default 1.0e-12

These commands control Bound and Cutoff as described in Chapter 6, section 6.8.2.

The criterion for fractiond pat conddered as zero in a binary variable is set with the following
command:

| NTEGER TOLERANCE = v * Default 0.001

Setsthe criterion for fractiona part consdered as zero in abinary variable,
MP LOG LEVEL = n * 0-4, default 1

Satstheleve for messagesto thelog file.

M P AGENDA OUTPUT ON * Default OFF
M P AGENDA OUTPUT ALL
M P I NTSOL OUTPUT ON

These commands control out of integer solutions. Agenda output is described in Chapter 6, sections
6.6.3 and 6.6.5. Integer Solution output causes the complete set of prima solution valuesto be listed in
thelog.

Back to Chapter contents

Contents

101

10.2
1021
10.2.2
10.2.3
10.2.4
10.2.5
10.2.6

10.3
10.3.1
10.3.2
10.3.3
10.34
10.35

104
104.1
104.2
10.4.3
10.4.4
10.4.5

105
10.5.1
10.5.2
10.5.3

Chapter 10.

FortMP Manual - CRASH supplement

Advanced Starting Bases

Introduction

Primary CRASH Algorithms

Basic CRASH Procedure
CRASH(LTSF)
CRASH(ART)
CRASH(ADG)

User Controls

Logged Output from CRASH

Crossover Algorithms: Purify and Basis Recovery

Introduction to Crossover

The Push Algorithms

The starting CRASH

User Controls

Logged Output from Crossover Algorithms

Iterative Crash Algorithm

Introduction to CRASH(SOR)

The iterative SOR procedure

Crossover

User Controls

L ogged Output from the SOR algorithm

Summary of SPECS Commands

Primary Crash Commands
Crossover Commands
SOR Commands

N

O OWW®

© 0o~ NN

10
10
10
11
11

13
13
13
14

X-1

Advanced Sarting Bases

10.1 Introduction

Two main kinds of solver for LP problems have been described and are available in the
FortMP system:

- Simplex agorithms (Primal and Dual)
- Interior Point Method (1PM)

Both can obtain optimal solutions but only Simplex can obtain a basic, optimal solution - that
Isone with exactly m basic and n non-basic variables (see chapter 4, section 4.1).

Because post-optima work (including MIP) aways requires the solver to find a basic
solution, Simplex is the preferred solver and occasions where the end user can be satisfied
with an IPM solution are exceptional.

However, Simplex requires a basic solution before it even starts (of course not necessarily
optimal or even feasible). One such is the UNIT basis obtained by fixing al structura
variables to be non-basic at lower bound, and the logical variables are basic. The unit basis
leaves Simplex with all the work still to do, and a procedure that creates a more advanced
starting basis quickly may improve the overall solution time. Such a procedure may be
termed 'CRASH".

There are two kinds of CRASH: first the direct kind that starts from the unit basis and
performs rapid basis exchanges without the usual Simplex paraphernalia. These methods are
described below in section 10.2

Then there is the indirect kind, which requires that an initial set of solution values be
obtained. With this solution to start from an iterative procedure is used to generate a basic
solution without either increasing the infeasibility or degrading the objective value. The
better the initial solution, the better is the overall effect in crashing. Iterating to obtain a basic
solution is referred to variously as CROSSOVER, BASREC or sometimes PUSH. The method
is described in section 10.3 below.

In a sense we may consider IPM followed by BASREC to be a highly advanced form of
CRASH - particularly as the final solving with Simplex is usually completed without further
iterations. Most of the time is spent in the IPM agorithm.

FortMP aso includes a supplementa verson that applies 'SUCCESSVE OVER
RELAXATION' (SOR) to develop a set of solution values, and then by using the
CROSSOVER technique creates a starting basis. This is termed CRASH(SOR) and is
described below in section 10.4. SOR is not so effective as IPM for large problems, but
nevertheless can produce an improvement over other methods in certain cases.

Back to Chapter contents

X-2

FortMP Manual - CRASH supplement

10.2 Primary CRASH Algorithms

10.2.1 Basic CRASH Procedure

Before starting any CRASH procedure an initia basis is aways set up that comprises all the
logicals, with the structural variables set to zero (i.e. set to lower bound or to zero in the case
of afree variable). Thisis termed the ‘Unit’ basis. Then the CRASH procedure performs a
succession of exchanges, each of which replaces a basic logical with a non-basic structural.

In any such exchange the pivot element - that is the intersection of row (logical) with column
(structural) in the updated matrix must be non-zero. Updating the matrix in order to verify
this requirement is time-consuming and therefore the large majority of pivots are chosen in a
way that avoids any need for updating. This can be done if the column selected at every step
has nothing but zeros on the pivotal rows of previous steps. The process is called triangular
selection because it leads to a basis matrix that has a lower triangular form when the rows and
columns are re-ordered in the sequence of their selection.

Further steps that require updates before a pivot can be chosen take place, if at al, after a
maximum number of triangular pivots have been chosen. In any case, a final INVERT is
performed as the quickest way to generate an Etafile so that other SSX agorithms can
follow.

Back to Chapter contents

10.2.2 CRASH(LTSF)

The‘'LTSF designation symbolizes “Lower Triangular, Symbolic, designed for Feasibility .
These attributes may be described as follows:

Lower Triangular: As described abovein 10.2.1.

Symbolic: Actua coefficient values are not relevant and Eta-creation is unnecessary
thanks to the triangul arity.

Feasibility design: Selection priorities are used to promote feasibility in the eventual
basic solution.

In order to achieve a maximum of lower triangular selection, an over-riding priority for row-
selection is given to sparsity - the row should be selected that has the fewest elements on
those columns which are candidates for selection. Then a pivot column is selected and every
other candidate column intersecting the selected row is ruled out as a pivot for later selection.
It is aso important to keep the basis as sparse as possible and therefore the column selection
itself is similarly governed by sparsity.

In practice there are many ties for selection based solely on sparsity - both the row selection
and the column selection. The way in which ties are broken has a major influence on the
eventual feasibility. For row-selection secondary priority is given to EQ-type rows in order
to remove artificials from the basis, and thereafter to other row-types according to the degree
of restriction. Free rows of course are never selected. Ties in the column selection are

X-3

Advanced Sarting Bases

broken by a similar consideration of the feasibility-range; secondary priority being given to
free columns and so on with fixed columns never selected in any case.

Studies have shown that a good measure of feasibility is achieved in most cases with fewer
iterations needed in phase 1 of afollowing Primal solve-algorithm.

Back to Chapter contents

10.2.3 CRASH(ART)

This CRASH procedure is a follow-up to CRASH(LTSF) designed specifically to exclude
artificias (that is logicals on EQ-type rows) from the basis, in so far as thisis possible. Here
of course the selection is no longer triangular or purely symbolic. Each column must be
‘tried out’ before selection and updated by the previous pivot-steps in order to ensure that the
selected basis will be non-singular.

Priority for row-selection is absolute - only artificias can be selected. Column-selection is
based on a heuristic designed to eliminate any obvioudy singular choices and secure the
stability of the eventual inverse by choosing pivots of areasonable size.

Back to Chapter contents

10.2.4 CRASH(ADG)

This CRASH procedure is designed to counter degeneracy in the eventual basis (Anti-
degeneracy). It isamodification of CRASH(LTSF) in which the secondary criterion for row-
selection is modified so as to promote a reduction in the degeneracy that often appears at the
outset of the Primal algorithm.

Such degeneracy is simply the result of the initial basic solution having a large proportion of
zero values. In order to overcome it priority must be given to selection of pivot rows where
the solution value is non-zero. As a result the non-zeros are propagated elsewhere when the
basis exchange is applied.

In order to apply this priority the RHS must be updated at each basis-exchange. However the
procedure remains ‘ Symbolic’ because actual values are not needed, only a set of markers to
show where the non-zeros were originally and where fill-in took place.

CRASH(ADG) is controlled by the ‘ADG Factor’, which is a code expressing at what level
the ADG-criterion is to take priority over the Feasibility-criterion in the row-selection. By
default EQ-type rows take priority, then come the selected rows of the ADG-criterion and
then come the other row-types. However, this can be changed by means of a SPECS
command, or the ADG-criterion can be ignored atogether.

Back to Chapter contents

10.2.5 User Controls

Although CRASH(LTSF) has been described as purely symbolic, in practice this is not so
because values can sometimes be important. In certain cases a basis can be chosen which,
although triangular and hence dtrictly non-singular, nevertheless results in numerical

X-4

FortMP Manual - CRASH supplement

difficulty. If alarge number of the selected pivots have small values then the application of
the inverse can lead to a progressively expanding numerical error in the calculation.

For this reason a control is applied to prevent selection of any pivot whose size is less than a
certain fraction of the maximum element size in that column. The user may set this fraction
with the following SPECS command:

CRASH ADM T THRESHOLD = v
Where the default value for ‘v’ is 0.001.

In order to control the use of CRASH(ART) after CRASH(LTSF) the following command
may be used:

CRASH ART = n
Where‘n’ is0, 1 or 2. The significance of ‘n’ is:
0 = OFF. CRASH(ART) isnot used.

1 = ON, using the norma heuristic for the selection of trial columns. This is the
default

2 = ON, using an extended heuristic for the selection of trial columns.

Finally the use of CRASH(ADG) is controlled with the command:
CRASH ADG FACTOR = n

Where‘'n' is0, 1, 2 or 3. The significance of ‘n’ is:

0 = Lowest priority. The ADG-criterion is considered only as the final tie-breaker,
behind any feasibility criterion. Thisis the default.

1 = ADG-criterion takes priority over selection of inequality constraints (LE and
GE)

2 = ADG-criterion takes priority over selection of inequality and range-constraints.

3 = ADG-criterion takes priority over selection of any constraint-type. In this case
the ADG-criterion entirely supersedes the feasibility criterion, taking second
priority after sparsity.

Back to Chapter contents

10.2.6 Logged Output from CRASH

The normal logged output from CRASH (IPM algorithm not used), based on the simple
example of chapter 7, section 7.2.5, is shown below:

CRASH(LTSF) ENDED. VARI ABLE TYPES: - PLUS BNDD Fl X FREE
LOG CALS REMOVED FROM BASI S: - 1 2 1 0
STRUCTURALS ENTERED I N BASI S: - 3 1 0 0
CRASH(ART) ENDED: 1 PASSES: 0 ARTI FI CI ALS, 0 PI VOTED OUT
TI ME TAKEN FOR CRASHI NG = 0.07 SECS, TOTAL SO FAR = 0. 33 SECS

X-5

Advanced Sarting Bases

Listing (1): Logged output from the CRASH

This shows that the L TSF-stage exchanged four logical variables in the initial UNIT basis for
four structurals, and in the ART-stage no further exchanges were made.

A higher log level can be set with command SI MPLEX LOG LEVEL = 3'and this will
cause every individua exchange to be listed.

Back to Chapter contents

X-6

FortMP Manual - CRASH supplement

10.3 Crossover Algorithms: Purify and Basis Recovery

10.3.1 Introduction to Crossover

Both CRASH procedures and CROSSOVER procedures aim to produce an advanced starting
basis so as to shorten the work needed by an SSX solver agorithm (Primal or Dual). In the
case of CROSSOVER as opposed to CRASH there exists an initial solution, either provided
by the user or obtained by other means, and this solution is employed in a way to ensure that
none of the work done in pre-solving is lost.

For example consider the case of IPM. This algorithm provides a solution that is both
feasible and optimal (to a certain degree of tolerance) but is not ‘basic’, which means that it
cannot be used for further analysis or for integer programming. In the Crossover we develop
a basis without either creating infeasibility or degrading the objective value.

Aninitia starting basis can be created by using the CRASH tools described above in 10.2.

This basis now leaves the solution in an anomalous situation because a certain number of the
non-basic variables are neither equal to lower bound nor equal to upper bound. They are
called *Super-basic’. In the case of IPM which provides solutions to both the prima and the
dual problems there exist both primal super-basic variables and dua super-basic variables.
We now modify the basis with iterative ‘Purify’ agorithms, which eliminate the super-basic
variables one by one.

There are two ‘Purify’ algorithms - also known as *PUSH’ algorithms as follows:

Primal Push which eliminates primal super-basics
Dual Push which eliminates dual super-basics

The Dual Push algorithm itself can start with afast, crashing stage that makes exchanges
without updating the Eta-file. Thisisreferred to as Dual Crash Push.

If there is only a primal solution known at the outset then only the prima push can be
employed.

In the case of IPM both primal and dua solutions are known and are additionally both
feasible and optimal. As shown by Megiddo, who described the push algorithms, in such a
case primal push, followed by dual push should yield a basic solution that is immediately an
optimal solution not requiring any further iterations in the primal algorithm. The number of
Push steps needed is no more than the number of super-basic values in each solution.

Back to Chapter contents

10.3.2 The Push Algorithms

In a Push iteration we evaluate the changes to solution values of basic variables resulting
from a change to one of the super-basic variables. As the size of the change is allowed to
grow one of two things may happen, either:

X-7

Advanced Sarting Bases

- A basic variable may reach a bound, or:
- The super-basic variable may reach its bound in the sense of its change.

If the latter event occurs first then it is only necessary to record all the changes and one super-
basic variable has been rendered non-basic. If the former event occurs first then we make a
change to the basis, replacing the basic with the super-basic and once again the number of
super-basic variables is reduced by one. The overal procedure is the same for both primal
and dual push with re-inversions occurring at the usual intervals.

Back to Chapter contents

10.3.3 Thestarting CRASH

The starting CRASH is modified for use before doing Purify. The changes are designed to
meet the needs of the primal push agorithm that follows.

All those variables with a primal solution value equal to lower or upper bound are
temporarily considered as fixed. Logica dacks at zero or at range are now considered as
artificials with high priority for removal from the basis in the CRASH. Structurals at lower
or at upper bound are fixed so as never to enter the basis.

In fact the row-selection priorities of the CRASH are atered so as to concentrate entirely on
removal of artificials since otherwise much extra work will be needed by the dua push.
Default selection-heuristic for CRASH(ART) is the advanced version since this improves the
chances of removing artificials.

Variables fixed must of course be released once again when the primal push has terminated.

Back to Chapter contents

10.3.4 User Controls

Theinitial starting basis may be controlled with the following SPECS command:
CRASH ADM T THRESHOLD = v * Default v = 0.001

as before with the primary CRASH algorithm. CRASH(LTSF) is followed by an enlarged
CRASH(ART) subject to pivoting controls asin the INVERT algorithm.

The Prima and Dual PUSH algorithms are subject to an '"ADMIT' threshold, which is the
minimum super-basic value considered for applying a PUSH step. The following SPECS
command may be used:

PUSH ADM T THRESHOLD = v * Default v = 1.0e-4

Another control command availableis;
PUSH CALSOL FREQUENCY = n * Default n = 10

Which specifies that a new solution must be calculated after 'n' re-inversions. Note that in
default 'n' is 10 athough in standard Primal and Dual re-calculating always takes place after
every re-invert. However frequent re-calculation loses time and is very rarely needed.

X-8

FortMP Manual - CRASH supplement

It is also possible to skip over using the Dua push stage, or just its CRASH preliminary with
the following commands:

DUAL PUSH COFF * Default ON
DUAL CRASH PUSH OFF * Default ON

(ON may also be given). The reliability and efficiency of Dua Push has now greatly
improved so that these commands should not be necessary.

Output of messages to the log during the Push algorithms is controlled with the following
SPECS commands:

PUSH LOG LEVEL = n * Default n
PUSH LOG FREQUENCY = n * Default n

0
10

Where level 1 produces log messages only at each re-invert, level 2 at each 10th iteration or
as specified by 'PUSH LOG FREQUENCY".

Back to Chapter contents

10.3.5 Logged Output from Crossover Algorithms

The following is a normal log from the crossover stage:

*** No of direct P-push steps = 0
*** No of direct D push steps = 3
CRASH(LTSF) ENDED. VARI ABLE TYPES: - PLUS BNDD FI X FREE
LOG CALS REMOVED FROM BASI S: - 0 0 478 0
STRUCTURALS ENTERED I N BASI S: - 478 0 0 0
*** Time triangular = 0. 020
*** There are 478 initial selections, 478 triangul ar
*** Time TRpivots = 0. 000
650 M targets 172 P-targets
0 Ctried 0 C-sel ected
*** Time synmbolic = 0. 000
CRASH(ART) ENDED: 1 PASSES: 172 ARTI FI Cl ALS, 0 PI VOTED OUT
*** E|lapsed tinme in basrec crash = 0. 05
FORREST- TOWVLI N ACTI VATED
PRI MAL PUSH ENDED AT | TER# 112 PUSH COUNT = 10
*** Flapsed tinme in priml push = 0.10
DUAL C- PUSH ENDED: - 56 Exchanges, 3 Push- st eps
*** Elapsed tinme in dcr-push = 0. 05
DUAL PUSH ENDED AT | TER# 118 PUSH COUNT = 0
*** Elapsed tinme in dual push = 0.01
FEASI BLE BASI S REACHED AFTER | TERATI ON 118
I nvert demand: Obj = 5501.85 Sum nf = 0.00000 | TER# 120
STATUS = 3 -- OPTI MUM SOLUTI ON FOUND. 5501. 85 | TER# 120
TI ME TAKEN FOR BASREC = 0.27 SECS, TOTAL SO FAR = 3.79 SECS

Listing (2): Logged output from the CROSSOVER

It comprises:

- Two lines relating to 'direct’ push-steps that can be made immediately without
any change of basis (using the UNIT basis to start off).

- CRASH log: anorma CRASH(LTSF) log followed by CRASH(ART) details,
the CRASH(ART) summary and total CRASH time.

X-9

Advanced Sarting Bases

- Primal Push log: in this case 122 steps of which 112 involved basis exchange
and 10 were simple solution-updates

- Dua Crash Push log: 59 steps of which 56 involved basis exchange (implied
only - there is no Etafile update).

- Dua Push log: After re-invert afurther 6 steps, al requiring basis exchange.
- Primal log: Final optimisation and completion of the basis recovery.
Back to Chapter contents

10.4 Ilterative Crash Algorithm

10.4.1 Introduction to CRASH(SOR)

SOR is an iterative procedure designed to produce a good starting primal solution. Its
parameters can be set to concentrate on reducing infeasibility only, or reducing infeasibility
while improving the objective function value. Options exist for the user to limit the process
and prevent it from consuming an excessive amount of time. For certain classes of problems,
such as set covering, set packing and set partitioning problems, the SOR procedure can be
very effective.

The iterative crash algorithm has three stages:
Stagel - aninitial solution is calculated usng CRASH(LTSF)

Stage |l - afeasible non-basic solution is sought using an adapted Successive Over-
Relaxation method (SOR).

Stage Il - abasic solution is retrieved by applying the crossover procedure.

Back to Chapter contents

10.4.2 Theiterative SOR procedure

The basic iterative procedure is to cycle through the constraints and if a constraint is violated,
then the current solution vector x¥ is modified as follows:

q _ a.iTXk

Xk+1 = Xk +a =
ai ai

.8

Where a is arelaxation parameter and a =(a,,...,a,,). Thisisan orthogonal projection of
x* onto the constraint a'x* =b,. If a = 1,then a'x***=h. If a < 1then a'x** >b ad
the step is said to be under relaxed. If a > 1then a'x*** <b, and the step is said to be over
relaxed. Typicaly 1< a < 2, hence the term Successive Over-Relaxation.

The objective function may be included as an additional constraint of the form

c'x=zlb,

X-10

FortMP Manual - CRASH supplement

Where z is the objective function value and b is a ‘reduction’ parameter. This constraint is
included if the option to improve the objective function value is chosen.

The starting point solution x° is calculated in the simplest way possible by using
CRASH(LTSF) which provides a basis for Invert and then a starting solution is calculated in
the usud way.

Back to Chapter contents

10.4.3 Crossover

Since there cannot be any dual push it will be most unlikely that the crossover can produce an
immediate optimal basis as should be the case with a primal-dual optimum after 1PM.
However certain claims can be made.

In the first place, if the SOR solution is entirely feasible, the primal push algorithm will not
generate any infeasibility. Infeasibilities in the basis may indeed grow but equally they may
disappear and once removed cannot become infeasible again. If the non-basic infeasibilities
are quite small there is a good chance they will disappear once the solution is reset at the end
of the primal push.

In the second place the change-directions for the push-steps are taken so as never to degrade
the objective value. Hence the objective will remain as good or better than the objective
value for the SOR solution.

Back to Chapter contents

10.4.4 User Controls

The type of SOR algorithm to be used is controlled with the following commands:

SCR OBJECTI VE ON * Default OFF
SOR OBJECTI VE OFF

Where

OFF means reduce infeasibilty only. Thisis the default.
ON means reduce infeasibility while improving the objective function value.

If the option to improve the objective function value is chosen then the reduction parameter
b iscontrolled with the following command:

SOR OBJECTI VE PARAMETER = v
Where the default value for ‘v’ is 1.1.

The SOR relaxation parameter a is controlled with the command:
SOR RELAX PARAMETER = v

Where the default value for ‘v’ is 1.5.

An SOR iteration is a complete cycle through all the constraints. The maximum number of
iterations is controlled with the command:

X-11

Advanced Sarting Bases

SOR MAXI MUM | TERATI ONS = n
Where the default value for ‘n’ is 2.

Feasibility of a constraint is governed by the violation tolerance. A constraint is considered
violated if |b, - ax*|> violation tolerance. The violation tolerance parameter is controlled
with the command:

SOR VI OLATI ON TOLERANCE = v
Where the default value for ‘v’ is1” 107",

An SOR solution is considered feasible if |Ax**1-b||<feasibility tolerance. The feasibility
tolerance parameter is controlled with the command:

SOR FEASI BI LI TY TOLERANCE = v
Where the default value for ‘v’ is1” 103

Convergence of SOR is considered to have occurred when the infeasibilty of the current
solution is not reduced significantly in the next iteration i.e. convergence is considered to
have occurred if ||[AX*"1-b|| -||AX*-b]| < converge tolerance. The converge tolerance
parameter is controlled with the command:

SOR CONVERGE TOLERANCE = v
Where the default value for ‘v’ is1” 1072

Back to Chapter contents

10.4.5 Logged Output from the SOR algorithm
An example of the log messages listed by SOR is as follows:

TI ME TAKEN FOR SCALE/ PRSLVE= 0.24 SECS, TOTAL SO FAR = 5.19 SECS
CRASH(LTSF) ENDED. VARI ABLE TYPES: - PLUS BNDD FI X FREE
LOGE CALS REMOVED FROM BASI S: - 1 0 125 0
STRUCTURALS ENTERED | N BASI S: - 125 1 0 0
TI ME TAKEN FOR CRASHT SOLN = 0.11 SECS, TOTAL SO FAR = 5.30 SECS
TI ME TAKEN FOR KCR PREPRCC = 0. 05 SECS, TOTAL SO FAR = 5.35 SECS

CRASH(SOR) : - CONVTOL . 10000D- 01
TERMIOL . 10000D- 02

FREQ 10
PUSH FOR FEASI BI LI TY ONLY
CRASH(SOR) : - | TERATI ONS = 3
| AX-b| = 0.8467392312D+01
oBJ = 0. 1165835523D+05
TIME TAKEN FOR K- CRASH ALG = 0.03 SECS, TOTAL SO FAR = 5.38 SECS
TI ME TAKEN FOR KCR SOLUTI ON= 0.07 SECS, TOTAL SO FAR = 5. 45 SECS

Listing (3): Logged output from SOR

Back to Chapter contents

X-12

FortMP Manual - CRASH supplement

10.5 Summary of SPECS Commands

10.5.1 Primary Crash Commands

The following commands relate to a primary CRASH:
CRASH ADM T THRESHOLD = v * Default v = 0.001

This command applies a limit to admissible pivots in the LTSF-stage (relative to row-wise
maxima).

In order to control the use of CRASH(ART) after CRASH(LTSF) the following command
may be used:

CRASH ART = n * Default n =1
Where‘'n’ is0, 1 or 2. The significance of ‘n’ is:

0 = CRASH(ART) is not used.
1 = Norma heuristic
2 = Extended heuristic

CRASH ADG FACTOR = n
Where‘n’ is0, 1, 2 or 3 giving the priority to assign the ADG-criterion.

Back to Chapter contents

10.5.2 Crossover Commands

The following commands relate to a primary CROSSOVER:
CRASH ADM T THRESHOLD = v * Default v = 0.001

This command limits the admissible pivots in the CRASH(LTSF) stage (as in a primary
CRASH).

PUSH ADM T THRESHOLD = v * Default v = 1.0e-4

This controls the minimum super-basic value considered for applying a PUSH step.
PUSH CALSCL FREQUENCY = n * Default n = 10

This control specifies the frequency of re-calculating super-basic solutions, in number of re-
inversions.

DUAL PUSH COFF * Default ON
DUAL PUSH ON
DUAL CRASH PUSH OFF * Default ON

DUAL CRASH PUSH ON

OFF instructions cancel the Dual Push stages. However, these commands should not be
necessary.

PUSH LOG LEVEL = n * Default n =20

X-13

Advanced Sarting Bases

PUSH LOG FREQUENCY = n * Default n = 10
These commands control logged output during PUSH.

Back to Chapter contents

10.5.3 SOR Commands

The following commands relate to SOR:

SCR OBJECTI VE ON * Default OFF
SCR OBJECTI VE OFF

These commands control whether SOR considers both objective and feasibility criteria.
SOR OBJECTI VE PARAMVETER = v * Default v = 1.1

Controls the reduction parameter b when objective criterion is considered.
SOR RELAX PARAMETER = v * Default v = 1.5

Controls the relaxation parameter a.

SOR MAXI MUM | TERATI ONS = n * Default n =2
Controls the number of complete cycles through all the constraints.

SOR VI OLATI ON TOLERANCE = v * Default 1.0d-7

SOR FEASIBILITY TOLERANCE = v * Default 1.0d-3

SOR CONVERGE TOLERANCE = v * Default 1.0d-2

These commands control tolerances and limit the algorithm.

Back to Chapter contents

X-14

Appendix A: Input/Output Data Layouts

APPENDIX A: Input/Output Data L ayouts

Contents

Al. MPS-FORM DATA LAYOUTS 2
All MPS Layout for LP and MIP problem data 2
Al2 Marker datafor Binary, Integer and SOS specification 19
Al13 MPSformat of external BASI Sdata (input or output) 21

A2. FREE-FORM LAYOUT AND LONG NAMES 22
A21 Freeforminput layout 22
A22 Namelength 25

A3. TABULAR LAYOUTS (MG/RW INTERFACE) 26
A3.1 Tabular input layout 26
A3.2 Tabular output layouts 29

A4. MIP AGENDA LAYOUTS 32
A4.1 Standard, named agenda layout 32
A4.2 Ligted, un-named agendalayout 33

FortMP:- Appendices

Al. MPS-form data layouts

Al.l MPS Layout for LP and MIP problem data

In MPS format the dataiis divided into five sections as follows:

Section name Purpose

ROWS To specify the name and type of each condraint row in the problem. This
includes the objective row to be minimised (or maximised).

COLUMNS | To specify the name of each variable and give the associated congtraint and
objective coefficients (only non-zeros need be entered).

RHS To specify aname for the right hand sde and give the RHS values.

RANGES To specify aname for any range-set and give RHS range vaues. If there are no
RHS ranges in the data then this section is omitted.

BOUNDS To specify aname for any bound-set and give the lower and upper bounds of the

variables. The BOUNDS section is dso used to specify binary and integer
variablesfor MIP. If there are no boundsin the data then this section is omitted.

These five sections gppear in this order in the input data, each section headed by an indicator record
which conggts of section name beginning in postion 1.

The datafile begins with a 'NAME' record and ends with an 'ENDATA' record so that the
complete layout is as follows:

NAME record

ROWS header record
ROWS data section
COLUMNS header record
COLUMNS data section
RHS header record

RHS data section
RANGES header record
RANGES data section
BOUNDS header record
BOUNDS data section
ENDATA record

Appendix A: Input/Output Data Layouts

In the optional RANGES and BOUNDS sections the header may be omitted if there is no data to
follow. Note however that the RHS header record must appear even if thereisno RHS data.

Comment lines bearing an agterisk (*) in position 1 may gppear anywhere and will be ignored.

Datarecordsin dl five sections have a common fixed layout of six fields as follows:

Fdd Pogtions Contents
1 2-3 A type code (depending on the section)
2 5-12 A name
3 15-22 A name
4 25-36 Vaue corresponding to the namein fidd 3
5 40-47 A name of the same type asfidd 3
6 50-61 Vaue corresponding to the name in fidd 5

The contents of each fidd in each section is described bel ow.

ROWS section-
FHedd Entry Meaning
1 GE, G,>=or> Gresater than or equal to
LE L,<=or< Lessthan or equa to
EQ,Eor= Equd to
N No congraint (i.e. free row or objective)
2 Row name The name of the row

Fidds 3, 4 and 5 are not used

A row name may contain any characters including blanks after the leading character. Leading
blanks are ignored, however the user is dways advised to enter names left-judified to avoid
confusion. Notethat the name'R1 11' isdifferent from the name'R 111 for example.

FortMP:- Appendices

COLUMNS section:-
Fedd Contents
1 Blank
2 Column name
3 Row name
4 Vaue on the column/row given onfidds2 and 3
5 Row name (optiond)
6 Vaue on the column/row given in fidlds 2 and 5 (blank if field 5
is not used)
Fieds5 and 6 may be omitted.

Column names have the same description as row names given above.

Vaues must be entered at the right in fields 4 and 6 unless the decimd point is coded (any trailing
blanks are treated as zeros).

All the data for any one column must be collected together (including the objective row) and appear
on consecutive records. The order of rows within a column is inggnificant, however the same row
should not appear more than once.

RHS section-

Fdd Contents

Blank

RHS st name

Row name

Vdue on the RHSrow given on fidds2 and 3

a (b~ (W [N |k

Row name (optiond)

Appendix A: Input/Output Data Layouts

6 Vaue on the RHSrow given infidds2 and 5 (blank if fidd 5is
not used)
Fieds5 and 6 may be omitted.

The user may provide for dternative problems in one datafile by including multiple RHS-sets. By
default the system sdlects only the firsda RHS-set and ignores the remainder. RHS-set names have
the same description and vaues are entered in the same way as given above.

All the data for any one RHS-set must be collected together and appear on consecutive records.
The order of rowswithin an RHS-set isinggnificant, however the same row should not appear more
than once.

An empty RHS-s=t (values dl zero) can be built with one record assgning the RHS-set name and
specifying zero on some row. This is not necessary if the RHS-st is to be the only RHS-set
provided.

RANGES section:-
Fedd Contents
1 Blank
2 RANGE set name
3 Row name
4 Vdue on the RANGE/row given on fields2 and 3
5 Row name (optiond)
6 Vdue on the RANGE/row given in fidds 2 and 5 (blank if field
5 isnot used)
Felds 5 and 6 may be omitted.

Range vaues gpply in a manner dependant on the row-type to form lower and upper bounds on the
LHS expression (Sajjx;) asfollows:

For an LE-type congtraint:
RHS-RANGE <= Sa;x; <= RHS
For a GE-type congtraint:
RHS+RANGE >= Sg;jx; >= RHS
For an EQ-type congtraint with positive range-value:

FortMP:- Appendices

RHS+RANGE >= Sa;x; >= RHS
For an EQ-type congtraint with negative range-vaue:
RHS+RANGE <= Sa;x; <= RHS

No other possihilities exist. The range-value for a GE-type or LE-type congtraint must be positive
or zero - if range vaue is zero then the congtraint becomes an equdity.

The user may provide for dterndive problems in one data-file by including multiple RANGE-sats.
By default the system sdlects only the firs RANGE-set and ignores the remainder. RANGE-set
names have the same description and vaues are entered in the same way as given above.

All the datafor any one RANGE-set must be collected together and appear on consecutive records.
The order of rows within a RANGE-s#t is inggnificant, however the same row should not appear
more than once.

There is no such thing as an empty RANGE-s&t. Zero vaues, indicating an equdity congtraint, must
be explicitly entered.

BOUNDS section-
Fdd Contents
1 Bound-type code as specified below
2 Bound set name
3 Column name
4 Vdue of the bound whenever rdlevant
Fidds 5 and 6 are not used

The bounds section is used not only to specify bounds on continuous variables, but dso to specify
binary and integer variable typesin MIP.

Each variadle is given a default type of PL, meaning a continuous varigble with upper bound plus
infinity and lower bound zero. Thisis modified by bounds data as follows-

Type code Bound description
UP Upper bound - valueisgivenin fied 4
LO Lower bound - valueisgivenin fidd 4
FX Fixed vaue - upper and lower bound both equa and givenin fied 4

Appendix A: Input/Output Data Layouts

FR Free varidble - upper bound plusinfinity and lower bound minus
infinity.

PL Plustype (thisis alowed but redundant)

Ml Minus-type - lower bound minus infinity

BV Binary variable. Only legd vaues are zero and one.

ul Integer varigble with upper bound given by the vdue in fidd 4

LI Integer variable with lower bound given by the valuein fidd 4

SC Semi-continuous variable. Either zero or liesin the range from 1.0 to
the vdue given infidd 4.

A variable may require two records to pecify it in full and the possible combinations alowed for the

same variable are-
Combine Meaning
LOand UP Bounded varigble
LOand PL Pus-type variable with given lower bound
MI and UP Minus-type variable with given upper bound
LI and Ul Integer variable with lower and upper bounds both given.
LO and Ul Same as LI/UI (not recommended)
Ll and UP Same as LI/UI (not recommended)
L1 and PL Sameas LI onitsown (no upper bound)
Ml and Ul Integer variable with upper bound and no lower bound

The user may provide for dternative problems in one datafile by including multiple BOUND-sets.
By default the system sdlects only the firss BOUND-set and ignores the remainder. BOUND-set
names have the same description and vaues are entered in the same way as given above.

All the data for any one BOUND-sat must be collected together and appear on consecutive
records. The order of columns within a BOUND-st is inggnificant, however the same column
should not gppear more than once except in one of the legal combinations given above.

FortMP:- Appendices

NAME record:-

The NAME record at the beginning of the data-file has the following layout:

Position Contents

1-4 NAME

15-22 (field 3) Problem-name which may comprise any characters.

ENDATA record:-

The ENDATA record at the end of the data-file has the following layouit:

Position Contents

1-6 ENDATA

The proformas given on the following pages are intended as a convenience for the user to copy and
use as data-entry forms.

Appendix A: Input/Output Data Layouts

ROWS proforma

© o | | ZD| 22| 22| 2o 2o | 22| 22| 2o 22| 22| 22| 2o 2o 22 2D 2o 2o 2o 2D 22 22 =2 22| =2
O O | __ | | co | mo | mo | mo | mof mo) mo | mm] mm] mm] mm] mm] mem | e e a2 e a2 a2 == == | == | ==
ji> <> [N [N R IR (U DD RN U N S (P N D R R R B R (P R R S R R
IO | | | == | == | == | == | == == | == | == | == | == | == | == | == | == == | == | == | == | == | == | == | == | ==
7o Y0 NG IRV I O IO (U NP DU IO DU IO DU DN DD N RPNV U DDV RN EPNPS RPN PN RSO RN R
oSN |--|-—-|-—-|--=|-=|-"=|-=--"=|-=|-=|-=] =] -=] =] -=| == == == == == == == == =—=| --
oo Y [N PG [V (RPN (U [y Jy Jupuy Jupuy jub Juvu (v by uny) g Jupy Jut Juv (s Uiy iy g
LS| ||| === || === -=| == == == == === -] --
S = (T I IO R R R IO IO R I I IO R I IS IO R P ISP IO R P N I
o P [NV (R DR IR DU I DR DR S S D RN D N I N R (P B R R (N R R
oo St RSO PGy [Py [y (U g)y Jupu jpubu Juvu [b [pupuny U sy oy Jutu jutu Juta (pubn (pubn U ng
L N|-—-|--|-=|--|--|--|--|-=|-=|--|--|--|--|--|--|--|-=|--|--|--|--|--|--]|--]|--
(S22 [P IO RV IR RN RO IS [EDNP N IPN DU PN DU S AN R IS R I RN IS R NN R
= il it tedl st st Bbstudl st Mutul Miutudl Msul Mbutadl sttt Mutudl Miutudl Mutudl Mutudl Buadl utadl Mutudl Mutudl Mutudl Mutudl Butadl Butedl Buta
=1 il il il il il It bl Rt bl It Mt bt It il It bl It bl bt Mt bt Rt il It e

Field 2

5-12

Fied 1

2-3

A-9

FortMP:- Appendices

Field 1, Row-type- LE = Lessthan or Equa GE = Greater than or Equal
EQ = Equal N = Non-binding (objective)
Field 2, Row name

A-10

Appendix A: Input/Output Data Layouts

COLUMNS proforma

Feld6

50-61

Fed5

40-47

Fied4

26-36

Field3

15-22

Field 2

5-12

Fied 1

2-3

A-11

FortMP:- Appendices

Field 2, Column name
Field 3, Row name Field 4, Vaue
Field 5, Row name Field 6, Vaue

A-12

Appendix A: Input/Output Data Layouts

RHS proforma

Feld6

50-61

Fed5

40-47

Fied4

26-36

Field3

15-22

Field 2

5-12

Fied 1

2-3

A-13

FortMP:- Appendices

Field 2, RHS-set name
Field 3, Row name Field 4, Vaue
Field 5, Row name Field 6, Vaue

A-14

Appendix A: Input/Output Data Layouts

RANGES proforma

Feld6

50-61

Fed5

40-47

Fied4

26-36

Field3

15-22

Field 2

5-12

Fied 1

2-3

A-15

FortMP:- Appendices

Field 2, RANGE-set name
Field 3, Row name Field 4, Vaue
Field 5, Row name Field 6, Vaue

A-16

Appendix A: Input/Output Data Layouts

BOUNDS proforma

© o | 2| Co| oo oo oo co| 2| 22| 22 e e m= | m2 | =2 a2 a2 a2 a2 a2 a2 eo 2o =2 =
O O __ | | oo | e e mo] mo | em | e mm | mm] mm | mm | e mm | mm | m= | em | = em | e == | == | ==
B O | - | | o oo | e e | == m= | == e | == e | = | e | == | == | == | == | == | == | == | == | == | ==
IC WO [co | | o= | == | == == == == | == | == == | == == | == | == | == | == == | == == | == | == | == | ==
O N~ =] == | == == == | == == == | == == | == | == | == | == == == | == == | == | == == == | == ==
OSY|(--|-—-|-—-| === === === == == == == == == == == == == == == == --
o0 [puuy [puu i e Jpusu puvu g (pubu b b e Jput ppuvu i (b b iy i Jpuiu ipuvuny [[(b i
C < --({----1--1--|--|--{--l--|--|--|--|--|----|--|--|--|--|=--|--|--|--]|--

Fied4

26-36

Field3

15-22

Field 2

5-12

Fied 1

2-3

Upper bound

UP=

Lower bound
Fixed value

LO=
FX
Ml

LI

Field 1, Bound type code

Free variable

FR=
PL

Plus-type (default)

Minus-type
Integer variable, lower bound

Integer variable, upper bound

ul =

A-17

FortMP:- Appendices

BV = Binary variable SC = Semi-continuous, upper bound
Field 2, Bound-set name
Field 3, Column name Field 4, Vaue

Back to Chapter contents

A-18

Appendix A: Input/Output Data Layouts

Al1.2 Marker data for Binary, Integer and SOS specification

Marker lines are used in the COLUMNS section of the MPS-form input data to define a list of
consecutively sequenced variables. Four types of marker line can be used as follows:

Marker Meaning
INTORG | Beginning of aconsecutive sequence of Integer or Binary
variables
INTEND | End of aconsecutive sequence of Integer or Binary varigbles
SOSORG | Beginning of aspecid ordered set (type SOSL1 or SOS2)
SOSEND | End of aspecia ordered set (type SOS1 or SOS2)

A marker line has the keyword 'MARKER' (quotes included) in Field 3 of the sandard MPS-form
layout and the type keyword 'xxxORG' or 'XxxEND' ether in Field 4 or in Field 5 (quotes included).

Thefull layout isasfollows

Field 1 Field 2 Fied 3 Field 4 Fiedd 5 Field 6
(2-3) (5-12) (15-22) (25-32) (40-47) (50-61)
blank Label 'MARKER' | INTORG blank blank
blank Label 'MARKER' | INTEND' blank blank
SOStype Label 'MARKER' | 'SOSORG' | REF-row blank
blank Label 'MARKER | 'SOSEND' blank blank

Each marker line must appear between one column and another - a column may not be split by a
marker.

It is not dlowed to overlgp sections of the data with marker lines since dl sets must be mutualy
exclusgve. Thus markers are dways to be in pars with the 'ORG' type marker followed by its
corresponding 'END' type marker before any other marker can appear.

Fiedds 4 and 5 are interchangeable - the marker type keyword may be placed in field 5 and when
'SOSORG ' is placed in field 5 the'REF-row’ dataiis placed in field 4.

Blank fields should be left blank (but may contain unused materid).

A-19

FortMP:- Appendices

The 'Labd’ fidld is intended for the user to atach a name or labd to a set. For this purpose the
'END' marker should have the same label as its corresponding ‘'ORG' marker. However thisis quite
optiondl.

'SOStype in Fied 1iseither 'S1' or 'S2' meaning type SOSL1 or type SOS2 respectively

'REF-row' in field 5 (or fidd 4) of a SOSORG-type marker line is optiond. If left blank then a
default row with coefficients 1,2,3,... is assumed.

Further information on defining binary or integer variables with markersis given in chapter 6, section
6.3.3.

Back to Chapter contents

A-20

Appendix A: Input/Output Data Layouts

A1.3 MPS-format of external BASIS data (input or output)
In this format the input basis data comprises:

NAME record

BASIS header record (optiond)
BASIS data section

ENDATA record

In the BASIS data section the layout employs fields as before described as follows-

Feld 1 Code for the type of record as follows:
XL, XU introducing a basic variable
UL, LL introducing anon-basic variable

Feld 2 Name of asructurd variable which becomes basic for codes XL, XU or remains
non-basic for codes UL, LL.

Field 3 Nameof alogical variable which becomes non-basic for codes XL, XU. Not used
for codes UL, LL

The letter U or L in the code indicates whether the non-basic variable is to receive upper bound or
lower bound gtatus.

The reationde behind this layout is that an initid starting basis is defined and each record defines an
exchange to this basis. Initidly dl row variables are basic and al column variables are non-basic a
lower bound. Each record of type XL or XU defines an exchange between a column variable
(structurad) which becomes basic and a row variable (logica) which becomes non-basic. The UL
records Ssmply name non-basic columns which are to receive at-bound status and LL records are
actualy redundant.

An externd basisisintended for use even when the input problem has been revised so that a variety
of inconsgenciesin MPS format basis data are alowed. For example if a name is not recognised
then awarning message is given on the log but the system carries on by smply ignoring that record.

Back to Chapter contents

A-21

FortMP:- Appendices

A2. Free-form Layout and Long Names

A2.1 Free-form input layout

The following SPECS commands:

| NPUT FREE FORMAT ON
| NPUT LONG NAMES ON

are both associated with Free-format input. Free-format input is based upon and is very similar to
MPS-form input with just one difference that there is no fixed fied layout beyond position 5 in free-
form datalines.

A Free-form data line conggts of the fixed-form MPS field 1 in postions 2-3 and from positions 5
onwards a number of 'tokens separated by one or more blank spaces, where a 'token' is a string of
1 to 16 characters that are not blank. For each type of MPS-form data-line there is a precise free-
form equivadent with blank-separated tokens replacing the fixed fields from postions 5-62 in the
same order from |eft to right. Indeed an MPS-form data file can perfectly well be read in as free-
form data, provided that no names are blank or have interior embedded blanks, and provided that
no materid exists in the unused part of the fixed layout. For MARKER' linesthe label istreated asa
name and must be non-blank.

Free-form datais sectioned by header lines:

ROWS
COLUMNS
RHS
RANGES
BOUNDS

with the keyword beginning in position 1, and the last section is terminated by:
ENDATA

again beginning in postion 1.

Any line beginning with *" in pogition 1 is trested as commentary and ignored.

Apart from comment-lines the firg line in the free-form input data must have 2 tokens:

NAME beginning in pogtion 1
PROBLEM Problem name located fredy

The remaining data lines within each section have postions 1-4 fixed exactly asin MPSform, thet is
to say with a type-code (if any) in postions 2-3 and blank otherwise. The first name in the line
begins at or after pogition 5, optionaly preceded by one or more blanks.

A-22

Appendix A: Input/Output Data Layouts

Since atoken must inherently obey the following:

- Firs character is non-blank
- There are no embedded blanks

these are rules that must gpply to dl names - that isto:

- Row names

- Column names

- RHS-set names

- RANGE-set names

- BOUND-set names

- Problem name

- Labd ina‘marker’ line

Free-form layouts are summarised in the following tables:

Fdd Token | ROWS section COLUMNS MARKER line
no section
2-3 Row type SOS-type
5-end 1 Row name Column name Labd
2 Row name 1 ‘MARKER’
3 Vauel Marker typein
quotes (‘xxxORG',
‘XXXEND’)
4 Row name 2 Ref-row name
5 Vaue?2
Fdd Token RHS section RANGES section | BOUNDS section
no
2-3 Bound-type code
5-end 1 RHS-s=t name RANGE-sst name | BOUND-s&t name
2 Row name 1 Row name 1 Column name
3 Vauel Vauel Vdue

A-23

FortMP:- Appendices

4 Row name 2 Row name 2

5 Vaue?2 Vaue?2

where the detalls of type-codes and other meanings, options etc are exactly as described for
corresponding fieldsin MPS-form data - see Appendix A1 above.

In aMARKER line the SOS-type in pogtions 2-3 and the reference-row in token 4 gpply only to
marker type SOSORG and are omitted for other marker-types. Token 4 may aso be omitted for
the default reference-row. It is dso permitted to switch the order of tokens 3 and 4, putting a
dummy as token 3 if the REF-row nameis not given.

Back to Chapter contents

A-24

Appendix A: Input/Output Data Layouts

A2.2 Name length

Long names, up to 16 characters, can be employed with the SPECS command:
INPUT LONG NAMES ON

This gpplies to Row names and Column names only, not to RHS-set, RANGE-s&t, Bound-set and
Problem names which remain of maximum length 8 characters.

If long names gpply then the form of input layout used is free-format - there is no fixed layout for
long-name input. Therefore the rules given above in section A2.1 for free-format input necessarily
apply.

Back to Chapter contents

A-25

FortMP:- Appendices

A3. Tabular Layouts (MG/RW interface)

A3.1 Tabular input layout

Tabular input is an dterndive to the norma MPSform of input layout in which the rows and
columns are not identified by name but rather by index. This layout is invoked with the SPECS
command 'INPUT TYPE MG

Problem data is presented on the standard input channd (file name modd.mps) in a FORTRAN
formatted file which is described below. The datais essentidly the same asfor the internaly calable
interface - see chapter 6, section 6.2. In this description the names used are those of section 6.2.3
which gives amore detailed description.

Datais organised in sections as follows:-
- Header section
- Cosfficient section
- Columns section

- Rows section
- Special ordered set section

Each section is described below.

Input Header Section

The header section comprises two records as follows-
Record 1 holds the problem name - PNAME - in positions 1 to 8

Record 2 holds the following

Name Description Format
NC Number of columns (structurad variables) 110
MR Number of rows (logica variables) 110

NAIJ Number of non-zero coefficients in the matrix 110

NSET Number of specid ordered sets 110

If there are no specid ordered setsthen NSET must be zero.

A-26

Appendix A: Input/Output Data Layouts

Input Coefficient Section

The coefficient section contains NAlJ records (i = 1,2,...,NAIJ) asfollows:-

Name Description Format
COLIN(i) Column number 110
ROWIN(j) Row number 110

AlX) Coefficient 3X,D020.13

The sequence of data presentation is not materia. Although normaly to be presented either column-
wise (asin MPS format) or row-wise, the system accepts any sequence and re-orders the data

internaly.

The datais subject to consstency conditions asin MPS format:

Every column must contain & least one entry.

There may not be any duplicate entries

Input Columns section

One record for each structura variable (j = 1,2,...,NC) asfollows:-

Name Description Format
| Column number 110
LOB()) Lower bound 3X,D020.13
UPB()) Upper bound 3X,D20.13
COST()) Cogt (objective vaue) 3X,D20.13
MITYP() | Mixed Integer type code as follows: 110
0 = Continuous varigble
1 = Binary varigble
2 = Integer variadble

A-27

FortMP:- Appendices

3 = Sami-continuous
4 = Member of SOS1
5 = Member of SOS2

Input Rows section

Onerecord for each logica variables (i = 1,2,...,MR) asfollows-

Name Description Format
[Row number 110
LHS(i) Left hand side, or lower bound of the 3X,D020.13
expression
RHS(i) Right hand side, or upper bound of the 3X,D020.13
expresson

Input Special Ordered Set section

If the modd has specia ordered sets then a further section is added with one record for each set (i =
1,2,...,.NSET) asfollows:

Name Description Format
[Set number 110
SREFi) Reference row number 110
SFUN() Function row number 110
SBEG(i) Column number of 1t member 110
SEND(i) Column number of last member 110

The type of each SOS s indicated by the corresponding entriesin array MITYP.
A reference row and a function row must exist for each set and sets may not overlap each other.

Back to Chapter contents

A-28

Appendix A: Input/Output Data Layouts

A3.2 Tabular output layouts

Tabular output is an dterndive to the sandard form of output layout in which the rows and columns
are not identified by name but rather by index. This layout is invoked with the SPECS-command
'OUTPUT TYPE RW!'

Problem data is written to the standard output channel (file name modd.res) in a FORTRAN
formatted file which is described below. The data written is essentidly unchanged.

Datais organised in sections as follows-

- Header section
- Columns section
- Rows section

Each section is described below.

Output Header Section

The header section comprises one record as follows-

Name Description Format
PROBNM | Problem name A8
MROW Number of rows 18
NCOL Number of columns 18
OBJVAL | Objectivevdue E14.6
STCODE | A 3-character code for the solution status. Vaues are 2X,A3
given below.

Possible vAues for the code STCODE are as follows:

'OPT" indicates the LP optimum solution

'INF' indicatesthere is no feasible solution (the output solution isinfeasible)
'UNB' indicates that solutions exist with unbounded objective value.

***' Thiscodeisgiven for any other case

Output Columns section

A-29

FortMP:- Appendices

One record for each structurd variable (j = 1,2,...,NCOL) asfollows-

Name Description Format
JCOL X' fallowed by the column number A8
STAT A 1-character status code for the column. Vauesare 2X,Al
given below.
XVAL Solution value E14.6
DJ Reduced cogt (dud solution vaue) E14.6
LOB Lower bound E14.6
uUPB Upper bound E14.6
MARK A 1-character marker for infeeshbility 2X,Al

The column number JCOL is written with full leading zeros after the 'X'. Example column 1 is
written "X 0000001

Possble values for the satus code STAT are:

B’ Indicates abasic varidble

L Vaiableisat lower bound

U Vaidbleisa upper bound

'F The variable has afixed vaue (this code overrides any possible dternatives)

Possble valuesfor the feasbility marker MARK are:
'F Feasiblein both the prima and the dud
P Primd infeasble
D’ Dud infeesble
B Infeasible in both the primal and the dud

Output Rows section

One record for each logicd varidble (i = 1,2,..., MROW) asfollows:-

Name Description Format

ICOL | 'R followed by the row number A8

A-30

Appendix A: Input/Output Data Layouts

STAT | A 1-character status code for the row. See description 2X,Al
below.

RVAL | Vaueof therow expresson SAijX]. E14.6

SP Shadow price (dud solution value) E14.6

LRHS | Lower bound to the RHS E14.6

URHS | Upper bound to the RHS E14.6

MARK | A 1-character marker for infeaghility 2X,Al

The row number JCOL is written with full leading zeros &fter the'R. Example: column 1 is written
'RO000001".

The solution value RVAL represents the vaue of the row-expresson SAIjXj and not the vaue of
the logicd varidble. This is according to the usage of the standard output layout and the vaues
LRHS and URHS give the lower and upper bounds of this expresson.

Possible vaues for the status code STAT are the same as for columns given above. Note that the
datus refers to the logica variable (or dack) and in non-basic Stuations is opposite to the status of
the row-expression.

Possible vaues for the feasibility marker MARK are the same as for columns.

Back to Chapter contents

A-31

FortMP:- Appendices

A4. MIP AGENDA Layouts

A4.1 Standard, named agenda layout

MIP agendais divided in two sections as follows:

Section name Purpose

FIX (FIXMIX or To specify integer-feasible vauesin order to obtain an initid integer
FIXTRY) solution rapidly

PRIORITY To specify priority classes for selection of branch-entity

Either or both sections may appear in either order (once only). The FIX section follows a header
FIXMIX or FIXTRY according to whether to create tree nodes normally during FIX processing or
smply to probe for the indicated solution. The PRIORITY section follows a header - PRIORITY .

The following keywords are used to begin and end thefile

AGENDA
ENDATA

Comment lines beginning with ** (agterisk) in podtion 1 may gopear anywhere and will beignored.

The fidds used are the same as those of MPSformat, or free-format with ether of the SPECS

commands;

INPUT FREE FORMAT ON
INPUT LONG NAMES ON

Thelayout of both sectionsisthe same, asfollows:

Fiddno Token no Contents
(MPS-form) (Free-form)
2(5-12) 1 Name of 1st column to be assigned
3(15-22) 2 Name of last column to be assigned
4 (25-36) 3 Vaueto assgn

A-32

Appendix A: Input/Output Data Layouts

The default vaue zero is assgned to every discrete varidble before assgnment begins. It is
permitted to overwrite one assgnment with alater one in the same data section.

Standard agenda data is input/output via disk-file named:
modname.agn
where ‘modname’ isthe modd nmae.

Back to Chapter contents

A4.2 Listed, un-named agenda layout

Listed agenda data employs the same overal structure as standard agenda data with the same
keywords as before:

AGENDA
FIXMIX
FXTRY
PRIORITY
ENDATA

In addition the same default vaue zero is used for every assgnment and assignments can be
overwritten as before. The datalayout isfixed asfollows:

Fed Contents

1-10 Index of 1st column to be assgned
11-20 Index of last column to be assigned
21-30 Integer vaue to assign

with data right-jutified in each fidd.

The input/output file name is asfollows:
modname.ag|

where ‘modname’ isthe modd name as before.

Note that the use of standard agenda data causes equivaent listed form agenda to be created
interndly as scratch files.

Back to Chapter contents

A-33

APPENDIX B: SPECS Commands

Appendix B: SPECS Commands

This appendix ligts dl the SPECS commands available in the current verson (V2.3) of FORTMP.
Those commands which have dready been specified in this manud are listed with reference to the
chapter/section concerned. Other commands are described and the genera syntax is givenin full.

Contents

B1l. SYNTAX
B1.1 Meta-syntax
B1.2 Simplification and abbreviation
B1.3BEGIN and END commands

B1.4 Commentary

B2. COMMAND DESCRIPTIONS
B2.1 Mode nameand data file names
B2.2 Input type and problem selection
B2.3 Choice of main algorithm
B2.4 Maximum limits
B2.5 Save and restart commands
B2.6 SSX controls:- algorithmic
B2.7 SSX controls:- parameters
B2.8 1PM contrals:- algorithmic
B2.9 1PM controls:- parameters
B2.10 MIP controls:- algorithmic
B2.11 MIP controls:- parameters
B2.12 Minor algorithm controls

B2.13 L og level and frequency

10
11
12
14
15
16
17
18

20

B-1

FortMP: Appendices

B2.14 Output controls

B2.15 Limitsfor cut-generation and matrix extension

B3. ALPHABETICAL LIST OF COMMANDS

B-2

21

22

23

Appendix B: SPECS Commands

B1l. Syntax

B1.1 Meta-syntax
In what follows the syntax of acommand isindicated in bold lettering.

Keywords are given in capitds (exceptiondly in lower case with duplicate commands), user
provided information is given in lower case. An integer valueisindicated by the conventions 'n', 'nn,
'nnn’. Red values are indicated by the convention 'vwv'.

Square brackets are used for an optiona part of the syntax, for example 'MODEL [NAME]
(name)' indicates a command tha may be written 'MODEL (name). Note that ordinary
parentheses are a part of the syntax and may not be omitted.

Angle brackets are used for dternatives, separated by a dash, for example INPUT TYPE
<MPSFREE/MG/MPL>" implies four possble aternative commands 'INPUT TYPE MPS,
INPUT TYPE FREE, INPUT TYPE MG and'INPUT TYPE MPL".

Extra blank spacing may be added before or between syntactic components. Blank spacing must
not be embedded within a component.

Back to Chapter contents

B1.2 Simplification and abbreviation

It is possble to omit the SPECS file dtogether when dl commands are to be assgned to ther
defaults. Input problem dataisin MPS format on the file named 'modd.mps.

Any command may be omitted and in such a case the system assumes a default setting.

All keywords may be abbreviated to the first 4 or more letters. The first keyword (only) may be
abbreviated to the firat 3 letters so long as no ambiguity arises. For example ' MAXIMIZE' could be
written as, ' MAXIM', 'MAXI' or as'MAX'. No confusion arises because ' MAXIMUM' is dways
followed by afurther keyword.

The syntax '<ON/OFF>' may be omitted in dl cases sgnifying 'ON'. In principd it should be given
as [<ON/OFF>]" but for smplicity this has not been done. For example the command 'SCALE' is
the same as 'SCALE ON' and 'CRASH' is the same as 'CRASH ON' dthough these two
commands have opposite defaults.

Back to Chapter contents

FortMP: Appendices

B1.3 BEGIN and END commands

The SPECS command file 'fortmp.gpc’ is split into sections permitting different commands to apply
in multiple calls to the solver (eg. viaSUBMPL). A section is ddimited by the following two lines

BEG N [(sectid)]

END

where' secti d' isadring of up to 8 characters, blank if omitted, that gives an identifier to each
section. 'END' is not necessarily the end of the file but merdly terminates the section, and any lines
between 'END' and the next 'BEGIN' (or end of file) are ignored.

In a stand-alone FortMP execution there is usudly only one relevant section, and this garts at the
first 'BEGIN' line on the file, whatever section-id (if any) is given for it. However the specid name
'‘ALL'- command' BEGI N (ALL)" - can changethis, asexplained below.

In a run where FortMP is used as a cdlable sub-system (eg. with SUBMP1) the severa
invocations may well require different SPECS s0 that two or more lists may be needed. The ligt to
be used for one call is sdlected by the 'SPID' parameter - see chapter 7, section 7.1.2. The
following specia vauesfor 'SPID' should be noted:

SPID Meaning

Blank Sdect the firgt section. If thefirg sectionis
'‘ALL' then sdect the first and second sections.

" NGSPECS | Bypass SPECS-command input atogether. All

controls remain at default settings.
" DEFAULT | Hasaspecid meaning and should never be
' used for SPID
"ALL Has a specid meaning and should never be
used for SPID

Note that if a section named 'ALL' is to be used it should come first on the SPECS file. After
reading and interpreting this section the system continues to search for another section
corresponding to the SPID parameter. Note aso that in a stand-alone FortMP execution the
parameter SPID is blank.

If the command ' CALL SPCI NT(TCTN) ' (see section 7.4.2) is used s0 as to load the
SPECS file for internd communication each time the calable sub-system is invoked, then a section
with the name 'DEFAULT' isinterpreted specidly. It isnot stored as a section to be communicated
but rather it modifies the actud control defaults on the spot. The effect is the same as for an 'ALL'
section but 'DEFAULT' commands are applied even when the string ' NOSPECS' is used for
SPID. 'DEFAULT' commands are not listed in the log. 'DEFAULT' as a section name has no
gpecid meaning for a sand-adone execution, nor if * CALL SPCI NT(TCTN) ' is not used to
load the SPECSfile.

B-4

Appendix B: SPECS Commands

Back to Chapter contents

B1.4 Commentary

The character agterisk (*) may be used to terminate the command on any line. Materid that follows
isignored and can be used as commentary for that command.

Any line with agterisk (*) as the first non-blank character is ignored. This provides a means to
cancd a command without removing it from the SPECSfile.

Another way to introduce commentary is to place the 'END' command &fter the last active
command and dl linesfollowing 'END' are ignored.

Back to Chapter contents

B2. Command descriptions

In the tables that follow the range of possible vaues is given for each command, together with the
coding and default vaue. This is intended as a reference for the user to find the syntax of any
command quickly. The tables aso give the reference in this manual to the chapter and section where
each command is specified and references to other relevant sections.

In addition to commands dready described in the manud there are additiond commands for
spoecidised purposes. The description of these commands is given with manua reference to

'‘Appendix'.

Also incuded in the tables are severd commands shown in lower case lettering. These are
aternative forms for other commands (mentioned in upper case above the lower-case command)
which have been retained for compatibility with earlier versons of FortMP.

Back to Chapter contents

B2.1 Model name and data file names

Command Manual Lowest Hi ghest Def aul t

r ef val ue Val ue val ue

MODEL NAME (nmodnam) 3.6 ' model '
| NPUT FI LE NAME (fnam) 3.6 . nps'
OUTPUT FILE NAME (fnam 3.6 .res'
LOG FI LE NAME (fnam 3.6 . 1 og'
BASI S FI LE NAME (fnam) 3.6 . bsf’
BBASI S FI LE NAME (fnam Bel ow " . bbf'
AGENDA FI LE NAME (fnam Bel ow ' .agn'

FortMP: Appendices

DI RECTORY NAME (pt hnam) 3.6 bl ank

PATH NAME (pt hnam

Default for dl file names is initidly blank and unless entered by command is then st to
'modnamextn’ where:

modname isthe modd name

xtn is a 3-character extension

The following additiona commands are available:

AGENDA FI LE NAME (fnam
BBASI S FI LE NAME (fnam

These commands assign names to the corresponding input files (the output files aways receive the
default file-name).

Back to Chapter contents

B2.2 Inputtype and problem selection

Comand Manual Lowest Hi ghest Def aul t
r ef val ue val ue val ue
MAXI M ZE 4.6.1 0=M N 1=MAX 0 (MN
M N M ZE 4.6.1
I NPUT TYPE <MPS/ FREE/ M& MPL> 3.2.1 Code: - 1=MPS MPS
i nput type inf 3.2.2 2=FREE
3.2.3 3=M& MPL/ i nf
| NPUT LONG NAMES <ON OFF> 3.2.3 0=0OFF 1=0ON OFF
I NPUT | NTORG [UPPER] BOUND 6.3.3 1 - 0 (See
= v bel ow)
OBJECTI VE NAME (obj nane) 3.2.1 bl ank
RHS NAME (rhsnane) 3.2.1 bl ank
RANGES NAME (rngnane) 3.2.1 bl ank
BOUNDS NAME (bndnane) 3.2.1 bl ank
| NPUT SAVE NAMES <ON OFF> 7.3.2 0=0OFF 1=0ON OFF

B-6

Appendix B: SPECS Commands

OBJECTI VE OFFSET <OV OFF> 7.3.6 0=0OFF 1=ON OFF
| NPUT PERTURBATION = n Bel ow Code: - 0=OFF 0
1=Fi xed
2=Vari abl e
MAXI MUM | NPUT ERRORS = n Bel ow 1 - 50
| NPUT ERRORS ACCEPTED Bel ow 0=Not 1= Not
acc. ptd acc. ptd acc. ptd

The default INPUT INTORG BOUND = 0 is trandated to a high vaue - i.e. variables specified as
integer by 'INTORG' markers have no upper bound.

The following additiond commands are available:
| NPUT PERTURBATI ON = n (Defaul t: 0)

The aove command may invoke perturbations gpplied to the RHS immediatdy after INPUT
(occasiondly useful to resolve problems).

MAXI MUM | NPUT ERRORS = n (Defaul t: 50)
| NPUT ERRORS ACCEPTED (Default: Not accepted)

These commands control the handling of non-trivia errors in the data input. 'MAXIMUM INPUT
ERRORS controls how many can be accepted after which an abort will occur whether
'ACCEPTED' or not. 'INPUT ERRORS ACCEPTED' dlows the cdculations to proceed
provided that less than ' MAXIMUM' errors have occurred.

Back to Chapter contents

B2.3 Choice of main algorithm

Command Manual Lowest Hi ghest Def aul t
r ef val ue val ue val ue
SCALE <ON/ OFF> 3.3.6 0=CFF 1=0ON ON
PRESOLVE <ON OFF> 3.3.5 0=CFF 1=0ON OFF
ALGORI THM PRI MAL 3.3.1 0=OFF 1=ON =0 (PR M
4,6.1
ALGORI THV DUAL 3.3.1 0=CFF 1=ON =1 (DUAL)
dual <on/off> 4.6.1 (dflt: OFF)
ALGORI THM | PM 3.3.3 0=OFF 1=ON =1 (1PM
i pm <on/ of f > 5.2.1 (dflt: OFF)
| PM SCALE <QON OFF> Bel ow 0=0OFF 1=ON ON

FortMP: Appendices

| PM BASREC <ON/ OFF> 3.3.3 0=OFF 1=ON ON
5.2.6
POSTSOLVE <ON OFF> 3.3.5 0=0OFF 1=ON ON
M P <ON OFF> 3.3. 4 0=0OFF 1=ON ON
6.8.5
The following command:
| PM SCALE <ON/ OFF> (Default: ON)
controls scaling when the IPM agorithm is selected.
Back to Chapter contents
B2.4 Maximum limits
Command Manual Lowest Hi ghest Def aul t
r ef val ue val ue val ue
MAXI MUM SI MPLEX | TERATI ONS =n 3.3.1 1 - 10000
maxi mum primal iterations = n 3.7.2
4.6.4
MAXI MUM | PM | TERATI ONS = n 3.3.3 1 - 80
3.7.2
5.2.5
MAXI MUM M P | NTEGER 3.3.4 1 - 300
[SOLUTIONS] = n 3.7.2
MAXIMUM M P INTSOL = n 6.8.3
MAXI MUM M P NODES = n 3.3.4 1 - 50000
maxi mum m p subproblens = n 3.7.2
6.8.3
MXIMUIM MP TIME = v 3.3. 4 0.0 - 50000. 0
6.8.3
MAXI MUM ARCUND | NTEGER 6.8.3 1 - 1
[SOLUTIONS] = n
MAXI MUM ARCUND | NTSOL = n
MAXI MUM ARCUND NODES = n 6.8.3 1 - 5000
maxi mum AROUND subprobl ems = n
MAXI MUM ARCUND TI ME = v 6.8.3 0.0 - 5000. 0
MAXI MUM M P SPACE = n 6.8.3 1 - 10000

Back to Chapter contents

B-8

Appendix B: SPECS Commands

FortMP: Appendices

B2.5 Save and restart commands

Command Manual Lowest Hi ghest Def aul t
r ef val ue val ue val ue
SI MPLEX SAVE FREQUENCY = n 3.5.1 0 - 10
4.6.4
7.5.3
| PM SAVE FREQUENCY = n 3.5.1 0 - 10
5.2.5
7.5.3
M P SAVE FREQUENCY = n 3.5.1 0 - 500
6.8.4
7.5.3
| NPUT RESTART <ON OFF> 3.5.2 0=CFF 1=ON OFF
i nput nps skip 3.7.2
SI MPLEX START RESTART 3.3.2 0=0FF 1=ON OFF
bbasi s i nput <on/off> 3.5.1
bbasi s <on/of f > 3.7.2
4.6.2
4.6.4
| PM RESTART <ON OFF> 3.5.1 0=0OFF 1=ON OFF
3.7.2
5.2.5
BASREC RESTART <ON OFF> 5.2.6 0=0OFF 1=0ON OFF
restart basrec
i pm skip <on/off>
M P RESTART <ON OFF> 3.5.1 0=0OFF 1=ON OFF
3.7.2
6.8.4

Back to Chapter contents

B-10

B2.6 SSXcontrols:-algorithmic

Appendix B: SPECS Commands

Command Manual Lowest Hi ghest Def aul t
r ef val ue val ue val ue
SI MPLEX START | NPUT BASI S 3.3.2 0=OFF 1=ON OFF
3.5.3
4.6.2
4.6.5
SI MPLEX START CRASH 3.3.2 0=CFF 1=0ON ON
crash <on/ of f> 4.6.2
SI MPLEX START UNI T BASI S 3.3.2 0=0ON 1=0FF CRASH
4.6.2
PRI MAL DEVEX <ON/ OFF/ 4.6.1 Code: - 0=OFF OFF(=0)
S| NGLE/ DOUBLE> 1=0N/ SI NGLE
2=DOUBLE
DUAL DEVEX <ON/ OFF> 4.6.1 Code: - O0=OFF OFF(=0)
1=ON
DUAL ADEGEN = n 4.6.1 Code: - 0=OFF OFF(=0)
1=ON (si nple)
2=ON (advanced)
FORTOM <ON/ OFF/ AUTO> 4.6.1 Code: - 0=OFF AUTO

1=ON
2=AUTO

Back to Chapter contents

B-11

FortMP: Appendices

B2.7 SSX controls:- parameters

Command Manual Lowest Hi ghest Def aul t
r ef val ue val ue val ue
Controls for all SSX algorithms

RHS TOLERANCE = v 4.6.3 1. 0d- 25 1.0 1.0e-5

FEASI BI LI TY TOLERANCE = v

DJ TOLERANCE = v 4.6.3 1.0d- 25 1.0 1. 0e-5

ZERO TOLERANCE = v 4.6 1. 0d- 25 1.0 1. O0e-15

PI VOT DI FFERENCE EPSILON = V 4.6.7 1. 0d- 25 1.0 1.0d-2

| N\VERT FREQUENCY = n 3.3.1 1 - 50
4.6.1

FORTOM ACTI VATE PERCENT = n 4.6.3 0 101 40

FORTOM ACTI VATE GROMH = n 4.6.3 0 1000 100

PRI MAL controls

PRI MAL DEVEX RATIO = v 4.6.3 >0.0 <1.0 0.4

PRI MAL MSUB = n 4.3.2 1 10 4
4.6.1

PRI MAL PI VOT ZERO TOLERANCE = v 4.6.7 Fi xed 1.0D- 35

PRI MAL PI VOT ADM T THRESHOLD = v 4.6.3 1. 0d- 25 1.0 1.0d-8

pivot tolerance = v 4.6.7

PRI MAL PIVOT ADM T RELATI VE = v 4.6.7 Fi xed 0.0

PRI MAL RELATI VE EPSILON = v 4.6.7 Fi xed 0.0

DUAL controls

DPROGRESS CRI TERION = v 4.6.3 1.0d-25 1.0 1. 0e-25

DPROGRESS FREQUENCY = n 4.6.3 1 5 1

DUAL PI VOT ZERO TOLERANCE = v 4.6.7 1. 0d- 25 1.0 1.0D0 14

DUAL PIVOT ADM T THRESHOLD = v 4.6.3 1. 0d-25 1.0 1.0e-8
4.6.7

DUAL PIVOT ADM T RELATIVE = v 4.6.7 1. 0d- 25 1.0 0.0

DUAL RELATI VE EPSILON = v 4.6.7 1. 0d- 25 1.0 0.0

DFTRAN ROWN SE <ON/ OFF> Bel ow 0=CFF 1=0ON ON

I NVERT controls

B-12

Appendix B: SPECS Commands

I NVERT PI VOT ZERO TOLERANCE = v 4.6.3 1.0d- 25 1.0 1.0D-7

invert tolerance = v 4.6.7

I NVERT PIVOT ADM T THRESHOLD = v 4.6.7 Fi xed 0.0

I NVERT PIVOT ADM T RELATIVE = v 4.6.3 1. 0d- 25 1.0 1.0d-2

pi vot threshold = v 4.6.7

| NVERT RELATI VE EPSI LON = v 4.6.7 Fi xed 0.0

I NVERT MEDI UM DENSITY = v Bel ow -0.1 100.1 10.0

I NVERT RELEPS <ON OFF> Bel ow 0=0OFF 1=ON 1 (ON)

I NVERT THRESHOLD COLW SE Bel ow 0=CFF 1=0ON 0 (OFF)

PIVOT RATIOLIMT = v Bel ow 10.0 1.0d+25 1.0d+12
The following additiond commands are available:

DFTRAN ROWANI SE <ON/ OFF> (Default ON)

This controls the sequence of dot-product caculations in DUAL - normaly faster row-wise than
column-wise because the sparsity permits more skipping. Some cases may arise where this is not
true - particularly if there is alarge proportion of rows to columns.

I NVERT MEDI UM DENSI TY = v
| N\VERT RELEPS <ON/ OFF>
I NVERT THRESHOLD COLW SE
PIVOT RATIOLIMT =V

These commands control specidised tuning of the INVERT agorithm.

Back to Chapter contents

B-13

FortMP: Appendices

B2.8 IPM controls:-algorithmic

i pm method = n

Conmand Manual Lowest Hi ghest Def aul t
r ef val ue val ue val ue
| PM ALGORI THM <AFFI NE/ 5.2.1 Code: - 1=AFFI NE 3 (=PDQ)
BARRI ER/ PDC> 2=BARRI ER
i pm al gorithm = n 3=PDC
| PM SOLVER <CHOLESKY/ 5.2.3 Code: - 1=CHOLESKY 3 (=XSUP)
SUPERNODE/ 2=SUPERNODE
XSUPERNODE/ 3=XSUPERNODE
AUGVENTED> 4=AUGVENTED
i pmversion = n
| PM STARTI NG PO NT METHOD =n 5.2.2 1 3 1

The following commands are reserved for future use:

| PM SOLVER AUGMENTED

I pmversion = 4

The augmented solver is currently available in a pecialy licensed release.

Back to Chapter contents

B-14

B2.9 IPM controls:- parameters

Appendix B: SPECS Commands

i pmdisplay = n

Command Manual Lowest Hi ghest Def aul t
r ef val ue val ue val ue
| PM RELATI VE EPSI LON = v 5.2.1 1. 0d-25 1.0 1.0e-7
ipmreleps = v
| PM FEASI BI LI TY EPSI LON = v 5.2.1 1. 0d- 25 1.0 1.0e-4
i pm f easeps = v
CHOLESKY CG TOLERANCE = v 5.2. 4 1.0d-8 10.0 1. 0e-4
CHOLESKY ERROR TOLERANCE = v 5.2. 4 0.1 1.0d+10 10.0
MAXI MUM CG | TERATIONS = n 5.2.4 0 (=CFF) 3 3
| PM Bl GM VEI GHT = v 5.2.2 >0.0 <1.0 0.1
i pm weight = v
| PM DARE = v 5.2.1 0.1 0. 99995 0. 9995
IPMPH = v 5.2.1 0.0 - 10.0
| PM POAER = n 5.2.1 1 5 4
I PM TOFI X = v 5.2.3 1. 0d- 25 1.0 1. 0e-12
| PM GRAPHI CAL DI SPLAY 3.3.3 0=0FF 1=0ON OFF
<ON/ OFF> 5.2.7

Back to Chapter contents

B-15

FortMP: Appendices

B2.10 MIP controls:-algorithmic

Command Manual Lowest Hi ghest Def aul t
r ef val ue val ue val ue
M P PREPROCESS <ON OFF/ 3.3.4 Code: - 0=OFF OFF
ROOT ONLY> 6.7.2 1=ON
2=ROOT ONLY
GENERATE CUTS <ON OFF> 6.7.3 0=CFF 1=0ON OFF
M P ANALYSE DUAL <ON OFF> 6.7.4 0=CFF 1=0ON OFF
M P DUAL <ON/ OFF> 6.8.6 0=CFF 1=0ON ON
M P AGENDA | NPUT <ON/ OFF> 6.6.4 0=COFF 1=0ON OFF
M P LI ST | NPUT <ON/ OFF> 6.6.6 0=OFF 1=ON OFF
mp priority list <on/off>
M P AUTO ROUNDI NG <ON/ OFF> 6.8.1 0=COFF 1=0ON OFF
M P AROUND SOLVER <SSX/ | PM> 6.8.1 Code: - 0=SSX SSX
1=I PM
M P CLASSI FI Y RONs <ON OFF> 6.10.1 0=COFF 1=0ON OFF

Back to Chapter contents

B-16

B2.11 MIP controls:- parameters

Appendix B: SPECS Commands

Command Manual Lowest Hi ghest Def aul t
ref val ue val ue val ue
M P FNODECHOI CE = n 6.5.2 Code: - See bel ow 1
M P SNODECHO CE = n 6.5.2 Code: - See bel ow 7
M P VARCHO CE = n 6.5.2 Code: - See bel ow 1
MP PRIORITY UP <ON OFF> 3.3.4 0=0OFF 1=ON OFF
6.5.3

| NTEGER TOLERANCE = v 6.8.2 1.0d-25 <0.5 l.e-3
M P BOUND = v 6.8.2 - - Hi gh val ue
m p cutoff bound = v
M P BOUND RELATIVE = v 6.8.2 - - Hi gh val ue
M P CUTOFF TOLERANCE = v 6.8.2 0.0 1.0d+5 1.0e-12
M P CUTOFF RELATIVE = v 6.8.2 0.0 - 0.0
M P CUTOFF RELISCL = v 6.8.2 0.0 - 0.0
ACT QUOTA = n 6.7.3 1 - 2
CUT QUOTA = n 6.7.3 1 - 5
M P FI X QUOTA = n 6.7.2 1 - 10
M P ROUNDI NG FRACTION = v 6.8. 1 0.0 <0.5 0.0
M P PREPROCESS LEVEL = n 6.7.2 1 3 3

Codesfor MIP FNODCH/SNODCH are-

= LIFO
FIFO

1
2
3
4
5
6

Best objective value

Worst objective vaue

= Minimum number non-integer
= Minimum sum of fractions

7 = Bedt projection heuristic

Codesfor MIP VARCH are-

B-17

FortMP: Appendices

1 = Minimum fraction
2 = Maximum fraction

3:- Invdid

4 = Maximum cost

5 = Minimum cogt times fraction

Back to Chapter contents

B2.12 Minor algorithm controls

Command Manual Lowest Hi ghest Def aul t
r ef val ue val ue val ue
SCALE controls
SCALE PASSES = n 3.3.6 1 4 4
SCALE VARI ANCE = v 3.3.6 0.1 1000. 0 10.0
SCALE OBJECTI VE <ON/ OFF> Appendi x 0=OFF 1=0N OFF (ON=2)
SCALE USI NG OBJECTI VE Appendi x 0=0OFF 1=0ON OFF
<ON OFF>
PRESOLVE control s
PRESOLVE LEVEL = n 3.3.5 1 5 5
PRESOLVE PASSES = n Appendi x 1 4 4
PRESOLVE SAFE LEVEL = n Appendi x 1 5 5
CRASH control s
CRASH ADM T THRESHOLD = Appendi x 1.00d-12 10.0 0. 001
CRASHY PI VOTS = n Appendi x 0 50 1
CRASH SELECTION LIMT = Appendi x 1 10 2
CRASH TOLERANCE FACTOR = Appendi x 1.0 1.0d+8 10000.0
BASREC (push) controls

PUSH CALSOL FREQUENCY = Appendi x 1 - 10
PUSH | GNORE THRESHOLD = Appendi x 1.0d-25 10.0 1.0e-4
DUAL CRASH PUSH <ON OFF> Appendi x 0=CFF 1=ON OFF
DUAL PUSH <ON OFF> 5.2.6 0=0OFF 1=ON ON

The following commands are dso available:

B-18

Appendix B: SPECS Commands

SCALE OBJECTI VE <ON OFF> (Def aul t OFF)
SCALE USI NG OBJECTI VE <ON OFF> (Default OFF)

By default the SCALE dgorithm does not scale the objective row and does not include objective
vauesin the cdculations that derive column-scaes. Either or both features can be set ON to handle
specid cases with avery wide range of objective vauesin the modd.

PRESOLVE PASSES = n (Def aul t
PRESCOLVE SAFE LEVEL = n (Def aul t

4)
5)

The limit to PRESOLVE passes prevents over-running which is generdly not profitable after 4
repeats. 'SAFE LEVEL' can be used to define a lower than maximum level at which to re-try if
PRESOLVE finds infeashility. PRESOLVE may find spurious infeesihility (particularly a higher
levels) if the modd has poor scding.

CRASH ADM T THRESHOLD = v (Default = 0.001)
CRASHY PIVOTS = n (Default = 1)

CRASH SELECTION LIM T= n (Default = 2)
CRASH TOLERANCE FACTOR = v (Default = 10000. 0)

These commands refer to experimental CRASH procedures which are present in the code for tuning
difficult problems. They should not be employed by the end-user without expert advice.

PUSH CALSOL FREQUENCY = n (Default = 10)
PUSH | GNORE THRESHOLD = n (Default = 1.0e-4)
DUAL CRASH PUSH <ON/ OFF> (Default OFF)

These commands refer to experimental BASREC procedures which are present in the code for
tuning difficult problems. They should not be employed by the end-user without expert advice.

Back to Chapter contents

B-19

FortMP: Appendices

B2.13 Log level and frequency

Command Manual Lowest Hi ghest Def aul t
r ef val ue val ue val ue
PRI MAL LOG FREQUENCY = n 3.3.1 1 - 1
sinmplex log frequency = n 4.6.6
SI MPLEX LOG LEVEL = n 3.3.1 0 4 1
primal log level =n 3.4.3
4.6.6
(7.5.2)
I N\VERT LOG LEVEL = n 3.3.1 0 4 1
3.4.3
4.6.6
(7.5.2)
| PM LOG LEVEL = n 3.3.3 0 4 1
3.4.3
5.2.7
(7.5.2)
MP LOG LEVEL = n 3.3. 4 0 4 1
3.4.3
6.9
(7.5.2)
NODE LOG FREQUENCY = n 3.3.4 1 - 1
6.9
M P PREPROCESS LOG LEVEL = n 6.7.2 0
(7.5.2)
M P SI MPLEX LOG LEVEL = n Appendi x 0 4 0
mp ssx log level = n
PRESOLVE LOG LEVEL = n 3.3.5 0 4 1
(7.5.2)

PUSH LOG FREQUENCY = n 5.2.7 1 - 10
PUSH LOG LEVEL = n 5. 2.7 0 4 1
(7.5.2)

LOG DI SPLAY 3.4.3 0 5 1

LOG DI SPLAY LEVEL = n 3.4.3
LOG DI SPLAY ONLY 3.4.3 OFF

The following commands are ds0 available:

B-20

Appendix B: SPECS Commands

M P SI MPLEX LOG LEVEL = n (Defaul t: 0)
mp ssx log level =n (Default: 0)

During MIP the standard logs of PRIMAL, DUAL and INVERT are switched off by resetting the
level to zero. However this can be countermanded with 'MIP <SIMPLEX/SSX> LOG [LEVEL] =
n' giving alevel which then gppliesto dl three dgorithms.

LOG DI SPLAY LEVEL = n (Default: 1)

This command is used to redtrict or expand the display of logged messages to any levd. The
command does not change the level of messages that are issued to the log in the first place.

Back to Chapter contents

B2.14 Output controls

Comand Manual Lowest Hi ghest Def aul t
r ef val ue val ue val ue
OUTPUT <ON OFF> 3.4. 4 0=0OFF 1=ON ON
OUTPUT TYPE <MPL/ RW STD> 3.4.1 Code: - 1=STD STD
3.4.2 2=RW MPL

OUTPUT SUPPRESS ZERO 3.4. 4 0=0OFF 1=ON OFF
OUTPUT CHANNEL = n Appendi x -18
OUTPUT DI SPLAY [ONLY] Appendi x
OUTPUT BASI S <ON/ OFF> 3.5.3 0=0FF 1=ON OFF
basi s out put <on/off> 4.6.5
LOG CHANNEL = n 7.5.1 19
M P AGENDA OUTPUT 6.6.5 Code: - 0=OFF OFF

<ON/ OFF/ ALL> 1=ON

2=ALL

M P LI ST OQUTPUT 6.6.6 Code: - 0=CFF OFF

<ON/ OFF/ ALL> 1=0ON

2=ALL
DI SPLAY MEMORY Appendi x 0=0OFF 1=ON OFF
Thefollowing commands are o available:
OUTPUT DI SPLAY [ONLY] (Default: No display)

'OUTPUT DISPLAY" (with or without ‘ONLY") causes the normal outpui file to be suppressed and
solution output to be displayed or written to the standard outpui.

B-21

FortMP: Appendices
OUTPUT CHANNEL = n (Default: -18)

Aswith the log channel a negative number indicates that the sysem must open the channd interndly.
A positive number indicates that the channe is opened externdly. Using n = 6 (standard output
unit) the solutions are written out online to the screen.

OUTPUT TYPE MPL (Defaul t: STD)

Thisis an dternative for output type 'RW'.

DI SPLAY MENMORY (Defaul t: None)

This command causes a record of memory assgnments to be issued to the log (and displayed if
display-level is 2 or more).

Back to Chapter contents

B2.15 Limits for cut-generation and matrix extension

Comand Manual Lowest Hi ghest Def aul t
r ef val ue val ue val ue
MAXI MUM CUT NONZERCS = n Appendi x 0 - 0
(See note
bel ow)
MAXI MUM CUTS = n Appendi x 0
MAXI MUM EXTRA ROAS = n 8.1.5 0
MAXI MUM EXTRA COLUWMNS = n 8.1.5 0
maxi mum extra cols = n
MAXI MUM SPARE ROWSPACE = n 8.1.5 0
MAXI MUM SPARE COLSPACE = n 8.1.5 0
The following commands are ds0 available:
MAXI MUM CUT NONZERGCS = n (Default: O
MAXI MUM CUTS = n (Default: O

These commands specify user-given limits on the cut pool space.

To determine the maximum limits for cut generation and matrix extenson the sysem takes the
maximum of the user-given value and a quota-based calculaion. Quotas are forced to zero when
GENERATE CUTSIis OFF.

Back to Chapter contents

B-22

Appendix B: SPECS Commands

B3. Alphabetical list of commands

Command Def aul t Ref er ences
ACT QUOTA = n 2 6.7.3
AGENDA FI LE (fnam ' nodel . agn' B2.1
ALGORI THM DUAL OFF 3.3.1/4.6.1
ALGORI THM | PM OFF 3.3.3/5.2.1
ALGORI THM PRI MAL Primal ON 3.3.1/4.6.1
BASREC RESTART <ON/ OFF> 0 (norestart) 5.2.6
BASI S FI LE (fnam ' nodel . bas' 3.6
BASI S QUTPUT <ON OFF> OFF B2. 14
BBASI S FI LE (fnam ' nmodel . bbf' B2.1
BBASI S | NPUT <ON/ OFF> OFF B2.5
BBASI S <O\ OFF> OFF B2.5
BOUNDS NAME (bndnane) bl ank 3.2.1
CHOLESKY CG TOLERANCE = v l.e-4 5.2. 4
CHOLESKY ERROR TOLERANCE = v 10.0 5.2. 4
CRASH ADM T THRESHOLD = v 0. 001 B2. 12
CRASH <ON/ OFF> ON B2. 6
CRASH SELECTION LIMT = n 2 B2. 12
CRASH TOLERANCE FACTOR = v 10000. 0 B2. 12
CRASHY PI VOTS = n 1 B2. 12
CUT QUOTA = n 5 6.7.3
DFTRAN ROWA SE <ON/ OFF> ON B2. 7
DI RECTORY NAME (pt hnam none 3.6
DI SPLAY MEMORY 0 (none) B2. 14
DJ TOLERANCE = v 1. 0e-5 4.6.3
DPROGRESS CRI TERION = v 1. Oe- 25 4.6.3
DPROGRESS FREQUENCY = n 1 4.6.3
DUAL ADEGEN = n 0 (OFF) 4.6.1
DUAL CRASH PUSH <ON/ OFF> OFF B2. 12
DUAL <ON OFF> OFF B2. 3
DUAL PI VOT THRESHOLD = v 1.0d-8 4.6.3
DUAL PUSH <ON OFF> ON 5.2.6
FEASI Bl LI TY TOLERANCE = v 1. 0e-5 B2. 7
FORTOM ACTI VATE PERCENT = n 40 4.6.3
FORTOM ACTI VATE GROAMTH = n 100 4.6.3
FORTOM <ON/ OFF/ AUTC> OFF 4.6.1
GENERATE CUTS <O\ OFF> OFF 6.7.3
| NPUT ERRORS ACCEPTED Not accepted B2. 2
I NPUT FI LE (fnam ' nodel . nps’ 3.6
I NPUT | NTORG BOUND = v Hi gh val ue 6.3.3
| NPUT LONG NAMES <ON/ OFF> OFF 3.2.3
| NPUT MPS SKI P 0 (noski p) B2. 5
| NPUT PERTURBATI ON = n 0 B2. 2
| NPUT RESTART <ON/ OFF> OFF 3.5.2/3.7.2/5.2.5
| NPUT SAVE NAMES <ON/ OFF> OFF 7.3.2
| NPUT TYPE <NGC/ MPL/ MG MAG

MPS/ FREE/ | NF> MPS 3.2.1/3.2.2/3.2.3

Back to Chapter contents

B-23

FortMP: Appendices

B3. Alphabeticd list of commands (cont)

I NVERT FREQUENCY = n

I NVERT LOG LEVEL = n

| NVERT MEDI UM DENSI TY = v

| N\VERT RELEPS <ON OFF>

I NVERT THRESHOLD COLW SE

| NVERT TOLERANCE = v

| PM ALGORI THM = n

| PM ALGORI THM AFFI NE

| PM ALGORI THM BARRI ER

| PM ALGORI THM PDC

| PM BASREC <ON/ OFF>

| PM Bl GM VEEI GHT = v

| PM DARE = v

| PM DI SPLAY = n

| PM FEASEPS = v

| PM FEASI BI LI TY EPSILON = v
| PM GRAPHI CAL DI SPLAY <ON OFF>
| PM LOG LEVEL = n

| PM METHOD = n

| PM <ON/ OFF>

IPMPH = v

| PM POER = n

| PM RELATI VE EPSI LON = v
| PM RELEPS = v

| PM RESTART <ON/ OFF>

| PM SAVE FREQUENCY = n

| PM SCALE <ON OFF>

| PM SKI P <ON/ OFF>

| PM SOLVER AUGVENTED

| PM SOLVER CHOLESKY

| PM SOLVER SUPERNCDE

| PM SOLVER XSUPERNCDE

| PM STARTI NG PO NT METHOD = n
IPM TOFI X = v

| PM VERSI ON = n

| PM VEI GHT = v

LOG CHANNEL = n

LOG DI SPLAY

LOG DI SPLAY LEVEL = n
LOG DI SPLAY ONLY

LOG FI LE (fnam

MAXI M ZE

MAXI MUM CG | TERATIONS = n
MAXI MUM CUTS = n

MAXI MUM CUT NONZERGCS = n

Back to Chapter contents

B-24

50

10.0

1 (N
0 (OFF)
1.0e-7
3 (PDC al g)
=1

=2

=3

ON

0.1

0. 9995
0

1. 0e-4
1. 0e-4
OFF

1

1

OFF

10.0

4

1.0e-7
1.0e-7

OFF

10

OFF

OFF

=4

=1

=2

=3

1

1.0e-12

1 (Chol esky)
0.1

-19

Level =1
1

OFF

' nodel . | og
0 (mn)

3

M ow* gt a
Mhnz*qt a

Ref er ences

3.3.1/4.6.1

3.3.1/3.4.3/7.5.2

B2.7
B2.7

N wwe
~

o AN
w
~

Lo e
IO
B
~ ~
M)
N~

.2/5.2.5
.5/7.5.3

B3. Alphabeticd list of commands (cont)

MAXI MUM EXTRA COLS = n
MAXI MUM EXTRA COLUMNS = n
MAXI MUM EXTRA ROWS = n
MAXI MUM | NPUT ERRORS = n
MAXI MUM | PM | TERATI ONS = n
MAXI MUM M P | NTEGER

<SOLUTI ONS>

1l
=}

MAXIMUM M P I NTSOL = n
MAXI MUM M P NODES = n
MAXI MUM M P SPACE = n

MAXI MUM M P SUBPROBLEMS

n

MAXIMUM M P TIME = v

MAXI MUM PRI MAL | TERATI ONS = n
MAXI MUM SI MPLEX | TERATI ONS = n
MAXI MUM SPARE COLSPACE = n
MAXI MUM SPARE ROWSPACE = n

M N M ZE

M P
M P
M P
M P

M P
M P
M P
M P
M P
M P
M P
M P
M P
M P
M P

M P
M P
M P
M P
M P
M P
M P
M P
M P
M P

ANALYSE DUAL <O\ OFF>
AGENDA | NPUT <ON OFF>
AGENDA OUTPUT <ON OFF>
AUTO ROUNDI NG <ON/ OFF>

BOUND = v

CLASSI FY ROAS <ON/ OFF>
CUTOFF BOUND = v
CUTOFF TOLERANCE = v
DUAL <ON OFF>

FI X QUOTA = n

FI XM X OUTPUT <ON OFF/ ALL>
FNODECHOI CE = n

LI ST | NPUT <ON OFF>

LI ST OQUTPUT <ON OFF>
LOG LEVEL = n

<ON/ OFF>

PREPROCESS LEVEL = n
PREPROCESS LOG LEVEL = n
PREPROCESS <QON/ OFF>
PREPROCESS ROOT ONLY

PRI ORI TY LI ST <O\ OFF>
PRI ORI TY UP <O\ OFF>
PROBE ROUNDI NG = n

PROBE ROUNDI NG <ON/ OFF>
RESTART <ON/ OFF>

Back to Chapter contents

Hi gh val ue
OFF

Hi gh val ue
1. 0e-12

ON

10

OFF

1

OFF

OFF

1

ON
3

0
OFF
2
OFF
OFF
0
OFF
OFF

Appendix B: SPECS Commands

Ref er ences

.2/5.2.5

S
~
@«
\l

. 2/ 6.
. 2/ 6.
.2/6.8.3

o2
w

S
~
@«
\l
o
w

@«
@«
S
~
o
o)
w

.2/4.6.4

B2. 11

o
=

NOFNFLD@eoen e @ =EE e
PR RPRAONANNANDOONANONN®

=
=

\
S

.3/

\
e il €2
N

e £9 @0 Gn €9 @ €9 @) @) @ [y @) &) @) @ @8
N~ =~
S
e
NN

o8}

=

=
=
e
er
w

Lo en & @3
U1 0 0O W
=
o
\l

.2/6.8.4

B-25

FortMP: Appendices

B3. Alphabeticd list of commands (cont)

M P ROUNDI NG FRACTION = v
M P SAVE FREQUENCY = n
M P SI MPLEX LOG LEVEL = n
M P SNODECHO CE = n
M P SSX LOG [LEVEL] = n
M P VARCHO CE = n
MODEL NAME (modnam)
NODE LOG FREQUENCY = n
OBJECTI VE NAME (obj nane)
OBJECTI VE OFFSET <OV OFF>
OUTPUT BASI S <ON/ OFF>
OUTPUT CHANNEL = N
OUTPUT DI SPLAY [ONLY]
OUTPUT FI LE (fnam
OUTPUT <ON OFF>
OUTPUT SUPPRESS ZERO
OUTPUT TYPE <MPL/ RW STD>
PATH NAME (pt hnam)
PIVOT RATIOLIMT = v
Pl VOT THRESHOLD = v
Pl VOT TOLERANCE = v
POSTSOLVE <ON OFF>
PRESOLVE LEVEL = n
PRESOLVE LOG LEVEL = n
PRESOLVE <O\ OFF>
PRESOLVE PASSES = n
PRESOLVE SAFE LEVEL = n
PRI MAL DEVEX <OV OFF/

S| NGLE/ DOUBLE>
PRI MAL DEVEX RATIO = v
PRI MAL LOG FREQUENCY = n
PRI MAL LOG LEVEL = n
PRI MAL MSUB = n
PUSH CALSOL FREQUENCY
PUSH | GNORE THRESHOLD
PUSH LOG FREQUENCY = n
PUSH LOG LEVEL = n
RESTART BASREC
RHS NAME (rhsnane)
RANGES NAME (r ngnane)
SCALE OBJECTI VE <O\ OFF>
SCALE <ON/ OFF>
SCALE PASSES = n
SCALE USI NG OBJECTI VE <ON OFF>
SCALE VARI ANCE = v
SI MPLEX LOG FREQUENCY = n

I
> 5

Back to Chapter contents

B-26

OFF

?

o

PR PR APBRO
o
@
1
N

o -

1

0 (norestart)
bl ank

bl ank

OFF (ON>=2)
ON

4

OFF

10.0

1

Ref er ences

6.8.1
3.5.1/6.8.4/7.5.1
B2. 13

4.6.1
4.6.3
B2. 13
B2. 13
4.3.2/4.6.1
B2. 12
B2. 12
5.2.7
5.2.7/7.5.2
B2.5
3.2.1
3.2.1
B2. 12
3.3.6
3.3.6
B2. 12
3.3.6
3.3.1/4.6.6

B3. Alphabeticd list of commands (cont)

SI MPLEX LOG LEVEL = n

SI MPLEX SAVE FREQUENCY = n
SI MPLEX START | NPUT BASI S

SI MPLEX START CRASH
SI MPLEX START RESTART

SI MPLEX START UNI T BASI S
ZERO TOLERANCE = v

Appendix B: SPECS Commands

10
OFF

ON
OFF

OFF (crash ON)
1. Oe- 15

Ref er ences

e SRR R
OWOWWOH WU O W

.1/ 3.
417,
.1/ 4.
. 2/ 3.
.2/ 4.
.2/ 4.
. 2/ 3.
.2/ 4.
.2/ 4.

0N 00 o N

3/
.2
.4/ 7.5.3
3/

The following commands have not been described. They are provided for research and testing

purposes only.

ALGORI THM KCRASH

AUGVENTED LOG LEVEL = n
BASREC LGLFLAG <OV OFF>
BASREC POSTSOLVE <ON/ OFF>
DUAL RESTRI CTED PUSH <ON/ OFF>
DUMP LENGTH = n

EXPLI CI T OBJECTI VE <ON OFF>
H NI T FREQUENCY = n

| NDI RECT ETAS <ON/ OFF>

| NDI RECT UETAS (ON/ OFF>

| NTERFACE SORT <ON OFF>

| PM | NDI CATE <ON OFF>

| PM PREFI X <ON/ OFF>

IPM UPIV = v

KCRASH EQONLY <ON/ OFF>
KCRASH <QON/ OFF>

M P DI SK <ON/ OFF>

MP FIXMX = n

M P FI XM X OUTPUT LEVEL = n
M P | NFEAS OUTPUT

M P NODS QUTPUT

M P PRI ORI TY BRANCH <ON/ OFF>
M P ROUNDI NG = n

M P SCOVER <QON/ OFF>
PRESOLVE CANCEL FI XCOL
PRESOLVE CANCEL REDROW
PRESOLVE CANCEL RENMBND
PRESOLVE CANCEL SFRCOL
PRESOLVE CANCEL SNGROW
PRESOLVE CANCEL SNGCOL

Def aul t

OFF
OFF

OFF
OFF (2=OFF)

OFF

1. 0e-6
OFF
OFF
OFF

0 (OFF)
0 (OFF)
0 (OFF)
OFF

OFF
OFF
OFF
OFF
OFF
OFF
OFF

B-27

FortMP: Appendices

Back to Chapter contents

B-28

Appendix B: SPECS Commands

APPENDIX E: C-Language Usage

This gppendix isintended to provide users of C-language with the means to interpret and make cdls
to the subroutine library described in chapters 7 and 8.

Contents

E1l. MIXED C/FORTRAN USAGE ON PC-WIN32 PLATFORMS 2
(= Entry-point Names 2
E12 Argument lists 2
EL13 Function Calls 4

FortMP: Appendices

E1l. Mixed C/Fortran Usage on PC-WIN32 Platforms

E1.1 Entry-point Names

Fortran subroutines of the FortMP system are compiled using default standards. C-language
subroutines that interface with Fortran subroutines are adapted to match Fortran defaults - never the
other way around. This meansthat any Fortran subroutine-name or function-name is represented at
the LINK-stage by an entry-name as follows:

- <NAME>@xn>

Where <NAME> isthe source namein uppercase, and <n> isthe number of bytesin the argument
lid.

In C-language the equivadent is to name the entry in uppercase and to apply the 'stdcall’ attribute.

Given as example the FortMP entry:
Call Primal (stsl, tctn)

Thiswould be represented by the following prototype in (say) a C header file:
extern void __stdcall PRIMAL(int *stsl, int *tctn);

and the cdll-statement in the executable code would be:
int stsl, tctn;

PRI MAL(&stsl, &tctn);

The linked entry-namefor thisis' _ PRI MAL@3" .

Back to Chapter contents

E1.2 Argument lists

As exemplified above, argumentsin Fortran are generdly pointer-references to the datathat is being
passed. Thisholdsfor dl numerica data - both scaars and arrays - the exception being only
character dataand strings. Characters or strings in Fortran aways occupy a fixed number of bytes,
and there is no concept of the 'null terminator’ to alow variable length strings. In order to pass such
an argument the length of the string is placed in the argument-list immediately after the pointer to the
1st character.

An example of aFortMP library entry with a character-type argument is:
call Spcdft(COMVND, TCTN)

Here' COMMND' isavariable-length string of up to 50 characters. The corresponding prototype
in C-language would be:

B-2

Appendix B: SPECS Commands

extern void __stdcall SPCDFT(char *commd, int |ng,
int *tctn);

Where' | ng' istheactud length of the command string. In the code this routine could be called
with the following Satements:

char *conmmd;
int tctn;

SiDCiDF;I'(conmd, strlen(commd), &t ctn);

The FortMP subroutine library does not have any numerical arguments that are multi-dimensioned
arrays (two or more subscripts) or character arguments that are not scaars. Hence these
possibilities are not considered here.

For the sake of a user who only needs the one entry - SUBMP1 - in the FortMP library we give
here the prototype and an example of the caling statement:

void __stdcall SUBMPL(int *MR, int *NC, int *NAIJ, int *NSET,
char *PNAME, int |pnm char *SPID, int |spd,
double *AlJ, int *ROANN, int *COLIN,
doubl e *UPB, double *LOB, double *RHS, double

* LHS,
doubl e *CCST, int *M TYPE,
int *SREF, int *SFUN, int *SBEG int *SEND,
doubl e *VCSOL, int *BSTAT, doubl e *RSCCS,
int *STSL, int *TCIN);

The following is an example of coding the cdl to SUBMPL:

i nt MR, NC, NAIJ, NSET, STSL, TCIN,
double *AlJ, *UPB, *LOB, *RHS, *LHS;
doubl e *COST, *VCSOL, *RSCCS;

i nt *ROW N, *COLIN, *BSTAT,

i nt *SREF, *SFUN, *SBEG, * SEND;
char * PNAME, * SPI D;

I* Fill values of MR, NC, NAIJ, NSET here */
MALLOC(* Al J, NAIJ):
/* Allocate all the arrays and strings */

/[* Fill contents of input arrays here */
/* Fill the strings PNAME, SPID here */

SUBMPL1(&VR, &NC, &NAIJ, &NSET,
PNAME, (int)8, SPID, strlen(SPID),
AlJ, RONN, COLIN, UPB, LOB, RHS, LHS,
COST, M TYPE, SREF, SFUN, SBEG, SEND,
VCSOL, BSTAT, RSCOS, &STSL, &TCTN);

FortMP: Appendices

Thefull set of C-prototypesfor library entriesis supplied inthefile' L1 BHDR. H' .

Back to Chapter contents

E1.3 Function Calls

So far the library entries considered have been subroutines - equivalent type 'void' in C - but there
are dso afew function-type entries. Complications are avoided by limiting these to functions with a
numeric, scaar result. Such afunction issmply declared in the C-prototype with the corresponding
C-language type replacing ‘void'.

Thefunctions' Gl RNAM ,' GJICNAM ,' Gl RLNM and' GJCLNM (see chapter 7, section
7.3.5) are of character type and as such are not easly referenced in C-language. Because of this
the following subroutine cals have been added to the Fortran library:

CALL AI RNAMi row, rnane)
CALL AJCNAMj col, cnane)
CALL Al RLNM (i row, | rnane)
CALL AJCLNMj col, | cnane)

Where the origind function-result is now the second argument. Equivaent C-prototypes are to be
found inthefile' L1 BHDR. H' .

Back to Chapter contents

B-4

	FortMP
	Preface
	Contents
	1. Introduction and Background
	2. Elementary Use of FortMP
	3. Overview of the Stand-alone FortMP System
	4. Sparse Simplex (SSX) Solver
	5. The Interior Point Method
	6. Mixed Integer Programming (MIP)
	7. FortMP Subroutine Library and External Data Interface
	8. Internal Data Interfacing Service Utilities
	9. The Interior Point Method for Quadratic Programming
	10. Advanced Starting Bases
	Appendix A. Input/Output Data Layouts
	Appendix B. SPECS Commands B-1

	1. Introduction and Background
	1.1 Introduction
	1.2 Background
	1.3 Scope and Purpose
	1.4 Related Documents
	1.5 Outline
	1.6 Platforms
	1.7 Statement of the Definitive Problem
	1.8 References

	2. Elementary Use of FortMP
	2.1 Initial Tutorial
	2.1.1 LP Modelling
	2.1.2 Elementary Data Preparation
	2.1.3 Simple Use of FortMP
	2.1.4 The Complete Example

	2.2 Simple Controls
	2.2.1 The SPECS Controls
	2.2.2 Controlling the Input and the Output
	2.2.3 Additional Useful Controls

	2.3 Additional Data Preparation Features
	2.4 An Example: Binary and Integer Variables
	2.5 Summary of SPECS File Controls

	3. Overview of the Stand-alone FortMP System
	3.1 Introduction and Overview
	3.1.1 The Algorithms Employed by FortMP
	3.1.2 Sparse Simplex (SSX): PRIMAL, DUAL and INVERT
	3.1.3 Interior Point Method (IPM) — When and When Not to Use
	3.1.4 Mixed Integer (MIP) with the Branch and Bound Method
	3.1.5 Overall Structure of the System
	3.1.6 Providing Controls on the SPECS File

	3.2 Data Preparation
	3.2.1 MPS Format
	3.2.2 Matrix Generator Format
	3.2.3 Free Format MPS and Long Data Names
	3.2.4 Other Types of Input Data

	3.3 Running the System
	3.3.1 Using SSX
	3.3.2 Setting up a Starting Basis for SSX
	3.3.3 Using IPM
	3.3.4 Running Mixed Integer
	3.3.5 Using the PRESOLVE Algorithm
	3.3.6 Using the SCALE Algorithm

	3.4 Output Descriptions
	3.4.1 Standard Output Description
	3.4.2 Report Writer Output
	3.4.3 Log File Output
	3.4.4 Suppressing Output

	3.5 Further Topics
	3.5.1 Saving and Restarting
	3.5.2 Bypassing the Initial MPS Input
	3.5.3 BASIS Input and Output

	3.6 Input and Output Files in FortMP
	3.7 Errors and Recovery
	3.7.1 Data Errors
	3.7.2 Maximum Iterations Reached or Other Limit Exceeded
	3.7.3 Numerical Difficulties and Instability
	3.7.4 Running Out of Memory
	3.7.5 Software Errors

	3.8 Summary of SPECS Commands

	4. Sparse Simplex (SSX) Solver
	4.1 Internal Problem Statement
	4.2 Introduction to the Algorithms
	4.3 PRIMAL Algorithm
	4.3.1 Starting Procedures
	4.3.2 Column Selection
	4.3.3 Phase I
	4.3.4 Handling Degeneracy
	4.3.5 Numerical Features
	4.3.6 Issues of Efficiency

	4.4 DUAL Algorithm
	4.4.1 Starting Procedures
	4.4.2 Row Selection
	4.4.3 DUAL Phase 1
	4.4.4 Handling Degeneracy
	4.4.5 Numerical Features

	4.5 INVERT
	4.6 SSX Algorithm Controls
	4.6.1 The Principal Controls
	4.6.2 Starting Basis Controls
	4.6.3 Tolerances and parameters
	4.6.4 Save and Restart
	4.6.5 Processing an External Basis
	4.6.6 Log Lising Controls
	4.6.7 Special Pivoting and Update Controls

	4.7 Summary of SPECS Commands

	5. The Interior Point Method
	5.1 Introduction to the IPM Algorithm
	5.1.1 IPM Problem Statement
	5.1.2 Introduction to the Solution Procedures
	5.1.3 Affine, Barrier and Predictor–Corrector Algorithms
	5.1.4 Solving the System of Equations
	5.1.5 Determining the Starting Point

	5.2 Controls on the IPM Algorithms
	5.2.1 Using the Algorithms
	5.2.2 Control and Choice of the Starting Point Methods
	5.2.3 Choice of Solution Algorithm for the Equations
	5.2.4 Refinement by Conjugate Gradient iterations
	5.2.5 IPM Save and Restart: Iteration Limit.
	5.2.6 IPM-SSX Crossover Option: BASREC
	5.2.7 Miscellaneous IPM and BASREC Commands

	5.3 Summary of SPECS Commands

	6. Mixed Integer Programming (MIP)
	6.1 Introduction to MIP
	6.2 MIP Problem, data types, and problem definition
	6.2.1 Binary and Integer Variables
	6.2.2 Semi-Continuous Variables
	6.2.3 Special Ordered Sets of Type One
	6.2.4 Special Ordered Sets of Type Two
	6.2.5 MIP model definition

	6.3 MIP Data Preparation; Marker lines
	6.3.1 Defining Binary, Integer and Semi-continuous variables in the BOUNDS section
	6.3.2 Marker lines
	6.3.3 Defining Integer and Binary Variables with Markers
	6.3.4 Defining a Special Ordered Set
	6.3.5 An Example

	6.4 Branch and Bound algorithm
	6.4.1 Branch and Bound - the Background
	6.4.2 Branch and Bound - the Algorithm
	6.4.3 The Branching Mechanism, UP and DOWN branching

	6.5 Controlling the Tree Development
	6.5.1 Definition of Tree Search Heuristics
	6.5.2 Provision of choice criteria by the user
	6.5.3 UP-direction priority option

	6.6 Detailed User-control of the Tree Search
	6.6.1 User control of variable choice
	6.6.2 Control of node choice - Fixing an Integer Solution
	6.6.3 AGENDA data for variable priorities or 'FIX' solutions
	6.6.4 SPECS commands for AGENDA input
	6.6.5 SPECS commands for AGENDA output
	6.6.6 Un-named Agenda Files

	6.7 Advanced Algorithms for MIP
	6.7.1 Recent advances
	6.7.2 Pre-processing - Variable Fixing and Constraint Relaxing
	6.7.3 Cut Generation
	6.7.4 Fixing Variables by Dual Solution Analysis

	6.8 Miscellaneous MIP controls
	6.8.1 Automatic rounding heuristics
	6.8.2 Bound, Cutoff and Tolerance control
	6.8.3 Placing Limits on the Tree Search
	6.8.4 Saving the tree and restarting MIP
	6.8.5 Bypassing Mixed Integer
	6.8.6 Making use of the PRIMAL algorithm

	6.9 Logged Output and Screen Display
	6.10 MIP Constraint Classification
	6.10.1 Introduction and SPECS command
	6.10.2 Knapsack Constraint Classification
	6.10.3 Mixed Less or Equals Constraint Classification
	6.10.4 Equality constraints
	6.10.5 Full Classification Hierarchy

	6.11 Summary of MIP SPECS Commands

	7. FortMP Subroutine Library and External Data Interface
	7.1 Using FortMP as a sub-system to solve linear problems
	7.1.1 Incorporating FortMP as a sub-system
	7.1.2 Parameter specifications
	7.1.3 Simple FORTMP subroutine with parameters
	7.1.4 Subroutine call-library specifications

	7.2 External Data Interface
	7.2.1 Introduction
	7.2.2 General description of the data interface
	7.2.3 Argument specifications
	7.2.4 Call specifications
	7.2.5 An example

	7.3 Standard Data Input to the Interface
	7.3.1 Calling the standard data input
	7.3.2 Access to row-names and column-names
	7.3.3 Looking up the index of a named variable
	7.3.4 Name pattern matching
	7.3.5 Looking up the name of an indexed variable
	7.3.6 Managing the constant term in the objective

	7.4 Internal SPECS Commands
	7.4.1 The need for faster command entry
	7.4.2 Once-off entry of SPECS commands
	7.4.3 Default initialisation
	7.4.4 Common Sections in the SPECS file

	7.5 How to Avoid Miscellaneous I/O
	7.5.1 Log channel
	7.5.2 Controlling the log
	7.5.3 Avoiding the use of SAVE files

	7.6 MPS-form Output
	7.7 Summary of callable library, external data interface and associated commands
	7.7.1 Summary of the callable library
	7.7.2 Summary of arguments and parameters
	7.7.3 Summary of relevant SPECS commands

	8. Internal Data Interfacing Service Utilities
	8.1 Introduction to the Internal Data Interfacing Service Utilities
	8.1.1 Objectives
	8.1.2 Data Description
	8.1.3 Description of the Utilities
	8.1.4 How to Use the Utilities – Operating Modes
	8.1.5 Necessary Preparation and Provision for Matrix Expansion
	8.1.6 Single and Double precision versions of FortMP

	8.2 The Facilities Available
	8.2.1 General Facilities
	8.2.2 Matrix Facilities
	8.2.3 RIM Facilities
	8.2.4 Solution Facilities
	8.2.5 Tableau Facilities

	8.3 Specifications
	8.3.1 Arguments
	8.3.2 General Utility Specifications
	8.3.3 Matrix Utility Specifications
	8.3.4 RIM Utility Specifications
	8.3.5 Solution Utility Specifications
	8.3.6 Tableau Utility Specifications
	8.3.7 Some Notes on the Specifications

	9. The Interior Point Method for Quadratic Programming
	9.1 Statement of the QP Problem
	9.1.1 The QP Problem:- Symmetric Q form
	9.1.2 The QP problem:- Separable FF T Form
	9.1.3 Mixed Integer QP with Binary Variables

	9.2 IPM Solution Procedure
	9.2.1 Formulation
	9.2.2 Solving the System of Equations
	9.2.3 Determining the Starting Point
	9.2.4 Controls on the Predictor-Corrector Algorithm for QP

	9.3 Input Data Layout
	9.3.1 Matrix Input for the symmetric Q form
	9.3.2 Matrix Input for the separable FF T form

	9.4 Worked Example
	9.4.1 Worked example using the Q form
	9.4.2 Worked example using FF T form

	9.5 Branch and Bound Algorithm for MIQP
	9.5.1 Sub-problem Solution
	9.5.2 Simplified Tree
	9.5.3 User Controls

	9.6 Summary of SPECS Commands
	9.6.1 Controls for IPM
	9.6.2 Controls for Branch and Bound

	10. Advanced Starting Bases
	10.1 Introduction
	10.2 Primary CRASH Algorithms
	10.2.1 Basic CRASH Procedure
	10.2.2 CRASH(LTSF)
	10.2.3 CRASH(ART)
	10.2.4 CRASH(ADG)
	10.2.5 User Controls
	10.2.6 Logged Output from CRASH

	10.3 Crossover Algorithms: Purify and Basis Recovery
	10.3.1 Introduction to Crossover
	10.3.2 The Push Algorithms
	10.3.3 The starting CRASH
	10.3.4 User Controls
	10.3.5 Logged Output from Crossover Algorithms

	10.4 Iterative Crash Algorithm
	10.4.1 Introduction to CRASH(SOR)
	10.4.2 The iterative SOR procedure
	10.4.3 Crossover
	10.4.4 User Controls
	10.4.5 Logged Output from the SOR algorithm

	10.5 Summary of SPECS Commands
	10.5.1 Primary Crash Commands
	10.5.2 Crossover Commands
	10.5.3 SOR Commands

	APPENDIX A: Input/Output Data Layouts
	A1. MPS-form data layouts
	A1.1 MPS Layout for LP and MIP problem data
	A1.2 Marker data for Binary, Integer and SOS specification
	A1.3 MPS-format of external BASIS data (input or output)

	A2. Free-form Layout and Long Names
	A2.1 Free-form input layout
	A2.2 Name length

	A3. Tabular Layouts (MG/RW interface)
	A3.1 Tabular input layout
	A3.2 Tabular output layouts

	A4. MIP AGENDA Layouts
	A4.1 Standard, named agenda layout
	A4.2 Listed, un-named agenda layout

	APPENDIX B: SPECS Commands
	B1. Syntax
	B1.1 Meta-syntax
	B1.2 Simplification and abbreviation
	B1.3 BEGIN and END commands
	B1.4 Commentary

	B2. Command descriptions
	B2.1 Model name and data file names
	B2.2 Input type and problem selection
	B2.3 Choice of main algorithm
	B2.4 Maximum limits
	B2.5 Save and restart commands
	B2.6 SSX controls:- algorithmic
	B2.7 SSX controls:- parameters
	B2.8 IPM controls:- algorithmic
	B2.9 IPM controls:- parameters
	B2.10 MIP controls:- algorithmic
	B2.11 MIP controls:- parameters
	B2.12 Minor algorithm controls
	B2.13 Log level and frequency
	B2.14 Output controls
	B2.15 Limits for cut-generation and matrix extension

	B3. Alphabetical list of commands

	APPENDIX E: C-Language Usage
	E1. Mixed C/Fortran Usage on PC-WIN32 Platforms
	E1.1 Entry-point Names
	E1.2 Argument lists
	E1.3 Function Calls

