

FortMP Manual

Last Update
23 April 2008

i

Manual Prepared by

E F D Ellison
M Hajian
H Jones
R Levkovitz
I Maros
G Mitra
D Sayers (NAG Ltd)

i

Preface to Release 2

A) Changes Made Since Release 1

Many improvements have been made throughout the system and new features have been introduced.
The major new features introduced are in the input, in Mixed Integer Programming, and in the Callable
Library (external data interface) as follows:

Input Data

Standard data input is extended by new features permitting free-form layout and long data names,
enlarged from 8 to 16 characters.

Mixed Integer Programming

MIP has been substantially revised in order to permit addition of advanced new methods and to solve
models irrespective of the limitations imposed by maximum storage constraints. A system for recovery
of 'dead' space enables large search trees to be developed with comparatively little memory.

A powerful algorithm for MIP pre-processing has been added with substantial time improvement in the
solution of many MIP problems.

A feature has been added for the users to classify the MIP constraint-types in their models.

Callable Library and External Data Interface

Many users of External Data Interface - module SUBMP1 - have been obliged to write their own data
input procedures based on MPS-form data layout. The detailed checking and more complex features
are usually omitted as a consequence. Now there is a new input feature available which reads from
MPS-form or from any other FortMP data form and makes the data available to a user via the external
data interface in the same layout as that used for passing data to SUBMP1. Features are added to
enable users to look up names or classes of name so that they can program according to the data
structure.

Miscellaneous additions

In the PRIMAL algorithm a weighted column-selection procedure (DEVEX) has been added as an
option (good for some models).

In the DUAL algorithm a pivot-choice to counter degeneracy has been added as an option.

In the IPM algorithm the chances of instability occurring are greatly reduced by Conjugate Gradient
iterations added as a refinement to the main iterative process.

ii

The crossover from IPM to SSX (basis recovery or BASREC) has been substantially improved and no
longer extends solution-time by a large amount.

Internal data interfacing routines are augmented by facilities to access the updated tableau.

Research programs

Newly developed algorithms include Quadratic Programming, Stochastic Programming, and a suite of
CUT generating procedures for MIP. These are not yet a part of the standard FortMP release but may
be made available on application to the developers.

B) Changes Made In This Manual

A variety of minor corrections have been put in which are not described here. Significant changes are
described - chapter by chapter

Chapter 1:- Introduction and background

This chapter is not changed

Chapter 2:- Elementary use of FortMP

This chapter is not changed

Chapter 3:- Overview of the Stand-Alone FortMP System

3.1 Introduction and overview

3.1.1 The algorithms employed

Mention is added of supporting algorithms:

BASREC (IPM-SSX crossover)
MIP Pre-processor

3.1.5 Overall structure of the system

The diagram, Figure 3, is amended to include:

+-- -------+
¦ (Postsolve) ¦
+----------+

following 'Primal'.

iii

3.2 Data Preparation

The existing section 3.2.3 is renumbered as 3.2.4 and a new section 3.2.3 is added

3.2.3 Free Format MPS and Long Data Names

This newly added section introduces commands:

INPUT TYPE FREE
INPUT LONG NAMES

and describes the corresponding changes in MPS-form input.

3.2.4 Other types of input data

Previously this was section 3.2.3

3.3 Running the System

3.3.4 Running Mixed Integer

The following new commands are described here:

MIP PREPROCESS <ON/OFF>
MIP PRIORITY UP <ON/OFF>

introducing new features together with:

MAXIMUM MIP NODES = n
MAXIMUM MIP TIME = v

introducing new limits, and

NODE LOG FREQUENCY = n

to provide for reduced volume of node logging

3.3.5 Using the PRESOLVE algorithm

Presolve level maximum is changed to 5 (new default) and the following command is added:

PRESOLVE LOG LEVEL = n

3.4 Output Descriptions

3.4.3 Log File Output

Minimum log level is now zero instead of one. Level zero suppresses all logs except for error messages.

The following new command is described:

iv

LOG DISPLAY LEVEL = n

and the description of ‘LOG DISPLAY’ commands is clarified.

3.4.4 Suppressing Output

This is a new section describing how to avoid unnecessary output.

The following new commands are described:

OUTPUT <ON/OFF>
OUTPUT SUPPRESS ZERO

3.5 Further Topics

3.5.1 Saving and Restarting

Default frequencies are changed. Frequency 0 (zero) has the effect of cancelling SAVE's.

3.6 Input and Output Files in FortMP

The list of internal files and their extensions is amended

3.7 Errors and Recovery

3.7.1 Data Errors

Up to 50 data errors before halting.

3.7.3 Numerical Difficulties and Instability

Dual infeasibility or unrecoverable numerical error in the DUAL algorithm result in a revert to the primal
algorithm.

3.8 Summary of SPECS Commands

The new commands mentioned above are added to this section.

Chapter 4:- Sparse Simplex (SSX) Solver

4.6 SSX Algorithm Controls

4.6.1 The Principal controls

The following enhancements are described

- DEVEX algorithm (description in 4.3.2)
- Automatic Forrest-Tomlin activation
- Dual anti-degeneracy procedures (description in 4.4)

v

The following commands are added:-

PRIMAL DEVEX <ON/OFF/SINGLE/DOUBLE>
FORTOM AUTO
DUAL ADEGEN = n

together with descriptions.

4.6.3 Tolerances and other parameters

The title of this section is extended to include 'parameters'

The following commands to change tolerances and parameters are specified:

PRIMAL DEVEX RATIO = v
FORTOM ACTIVATE PERCENT = n
FORTOM ACTIVATE GROWTH = n
DPROGRESS CRITERION = v
DPROGRESS FREQUENCY = n
DUAL PIVOT THRESHOLD = v

4.6.6 Miscellaneous Controls

Log levels are now 0-4, default is 1.

4.7 Summary of SPECS Commands

This section is reduced to summarise only the commands described in chapter 4. Reference is made to
3.8 for the previous summary and to appendix B for the complete list.

Chapter 5:- The Interior Point Method

5.2 Controls on the IPM Algorithms

The existing section 5.2.4 is deleted and replaced by the new section 5.2.4 described below

5.2.1 Using the Algorithms

The default for 'IPM RELATIVE EPSILON' is changed to 1.0e-9.

5.2.3 Choice of Solution Algorithm for the Equations

The default for 'IPM SOLVER' is changed to 'XSUPERNODE'. Also the following new command is
described:

IPM TOFIX = v

5.2.4 Refinement by Conjugate Gradient Iterations

vi

Describes how CG iterations are used to improve the accuracy of each iteration. The following controls
are specified:

CHOLESKY CG TOLERANCE = v
CHOLESKY ERROR TOLERANCE = v
MAXIMUM CG ITERATIONS = n

5.2.5 IPM Save and Restart: Iteration Limit

Default SAVE frequency is increased

5.2.6 IPM-SSX Crossover Options: BASREC

The following new command is described:

DUAL PUSH <ON/OFF>

5.2.7 Miscellaneous IPM Commands

The following new commands are described:

PUSH LOG FREQUENCY = n
PUSH LOG LEVEL = n

Save-files model.a/b/c/d are described for graphical output display.

5.3 Summary of SPECS Commands

This section is reduced to summarise only the commands described in chapter 5. Reference is made to
3.8 for the previous summary and to appendix B for the complete list.

Chapter 6:- Mixed Integer Programming (MIP)

This chapter has been extensively re-written and the text cannot realistically be correlated with chapter 6
of release 1. The general description of MIP remains with certain corrections to clarify the meaning and
the data input is unchanged in outline but with the example presented differently.

Section 6.6 described the new version of FIXMIX and PRIORITY features - now changed and made
more flexible. The AUTO-ROUND feature is also changed - see 6.8.1

Elsewhere the reader will find additions as follows:

- UP node-choice priority feature (6.5.3)
- AGENDA data given by name (6.6.3)
- FIXMIX output feature (6.6.4)
- Advanced algorithms (6.7)

vii

- Cutoff controls (6.8.2)
- New search limits (6.8.3)

Because of memory savings made, the MIP DISK feature is no longer used.

Chapter 7:- FortMP Subroutine Library and External Data Interface

The existing release 1 features described in Chapter 7 are retained as before (7.1 and 7.2) with certain
improvements to the text.

Readers should note the change in specification for REAL-type arguments which become DOUBLE
PRECISION in the new release standard version (see 7.2.3). Special versions using single precision
(REAL) arguments can be delivered to customers who need compatibility with their existing programs.

The new interface features are described in sections 7.3 to 7.6 and a summary is given in 7.7.

Chapter 8:- Data Interfacing Service Utilities

Most of the material in this chapter is unchanged from release 1. Readers should note the change in
specification for REAL-type arguments which become DOUBLE PRECISION in the new release
standard version (see 8.1.6). With double precision the criterion for infinite bounds is increased (see
8.3.7 notes 4. and 5.)

Subroutines GTABLR and GTABLC are added to enable user to obtain vectors from the updated
tableau after execution of PRIMAL or DUAL algorithm (see 8.1.2, 8.1.3, 8.1.4, 8.2.4 and 8.3.5 with
arguments added to 8.3.1).

A change is added to mixed integer type-codes to enable users to recognise the beginning of each SOS
(see description of MIT in 8.3.1)

Appendices

Chapter 9 of release 1 has been re-cast as appendices to allow addition of new chapters in the future.

Included in Appendix A (Input/Output Data Layouts) is the detailed specification of newly added free-
format input and long data names, together with the layout of MIP Agenda files.

Appendix B (SPECS Commands - formerly section 9.3) is thoroughly revised and brought up to date
with all commands, including minor commands not described before in the manual. This appendix acts
as an index, giving references to those sections of the manual where a command is described.

viii

Preface to Release 3

A) Changes Made Since Release 2

General Improvements

Release 3 of FortmP (March 1999) is provided with means to adapt its memory usage dynamically to
the size of the problem being solved. It will no longer require user to specify machine-size or problem-
size in order to have a version specially tailored.

Two versions now cover the needs of virtually all users:

DS Double precision, Short Indexing for problems with no more than 32k constraints

DL Double precision, Long Indexing for larger constraint-size (virtually unlimited).

Single precision versions are also available but their use is not recommended in view of the loss of
accuracy.

Memory adaptation is now available also for parallel versions and for calling as a DLL from other
systems such as MPL. Standard subroutine libraries are delivered replacing separate modules.

Input Data Modelling

A better integration with the MPL modelling system has been developed permitting direct, internal
communication of files, and with a dialogue developed for the entry of SPECS commands (Appendix
D).

Primal Algorithm

New procedures are added to facilitate research, particularly in connection with parallel execution
(Appendices F, H).

Dual Algorithm

Dual Phase I has been added together with better control of numerical accuracy and additional SPECS
controls (Sections 4.4, 4.6.7).

Mixed Integer Programming

An auto-rounding heuristic feature has been developed with consequent changes to its previous
description in Release 2 (Section 6.8.1).

Extensions have been added to the cutoff controls (Section 6.8.3).

ix

Internal Specs Communication

New features are now available for the subroutine library user to simplify the preparation of SPECS
commands by including common sections that are read by all calls to the solver (Section 7.4.4).

Quadratic Programming

The chapter on QP is added to this manual (Chapter 9). FortMP-QP is an IPM based solver for
convex quadratic objectives (Q-matrix positive semi-definite). It has been extended to solve integer QP
using a branch and bound algorithm.

'CRASH' Features

The special CRASH(SOR) feature is added in this manual together with other CRASH extensions
(Chapter 10).

New Appendices

New appendices are added as follows:

- Appendix C on installation procedures
- Appendix D on modelling systems
- Appendix E on C-language usage
- Appendix F on parallel execution
- Appendix G on memory management
- Appendix H on special testing and other miscellaneous extras.

B) Changes Made In This Manual

A variety of minor corrections have been put in which are not described here. Significant changes are
described - chapter by chapter

Chapter 1:- Introduction and background

A statement of the QP problem is added (Section 1.7) with introduction (Section 1.1) and reference to
the author (Section 1.2). New platforms are mentioned (Section 1.6).

Chapter 2:- Elementary use of FortMP

This chapter is not changed

Chapter 3:- Overview of the Stand-Alone FortMP System

3.7.4 Running Out of Memory

This section is re-written

x

Chapter 4:- Sparse Simplex (SSX) Solver

4.3 PRIMAL Algorithm

4.3.2 Column Selection

Additional column selection procedures are mentioned

4.4 DUAL Algorithm

This section has been re-written and considerabley enlarged, with sub-sections corresponding to those
of the PRIMAL algorithm - section 4.3.

4.6 SSX Algorithm Controls

4.6.1 The Principal controls

'DUAL DEVEX' controls are added and the 'DOUBLE' option for primal devex now has a new
meaning:- apply DEVEX in phase 1.

4.6.3 Tolerances and Parameters

The pivot-control commands are changed so as to be less confusing and to provide separate PRIMAL,
DUAL and INVERT application. New commands specified in section 4.6.7 complete the picture.

4.6.7 Special Pivoting and Update Commands

This section is added so as to describe additional new commands.

4.7 Summary of SPECS Commands

Revised to incorporate the earlier corrections and additions.

Chapter 5:- The Interior Point Method

This chapter is not changed.

Chapter 6:- Mixed Integer Programming (MIP)

6.8 Miscellaneous MIP Controls

6.8.1 Automatic Rounding Heuristics

This section is re-written. Auto-rounding is now re-designed as a heuristic for finding integer solutions
quickly, before the main tree is developed. 'PROBE' rounding is discontinued.

6.8.2 Cutoff and Tolerance Control

xi

New controls on the bound and the cutoff tolerance are added and a more complete description is
given.

6.8.3 Placing Limits on the Tree Search

'MAXIMUM' controls are added for the auto-rounding heuristic.

6.11 Summary of MIP SPECS Commands

Revised to incorporate the earlier corrections and additions.

Chapter 7:- FortMP Subroutine Library and External Data Interface

7.2 External Data Interface

7.2.5 An Example

'MAXIMIZE' is added to the sample SPECS-commands. This was an error in the previous version.

7.4 Internal SPECS Commands

7.4.2 Once-off Entry of SPECS Commands

The specification of 'CALL SPCINT' is corrected.

7.4.3 Default Initialization

The wording of this section is clarified

7.4.4 Common Sections in the SPECS file

This is a newly added section describing the use of 'ALL' and 'DEFAULT' sections.

Chapter 8:- Data Interfacing Service Utilities

This chapter is not changed

Chapter 9:- The Interior Point Method for Quadratic Programming

Newly added chapter.

Chapter 10:- Advanced Starting Bases

Newly added chapter.

Appendix A:- Input/Output Data Layouts

This appendix is not changed

Appendix B:- SPECS Commands

xii

B1.3 BEGIN and END Commands

Revised to include description of 'ALL' and 'DEFAULT' sections

B2.4 Maximum Limits

Controls limiting the auto-rounded tree search added

B2.6 SSX Controls: Algorithmic

Control 'DUAL DEVEX <ON/OFF>' added:

B2.7 SSX Controls: Parameters

Pivot tolerance controls changed - separate versions introduced for Primal, Dual and Invert.

New controls added for numerical accuracy and checking.

B2.10 MIP Controls: Algorithmic

New control 'MIP AROUND SOLVER <SSX/IPM>' added. 'MIP PROBE ROUNDING'
is deleted.

B2.11 MIP Controls: Parameters

Bound and Cutoff controls extended.

New Appendices Added

- Appendix C on installation procedures
- Appendix D on modelling systems
- Appendix E on C-language usage
- Appendix F on parallel execution
- Appendix G on memory management
- Appendix H on special testing and other miscellaneous extras.

xiii

Contents

1. Introduction and Background I-1

1.1 Introduction I-2

1.2 Background I-2

1.3 Scope and Purpose I-3

1.4 Related Documents I-4

1.5 Outline I-4

1.6 Platforms I-4

1.7 Statement of the Definitive Problem I-5

1.8 References I-8

PART 1

2. Elementary Use of FortMP II-1

2.1 Initial Tutorial II-2

2.2 Simple Controls II-9

2.3 Additional Data Preparation Features II-11

2.4 An Example: Binary and Integer Variables II-15

2.5 Summary of SPECS File Controls II-19

PART 2

3. Overview of the Stand-alone FortMP System III-1

3.1 Introduction and Overview III-2

3.2 Data Preparation III-7

3.3 Running the System III-10

3.4 Output Descriptions III-14

3.5 Further Topics III-16

3.6 Input and Output Files in FortMP III-18

3.7 Errors and Recovery III-19

3.8 Summary of SPECS Commands III-22

4. Sparse Simplex (SSX) Solver IV-1

4.1 Internal Problem Statement IV-2

4.2 Introduction to the Algorithms IV-4

4.3 PRIMAL Algorithm IV-4

xiv

4.4 DUAL Algorithm IV-9

4.5 INVERT IV-10

4.6 SSX Algorithm Controls IV-11

4.7 Summary of SPECS Commands IV-17

5. The Interior Point Method V-1

5.1 Introduction to the IPM Algorithm V-2

5.2 Controls on the IPM Algorithms V-7

5.3 Summary of SPECS Commands V-13

6. Mixed Integer Programming (MIP) VI-1

6.1 Introduction to MIP VI-3

6.2 MIP Problem, Data Types and problem definition VI-4

6.3 MIP Data Preparation: Marker Lines VI-12

6.4 Branch and Bound Algorithm VI-19

6.5 Controlling the Tree Development VI-22

6.6 Detailed User-control of the Tree Search VI-25

6.7 Advanced Algorithms for MIP VI-30

6.8 Miscellaneous MIP Controls VI-34

6.9 Logged Output and Screen Dispolay VI-39

6.10 MIP Constraint Classification VI-41

6.11 Summary of MIP SPECS Commands VI-48

PART 3

7. FortMP Subroutine Library and External Data Interface VII-1

7.1 Using FortMP as a Subsystem to Solve Linear Problems VII-2

7.2 External Data Interface VII-7

7.3 Standard Data Input to the Interface VII-18

7.4 Internal SPECS Commands VII-23

7.5 How to Avoid Miscellaneous I/O VII-25

7.6 MPS-form Output VII-27

7.7 Summary of Callable Library, External Data Interface and associated commands VII-28

8. Internal Data Interfacing Service Utilities VIII-1

8.1 Introduction to the Data Interfacing Service Utilities VIII-2

8.2 The Facilities Available VIII-6

8.3 Specifications VIII-8

xv

PART 4

9. The Interior Point Method for Quadratic Programming IX-1

9.1 Statement of the QP Problem IX-2

9.2 IPM Solution Procedure IX-4

9.3 Input Data Layout IX-7

9.4 Worked Examples IX-10

9.5 Branch and Bound Algoritghm for MIQP IX-18

9.6 Summary of SPECS Commands IX-20

10. Advanced Starting Bases X-1

10.1 Introduction X-2

10.2 Primary Crash Algorithm X-3

10.3 Crossover Algorithms: Purify and Basis Recovery X-6

10.4 Iterative Crash Algorithm X-9

10.5 Summary of SPECS Commands X-12

APPENDICES

Appendix A. Input/Output Data Layouts A-1

A1. Mps-Form Data Layouts A-2

A2. Free-Form Layout and Long Names A-17

A3. Tabular Layouts (MG/RW Interface) A-21

A4. MIP Agenda Layouts A-27

Appendix B. SPECS Commands B-1

B1. Syntax B-3

B2. Command Descriptions B-5

B3. Alphabetic List of Commands B-22

xvi

(This page intentionally left blank)

I-1

1. Introduction and Background

Contents

1. INTRODUCTION AND BACKGROUND 1

1.1 Introduction 2

1.2 Background 2

1.3 Scope and Purpose 3

1.4 Related Documents 4

1.5 Outline 4

1.6 Platforms 5

1.7 Statement of the Definitive Problem 5

1.8 References 8

I-2

1.1 Introduction

FortMP is a Mathematical Programming system designed to solve large scale Linear Programming (LP),
Quadratic Programming (QP), Integer Programming (IP) and variable separable programming including
special ordered sets of Type 1 and Type 2 (SOS1 and SOS2) problems. It has been developed at
Brunel University by the Mathematical Programming Research Group headed by Professor G Mitra,
and is marketed by NAG Ltd.

FortMP is used in Management Science or Operations Research and covers applications such as
transportation, chemical engineering product blending, economic modelling, energy systems and
networks. In short, most industrial applications or research problems involving linear or discrete
optimisation are handled by this system.

The main algorithms used by FortMP are the Sparse Simplex (SSX) PRIMAL and DUAL algorithms.
These are supplemented for large problems or QP problems by alternative Interior Point Method (IPM)
algorithms (Barrier, Affine and Predictor-Corrector) based on the Primal-Dual Logarithmic Barrier
Method. Mixed Integer Programming (MIP) problems (including SOS1 and SOS2) are solved using a
Branch and Bound tree search algorithm.

Back to Chapter contents

1.2 Background

FortMP is an update of the FortLP system and has been developed through continuing research at the
Department of Mathematics and Statistics, Brunel University, under the leadership of Professor Gautam
Mitra. A number of funding bodies and industrial partners have supported this research. The Science
and Engineering Research Council of the UK and the Department of Trade and Industry UK have
funded some of the research and development work. NAG Ltd has been an active collaborator on this
project since 1985. Other industrial organisations whose funding and contributions have helped this
development include Digital Equipment Corporation’s European research initiative, British Gas plc,
Parsytec Ltd and the US Army’s European Research Office.

A number of people have worked at various stages of this project. Some of the work on inversion was
started by Dr K Darby-Dowman [10] and was extended by Dr M Tamiz in his PhD as well as his
postdoctoral work [11], [12]. The Interior Point Method was developed by Dr R Levkovitz
[13] during and after his PhD work. Dr R Levkovitz has also helped in various vectorisation and
parallelisation studies [14], [19]. Most of the integer programming development is due to Dr M Hajian
[15] and the work on parallel Branch and Bound has been undertaken by M Hajian and I Hai [16] on
a cluster of workstations using PVM (Parallel Virtual Machine). Many recent algorithmic extensions to
SSX are due to Professor I Maros [17], [18] who has worked closely with the development team. Dr
H Jones has been responsible for extending the IPM algorithm to QP [25]. In integrating the interior
point method (IPM) and Sparse Simplex (SSX) and MIP, E F D Ellison has put in considerable effort.
The substantial system development effort put in by him, with the able support of all the developers, has
turned the research codes into an integrated system covering SSX, IPM and MIP running on many
platforms. Dr D Sayers of NAG has worked on many areas of the system and provided enormous

I-3

support in all aspects of system production and testing. D Winstanley at University of London Computer
Centre has implemented and tuned many versions of the system.

Back to Chapter contents

1.3 Scope and Purpose

FortMP is designed to fulfill the needs of users at different levels of sophistication: beginner, intermediate
and advanced.

This manual is therefore subdivided into three parts:

Part 1: Introductory and simple use of FortMP

This part provides a simple introductory tutorial on the use of FortMP. It is intended for users
who are not interested in the mechanics of the solution and who simply require a black box to
solve their problems.

Part 2: Intermediate level use of FortMP

In this part the major algorithmic capabilities of FortMP are explained. The material in this
section addresses the requirements of users with very large or very difficult problems who need
the stand-alone system and in addition the power to use controls that overcome the difficulties.

Knowledge of LP and IP techniques would be useful to readers in understanding this manual
and in using the stand-alone system, but is not a prerequisite.

Part 3: Advanced use of FortMP

This part describes the advanced use of the system by analysts who wish to

(i) either construct a specialist optimisation application,
or (ii) use the system as a research tool.

A typical user may have multiple problems and may wish to integrate the solver within a system
of its own in order to improve processing efficiency. For example a series of problems can be
handled making use of the solution to one problem as the starting point for the next.

In such an integration provision is made to communicate the problem data and solution by an
internal interface rather than by external files (although external files can be used). Controls can
also be supplied internally, externally or be defaulted. Research workers interested in developing
algorithms for themselves who need to make use of the internal subroutines of the FortMP
system will find this part valuable.

Back to Chapter contents

I-4

1.4 Related Documents

Users of the FortMP system are assumed to possess a basic knowledge of linear programming. In order
to access all the relevant information covering the capability, performance, installation and usage of
FortMP system, the following supporting documents should be consulted as appropriate:

1. FortMP brochure
2. This User Manual
3. Installation Guide
4. Technical Reports and Research Papers

The FortMP brochure defines the functionality and scope of use in summary form, whilst the manual is
intended to serve both as a User Guide and as a Reference Manual. The Installation Guide is intended to
help installers to implement and test the FortMP system.

A number of Technical Reports and Research Papers are listed in the reference section. These may be
valuable for investigators who wish to use FortMP as a development and research tool.

Back to Chapter contents

1.5 Outline

Part 1 of this manual comprises only Chapter 2 and explains the elementary use of FortMP. In this part
most of the concepts and controls are introduced through examples. Examples are given for solving
bounded Linear Programming (LP) and Integer Programming (IP) problems where the integer variables
have binary values or have general integer values. This is all that is needed for most users at the
elementary level.

Chapter 3 through to Chapter 6 make up Part 2, the intermediate level. Chapter 3 of this manual
introduces the solution algorithms and the advanced use of controls and also gives a description of the
printable output files, solution output and log. This introduction is expanded in Chapters 4, 5 and 6 into a
fuller description of how to use the three main algorithm groups which are Sparse Simplex (SSX),
Interior Point Method (IPM) and Mixed Integer Programming (MIP).

Chapter 7 and Chapter 8 as well as the material in the Appendix make up Part 3 of the manual.

This part is designed for experienced users such as an application developer or a research investigator
who wishes to use FortMP as a development or a research tool.

Although the definitive model is introduced in Section 1.7, it is also revisited in Part 2 of the manual.
FortMP employs an extended MPS data format; this is introduced by example in both Part 1 and Part 2
of the manual. A complete specification of the industry standard MPS data formats and also extensions
to cover SOS1, SOS2 and integer programming, is supplied in the Appendix. The emerging sparse
matrix data structure standard is also set out in this Appendix.

Back to Chapter contents

I-5

1.6 Platforms

The FortMP system is developed in a way such that it is readily adaptable to a wide range of hardware
and software environments, both serial and parallel. ANSI FORTRAN 77 is used for the widest
possible portability between systems. The following are environments for which a particular version has
been developed:

PC386/486/586 using the Salford FTN77 FORTRAN system
PC386/486/585 using the Watcom FORTRAN compiler
PC Win32 using the MS Development Studio with C compiler and Digital Fortran.
Miscellaneous UNIX based operating systems
DEC VAX systems using VMS and the VAX FORTRAN compiler
Intel I860 hardware using Microway I860 FORTRAN with automatically vectorised
subroutines
CONVEX hardware using special optimising FORTRAN compiler with vectorised subroutines
CRAY hardware using the CRAY FORTRAN compiler

The distributed material may be an executable program (for the stand-alone system) or a mixture of
compiled and source text material subroutine library. With the latter the user has the option of adapting
the memory size available to FortMP. See the Installation Guide for further details.

Back to Chapter contents

1.7 Statement of the Definitive Problem

The general linear programming problem with simple upper bounds may be stated as follows.

Given a set of n variables x x xn1 2, , ,K and a set of n corresponding constants c c cn1 2, , ,K ,
minimise (or maximise) the linear function

c x c x c xn n1 1 2 2+ + +L

subject to the following m linear constraints:

a x a x a x bi i in n i1 1 2 2+ + +L ::

for i m= 1,2, ,K

where a amn11, ,K is an m n× matrix of constant constraint coefficients and b b bm1 2, , ,K are
constant right-hand sides and where the symbol ‘:: ’ in the above represents any of the relations:

≤ less than or equal to
≥ greater than or equal to
= equal to
~ a non-binding constraint

and also subject to the following bounds:

I-6

l x u j nj j j≤ ≤ = for 1,2, ,K .

This form of problem statement is illustrated in Figure 1 below.

≤

≤

l1 l2 ln

aij

u1 u2 un

c1 c2 cn

≥
≤

=

∼

b1
b2
.
.
bm

Figure 1. General LP problem with simple upper bounds

In a problem with ‘two-sided linear’ constraints the problem statement is slightly different, as follows.

Given variables x j and constants c a l uj ij j j, , and as before, minimise (or maximise) the same

objective as before, subject to the following constraints:

L a x a x a x Ui i i in n i≤ + + + ≤1 1 2 2 L

for i m= 1,2, ,K

where L Lm1, ,K and U Ui m, ,K are constant lower and upper bounds respectively for each
constraint row. The bounds on variables x j remain as before.

This is illustrated in Figure 2 below.

I-7

c1 c2cn

u1 u2 un

L1
L2
.
.

Lm

aij

U1
U2
.
.

Um

l1 l2 ln

≤

≤≤

≤

Figure 2. General LP problem with Simple Upper Bounds and RHS ranges

It is implicit in both the above statements that wherever a bound does not exist the corresponding bound
values (, ,)u U l Lj i j i or is ± ∞ as appropriate. The user signifies each case by the use of type codes in

the input data.

In a Mixed Integer problem the following classes of nonlinear variables are allowed.

Binary variables

A binary variable has only two legal values, zero and one.

Integer variables

An integer variable may take only integer values within its given bound range, l x uj j j≤ ≤ .

Special Ordered Sets, type 1 (SOS1)

An SOS1 is a consecutive subset of variables in the problem of which only one can be non-
zero.

Special Ordered Sets, type 2 (SOS2)

An SOS2 is a consecutive subset of variables in the problem of which at most two can be non-
zero and when non-zero these two variables must be adjacent.

I-8

Semi-continuous variables

A semi-continuous variable may take the value zero or lie in the range l x uj j j≤ ≤ where

l uj j and are both positive.

The general statement of the Convex QP problem is similar to that of the general LP problem with the
following change permitting the objective to be a quadratic function

Minimize Σcj.xj + ½ΣΣqjk.xj.xk

Or:

Maximize Σcj.xj - ½ΣΣqjk.xj.xk

Summed for j and k over the range 1 to n, where the ‘qjk’ are elements of a symmetric matrix Q having
n rows and columns that is either positive definite or positive semi-definite.

The QP solver is also capable of solving problems having binary variables by applying a simplified form
of Branch and Bound.

Back to Chapter contents

1.8 References

[1] MITRA, G
Theory and Application of Mathematical Programming
Academic Press, 1976.

[2] ORCHARD-HAYES, W
Advanced Linear Programming Computing Techniques
McGraw-Hill, 1968

[3] BEALE, E M L
Mathematical Programming in Practice
Pitman, 1968

[4] MPSX – Mathematical Programming System.
Extended (MPSX), program number 5734 XM4
IBM Trade Corporation, New York, 1971.

[5] MITRA, G
Investigation of some Branch and Bound Strategies for the Solution of Mixed Integer

Linear Programs
Mathematical Programming, 4, 155–710, 1973.

I-9

[6] BENICHOU, B M et al.
Experiments in Mixed Integer Linear Programming
Mathematical Programming, 1, 76–94, 1971.

[7] FORREST, J J H and TOMLIN, J A
Updated Triangular Factors of the Basis to Maintain Sparsity in the Product Form Simplex
Method
Mathematical Programming, 3, 263–278, 1972.

[8] MITRA, G and TAMIZ, M
Alternative Methods for Representing the Inverse of Linear Programming Basis Matrices
Recent Developments in Mathematical Programming, 273–302, Edited by Santosh Kumar,
Gordon & Breach, 1989.

[9] MURTAGH, B A and SAUNDERS, M A
MINOS 5.1 User’s Guide
Technical Report SOL 83-20R, Department of Operational Research, Stanford University, 1983.

[10] DARBY-DOWMAN, K
An Investigation of Algorithms used in the Restructuring of Linear Programming Basis

Matrices Prior to Inversion
PhD Thesis, Brunel University, 1979.

[11] TAMIZ, M
Design, Implementation and Testing of a General Linear Programming System Exploiting
Sparsity
PhD Thesis, Brunel University, December 1986.

[12] TAMIZ, M and MITRA, G
FortLP: A Linear and Integer Programming System
NAG Newsletter, October 1989.

[13] LEVKOVITZ, R
An Investigation of Interior Point Methods for Large Scale Linear Programs: Theory and
Computational Algorithms
PhD Thesis, Brunel University 1992.

[14] LEVKOVITZ, R
Solving Large Scale Linear Programming Problems using an Interior Point Method on
Vector Processors
Departmental Report, Brunel University, 1993.

[15] HAJIAN, M
Computational Methods for Discrete Programming Problems
PhD Thesis, Brunel University, 1992.

I-10

[16] HAI, I, HAJIAN, M and MITRA, G
A Distributed Processing Algorithm for Solving Integer Programs using a Cluster of
Workstations
To appear in Parallel Computing, Elsevier Press, 1997

[17] MAROS, I
A General Phase-I Method in Linear Programming
European Journal of Operational Research, 23, 64–77, 1986.

[18] MAROS, I
Adaptivity in Linear Programming, II, (in Hungarian),
Alkalmazott Matematikai Lapok (Journal of Applied Mathematics, Budapest) 7, 1–71,
1981.

[19] LEVKOVITZ, R and MITRA, G
Solution of Large-scale Linear Programs: A Review of Hardware, Software and
Algorithmic Issues
Optimisation in Industry, 1993.

[20] MAROS, I and MITRA, G
Recent advances in Linear and Integer Programming
From ‘Simplex Algorithms’, Chapter 1 (Oxford University Press, editor: J.BEASLEY).

[21] MAROS, I and MITRA, G
Strategies for Creating Advanced Bases for Large Scale Linear Programming Problems
INFORMS Journal on Computing, USA (submitted, now under revision).

[22] FORREST, J J H, HIRST, J P H and TOMLIN, J A
Practical Solutions of Large Mixed Integer Programming Problems with UPMPIRE
Management Science, 20(5), 1974, pp736-773.

[23] GAUTHIER, J M and RIBIERE, G
Experiments in Mixed Integer Programming using Pseudo-Costs
Mathematical Programming, 12, 1977, pp26-47.

[24] HAJIAN, M T and MITRA, G
Design Implementation and Testing of an Integrated Branch and Bound Algorithm for
Piece-wise Linear and Discrete Programming Problems within an LP Framework
Departmental Report, Brunel University 1991.

[25] Jones, H
IPM Solution of the Convex QP Problem, Chapter 8 of: A computational Investigation of the
Solution of Large Scale Optimization Problems
PhD Thesis, Brunel University 1997.

Back to Chapter contents

II-1

2. Elementary Use of FortMP

Contents

2. ELEMENTARY USE OF FORTMP 1

2.1 Initial Tutorial 2
2.1.1 LP Modelling 2
2.1.2 Elementary Data Preparation 2
2.1.3 Simple Use of FortMP 7
2.1.4 The Complete Example 7

2.2 Simple Controls 9
2.2.1 The SPECS Controls 9
2.2.2 Controlling the Input and the Output 9
2.2.3 Additional Useful Controls 10

2.3 Additional Data Preparation Features 11

2.4 An Example: Binary and Integer Variables 15

2.5 Summary of SPECS File Controls 20

II-2

2.1 Initial Tutorial

2.1.1 LP Modelling

The following is a simple example of a problem that has been modelled for solution by an LP system.

Minimize the cost function:

4 6 5 16 2 51 2 3 4 5 6 7x x x x x x x+ + + + + +

subject to the following constraints:

x x1 6 2+ =
x x1 23 5+ =

2 3 43 4x x+ =
x x x x x1 2 3 4 54 11+ + + + =

x x x x x x x1 2 3 4 5 6 72 2 3 2 14+ + + + + + =

and to the following bounds:

0 5 1. ≤ x
0 5 2. ≤ x

0 0 1 03. .≤ ≤x
x4 10= .

0 0 6 05. .≤ ≤x
10 7. ≤ x

Back to Chapter contents

2.1.2 Elementary Data Preparation

Data such as the above is entered by using a standardised layout, widely accepted as the norm for LP
systems, which is referred to as MPS format. In Appendix A1.1 there is given a proforma layout for
MPS data entry forms and these forms provide the simplest way to code problem data such as the
above.

Data is in five sections: ROWS section, COLUMNS section, RHS section, RANGES section (optional,
not used in the example) and BOUNDS section (optional).

In the ROWS section each constraint row including the objective row is named and its type is specified.
The ROWS section of the example may be encoded as in Table 1 below.

II-3

Field 1
2—3

Field 2
5—12

Field 3
15—22

Field 4
25—36

Field 5
40—47

Field 6
50—61

N COST ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

EQ R1 ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

EQ R2 ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

EQ R3 ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

EQ R4 ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

EQ R5 ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

Field 1, Row type:
LE = Less than or Equal GE = Greater than or Equal
EQ = Equal N = Non-binding (objective)

Field 2, Row name

Table 1. The ROWS Section

In the COLUMNS section the coefficient values on the left-hand side of the constraints is given plus the
objective row coefficients. Only non-zero values need to be entered. The sequence of entry is column-
wise, that is all the values for one column (or variable) must be kept together. The COLUMNS section
of the example may be encoded as in Table 2 below.

II-4

Field 1
2—3

Field 2
5—12

Field 3
15—22

Field 4
25—36

Field 5
40—47

Field 6
50—61

¦¦¦¦¦¦¦¦ X1 COST 4.0 R1 1.0

¦¦¦¦¦¦¦¦ X1 R2 1.0 R4 1.0

¦¦¦¦¦¦¦¦ X1 R5 1.0

¦¦¦¦¦¦¦¦ X2 COST 6.0 R2 3.0

¦¦¦¦¦¦¦¦ X2 R4 1.0 R5 2.0

¦¦¦¦¦¦¦¦ X3 COST 5.0 R3 2.0

¦¦¦¦¦¦¦¦ X3 R4 1.0 R5 2.0

¦¦¦¦¦¦¦¦ X4 COST 16.0 R3 3.0

¦¦¦¦¦¦¦¦ X4 R4 4.0 R5 3.0

¦¦¦¦¦¦¦¦ X5 COST 2.0 R4 1.0

¦¦¦¦¦¦¦¦ X5 R5 1.0

¦¦¦¦¦¦¦¦ X6 COST 5.0 R1 1.0

¦¦¦¦¦¦¦¦ X6 R5 2.0

¦¦¦¦¦¦¦¦ X7 COST 1.0 R5 1.0

Field 2, Column name
Field 3, Row name Field 4, Value
Field 5, Row name Field 6, Value

Table 2. The COLUMNS Section

Note that a column is never split up with data from another column in between. Records may hold one
or two entries at will; if there is only one entry then fields 5 and 6 are left blank. The order of rows within
a column is immaterial.

In the RHS section right-hand side values are entered in the same way as the values of the COLUMNS
section. The column name in field 2 is replaced by a name for the RHS itself. The RHS section of the
example may be encoded as in Table 3 below.

II-5

Field 1
2—3

Field 2
5—12

Field 3
15—22

Field 4
25—36

Field 5
40—47

Field 6
50—61

¦¦¦¦¦¦¦¦ RHS R1 2.0 R2 5.0

¦¦¦¦¦¦¦¦ RHS R3 4.0 R4 11.0

¦¦¦¦¦¦¦¦ RHS R5 14.0

Field 2, RHS set name
Field 3, Row name Field 4, Value
Field 5, Row name Field 6, Value

Table 3. The RHS Section

In the BOUNDS section each non-zero bound value must be given singly. Field 3 here names the
column (variable) to which the bound applies and field 2 names the bound-set. In field 1 a code is
entered to specify the bound type. The BOUNDS section of the example may be encoded as in Table
4.

II-6

Field 1
2—3

Field 2
5—12

Field 3
15—22

Field 4
25—36

Field 5
40—47

Field 6
50—61

LO BND X1 0.5 ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

LO BND X2 0.5 ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

UP BND X3 1.0 ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

FX BND X4 1.0 ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

UP BND X5 6.0 ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

LO BND X7 1.0 ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

Field 1, Bound type code
LO = Lower bound UP = Upper bound
FX = Fixed value FR = Free variable
MI = Minus type PL = Plus type (default)
LI = Integer variable, lower bound UI = Integer variable, upper bound
BV = Binary variable SC = Semi-continuous, upper bound

Field 2, Bound set name

Field 3, Column name

Field 4, Value

Table 4. The BOUNDS Section

Note that in all the above tables, names are entered at the left of their fields while values are
entered at the right. In fact values need not be coded to the right so long as the decimal point
appears but it is better to stick to this convention anyway.

At the beginning of the data there is a ‘NAME’ record which has the keyword ‘NAME’ in positions 1–
4 and a model name of up to 8 characters in field 3.

Each section is headed by an indicator record comprising the section name beginning at position 1.

II-7

After the last data record in the last section there is an indicator record having ‘ENDATA’ in positions
1–6.

The complete file of input data in MPS format is illustrated in Table 5.

Back to Chapter contents

2.1.3 Simple Use of FortMP

To execute the stand-alone FortMP system and solve this example the following preparations are made.

The input data is placed in a file named ‘MODEL.MPS’.
A set of control commands known as ‘SPECS controls’ or as ‘SPECS commands’ is placed in
a file named ‘FORTMP.SPC’.

No special controls are needed to solve the simple example but the file FORTMP.SPC should contain
the following two commands as a minimum:

BEGIN
END

With this all controls are set to default values and the input and output files are named by default to be

MODEL.MPS The input data file in MPS format.
MODEL.RES The solution output file.

With the two input files in place it is only necessary to execute the stand-alone FortMP program in order
to solve the problem and obtain the outputs.

Back to Chapter contents

2.1.4 The Complete Example

The input, the SPECS controls and the solution output for the complete example set out in Section 2.1.1
are given in Table 5, Table 6 and Table 7 below.
NAME TESTIN
ROWS
 N COST
 EQ R1
 EQ R2
 EQ R3
 EQ R4
 EQ R5
COLUMNS
 X1 COST 4.0 R1 1.0
 X1 R2 1.0 R4 1.0
 X1 R5 1.0
 X2 COST 6.0 R2 3.0
 X2 R4 1.0 R5 2.0
 X3 COST 5.0 R3 2.0
 X3 R4 1.0 R5 2.0

II-8

 X4 COST 16.0 R3 3.0
 X4 R4 4.0 R5 3.0
 X5 COST 2.0 R4 1.0
 X5 R5 1.0
 X6 COST 5.0 R1 1.0
 X6 R5 2.0
 X7 COST 1.0 R5 1.0
RHS
 RHS R1 2.0 R2 5.0
 RHS R3 4.0 R4 11.0
 RHS R5 14.0
BOUNDS
 LO BND X1 0.5
 LO BND X2 0.5
 UP BND X3 1.0
 FX BND X4 1.0
 UP BND X5 6.0
 LO BND X7 1.0
ENDATA

Table 5. Simple example: Problem data in file MODEL.MPS

BEGIN
END

Table 6. Simple example: SPECS controls in file FORTMP.SPC

FORTMP SOLUTION REPORT: (TOTAL ITERATIONS= 2)
 LP: OPTIMAL
 IP: NONE
 PROBLEM NAME = TESTIN
 OBJECTIVE NAME = COST
 RHS NAME = RHS
 BOUNDS NAME = BND
 MROW = 6
 NCOL = 7
 LP OPTIMUM VALUE = 0.420000D+02

 COLUMNS.......STRUCTURAL VARIABLES

 NO STATE NAME VALUE LOWER BND UPPER BND REDUCED
COST
 1 B X1 2. 0.5 NONE 0.
 2 B X2 1. 0.5 NONE 0.
 3 B X3 0.5 0. 1. 0.
 4 F X4 1. 1. 1. 6.
 5 B X5 3.5 0. 6. 0.
 6 L X6 0. 0. NONE 2.
 7 B X7 2.5 1. NONE 0.

 ROWS..........LOGICAL VARIABLES

 NO STATE NAME ROW VALUE LOWER RHS UPPER RHS SHADOW PRICE
 1 B COST 42. NONE NONE 1.
 2 F R1 2. 2. 2. -1.

II-9

 3 F R2 5. 5. 5. -1.
 4 F R3 4. 4. 4. -1.
 5 F R4 11. 11. 11. -1.
 6 F R5 14. 14. 14. -1.

Table 7. Simple example: Solution output

Back to Chapter contents

2.2 Simple Controls

2.2.1 The SPECS Controls

The file named FORTMP.SPC provides the FortMP system with the controls that it needs to execute a
run. In principle no controls are strictly necessary provided that the input data is in MPS format and
resides in the file MODEL.MPS. However, the user will most probably wish to change the filenames for
a run and may need to change other defaults as well.

Controls which change the default settings are referred to as SPECS commands or as SPECS controls.
Each command is presented on one line comprising one or more keywords followed, where needed, by
the appropriate data. Examples are:

MODEL NAME (testin)
MAXIMIZE
PRESOLVE ON
FEASIBILITY TOLERANCE = 1.0d-6
INVERT FREQUENCY = 75

The SPECS commands are listed on the FORTMP.SPC file between the indicator lines

BEGIN
END

which delimit the active part of the file.

Back to Chapter contents

2.2.2 Controlling the Input and the Output

The input and output file names can be changed by the following commands:

INPUT FILE NAME (filename)
OUTPUT FILE NAME (filename)
LOG FILE NAME (filename)

with the desired name for each file placed between the parentheses. However, it is not usually necessary
to use these commands because it is easier to use default names.

By default these filenames are

model.mps

II-10

model.res
model.log

where ‘model’ is a name of up to 8 characters which can itself be changed by the following command:

MODEL NAME (modname)

With this one command default names are assigned to all input and output files by adding the appropriate
extension after ‘modname’. Specific names for individual files need to be changed only when necessary.

Back to Chapter contents

2.2.3 Additional Useful Controls

The following commands set the direction of optimisation for the objective function:

MAXIMIZE
MINIMIZE

The default is MINIMIZE

The commands given below alter the default algorithms applied in the solution.

PRESOLVE ON
The PRESOLVE algorithm examines for any possible reductions and simplifications that may be applied
directly to the problem. It should be fairly easy for the user to experiment with its use in order to decide
whether solution times can be improved in this way.

SCALE OFF
SCALE is an algorithm that applies factors to the rows and columns of the constraint matrix in order to
reduce the extremes of variation in the values of coefficients which may cause numerical difficulties in
solution algorithms.

ALGORITHM IPM
The IPM algorithm will almost always be found useful for the larger problems (1000 rows or more).
However, it may still require a good understanding for setting the controls in the most efficient way
depending on the problem structure and the user is referred to Chapter 5 of this manual.

IPM BASREC OFF
If IPM is used and is successful then the solution obtained is employed in a crossover procedure termed
‘BASREC’ (basis recovery) for the final optimisation since IPM itself does not provide a basic solution
to the original problem. This can be stopped, and the IPM solution printed as the final solution, with the
command ‘IPM BASREC OFF’.

ALGORITHM PRIMAL
ALGORITHM DUAL

If IPM is not used then PRIMAL is the normal solution algorithm. The DUAL algorithm is employed
normally to solve the subproblems created in the Branch and Bound algorithm for MIP (in an MIP
problem the LP solution is obtained as a first step before Branch and Bound is called). DUAL can also

II-11

be used as an alternative to PRIMAL for the LP solution. Problems that are ‘DUAL feasible’ or that
have a large number of rows in proportion to the number of columns benefit from the use of DUAL.
After DUAL the system always reverts to PRIMAL for a final check on optimality.

The following SPECS commands are useful in modifying the output written to the logfile

LOG DISPLAY
This command causes the log (which includes progress information and statistics) to be duplicated on the
standard display.

SIMPLEX LOG LEVEL = n
Where ‘n’ is a number 0, 1, 2, 3 or 4. The SIMPLEX iteration log is normally produced at level 1, only
listing the important events such as re-inversions. At higher levels an iteration log is listed in
progressively more and more detail.

SIMPLEX LOG FREQUENCY = n
The SIMPLEX iteration log is normally produced at every iteration (levels 2 or above). This would
produce far too much for a large problem and so the user may reduce the frequency of output with this
instruction.

Back to Chapter contents

2.3 Additional Data Preparation Features

An example: Bounded variables and RHS ranges

The following is a simple example of a problem having both bounds on the variables and ranges on the
RHS.

Minimize the cost function:

4 3 21 2 3x x x+ +

subject to the following constraints:

2 2 61 2 4≤ + + ≤x x x
8 3 41 3≥ + ≥x x

3 42 4x x+ =

and to the following bounds:

0 5 5 01. .≤ ≤x
x2 2 0= .

II-12

x3 is unbounded (free)
x4 0 0≤ . (i.e. is negative)

The ROWS section of the example may be encoded as in Table 8 below.

Field 1
2—3

Field 2
5—12

Field 3
15—22

Field 4
25—36

Field 5
40—47

Field 6
50—61

N COST ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

LE R1 ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

GE R2 ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

EQ R3 ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

Field 1, Row-type:
LE = Less than or Equal GE = Greater than or Equal
EQ = Equal N = Non-binding (objective)

Field 2, Row name

Table 8. Example of ROWS Section

The COLUMNS section of the example may be encoded as in Table 9 below.

II-13

Field 1
2—3

Field 2
5—12

Field 3
15—22

Field 4
25—36

Field 5
40—47

Field 6
50—61

¦¦¦¦¦¦¦¦ X1 COST 4.0 R1 1.0

¦¦¦¦¦¦¦¦ X1 R2 1.0

¦¦¦¦¦¦¦¦ X2 COST 3.0 R1 2.0

¦¦¦¦¦¦¦¦ X2 R3 3.0

¦¦¦¦¦¦¦¦ X3 COST 2.0 R2 3.0

¦¦¦¦¦¦¦¦ X4 R1 1.0 R3 1.0

Field 2, Column name
Field 3, Row name Field 4, Value
Field 5, Row name Field 6, Value

Table 9. Example of COLUMNS Section

The RHS section of the example may be encoded as in Table 10 below.

Field 1
2—3

Field 2
5—12

Field 3
15—22

Field 4
25—36

Field 5
40—47

Field 6
50—61

¦¦¦¦¦¦¦¦ RHS R1 6.0

¦¦¦¦¦¦¦¦ RHS R2 4.0

¦¦¦¦¦¦¦¦ RHS R3 4.0

Field 2, RHS set name
Field 3, Row name Field 4, Value
Field 5, Row name Field 6, Value

Table 10. Example of RHS Section

The RANGES section that follows is similar in form to the right-hand side section. The value entered is

II-14

the difference between the upper and lower values for each constraint that has a range. In the example it
would be encoded as in Table 11 below.

Field 1
2—3

Field 2
5—12

Field 3
15—22

Field 4
25—36

Field 5
40—47

Field 6
50—61

¦¦¦¦¦¦¦¦ R1 4.0

¦¦¦¦¦¦¦¦ R2 4.0

Field 2, Range set name
Field 3, Row name Field 4, Value
Field 5, Row name Field 6, Value

Table 11. Example of Ranges Section

The BOUNDS section of the example may be encoded as in Table 12 below.

II-15

Field 1
2—3

Field 2
5—12

Field 3
15—22

Field 4
25—36

Field 5
40—47

Field 6
50—61

LO BND X1 0.5 ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

UP BND X1 5.0 ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

FX BND X2 2.0 ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

FR BND X3 ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

MI BND X4 ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

Field 1, Bound type code
LO = Lower bound UP = Upper bound
FX = Fixed value FR = Free variable
MI = Minus type PL = Plus type (default)
LI = Integer variable, lower bound UI = Integer variable, upper bound
BV = Binary variable SC = Semi-continuous, upper bound

Field 2, Bound set name

Field 3, Column name

Field 4, Value

Table 12. Example of BOUNDS Section

Back to Chapter contents

2.4 An Example: Binary and Integer Variables

For this example we shall largely repeat the example of Section 2.1.1 but with additional binary and
integer constraints also considered. The problem statement becomes the following.

Minimize the cost function:

4 6 5 16 2 51 2 3 4 5 6 7x x x x x x x+ + + + + +

subject to the following constraints:

II-16

x x1 6 2+ =
x x1 23 5+ =

2 3 43 4x x+ ≥
x x x x x1 2 3 4 54 11+ + + + =

x x x x x x x1 2 3 4 5 6 72 2 3 2 14+ + + + + + =

and to the following bounds and discrete value constraints:

0 5 1. ≤ x
0 5 2. ≤ x
x3 is a binary variable (zero or one)
x4 10= .
x5 is an integer variable in the range 0 0 6 05. .≤ ≤x
x7 is an integer variable with lower bound 1.0

Readers will note that row R3 has become an inequality — it is relaxed because otherwise the problem
does not have any solution that satisfies the binary and integer constraints.

The ROWS section of the example may be encoded as in Table 13 below.

II-17

Field 1
2—3

Field 2
5—12

Field 3
15—22

Field 4
25—36

Field 5
40—47

Field 6
50—61

N COST ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

EQ R1 ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

EQ R2 ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

GE R3 ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

EQ R4 ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

EQ R5 ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

Field 1, Row type:
LE = Less than or Equal GE = Greater than or Equal
EQ = Equal N = Non-binding (objective)

Field 2, Row name

Table 13. Example of ROWS Section

The COLUMNS and RHS sections have not been changed in any way and remain exactly as shown in
Table 9 and Table 10. There is no RANGES section.

The new BOUNDS section of the example may be encoded as in Table 14 below.

II-18

Field 1
2—3

Field 2
5—12

Field 3
15—22

Field 4
25—36

Field 5
40—47

Field 6
50—61

LO BND X1 0.5 ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

LO BND X2 0.5 ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

BV BND X3 ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

FX BND X4 1.0 ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

UI BND X5 6.0 ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

LI BND X7 1.0 ¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦
¦

Field 1, Bound type code
LO = Lower bound UP = Upper bound
FX = Fixed value FR = Free variable
MI = Minus type PL = Plus type (default)
LI = Integer variable, lower bound UI = Integer variable, upper bound
BV = Binary variable SC = Semi-continuous, upper bound

Field 2, Bound set name

Field 3, Column name Field 4, Value

Table 14. Example of BOUNDS Section

Having prepared the data there are no SPECS controls to consider other than giving a name to the
model with the ‘MODEL NAME’ command. We shall use the name BININT for this example.

To execute the stand-alone FortMP system and solve this example the following preparations are made.

The input data is placed in a file named ‘BININT.MPS’.
‘SPECS controls’ are placed in the file named ‘FORTMP.SPC’ as before.

II-19

No special controls are necessary because the Mixed Integer algorithm is invoked automatically by the
presence of discrete value constraints in the problem. The file FORTMP.SPC contains the three
commands

BEGIN
MODEL NAME (BININT)
END

All other controls are set to default values and the input and output files are named as:

BININT.MPS The input data file in MPS format.
BININT.RES The solution output file.

With these files in place it is only necessary to call execution of the stand-alone FortMP program in
order to solve the problem and obtain the outputs. The input, the SPECS controls and the solution
output for this example are given in Table 15, Table 16 and Table 17 below.

NAME BININT
ROWS
 N COST
 EQ R1
 EQ R2
 GE R3
 EQ R4
 EQ R5
COLUMNS
 X1 COST 4.0 R1 1.0
 X1 R2 1.0 R4 1.0
 X1 R5 1.0
 X2 COST 6.0 R2 3.0
 X2 R4 1.0 R5 2.0
 X3 COST 5.0 R3 2.0
 X3 R4 1.0 R5 2.0
 X4 COST 16.0 R3 3.0
 X4 R4 4.0 R5 3.0
 X5 COST 2.0 R4 1.0
 X5 R5 1.0
 X6 COST 5.0 R1 1.0
 X6 R5 2.0
 X7 COST 1.0 R5 1.0
RHS
 RHS R1 2.0 R2 5.0
 RHS R3 4.0 R4 11.0
 RHS R5 14.0
BOUNDS
 LO BND X1 0.5
 LO BND X2 0.5
 BV BND X3 1.0
 FX BND X4 1.0
 UI BND X5 6.0
 LI BND X7 1.0
ENDATA

II-20

Table 15. Problem Data File

BEGIN
MODEL NAME (BININT)
END

Table 16. Problem SPECS File

FORTMP SOLUTION REPORT: (TOTAL ITERATIONS= 3)
 LP: OPTIMAL
 IP: OPTIMAL
 PROBLEM NAME = BININT
 OBJECTIVE NAME = COST
 RHS NAME = RHS
 BOUNDS NAME = BND
 MROW = 6
 NCOL = 7
 LP OPTIMUM VALUE = 0.420000D+02
 IP OPTIMUM VALUE = 0.430000D+02

 COLUMNS.......STRUCTURAL VARIABLES

 NO STATE NAME VALUE LOWER BND UPPER BND REDUCED
COST
 1 B X1 2. 0.5 NONE 0.
 2 B X2 1. 0.5 NONE 0.
 3 F X3 1. 1. 1. 2.
 4 F X4 1. 1. 1. 9.
 5 B X5 3. 0. 6. 0.

 6 L X6 0. 0. NONE 2.
 7 B X7 2. 1. NONE 0.

 ROWS..........LOGICAL VARIABLES

 NO STATE NAME ROW VALUE LOWER RHS UPPER RHS SHADOW PRICE
 1 B COST 43. NONE NONE 1.
 2 F R1 2. 2. 2. -1.
 3 F R2 5. 5. 5. -1.
 4 B R3 5. 4. NONE 0.
 5 F R4 11. 11. 11. -1.
 6 F R5 14. 14. 14. -1.

Table 17 ‘Problem Output’

Back to Chapter contents

2.5 Summary of SPECS File Controls

The following SPECS commands have been introduced so far in this manual. Those introduced in this
chapter are underlined thus

BEGIN

II-21

BEGIN
This must be the first command line.

MODEL NAME (modname)
This command supplies a default for the names of input files and output files in the run which are built by
adding an extension as follows.

MODNAME.MPS Input data.
MODNAME.RES Output results.
MODNAME.LOG Log file and messages.

The default model name is ‘MODEL’.

INPUT FILE NAME (filename)
This command assigns a special name to the problem data input file.

OUTPUT FILE NAME (filename)
This command assigns a special name for the output file.

LOG FILE NAME (filename)
This command assigns a special name for the log file.

MINIMIZE
This command specifies that the objective is to be minimised. NB: ‘MINIMIZE’ is the default so this
command is not actually needed.

MAXIMIZE
This command specifies that the objective is to be maximised.

PRESOLVE ON
This command activates a ‘PRESOLVE’ operation prior to optimisation.

SCALE OFF
This command cancels initial scaling of the data.

ALGORITHM PRIMAL
ALGORITHM DUAL
ALGORITHM IPM

One of these commands is used to specify the primary solution algorithm for the continuous LP problem.
‘PRIMAL’ is the default and need not be specified.

FEASIBILITY TOLERANCE = value
This command assigns a tolerance used in the algorithms. The default for ‘value’ is 1.0d-5. Other
tolerances are introduced in Chapter Error! Reference source not found. of this manual.

INVERT FREQUENCY = n

II-22

This command assigns a frequency, in terms of the iteration count, for reinversion during SIMPLEX
algorithms. The default for ‘n’ is 50.

SIMPLEX LOG LEVEL = n
This command determines in what level of detail to print the iteration log during SIMPLEX algorithms.
The default for ‘n’ is 1 giving only outstanding events, but higher levels also give details of each iteration

SIMPLEX LOG FREQUENCY = n
This command assigns a frequency for printing the iteration log during SIMPLEX algorithms. The default
for ‘n’ is 1.

IPM BASREC OFF
When ‘ALGORITHM IPM’ has been selected the user can use this command to halt execution and
print the output immediately on reaching the IPM solution.

LOG DISPLAY
This command causes all logged output, not just important diagnostic messages, to be duplicated on the
online display (or written to the standard output stream).

END

 This command terminates the SPECS commands. Anything beyond it is ignored. \

Back to Chapter contents

III-1

3. Overview of the Stand-alone FortMP System

Contents

3. OVERVIEW OF THE STAND-ALONE FORTMP SYSTEM 1

3.1 Introduction and Overview 2
3.1.1 The Algorithms Employed by FortMP 2
3.1.2 Sparse Simplex (SSX): PRIMAL, DUAL and INVERT 2
3.1.3 Interior Point Method (IPM) — When and When Not to Use 3
3.1.4 Mixed Integer (MIP) with the Branch and Bound Method 4
3.1.5 Overall Structure of the System 5
3.1.6 Providing Controls on the SPECS File 7

3.2 Data Preparation 8
3.2.1 MPS Format 8
3.2.2 Matrix Generator Format 10
3.2.3 Free Format MPS and Long Data Names 10
3.2.4 Other Types of Input Data 11

3.3 Running the System 11
3.3.1 Using SSX 11
3.3.2 Setting up a Starting Basis for SSX 12
3.3.3 Using IPM 13
3.3.4 Running Mixed Integer 13
3.3.5 Using the PRESOLVE Algorithm 14
3.3.6 Using the SCALE Algorithm 15

3.4 Output Descriptions 16
3.4.1 Standard Output Description 16
3.4.2 Report Writer Output 16
3.4.3 Log File Output 17
3.4.4 Suppressing Output 18

3.5 Further Topics 18
3.5.1 Saving and Restarting 18
3.5.2 Bypassing the Initial MPS Input 19
3.5.3 BASIS Input and Output 19

3.6 Input and Output Files in FortMP 20

3.7 Errors and Recovery 21
3.7.1 Data Errors 21
3.7.2 Maximum Iterations Reached or Other Limit Exceeded 21
3.7.3 Numerical Difficulties and Instability 22
3.7.4 Running Out of Memory 22
3.7.5 Software Errors 23

3.8 Summary of SPECS Commands 24

III-2

3.1 Introduction and Overview

3.1.1 The Algorithms Employed by FortMP

FortMP is a highly advanced system for the solution of Linear Programming (LP) and related problems.
It can solve problems of all sizes and has special features which enable it to find a solution even in the
case of degeneracy and numerical difficulties.

There are three main classes of algorithm employed by FortMP.

The Sparse Simplex (SSX) algorithms comprises PRIMAL and DUAL. Both of these
algorithms employ INVERT.

The Interior Point Method (IPM) algorithms are based on the Primal Dual logarithmic barrier
method.

A Branch and Bound technique for the solution of Mixed Integer (MIP) problems allows Binary,
Integer, SOS1, SOS2, and Semi-continuous variable types and a variety of choice strategies.

In addition there is a full supporting set of minor algorithms and procedures enabling user to achieve the
most efficient solution possible. Examples are:

SCALE
PRESOLVE
CRASH
BASREC (IPM-SSX crossover)
MIP pre-processor
SAVE and RESTART features
BASIS input and output

Input data is normally presented in the standardised MPS format with extensions for MIP variable types.
Other formats are also available.

The stand-alone version of FortMP begins by reading a set of control commands (SPECS) supplied by
the user to define which algorithms are to be used and to supply any special tolerances, weights or other
necessary parameters needed to control the run. However, the user does not need to supply all such
controls as the system will use defaults that have been judged as best for a variety of problem types.

Back to Chapter contents

3.1.2 Sparse Simplex (SSX): PRIMAL, DUAL and INVERT

The revised SSX algorithms comprising PRIMAL and DUAL together with the INVERT procedure,
which is used in both algorithms, form the central core of the system. By default PRIMAL is used for the
solution and PRIMAL is always used to complete the solution process and verify that any other solution
(e.g. that supplied by DUAL) is indeed a valid solution before terminating.

III-3

A rather simplified view of the SSX algorithms is given here; the reader will find a fuller discussion in
Chapter 4.

SSX proceeds via a progression of ‘basic’ solutions. In a basic solution there is a set of M ‘basic’
variables (where M is the row size of the problem including the objective row) and all other variables are
fixed either to the lower bound or to the upper bound.

One step in the progression, or one ‘iteration’, exchanges one basic for one non-basic variable and this
proceeds until one of the following three outcomes takes place.

The problem is shown to have no feasible solution (infeasible).
It is shown that the objective can be improved without limit (unbounded).
An optimum solution is found.

Knowledge of the basis enables procedure INVERT to provide a set of factors termed ‘ETA vectors’
with which the current solution is calculated. During PRIMAL or DUAL iterations the list of ETA
vectors is extended, zero, one or two being added for each iteration. This growth of the ETAs requires
that INVERT be repeated periodically to reduce the storage used. INVERT also reduces the volume of
calculation and improves accuracy.

Back to Chapter contents

3.1.3 Interior Point Method (IPM) — When and When Not to Use

IPM is an entirely different approach from SSX which does not proceed via a progression of ‘basic’
solutions. Instead it proceeds via a progression of ‘interior’ points – an interior point being a set of
values that satisfy the bounds and ranges but are not necessarily feasible in the sense of satisfying the
equations.

One iterative step proceeds by choosing a direction, a set of changes to apply to the variable values, and
going a certain distance in that direction without causing any bound or range to be violated so that the
point remains ‘interior’. The direction is chosen in such a way as to ensure that the total infeasibility is
reduced and that there is progress towards an optimal objective value.

In most industrial optimisation problems the optimum solution is by no means unique. The optimum
solution obtained by IPM usually differs from one obtained by SSX in not being a ‘basic’ solution. Only
in rare text book examples does the IPM optimum have exactly M variables with intermediate values
between lower and upper bound.

This is a disadvantage to many users because a non-basic solution cannot be used for analysis, nor can it
provide an advanced basis for the solution of another problem. Hence in FortMP there is an algorithm
called BASREC which does the job of recovering a basic optimum solution from the non-basic IPM
solution. As with the DUAL algorithm, PRIMAL is called to apply the final verification before the
solution is accepted.

The other main difference between SSX and IPM is that with IPM the number of iterations required is a
function of the problem’s complexity rather than its size. Experience shows that, for similar problems,
IPM solution times grow in a nearly linear fashion with problem size while SSX solution times grow
quadratically because both the number of iterations and the time per iteration increase linearly with

III-4

problem size. Thus there is a certain size beyond which it usually pays the user to employ IPM.
Problems with 1000 or more constraint rows can probably be solved more quickly with IPM although
users may need to experiment in order to find the best set of control parameters to suit their model
structures.

If you do not need a basic solution and can be satisfied with the IPM solution then the system can be
halted at that point reducing the solution time even further.

Back to Chapter contents

3.1.4 Mixed Integer (MIP) with the Branch and Bound Method

Before entering the MIP solver (Branch and Bound) the system must obtain the basic optimum solution
to the continuous problem — that is the original problem with all integer and other discrete constraints
ignored.

The continuous optimum forms the root node of a branching tree which is then developed by the MIP
algorithm. At each node (starting with the root node) some MIP variable is chosen which as yet does
not have a legal discrete value. Two branches are formed with the variable restricted one way on the
first branch and the opposite way on the second branch. This restriction works differently for different
MIP variable types.

A binary variable is restricted to zero on one branch, and to one on the other branch.

An integer variable having a value between two integers K and K+1 is restricted to an upper
bound of K on one branch and a lower bound of K+1 on the other branch.

An SOS is divided in two contiguous subsets. On one branch the lower set is restricted all to
zero and on the other branch the upper set is restricted all to zero.

A semi-continuous variable is restricted to zero on one branch and to its continuous range on the
other branch.

It is clear that by progressively branching in this manner and solving the subproblems so obtained to
derive new nodes on which to branch again, the algorithm can eventually reach all possible integer
solutions and select the best. However, this would be impossibly long. The algorithm succeeds in a
reasonable length of time by ‘bounding’, that is by cutting off any branch with a solution value worse
than the current best available integer solution. No bounding is possible until an integer solution is known
and so the initial policy is to continue down one branch to the first integer solution in order to find a
bound quickly.

Each subproblem is solved by using the SSX solver. The bounding process works because no
subproblem can have a better solution value than its parent node since an extra restriction has been
added.

Back to Chapter contents

III-5

3.1.5 Overall Structure of the System

Figure 1. below illustrates in simplified form the block structure of the system.

III-6

.START

END

END

Read Specs

Input

Starting
Basis

Primal

MIP

Output

IPM

Basrec

IPM
Output

Dual

Starting
Basis

Algorithm

Basrec

Discrete
Variable

(Postsolve)

Preparation
 (Presolve)
 (Scale)

Dual IPM

Yes No

Yes

No

Figure 1. Block structure of the system

III-7

 As can be seen, the execution path through the system is controlled by three main switches.

The ALGORITHM switch selects one of the three main procedures PRIMAL, DUAL or IPM
to employ for the LP solution.

The BASREC switch is only active after IPM and causes BASREC to be executed followed by
PRIMAL. If it is BASREC is OFF then IPM is followed immediately by IPM OUTPUT and the
run terminates.

The ‘Discrete Variables’ or MIP switch causes the MIP algorithm, Branch and Bound, to be
executed. The MIP switch is always set OFF if the problem has no MIP variables.

Back to Chapter contents

3.1.6 Providing Controls on the SPECS File

At the outset FortMP reads all of the control commands that it needs for the run from the file named
‘FORTMP.SPC’. Every control has a default value so that in the simplest case the user need not
provide SPECS commands.

Each SPECS command is presented on one line and consists of one or more keywords followed by a
value which, depending on the command, may be either:

a name or text string enclosed in parentheses,
a numerical value, optionally after an ‘=’sign, or
a switch ON or OFF (if omitted then ON is assumed).

Examples are:

MODEL NAME (testin)
MAXIMIZE
PRESOLVE ON
INVERT FREQUENCY = 75

Additional examples have been given in Chapter 2, Section 2.2.

Details of the syntax of every SPECS command are given in the Appendix B.

All keywords may be abbreviated to the first four or more letters and the first keyword (only) may be
abbreviated to the first three letters. The asterisk character (*) acts as a line terminator so that the user
may include comments to the right. Users may also include whole comment lines by putting an asterisk in
column 1. The above commands could be written as:

MOD NAME (testin)
* Filenames are testin.mps, testin.res, testin.log
MAX
PRE
INV FREQ 75 * NB: default is 50

However, for the sake of clarity it is better not to abbreviate too much.

III-8

The system does not use every line in the SPECS file regardless, but only that part of the file which is
delimited between the two indicator commands ‘BEGIN’ and ‘END’. The complete example without
abbreviation would be

BEGIN
MODEL NAME (testin)
MAXIMIZE
PRESOLVE ON
INVERT FREQUENCY = 75
END

A comment is added to show the range of allowable values (if needed) and the default (where it
applies). In Section 3.8 there is a summary of all the commands introduced so far.

Back to Chapter contents

3.2 Data Preparation

3.2.1 MPS Format

The standard means for encoding external problem data is MPS format which has already been
described in Chapter 2, Section 2.1.2 with further examples in Sections 2.3 and 2.4. Here we give
some further rules and examples. A fully detailed specification is given in Appendix A.

MPS format data is invoked by the SPECS command

INPUT TYPE MPS

However, this is the standard default and need not be given.

Comment Lines

Any line beginning with an asterisk (*) in column 1 is ignored by the input.

The Format of a Name

A name is 8 characters long and may contain any letter, digit or special character, upper and lower case
being considered different. Leading blanks are ignored but internal blanks are counted – for example the
following names are all different:

ROW1 11
ROW111
row1 11.

Alternative Row Type Codes

Alternative codes, such as ‘G’ or ‘>’ in the place of ‘GE’ may be used for row types in the ROWS
section. See Appendix A, section A1.1 for details.

Rhs Range Coding

III-9

In the RANGES section all GE type and LE type rows have only positive or zero range values. A zero
range value on these row types implies that the row is changed in type to become an EQ type row.

Rows defined as EQ type may have positive or negative range values which effectively change the row
type as follows.

A positive range implies row type GE
A negative range implies row type LE

Consider the following example row with an RHS range:

100 200. .≤ ≤∑ a xij j

This can be coded in four alternative ways.

1) ROWS : Use type LE
RHS : value 20.0
RANGES : value +10.0

2) ROWS : Use type GE
RHS : value 10.0
RANGES : value +10.0

3) ROWS : Use type EQ
RHS : value 10.0
RANGES : value +10.0

4) ROWS : Use type EQ
RHS : value 20.0
RANGES : value -10.0

Multiple Rhs Sets, Range Sets and Bound Sets

An important option for the user is to provide several alternative models in the same data file. This is
done by making use of multiple sets in the RHS, RANGES and BOUNDS sections of the data with
distinct names in field 2 of the input records.

The following SPECS commands specify the selection of particular sets:

RHS NAME (rhsname)
RANGES NAME (rngname)
BOUNDS NAME (bndname)

By default the first set to appear will be selected for any section where the command is not given.

These sets follow the same rule as for columns in the COLUMNS section; a set may not be split. All the
data for any one set must be presented consecutively. In addition no set name should be entirely blank
because ‘blank’ is used internally to select the default. It is possible for a set to be empty, i.e. to have no
data records at all with that set name.

III-10

Objective Row Selection

The following SPECS command names the row to be used as objective row in the problem data:

OBJECTIVE NAME (objname)

where ‘objname’ represents the name of a free row in the model. By default the system selects as
objective row the first row to be defined with type FREE (code ‘N’) in the ROWS section.

Back to Chapter contents

3.2.2 Matrix Generator Format

Problem data prepared for input to FortMP by a matrix generator (MG) such as MPL is quite different
from MPS format data. The objective of such data is to achieve a more efficient interfacing between
FortMP and the MG in which external matters, such as names, are handled by the MG and not by
FortMP.

The MG is expected to act in conjunction with a Report Writer (RW) which reads a specially formatted
solution output from FortMP and identifies the rows and columns on the basis of index number.

Detailed layouts for MG input and RW output are given in Appendix A, section A3.1. To invoke this
form of data input the following SPECS command is used:

INPUT TYPE MG

Back to Chapter contents

3.2.3 Free Format MPS and Long Data Names

The standard MPS format of data is based upon ‘Fixed form’ data entry under which every field is
positioned at a given place in the input data line. Ultimately this derives from data entry on punched
cards where the fixed form is natural.

In modern data entry it is not natural for an operator to use the keyboard in this way. Rather the data is
seen as a series of items or ‘tokens’ to be entered in a particular order, where the tokens correspond to
the fields of fixed form data entry. Data ‘lines’ replace ‘cards’, these being separated by new-line
entries on the keyboard, and the tokens are separated from each other by using certain special
characters that cannot be used in a token.

In Free Format MPS data input for FortMP the first field (positions 2-3) remains in fixed form,
completely unchanged. Fields 2 to 6 from position 5 to the end of a line are replaced by tokens with
blank spaces acting as separator. Any number of spaces are equivalent to a single space so that the
data may be ‘padded’ out with blanks to arrange in columns for better viewing. In fact most ordinary
fixed-form MPS data files are also quite valid as free format data files provided the unused gaps
between fields are blank and provided there are no blank names or names with interior blank spaces.

Free format data is invoked with the SPECS command:

INPUT TYPE FREE

III-11

which must be given as the default type is ‘MPS’. Some additional points are to be noted:

Comment Lines

Any line beginning with asterisk (*) in position 1 is ignored by the input.

Row and Column Names

Row and column names are normally restricted to 8 characters. This can be enlarged to 16 characters
with the following SPECS command:

INPUT LONG NAMES ON

where ‘OFF’ is the default. Other types of name such as problem name, RHS/Range/Bound set names
etc. remain limited to 8 characters.

Heading Keywords

The following are special heading keywords as in Fixed-form MPS:

NAME RHS ENDATA
ROWS RANGES
COLUMNS BOUNDS

and these must always be entered starting at position 1 of a line with no preceding blanks.

Input type with Long Names

When INPUT LONG NAMES ON is specified the type of input data is necessarily free format MPS.
Long names must therefore conform to the rules for tokens (i.e. no interior blank spaces).

Back to Chapter contents

3.2.4 Other Types of Input Data

Various alternative input features have been provided in the FortMP system. Details of these
mechanisms are given in Appendix A (or for special reasons may be supplied in separate documents).

Back to Chapter contents

3.3 Running the System

3.3.1 Using SSX

The SSX algorithms are invoked for LP with the SPECS commands

ALGORITHM PRIMAL
ALGORITHM DUAL

III-12

PRIMAL is the default so ‘ALGORITHM PRIMAL’ need not be specified. In fact DUAL is followed
anyway by PRIMAL to verify the optimal solution.

A full description of SSX is given in Chapter 4, but the user may find the following commands useful
without reading further.

SIMPLEX LOG LEVEL = n * n = 0-4, default 1
INVERT LOG LEVEL = n * n = 0-4, default 1
SIMPLEX LOG FREQUENCY = n * default n=1

These commands determine the nature and frequency of outputs to the log file (frequency refers to the
iteration log). Log level zero is limited to error messages only.

INVERT FREQUENCY = n * default n=50

This sets a maximum to the number of iterations allowed before an automatic reinvert is invoked.
However this applies at the start only, as the system increases the number when Forrest-Tomlin update
begins (see Chapter 4, section 4.6.1).

MAXIMUM SIMPLEX ITERATIONS = n * default n=50000

After this number of iterations the SSX algorithms save a basis for restart and then terminate (see
Sections 3.5.1 and 4.6.4 on saving and restarting).

Back to Chapter contents

3.3.2 Setting up a Starting Basis for SSX

As already stated, a starting basis must exist before either PRIMAL or DUAL can execute. The
following alternative mechanisms are available for this.

The starting basis can be built by the CRASH algorithm.
The starting basis can be read from an external file.
The user can use RESTART, which employs SAVE information from a previous run. A basis is
included as part of the saved data.
The user can start from the all logical basis, also known as the UNIT basis.

The method chosen is according to a ‘SIMPLEX START’ command which may be one of the
following:

SIMPLEX START CRASH * This is the default
SIMPLEX START INPUT BASIS
SIMPLEX START RESTART
SIMPLEX START UNIT BASIS

A description of the INPUT BASIS mechanism is given in Section 3.5.3 on BASIS input and output.
Details of the MPS format layout of an external basis are given in Appendix A, section A1.3.

The SAVE/RESTART mechanism is described in Section 3.5.1.

When the starting basis has been installed the FortMP system calls INVERT and calculates the basic
solution so that PRIMAL or DUAL can then execute directly.

III-13

Back to Chapter contents

3.3.3 Using IPM

The IPM algorithms are invoked with the command:

ALGORITHM IPM

A variety of controls direct which specific IPM algorithms are to be used and supply parameters. To use
these controls the user should read the descriptions given in Chapter 5 of this manual.

The following SPECS commands determine the log level of IPM and the execution limit in the same
manner as for PRIMAL and DUAL.

IPM LOG LEVEL = n * n = 1-4, default 1
MAXIMUM IPM ITERATIONS = n * default n=80

After this number of iterations the IPM algorithm saves the current solution for restart and terminates
(see Section 3.5.1 on saving and restarting).

The following SPECS command is only available in certain versions of FortMP. It invokes a graphical
display which shows the density pattern of the matrices and the progress of the iterations. Copies of the
display will be left in files ‘model.a’, ‘model.b’, ‘model.c’ and ‘model.d’ if this command is successfully
activated.

IPM GRAPHICAL DISPLAY ON
IPM GRAPHICAL DISPLAY OFF * This is the default

After execution of IPM the system has a choice: to stop there and print the solution or to recover a basis
from the IPM solution and use it as an advanced starting basis to the SSX solver.

If the basis recovery option is taken then the printed solution will be a basic optimum (if that is possible)
whereas the IPM solution is only rarely basic. Basis recovery is the default option of the system; to stop
with the IPM solution the following command is used:

IPM BASREC OFF

Back to Chapter contents

3.3.4 Running Mixed Integer

Before starting the Branch and Bound algorithm for MIP problems, the system must obtain a basic
optimum solution to the LP problem, that is the problem with all MIP variables allowed their continuous
range. Either SSX or IPM can be used for this purpose; if IPM is used the BASREC switch must be
ON (which is the default).

Entry to Branch and Bound is normally automatic, dependent only on whether the problem contains any
MIP variable types. However, the user can prevent the system from entering Branch and Bound, for
example to give time for examining the LP optimum, by setting the MIP switch to OFF as follows:

MIP OFF

III-14

An important aid to finding the solution for MIP problems is the pre-processor which is invoked with the
following SPECS command:

MIP PREPROCESS ON

(default is OFF). Not every problem is improved with the pre-processor, however, and it is most
effective when the problem has binary or integer variables. It is worthwhile for the user to experiment in
order to determine whether to use it as a normal method for all his problems.

Another useful command, important for many MIP problems is the following:

MIP PRIORITY UP ON

(default is OFF). This is very useful for problems related to scheduling and resource allocation for
reasons explained later in chapter 6 of this manual.

A variety of other controls direct the branching choices in MIP and supply parameters. To find out
about these controls the user should read the descriptions given in Chapter 6 of this manual.

The following SPECS commands determine the log level of MIP and the execution limit in the same
manner as for PRIMAL and DUAL.

MIP LOG LEVEL = n * n = 0-4, default 1
NODE LOG FREQUENCY = n * default 1
MAXIMUM MIP INTEGER = nnn * default 300
MAXIMUM MIP INTSOL = nnn * default 300
MAXIMUM MIP NODES = nnn * default 50000
MAXIMUM MIP TIME = vvv * default 50000.0

Limits are applied to the number of integer solutions reached (‘INTEGER’ and ‘INTSOL’ are the
same), to the number of nodes (i.e. sub-problems) to be solved, and to the total time (given in seconds)
that may be spent executing the MIP algorithm. At each limit the MIP algorithm saves the current tree
for restart and terminates (see Section 3.5.1 on saving and restarting).

Back to Chapter contents

3.3.5 Using the PRESOLVE Algorithm

PRESOLVE is an algorithm which can often simplify the problem internally and reduce the time needed
to reach the solution. If employed, it takes place after input and before execution of any other algorithm.

The following SPECS commands invoke or cancel execution of PRESOLVE:

PRESOLVE ON
PRESOLVE OFF * This is the default

PRESOLVE seeks any simplifications that can be made to the problem by looking for the obvious
solutions implicit in the constraints as they stand. Elimination of redundant rows and fixed variables
reduces the size of the problem to be solved and thereby improves efficiency.

III-15

For example, if all fixed variable values are substituted in the constraints one or more equations may be
left with only one variable. These variables are then fixed, the equations become redundant and their row
types are made free. The substitution of the newly fixed variables may then lead to more simplifications
of the same kind.

This is a simple ‘Level 1’ technique; other more complex techniques designated as ‘Level 2’, ‘Level 3’
and so on are available. The user can select a maximum level to use, once the PRESOLVE switch has
been set ON, by the following command:

PRESOLVE LEVEL = n * n=1-5, default is 5

At solution time there is an option to print the presolved solution as it stands or to apply POSTSOLVE
which expands back to the original problem in order to obtain a basic solution (similar to using
BASREC after IPM). This expansion is invoked or cancelled with the following SPECS commands:

POSTSOLVE ON * This is the default
POSTSOLVE OFF

The amount of information sent to the log during execution of PRESOLVE and POSTSOLVE can be
controlled with the following command:

PRESOLVE LOG LEVEL = n * n=0-4, default is 1

Back to Chapter contents

3.3.6 Using the SCALE Algorithm

The SCALE algorithm finds a set of factors, one per row and one per column, which reduce the
variation in data values so that the solution process is numerically more stable. The resulting scaled
solution values are unscaled before the final output.

SCALE normally takes place after INPUT (or after PRESOLVE) and before execution of any
algorithm. It is invoked or cancelled with the following SPECS commands:

SCALE ON * This is the default
SCALE OFF

Two further SPECS commands control the operation of SCALE when it is switched ON:

SCALE PASSES = n * n=1-4, Default is 4
SCALE VARIANCE = v * Default v = 10.0

Each ‘pass’ of SCALE is an attempt to reduce the variation of the matrix coefficients, starting from the
previous results. If the given target variance is reached SCALE ends immediately, otherwise it continues
for the given maximum number of passes.

Quite often the variance does not reduce after the first pass and may on the contrary increase again.
Results are given on the log file and the user may use these to determine the best values for the
commands.

Back to Chapter contents

III-16

3.4 Output Descriptions

3.4.1 Standard Output Description

Table 17 on page II-19 shows the standard output from the simple example of Chapter 2. There the
heading gives details of the model and of the solution that follows. This is followed by a table of column
values showing each structural variable in the problem. Outputs under each heading are:

NO Index number of the variable
STATE Codes for the primal and dual status

(‘B’ means BASIC; ‘F’ means FIXED; ‘L’ means at Lower bound;
‘U’ means at Upper bound)

NAME Name of variable as given in the input
VALUE Solution value
LOWER BOUND Lower bound as given in the data
UPPER BOUND Upper bound as given in the data
REDUCED COST Reduced cost or ‘DJ’ of the variable

When an integer (IP) solution is printed the lower and upper bound values that are printed reflect the
branching applied to each variable and not necessarily the original bounds.

The next section is a table of row values showing each constraint (or logical variable) in the problem.
Outputs under each heading are:

NO Index number of the row
STATE Codes for the status of the slack variables

(‘B’ means BASIC; ‘F’ means FIXED; ‘L’ means at Lower bound;
‘U’ means at Upper bound)

NAME Name of the row as given in the input
ROW VALUE Value of the constraint left-hand side

i.e. the value of a xij j∑
LOWER RHS Lower bound of a xij j∑
UPPER RHS Upper bound of a xij j∑
SHADOW PRICE Shadow price of the row

(equal to the reduced cost of the logical)

Standard output is invoked by the following SPECS command:

OUTPUT TYPE STD

However, this command is the default and need not be given.

Back to Chapter contents

3.4.2 Report Writer Output

Output for a Report Writer such as MPL is a simplified form of standard output. Headings are not
printed and the initial heading material is compressed to a single record.

III-17

Names are not printed, only the index number of each column and row.

The layout comprises FORTRAN formatted records but is designed for easy input when using C. For
details see Appendix A, section A3.2.

The RW format of output is invoked with the following SPECS command:

OUTPUT TYPE RW

Back to Chapter contents

3.4.3 Log File Output

Each major algorithm of FortMP is associated with a log ‘level’ which controls the information written to
the log file. There are five levels which can be applied in each case :

Level 0 Error messages only
Level 1 Errors and important messages only.
Level 2 Important messages and a primary log (e.g. iteration log).
Level 3 A more detailed log (if relevant) and useful general statistics.
Level 4 Level 3 plus more detailed statistics.

Variations on this general scheme and other special features are described in the following chapters
devoted to the individual algorithms. Log file examples are given with explanations if needed.

The following SPECS commands specify the log levels for each algorithm:

SIMPLEX LOG LEVEL = n * n = 0-4, default is 1
INVERT LOG LEVEL = n * n = 0-4, default is 1
IPM LOG LEVEL = n * n = 0-4, default is 1
MIP LOG LEVEL = n * n = 0-4, default is 1

A duplicate log can also be displayed when running on-line in interactive mode. This is invoked with the
following commands:

LOG DISPLAY
LOG DISPLAY LEVEL = n * n = 0-4, default is 1
LOG DISPLAY ONLY

The system copies some of the logged messages onto the standard output (or the display screen when
running on-line). In default the levels copied are 0 and 1 (errors and main events). With the LOG
DISPLAY command the maximum level copied in this way can be changed to a specific level so as
either to display more or to reduce the display (errors cannot be suppressed). If ‘LEVEL = n’ is
omitted then all messages are copied - this is equivalent to ‘LEVEL = 4’. If ‘ONLY’ is specified then
the log file itself is suppressed and all logs are written solely to the standard output. These commands
do not change the level of messages actually issued in the first place.

Back to Chapter contents

III-18

3.4.4 Suppressing Output

It frequently happens that the entire output is not needed by the user and for large problems in particular
it can be useful to reduce it by eliminating all variables with solution value zero. If the user does not need
to know the dual solution values this means that output is reduced simply to those variables with a non-
zero primal solution value.

This is achieved with the following SPECS command:

OUTPUT SUPPRESS ZERO * default: not suppressed.

In addition it is possible to suppress the output altogether - for example to restart and print in a later run
- with the following command

OUTPUT OFF * default ON

(ON may also be given).

Back to Chapter contents

3.5 Further Topics

3.5.1 Saving and Restarting

It is inevitable that some users will need to experiment or will have some difficulties in determining how
best to apply the system to their problems. In some cases a run may exceed its time or memory
allocation so the user has to make adjustments and rerun the problem.

FortMP is provided with several save and restart features which enable a rerun to begin from a point
close to the termination of the previous run, thus avoiding a waste of computer time. The save features
are as follows.

INPUT save The input data is saved after an initial pass in which all names are identified and
indexed. The internal data file has all names replaced by indices so that a much
faster INPUT can be used in a restart.

SIMPLEX save A periodic save of the basis takes place during the SSX algorithms. The saved
basis can form an advanced starting basis in a restart.

IPM save Periodically during IPM iterations the solution is saved and this solution
can form an advanced initial solution point in a restart.

MIP save Periodically during Branch and Bound the tree is saved and can then be
used to bypass previous node development in a restart.

The associated SPECS commands comprise controls to specify the frequency of saving and restart
switches to specify where any restart is to apply. These commands are:

SIMPLEX SAVE FREQUENCY = n * default 10, each 10th
reinvert
SIMPLEX START RESTART

III-19

IPM SAVE FREQUENCY = n * default 10, each 10th
iteration
IPM RESTART ON
MIP SAVE FREQUENCY = n * default n=500, each 500th
node.
MIP RESTART ON

By setting the frequency n to zero in one of the above SAVE commands the corresponding SAVE
feature is switched off entirely.

Users must be aware that certain internal files from the previous run are needed in a restart, not just the
file created by the particular kind of restarts invoked. The original controls from the previous run are
always reread and apply as defaults in the restart run.

Back to Chapter contents

3.5.2 Bypassing the Initial MPS Input

It is not necessary to specify any ‘SAVE’ for the original MPS data. Input data is saved in an internal
form during an initial pass when reading MPS format data. With the command

INPUT RESTART ON

the initial input pass which looks up all names and creates the data indexing is bypassed.

Back to Chapter contents

3.5.3 BASIS Input and Output

There is a mechanism whereby the user can supply an initial basis in MPS format, using the external
names for the variables.

In this format the input basis data comprises:

NAME record
BASIS header record (optional)
BASIS data section
ENDATA record

The BASIS data section has records of type XL, XU, LL and UL. The rationale behind this is that each
record of type XL or XU gives an exchange between a column variable (structural) which becomes
basic and a row variable (logical) which becomes non-basic. Initially all row variables are basic and all
column variables are non-basic at lower bound. The UL and LL records simply name non-basic
columns and only UL records actually need to be entered.

An external basis is intended for use even when the input problem has been revised so that a variety of
inconsistencies in MPS format basis data are allowed. For example if a name is not recognised then a
warning message is given on the log but the system carries on by simply ignoring that record.

Precise details of the layout are given in Appendix A, section A1.3.

III-20

The following SPECS command (already introduced in Section 3.3.2) is used to input the external basis
and set it up as the starting basis for PRIMAL or DUAL.

SIMPLEX START INPUT BASIS

There is a SPECS command to create an output MPS format basis when the LP optimum is reached
after completing the SSX algorithm. This command is an ON/OFF switch as follows.

OUTPUT BASIS ON
OUTPUT BASIS OFF * This is the default

The switch ON creates output to a file with extension BAS (model.bas) and this file can subsequently be
used for the ‘SIMPLEX START BASIS INPUT’ command. Note however that both BASIS INPUT
and OUTPUT BASIS can co-exist is the same run and that OUTPUT BASIS may overwrite the
previous input file. To overcome this problem, the user should copy the file between runs, or rename the
file and use a BASIS FILE NAME command as described in Section 3.6.

Back to Chapter contents

3.6 Input and Output Files in FortMP

For the convenience of UNIX and other operating systems which distinguish lowercase letters from
uppercase, FortMP uses lowercase lettering for all default filenames and extensions in the system. We
will follow this convention in this section.

As already explained, the MPS format data is presented to the program on a file named

model.mps

where ‘model’ is the name of the data model. You can specify the name of the model with the following
SPECS command:

MODEL NAME (mdlname)

where ‘mdlname’ is a name of 8 characters or less that must be acceptable as a file name to the
operating system after the addition of an extension. The default for ‘mdlname’ is ‘model’.

This convention is followed for all other inputs and outputs, including the internal files, with the exception
of the SPECS file which is named simply ‘FORTMP.SPC’. The following is a list of these files:

model.mps MPS format input data file
model.bas MPS format basis data file
model.res Standard output file
model.log Standard log file
model.mat Internal matrix file
model.nam Internal names file
model.sav Internal save file
model.bbf SIMPLEX save (binary basis) file
model.isv IPM solution save file
model.msv MIP Branch and Bound tree save file

III-21

In addition to providing the model name you can change the file naming structure by using a directory
name and by setting individual file names.

The DIRECTORY or equivalent PATH command is as follows.

DIRECTORY NAME (dirname)
PATH NAME (dirname)

where ‘dirname’ is a text string of maximum length 50 characters which is used as a prefix to every
filename with the exception of ‘specs’ (The SPECS file cannot of course define its own prefix). Any
special separator such as ‘\’ or ‘/’ to appear between ‘dirname’ and the model name must be included
by the user in the ‘dirname’ argument.

Finally some of the input and output files can be given individual names with one of the following SPECS
commands:

INPUT FILE NAME (filename)
OUTPUT FILE NAME (filename)
LOG FILE NAME (filename)
BASIS FILE NAME (filename)

The filename supplied in this case may be up to 70 characters long and will not be prefixed by the
directory name (if any).

Back to Chapter contents

3.7 Errors and Recovery

3.7.1 Data Errors

During the data input stage the system checks for errors in the data and will provide you with diagnostic
messages, including the input line number, text or other available information to assist in locating an error.
When one has been found, the system may continue checking to find more errors (up to 50) but unless
the errors found have an obvious remedy the system then halts without attempting a solution.

Back to Chapter contents

3.7.2 Maximum Iterations Reached or Other Limit Exceeded

The following SPECS commands have already been introduced (see Section 3.3) and control the
bounds upon the algorithm’s execution.

MAXIMUM SIMPLEX ITERATIONS = n * default 50000
MAXIMUM IPM ITERATIONS = n * default 80
MAXIMUM MIP <INTEGER/INTSOL> = n * default 300
MAXIMUM MIP NODES = n * default 50000
MAXIMUM MIP TIME = v * default 50000.0

On reaching such a limit the FortMP system makes a SAVE using the type of SAVE relevant to the
current algorithm and terminates with an error message.

III-22

The user will need to check whether an adjustment to parameters is necessary to avoid looping or
stalling before rerunning the problem. This is done by using the appropriate ‘RESTART’ command, one
of the following:

SIMPLEX START RESTART
IPM RESTART ON
MIP RESTART ON

Input time can also be saved with the command:

INPUT RESTART ON

Back to Chapter contents

3.7.3 Numerical Difficulties and Instability

With the advantage of coefficient scaling provided by the SCALE algorithm (see Section 3.3.6)
numerical difficulties and instability should arise only rarely in FortMP and then they are usually
overcome without troubling the user.

Some intractable cases of numerical difficulty are detectable and cause premature termination of the
solvers. An explanatory message is written to the log and to the standard output (e.g. displayed on the
screen). In the case of the Dual algorithm unrecoverable errors are overcome by reverting to Primal in
order to continue the optimisation process.

Certain cases may, in very rare situations, cause the system to cycle, without any progress in the
iterations, or with only very slow progress towards the optimum.

When the system is halted the user’s main technique for overcoming these problems is to change the
controls in some way and restart the run. A control is available to allow user to watch the iteration log
online so that the run can be halted before excessive time is wasted. In any case there is a maximum
iteration limit for both SSX and IPM solvers.

When the maximum iteration limit is reached the system always saves a restart point before exit and the
user can also set controls to save restart points periodically to guard against a crash or to allow a run to
be halted without wasting the time used so far.

Back to Chapter contents

3.7.4 Running Out of Memory

There are few computer installations where users can completely disregard the amount of memory they
use, even with virtual memory available. Many users will attempt the largest possible problems with the
memory available whilst others will wish to limit their memory usage for operational reasons.

In order to supprt these requirements FortMP is loaded for execution in a minimum size memory region
and will use the system to allocate additional memory according to the problem size.

However in some rare cases the required memory is impossible to predict, while in other cases too little
memory can cause serious congestion and inefficiency because of frequent data compression. Hence

III-23

the system is provided with several emergency controls to assist with memory management. These are
described in Appendix G.

Back to Chapter contents

3.7.5 Software Errors

The user is protected by a great deal of defensive programming so as to detect internal inconsistencies
and halt as soon as they occur. In such a case there is an explanatory diagnostic and a ‘FATAL
ERROR’ message written to the log and to the standard output (display).

In this unlikely event you should contact your supplier and provide details so that the fault can be
corrected.

Back to Chapter contents

III-24

3.8 Summary of SPECS Commands

The following SPECS commands have been introduced to date in this manual.

BEGIN
This must be the first command line.

MODEL NAME (modname)
This command supplies a default for the names of input files and output files in the run which are built by
adding an extension as follows:

modname.mps MPS format input data file
modname.bas MPS format basis data file
modname.res Standard output file
modname.log Standard log file
modname.mat Internal matrix file
modname.nam Internal names file
modname.sav Internal save file
modname.bbf Simplex save file
modname.isv IPM solution save file
modname.msv MIP Branch and Bound tree save file

The default model name is ‘MODEL’.

INPUT FILE NAME (filename)
OUTPUT FILE NAME (filename)
LOG FILE NAME (filename)
BASIS FILE NAME (filename)

These commands assign a special name to the various input and output files.

DIRECTORY NAME (dirname)
PATH NAME (dirname)

These two alternative commands prefix all filenames other than those introduced with an explicit ‘FILE
NAME’ command.

INPUT TYPE MPS
INPUT TYPE MG
INPUT TYPE FREE
INPUT LONG NAMES

These commands select the type of input data.

RHS NAME (rhsname)
RANGES NAME (rngname)
BOUNDS NAME (bndname)
OBJECTIVE NAME (objname)

These commands select appropriate items in the MPS format input data.

III-25

MINIMIZE
MAXIMIZE

These two commands specify the direction of optimisation. ‘MINIMIZE’ is the default so this command
is not actually needed.

SCALE ON
SCALE OFF

These two commands set the SCALE switch. The default is ON

SCALE PASSES = n
SCALE VARIANCE = v

These commands set parameters for scaling, to apply when the SCALE switch is ON. The range for
‘Passes’ is 1–4 and the default value is 4. The default target variance is 10.0.

PRESOLVE ON
PRESOLVE OFF

These two commands set the ‘PRESOLVE’ switch. The default is OFF.

PRESOLVE LEVEL = n
This command specifies the PRESOLVE level when the PRESOLVE switch has been set ON. The
range is 1–5 with default value 5.

POSTSOLVE ON
POSTSOLVE OFF

These two commands set the ‘POSTSOLVE’ switch (active when PRESOLVE is ON). The default is
ON.

PRESOLVE LOG LEVEL = n
This command specifies the log level for PRESOLVE and POSTSOLVE. The range is 0-4 with default
value 1.

ALGORITHM PRIMAL
ALGORITHM DUAL
ALGORITHM IPM

One of these commands is used to specify the primary solution algorithm for the continuous LP problem.
‘PRIMAL’ is the default and need not be specified.

MAXIMUM SIMPLEX ITERATIONS = nnn * default 50000
MAXIMUM IPM ITERATIONS = nnn * default 80
MAXIMUM MIP <INTEGER/INTSOL> = nnn * default 300
MAXIMUM MIP NODES = nnn * default 50000
MAXIMUM MIP TIME = vvv * default 50000.0

These commands set the termination limits for each major algorithm. A SAVE is made before exit at
termination.

SIMPLEX LOG LEVEL = n
INVERT LOG LEVEL = n

III-26

IPM LOG LEVEL = n
MIP LOG LEVEL = n

These commands specify the ‘level’ of the output to be sent to the log file in each major algorithm. The
range is 0–4 with default value 1 in each case.

SIMPLEX SAVE FREQUENCY = n * default 10, each 10th
reinvert
IPM SAVE FREQUENCY = n * default 10, each 10th
iteration
MIP SAVE FREQUENCY = n * default 10, each 500th node

These commands specify the frequency for making a SAVE in each major algorithm.

SIMPLEX START RESTART
IPM RESTART ON
MIP RESTART ON
IPM RESTART OFF
MIP RESTART OFF

These commands specify ‘RESTART’ in each major algorithm. For the SIMPLEX algorithms
‘RESTART’ is an alternative to other starting basis options. Otherwise there is an ON/OFF switch
(default OFF).

SIMPLEX START CRASH
SIMPLEX START INPUT BASIS
SIMPLEX START RESTART
SIMPLEX START UNIT BASIS

These commands select the mechanism for setting up the starting basis when the main algorithm is
PRIMAL or DUAL. CRASH is the default.

FEASIBILITY TOLERANCE = value
This command assigns a tolerance used in the algorithms. The default for ‘value’ is 1.0d-5. Other
tolerances are introduced later in this manual.

INVERT FREQUENCY = n
This command assigns a frequency, in terms of the iteration count, for reinversion during SIMPLEX
algorithms. The default for ‘n’ is 50.

SIMPLEX LOG FREQUENCY = n
NODE LOG FREQUENCY = n

These commands assign a frequency for printing the iteration log during SIMPLEX algorithms or the
node log during MIP. Default for ‘n’ is 1.

IPM BASREC ON
IPM BASREC OFF

When ‘ALGORITHM IPM’ has been selected the user can set this switch OFF in order to halt
execution and print the output immediately on reaching the IPM solution. The default is ON.

MIP ON
MIP OFF

III-27

If there are no discrete variables this switch is always OFF. When there are discrete variables the default
is ON and setting to OFF cancels execution of MIP so that user can examine the continuous LP
solution.

MIP PREPROCESS ON
MIP PREPROCESS OFF
MIP PRIORITY UP ON
MIP PRIORITY UP OFF

These commands control important algorithmic features of MIP. Both switches are OFF by default.

OUTPUT TYPE STD
OUTPUT TYPE RW

These commands specify the type of solution written to the output file. The default is ‘STD’

OUTPUT ON
OUTPUT OFF
OUTPUT SUPPRESS ZERO

These commands control the amount written to the output file. Default is ‘ON’ with zeros not
suppressed.

LOG DISPLAY
LOG DISPLAY ONLY

This command causes all logged output, not just important diagnostic messages of level 1, to be
displayed online (or written to the standard output-stream). With the keyword ‘ONLY’ the normal log
file is suppressed.

LOG DISPLAY LEVEL = n
This command causes logged output up to level n to be displayed online. Default for n is 1.

END

This command terminates the SPECS commands. Anything beyond it is ignored.

Back to Chapter contents

IV-1

4. Sparse Simplex (SSX) Solver

Contents

4. SPARSE SIMPLEX (SSX) SOLVER 1

4.1 Internal Problem Statement 2

4.2 Introduction to the Algorithms 4

4.3 PRIMAL Algorithm 4
4.3.1 Starting Procedures 5
4.3.2 Column Selection 5
4.3.3 Phase I 7
4.3.4 Handling Degeneracy 7
4.3.5 Numerical Features 8
4.3.6 Issues of Efficiency 9

4.4 DUAL Algorithm 9
4.4.1 Starting Procedures 10
4.4.2 Row Selection 10
4.4.3 DUAL Phase 1 10
4.4.4 Handling Degeneracy 10
4.4.5 Numerical Features 10

4.5 INVERT 11

4.6 SSX Algorithm Controls 11
4.6.1 The Principal Controls 11
4.6.2 Starting Basis Controls 13
4.6.3 Tolerances and parameters 13
4.6.4 Save and Restart 15
4.6.5 Processing an External Basis 16
4.6.6 Log Lising Controls 16
4.6.7 Special Pivoting and Update Controls 17

4.7 Summary of SPECS Commands 18

IV-2

4.1 Internal Problem Statement

We begin this chapter by studying the FortMP SSX internal representation of LP problems.

Let m denote the number of constraints and n the number of original variables. All the constraints are
converted into equality form by adding appropriate variables to each constraint. This will result in the
following LP problem.

Minimise (or Maximise) the objective function

c xj j∑

subject to the constraints:

y a x b i mi ij j i+ = =∑ for 1, ,K

and bound constraints (if any) on y xi j and .

The x j variables (that were obtained from the original problem by linear transformations) are referred to
as structural variables while the y i variables added to the rows are called logical variables. Thus, the total
number of variables the algorithm works with is m n+ .

As a result of the linear transformations (done during input), all finite lower bounds of variables will be
zero. In the above formulation, all the variables (x j and y i alike) can be handled in a uniform way.

Both the x j and the y i conform to one of the following types:

Fixed (variable = 0.0)
Bounded (0.0 ≤ variable ≤ upper bound)
Plus (0 ≤ variable)
Free (variable can take any value)

The simplified structure of the problem is illustrated in Figure 5 below, where the upper bounds
U ui j and exist only for bounded variables.

IV-3

rhs

Lower bounds

Coefficient Matrix
aij

=

Objective

Upper bounds

bi

≤

≤

cj

Zero

Type codes

uj

≤

≤

Structurals

Ui

Unit matrix
I

Zero

Type codes

Logicals

Variables

Figure 5 ‘Internal SSX problem structure’

In practice, the c j of the objective row appear as coefficients of a row (namely, the objective row) in the
MPS form of the input data and this idea is retained internally so that no separate c j vector is actually
needed.

A set of values of the variables is called a solution if it satisfies the constraints. A solution is called a
feasible solution if, additionally, it satisfies the bound constraints too. Using this terminology, the purpose
of the simplex method is to find a/the best feasible solution if such exists.

In the simplex method, the variables are divided into two separate categories: there are m basic and n
non-basic variables. The main distinction is that the value of a non-basic variable may be temporarily
fixed (usually at zero, or upper bound) while the value of a basic variable may change at each iteration.
The set of values of the actual non-basic variables uniquely determines the values of the basic variables
in such a way that they together form a solution. This set of values is called a basic solution. A basic
solution can be computed by the inverse of the matrix formed from the columns corresponding to the
basic variables. Sometimes this matrix is referred to as a ‘basis matrix’ or as simply a ‘basis’.

An iteration of the simplex method makes either a basis change or a bound change. In the first case one
basic variable is replaced by one non-basic variable, while in the second case the basis remains
unchanged but a non-basic variable moves from its lower bound to the upper bound or the other way

IV-4

around. If there is a basis change then the value of the objective function will improve or remain the
same, while a bound change always results in an improvement of the objective value.

Back to Chapter contents

4.2 Introduction to the Algorithms

Large scale LP problems tend to have relatively very few non-zero coefficients in the matrix of
constraints. There is an observation that the average number of non-zeros per column is between 5 and
10, independent of the size of the problem. This means that as problem sizes increase the density (the
ratio of non-zeros to the total number of possible entries) decreases. For problems with around 1000
constraints the density is typically less than 1%. The low density is often referred to as sparsity.

Sparsity is the main feature that enables the solution of very large LP problems. The solution algorithms
take full advantage of sparsity of the original problem and also keep the creation of new non-zeros
during the solution under control.

The Sparse Simplex algorithm of FortMP is a state-of-the-art implementation of the most advanced
sparse LP techniques. This makes FortMP capable of solving large scale LP problems efficiently,
reliably and accurately.

Sparsity is exploited throughout all the algorithms of SSX. This requires the application of sophisticated
data structures and manipulations which are transparent to the user of the stand-alone version of
FortMP.

The main algorithm in SSX of FortMP is PRIMAL. This addresses any LP problem. There is a dual
algorithm also available, called DUAL. It requires the presence of a dual feasible solution. This is always
available at the nodes of the MIP algorithm and the main intended usage of DUAL is to assist the
efficient solution of the subproblems arising in MIP.

The proper operation of both of these algorithms is supported by some additional procedures (such as
SCALE, CRASH and INVERT) and these will also be discussed briefly.

Back to Chapter contents

4.3 PRIMAL Algorithm

The simplex method is an iterative procedure making basis/bound changes at each step. The primal
simplex first attempts to find a feasible solution (Phase I), i.e. one that satisfies all constraints and
bounds. This is achieved by simplex iterations (basis/bound changes). After a feasible solution has been
found, it makes further iterations that maintain feasibility and result in a better (or, in case of degeneracy,
not worse) objective value (Phase II) until an optimal solution is encountered or the problem is found
unbounded.

Optimality is declared if the solution is feasible and no further improving variable can be found. Similarly,
infeasibility of the problem is declared if no improving variable can be found while the solution is in Phase
I.

IV-5

The primal algorithm of FortMP is a version of the revised simplex method. The inverse of the basis
matrix is kept as a product of a lower and an upper triangular matrix (elimination form of the inverse).
This form is generated by a re-factorization (reinversion) step and can optionally be maintained during
the simplex iterations.

Back to Chapter contents

4.3.1 Starting Procedures

A solution procedure can start from the all logical (UNIT) basis, crash basis, or supplied basis.

The UNIT basis is created in such a way that a logical variable and a corresponding unit vector are
added to every constraint in the LP problem. They, together, form a unit matrix which is chosen as a first
basis with all the structural variables set to zero. The basic solution for this basis is equal to the right-
hand-side vector. This is the simplest starting basis and the fastest to obtain. Another advantage is that
the subsequent first simplex iterations are very fast. The disadvantage is that it does not contain any of
the structural variables that must be introduced into the basis one by one during the simplex iterations.
Another disadvantage is that the starting solution may be infeasible, requiring many iterations to find a
feasible solution (if one exists).

The crash basis is created with some work but this is carried out relatively very quickly since the major
part of it is done symbolically. This crash procedure attempts to replace as many logical vectors as
possible by structural ones. The vectors are selected so that they can symbolically be rearranged to form
a triangular basis (i.e. they can enter the basis without transforming them). Additionally, if there is a tie in
the selection of the incoming structural variables (column tie), variables (vectors) with larger feasibility
range are given priority. In the case of row tie, logical variables with smaller feasibility range are selected
to be replaced. The resulting triangular basis is easy and efficient to handle and has a greater chance to
being feasible or near feasible. Experience shows that using this basis requires fewer simplex iterations to
solve a wide range of problems. Consequently it has been chosen as a default.

By supplied basis we mean one of two possibilities. One is the case when the basis is given in MPS
format as a text (ASCII) file prepared by the user or by an earlier run of FortMP. The basis is
interpreted and amended by logical variables as necessary. The other case is a binary basis created by
FortMP earlier. The quality of such starting bases is completely dependent on factors known by the
user. Algorithmically they can be extremely good (e.g. to re-optimize a slightly modified problem starting
from the previous optimum) or just poor. In any case, when users are prepared to supply a basis they
may have some knowledge about the problem and the basis and, therefore, can judge the usefulness of
this starting procedure.

Back to Chapter contents

4.3.2 Column Selection

Column selection refers to the choice of an improving variable to bring into the basis or to change its
bound setting. The selection is made from among non-basic vectors that show a rate of improvement
(candidate vectors). The rate of improvement is reflected by the sign and magnitude of the reduced cost
(d j) of the variable corresponding to a vector. The positivity (or in some cases the negativity) of the
reduced cost is interpreted with a tolerance (DJ TOLERANCE, default value is 1.0d-5). It means that a

IV-6

computed d j value is considered negative if it is less than -(DJ TOLERANCE), i.e. the negative of the
tolerance.

The ultimate goal would be to select the best candidate. By best we mean the one by which optimality
can be achieved in the least number of iterations. Unfortunately, it is theoretically impossible to identify
such a candidate. At column selection only the rate of improvement can be determined but not the
amount of improvement in the objective function. A good rate does not necessarily give large
improvement. The only thing that can be done is to increase the probability of selecting good candidates.

However, even this modified goal is hard to achieve. Column selection is based on a step called pricing
the non-basic variables. It involves a computation of a dot product of each non-basic column and a
pricing vector (simplex multiplier). If the size of the problem is large there can be many non-basic
columns having many non-zero elements and the pricing operation can be very expensive in terms of
computation (and time). Thus, economizing column selection is not an easy exercise.

PRIMAL applies a sophisticated column selection procedure that attempts to compromise in finding
good candidates and reduce the work per selection. The procedure can be characterized by the
following. Usually, only a part of the non-basic variables is scanned (partial pricing). In a pricing step,
scanning starts from where it was previously terminated. Having reached the end of the matrix, pricing
continues at the beginning (cyclic pricing). The number of variables to be scanned is determined after
each reinversion (dynamic partial pricing). During one scanning pass, several candidates are selected
(multiple pricing). The number of them is controlled by the SPECS command

PRIMAL MSUB = n

where n is given by the user if needed. The default value for MSUB is 4. Since 4 is satisfactory for a
large number of cases this command can simply be omitted from the SPECS file. The selected candidate
columns are updated (expressed in terms of the current basis) and are stored in explicit (dense) form.
This operation is called FTRAN.

PRIMAL temporarily considers a smaller LP problem consisting of the selected variables and the
current basic variables and finds the optimal solution of it (sub-optimization). The variable to enter the
basis is selected by the criterion of greatest improvement. This is expensive for the whole problem but
moderate for the sub-optimization. At the same time, it results in a very good iteration from amongst the
selected variables.

Selection of candidates for sub-optimization is called major iteration, while iterations in the sub-
optimization are called minor iterations. Minor iterations are the actual simplex iterations.

The user may want to experiment with the value of MSUB. He should be warned that increasing its
value results in increased memory requirement and steps in sub-optimization tend to slow down.

PRIMAL is also equipped with a more sophisticated column selection strategy which is widely known
as DEVEX. This technique attempts to estimate the progress that can be achieved by a potential
candidate variable. It is based on an approximation of the column norms which requires considerable
extra computations that has to be traded off against the possible reduction in number of iterations
needed. At every iteration the quality of the approximation is checked and when it becomes too
inaccurate, column norms are reinstated. Such an event is triggered when the ratio of the accurately
computed to the estimated column norm of the entering column falls below a tolerance (DEVEX

IV-7

RATIO) which has a default value is 0.4. This value can be anything between 0 and 1 but values
outside the range (0.2 - 0.6) are not recommended. Higher value will result in a more frequent
recalculation of the norms which is costly.

Certain additional column selection procedures are provided for use in parallel processing and in
research studies:

- Sectionalised partial pricing

- Dynamic scaling

- Adaptive composite phase 1 weighting

- Anti-degenerate wighting

These are described in Appendices F and G.

Back to Chapter contents

4.3.3 Phase I

PRIMAL is equipped with a particularly efficient algorithm to find a first feasible solution or to detect
that one does not exist (problem infeasible). This algorithm takes full advantage of the features of the
basis created by the crash procedure outlined above. Namely, it can take more efficient steps if the basis
contains variables with relatively large feasibility ranges. The important characteristic feature of this
procedure is that it allows feasible basic variables to become infeasible but the sum of infeasibilities is
kept monotonic decreasing in modulus. This increased freedom of the basic variables usually results in
much more efficient basis changes reducing the sum of infeasibilities to a maximum possible extent per
iteration.

Feasibility is interpreted with a tolerance. It means that if a variable violates one of its bounds by more
than FEASIBILITY TOLERANCE (user-accessible parameter, with default value of 1.0d-5) then it is
treated as infeasible.

Before each iteration in Phase I, before each major iteration in Phase II, and after each reinversion, the
feasibility of the actual solution is checked. If it is found infeasible, the Phase I procedure is activated,
otherwise a Phase II iteration is executed. The main difference between these two types of steps lies in
setting up the simplex multiplier and determining the variable to leave the basis (outgoing variable).

With numerically difficult problems, it may happen occasionally that after a Phase II reinversion the
newly computed solution becomes infeasible. Checking feasibility detects such a case and handles it
automatically.

Back to Chapter contents

4.3.4 Handling Degeneracy

Degeneracy in linear programming has long been known as a phenomenon that can cause troubles for
the simplex algorithm. A solution is degenerate if at least one basic variable is at its lower or upper

IV-8

bound. An iteration is degenerate if the value of the objective function does not change. Degeneracy of
an intermediate solution may (but does not necessarily) result in a degenerate iteration. We talk about
stalling if degenerate (non-improving) steps are made for a large number of iterations. In the worst case,
stalling can become cycling if the procedure returns to an earlier basis and this sequence of iterations is
repeated an infinite number of times.

Since large scale real-life problems – even after PRESOLVE – tend to be rather degenerate, proper
handling of degeneracy is an important issue.

PRIMAL is well prepared to solve degenerate LP problems efficiently. Its Phase I procedure provides
some automatism to reduce the chance of degenerate steps by maximizing the progress towards
feasibility. In the case of MSUB > 1 when the principle of greatest change is applied this chance is
further increased. This latter remark is valid for Phase II, as well, i.e. whenever a non-degenerate step is
possible with the candidate vectors, PRIMAL will find it.

In Phase II, PRIMAL applies a special technique to avoid the repetition of a previous basis. It makes
arrangements to improve the objective at each iteration, at least by a very small amount even if it may
result in the slight violation of feasibility. Such small violations, if they arise, are kept under control and
are completely eliminated before termination. This anti-degeneracy technique is very cheap (hardly
requires any additional operations per iteration), contributes to an increased numerical stability of the
solution and does not require the identification of the presence of degeneracy.

The anti-degeneracy strategy is automatic and is transparent to the user.

Back to Chapter contents

4.3.5 Numerical Features

The revised simplex method works with real (floating point) numbers. During operations with such
numbers, different types of numerical errors may occur. The two main types are cancellation error (in
subtraction or addition) and rounding error (losing least significant digits in any of the operations). At one
extreme, these errors may remain unnoticed but, on the other, they may cause serious troubles.

Good numerical procedures try to minimize the occurrence of numerical errors and, if they still occur,
can efficiently cope with the situation. In the case of the simplex method, numerical problems can have
quite serious effects on the solution. They can slow down progress towards feasibility/optimality, or, in
the worst case, can prevent convergence.

FortMP, and within it PRIMAL, is equipped with a wide range of techniques aiming at guaranteeing
smooth progress, without numerical problems.

The first is scaling. The adaptive scaling algorithm of FortMP reduces the range of magnitude of the
coefficients.

The second is the careful use of tolerances. This means that whenever a numerical value is to be tested
against 0 (zero) a small tolerance is used instead of 0. The appropriate value of a tolerance is situation
dependent. This is the reason PRIMAL uses several different tolerances. (Note that some tolerances
may have identical default values.)

IV-9

In addition to the above, PRIMAL regularly checks accuracy at some well-defined points and takes
appropriate actions (usually carries out a reinversion to restore accuracy) to avoid serious
consequences. The algorithm works with the assumption that the INVERT procedure of PRIMAL
produces the most accurate numerical values.

Back to Chapter contents

4.3.6 Issues of Efficiency

The total computational effort needed to solve an LP problem defines the efficiency. Since
computational effort cannot easily be measured, the CPU time can be used as a measure of efficiency.

Since PRIMAL works entirely in the CPU (it does not use disk communication during optimization), its
performance can be traced. There are several factors that affect performance.

The number of candidates in sub-optimization (MSUB) is one of them. If MSUB is 1 then only one
vector is selected at each pricing operation (single pricing). Since pricing is expensive, using single
pricing will lengthen the overall solution time. If we go to the other extreme, namely increase MSUB
beyond 6, the memory requirement goes up considerably (each selected column must be stored
explicitly in double precision) and later minor iterations in the sub-optimization tend to be locally good
and globally less valuable. This usually results in an increase of the total number of iterations that may not
be offset by the increased iteration speed. At the same time, it also may happen that only a smaller part
of the selected and updated vectors can finally enter the basis rendering a large part of the computational
work useless. MSUB = 4 seems to be a good compromise.

Back to Chapter contents

4.4 DUAL Algorithm

The DUAL algorithm aims to solve the DUAL problem that is associated with the (primal) problem to
be solved. However it does not simply construct this DUAL problem and use the primal algorithm to
solve it, instead it retains the primal data structure internally and adopts the DUAL argument for every
step of its procedure. DUAL lacks any equivalent of the major/minor iteration structure and sub-
optimization in PRIMAL, but is otherwise entirely equivalent and is, almost, equally capable as a solver
for LP problems.

DUAL is of particular use for solving MIP sub-problems since each sub-problem has an initial basic
solution that is DUAL-feasible but PRIMAL-infeasible. Hence DUAL can begin immediately in Phase
2 and often requires only a few iterations to reach the optimum. As a further advantage the objective
value progresses monotonically from a better to a worse value, so that MIP cutoff considerations apply,
and we may never need to complete the solution process.

DUAL suffers the disadvantage that its calculations may be less accurate than with PRIMAL and it may
abort through stalling or through unrecoverable numerical error. In this case the FortMP system always
reverts to PRIMAL to overcome the difficulty and solve the problem with its greater reliablility.

Back to Chapter contents

IV-10

4.4.1 Starting Procedures

For solving an original LP problem from scratch DUAL has the same starting procedures as those of
PRIMAL (see section 4.3.1).

Back to Chapter contents

4.4.2 Row Selection

This is analogous to Column Selection in the primal algorithm. The selection is based on primal
infeasibility and can be modified by applying DUAL DEVEX, which is entirely analogous to DEVEX in
the primal algorithm (see 4.3.2). DUAL DEVEX is a much better choice for DUAL than PRIMAL
DEVEX is for PRIMAL. This is because the calculation overhead is much less, and so the option is
recommended for all larger or more difficult MIP problems.

DUAL DEVEX employs the same DEVEX RATIO as for the primal case (see 4.3.2).

Back to Chapter contents

4.4.3 DUAL Phase 1

Since DUAL is usually employed when the starting basic solution is dual-feasible, any DUAL phase 1
may not be necessary. However as with PRIMAL the phase sometimes switches back after a re-invert,
particularly in harder problems. The ability to recover with phase 1 is therefore an important feature,
and much time may be saved, especially in MIP problems.

Back to Chapter contents

4.4.4 Handling Degeneracy

FortMP DUAL is provided with an anti-degenracy option based on nested reduction of the degenerate
positions so as to make a unique pivot-choice. There is also a progress-check on the objective to
counter persistant stalling. These techniques are controlled by SPECS commands described below.

Back to Chapter contents

4.4.5 Numerical Features

Several SPECS commands are available to adjust the controls on pivot tolerance, updating accuracy,
and accuracy check by comparing results evaluated separately by the forward and backward
tansformations. The standard default setting for these controls have been chosen to balance the
demands of efficiency and reliablilityfor the great majority of problems. In cases of special difficulty it
may be possible to obtain better performance by changing them.

Back to Chapter contents

IV-11

4.5 INVERT

At each basis change the representation of the inverse of the basis (‘ETA file’, which is not really a file
but a set of arrays in the main memory) gets appended by some newly created vector(s). After several
iterations this representation can grow quite large which may become a problem in itself because of the
limited memory available. However, there are two other problems arising here. The operations with the
inverse become more and more time consuming because of the growing number of non-zero elements in
the inverse. Furthermore, the newly created components are computed from earlier ones and therefore
inherit their inaccuracies in addition to their own. As a result, as we make more iterations after a
reinversion, operations become slower and less accurate. When this reaches a critical level, a reinversion
must be carried out.

The main purpose of INVERT is to ‘refresh’ the representation of the inverse of the basis. This results in
a shorter and more accurate ETA file. Thus, right after a reinversion, iterations are faster and more
accurate. However, reinversion itself is just a reproduction step and is not for free. Its time complexity is
problem dependent but never negligible. It means that reinversion should not be performed too
frequently.

In PRIMAL, the need for reinversion depends also on the way the new vector(s) of a basis change are
created. There are two possibilities. The first is the Product Form (PF) update. This usually generates a
relatively large number of new non-zero elements in the ETA file but the computations themselves do not
require additional memory. If PF update is used then a good value for reinversion frequency is 50, i.e.
make a reinversion after every 50 basis changes. The other possibility is to use the Forrest–Tomlin
(FORTOM) update scheme which usually results in a very modest growth of non-zeros in the ETA file.
However, it requires the explicit storage of MSUB vectors (increased memory requirement) and
involves some additional computation. Usually the system begins with FP-update and switches at some
stage to FORTOM when ETA-growth becomes large. At the same time the re-inversion frequency is
increased by half - from 50 to 75 - so as to take advantage of the reduced growth. This can be
controlled with SPECS commands as described below.

Back to Chapter contents

4.6 SSX Algorithm Controls

4.6.1 The Principal Controls

A description of the syntax of SPECS commands which control the run has been given in Chapter 3,
Section 3.1.6.

The following commands state the direction of optimisation, i.e. how the objective row is to be treated:

MINIMIZE
MAXIMIZE

The default is ‘MINIMIZE’.

The following commands invoke either PRIMAL or DUAL as the initial solver for LP problems:

ALGORITHM PRIMAL

IV-12

ALGORITHM DUAL

The default is PRIMAL.

The following command specifies the maximum number of candidate columns used by PRIMAL in sub-
optimisation and extracted by multiple pricing:

PRIMAL MSUB = n

The default is MSUB = 4 with possible values 1 to 10. Single pricing (MSUB = 1) will lengthen the
overall solution time because only one minor iteration takes place to every major iteration. If we go to
the other extreme, namely increase MSUB beyond 6, the memory requirement goes up considerably
(with FORTOM ON each selected column is stored twice in double precision) and later minor iterations
in the sub-optimization tend to have very little value. The total number of iterations increases but without
any corresponding increase in iteration speed. At the same time, it also may happen that only a smaller
part of the selected and updated vectors can finally enter the basis rendering a large part of the
computational work useless. MSUB = 4 seems to be a good compromise.

The following commands control the use of DEVEX column selection procedure in the PRIMAL
algorithm:

PRIMAL DEVEX OFF
PRIMAL DEVEX ON
PRIMAL DEVEX SINGLE
PRIMAL DEVEX DOUBLE

the default being ‘OFF’. ‘ON’ and ‘SINGLE’ are the same and indicate that DEVEX should apply
only in Phase 2 (i.e. when feasible). ‘DOUBLE’ indicates that DEVEX should apply in both Phase 1
and Phase 2.

The corresponding commands for DUAL are:

DUAL DEVEX OFF
DUAL DEVEX ON

the default being ‘OFF’. ‘ON’ indicates that DEVEX should apply only in Phase 2 (i.e. when DUAL
feasible).

The following commands set or cancel Forrest–Tomlin update of the ETA file:

FORTOM OFF
FORTOM ON
FORTOM AUTO

When Forrest–Tomlin is cancelled with ‘OFF’ the simple product form update is used in its place. The
default is ‘FORTOM AUTO’ under which Forrest-Tomlin is initially OFF but will be set to ON - i.e.
become active - when certain criteria are satisfied concerning the proportion of structurals in the basis
and growth of the ETA-file during SSX iterations. At the same time when Forrest-Tomlin is AUTO-
activated the invert frequency is increased by one half (actually from 50 to 75 in default). Thus ‘ON’ is
really unnecessary except for experimental reasons. It should not be necessary to use ‘OFF’ except for
very dense problems in which the extra calculations outweigh the savings. Users may suspect the

IV-13

Forrest–Tomlin update as being of no real benefit if growth figures of 200% or more show up on the
INVERT log (with the standard INVERT frequency increased to 76 iterations).

The following command sets a maximum to the number of SSX iterations between re-INVERTs.

INVERT FREQUENCY = n

The default is 50 which will increase to 76 at Forrest-Tomlin auto-activation. Reinversion will take
place at earlier intervals if a demand arises for some other reason, e.g. lack of memory or signs that the
inaccuracy is growing too large. The user should use a lower value if the switch FORTOM is set OFF.

For the DUAL algorithm the anti-degeneracy procedure can be employed with the following SPECS
command:

DUAL ADEGEN = n * Default is n=0 implying OFF

Values 1 and 2 can be given both specifying ON. Option 2 is faster. When this option is OFF there is
a progress-check applied during DUAL iterations which stops DUAL if it becomes very slow. The
system reverts to PRIMAL in this case.

Back to Chapter contents

4.6.2 Starting Basis Controls

The control switches for the starting basis are set by the following commands:

SIMPLEX START CRASH
SIMPLEX START INPUT BASIS
SIMPLEX START RESTART
SIMPLEX START UNIT BASIS

‘CRASH’ is the default if no command is given. ‘RESTART’ is described in Section 4.6.4 and ‘INPUT
BASIS’ is described in Section 4.6.5. ‘UNIT BASIS’ may be used to set up an all logical starting basis
rather than ‘CRASH’.

When IPM is used the starting basis for the final check by PRIMAL is provided by BASREC as will be
described in the next chapter.

Back to Chapter contents

4.6.3 Tolerances and parameters

A tolerance is a small numerical range. Two numbers whose difference lies within this range are
considered to be equal. Tolerances are used throughout FortMP to overcome the effects of computer
arithmetic, which, for calculations involving real and double precision quantities, is imprecise.

Various tolerances can be set by SPECS commands; however, the user should be aware that the default
values have been the subject of careful research and should not be lightly changed. The defaults are
expected to be effective provided that the problem coefficients have been normalised with the SCALE
procedure.

IV-14

The following tolerances affect feasibility control:

FEASIBILITY TOLERANCE = value * Default is 1.0d-5
RHS TOLERANCE = value * Default is 1.0d-5
DJ TOLERANCE = value * Default is 1.0d-5

where the default value is given in each case. ‘FEASIBILITY’ and ‘RHS’ tolerances are in fact
synonyms for the same tolerance value which defines how far any primal variable solution value may go
outside its range without being deemed infeasible. DJ tolerance is the equivalent for any dual solution
value. This means in effect how far a dj may become negative if the primal variable is at lower bound or
how far positive if the primal is at upper bound.

The following controls affect pivot selection, which is vital in maintaining stability and restraining the
growth of non-zeros on the ETA file1.

PRIMAL PIVOT ADMIT THRESHOLD = v * Default v = 1.0d-8
DUAL PIVOT ADMIT THRESHOLD = v * Default v = 1.0d-
8
INVERT PIVOT ZERO TOLERANCE = v * Default v = 1.0d-
7
INVERT PIVOT ADMIT RELATIVE = v * Default v = 1.0d-
2

The default values are as given above. Pivot control always avoids selecting any pivot less than the
‘ADMIT’ threshold, and ‘ZERO’ tolerance refers to the level considered indistinguishable from zero.

INVERT pivoting is protected both by a large zero tolerance - the criterion for singularity - and also by
the ‘ADMIT’ threshold, given as ‘RELATIVE’ which in fact is more important. This is a factor that,
when multiplied into the largest absolute value on the current row or column being considered for
pivoting, defines the minimum admissible pivot size. Relative thresholds between 0.001 and 0.1 may be
suitable. Larger values lead to a higher growth of non-zeros on the ETA file but lower values may lead
to instability or inaccuracy.

A wider choice of pivoting controls is described below in section 4.6.7.

The following tolerance is used generally to test for zero or to test whether two values are equal:

ZERO TOLERANCE = value * Default is 1.0d-15

The following command sets the parameter used by the DEVEX algorithm (both in PRIMAL and in
DUAL):

DEVEX RATIO = value * Default is 0.4

1 The four commands given here have been changed from their forms in previous versions of FortMP. This is to
clarify their meaning and name the algorithm to which each applies. Old forms are included in Appendix B as
alternates and remain usable, however users should revise them if possible.

IV-15

which determines when to trigger re-calculation of column-norms (see 4.3.2 above) for PRIMAL, or
row-norms for DUAL. Values outside the range (0.2 - 0.6) are not recommended.

Forrest-Tomlin auto-activation is controlled by the following SPECS commands:

FORTOM ACTIVATE PERCENT = n * Default is 40

FORTOM ACTIVATE GROWTH = n * Default is 100

The ‘PERCENT’ in the first of these commands refers to percentage of structural variables in the basis
which must reach this level for activation. In addition ‘GROWTH’, the amount of increase during SSX
iterations after an INVERT, must be this percentage of the ETA-size immediately after the invert. The
default value 100 implies that ETA-size must double before auto-activation can take place.

The DUAL algorithm is subject to a progress-check for which controls may be entered with the
following SPECS commands:

DPROGRESS FREQUENCY = n * Default is 1

DPROGRESS CRITERION = value * Default = 1.0d-25

Checks are made after re-inversion and the ‘FREQUENCY’ refers to the number of inversions made
between checks. If the progress made in the dual objective does not exceed the criterion given in this
time then DUAL is considered as stalled and the system reverts to PRIMAL. The check is necessarily
slow to operate, even with comparisons at every re-invert. Hence if dual degeneracy occurs frequently
it is better to invoke the anti-degeneracy procedure (DUAL ADEGEN = 1 or 2) which should improve
progress anyway. However anti-degeneracy is itself rather slower than normal iterating.

Back to Chapter contents

4.6.4 Save and Restart

The following command provides necessary SAVEs for re-starting a subsequent run.

SIMPLEX SAVE FREQUENCY = n * Default is 10

SAVEs take place during reinversion. The given frequency defines how many reinversions take place
between successive SAVEs.

The restart procedure using such a save operates by providing the saved basis as a starting basis for the
next run. The necessary command is

SIMPLEX START RESTART

which has already been described in Section 4.6.2

The following command specifies the limiting number of SSX iterations.

MAXIMUM SIMPLEX ITERATIONS = n * Default is 10000

IV-16

When this limit is reached both PRIMAL and DUAL will terminate after doing a SAVE operation to
provide for a restart. The given limit is added to any previous iterations in a restart so that you do not
need to change the limit. Iteration numbering continues from the previous run.

Back to Chapter contents

4.6.5 Processing an External Basis

An external basis in MPS form can be used to provide the starting basis. The command is

SIMPLEX START INPUT BASIS

which has already been described in Section 4.6.2

The following commands set or clear a switch to provide an output basis for starting a subsequent run.

OUTPUT BASIS ON
OUTPUT BASIS OFF

The ‘OUTPUT BASIS ON’ command invokes output of an MPS format basis when the SSX solver
(whether PRIMAL or DUAL) has completed normally. This basis can be used as a starting basis for
similar problems with the same names for rows and columns – the identity being on the basis of names
rather than indices.

For the layout of MPS format basis records see Section 3.5.1 and Appendix A1.3. The corresponding
‘BASIS INPUT’ procedure does not require every name to be matched but it ignores any record which
cannot be matched and in the case of upper bound status it ignores any record where the new variable
no longer has an upper bound.

Back to Chapter contents

4.6.6 Log Lising Controls

Logged output from SSX algorithms is controlled with the following commands.

SIMPLEX LOG LEVEL = n * n=0-4, Default is 1
INVERT LOG LEVEL = n * n=0-4, Default is 1
SIMPLEX LOG FREQUENCY = n * Default is 1

where the defaults are as shown. The ‘LOG FREQUENCY’ defines at what iteration frequency the
primal log is issued (levels 2 and above). This log is also issued by DUAL and shows the Phase I and
Phase II objective values plus other items of interest.

The INVERT log gives details of the ETA counts and non-zero counts both before and after each
reinversion.

Back to Chapter contents

IV-17

4.6.7 Special Pivoting and Update Controls

Some of the controls on pivoting have already been described in section 4.6.3 above. It has been found
convenient to extend these controls to cover all three SSX algorithms, and to make additional controls
available for research testing and for ‘tuning’ the most difficult problems. In what follows a SPECS
command is prescribed for each operation, however not all of these are, in fact, available for use. Those
not available are fixed at a default level, which is applied as a constant, or if zero, is not applied at all (in
the current release). They are indicated by the annotation ‘Fixed’ for the value in the command.

The following tolerances relate to pivoting:

PRIMAL PIVOT ZERO TOLERANCE = v * Fixed v = 1.0d-35
DUAL PIVOT ZERO TOLERANCE = v * Default v = 1.0d-14
INVERT PIVOT ZERO TOLERANCE = v * Default v = 1.0d-
7

These commands all refer to the level considered as zero by the corresponding algorithm.

The following commands specify an acceptance level for pivoting:

PRIMAL PIVOT ADMIT THRESHOLD = v * Default v = 1.0d-8
DUAL PIVOT ADMIT THRESHOLD = v * Default v = 1.0d-
8
INVERT PIVOT ADMIT THRESHOLD = v * Fixed v = 0
PRIMAL PIVOT ADMIT RELATIVE = v * Fixed v = 0
DUAL PIVOT ADMIT RELATIVE = v * Default v = 0.0
INVERT PIVOT ADMIT RELATIVE = v * Default v = 1.0d-
2

(Keyword ‘THRESHOLD’ may be added after ‘RELATIVE’). Pivots falling between the ‘ADMIT’
level and the ‘ZERO’ level are postponed, hopefully so as to avoid their use completely. In the case of
INVERT these pivots cannot be selected until no other alternative remains - the ZERO level then defines
the criterion for singularity.

In the case of PRIMAL and DUAL postponed pivots are flagged - that is the corresponding row or
column selection is temporarily ruled out until a fresh re-invert occurs. When all possible selections are
flagged out in this way an early re-inversion can be invoked so as to correct the numerical error as far as
possible before trying again. However, if all selections become flagged immediately after re-invert, then
the algorithm is blocked and is halted. DUAL then reverts to PRIMAL, but such an error in PRIMAL
is not resolvable.

The following tolerance applies to the forward/backward pivot comparisons made as a check on
numerical accuracy:

PIVOT DIFFERENCE EPSILON = v * Default v = 1.0d-
2

The tolerance is relative - that is to say the difference should not be greater in magnitude than this
multiple of the original calculations (using forward transform or backward transform). In case of
violation the system may re-invert directly or flag the selection as with pivots below the admit level.

IV-18

The following zero tolerances apply to update calculations:

PRIMAL RELATIVE EPSILON = v * Fixed v = 0.0
DUAL RELATIVE EPSILON = v * Default v = 0.0
INVERT RELATIVE EPSILON = v * Fixed v = 0.0

Which specify that the result of a subtraction equates to zero if its magnitude is less than a certain
fraction of the original magnitudes subtracted.

Back to Chapter contents

4.7 Summary of SPECS Commands

The following SPECS commands relate to the SSX algorithm. Those introduced in this chapter are
highlighted thus (e.g.) ‘FORTOM ON’. Some commands, which are not actually available yet, are
written in parentheses and have ‘Fixed’ values.

MINIMIZE
MAXIMIZE

These two commands specify the direction of optimisation. ‘MINIMIZE’ is the default so this command
is not actually needed.

ALGORITHM PRIMAL
ALGORITHM DUAL

One of these commands is used to specify which SSX algorithm is to be used. ‘PRIMAL’ is the default
and need not be specified.

MAXIMUM SIMPLEX ITERATIONS = nnn * default 10000
This command sets the termination limit for SSX algorithms. A SAVE is made before exit at
termination.

SIMPLEX LOG LEVEL = n
INVERT LOG LEVEL = n

These commands specify the ‘level’ of the output to be sent to the log file in each major algorithm. The
range is 1–4, with default value 1 in each case.

SIMPLEX SAVE FREQUENCY = n * default n=10,
 each 10th reinvert

This command specifies the frequency for making a SAVE in SSX algorithms.

SIMPLEX START RESTART
This command specifies ‘RESTART’ for the SIMPLEX algorithms. ‘RESTART’ is an alternative to
other starting basis options.

SIMPLEX START CRASH
SIMPLEX START INPUT BASIS
SIMPLEX START RESTART
SIMPLEX START UNIT BASIS

IV-19

These commands select the mechanism for setting up the starting basis when the main algorithm is
PRIMAL or DUAL. CRASH is the default.

PRIMAL MSUB = n
This command sets the number of priced candidates in PRIMAL sub-optimisation. The range for ‘n’ is
1–10, with default value 4.

PRIMAL DEVEX OFF
PRIMAL DEVEX ON
PRIMAL DEVEX SINGLE
PRIMAL DEVEX DOUBLE
DUAL DEVEX OFF
DUAL DEVEX ON

The above commands control use of DEVEX algorithm, the default being ‘OFF’ for both PRIMAL and
DUAL. ‘DOUBLE’ causes DEVEX to be active in both phases of the PRIMAL algorithm. ‘ON’ and
‘SINGLE’ are equivalent.

DEVEX RATIO = value * Default = 0.4
This command sets the ratio-criterion for recalculating column-norms or row-norms in DEVEX.

INVERT FREQUENCY = n
This command assigns a frequency, in terms of the iteration count, for reinversion during SIMPLEX
algorithms. The default for ‘n’ is 50.

FORTOM ON
FORTOM OFF
FORTOM AUTO

The above commands set or cancel Forrest-Tomlin update of the ETA file. Default is AUTO implying
initially OFF and subsequently becomes ON when the auto-activate creteria are satisfied.

FORTOM ACTIVATE PERCENT = n * Default = 40
FORTOM ACTIVATE GROWTH = n * Default = 100

These commands control the auto-activation of Forrest-Tomlin update. ‘PERCENT’ is the required
percentage of structurals in the basis and ‘GROWTH’ is the (percent) increase to ETAs during SSX
iterations between inverts. Both criteria must be satisfied before auto-activation can occur.

DPROGRESS CRITERION = value * Default = 1.0d-25
DPROGRESS FREQUENCY = n * Default = 1

These commands control the progress-check made in the DUAL algorithm when there is no anti-
degeneracy procedure specified (default DUAL ADEGEN = 0). ‘FREQUENCY’ refers to the
separation betweencomparisons, counted in number of re-inverts, and ‘CRITERION’ is the minimum
progress to be made - otherwise DUAL is stopped and the system reverts to PRIMAL.

DUAL ADEGEN = n * Default is 0

IV-20

Controls use of anti-degeneracy in the DUAL algorithm. Zero specifies progress-checking (the default).
Values 1 and 2 specify anti-degenerate pivoting.

FEASIBILITY TOLERANCE = value * Default is 1.0d05
RHS TOLERANCE = value * Default is 1.0d-5
DJ TOLERANCE = value * Default is 1.0d-5
ZERO TOLERANCE = value * Default is 1.0d-15
(PRIMAL PIVOT ZERO TOLERANCE = v * Fixed v = 1.0d-35)
DUAL PIVOT ZERO TOLERANCE = v * Default v = 1.0d-14
INVERT PIVOT ZERO TOLERANCE = v * Default v = 1.0d-
7

The above commands assign tolerances used in the algorithms.

PRIMAL PIVOT ADMIT THRESHOLD = v * Default v = 1.0d-8
DUAL PIVOT ADMIT THRESHOLD = v * Default v = 1.0d-
8
(INVERT PIVOT ADMIT THRESHOLD = v * Fixed v = 0)
(PRIMAL PIVOT ADMIT RELATIVE = v * Fixed v = 0)
DUAL PIVOT ADMIT RELATIVE = v * Default v = 0.0
INVERT PIVOT ADMIT RELATIVE = v * Default v = 1.0d-
2

The above commands specify an acceptance level for pivoting:

PIVOT DIFFERENCE EPSILON = v * Default v = 1.0d-2

The above command controls the checking by forward/backward comparison of pivot values.

(PRIMAL RELATIVE EPSILON = v * Fixed v = 0.0)
DUAL RELATIVE EPSILON = v * Default v = 0.0
(INVERT RELATIVE EPSILON = v * Fixed v = 0.0)

The above commands specify relative zero levels in subtractions performed during update or calculation
of vectors.

SIMPLEX LOG FREQUENCY = n
This command assigns a frequency for printing the iteration log during SIMPLEX algorithms. The default
for ‘n’ is 1.

Back to Chapter contents

V-1

5. The Interior Point Method

Contents

5. THE INTERIOR POINT METHOD 1

5.1 Introduction to the IPM Algorithm 2
5.1.1 IPM Problem Statement 2
5.1.2 Introduction to the Solution Procedures 3
5.1.3 Affine, Barrier and Predictor–Corrector Algorithms 4
5.1.4 Solving the System of Equations 6
5.1.5 Determining the Starting Point 7

5.2 Controls on the IPM Algorithms 8
5.2.1 Using the Algorithms 8
5.2.2 Control and Choice of the Starting Point Methods 10
5.2.3 Choice of Solution Algorithm for the Equations 11
5.2.4 Refinement by Conjugate Gradient iterations 11
5.2.5 IPM Save and Restart: Iteration Limit. 12
5.2.6 IPM-SSX Crossover Option: BASREC 13
5.2.7 Miscellaneous IPM and BASREC Commands 13

5.3 Summary of SPECS Commands 14

V-2

5.1 Introduction to the IPM Algorithm

5.1.1 IPM Problem Statement

FortMP IPM is a primal dual approach to the solution of an LP problem; that is to say it takes note of
the original problem (primal) and of the corresponding dual problem in which the coefficient matrix is
transposed (rows become columns and columns rows), the right-hand sides become objective
coefficients and the objective coefficients become right-hand sides.

The primal problem may be stated at follows.

Minimise the expression c xj j∑ subject to the conditions:

a x b i mij j i∑ = = for 1,2, ,K

x s u j nj j j+ = = for 1,2, ,K

where the x j are the structural variable and the variables s j nj (,2, ,)= 1 K are complements of the x j

with respect to the upper bounds u j .

We state the equations this way although naturally variables s j only exist for those x j which are
bounded in both senses. For the sake of simplicity this complication is ignored in all the equations that
follow.

These equations are derived from the original problem statement (see Chapter 1, Section 1.7) by
dropping all fixed variables and free rows and by adding slack variables to convert inequalities into
equalities.

The dual problem may be stated as follows.

Maximise the expression b y u wi i j j∑ ∑− subject to the conditions:

a y z w c j nij i j j j∑ + − = = for 1,2, ,K

where the variables y i mi (, ,)= 1 L are dual variables complementary to the original
rows of the primal statement above, z j nj (, ,)= 1 K are dual variables complementary to
the x j and w j nj (, ,)= 1 K are dual variables complementary to the s j .

All of the variables x s z w j nj j j j, , (,2, ,) and = 1 K must be non-negative; this criterion defines an
interior point for the system.

According to LP theory any feasible solution to the above equations will also be optimal if the duality
gap (i.e. the difference between primal and dual objective functions) is zero. This duality gap is given by
the sum:

V-3

x z s wj
j

n

j j
j

n

j
= =

∑ ∑+
1 1

in which every term must be separately zero because all the variables are positive or zero.

In the logarithmic barrier method these conditions are restated as:

x z j nj j = =µ for 1,2, ,L

s w j nj j = =µ for 1,2, ,L

where µ. is a positive constant that must reduce to zero at the final stage of the iterative solution process.
µ is referred to as the ‘Barrier parameter’.

Back to Chapter contents

5.1.2 Introduction to the Solution Procedures

In each of the solution algorithms one iteration considers an interior point to be a set of fixed values and
looks for a set of ‘changes’ or ‘directions’ as follows.

∆x x j nj j, , , , changes to the for = 1 2 L
∆s s j nj j, , , , changes to the for = 1 2 L
∆y y j mj j, , , , changes to the for = 12 L
∆z z j nj j, , , , changes to the for = 1 2 L
∆w w j nj j, , , , changes to the for = 12 L

If we now substitute ()x xj j+ ∆ for x j in the equations above, and similarly substitute ()s sj j+ ∆ for
s j , ()y yj j+ ∆ for y j , ()z zj j+ ∆ for z j and ()w wj j+ ∆ for w j then new equations are derived.
These equations are now rearranged with the delta terms on the left and everything else (constant terms)
on the right. The equations then become:

a x b a x i mij j i ij j∑ ∑= − =∆ for 12, , ,L

∆ ∆x s u x s j nj j j j j+ = − − = for 1 2, , ,L

a y z w c a y z w j nij i j j j ij i j j∑ ∑+ − = − − + =∆ ∆ ∆ for 12, , ,L

∆ ∆ ∆ ∆x z z x x z x z j nj j j j j j j j+ + = − =µ for 1 2, , ,L

∆ ∆ ∆ ∆s w w s s w s wj j j j j j j j+ + = −µ for j n− 1 2, , ,L

The constant µ (barrier parameter) is estimated by taking a certain proportion of the duality gap. The
precise formula for this proportion can be controlled by the user.

V-4

There are various means for approximating these equations so as to obtain a viable iterative procedure.
Three alternatives are available in FortMP IPM as follows:

Affine algorithm
Barrier algorithm
Predictor-corrector algorithm

Each is described below.

Once the delta terms have been determined then the new interior point for the next iteration is obtained
as follows:

New point = Previous point + Delta * Factor

where the Factor is made as large as possible without taking any variable outside its bound range so
that the new point remains an interior point. Actually the new point is only allowed to approach the
boundary and never quite to reach it since to be on a boundary could make the whole process fail.

As will be seen, the essential step in the solution process involves finding the inverse of a large,
symmetric matrix and this in fact is much the most time consuming part of the whole IPM procedure.

Remembering that at each iteration the current values of the x s y z wj j j j j, , , and must be interior, an
obvious requirement is to find a good interior starting point for the first iteration. Different methods are
available for this and the user can specify which method should be used.

Back to Chapter contents

5.1.3 Affine, Barrier and Predictor–Corrector Algorithms

Affine Algorithm

In the affine algorithm we approximate by setting µ to zero in the equations so as to get the following:

a x b a x i mij j i ij j∑ ∑= − =∆ for 12, , ,L

∆ ∆x s u x s j nj j j j j+ = − − = for 1 2, , ,L

a y z w c a y z w j nij i j j j ij i j j∑ ∑+ − = − − + =∆ ∆ ∆ for 12, , ,L

∆ ∆ ∆ ∆x z z x x z x z j nj j j j j j j j+ + = − = for 1 2, , ,L

∆ ∆ ∆ ∆s w w s s w s wj j j j j j j j+ + = − for j n− 1 2, , ,L

In the 4th and 5th equations the 2nd order, quadratic terms have been dropped – this is a common
approximation used in all the algorithms.

This may be thought of as attempting to go all the way – force µ to zero in one step – although
afterwards of course the related duality gap is recalculated on the next iteration to evaluate actual
progress made.

V-5

A starting point is derived by one of the three standard methods which can be selected by the user.

Barrier Algorithm

In the barrier algorithm the equations for ∆x j, ∆sj, ∆yi, ∆zj and ∆wj are approximated as follows:

a x i mij j∑ = =∆ 0 12 for , , ,L

∆ ∆x s j nj j+ = =0 12 for , , ,L

a y z w j nij i j j∑ + − = =∆ ∆ ∆ 0 12 for , , ,L

z x x z x z j nj j j j j j∆ ∆+ = − =µ for 1 2, , ,L

w s s w s wj j j j j j∆ ∆+ = −µ for j n− 1 2, , ,L

Here the point (, , , ,)x s y z wj j j j j is assumed to be so far feasible as to satisfy the original equations so
that the first three right-hand sides above are all zero. This is guaranteed by a suitable choice of starting
point so that the barrier algorithm has a starting point method of its own – different from the affine and
predictor–corrector algorithms.

As before the quadratic terms have been dropped in the 4th and 5th equations.

Predictor–Corrector Algorithm

The predictor–corrector algorithm computes the direction of change, the ∆ , twice. For the first
computation the same equations are used as for the Affine algorithm. This gives the ‘predictor’ direction
which may be denoted (, , , ,)∆ ∆ ∆ ∆ ∆x s y z wj

p
j
p

j
p

j
p

j
p . When this is substituted in the original and

subtracted from the equations above we get the following equations for the ‘corrector’ direction.

a x i mij j∑ = =∆ 0 12 for , , ,L

∆ ∆x s j nj j+ = =0 12 for , , ,L

a y z w j nij i j j∑ + − = =∆ ∆ ∆ 0 12 for , , ,L

z x x z x z j nj j j j j
p

j
p∆ ∆ ∆ ∆+ = − =µ for 1 2, , ,L

w s s w s wj j j j j
p

j
p∆ ∆ ∆ ∆+ = −µ for j n= 1 2, , ,L

µ is calculated after taking the full affine step on an experimental basis. Then when the corrector
direction has been calculated the predictor and corrector directions are added and a fresh departure is
made from the original point using the composite direction.

Fortunately these new equations do not require a new factorisation so that the extra time involved is
relatively modest and the improvement in number of iterations will usually compensate for the extra
calculations.

V-6

The user is recommended for the most part to employ the predictor-corrector algorithm as it will
generally solve in fewer iterations than either the affine or barrier method. However certain problems,
particularly those that are unusually sparse, may be speeded up by the affine algorithm sufficiently for the
user to consider this a better alternative. Barrier should not be used except as a back up in case the
other algorithms fail for one reason or another.

Back to Chapter contents

5.1.4 Solving the System of Equations

To show how the equations are solved we first restate them using matrices.

The following vectors and matrices are defined.

A The m n× matrix of coefficients aij.

′A The n m× matrix of transposed coefficients ′a ji (= aij , rows become columns and

columns become rows).

X The n n× diagonal matrix comprising solution point values x x xn1 2, , ,L on the
diagonal and zeros elsewhere.

Z S W, and
Diagonal n n× matrices comprising dual solution point values from the z j , the s j and

the w j on the diagonal and zeros elsewhere.

∆x n -vector of variables ∆ ∆ ∆x x xn1 2, , ,L .

∆y m -vector of variables ∆ ∆ ∆y y ym1 2, , ,L .

∆ ∆ ∆z s w, and
n -vectors of variables constructed from the ∆z j , the ∆s j and the ∆w j in the same

way.

R R R R R1 2 3 4 5, , , and
Constant right-hand side vectors of size n except for R2 which is of size m .

Then the equations become:

A x R∆ = 1 (1)

 ∆ ∆x s R+ = 2 (2)

′ + − =A y z w R∆ ∆ ∆ 3 (3)

Z x X z R∆ ∆+ = 4 (4)

W s S w R∆ ∆+ = 5 (5)

V-7

where R R R R R1 2 3 4 5, , , and vary according to the algorithm used.

To solve these equations we may begin by eliminating all the variables ∆ ∆ ∆s z w, and from equations
(2), (3), (4) and (5).

When this is done the system is reduced to two equations as follows:

− + + ′ = ′− −()X Z S W x A y R1 1
3∆ ∆ (new RHS for 3rd equation)

A x R∆ = 1

This system could now be solved by finding the inverse of the matrix:

− ′







D A
A 0

where D is the diagonal matrix ()X Z S W− −+1 1 .

However, the number of equations can be reduced still further by eliminating the variables ∆x across
these two equations. This will result in the following:

()AD A Dy R− ′ =1 (new RHS).

Here we have to invert the matrix AD A− ′1 , where ′A denotes A transpose. The matrix is symmetric
positive-definite matrix and so is inverted by the Cholesky procedure.

Back to Chapter contents

5.1.5 Determining the Starting Point

It is vital in the IPM algorithm to have a good starting interior point from which to begin iterations.
Failure in this will increase the number of iterations necessary and may indeed lead to divergence or
cycling so that a solution can never be found.

In the barrier algorithm a special procedure is used since the starting point, in addition to being ‘interior’,
must also satisfy feasibility in the primal equations. To ensure this a centralised starting point is chosen
and one extra row and column are added to the model with large coefficients based on a ‘Big M’ value
designed to make the extended starting point feasible. The extra variable must converge to zero in the
final solution. Users can control this procedure by weighting the Big M value as described in Section
5.2.2.

Affine and predictor–corrector algorithms can employ one of three starting point methods based on a
quadratic formula to maximise the distance from boundaries in the initial interior point. The choice of
method is described in Section 5.2.2.

Back to Chapter contents

V-8

5.2 Controls on the IPM Algorithms

5.2.1 Using the Algorithms

IPM is invoked in the first place with the SPECS command.

ALGORITHM IPM

which has already been described in previous chapters.

The primary control for selecting an algorithm within IPM is by one of the following SPECS commands:

IPM ALGORITHM AFFINE
IPM ALGORITHM BARRIER
IPM ALGORITHM PDC

 (where ‘PDC’ is for ‘Predictor–Corrector’)

Three general features of the algorithms are controllable:

The calculation of barrier parameter, µ .
The approach to a boundary when a step is made after calculating the change directions.
The feasibility and termination criteria.

The Barrier Parameter – µ
µ is determined by one of two alternative formulae at each iteration step.

The first is a simple formula.

µ = DGAP/φ(N)

where DGAP is the current duality gap and φ(N) is a value dependent on a user controllable parameter
PHI and the column size N of the problem. For large N (greater than 5000 columns) we use:

φ(N) = PHI × N
2

and for smaller N we use

φ(N) = PHI × N × √N

This simple formula is always used by the barrier algorithm. Users can give the value of PHI with the
following SPECS command:

IPM PHI = v *default v = 10.0

In the affine algorithm µ is taken to be zero and its implicit value is never used.

In the predictor–corrector algorithm the user can enforce the use of the simple formula above
(controllable as before) or can specify a more complicated, adjustable formula as follows:

(PGAP
P
)/(M × IGAP

2
)

where:

V-9

IGAP represents the duality gap at the start of the iteration,
that is x z s wj j j j∑ ∑+

PGAP represents the predicted gap after the first step has been taken with the variables
incremented as they would be in a completed affine iteration step.

M is the row size of the problem

P is a power that can be supplied by the user.

The user can specify the power P with the following SPECS command:

IPM POWER = n * n=0-4 default is 4

If the power is specified as zero then the simple formula is always used in any case. The more
complicated formula will also be replaced by the simpler formula when the duality gap reaches a low
value.

With the value 3 for the power the system is in effect placing relatively less importance on reducing
infeasibility, and this value has been found generally suitable. However, it may be necessary to use 2 or 1
for a problem if infeasibility takes a large number of iterations to be eliminated (or indeed is never
eliminated within the maximum number of iterations allowed).

Option 4 is a modified formula, similar to option 3 but found usually to perform the best.

Power 1 should be used only if the model is numerically stable.

Approach to the Boundary

After calculating the direction of change, the system calculates how much change can be applied without
having any individual variable go outside the interior point region. One change factor applies to all primal
variables and another change factor to all dual variables. The factor in each case is derived from the
variable which first reaches the boundary.

However the system never goes all the way using these factors, but only a fixed proportion of the
distance which is given by the DARE parameter.

Users can specify DARE with the following SPECS command.

IPM DARE = v * 0 < v <1.0. Default is
0.9995

Lower values of DARE will result in more iterations, but a value that is too high results in instability. The
process no longer converges normally and may diverge instead.

Feasibility and Termination Criteria.

There are two tolerances (EPSILON values) which the user can set to control termination.

IPM RELATIVE EPSILON = v * Default is 1.0e-9
IPM FEASIBILITY EPSILON = v * Default is 1.0e-4

V-10

The relative epsilon value applies to the relative duality gap – that is to say actual duality gap normalised
by the following formula.

RGAP = DGAP/(|DOBJ| + 1)

where:

RGAP is the relative duality gap

DGAP is the actual duality gap (difference between primal and dual objective values)

DOBJ is the dual objective value

The value of feasibility epsilon specifies the feasibility tolerance used in testing the equations.

The coarser the values specified, the earlier the termination. However, the solution may become rather
inaccurate. The defaults given have been found achievable without special difficulties in most cases.

Back to Chapter contents

5.2.2 Control and Choice of the Starting Point Methods

In the barrier algorithm a single standard starting point method is always used. This is the so-called ‘Big
M’ procedure for choosing a starting point (described in Section 5.1.5) to satisfy the primal equations.

The Big M value to be used is controlled by the user with the parameter WEIGHT (which is a simple
multiplier in the formula). WEIGHT can be set by the user with the SPECS command

IPM BIGM WEIGHT = value

where ‘value’ is the value to be used. The default value is 0.1 and recommended values are from 0.1 to
10.0. Larger values result in greater numerical stability but also lead to increased number of iterations.

In the affine and predictor–corrector algorithms one of three starting point methods can be used as
follows.

(1) A standard procedure seeks to minimize the infeasibility in the primal equations.
(2) A simplified procedure has a separate treatment for upper bounds.
(3) A similar to method (2) has scaling applied to balance the primal and dual values.

The method can be specified with the SPECS command

IPM STARTING POINT METHOD = n

where ‘n’ is 1, 2 or 3. The default is method 1 and this should be retained unless you find the result
unsatisfactory or you wish to experiment.

Back to Chapter contents

V-11

5.2.3 Choice of Solution Algorithm for the Equations

Since the matrix inversion procedure that is used to solve the equations occupies much the largest part of
the execution time, more than 90% in many cases, you should consider carefully which version to use.

There are 3 versions available:

Standard Cholesky procedure
Cholesky with supernodes
Cholesky with extended supernodes

‘Supernodes’ is a procedure whereby dense patterns in the matrix AD A− ′1 (see Section 5.1.4) can be
exploited so as to take advantage of special hardware – for example vector registers.

The extended supernodes version carries these ideas further and can run significantly faster by making
better use of vector registers in the hardware. Speed gains up to five times faster have been observed.
However, it has the disadvantage of needing significantly more memory in order to run.

The version to use is specified with the following SPECS commands:

IPM SOLVER CHOLESKY
IPM SOLVER SUPERNODE
IPM SOLVER XSUPERNODE

The default is XSUPERNODE.

Although the matrix to be inverted is positive definite, numerical stability can be a problem. It is
controlled by checking the pivot-size at each step with a criterion that is set by the following SPECS
command:

IPM TOFIX = n * Default = 1.0e-12

This is similar to the pivot tolerances used in SSX algorithms but is not quite the same because here
there is no other choice available if the pivot is too small. Instead the pivot is simply changed to 1.0.
This of course results in a somewhat inaccurate solution and at a later stage the solution is refined with
Conjugate Gradient iterations - see the next section below.

Back to Chapter contents

5.2.4 Refinement by Conjugate Gradient iterations

The solution to the equations at each iteration, once found, is subject to a degree of error that may be
calculated by substitution and comparing with the RHS. If the error is not too large it can usually be
reduced by Conjugate Gradient (CG) iterations and two levels are defined:

- CG tolerance level
- Error tolerance level

V-12

The lower tolerance level is the criterion for sufficient accuracy, while the upper error level is the highest
level at which CG iterations may be tried. Between these levels CG iterations are performed up to a
certain maximum. The system is controlled by the following SPECS commands:

CHOLESKY CG TOLERANCE = v * default = 1.0e-4

which sets the lower level,

CHOLESKY ERROR TOLERANCE = v * default = 10.0

which sets the upper level, and

MAXIMUM CG ITERATIONS = n * 0-3, default is 3

which limits how many CG steps can be used for each major IPM iteration. Zero necessarily implies
OFF.

Back to Chapter contents

5.2.5 IPM Save and Restart: Iteration Limit.

IPM restart is similar to binary basis restart in the SSX algorithm. In other words the IPM algorithm
periodically saves its current solution to an output file that can then be used in a subsequent run to restart
the process at an advanced starting point.

With the IPM RESTART switch set ON the procedure bypasses calculation of the starting point and
uses instead the solution supplied from a previous run. The following SPECS commands control this
switch:

IPM RESTART ON
IPM RESTART OFF

The default is OFF.

The normal frequency for making SAVEs of the solution is at every 10 iterations. This may be modified
with the command

IPM SAVE FREQUENCY = n

where ‘n’ is a positive integer (default 10). The system also performs a SAVE when the IPM iteration
limit is reached. The iteration limit may be changed with the command

MAXIMUM IPM ITERATIONS = n

where ‘n’ is a positive integer, the default being 80. In a restart the previous iteration count is added to
the limit of the new run so that there is no need to increase it when a restart is made.

When a previous solution is to be used in a restart you must remember to duplicate exactly the data
preparation from the previous run. The user must repeat SCALE and/or PRESOLVE if these were used
and must repeat the setting of the IPM PREFIX switch. A normal rule to follow would be to repeat all
the previous controls exactly and simply add the necessary RESTART commands.

V-13

Back to Chapter contents

5.2.6 IPM-SSX Crossover Option: BASREC

The user has the option either to terminate immediately after IPM or to develop the IPM solution into a
basic solution with the BASREC procedure. This recovered basis then forms an advanced starting basis
for the SSX procedure – it is usually near optimal anyway.

The option is exercised via the IPM BASREC switch as follows.

IPM BASREC ON
IPM BASREC OFF

The default is ON. When the switch is set OFF the system writes the IPM solution to the output unless
OUTPUT is cancelled with the OUTPUT OFF switch.

The BASREC algorithm itself comprises primal and dual ‘PUSH’ iterations preceded by a ‘CRASH’ to
set up a starting basis. Normal CRASH controls apply here and in addition the user can avoid use of
dual PUSH with the following command:

DUAL PUSH OFF * Default is ON

(ON may also be specified). It is not recommended to use OFF here because the final basis must be
corrected with the PRIMAL algorithm which can take many more iterations. Dual PUSH iterations are
slower but limited in number.

The following command may be used to restart BASREC from the IPM solution of a previous run.

BASREC RESTART ON
BASREC RESTART OFF

the switch being OFF by default. If set to ON the whole IPM procedure is skipped, including the rather
lengthy initialisations.

FortMP IPM carries out an automatic IPM SAVE when it terminates so that the BASREC RESTART
feature can be used in a later run. This will be found very useful if the user wishes to stop after IPM and
then do the BASREC and optimisation with SSX in a subsequent run.

Back to Chapter contents

5.2.7 Miscellaneous IPM and BASREC Commands

The following SPECS command determines the log level of IPM in the same manner as for PRIMAL
and DUAL.

IPM LOG LEVEL = n * n = 0-4, default 1

For the BASREC (crossover to SSX) stage the following commands are used:

PUSH LOG LEVEL = n * n = 0-4, default 1
PUSH LOG FREQUENCY = n * default: n = 10

V-14

these commands being similar to ‘PRIMAL LOG LEVEL’ and ‘PRIMAL LOG FREQUENCY’.

The following SPECS commands are only available in certain versions of FortMP. (Please see the
Implementation Guide for details.) A switch is set to invoke a graphical display which shows the density
pattern of the matrices and the progress of the iterations. Copies of the display will be left in files
‘model.a’, ‘model.b’, ‘model.c’ and ‘model.d’ if this command is successfully activated.

IPM GRAPHICAL DISPLAY ON
IPM GRAPHICAL DISPLAY OFF

The default is OFF.

Back to Chapter contents

5.3 Summary of SPECS Commands

The following SPECS commands have been introduced so far in this manual. Those introduced in this
chapter are highlighted thus:

IPM ALGORITHM AFFINE

ALGORITHM IPM
Thise command is used to specify IPM as the primary solution algorithm for the continuous LP
problem..

IPM ALGORITHM AFFINE
IPM ALGORITHM BARRIER
IPM ALGORITHM PDC

These commands invoke the algorithm to be used within IPM. The default is PDC (Predictor-
Corrector). See 5.2.1

IPM PHI = v * Default is 10.0
This command sets the PHI control in the elementary formula for calculating µ.. See 5.2.1.

IPM POWER = n * n=0-3. Default is 4
This parameter sets the 'POWER' applied to the numerator in the more advanced formula for µ, which
is used in the earlier phase of the predictor-corrector algorithm. See 5.2.1.

IPM DARE = v * Default is 0.9995
‘DARE’ is a fraction between 0 and 1 controlling how closely to approach the nearest boundary when
moving from one interior point to the next. See 5.2.1.

IPM RELATIVE EPSILON = v * Default is 1.0e-7
The relative epsilon is the tolerance within which the duality gap can be considered to be zero. Thus the
optimum solution is reached provided the point is feasible. See 5.2.1.

IPM FEASIBILITY EPSILON = v * Default is 1.0e-4

V-15

The feasibility epsilon is the tolerance governing feasibility of the current primal and dual solutions. See
5.2.1.

IPM BIGM WEIGHT = v * Default is 0.1
This value is the BIGM weight used in the starting point method for the barrier algorithm. See 5.2.2.

IPM STARTING POINT METHOD = n * Default is 3
This command selects one of three starting point methods for the predictor–corrector algorithm. See
5.2.2.

IPM SOLVER CHOLESKY
IPM SOLVER SUPERNODE
IPM SOLVER XSUPERNODE

These commands select the solution mechanism to be used. The default is ‘XSUPERNODE’. See
5.2.3.

IPM TOFIX = n * default = 1.0e-12
This command sets the criterion for minimum pivot size in the Cholesky factorisation. See 5.2.3.

CHOLESKY CG TOLERANCE = v * default = 1.0e-4
CHOLESKY ERROR TOLERANCE = v * default = 10.0

These commands set lower and upper levels to the solution error between which CG iterations are used
to refine the major IPM iterations. See 5.2.4.

MAXIMUM CG ITERATIONS = n * 0-3, default is 3

This command limits the number of CG steps taken at each major IPM iteration. See 5.2.4.

IPM RESTART ON
IPM RESTART OFF

This command specifies whether to ‘RESTART’ the IPM algorithm. Default is OFF. See 5.2.5.

IPM SAVE FREQUENCY = n * default n=10
This command specifies the frequency for making a SAVE in IPM. See 5.2.5.

MAXIMUM IPM ITERATIONS = nnn * default 80
This command sets the termination limit for IPM. A SAVE is made before exit at termination. See
5.2.5.

IPM BASREC ON
IPM BASREC OFF

When ‘ALGORITHM IPM’ has been selected the user can set this switch OFF in order to halt
execution and print the output immediately on reaching the IPM solution. The default is ON. See 5.2.6.

DUAL PUSH OFF * default ON
DUAL PUSH ON

The OFF option cancels execution of DUAL PUSH (not recommended). See 5.2.6

V-16

BASREC RESTART ON * default OFF
BASREC RESTART OFF

Provided that the IPM algorithm has completed with an optimum solution then BASREC can be
restarted in a subsequent run without repeating the IPM calculations again. See 5.2.6.

IPM LOG LEVEL = n

These commands specify the ‘level’ of the output to be sent to the log file in each major algorithm.
Range is 1–4, default is 1 in each case. See 5.2.7.

PUSH LOG LEVEL = n * 0-4, default is 1
PUSH LOG FREQUENCY = n * default = 10

These commands control the log level and frequency of ‘PUSH’ iterations during the BASREC
(crossover to SSX) algorithm. See 5.2.7

IPM GRAPHICAL DISPLAY ON
IPM GRAPHICAL DISPLAY OFF

Certain implementations of FortMP have the graphical feature which displays the pattern of non-zeros in
the matrices followed by a progress display of the iterations. The default is OFF. See 5.2.7.
Back to Chapter contents

Chapter 6. Mixed Integer Programming (MIP)

VI-1

Chapter 6 : Mixed Integer Programming (MIP)

Contents

6.1 Introduction to MIP 3

6.2 MIP Problem, data types, and problem definition 4
6.2.1 Binary and Integer Variables 4
6.2.2 Semi-Continuous Variables 5
6.2.3 Special Ordered Sets of Type One 6
6.2.4 Special Ordered Sets of Type Two 7
6.2.5 MIP model definition 9

6.3 MIP Data Preparation; Marker lines 12
6.3.1 Defining Binary, Integer and Semi-continuous variables in the BOUNDS section 12
6.3.2 Marker lines 12
6.3.3 Defining Integer and Binary Variables with Markers 14
6.3.4 Defining a Special Ordered Set 14
6.3.5 An Example 15

6.4 Branch and Bound algorithm 19
6.4.1 Branch and Bound - the Background 19
6.4.2 Branch and Bound - the Algorithm 19
6.4.3 The Branching Mechanism, UP and DOWN branching 21

6.5 Controlling the Tree Development 22
6.5.1 Definition of Tree Search Heuristics 22
6.5.2 Provision of choice criteria by the user 22
6.5.3 UP-direction priority option 24

6.6 Detailed User-control of the Tree Search 25
6.6.1 User control of variable choice 25
6.6.2 Control of node choice - Fixing an Integer Solution 25
6.6.3 AGENDA data for variable priorities or 'FIX' solutions 26
6.6.4 SPECS commands for AGENDA input 28
6.6.5 SPECS commands for AGENDA output 28
6.6.6 Un-named Agenda Files 29

6.7 Advanced Algorithms for MIP 30
6.7.1 Recent advances 30
6.7.2 Pre-processing - Variable Fixing and Constraint Relaxing 30
6.7.3 Cut Generation 31
6.7.4 Fixing Variables by Dual Solution Analysis 33

6.8 Miscellaneous MIP controls 34
6.8.1 Automatic rounding heuristics 34

FortMP - Part 2

VI-2

6.8.2 Bound, Cutoff and Tolerance control 34
6.8.3 Placing Limits on the Tree Search 35
6.8.4 Saving the tree and restarting MIP 37
6.8.5 Bypassing Mixed Integer 37
6.8.6 Making use of the PRIMAL algorithm 38

6.9 Logged Output and Screen Display 39

6.10 MIP Constraint Classification 42
6.10.1 Introduction and SPECS command 42
6.10.2 Knapsack Constraint Classification 42
6.10.3 Mixed Less or Equals Constraint Classification 44
6.10.4 Equality constraints 45
6.10.5 Full Classification Hierarchy 47

6.11 Summary of MIP SPECS Commands 49

Chapter 6. Mixed Integer Programming (MIP)

VI-3

6.1 Introduction to MIP

In many real-world problems, it is often impossible to represent certain features of a problem using
only linear constraints and continuous variables. In modelling a real world problem it is often
necessary to represent discrete activities by variables which are restricted to take only integer
values. Moreover, there are non-linear variable separable functions of one variable which can be
approximated by a piecewise linear function. Within Mathematical Programming, these models are
often given the generic name of Mixed/Integer Programming (MIP/IP).

The diversity of applicable MIP/IP models stems from the fact that in many practical problems,
activities and resources, like machines and operators are indivisible. Many problems require the
determination of yes-no decisions, which can modelled by introducing binary variables which are
integer variables restricted to the values zero and one representing 'no' and 'yes' respectively. Also,
many optimisation problems of a combinatorial nature can be formulated as IPs. The range of
applications includes problems such as the distribution of goods, production scheduling and machine
sequencing. They also include planning problems such as capital budgeting, facility location, crew
and aircraft scheduling, design problems such as communications and transportation network design,
very large scale integrated circuit (VLSI) design and the design of automated production systems.

Back to Chapter contents

FortMP - Part 2

VI-4

6.2 MIP Problem, data types, and problem definition

An MIP is a mathematical program which in addition to its usual linear restrictions includes some
discrete (integer) restrictions on some or all the variables of the model. These restrictions can be
categorised as one of the following:

(i)Zero-One or Binary variables, x j ∈ {0,1},
(ii)General Integer variables, x j ∈ Z,
(iii)Semi-Continuous variables, x j =0 or 0< lj≤ x j ≤ uj,
(iv)Special Ordered Sets of type One, See 6.2.3
(v)Special Ordered Sets of type Two. See 6.2.4

The definition and the modelling applications of each group of variables and sets are given separately
in the following sections.

Back to Chapter contents

6.2.1 Binary and Integer Variables

A zero-one or binary variable (BV) is a variable which can take either the value zero or one in a
given model. An important and common use of zero-one variables is to represent binary, yes or no
choices. Consider a situation where one has to make a decision whether or no to perform a number
of activities and suppose that the problem (or at least part of the problem) is to decide which
activities to select. To represent such a condition in a model we use a binary variable xj for each
activity and let

xj = 1 if activity j is performed,
xj = 0 if activity j is not performed.

Knapsack, Facility location, Network flow, Set covering, Set packing, Set partitioning, Travelling
salesman, Scheduling and Logic programming provide instances of models which include binary
variables.

General Integer variables are used to model entities where non-integer values are not meaningful.
For example, the production of items in batches of a fixed size can only be realistically modelled if
the model excludes the possibility of non-integer numbers of batches being produced.

Back to Chapter contents

Chapter 6. Mixed Integer Programming (MIP)

VI-5

6.2.2 Semi-Continuous Variables

A Semi-Continuous variable (SC) is a variable which may take the value zero or any value within
a certain range bounded by positive finite lower and upper bounds (figure 1). Thus, these variables
are used to represent activities which, if used at all, must have a usage above a specified minimum
level.

xjujljo

Figure 1

The situation arises (for example) in certain blending problems where materials must be excluded
from the blend if they cannot be used in significant quantities. It has been modelled by the
introduction of a decision-variables to represent whether or not a material is to be included.

Consider a blending problem which has the requirement that, if the jth material is used at all then it
must be used at a level between lj and uj. Define a zero-one variable δ j in connection with each
material amount x j. The semi-continuous requirement is established by the two constraints:

ljδ j ≤ x j

x j ≤ ujδ j

of a type known respectively as variable lower bound and variable upper bound. However by
defining xj as a semi-continuous variable this complexity can be avoided and the solution process is
more efficient.

In the present version of FortMP the continuous-range lower bound must be 1.0. This is not a real
restriction however as the modeller may easily scale x j by the lower bound reciprocal 1.0/lj (lj≠0) so
that this is achieved.

FortMP - Part 2

VI-6

Back to Chapter contents

6.2.3 Special Ordered Sets of Type One

A Special Ordered Set of type One (SOS1) is defined to be a set of variables for which not more
than one member from the set may be non-zero in a feasible solution. All such sets are mutually
exclusive of each other, the members are not subject to any other discrete conditions and are
grouped together consecutively in the data.

The normal use of an SOS1 is to represent a set of mutually exclusive alternatives ordered in
increasing values of size, cost or some other suitable units appropriate to the context of the model.
This representation is a discrete programming extension of the separable programming model.
There is a strong implied assumption that a nonlinear function represented in this way is single valued
over the range of its argument.

Consider a function g(y) represented by the points P1,...,PK as shown in figure 2.

P1

g(y)

P2

P3
P4

Pk-1

Pk

1
$y ky$

3
$y 4

$y ky − 1
$

2
$y

1g y($)
2g y($)

3g y($)
4g y($) kg y −1($)

kg y($)

y

Figure 2

Chapter 6. Mixed Integer Programming (MIP)

VI-7

Given the tabulated coordinates ($, ($))y g yk k k=1,…,K, the function g(y) may be represented as

g y g y x g y x g y xK K() ($) ($) ($)= + + +1 1 2 2 L (1)

where

$ $ $,y x y x y x y yK K1 1 2 2 0 0+ + + − = ≥ L (2)

x x x x k KK k1 2 1 0 1 2+ + + = ≥ = L K, , , , , (3)

The discrete function can take only one of the K possible values weighted by the variables xk , of
which only one can be non-zero, and that must have the value one.

This requirement could be expressed by restricting each xk to be a binary variable but the alternative
of defining them collectively as a special ordered set of type one, which is a direct statement of their
nature, leads to a more efficient solution process.

The weighting variables xk are called special ordered set type one variables and the rows (1), (2),
and (3) are called function rows, reference rows and convexity rows respectively. Should the
SOS1's not represent a modelling of discrete, separable variables then none of these rows need
actually exist, but there is an advantage to the system if it is aware of the reference rows at least.

Back to Chapter contents

6.2.4 Special Ordered Sets of Type Two

A Special Ordered Set of type Two (SOS2) is a set of consecutive variables in which not more
than two adjacent members may be non-zero in a feasible solution. All such sets are mutually
exclusive of each other, the members are not subject to any other discrete conditions and each set is
grouped together consecutively in the data.

SOS2s were introduced to make it easier to find global optimum solutions to problems containing
piecewise linear approximations to a nonlinear function of a single argument (as in classical
Separable Programming). The overall problem has an otherwise LP or an IP structure except for
such nonlinear functions.

Consider the function f y() illustrated in Figure 3 as a piecewise linear function in one variable
defined over the closed intervals [$, $], , ,y y k Kk k + = −1 1 1K , where the coordinates
($, ($)), , ,y f y k Kk k = 1 K , represent points P1,...,PK.

FortMP - Part 2

VI-8

P1

f(y)

P2

P3
P4

Pk-1

Pk

1
$y ky$

3
$y 4

$y ky − 1
$

2
$y

1f y($)
2f y($)

3f y($)
4f y($) kf y −1($)

kf y($)

Figure 3

Any point y in the closed interval [$, $]y yk k+1 may be written as

y x y x yk k k k= + + +$ $1 1

where

x x x xk k k k+ = ≥+ +1 11 0 and , .

Similarly, as f y() is linear in the interval, it can be written as

f y f y x f y xk k k k() ($) ($)= + + +1 1 .

This leads to the representation of f y() using a set of weighting variables, x k Kk, , ,= 1 K , by the
equality

f y f y x f y x f y xK K() ($) ($) ($)= + + +1 1 2 2 L (4)

where
$ $ $,y x y x y x y yK K1 1 2 2 0 0+ + + − = ≥ L (5)

x x x x k KK k1 2 1 0 1 2+ + + = ≥ = L K, , , , , . (6)

Chapter 6. Mixed Integer Programming (MIP)

VI-9

Plus the added condition that not more than two adjacent variables can be non-zero at any one time.

The weighting variables xk are called the special ordered set type two variables and the rows (4),
(5), and (6) are called function rows, reference rows and the convexity rows respectively, as in
equations (1), (2) and (3) of section 6.2.3. Should the SOS2's not represent separable functions
then none of these rows need actually exist, but there is an advantage to the system if it is aware of
the reference rows at least.

Back to Chapter contents

6.2.5 MIP model definition

The classes of discrete variables are described in the previous sections, as Binary, General integer,
Semi-Continuous variables and Special Ordered Set variables of type One and type Two. A
statement of the general discrete programming problem (DPP), which contains the above types of
variables and sets as well as continuous variables is set out below. Consider the index sets N1,...,
N7 which are used to specify the different variable types.

N1 = set of indices of bounded variables

l x u j Nj j j≤ ≤ ∈, 1 (7)

where either lj or uj may be infinite but not both

N 2 = set of indices of free variables

−∞ < < +∞ ∈x j Nj , 2 . (8)

N 3 = set of indices of binary variables

x j Nj = ∈0 1 3 or , . (9)

N 4 = set of indices of general integer variables

l x u and x j Nj j j j≤ ≤ ∈, integer, 4 . (10)

N 5 = set of indices of semi-continuous variables
either

or

x u

x
j N

j j

j

0 1

0 5

< ≤ ≤

=
∈





, (11)

N N l
l

6 6= U where N l6 is the set of indices of the lth SOS1–type variable-set, these sets

being mutually exclusive of each other,
x j N l Lj l≥ ∈ = ′0 16 , , , ,K (12)

FortMP - Part 2

VI-10

′L = Number of SOS1s.

and only one x j can be non-zero in each set.

N N l
l

7 7= U where N l7 is the set of indices of the lth SOS2 type variable-set - these sets

being mutually exclusive of each other.

x j N l Lj k≥ ∈ = ′′0 17, , , , K (13)

′′L = Number of SOS2s.

and at most two adjacent x j’s can be non-zero in each set.

These index sets are mutually exclusive, that is N N p q pp qI = ∅ ≠ = for , ,..,1 7 1 and thus the

total numbet of variables defined is n where:

n N p
p

=
=

∑ | |
1

7

(14)

where | |N p is the cardinality of the set N p .

Using these set definitions a general discrete programming model may be presented as

Minimise c xj
j

n

j
=

∑
1

(15)

subject to constraints:

a x b i Pij
j

n

j i
=

∑
≤
≥
=

















=
1

1, , , K (16)

where:

l x u
l u

j N Nj j j

j j

≤ ≤
−∞ < < +∞

∈

 ,
, 1 4U

−∞ < < +∞ ∈x Nj , j 2 (17)
0 1 3≤ ≤ ∈x j Nj ,
0 5≤ ≤ ∈x u j Nj j ,
x j N Nj ≥ ∈0 6 7, U

with further discrete restrictions

Chapter 6. Mixed Integer Programming (MIP)

VI-11

x j Nj = ∈0 1 3 or if ,
x j Nj integer , if ∈ 4

either

or
 if

0
0 5

< ≤ ≤
=





∈
l x u
x

j N
j j j

j
. (18)

Only one x j can be non-zero if j∈N6l, and at most
two adjacent x j can be non-zero if j∈N7l

The model therefore has m rows given by (16) and n columns given by (14)

In the normal usage of special ordered sets to represent separable variables (discrete or piecewise
linear) the constraints (16) include function rows, reference rows and convexity rows as defined in
6.2.3 and 6.2.4

Back to Chapter contents

FortMP - Part 2

VI-12

6.3 MIP Data Preparation; Marker lines

Integer, binary and semi-continuous variables may be specified in the MPS form input data by using
codes in the BOUNDS section as illustrated in table 14 of Chapter 2.

As an alternative the user may employ 'MARKER' lines in the COLUMNS section to specify a list
of consecutively sequenced binary or integer variables. 'MARKER' lines in the COLUMNS section
are also the means whereby special ordered sets of type SOS1 and SOS2 are defined. Their usage
in FortMP corresponds to IBM's extension to MPS format in their MPSX system. Certain
variations are also available to conform with usage by other systems.

Back to Chapter contents

6.3.1 Defining Binary, Integer and Semi-continuous variables in the BOUNDS section

Binary, Integer and Semi-continuous variables can be defined in the BOUNDS section of the MPS
file using the following type codes in field 1:

BV indicates that the variable in Field 3 is a binary variable restricted to discrete values
zero and one,

UI indicates that the variable defined in Field 3 is an integer variable with upper bound
given by the value in field 4 rounded down to the nearest integer. The lower bound
is 0, unless explicitly defined with a record that has LO or LI as the type code in
field one.

LI indicates that the variable defined in Field 3 is an integer variable with lower bound
given by the value in field 4 rounded up to the nearest integer. The upper bound is
infinite, unless explicitly defined with a record that has UP or UI as the type code in
field one.

SC Indicates that the variable named in Field 3 is semi-continuous with upper bound of
the continuous range given by the value in Field 4. An SC specification cannot be
combined with any other BOUNDS specification for that variable. Lower bound of
the continuous range is implicitly set to 1.0 (see section 6.2.2).

Back to Chapter contents

6.3.2 Marker lines

Marker lines are used in the COLUMNS section of the input data to define a list of consecutively
sequenced variables. Four types of marker line can be used as follows:

Chapter 6. Mixed Integer Programming (MIP)

VI-13

'INTORG' Indicates the beginning of a consecutive sequence of Integer or Binary
variables

'INTEND' Indicates the end of a consecutive sequence of Integer or Binary variables
'SOSORG' Indicates the beginning of a special ordered set (type SOS1 or SOS2)
'SOSEND' Indicates the end of a special ordered set (type SOS1 or SOS2)

A marker line has the keyword 'MARKER' (quotes included) in Field 3 of the standard MPS-form
layout and the type keyword 'xxxORG' or 'xxxEND' either in Field 4 or in Field 5 (with quotes
included).

The full layout is as follows:

Field 1
(2-3)

Field 2
(5-12)

Field 3
(15-22)

Field 4
(25-32)

Field 5
(40-47)

Field 6
(50-61)

Blank Label 'MARKER' 'INTORG' blank blank

Blank Label 'MARKER' 'INTEND' blank blank

SOS type Label 'MARKER' 'SOSORG' REF-row blank

Blank Label 'MARKER' 'SOSEND' blank blank

Each marker line must appear between one column and another - a column may not be split by a
marker.

It is not allowed to overlap sections of the data with marker lines since all sets must be mutually
exclusive. Thus markers are always to be in pairs with the 'ORG' type marker followed by its
corresponding 'END' type marker before any other marker can appear.

Fields 4 and 5 are interchangeable - the marker type keyword may be placed in field 5 and when
'SOSORG' is placed in field 5 the 'REF-row' data is placed in field 4.

Blank fields should be left blank (but may contain unused material).

The 'Label' field is intended for the user to attach a name or label to a set. For this purpose the
'END' marker should have the same label as its corresponding 'ORG' marker. However this is quite
optional.

'SOS type' in Field 1 is described below.

Back to Chapter contents

FortMP - Part 2

VI-14

6.3.3 Defining Integer and Binary Variables with Markers

'INTORG' and 'INTEND' markers define a list of consecutively sequenced binary or integer
variables. The integer bounds may be defined with 'LO' and 'UP' records in the BOUNDS section
of the data, and the system distinguishes binary variables as those with a bound range zero to one.

If no records in the BOUNDS section are provided for one or more of the variables outlined by
'INTORG' and 'INTEND' then these variables receive a default bound specification LO-value zero,
UP-value infinite. Thus they become simple non-negative variables restricted to integer values in any
feasible solution.

The default bound can be changed with the following alternative SPECS-commands:

INPUT INTORG UPPER BOUND = n (default infinity)
INPUT INTORG BOUND = n (default infinity)

which in effect supplies an implicit UP record in the BOUNDS section. By setting n = 1 with the
command

INPUT INTORG BOUND = 1

the default specification becomes binary (BV) rather than integer (UI).

Back to Chapter contents

6.3.4 Defining a Special Ordered Set

'SOSORG' and 'SOSEND' markers are used to outline each Special Ordered Set in the model.

In Field 1 of the 'SOSORG' marker there is a 2-character code which specifies the SOS-type as
follows:

S1 indicates type 1
S2 indicates type 2

In Field 5 (or in Field 4 if Field 5 contains 'SOSORG') the user can enter the name of the reference
row of the SOS. If it is left blank the system assumes an implicit reference row having whole
number coefficients 1, 2, 3,.... for the set members in their order.

Back to Chapter contents

Chapter 6. Mixed Integer Programming (MIP)

VI-15

6.3.5 An Example

A small Discrete Programming model is set out here to show how binary, integer, semi-continuous
and SOS type variables are presented in MPSX format. Consider the following model M(i):

Minimise:

3x1 + 4x2 + 5x3 - x4 + f1(x5) + f2(x6) + f3(x7)

subject to:

2x1 + 3x2 - 4x3 + x4 + x5 + 2x6 + 3x7 ≤ 25
5x2 + 3x3 - x4 + 3x6 ≥ 50
6x1 + 3x2 + 2x5 + x7 = 100
x1 - 100x4 ≤ 0

where:

- 0 ≤ x1 ≤ 100
- x2 is integer, and 0 ≤ x2 ≤ 20
- x3 is semi-continuous: x3 = 0 or 1 ≤ x3 ≤ 10
- x4 is binary: x4 = 0 or 1
- f1(x5) is a discrete separable function comprising the following co-ordinates

x5= 0 1 2 3 4

f1= 2 3 4 3 2

undefined otherwise

- f2(x6) is a piecewise linear form connecting the following set of co-ordinates:

x6= 0 2 3

f2= 0 2 1

undefined for x6 < 0 and for x6 > 3

- f3(x7) is a piecewise linear form connecting the following set of co-ordinates:

x7= 1 5 10 15

f3= 1 10 25 -7.5

undefined for x7 < 1 and for x7 > 15

Using SOS type variables f1(x5), f2(x6) and f3(x7) are individually modelled as follows:

FortMP - Part 2

VI-16

- Let x11, x12, x13, x14 and x15 be a special ordered set of type SOS1 where:

1 = x11 + x12 + x13 + x14 + x15

x5 = x12 + 2x13 + 3x14 + 4x15

f1(x5) = 2x11 + 3x12 + 4x13 + 3x14 + 2x15

- Let x21, x22 and x23 be a special ordered set of type SOS2 where:

1 = x21 + x22 + x23

x6 = 2x22 + 3x23

f2(x6) = 2x22 + x23

- Let x31, x32, x33 and x34 be a special ordered set of type SOS2 where:

1 = x31 + x32 + x33 + x34

x7 = x31 + 5x32 + 10x33 + 15x34

f3(x7) = x31 + 10x32 + 25x33 - 7.5x34

By appending the above SOS formulation to M(i) the DPP model can be stated as M(ii):

Minimise:

3x1 + 4x2 + 5x3 - x4

+ 2x11 + 3x12 + 4x13 + 3x14 + 2x15 (function row)
+ 2x22 + x23 (function row)
+ x31 + 10x32 + 25x33 - 7.5x34 (function row)

subject to:

2x1 + 3x2 - 4x3 + x4 + x5 + 2x6 + 3x7 ≤ 25
5x2 + 3x3 - x4 + 3x6 ≥ 50
6x1 + 3x2 + 2x5 + x7 = 100
x1 - 100x4 ≤ 0
x11 + x12 + x13 + x14 + x15 = 1 (convexity row)
x12 + 2x13 + 3x14 + 4x15 - x5 = 0 (reference row)
x21 + x22 + x23 = 1 (convexity row)
2x22 + 3x23 - x6 = 0 (reference row)
x31 + x32 + x33 + x34 = 1 (convexity row)
x31 + 5x32 + 10x33 + 15x34 - x7 = 0 (reference row)

where:

Chapter 6. Mixed Integer Programming (MIP)

VI-17

- 0 ≤ x1 ≤ 100
- x2 is integer, and 0 ≤ x2 ≤ 20
- x3 is semi-continuous: x3 = 0 or 1 ≤ x3 ≤ 10
- x4 is binary: x4 = 0 or 1
- x11, x12, x13, x14 and x15 are a set of type SOS1
- x21, x22 and x23 are a set of type SOS2
- x31, x32, x33 and x34 are a set of type SOS2

The input data for the above model M(ii) is shown below,

NAME MGINT
ROWS
 N OBJ
 N 'MARKER'
 L COS1
 G COS2
 E COS3
 L COS4
 E CON1
 E CON2
 E CON3
 E REF1
 E REF2
 E REF3
COLUMNS
 X1 OBJ 3.0 COS1 2.0
 X1 COS3 6.0 COS4 1.0
 X2 OBJ 4.0 COS1 3.0
 X2 COS2 5.0 COS3 3.0
 X3 OBJ 5.0 COS2 3.0
 X3 COS1 -4.0
 X4 OBJ -1.0 COS1 1.0
 X4 COS2 -1.0 COS4 -100.0
 X5 COS1 1.0 COS3 2.0
 X5 REF1 -1.0
 X6 COS1 2.0 COS2 3.0
 X6 REF2 -1.0
 X7 COS1 3.0 COS3 1.0
 X7 REF3 -1.0
 S1 S1SET1 'MARKER' 'SETORG' REF1 1.0
 X11 OBJ 2.0
 X11 CON1 1.0
 X12 OBJ 3.0 REF1 1.0
 X12 CON1 1.0
 X13 OBJ 4.0 REF1 2.0
 X13 CON1 1.0
 X14 OBJ 3.0 REF1 3.0
 X14 CON1 1.0
 X15 OBJ 2.0 REF1 4.0
 X15 CON1 1.0

FortMP - Part 2

VI-18

 S1SET1E 'MARKER' 'SETEND'
 S2 S1SET2 'MARKER' 'SETORG' REF2 1.0
 X21 CON2 1.0
 X22 OBJ 2.0 REF2 2.0
 X22 CON2 1.0
 X23 OBJ 1.0 REF2 3.0
 X23 CON2 1.0
 S1SET2E 'MARKER' 'SETEND' 'E'
 S2 S1SET3 'MARKER' 'SETORG' REF3 1.0
 X31 OBJ 1.0 REF3 1.0
 X31 CON3 1.0
 X32 OBJ 10.0 REF3 5.0
 X32 CON3 1.0
 X33 OBJ 25.0 REF3 10.0
 X33 CON3 1.0
 X34 OBJ -7.5 REF3 15.0
 X34 CON3 1.0
 S1SET3E 'MARKER' 'SETEND' 'E'
RHS
 MOZ1 COS1 25.0 CON1 1.0
 MOZ1 COS2 50.0 CON2 1.0
 MOZ1 COS3 100.0 CON3 1.0
BOUNDS
 UP MOZ2 X1 100.0
 UI MOZ2 X2 20.0
 SC MOZ2 X3 10.0
 BV MOZ2 X4 1.0
ENDATA

Chapter 6. Mixed Integer Programming (MIP)

VI-19

6.4 Branch and Bound algorithm

6.4.1 Branch and Bound - the Background

Branch and Bound (B&B) is a technique for solving certain constrained optimisation problems. It
is particularly important for solving those problems whose solution by complete enumeration would
be prohibitively expensive. A wide variety of problems of this kind arise in Operational Research,
Combinatorial Optimisation and Artificial Intelligence. Taking into account practical computational
experiences, B&B is considered to be the most robust and widely used technique for solving
MIP/IP problems.

The B&B algorithm carries out a progressive partitioned search of the solution space of a given
problem. This is done by exploring a search tree and usually only a small proportion of the solution
space is searched. The remainder of the search tree can be partly eliminated using the bound
derived from a good discrete/integer feasible solution. Such a solution is proven to be optimal when
the rest of the tree is fully eliminated.

Back to Chapter contents

6.4.2 Branch and Bound - the Algorithm

In order to describe the B&B algorithm we first introduce a few definitions. We consider an MIP
problem defined by relations (16), (17) and (18) in section 6.2.5 and note that it is a minimisation
problem. The objective function is always specified as minimisation for the purpose of these
discussions.

A solution is said to be LP feasible if it satisfies all the linear constraints (16, and 17 of section
6.2.5). The problem with only these constraints and all discrete restrictions ignored is referred to as
the Relaxed LP or LPR. The objective value of the LPR is denoted zl

LPR.

A solution is said to be integer feasible if it satisfies all the discrete restrictions (18 of section 6.2.5)
as well as all the linear constraints (16, 17 of section 6.2.5).

An IP optimum solution is an integer feasible solution of the problem (if one exists) which in
respect of the objective function value, is either better or at least as good as all other integer feasible
solutions of that problem.

The term discrete entity is used to represent any binary, general integer or semi-continuous variable
and any set of type SOS1 and SOS2 (not an individual set member). If the solution does not satisfy
the discrete restrictions of an entity then that entity is considered violated in the solution.

zl
IP is called the cut off value. It is initially fixed to a large positive number and during the tree search

it is updated by the objective function value of the best integer feasible solution found so far.

FortMP - Part 2

VI-20

The steps of the B&B algorithm can be stated as follows:

Step 0) Initial Step:

If an optimum solution to the LPR does not exist then go to Exit, else if the solution is
integer feasible go to Exit. Otherwise set the cutoff value zl

IP to a large positive
value, prepare a space for the list of sub-problems (nodes) of the search tree and
continue.

Step 1) Variable selection:

Select a discrete entity that is violated in the solution of the current node Pk.

Step 2) Branching:

Partition the continuous range of this entity and create two new sub-problems, nodes
Pk+1 and Pk+2 of the tree linked to the parent Pk. Store the current basis as starting
point for the solution of Pk+1 and Pk+2.

Step 3) Node Selection:

If the list of unsolved sub-problems is empty then go to Exit, else select an unsolved
sub-problem Pk from the list of nodes.

Step 4) Solving:

Recover the starting basis for the selected node and solve the selected sub-problem
with the Primal or the Dual algorithm. If Dual is used the sub-problem may be
discontinued should its objective function value become greater than or equal to zl

IP;
in this case repeat from step 3. Denote the eventual optimum solution zl

P.

Step 5) Bounding:

If the sub-problem has no feasible solution or if zl
P is greater than or equal to zl

IP then
delete the node and repeat from step 3. If the solution is not integer feasible then
repeat from step 1.

Step 6) Integer Solution:

Set integer solution marker. If zl
P is less than zl

IP then update zl
IP and save the current

problem bounds and basis for the final solution. If zl
P is equal to zl

LPR then go to Exit.
 Otherwise the node is deleted and we repeat from step 3.

Chapter 6. Mixed Integer Programming (MIP)

VI-21

Exit)

If the integer solution marker is not set to any integer feasible solution and the list is
empty then no feasible (integer) solution exists to the problem. Otherwise output the
best integer solution.

Back to Chapter contents

6.4.3 The Branching Mechanism, UP and DOWN branching

Branching (Step 2 above) partitions the data space by adding a constraint or constraints in such a
way that the selected discrete entity is forced to a feasible state. In some cases two or more
branches may be needed for the same discrete entity.

When branching is performed the two sub-nodes correspond to an UP branch and a DOWN
branch. For the different types of discrete entity these branches are formed as follows:

Binary variable branching

A binary variable is fixed to one on the UP branch, to zero on the DOWN branch.

Integer variable branching

The fractional solution-value to an integer variable forms a division-point. On the UP branch the
lower bound is increased to the next integer above, on the DOWN branch the upper bound is
decreased to the next integer below.

Semi-continuous branching

On the UP branch the lower bound is set to 1.0. On the DOWN branch the variable is fixed to
zero.

SOS branching

The reference row function is evaluated which determines a point between two set members. On
the UP branch lower-numbered set members are fixed to zero and on the DOWN branch higher-
numbered set members are fixed to zero. For SOS2 the member nearest to the evaluation is
allowed to be non-zero on both branches.

If no reference row is given in the data then a series 1,2,...k is assumed for the reference row
coefficients.
Back to Chapter contents

FortMP - Part 2

VI-22

6.5 Controlling the Tree Development

6.5.1 Definition of Tree Search Heuristics

In the Branch and Bound algorithm described above there are two major steps where a choice has
to be made

Step 1 in which a global entity is selected for partitioning the solution space -
this is termed variable choice

Step 2 in which an unsolved node is selected for solution -
this is termed node choice

We may consider a solution 'strategy' to be the combination of criteria whereby these two choices
are made. Experiments on real life problems using different strategies show that each individual
strategy behaves differently on different problems. FortMP-MIP therefore provides a number of
alternative criteria for variable and node choice. Moreover, the node choice criterion can change
after the first integer solution has been found.

In principle, the node choice may be considered separately from the variable choice criterion. But
not all such choices can be carried out independently of the information provided by the variable
choice procedure. However, the node choice criterion is usually changed after the first integer
feasible solution is achieved in order to provide a more flexible tree search. In FortMP-MIP the
following parameters are used to set the variable and node choice criteria. These parameters are as
follows:

MIP VARCHOICE = n
MIP FNODCHOICE = n
MIP SNODCHOICE = n

where n is an integer specifying alternative choices

Back to Chapter contents

6.5.2 Provision of choice criteria by the user

A complete tree search strategy is defined by a unique combination of variable and node choice
criteria. Variable choice criterion is selected by the following SPECS command:

MIP VARCHOICE = n *1-5, default n = 1

In order to specify the options available we define the following terms:

Chapter 6. Mixed Integer Programming (MIP)

VI-23

Fractionality Measure of non-discreteness associated with an entity.

Cost Evaluation: Absolute value of variable cost multiplied by fractionality.

where the ‘measure of non-discreteness’ is a formula for each type of global entity which is zero
when the entity is integer feasible and increases with the degree of violation.

Now the ‘VARCHOICE’ command has the following options:

n = 1 Select the entity with minimum fractionality. This is the default.
n = 2 Select the entity with maximum fractionality
n = 3 Not currently available (reserved for future enhancement)
n = 4 Select the entity with maximum cost evaluation
n = 5 Select the entity with minimum cost evaluation.

Node choice criterion is selected by the following two commands:

MIP FNODCHOICE = n * n=1-7, default n = 1
MIP SNODCHOICE = n * n=1-7, default n = 7

where ‘FNODCHOICE’ governs the initial search up to the first integer solution and
‘SNODCHOICE’ governs the search thereafter.

Both commands have the same options and in order to specify them we define the following terms
relating to each node:

Number Non-integer Number of violated global entities in the solution.

Fractional Sum Sum of fractionalities associated with all the violated entities
in the solution

Deterioration Difference between the objective values of the node solution and the
solution at the root node (zl

LPR ~ zl
P).

Projection The predicted integer solution (based on a heuristic) when the
current branch is pursued to its end.

The projection heuristic assumes that fractional sum will decrease uniformly with further deterioration
in the objective as the branching proceeds.

Now the options for ‘FNODCHOICE’ and ‘SNODCHOICE’ are:

n = 1 Last in first out. This is the default for ‘FNODCHOICE’
n = 2 First in first out
n = 3 Choose a node with minimum deterioration
n = 4 Choose a node with maximum deterioration

FortMP - Part 2

VI-24

n = 5 Choose a node with minimum number non-integer
n = 6 Choose a node with minimum fractionality
n = 7 'Best projection criterion': that is choose node on a branch predicted to reach the

best integer solution. This is the default for ‘SNODCHOICE’

The user is referred to references [5], [15], [16], [22], [23] and [24] given in Chapter 1, section 1.8
for definitions and theoretical discussion of choice strategies.

Back to Chapter contents

6.5.3 UP-direction priority option

In a large number of problems there is an advantage to selecting the UP direction branch for sub-
problem solution in preference to the opposite DOWN branch. This may have the effect of forcing
other variables to zero and thus reaching an integer solution quicker than if the choice is open.

Problems that benefit in this way arise in allocation and scheduling models, and elsewhere. They
may, for example, have a large number of constraints similar to the convexity row of an SOS, that is:

x j
j Bi∈
∑ ≤ 1

where Bi is a subset of the binary variables appearing in row i.

To enforce this priority the following SPECS command is used

MIP PRIORITY UP ON * default OFF

(OFF may also be given). With PRIORITY UP activated (ON) the variable choice options
become modified so as to consider fractional values only in the UP sense. This prevents selection of
a binary close to zero in preference to one that is close to one which would have a damaging effect.

UP priority is mainly intended for use with binary variables and has little relevance to general integer
variables or special ordered sets.

Back to Chapter contents

Chapter 6. Mixed Integer Programming (MIP)

VI-25

6.6 Detailed User-control of the Tree Search

6.6.1 User control of variable choice

Very often a modeller will have information about the variables that can be used in variable selection
- step 1 of the algorithm described above in 6.4.2. For example some binary variables may
represent strategic decisions and others represent minor decisions - meaningful only when the
strategic decisions have been made. Although the algorithm is probably unable to distinguish the
two, if it can be made to branch on strategic decisions first the search time can be greatly reduced.

In general the modeller is not expected to specify a total ordering of the variables and so to force a
specific choice at every node. All the same the modeller may be able to classify variables according
to their importance and give every class of variable a corresponding priority.

These user-priorities are used in step 1 as the primary choice criterion. If multiple choices are
available at the highest priority then the standard choice criterion, as set up by 'MIP VARCHOICE'
specs-command, is used to discriminate between them.

User priorities are input via a MIP 'AGENDA' file for which the layout is given below in section
6.6.3.

Back to Chapter contents

6.6.2 Control of node choice - Fixing an Integer Solution

The choice of next node (sub-problem) for solution is step 3 of the branch and bound algorithm.
The user can direct this choice towards an integer solution which is provided in the data.

An advance integer solution can be known in various ways, for instance:

- from a previous execution of FortMP with the same, or very similar, problem data,
- from a known situation in the real world,
- from executing an independent, heuristic program that does not necessarily

determine the integer optimum.

If the solution is good, that is close to the integer optimum, it is desirable for the system to establish it
as quickly as possible so as to provide a cutoff point which limits the tree search.

There are two ways to do this:

FIXTRY

FortMP - Part 2

VI-26

Under the 'FIXTRY' option the system sets up the given integer solution immediately after entry as a
special sub-problem entirely separate from the tree. The sub-problem is solved and if it does indeed
prove to be feasible (and satisfy all the discrete restrictions) then its solution value provides the initial
cutoff.

FIXMIX

Under the 'FIXMIX' option the system gives absolute priority at step 3 (node selection) to any node
in the tree for which the established constraints at that stage of the branching do not conflict with the
given integer solution. When every discrete entity is given a value (set of values for an SOS) there
can be only one such node, unsolved, in the tree and the tree development must therefore follow a
direct path to the solution if it is in fact feasible.

Once the 'FIXMIX' solution has been established (or proved infeasible) then this priority ceases to
have effect and the normal criteria for node choice are followed (with priority 'UP' if specified).

FIXMIX is preferable to FIXTRY if the given integer solution is known to be a good one - that is
both feasible and either optimal or close to optimal. In this case it creates an advanced tree leading
to reduced search time.

Data for FIXTRY and FIXMIX is provided in a MIP 'AGENDA' file described below.

Back to Chapter contents

6.6.3 AGENDA data for variable priorities or 'FIX' solutions

A MIP 'AGENDA' file provides the data for variable priorities or a 'FIX' solution. The outline of
this file is as follows:

AGENDA
PRIORITY
. . . variable priorities . . .
FIXMIX or FIXTRY
. . . 'FIX' solution . . .
ENDATA

where the header records begin in position 1 (as with other headers).

The file must have the following name:

modname.agn

where 'modname' is the model name in use for the run.

Chapter 6. Mixed Integer Programming (MIP)

VI-27

The two data sections are each optional and may appear in either order. Once the MIP AGENDA
ON command has activated the input of the file it is the header record that activates the
corresponding procedure or priority select-criterion as described in the two previous sections.

The data layout in either section is the same, namely:

Field 1
(2-3)

Field 2
(5-12)

Field 4
(15-22)

Field 5
(25-36)

Column
name

Column
name

Value

with similar fields to MPS data input.

Fields 2 and 3 specify a start-column and an end-column in the data. The value in Field 4 is
assigned to every variable in this range inclusive of the start and end column. All values are initially
assigned to be zero and these defaults are over-written when a record provides data. The data of
one record may also be over-written by a later record. These arrangements permit the modeller to
specify a default (or use default zero) for a wide range and simply enter exceptions. For
convenience the column range may include ordinary continuous variables which are just ignored.

The following is an example of agenda data for the model example of section 6.3:

AGENDA
FIXMIX
 X2 X3 5.0
 X4 X4 1.0
 X15 X15 1.0
 X22 X23 0.5

 X33 X34 0.5
PRIORITY
 X4 X4 3
 X2 X2 2
 X3 X3 1
ENDATA

In this example the binary variable has first priority, the integer variable has second and the semi-
continuous variable has third. The special ordered sets have zero priority and will not be branched if

FortMP - Part 2

VI-28

a choice of another kind is available.

Also in this solution the FIX solution corresponds to the integer optimum. Precise values for the
adjacent pair to be non-zero in each SOS2 is not significant and need not be given.

Back to Chapter contents

6.6.4 SPECS commands for AGENDA input

The agenda file will be input when the following SPECS command is given:

MIP AGENDA INPUT ON * default OFF

(OFF may also be used).

Back to Chapter contents

6.6.5 SPECS commands for AGENDA output

An agenda file for the best integer solution found during a run may be created with the SPECS
command:

MIP AGENDA OUTPUT ON * default OFF

(OFF may also be used). Each time an integer solution is found the system creates an AGENDA
file with no PRIORITY section and with a FIXMIX section containing the solution. The previous
AGENDA file (if any) is over-written.

Another option is provided by the following command:

MIP AGENDA OUTPUT ALL

With this option multiple integer solutions are all recorded in the output AGENDA file, later solutions
in successive sections separated by FIXMIX header lines. This is not a valid file for input in a later
run using MIP AGENDA ON. In order to use it for this purpose the modeller needs to select the
section of interest (usually the last one which is the best) and delete the remaining sections.

AGENDA OUTPUT commands provide a convenient way to record integer solutions when the
more detailed information of the standard output is not needed.

Back to Chapter contents

Chapter 6. Mixed Integer Programming (MIP)

VI-29

6.6.6 Un-named Agenda Files

Agenda files can be used with the variables identified by index rather than by name. This can be
necessary, for example, when tabular form data is supplied or when using the external data interface.

The data layout is very similar to named agenda files, it has the same header lines and a difference
only in the layout of data lines which is as follows:

Field 1
(1-10)

Field 2
(11-20)

Field 3
(21-30)

Column
index

Column
index

Integer
Value

where fields 1 and 2 specify start and end column and field 3 specifies the priority class or ‘FIX’
value as before. The numerical data must be entered with right justification, this is because any
trailing blanks in a field are treated as zeros.

The associated SPECS commands are:

MIP LIST INPUT ON * default OFF
MIP LIST OUTPUT ON * default OFF
MIP LIST OUTPUT ALL

(‘OFF’ may also be used). These commands have the same meaning as the corresponding
‘AGENDA’ commands.

A ‘LIST’ agenda file must have the following name:

modname.agl

where 'modname' is the model name in use for the run.

FortMP - Part 2

VI-30

6.7 Advanced Algorithms for MIP

6.7.1 Recent advances

Recently there have been considerable improvements to MIP solution procedures through the use of
features such as Pre-processing and Cut generation.

The aim of these techniques is to determine additional constraints that must be satisfied by any
integer solution but are not satisfied by the optimum solution to the relaxed LP or by the optimum
solution to an intermediate sub-problem of the Branch and Bound tree having partial LP relaxation.

If such a constraint is added to the relaxed LP at the root node the effect may well be to degrade its
optimum objective value and thus reduce the gap between that and the integer optimum with evident
beneficial effect on the search procedure. The same is true for any intermediate node in the tree,
where the optimum solution is LP feasible but not fully integer feasible.

The pre-processing procedures have another aim, namely, to release constraints whenever they are
found to be redundant. As a simple example consider the common 'Clique'-type constraint which
takes the form:

x j
j Bi∈
∑ ≤ 1

where Bi is a subset of the binary variables applying in the i'th row. If we discover one of its
members to have a lower bound greater than zero then that member must be one and the remaining
members must be zero. Once these fixes have been applied the constraint itself is redundant and
may be released, which improves solution time by reducing both the time and the number of Sparse
Simplex steps needed to solve sub-problems.

Back to Chapter contents

6.7.2 Pre-processing - Variable Fixing and Constraint Relaxing

The most direct technique to apply is that of PRESOLVE where the implications of primal
constraints:

a x :: bij j i∑

are studied, whatever the variable types involved. This is a general and comprehensive technique for
fixing variables and relaxing constraints.

Chapter 6. Mixed Integer Programming (MIP)

VI-31

In addition if a tightened bound can be discovered for an integer or binary variable, giving it a
fractional bound in one sense or the other, then the fraction can be truncated which further tightens
the bound and gives an improved effect.

In FortMP this technique is activated with the following SPECS command:

MIP PREPROCESS ON * default OFF

(MIP PREPROCESS OFF may also be used). This causes MIP pre-processing to be carried out
at the outset (before the relaxed LP is solved) and again before solving each sub-problem in Branch
and Bound.

Additional memory areas are required for this algorithm so that the fixing of variables and relaxing of
constraints can be replicated at every point on the tree allowing full freedom to branch in any
direction without requiring the MIP pre-processor execution to be repeated un-necessarily.

These areas are called FIX tables and are assigned together with the node tables in the ratio 10 to 1
(10 fixes to every node as an average). For some models this ratio is not enough and it can be
altered with the SPECS command:

MIP FIX QUOTA = n * default = 10

While 10 is usually suficient a ratio of 20 to 1 has been found necessary for some problems.
Extremely high values should be avoided so as to allow space for a maximum of nodes.

The following commands correspond to the same features in the Presolve algorithm:

MIP PREPROCESS LEVEL = n * 1-3, default = 3
MIP PREPROCESS LOG LEVEL = n * 0-4, default = 1

Three levels are available in the pre-processor and the level of information logged can be controlled
as before. Note that log level refers to the root node only, the level for logging during branch and
bound is reduced by one.

In addition the MIP pre-processor can be used at the root node, and then be switched off during
branch and bound. The command for this is:

MIP PREPROCESS ROOT ONLY

With this command there is no need for any FIX quota.

Back to Chapter contents

6.7.3 Cut Generation

Cuts, like fixes, are additional constraints that may be applied to the problem. Unlike fixes,
however, they cannot be applied to the problem by a simple change to variable types and the

FortMP - Part 2

VI-32

bound-set.

A cut is a constraint, an inequality (or an equality) just like any other constraint in the problem. It
can arise in many different ways:

- as Maximal Clique or Minimal Cover obtained by processing knapsack constraints
in the model (constraints that have non-zero coefficients only on binary variables),

- Gomory cuts,
- Optimality cuts and Infeasibility cuts,

and many others.

Cuts are never added directly to the problem - rather they are stored separately in an area called the
Cut Pool which holds cut coefficients and cut right-hand-sides. From the cut pool a cut may be
applied to the matrix whenever it is advantageous to do so. It is not advantageous to apply a cut
when the optimal solution to the current sub-problem (including the relaxed LP as a sub-problem in
this context) actually satisfies that cut-constraint anyway. Consequently after every optimal solution
has been found a search is made for 'Strong' cuts - that is cuts which are violated by the current
solution. These cuts are added to the main problem constraint-set and the problem is then re-
solved.

The following SPECS command must be given in order to make cut-pool space available and
activate the FortMP cut-generator procedures:

GENERATE CUTS ON * default OFF

(GENERATE CUTS OFF may also be specified).

The following SPECS commands are similar to the 'MIP FIX QUOTA' command in that they
govern the amount of space that the system reserves for the cut pool and for applying cuts to the
problem:

CUT QUOTA = n * default = 10

This governs the amount of cut pool space provided in relation to the model size. By default the
system assigns space for 10 cut-constraints per constraint-row in the original model and for 10 cut
non-zero coefficients per non-zero coefficient in the original matrix.

ACT QUOTA = n * default = 5

This governs the extra space allowed in the problem storage for applying cuts. It applies in the same
way as before:- The system (by default) assigns 5 extra constraint-rows per original constraint-row,
5 extra spare locations per original non-zero for expanding the matrix and also the same amount
spread over all columns as extra row-space in each column so that rows can be added with a

Chapter 6. Mixed Integer Programming (MIP)

VI-33

minimum of delay. This extra spare space in the matrix is essential to ensure that the process is
efficient.

ACT quota also governs the amount of space needed per node to record applied cuts - enabling
them to be replicated and not require re-calculation. Clearly the user may need to raise the quotas
for his problem but should avoid raising them too high in order to leave enough room for Branch and
Bound itself and for the other algorithms.

Back to Chapter contents

6.7.4 Fixing Variables by Dual Solution Analysis

When selecting a discrete entity for branching only basic variables are considered (SOSs apart).
Non-basic variables, valued at zero or at bound, should not be selected because they may never
need it. In general only a small proportion of the discrete entities need to be branched on in order to
reach an integer solution.

However the dual value associated with a non-basic, discrete variable (binary, integer or semi-
continuous at zero) can be used to find a minimum change that would apply to the objective if the
variable shifted to another discrete value. If this minimum change increases the current optimum
above the cutoff level then clearly it will be unnecessary. The variable may be fixed at its current
value.

To invoke the procedure the following SPECS command is used:

MIP ANALYSE DUAL ON * default OFF

(OFF may also be given). The user should employ this option with caution as not all problems
benefit and the calculations require extra time.

FortMP - Part 2

VI-34

6.8 Miscellaneous MIP controls

6.8.1 Automatic rounding heuristics

At the relaxed LP optimum solution it may be expected that some of the discrete variables are
already feasible or very near feasible in value. Automatic Rounding allows user to fix these variables
immediately at the nearest discrete value and consider the restricted branch and bound tree that
results. Given the likelihood of finding an integer solution in this restricted sub-tree the time required
to find a suitable solution to the problem may be very greatly reduced.

MIP can operate in two phases, a search of the restricted tree (auto-rounded) followed by a search
of the full tree and each tree may be controlled by its own independent limits.

In order to activate auto-rounding the following command is given:

MIP AUTO ROUNDING ON * Default OFF

Control over what variables will be rounded is provided by the following command:

MIP ROUNDING FRACTION = v * Default v = 0.001

where the default is in fact set from the integer tolerance. Any value up to 0.5 can be specified - the
auto-round procedure will fix any binary or integer variable that is closer than this amount to the
nearest integer value. Fixing covers both basic and non-basic variables, so implicitly all binary and
integer variables that are non-basic in the relaxed LP optimum will be fixed.

Finally the algorithm used to solve the auto-rounded sub-problem, which is used as the root node
for the restricted tree, may be governed with the following commands:

MIP AROUND SOLVER SSX
MIP AROUND SOLVER IPM * Default SSX

where 'SSX' specifies the Dual algorithm (reverting to Primal if it fails).

Back to Chapter contents

6.8.2 Bound, Cutoff and Tolerance control

The following SPECS commands are useful to avoid searching unwanted parts of the tree or
searching in unnecessary detail.

INTEGER TOLERANCE = v * default v=0.001

This tolerance supplies the largest deviation from an integer value for which a discrete entity is
deemed to be integer feasible. It should represent the maximum fraction considered by the user to

Chapter 6. Mixed Integer Programming (MIP)

VI-35

be tolerable in a solution. Very often it is found that most or all fractions drop to zero anyway below
the default level.

Two concepts, the BOUND and the CUTOFF TOLERANCE, permit user to reduce unnecessary
searching of branches during MIP. They operate by controlling the TREE CUTOFF or maximum
GAP beyond the RLP optimum that is the region where solutions to MIP sub-problems may be
found. Once the solution value of a branch deteriorates beyond the limit set by this gap then that
branch is discontinued. Initially the gap is set by the starting BOUND. This may be controlled by
the user with the following SPECS commands:

MIP BOUND = v * default: High value
MIP BOUND RELATIVE = v * default: High value

'MIP BOUND = v' may also be written as 'MIP BOUND ABSOLUTE = v', and it specifies an
actual initial gap. 'MIP BOUND RELATIVE = v' specifies gap size relative to the RLP optimum -
that is, the gap size is the RLP optimum value multiplied by the factor supplied. If the user supplies
both commands then the gap size used will be the smaller of the two.

CUTOFF TOLERANCE becomes relevant once an integer solution has been found. From there
on a maximum gap is determined by the Best Integer Solution found so far (the BIS), and this gap is
simply the difference between the BIS and the RLP optimum. User can modify the gap by applying
a 'tolerance', which reduces the gap, thereby reducing search time. This may prevent the genuine
Optimum Integer Solution from being found, but ensures that the eventual BIS differs from the
optimum by no more than the tolerance.

Cutoff Tolerance can be controlled with the following SPECS commands:

MIP CUTOFF TOLERANCE = v * default v=1.0e-12
MIP CUTOFF RELATIVE = v * default v=0.0
MIP CUTOFF RELISOL = v * default v=0.0

Here 'CUTOFF TOLERANCE' specifies the actual amount of gap-reduction. 'CUTOFF
RELATIVE' specifies the reduction as a fraction of the gap itself, so that a large reduction will be
applied for poor solutions and the reduction will get less progressively as the BIS improves.
'CUTOFF RELISOL' specifies the reduction as a fraction of the BIS value.

Note that when the reduced gap becomes zero or negative the tree search is immediately concluded.

Back to Chapter contents

6.8.3 Placing Limits on the Tree Search

The SPECS commands given below limit the total extent of the tree search. When the limit is
exceeded there is a SAVE made of the tree (unless SAVEs are cancelled) and a continued search
can be restarted in the following run.

FortMP - Part 2

VI-36

MAXIMUM MIP NODES = n * default = 50,000

Specifies the maximum number of nodes, i.e. sub-problem solutions, that can be attempted.

MAXIMUM MIP TIME = v * default = 50000.0

Gives the maximum number of seconds for which the MIP algorithm may run.

MAXIMUM MIP INTEGER SOLUTIONS = n
MAXIMUM MIP INTSOL = n * default = 300

Either of the above commands sets a limit to the number of integer feasible solutions, and the run
halts when this number is reached.

There may be separate limits given for the restricted AUTO ROUND tree developed first in the
event that user specifies auto-rounding. During auto-rounding no tree-saves are made. The
commands are:

MAXIMUM AROUND NODES = n * default = 5000

Specifies the maximum number of nodes, i.e. sub-problem solutions, that can be attempted. Auto-
round nodes do not count towards the MIP limit.

MAXIMUM AROUND TIME = v * default = 5000.0

Gives the maximum number of seconds for which the auto-round tree-search may run. Auto-round
search time does not count towards the MIP limit.

MAXIMUM AROUND INTEGER SOLUTIONS = n
MAXIMUM AROUND INTSOL = n * default = 1

Either of the above commands sets a limit to the number of integer feasible solutions, and the auto-
rounded tree-search halts when this number is reached. The integer solutions found by auto-
rounding do count towards the maximum for MIP as a whole (unlike the other auto-round limits).

It is also possible to place a limit on the total storage used with the following command:

MAXIMUM MIP SPACE = n * default = 10,000 nodes

but this does not necessarily limit the search because the space for deleted nodes is recovered and
used over again any number of times. However the system may even so run out of node space.

The system in any case reduces this maximum if there is not enough room by calculating how many
nodes the store can hold. There must be room enough for at least one tenth the specified maximum
and otherwise MIP halts at the outset. Default minimum storage is therefore 1000 nodes when the
command is not given.

Back to Chapter contents

Chapter 6. Mixed Integer Programming (MIP)

VI-37

6.8.4 Saving the tree and restarting MIP

FortMP-MIP carries out an automatic save of the search tree at a frequency given in terms of the
number of nodes built. The SPECS command is:

MIP SAVE FREQUENCY = n * Default = 500

By setting n to zero the facility is switched off.

If for any reason MIP fails to complete the search in one run then it is possible to restart the search
at or very close to the stopping point. To restart the search the following SPECS command is used:

MIP RESTART ON

(OFF may also be given). For a successful restart the files built in the previous run must be present
on the working directory, in particular the following file:

modname.msv

where 'modname' is the model name.

It is of course obvious that in order to continue running in a restart by this means the original limit that
halted the previous run must be relaxed. A new time limit is set up anyway but the Maximum
NODES, INTEGER SOLUTIONS or SPACE may need to be increased (see the previous
section).

In the case of node storage limit exceeded the user may be able to increase the maximum but this
will not help if the maximum is already restricted by the store size. The user can attempt to run with
reduced quotas (FIX, CUT and ACT) but if this also fails then a larger memory is needed.

Back to Chapter contents

6.8.5 Bypassing Mixed Integer

In many cases users prefer to see the solution to the linear programming relaxation of a MIP model
before the beginning of the branch and bound process. In this case the user can bypass the call to
MIP module with the following SPECS command

MIP OFF * Default ON

(ON can also be specified). Alternatively the user may limit the MIP run, for example with the
command 'MAXIMUM MIP NODES = 0'.

Note that it is possible to restart MIP after restarting the LPR stage with the saved optimal basis.
Commands to use are:

INPUT RESTART
SIMPLEX START RESTART

FortMP - Part 2

VI-38

with the same SCALE and MIP PREPROCESS option as before but without using PRESOLVE or
IPM.

Back to Chapter contents

6.8.6 Making use of the PRIMAL algorithm

DUAL is employed by default for solving sub-problems. The following SPECS command invokes
primal as an alternative:

MIP DUAL OFF * default ON

(MIP DUAL ON can also be given). DUAL is numerically less reliable than PRIMAL in certain
cases which may make this option desirable. However failure of DUAL due to numerical difficulty
causes the system to revert to PRIMAL in any case.

Back to Chapter contents

Chapter 6. Mixed Integer Programming (MIP)

VI-39

6.9 Logged Output and Screen Display

As in other FortMP procedures the output written to the log and the screen display can be varied to
suit the degree of detail required. The log output is controlled with the following SPECS command:

MIP LOG LEVEL = n * n=0-4, default=1

In default, log level 1, the screen display and log file record outstanding items, including the
occurrence of each integer solution.

With level 2 or higher a log is shown of every node. Nodes are numbered following selection for
sub-problem solution and so will appear in the log numbered in order 1,2,3,.... Users may find this
log much too long and it can be reduced to appear at node intervals given by the following SPECS
command:

NODE LOG FREQUENCY = n * default n=1

The various headings of the level 2 log are shown in the following table:

Log
Heading

Screen
Text

Description

Node N= Node number for identification

Parnt P= Parent node number

Obj.ve LP= Objective value of sub-problem solution

Fractn FR= 'Fractionality' - or measure of non-discreteness. Here is also given a
text indicating whether node is infeasible or cutoff

Bvar 'Branch Variable':- index of the selected discrete entity (or set
member)

Typ Type of discrete entity partitioned:- BV, UI, SC, S1 or S2

Dir Branch direction:- UP or DWN

NNI NI= Number non-integer:- remaining number of violated discrete entities

NCH CH= Node choice:- Current number of unsolved sub-problems in the tree

Dpth Depth of the node in the tree

FortMP - Part 2

VI-40

IPbest BI= Best integer solution - the current cutoff (high value if no integer
solution found so far)

SET# SET# Index of selected SOS (when 'Typ' is S1 or S2)

FROM/
TO

FROM/
TO

Index range of selected SOS members allowed to be non-zero (all
other members of the set fixed to zero at this node)

Other information is given with self-explanatory text. The following is the output to log file at level 2
for the example problem given earlier:

 IN THIS SEARCH
 FIRST NODE CHOICE STRATEGY = 1
 SECOND NODE CHOICE STRATEGY = 7
 VARIABLE CHOICE STRATEGY = 1

 optimum lp solution is 0.9344E+02
 Dual infeasibility: 3 -51.109671 Iter# 13
 Node Parnt Obj.ve Fractn Bvar Typ Dir NNI NCH Dpth Ipbest
 2 1 223.417 No feas sol 4 BV DWN 2 1 1 0.1000E+11
 3 1 93.8205 0.2720 4 BV UP 2 0 1 0.1000E+11
 4 3 94.3363 0.1775 2 UI DWN 1 1 2 0.1000E+11
 5 4 107.112 0.5070E-01 16 S2 UP 1 2 3 0.1000E+11
 SET# 3, FROM/TO 17/ 19, Iterno= 21, Prty= 0
 6 5 138.369 No feas sol 17 S2 UP 2 3 4 0.1000E+11
 SET# 3, FROM/TO 18/ 19, Iterno= 21, Prty= 0
 7 5 108.000 0.3970 17 S2 DWN 2 2 4 0.1000E+11
 SET# 3, FROM/TO 17/ 18, Iterno= 22, Prty= 0
 $$$$ INTEGER SOLUTION: 0.108000E+03, FOUND AT NODE# 7
 Time since B&B start: 0.05 secs, Iter# = 22
 Node Parnt Obj.ve Fractn Bvar Typ Dir NNI NCH Dpth Ipbest
 8 4 95.1667 0.5070E-01 16 S2 DWN 1 1 3 108.0
 SET# 3, FROM/TO 16/ 17, Iterno= 23, Prty= 0
 $$$$ INTEGER SOLUTION: 0.951667E+02, FOUND AT NODE# 8
 Time since B&B start: 0.05 secs, Iter# = 23
 Node Parnt Obj.ve Fractn Bvar Typ Dir NNI NCH Dpth Ipbest
 9 3 94.5185 0.1775 2 UI UP 1 0 2 95.17
 10 9 96.1667 Dual cutoff 14 S2 UP 1 1 3 95.17
 SET# 2, FROM/TO 14/ 15, Iterno= 24, Prty= 0
 11 9 95.7051 Dual cutoff 14 S2 DWN 1 0 3 95.17
 SET# 2, FROM/TO 13/ 14, Iterno= 24, Prty= 0
 ********** Search completed **************
 The IP optimum is 95.166667
 Total nodes: opened = 11 processed = 10
 Final iteration count = 24
 $$$$$$$$$ Saving the tree $$$$$$$$$$$
 No of nodes: 11 built 10 processed
 Storage used:- Nodes 8, Bases 3, Fixes: 0

Chapter 6. Mixed Integer Programming (MIP)

VI-41

 Integer solutions 2 best = 95.1667
 TIME TAKEN FOR INTEGER = 0.16 SECS, TOTAL SO FAR = 0.71 SECS

Back to Chapter contents

FortMP - Part 2

VI-42

6.10 MIP Constraint Classification

6.10.1 Introduction and SPECS command

A useful feature of FortMP leading to better understanding of model types and more effective
decisions on how best to tackle them is constraint classification. Classification is used in the pre-
processing and cut generation procedures of the system.

The user may ask to have this classification recorded in the output log with the following SPECS
command:

MIP CLASSIFY ROWS ON * default OFF

(OFF can also be given).

A description follows of all the various constraint classes distinguished by this command. In the
definitions given the notation 'N3' is used to represent a sub-set of the binary indices rather than the
full set defined by 'N3' in section 6.2.5. Similarly for other index sets.

Back to Chapter contents

6.10.2 Knapsack Constraint Classification

Classification literature refers to a Knapsack constraint as an inequality:

a x bj j
j∈
∑ ≤

N3

where all the relevant variables x j are binary and where the RHS b and all the coefficients aj are
positive and integer.

In fact we can consider any inequality constraint that involves only binary variables to be a knapsack
constraint by a combination of scaling and complementing those variables that have negative
coefficients. Let the constraint be:

a x a x bj j
jj

+ ≤
∈∈ −+
∑∑ k k

NN 33

wnere N+
3 and N-

3 are the sets for which aj is positive and negative respectively. The complement
variables (also binary) are defined by

k kx x= −1

Chapter 6. Mixed Integer Programming (MIP)

VI-43

and when we substitute for terms with negative coefficients the constraint becomes:

a x (a)x b aj j
j

+ − ≤ −
∈∈ ∈−+ −
∑∑ ∑k k

k NN
k

k N33 3

with all the coefficients on the left hand side positive. Since all coefficients are rational this may now
be scaled to make them all integers and the RHS-value, truncated if necessary, is integer also.
Hence we have a knapsack constraint.

Bearing this in mind, we give a classification for constraint-types on the basis that any such necessary
transformations are assumed to have been carried out, and the resulting positive/negative sub-
division of the coefficients into N+

3 and N-
3 refers to their values after complements have been

substituted in a way to obtain the prescribed form.

Knapsack constraints are classified into the following:

Knapsack (KNA)

This is the generic type defined above

Invariant Knapsack (INK)

Knapsack constraint with all coefficients 1.0

x bj
j∈
∑ ≤

N3

This constraint-type is also known as a cover.

Clique (CLQ)

Invariant knapsack with RHS equal to one.

x j
j∈
∑ ≤

N3

1

Set Covering (SCV)

Invariant Knapsack with RHS equal to one less than the number of LHS terms.

x | |j
j∈
∑ ≤ −

N

N
3

3 1

When each x j is complemented this becomes similar to the clique but with opposite sense to the
inequality:

FortMP - Part 2

VI-44

x j
j∈
∑ ≥

N3

1

Bin Packing (BPK)

Knapsack constraint with RHS zero and exactly one negative coefficient.

a x a x , ()j j
j∈

−

+
∑ − ≤ ∈ >

N
k k kk N a

3

0 03

Plant Location (PLK)

Bin Packing constraint with all the positive coefficients equal to 1.0:

x a x , ()j
j∈

−

+
∑ − ≤ ∈ >

N
k k kk N a

3

0 03

Reverse Plant Location (RPL)

Knapsack constraint with RHS zero, exactly one positive coefficient and all negative coefficients
equal to -1.0:

a x x , ()j
j

k k
N

kk N a− ≤ ∈ >
∈

+

−
∑

3

0 03

Back to Chapter contents

6.10.3 Mixed Less or Equals Constraint Classification

Variable Upper Bound (VUB) and Variable Lower Bound (VLB)

Weak knapsack constraint with one binary term, one non-binary term, and zero RHS:

a x a x , ,j j + ≤ ∈ ∉k k b j N k N3 3

If ak > 0 then we have VLB, else if ak < 0 then we have VUB.

A combination of VUB and VLB for the same pairing of a decision variable with a continuous
bounded variable is modelled in a simpler way by one semi-continuous variable.

Weak Knapsack (WKN)

If we have a mixed constraint:

Chapter 6. Mixed Integer Programming (MIP)

VI-45

a x a xj j
j ∈ ∉
∑ ∑+ ≤

N
k k

k N

b
3 3

Then appropriate bounds on the non-binary variables may lead to a knapsack. If (lk,uk) is the
bound-range of xk and if:

lk is finite for each ak > 0
uk is finite for each ak < 0

Now let the finite bound so indicated be [l|u]k. We can derive the following constraint:

a x aj j
j

[|]
∈ ∉
∑ ∑≤ −

N
k

k N
k

b l u
3 3

which is a meaningful knapsack constraint provided that the RHS is not too large.

Weak knapsack constraints are further sub-classified into the following constraint types:

Weak Invariant Knapsack (WIK)

Weak Knapsack constraint with all binary terms having coefficient 1.0:

x a xj
j ∈ ∉+
∑ ∑+ ≤

N
k k

k N

b
3 3

with the same bound conditions as before and assuming that the derived knapsack is meaningful.

Back to Chapter contents

6.10.4 Equality constraints

Although an equation might be considered as two inequalities, to be separately classified as in 6.10.2
or 6.10.3 this is not generally useful and equations are considered separately.

Various types of equation are highlighted as follows:

Diophantine Equations (DPQ)

An equation involving only binary and integer variables:

a x a xj j
j∈ ∈
∑ ∑+ =

N
k k

k N

b
3 4

DPQ as originally defined should have all aj , ak and the RHS (b) integer-valued. This requirement
is omitted on the same argument as for knapsack constraints - the constraint can be scaled up to

FortMP - Part 2

VI-46

achieve this condition.

P-fold Alternative (PFLD)

Sum of binary variables equal to a constant p:

x j
j∈ +
∑ =

N

p
3

Exclusive OR (XOR)

P-fold alternative with p = 1:

x j
j∈ +
∑ =

N3

1

Note here that the convexity row of an SOS1 (if it exists) is an XOR constraint.

Discrete Goal-Oriented Equations (DGOQ)

a x x xj j
j∈
∑ + − =

N
h k b

3

Where xh and xk are ‘singleton’ columns, not of binary type and not appearing in any other
constraint. This consists of an equation involving binary variables augmented by logical additions
that can specify a penalty cost attached to any failure to achieve a solution such that:

a xj j
j∈
∑ =

N

b
3

It is not necessary to have both the positive and the negative additional terms. The following types
of constraint are also classified as DGOQ:

a x xj j
j∈
∑ + =

N
h b

3

a x xj j
j∈
∑ − =

N
k b

3

where xh and xk are ‘singleton’ columns as before.

Back to Chapter contents

Chapter 6. Mixed Integer Programming (MIP)

VI-47

6.10.5 Full Classification Hierarchy

Certain general classes not yet mentioned may be named here:

LE The class of all LE-type constraints (including GE-type which are converted
on input to LE-type)

EQ The class of all EQ-type constraints.

RNG All constraints with RHS range

OBJ Objectives and free rows

MLE Mixed LE constraints, part binary and part non-binary.

OLE Other LE constraints having no binary component

BDPQ Diophantine equations involving only binary variables

IDPQ Diophantine equations involving only Integer variables

MDPQ Mixed Diophantine equations, part binary and part integer

NDPQ Non-diophantine equations, i.e. incorporating one or more continuous
variables.

We include also the following 'Other' types:

SUB Simple Upper Bound:- where there is only one non-zero term giving a fixed
upper bound to that variable.

SLB Simple Lower Bound:- where there is only one non-zero term giving a fixed
lower bound to that variable.

The following diagram illustrates the hierarchical relationship of all these classes and (on the right)
lists the total sub-classification derived by the system. Note that the BGOQ class appears as a sub-
set of both NDPQ and MDPQ classes. This is the only exception to the ordinary, hierarchical
structuring.

FortMP - Part 2

VI-48

 All Constraints

 LE KNA INK CLQ (Clique)
 SCV (Set Covering)
 INK (Other Invariant Knapsack)

 BPK PLN (Plant Location)
 BPK (Other Bin Packing)
 RPL (Reverse Plant Location)
 KNA (Other Knapsack)

 MLE VLB (Variable Lower Bound)
 VUB (Variabel Upper Bound)
 WKN WIK (Weak Invariant Knapsack)
 WKN (Other Weak Knapsack)
 MLE (Other Mixed LE constraints)

 OLE SLB (Simple Lower Bound)
 SUB (Simple Upper Bound)
 OLE (Other LE constraints)

 EQ DPQ BDPQ PFLD XOR (Exclusive OR)
 PFLD (Other P-fold Alternative)
 BDPQ (Other Binary Diophantine EQ)
 IDPQ (Integer Diophantine EQ)

 MDPQ
 DGOQ (Discrete Goal-Oriented EQ)
 NDPQ
 NDPQ (Other Non-diophantine EQ)

 RNG (Range constraints not classified)

 OBJ (Objectives and free rows)

Diagram 1. Row Classification Hierarchy.

Back to Chapter contents

Chapter 6. Mixed Integer Programming (MIP)

VI-49

6.11 Summary of MIP SPECS Commands

The following SPECS-commands have been introduced in this chapter.

INPUT INTORG UPPER BOUND = n * default n is
infinite
INPUT INTORG BOUND = n * default n is infinite

Assigns a default upper bound to integer variables outlined by INTORG/INTEND markers. If n =
1 the variables are binary. See section 6.3.3

MIP VARCHOICE = n * Default n = 1

Controls the choice of branching variable (or SOS) at each node. Values are:

n = 1 Select closest to integer value
n = 2 Select farthest from integer value
n = 3 Not in use (invalid)
n = 4 Select variable with highest cost
n = 5 Select on basis of absolute cost

See section 6.5.2.

MIP FNODECHOICE = n * Default n = 1
MIP SNODECHOICE = n * Default n = 7

Controls choice of node to be developed during the each phase of MIP. 'F'-choice is used prior to
the first integer solution 'S'-choice thereafter. Possible choices are:

n = 1 Last in first out
n = 2 First in first out
n = 3 Choose minimum deterioration in the objective.
n = 4 Choose minimum percentage error
n = 5 Choose node with fewest non-discrete values.
n = 6 Choose node with minimum sum of fractions.
n = 7 Choose according to best projection criterion.

See section 6.5.2.

MIP PRIORITY UP ON * default OFF
MIP PRIORITY UP OFF

'ON' invokes UP priority node-selection. See section 6.5.3.

MIP AGENDA INPUT ON * default OFF
MIP AGENDA INPUT OFF

'ON' invokes input of MIP AGENDA data. See section 6.6.4

FortMP - Part 2

VI-50

MIP AGENDA OUTPUT ON * default OFF
MIP AGENDA OUTPUT OFF
MIP AGENDA OUTPUT ALL

'ON' and 'ALL' activate output of FIX data representing integer solutions. See section 6.6.5.

MIP LIST INPUT ON * default OFF
MIP LIST INPUT OFF

'ON' invokes input of unnamed MIP AGENDA data. See section 6.6.6.

MIP LIST OUTPUT ON * default OFF
MIP LIST OUTPUT OFF
MIP LIST OUTPUT ALL

'ON' and 'ALL' activate output of un-named FIX data representing integer solutions. See section
6.6.6.

MIP PREPROCESS ON * default OFF
MIP PREPROCESS OFF
MIP PREPROCESS ROOT ONLY

'ON' activates the MIP preprocessor throughout, ‘ROOT ONLY’ for the relaxed LP and not for
sub-problems during branch and bound. See section 6.7.2.

MIP PREPROCESS LEVEL = n * 1-3, default n = 3
MIP PREPROCESS LOG LEVEL = n * 0-4, default n = 1

These commands are similar to corresponding ‘PRESOLVE’ commands, See section 6.7.2.

MIP FIX QUOTA = n * default n = 10

Assigns quota for number of stored 'fixes' in relation to the nodes. See section 6.7.2.

GENERATE CUTS ON * default OFF
GENERATE CUTS OFF

'ON' activates the cut-generation procedures and the application of strong cuts before and during
Branch and Bound. See section 6.7.3.

CUT QUOTA = n * default n = 10
ACT QUOTA = n * default n = 5

These commands assign quotas for cut-storage and applied cuts in relation to the model size. See
section 6.7.3.

MIP ANALYSE DUAL ON * default OFF
MIP ANALYSE DUAL OFF

'ON' activates the Dual Solution analysis and resultant fixing of non-basic discrete variables. See
section 6.7.4.

Chapter 6. Mixed Integer Programming (MIP)

VI-51

MIP ROUNDING FRACTION = v * default v = 0.0

Criterion for a discrete variable to be rounded in the 'AUTO ROUND' option. See section 6.8.1.

MIP AUTO ROUNDING ON * default OFF
MIP AUTO ROUNDING OFF

'ON' activates the 'AUTO ROUNDING' option. See section 6.8.1.

MIP AROUND SOLVER IPM * default SSX
MIP AROUND SOLVER SSX

These commands select which solver to use for the root node of the auto-rounded tree. See section
6.8.1.

INTEGER TOLERANCE = v * default v = 0.001

Criterion for approximation to an integer value. See section 6.8.2.

MIP BOUND = v * default infinite
MIP BOUND RELATIVE = v * default infinite

Assigns the starting gap beyond the RLP optimum to the initial tree cutoff bound. 'RELATIVE'
implies relative to the RLP optimum value. See section 6.8.2.

MIP CUTOFF TOLERANCE = v * default v = 1.0e-12
MIP CUTOFF RELATIVE = v * default v = 0.0
MIP CUTOFF RELISOL = v * default v = 0.0

Measure by which the gap from RLP to tree cutoff is reduced, once an integer solution has been
found. 'RELATIVE' implies relative to the gap, and 'RELISOL' implies relative to the integer
solution. See section 6.8.2

MAXIMUM MIP NODES = n * default n = 50,000
MAXIMUM MIP TIME = v * default v = 50,000.0
MAXIMUM MIP INTEGER SOLUTIONS = n
MAXIMUM MIP INTSOL = n * default n = 300

Limits placed on the tree search. See section 6.8.3.

MAXIMUM AROUND NODES = n * default n = 5000
MAXIMUM AROUND TIME = v * default v = 5000.0
MAXIMUM AROUND INTEGER SOLUTIONS = n
MAXIMUM AROUND INTSOL = n * default n = 1

Limits placed on the auto-rounded tree search. See section 6.8.3.

MAXIMUM MIP SPACE = n * default n = 10,000

Limit on node storage (does not limit the execution). See section 6.8.3.

FortMP - Part 2

VI-52

MIP SAVE FREQUENCY = n * default n = 500

Save interval given in terms of the number of nodes built. All saving is cancelled if n is zero. See
section 6.8.4.

MIP RESTART ON * default OFF
MIP RESTART OFF

'ON' activates a restart, using save-files from a previous run. See section 6.8.4.

MIP ON
MIP OFF * default ON

'OFF' causes Branch and Bound execution to be skipped. See section 6.8.5.

MIP DUAL ON
MIP DUAL OFF * default ON

'ON' causes Primal algorithm to be used in the place of Dual as solver for sub-problems. See
section 6.8.6.

MIP LOG LEVEL = n * 0-4, default n = 1

Level of output written to the log. Levels 0 to 4 available. Level 2 activates the node output log -
also to the screen. See section 6.9.1.

NODE LOG FREQUENCY = 1 * default n = 1

Frequency of node output written to the log and displayed on screen with log level 2 or higher. See
section 6.9.1.

MIP CLASSIFY ROWS ON * default OFF
MIP CLASSIFY ROWS OFF

'ON' causes the MIP constraint classification to be carried out in full and written to the log. See
section 6.10.1.

Back to Chapter contents

Chapter 7:- FortMP Subroutine Library and External Data Interface

VII-1

Chapter 7. FortMP Subroutine Library and External Data Interface

Contents

7.1 Using FortMP as a sub-system to solve linear problems 2
7.1.1 Incorporating FortMP as a sub-system 2
7.1.2 Parameter specifications 3
7.1.3 Simple FORTMP subroutine with parameters 4
7.1.4 Subroutine call-library specifications 5

7.2 External Data Interface 7
7.2.1 Introduction 7
7.2.2 General description of the data interface 8
7.2.3 Argument specifications 9
7.2.4 Call specifications 12
7.2.5 An example 14

7.3 Standard Data Input to the Interface 18
7.3.1 Calling the standard data input 18
7.3.2 Access to row-names and column-names 18
7.3.3 Looking up the index of a named variable 19
7.3.4 Name pattern matching 20
7.3.5 Looking up the name of an indexed variable 21
7.3.6 Managing the constant term in the objective 21

7.4 Internal SPECS Commands 23
7.4.1 The need for faster command entry 23
7.4.2 Once-off entry of SPECS commands 23
7.4.3 Default initialisation 23
7.4.4 Common Sections in the SPECS file 24

7.5 How to Avoid Miscellaneous I/O 25
7.5.1 Log channel 25
7.5.2 Controlling the log 25
7.5.3 Avoiding the use of SAVE files 26

7.6 MPS-form Output 27

7.7 Summary of callable library, external data interface and associated commands 28
7.7.1 Summary of the callable library 28
7.7.2 Summary of arguments and parameters 31
7.7.3 Summary of relevant SPECS commands 33

FortMP:- Part 3

VII-2

7.1 Using FortMP as a sub-system to solve linear problems

7.1.1 Incorporating FortMP as a sub-system

The main program of the FortMP system is a module named FORTMP and has been included for
the users in source form so that they can adapt it to their own ends.

One simple idea is to make it into a subroutine without arguments so that it can be called with the
following program statement:-

CALL FORTMP

This will now carry out exactly the function of the stand-alone FortMP system each time that the
CALL is executed. The users build a complete program for execution by combining their own
programming together with the modified 'FORTMP' module and the rest of the FortMP callable
library.

This simple procedure will not, however, suit many users. A more powerful use can be made of
subroutine FORTMP if its composition is studied. It can then be re-organised with other user-
procedures interpolated.

The study will be found quite simple because FORTMP is simply a driving routine that calls a
sequence of library subroutines in order to carry out the work.

Subroutines that can be called by FORTMP are:-

MPTIME Routine to create time reports
INITAL Initialises and reads the SPECS control file
INPUT Reads the input data (including input basis, if any)
GETCTL Obtains the control switches
SCALE Performs scaling
PREMIP MIP pre-processor
PRSLVE Carries out PRESOLVE
IPMCTL Controls execution of IPM and basis recovery
INPBAS Sets up the input MPS-format basis
BBASIN Reads and sets up the saved binary basis
CRASH Carries out CRASH starting basis procedure
UNIBAS Sets up the UNIT starting basis
DUAL Executes the DUAL algorithm
PRIMAL Executes the PRIMAL algorithm
PSTSLV Carries out POSTSOLVE
BASOUT Writes the output, MPS-format basis
BBASOT Writes the output binary save basis

Chapter 7:- FortMP Subroutine Library and External Data Interface

VII-3

MIPCTL Controls execution of MIP
OUTPUT Writes the solution output
FINIAL Finishes execution and closes any open files

Almost all the execution is conditional, controlled by the switches which the user can set to ON or
OFF in the SPECS commands. Those switches that control the main FORTMP operation are
recovered by subroutine GETCTL and their details may be clearly understood by reference to the
source code of the main control routine, of which a documented copy is provided.

Back to Chapter contents

7.1.2 Parameter specifications

The following three parameters appear as arguments in the library subroutine calls:

SPID SPECS identity

This is a CHARACTER*8 variable (or constant) which selects a part of the SPECS file so that
different SPECS-commands may be provided for different calls to the FortMP sub-system.
Sections of the SPECS-file are delimited with BEGIN.....END commands and the identity of a
section is named on the BEGIN line as follows:

BEGIN (identity)

where the default identity is blank if omitted. The following special values for SPID should be noted:

'NOSPECS' Defaults all commands without any reference to the SPECS file.
Blank Always selects the first section on the SPECS file even if the 'BEGIN'

identity is non-blank..

SPID is an argument to the INITAL subroutine

STSL Status of the solution

This is an INTEGER variable, output from the solver routines DUAL, PRIMAL, IPMCTL and
MIPCTL which give the status of the solution obtained. Standard values are:-

STSL = 0 No solution has been obtained
STSL = 1 The problem is infeasible
STSL = 2 The problem is unbounded
STSL = 3 The optimum solution has been obtained
STSL = 4 An integer solution has been obtained
STSL = 5 The optimum integer solution has been obtained

TCTN Terminate criterion

This is an INTEGER variable, output from all subroutines with the exception of FINIAL. It states
whether the calculation can continue, or whether a fatal error took place and the run is aborted.

FortMP:- Part 3

VII-4

TCTN is set to zero by subroutine INITAL, which should never give a fatal error. Thereafter it is
used as an input by the remaining subroutines which will halt immediately without executing anything
further if they find that TCTN has a non-zero value. Thus it acts as a bypass to the final exit if a fatal
error occurs at any point during the execution.

The following is a list of the switches controlling the FORTMP main routine (in each case 1=YES,
0=NO):

ISCL Whether to scale the data
IPRE Whether to PRESOLVE
IIPM Whether to use IPM as the principal solver
IBIN Whether to start SSX solvers from an MPS input basis
IBBN Whether to re-start SSX solvers from a saved (binary) basis.
ICRS Whether to crash to a starting basis for SSX solvers
IDUL Whether to use DUAL as the principal solver
IPST Whether to POSTSOLVE
IBOT Whether to output an MPS-form basis of the (LP) optimal solution
IMIP Whether Branch and Bound is to be applied after solving the

relaxed LP for a problem having discrete variable-types
IOUT Whether to output the final solution.

There are also two parameters associated with the timing routine as follows:

TTYP Type:- Zero to start the timer at the outset, and One otherwise
TTEXT 12-character text to identify the execution that is timed.

Each call with TTYP=1 records the time taken since the previous call of the timer. In practice both
ttyp and ttext are passed to the timer routine (MPTIME) as constants.

Back to Chapter contents

7.1.3 Simple FORTMP subroutine with parameters

In the main program FORTMP, the variables SPID, STSL and TCTN described in the previous
section are declared as local variables. An effective way to use FortMP as a sub-system is to use
these three variables as arguments in the main subroutine call. The user could write:-

 SUBROUTINE MYLP(SPID, STSL, TCTN)

and follow this by copying all the declarations without change. The initialisation statement:

 SPID = ' '

is omitted so that the external system can supply it for each CALL. The the rest of the FORTMP
main program is then copied exactly as is.

The user may also simplify the FORTMP main program by omitting calls to procedures that are not
needed and omitting unused switches. This will have the benefit of reducing the number of FortMP
callable library routines that need to be linked for the user’s final executable system.

Chapter 7:- FortMP Subroutine Library and External Data Interface

VII-5

The following is an example of a simple subroutine to solve using the SSX primal algorithm:-

SUBROUTINE MYLP(SPID, STSL, TCTN)
C

CHARACTER*8 SPID
INTEGER STSL, TCTN
EXTERNAL INITAL, INPUT, SCALE, CRASH
EXTERNAL PRIMAL, OUTPUT, FINIAL

C
STSL = 0
CALL INITAL(SPID, TCTN)
CALL INPUT(TCTN)
CALL SCALE(TCTN)
CALL CRASH(TCTN)
CALL PRIMAL(STSL, TCTN)
CALL OUTPUT(TCTN)
CALL FINIAL

C
RETURN
END

Back to Chapter contents

7.1.4 Subroutine call-library specifications

The full list of call-library specifications for those subroutines that are called from main FORTMP is
as follows:

 CALL MPTIME(TTYP, TTEXT)
 CALL INITAL(SPID, TCTN)
 CALL INPUT(TCTN)
 CALL GETCTL(ISCL, IPRE, IIPM, IBIN, IBBN, ICRS, IDUL,
 IPST, IOUT, IBOT, IMIP)
 CALL SCALE(TCTN)
 CALL PREMIP(TCTN)
 CALL PRSLVE(TCTN)
 CALL IPMCTL(STSL, TCTN)
 CALL INPBAS(TCTN)
 CALL BBASIN(TCTN)
 CALL CRASH(TCTN)
 CALL UNIBAS(TCTN)
 CALL DUAL(STSL, TCTN)
 CALL PRIMAL(STSL, TCTN)
 CALL PSTSLV(TCTN)
 CALL OUTBAS(TCTN)
 CALL BBASOT(TCTN)
 CALL MIPCTL(STSL, TCTN)
 CALL OUTPUT(TCTN)
 CALL FINIAL

where the arguments are as described above in 7.1.2.

FortMP:- Part 3

VII-6

Certain rules must be followed by the users in building their own LP-control subroutine:

1) The general sequence of CALLs as given above must be respected.

2) Just one of the five routines IPMCTL, INPBAS, BBASIN, CRASH and UNIBAS,
which create a starting basis, must be called prior to executing DUAL or PRIMAL.

3) PRIMAL must be executed before MIPCTL (as implied by rule 1).

Back to Chapter contents

Chapter 7:- FortMP Subroutine Library and External Data Interface

VII-7

7.2 External Data Interface

7.2.1 Introduction

The external data interface is a supplement to the data input and solution output features of FortMP.
 Instead of using disk files for these items the data is entirely passed via the argument-lists of CALL-
statements which is both faster and in many cases much easier for the user since MPS-form data
does not have to be built.

The term 'external' is used here to contrast with 'internal' for the data interface and not to indicate
use of a disk file (which could also be construed as an 'external' form of interface). The external
data interface described in this chapter is the user's means to convey externally built problem data to
and from the FortMP sub-system via arguments.

In the next chapter, library routines are introduced that directly access the internal stored form of the
data which has been subject to various changes (sign-change, scaling, pre-processing etc). It is
tempting to use internal access for modifications, e.g. to supply changes to the RHS or bound-set,
before re-solving a problem. However, if this method is employed the user must be responsible for
converting the modifications from the external form to the internal equivalent and this may not be
easy. Facilities to do this may be provided in a future release of FortMP.

Arguments comprise input tables and output tables. The input tables are prepared in advance by the
user's program and a simple protocol is used for the presentation of sparse matrix data. Once the
system is informed that external data interface is being used, the OUTPUT module suppresses its
disk-file output in favour of tables containing solution values etc.

There are two ways to employ the external data interface, by a single call or by separate input and
output calls.

In the single call method the user does not prepare any 'MYLP' subroutine as above. He makes a
call to subroutine called:

SUBMP1

with an argument list that includes both input tables and output tables

In the separate input and output call method the user prepares a 'MYLP' subroutine or simply
interpolates calls to the FortMP subroutine library within his own main program (respecting the rules
given in 7.1.4 above). The calls to INPUT and OUTPUT are replaced by calls to the following
subroutines:

INPMP1
OUTMP1

In addition when the user supplies a starting basis via the external data interface the following
subroutine is used:

IBSMP1

FortMP:- Part 3

VII-8

with appropriate argument lists in each case.

Back to Chapter contents

7.2.2 General description of the data interface

The general form of problem statement to be used is that of "two sided linear" constraints given in
Part I, Chapter 1, Section 1.7. For clarity this is restated here as follows:

Given a set of n variables x1,x2,...,xn and a set of n corresponding constants c1,c2,...,cn. Minimize
(or maximize) the following linear function:

c1x1 + c2x2 + ... + cnxn

subject to the following m linear constraints:

Li ≤ ai1x1 + ai2x2 + ... + ainxn ≤ Ui

for i = 1,2,...,m

where a11,...,amn is an m x n matrix of constant constraint coefficients and L1,...,Lm and U1,...Um are
constant lower and upper bounds respectively for each constraint row.

Also subject to the following bounds:

lj ≤ x j ≤ uj for j = 1,2,...n

where l1,...,ln and u1,...un are constant lower and upper bounds respectively for each variable.

Chapter 7:- FortMP Subroutine Library and External Data Interface

VII-9

This is illustrated in diagram 6-1 below

c1 c2cn

u1 u2 un

L1
L2
.
.

Lm

aij

U1
U2
.
.

Um

l1 l2 ln

≤

≤≤

≤

Diagram 6-1 General LP problem with Simple Upper Bounds and RHS ranges

Each of the bound values lj, uj, Li and Ui in the above formulation may take an infinite value to
indicate that that bound does not exist (negative infinite for a lower bound or lower RHS). Unlike
the original MPS-form input where such cases are indicated by type codes (row-types or bound-
types for columns) a standard 'big' value is defined and any value having this magnitude or larger is
treated as infinite; that is the corresponding bound does not exist.

For Mixed Integer data, additional tables are provided in the interface which detail the specific
mixed-integer-types of each variable and provide the structure of any special ordered sets that may
be present. A description of these tables is given in 7.2.3 below.

Back to Chapter contents

7.2.3 Argument specifications

In this section, certain arguments have their type specified as:

DOUBLE PRECISION/REAL

FortMP:- Part 3

VII-10

These arguments are DOUBLE PRECISION in a standard double precision version of FortMP.
However some users with a need to conserve memory may be provided with a single precision
version and for these users the type is REAL

Arrays specified simply as 'DOUBLE PRECISION' are always of type double precision.

The following are INPUT arguments and will not be changed by a subroutine call:

SCALARS:-

MR is the INTEGER number of rows.

 NC is the INTEGER number of columns.

NAIJ is the INTEGER number of non-zero entries in the A-matrix.

NSET is the INTEGER number of special ordered sets.

PNAME is the CHARACTER*8 model name.

SPID is the CHARACTER*(*) identity of the BEGIN-line in the SPECS file. If
blank then the first BEGIN command is chosen whatever its identity.

TCTN is an INTEGER type variable (also an OUTPUT argument) holding the
terminate criterion. A value zero indicates the execution can continue,
otherwise no execution takes place.

ARRAYS:-

AIJ is a DOUBLE PRECISION/REAL type array of size NAIJ which holds the
non-zero elements of the A-matrix.

ROWIN is an INTEGER type array of size NAIJ. This holds the row indices
of the A_matrix belonging to the corresponding entries in AIJ.

COLIN is an INTEGER type array of size NAIJ. This holds the column
indices of the A_matrix belonging to the corresponding entries in AIJ.

The arrays AIJ, ROWIN and COLIN do not need to be organised in any particular sequence so
long as the entries correspond to each other.

UPB is a DOUBLE PRECISION/REAL type array of size NC. This holds the
upper bound values on columns. Any value greater than or equal to 1031

indicates that no upper bound exists.

Chapter 7:- FortMP Subroutine Library and External Data Interface

VII-11

LOB is a DOUBLE PRECISION/REAL type array of size NC. This holds the
lower bound values on columns. Any value less than or equal to -1031

indicates that no lower bound exists.

RHS is a DOUBLE PRECISION/REAL type array of size MR. This holds the
upper bound values on rows (RHS). Any value greater than or equal to
1031 indicates that no upper bound exists.

LHS is a DOUBLE PRECISION/REAL type array of size MR. This holds the
lower bound values on rows (LHS). Any value less than or equal to -1031

indicates that no lower bound exists.

COST is a DOUBLE PRECISION/REAL type array of size NC. This holds the
cost coefficient values in the objective function.

MITYP is an INTEGER type array of size nc. This holds a variable type
code for MIP as follows:-

CODE MEANING
0 Continuous variable
1 Binary Variable
2 General Integer variable
3 Semi Continuous variable
4 Member of an SOS type one
5 Member of an SOS type two

SREF is an INTEGER type array of size NSET. This array holds the reference
row numbers of each set.

SFUN is an INTEGER type array of size NSET. This array holds the function row
number of the sets.

SBEG is an INTEGER type array of size NSET. This array holds the first column
number in the set.

SEND is an INTEGER type array of size NSET. This array holds the last column
number of the set.

In the tables which transfer output values back to the user, both logical and structural variables are
represented in this order, plus in addition one extra position for the objective function at the
beginning. Table-size is therefore

1 + MR + NC

where:-

FortMP:- Part 3

VII-12

Position 1 refers to the objective
Positions 2 to (1+MR) refer to logicals
Positions (2+MR) to (1+MR+NC) refer to structurals

The tables are:-

VCSOL is a DOUBLE PRECISION type array of size (1+MR+NC). This
array holds the primal solution values.

BSTAT is an INTEGER array of size (1+MR+NC). This array holds a
code value for the basis status of each variable in the final solution. Codes
are:-

CODE MEANING
0 basic variable
-1 Variable is at its lower bound
+1 Variable is at its upper bound

BSTAT may also be an INPUT argument - see note 5 of 7.2.4 below.

RSCOS is a DOUBLE PRECISION type array of size (1+MR+NC). This
array holds the dual solution values, that is shadow prices and reduced
costs.

In addition the following scalars are output:-

STSL is an INTEGER type variable holding solution status as already specified
above in 7.1.2

TCTN is an INTEGER type variable (also an INPUT argument) holding the
terminate criterion. A value zero indicates that the execution was successful,
subject to the value of STSL.

Back to Chapter contents

7.2.4 Call specifications

Full call specifications for the data-interfacing subroutines are:-

 CALL SUBMP1(MR, NC, NAIJ, NSET, PNAME, SPID,
* AIJ, ROWIN, COLIN, UPB, LOB, RHS, LHS,
* COST, MITYPE, SREF, SFUN, SBEG, SEND,
* VCSOL, BSTAT, RSCOS, STSL, TCTN)

This call is for the complete solution process with both problem data inputs and solution outputs
passed via the arguments (external interface).

Chapter 7:- FortMP Subroutine Library and External Data Interface

VII-13

 CALL INPMP1(MR, NC, NAIJ, NSET, PNAME,
* AIJ, ROWIN, COLIN, UPB, LOB, RHS, LHS,
* COST, MITYPE, SREF, SFUN, SBEG, SEND, TCTN)

This call converts users problem data to internal form.

 CALL IBSMP1(MR, NC, BSTAT, TCTN)

This call sets up a starting basis for SSX solvers PRIMAL and DUAL.

 CALL OUTMP1(MR, NC,
* VCSOL, BSTAT, RSCOS, TCTN)

This call converts the solution back to external form.

Note 1.

Within a users 'MYLP' routine (not SUBMP1) it is legal to employ INPMP1 in combination with
the standard OUTPUT or to employ standard INPUT in combination with OUTMP1. However in
the latter case the user must have precise knowledge of the row-size, MR, and column-size, NC, in
order to supply correct array-sizes in the argument list (a requirement of FORTRAN). This is
checked by the system.

Note 2.

A minor problem arises when the input data has no special ordered sets of either type. NSET
would be zero in this case. However many FORTRAN compilers do not allow zero dimension
sizes and so the user needs a compromise. He should supply dimension size:

 NSET = 1

together with dummy arrays SREF, SFUN, SBEG and SEND which will not be overwritten. The
system computes the correct value for NSET in any case from the input data.

Note 3.

The table MITYPE must be supplied whether or not the data has any MIP-type variables. If it has
none then MITYPE must be filled with zeros.

Note 4.

It is not necessary to specify input type and/or output type in the SPECS file. The system will
enforce correct settings for the combination of interface input and/or interface output after the
SPECS commands have been read in.

Note 5.

For the IBSMP1 subroutine BSTAT is an input argument. Its execution is invoked within SUBMP1
by the SPECS command:

FortMP:- Part 3

VII-14

SIMPLEX START INPUT BASIS

and in this case BSTAT is also an input argument for SUBMP1.

Back to Chapter contents

7.2.5 An example

The following simple example is provided as part of the delivered software:

Model: Sample

Maximize x1 + 2x5 - x8

Subject to row bounds,

2.5 ≤ 3x1 + x2 - 2x4 - x5 - x8

 2x2 + 1.1x3 ≤ 2.1
 x3 + x6 = 4.0

1.8 ≤ 2.8x4 -1.2x7 ≤ 5.0
3.0 ≤ 5.6x1 + x5 + 1.9x8 ≤ 15.0

and column bounds:

`2.5 ≤ x1

0 ≤ x2 ≤ 4.1
0 ≤ x3

0 ≤ x4

0.5 ≤ x5 ≤ 4.0
0 ≤ x6

0 ≤ x7

0 ≤ x8 ≤ 4.3

The input scalar arguments to be supplied are as follows:

MR = 5 (number of rows)
NC = 8 (number of columns)
NAIJ = 14 (number of non-zeros)
NSET = 1 (dummy in the absence of any special ordered sets)
PNAME = 'SAMPLE ' (problem name)
SPID = ' ' (1st 'BEGIN' line in the SPECS command file)
TCTN = 0 (terminate criterion - also an output)

The input array arguments to be supplied are as follows:

1) Matrix non-zeros

ROWIN
Row indices

COLIN
Column indices

AIJ
Non-zeros

1 1 1 3.0

Chapter 7:- FortMP Subroutine Library and External Data Interface

VII-15

2 5 1 5.6

3 1 2 1.0

4 2 2 2.0

5 2 3 1.1

6 3 3 1.0

7 1 4 -2.0

8 4 4 2.8

9 1 5 -1.0

10 5 5 1.0

11 3 6 1.0

12 4 7 -1.2

13 1 8 -1.0

14 5 8 1.9

2) Column-vectors

LOB
Lower bounds

UPB
Upper bounds

COST
Objective

MITYPE
MIP types

1 2.5 1.0e31 1.0 0

2 0.0 4.1 0.0 0

3 0.0 1.0e31 0.0 0

4 0.0 1.0e31 0.0 0

5 0.5 4.0 2.0 0

6 0.0 1.0e31 0.0 0

7 0.0 1.0e31 0.0 0

8 0.0 4.3 -1.0 0

3) Row-vectors

LHS
Row lower bounds

RHS
Row upper bounds

FortMP:- Part 3

VII-16

1 2.5 1.0e31

2 -1.0e31 2.1

3 4.0 4.0

4 1.8 5.0

5 3.0 15.0

The remaining inputs are dummy SOS tables that may be single-cell integer arrays or integer scalars
whose contents are not material.

The above inputs can be presented either via calling SUBMP1 or via calling INPMP1. When this
is done the outputs returned via SUBMP1 or via OUTMP1 will be as follows:

VCSOL
Primal solution

BSTAT
Basis status

RSCOS
Dual solution

1 4.50 0 -1.0

2 6.26 0 0.00

3 2.10 0 0.00

4 4.00 -1 0.00

5 1.80 +1 0.00

6 15.00 -1 2.00

7 2.50 -1 10.20

8 1.05 -1 0.00

9 0.00 -1 0.00

10 0.64 0 0.00

11 1.00 0 0.00

12 4.00 0 0.00

13 0.00 -1 0.00

14 0.00 -1 4.80

The following scalar values are also returned:

STSL = 3 (Solution status code: Optimum)
TCTN = 0 (Termination: OK)

Chapter 7:- FortMP Subroutine Library and External Data Interface

VII-17

Note that for the row-positions 1 to 6 (including objective in position 1) VCSOL represents the
value of the row itself (Σaijxj) whereas the code in BSTAT represents the attached logical variable.
When the row equals its lower RHS value the slack is at upper bound and vice-versa. The
exception to this is a GE-type row with no upper RHS value which the system negates internally in
order to avoid minus-type logicals. For both GE-type rows and LE-type rows the only non-basic
status code is -1.

The associated file of SPECS-commands to be provided in file ‘fortmp.spc’ is as follows:

 BEGIN
 MODEL NAME (sample)
 MAXIMIZE
 END

Back to Chapter contents

FortMP:- Part 3

VII-18

7.3 Standard Data Input to the Interface

7.3.1 Calling the standard data input

In using the external data interface, the user is obliged to build the problem data in his own data
space with his own coding. Frequently it happens that the original data for this is provided in MPS-
form anyway so that the user would be obliged to write an input routine which exactly parallels the
input routine of FortMP itself.

Naturally it is desirable to avoid this duplication of effort and FortMP provides a sub-routine
MP1INP in the library to do this. The specification is as follows:

 CALL MP1INP(MR, NC, NAIJ, NSET, PNAME, SPID,
* AIJ, ROWIN, COLIN, UPB, LOB, RHS, LHS,
* COST, MITYPE, SREF, SFUN, SBEG, SEND,
* BSTAT, TCTN)

The arguments here include all the arguments of INPMP1 and of IBSMP1 with a reversal of roll:-
Input-type arguments of INPMP1 and IBSMP1 become output-type arguments of MP1INP. In
addition, the following argument:

SPID SPECS identity (up to 8 characters)

enables the user to select a specific section of the SPECS file to control the input process.

The actions of MP1INP are as follows:

- Call INITAL to initialise and read the SPECS commands
- Call INPUT to read the problem data and store it internally
- Call one of the basis start-up routines (INPBAS, BBASIN, CRASH or

UNIBAS), as indicated by the SPECS. The default is UNIBAS (unit, all-
logical basis).

- Transfer the data now stored internally to the layout of the external interface
and return it via the arguments to the user.

Subroutine MP1INP is coded in the same module as SUBMP1 and the user is provided with
documented source code.

Back to Chapter contents

7.3.2 Access to row-names and column-names

The INPUT subroutine of FortMP is the means whereby row and column names are entered and
become known to the system. Since the external interface itself does not provide any
communication of names the user-access to names is based on the use of INPUT, or rather on the
use of MP1INP which calls INPUT.

Chapter 7:- FortMP Subroutine Library and External Data Interface

VII-19

The following SPECS command is to be used:

INPUT SAVE NAMES ON * default OFF

(OFF may also be given). When this feature is ON the system takes steps to ensure that not only
the names themselves but also the associated look-up tables remain available.

In subroutine MP1INP there is an additional step executed after creating the interface which re-
loads the names and look-up tables (over-writing the internal stored form of the model) so that the
user can employ name look-up utilities provided in the subroutine library. This is conditional on the
use of the above SPECS command.

Back to Chapter contents

7.3.3 Looking up the index of a named variable

Given that the user knows the exact name of some variable, the corresponding row or column index
in the interface can be established with one of the following two functions:

IROW = FINDIR(RNAME)
JCOL = FINDJC(CNAME)

where:

RNAME is a row name (8 characters)
IROW is the corresponding row index (zero if not found)
CNAME is a column name (8 characters)
JCOL is the corresponding column index (zero if not found)

Note that these operations can only take place after execution of MP1INP, the indices refer to the
row and column indices of the interface data in the arguments, and the command 'INPUT SAVE
NAMES ON' must have been given. It is also possible to execute SUBMP1 with the same SPECS
command given and this will retrieve the same names and look-up tables as before, but will not be
able to recognize any change to the indexing that the user may have programmed between the calls
to MP1INP and SUBMP1. If two or more models have been entered with MP1INP the different
models must be distinguished by providing the model name in a SPECS 'MODEL NAME'
command to SUBMP1.

In the case of long names (16 characters) the following two functions are to be used in the place of
FINDIR and FINDJC:

IROW = FNDLIR(LRNAME)
JCOL = FNDLJC(LCNAME)

where:

LRNAME is a row name (16 characters)
LCNAME is a column name (16 characters)

Back to Chapter contents

FortMP:- Part 3

VII-20

7.3.4 Name pattern matching

In cases where the users do not know the exact name to be looked up they may nevertheless wish
to know the index-range corresponding to some pattern in order to program action for a particular
type of variable or constraint.

A pattern is a text of the same length as a name containing the characters '?', '&' or '#' in positions
that do not need to be matched exactly. The significance of these special characters is as follows:

'?' matches any character
'&' matches any alphabetic character
'#' matches any digit

Pattern matching is invoked by one of the following subroutine calls:

CALL MTCHIR(RPTTRN, IROW)
CALL MTCHJC(CPTTRN, JCOL)

where:

RPTTRN is a row-name pattern (8 characters)
IROW indicates the start point for the search and returns the next

following row-index of a matched position (zero if not matched)
CPTTRN is a column-name pattern (8 characters)
JCOL indicates the start point for the search and returns the next

following column-index of a matched position (zero if not
matched)

Search begins at the next index-position after the start-index and continues forward until a match is
reached. To start at position 1 initialise the index to zero.

Note that pattern matching is likely to be slow compared to exact name look-up. The same
conditions apply, namely that MP1INP must have been executed and the SPECS command
'INPUT SAVE NAMES ON' must have been given.

In the case of long (16 character) names the following subroutine-calls are to be used in the place of
MTCHIR, MTCHJC:

CALL MTCLIR(LRPTRN, IROW)
CALL MTCLJC(LCPTRN, JCOL)

where:

RPTTRN is a row-name pattern (8 characters)
CPTTRN is a column-name pattern (8 characters)

Back to Chapter contents

Chapter 7:- FortMP Subroutine Library and External Data Interface

VII-21

7.3.5 Looking up the name of an indexed variable

In order to look up the name corresponding to a row index or column index one of the following
functions is employed:

RNAME = GIRNAM(IROW)
CNAME = GJCNAM(JCOL)

for ordinary 8-character names, or

LRNAME = GIRLNM(IROW)
LCNAME = GJCLNM(JCOL)

for long 16-character names. These routines are simply the reverse of the name look-up functions
specified in 7.3.3 above.

The same conditions apply, namely that MP1INP must have been executed and the SPECS
command 'INPUT SAVE NAMES ON' must have been given.

Back to Chapter contents

7.3.6 Managing the constant term in the objective

Following the use of the input subroutines MP1INP it is expected that the user will employ
SUBMP1 to solve the model. The entire model is then passed to the solver with the single
exception of the constant term in the objective.

The reason for this is that MPS-form data, by using an ordinary matrix row for the objective,
actually allows a more general linear form:

to be minimised or maximised where K is a constant. K is given as the right hand side value for the
objective row.

On the other hand the arguments for SUBMP1 have no such provision since the objective is given in
a separate array from the matrix.

One way to overcome this problem is to use the following SPECS command in the call to
SUBMP1:

OBJECTIVE OFFSET ON * default OFF

(OFF may also be given). When ON is specified the offset K that was stored by MP1INP is used
as it stands instead of being zeroed as will happen in the default 'OFF' situation.

The above will be satisfactory whenever the call to SUBMP1 has been preceded by a
corresponding call to MP1INP which provides K. However if the user is alternately solving two or

j=1

N

j jc x - K∑

FortMP:- Part 3

VII-22

more different models, then K must be provided explicitly for each call to SUBMP1. The user will
also need to retrieve the different values of K after each call to MP1INP.

Access to read or write K is provided by the following subroutine calls:

CALL GTKOBJ(KOBJ)
CALL PTKOBJ(KOBJ)

where 'KOBJ' is the objective offset value (RHS constant term) K. Subroutine GTKOBJ 'gets'
K and PTKOBJ 'puts' K.

The use of PTKOBJ does not change the default for SPECS command 'OBJECTIVE OFFSET
ON' which remains OFF. If omitted the value of K is set to zero.

Back to Chapter contents

Chapter 7:- FortMP Subroutine Library and External Data Interface

VII-23

7.4 Internal SPECS Commands

7.4.1 The need for faster command entry

During a single run that employs SUBMP1 to solve sub-problems, or uses some combination of
FortMP library calls including a solver, a very large number of sub-problems may be solved in a
very short space of time. In one stochastic programming example with sub-problems averaging 100
rows, 500 columns and 5000 non-zeros the solution rate achieved was approximately 100 sub-
problems per second.

Such rates are impossible without eliminating all the repeated opening and closing of files that could
take place on every sub-problem, and in particular the I/O required for SPECS commands. Ways
to achieve this are described below - techniques to avoid the use of miscellaneous internal files are
given later in section 7.5

Back to Chapter contents

7.4.2 Once-off entry of SPECS commands

In order to avoid repeated I/O from the SPECS-file (fortmp.spc), it is necessary to read the file and
store it internally. This read-in is executed in the user's main system as part of the overall
initialization before any other FortMP library call is made.

Internal SPECS-command entry is invoked with the following subroutine call:

CALL SPCINT(TCTN)

Non-zero is returned by TCTN if there is any error.

Once SPCINT has been called the internal procedure INITAL automatically avoids file input for the
SPECS commands and uses the internal store, with no other change on the user's part.

Back to Chapter contents

7.4.3 Default initialisation

Defaults for all SPECS commands are stored in a memory region that is initialized when the system
is loaded. A library routine is available for the user to change these defaults, and by this means the
necessity for a SPECS file may be entirely avoided in many cases.

The library routine can only change defaults and not to actual parameters. Interference with the
actual control parameters would be dangerous because there are several inter-dependencies
checked at the time of SPECS command entry. However changes to the defaults cannot cause any
harm provided that in every case the user respects the maximum and minimum limits given for each
separate control.

In order to do this the following call is made:

CALL SPCDFT(COMMND, TCTN)

FortMP:- Part 3

VII-24

where 'COMMND' is a text of up to 50 characters holding the actual SPECS-command, If the
command cannot be recognized then TCTN is returned with a non-zero value indicating the error as
follows:

1-4 Corresponding keyword not recognized
5 Value out of range.

If this system is employed as a way to avoid use of a SPECS file then the parameter 'SPID' (8
characters) must be assigned as follows:

SPID = 'NOSPECS'

before each call to library routines SUBMP1, MP1INP or INITAL.

One warning however:- If different controls are used for different entries then do not forget to reset
the standard defaults for unused controls as well as setting fresh defaults for each new entry to the
FortMP sub-system.

Back to Chapter contents

7.4.4 Common Sections in the SPECS file

When the SPECS-file (fortmp.spc) is read in by the subroutine SPCINT there is a reserved section-
heading for setting default values to the commands as follows:

BEGIN (DEFAULT)

This section is not stored for later interpretation but is acted on at once by invoking 'CALL
SPCDFT' for each command in the section (see section 7.4.3 of the manual). It is therefore useful
for reducing the number of repetitions of the same command in situations where the SPECS file must
have several sections.

The ‘DEFAULT’ section is useful only when SPCINT is used to load the specs commands
internally. There is also the possibility of having one section used in all entries to the solver (submp1)
in addition to the section designated by ‘SPID’ for each entry. The reserved heading for this section
is as follows:

BEGIN (ALL)

The ‘ALL’ section must appear first, or preceded only by the ‘DEFAULT’ section if that appears.
'ALL' section commands are listed on the log at the beginning, followed by the commands of the
section selected by parameter SPID (‘DEFAULT’ section commands are not listed).

Back to Chapter contents

Chapter 7:- FortMP Subroutine Library and External Data Interface

VII-25

7.5 How to Avoid Miscellaneous I/O

7.5.1 Log channel

In FortMP all I/O channels are initialised to negative numbers indicating that there is no
corresponding open file on that channel. To open a file FortMP must first negate the channel,
making it positive, and it will be negated again after closing.

With the following SPECS command:

LOG CHANNEL = n

where ‘n’ is a positive, valid I/O unit-number, FortMP is forced to consider the file already open
and it will not be closed upon exit by FINIAL routine.

Users must make sure that the file is opened before making the first call to a FortMP sub-system
and should keep it open throughout the run.

As a result of this the logged output for one sub-problem is never over-written by that of a later sub-
problem and the log can usefully be studied after the run. The users can also present the log of their
own operations on the same file.

It can be useful to set the log channel by default as described in 7.4.3 above. This avoids the need
to set the log channel in every section of the SPECS file.

Back to Chapter contents

7.5.2 Controlling the log

In FortMP the default levels of logging are as follows:

SIMPLEX LOG LEVEL = 1
INVERT LOG LEVEL = 1
IPM LOG LEVEL = 1
MIP LOG LEVEL = 1
MIP PREPROCESS LOG LEVEL = 1
PRESOLVE LOG LEVEL = 1
PUSH LOG LEVEL = 1

The output produced is generally much more than is needed by the user of the external interface,
particularly when a large number of calls are made to solve sub-problems. In order to reduce it the
levels can be set to zero which eliminates all output except for error reports. Thus the user should
employ the following SPECS commands:

SIMPLEX LOG LEVEL = 0
INVERT LOG LEVEL = 0
IPM LOG LEVEL = 0
MIP LOG LEVEL = 0
MIP PREPROCESS LOG LEVEL = 0

FortMP:- Part 3

VII-26

PRESOLVE LOG LEVEL = 0
PUSH LOG LEVEL = 0

Not all of these commands will be needed - only those for the FortMP algorithms actually
employed.

As before it is possible to use default settings rather than SPECS commands - see section 7.4.3
above.

Back to Chapter contents

7.5.3 Avoiding the use of SAVE files

It is most unlikely that the user of the external interface will require any SAVE files. In the SUBMP1
environment there are initial default settings different from those of stand-alone FortMP which cancel
all SAVEs and avoid any opening/closing of SAVE files. These settings are:

SIMPLEX SAVE FREQUENCY = 0
IPM SAVE FREQUENCY = 0
MIP SAVE FREQUENCY = 0

It is perfectly possible for the user to re-activate any SAVEs that he may need - either by command
or by assigning the default settings as stated in 7.4.3.

If the user simply wishes for a final save at termination then a high value should be given for the
frequency.

Back to Chapter contents

Chapter 7:- FortMP Subroutine Library and External Data Interface

VII-27

7.6 MPS-form Output

When a tabular form has been used for the input, or when input data is passed via the external
interface, it may be desirable for the user to create an MPS-form equivalent on a disk file. An
option to do this immediately after the input can be invoked by means of the following SPECS
command:

OUTPUT MPS ON * Default: OFF

(OFF can also be specified). If the model has no names MPSOUT creates row and column names
based on the indices with prefix 'R' or 'C'.

The standard file-name given to this output is

<probname>.mpo

where 'probname' refers to the problem-name. However the user may wish to distinguish outputs
from different calls to SUBMP1 without using a different problem-name. This can be achieved by
encoding a subroutine library call within a revised SUBMP1 routine, or within a revised FORTMP
main program.

Another reason for doing this is that the model is subject to changes as a result of PRESOLVE, or if
it has discrete variables as a result of MIP pre-processing and the Branch and Bound algorithm. As
before the user may wish to preserve these changes in a form suitable for later re-entry and which
can be compared with the original.

The library subroutine which does this task is as follows:

CALL MPSOUT(EXTEN)

where

EXTEN (CHARACTER*3) is the output file extension.

The file name for output is formed by appending '.exten' to the model name (and directory path if
used).

It is expected that the user will incorporate the call to MPSOUT within the coding of FORTMP
main program or within SUBMP1 sub-system control routine. An internal model must exist, created
either by INPUT or by INPMP1. If INPUT was used and names have been stored then MPSOUT
must occur before the final call to FINIAL which closes the names file.

The model written to the output incorporates all variable fixes or constraint relaxations current at the
time MPS output is called. The effect of scaling is removed however and the original sign for data
elements on MI-type rows and GE-type columns is restored (these are negated internally by
applying a scale factor -1.0).

Back to Chapter contents

FortMP:- Part 3

VII-28

7.7 Summary of callable library, external data interface and associated
commands

7.7.1 Summary of the callable library

The following subroutines are called from the main program of the stand-alone FortMP system. See
section 7.1 for details.

 CALL MPTIME(TTYP, TTEXT)

reports processing time (TTYP=0 initialises the timer).

 CALL INITAL(SPID, TCTN)

initialises and reads the SPECS commands.

 CALL INPUT(TCTN)

inputs model data from disk files and store it internally together with basis input data (if any).

 CALL GETCTL(ISCL, IPRE, IIPM, IBIN, IBBN, ICRS, IDUL,
* IPST, IOUT, IBOT, IMIP)

gets the principal algorithm controls.

 CALL SCALE(TCTN)

scales the model.

 CALL PREMIP(TCTN)

applies MIP pre-processor to the model.

 CALL PRSLVE(TCTN)

applies PRESOLVE to the model and stores the operation sequence for a subsequent
POSTSOLVE.

 CALL IPMCTL(STSL, TCTN)

applies the IPM solver and basis recovery (crossover).

 CALL INPBAS(TCTN)

sets up starting basis for PRIMAL or DUAL from the input basis (MPS-form).

 CALL BBASIN(TCTN)

sets up starting basis from one saved in binary form by a previous run.

 CALL CRASH(TCTN)

applies the CRASH algorithm to create a starting basis

 CALL UNIBAS(TCTN)

creates the all-logical starting basis.

 CALL DUAL(STSL, TCTN)

Chapter 7:- FortMP Subroutine Library and External Data Interface

VII-29

applies the DUAL solver algorithm (valid only of the basis is dual-feasible).

 CALL PRIMAL(STSL, TCTN)

applies the PRIMAL solver algorithm.

 CALL PSTSLV(TCTN)

applies POSTSOLVE to reverse the effect of PRESOLVE operations while maintaining an optimal
basis.

 CALL OUTBAS(TCTN)

outputs the current basis in MPS proforma.

 CALL BBASOT(TCTN)

outputs the current basis in binary form (for subsequent restart).

 CALL MIPCTL(STSL, TCTN)

applies the Branch and Bound algorithm to solve a model with discrete variables.

 CALL OUTPUT(TCTN)

outputs the final solution.

 CALL FINIAL

Finishes execution and closes all files before final exit.

The following subroutine calls relate to use of the external interface. See section 7.2 for details.

 CALL SUBMP1(MR, NC, NAIJ, NSET, PNAME, SPID,
* AIJ, ROWIN, COLIN, UPB, LOB, RHS, LHS,
* COST, MITYPE, SREF, SFUN, SBEG, SEND,
* VCSOL, BSTAT, RSCOS, STSL, TCTN)

Principal sub-system to solve a problem passed via the external (argument) interface.

 CALL INPMP1(MR, NC, NAIJ, NSET, PNAME,
* AIJ, ROWIN, COLIN, UPB, LOB, RHS, LHS,
* COST, MITYPE, SREF, SFUN, SBEG, SEND, TCTN)

Sub-routine to input the external data interface and store the problem internally.

 CALL IBSMP1(MR, NC, BSTAT, TCTN)

Set up starting basis for PRIMAL or DUAL

 CALL OUTMP1(MR, NC,
* VCSOL, BSTAT, RSCOS, TCTN)

Output the solution and basis.

 CALL MP1INP(MR, NC, NAIJ, NSET, PNAME, SPID,
* AIJ, ROWIN, COLIN, UPB, LOB, RHS, LHS,

FortMP:- Part 3

VII-30

* COST, MITYPE, SREF, SFUN, SBEG, SEND,
* BSTAT, TCTN)

Input a problem and convert it to the form of the external (argument) interface returned to the calling
routine.

The following functions and subroutines enable access to names (after calling MP1INT). SPECS
command 'INPUT SAVE NAMES ON' must be given.

 IROW = FINDIR(RNAME)
 JCOL = FINDJC(CNAME)
 IROW = FNDLIR(LRNAME)
 JCOL = FNDLJC(LCNAME)

These functions look up the index corresponding to a row or column name (8-character or 16-
character). See section 7.3.3.

 CALL MTCHIR(RPTTRN, IROW)
 CALL MTCHJC(CPTTRN, JCOL)
 CALL MTCLIR(LRPTRN, IROW)
 CALL MTCLJC(LCPTRN, JCOL)

The above subroutines find the next row index or column index corresponding to a pattern - see
section 7.3.4.

 RNAME = GIRNAM(IROW)
 CNAME = GJCNAM(JCOL)
 LRNAME = GIRLNM(IROW)
 LCNAME = GJCLNM(JCOL)

These functions look up the name (8-character or 16-character) that corresponds to a row index or
column index. See section 7.3.5.

The following two functions enable read or write access to the objective constant term. SPECS
command 'OBJECTIVE OFFSET ON' must be used.

 CALL GTKOBJ(KOBJ)
 CALL PTKOBJ(KOBJ)

GTKOBJ gets and PTKOBJ puts the objective constant term. See section 7.3.6.

The following subroutine is for once-off input of SPECS commands. Module SPCINT is to be
loaded in the place of SPECFY.

 CALL SPCINT(TCTN)

This subroutine reads the SPECS file and stores all the commands internally. Command sections
are identified exactly as usual with the SPID parameter. See section 7.4.2.

The following subroutine sets up the default for a single SPECS command.

 CALL SPCDFT(COMMND, TCTN)

See section 7.4.3.

Chapter 7:- FortMP Subroutine Library and External Data Interface

VII-31

The following subroutine generates an output MPS-form disk-file from the internally stored problem
data with modifications.

 CALL MPSOUT(EXTEN)

See section 7.6.

Back to Chapter contents

7.7.2 Summary of arguments and parameters

The following are arguments to main FortMP library calls. See section 7.1.2.

SPID SPECS identity (CHARACTER*8). Special values are:
Blank for the first section on the SPECS file
'NOSPECS' to cancel all input of SPECS commands and use

defaults.
STSL Solution status (INTEGER). Values are:

STSL = 0 No solution has been obtained
STSL = 1 The problem is infeasible
STSL = 2 The problem is unbounded
STSL = 3 The optimum solution has been obtained
STSL = 4 An integer solution has been obtained
STSL = 5 The optimum integer solution has been obtained

TCTN Terminate criterion (INTEGER)

The following are parameters controlling the operations in FORTMP and SUBMP1. All are
INTEGER, 1=YES, 0=NO. See section 7.1.2.

ISCL Whether to scale the data
IPRE Whether to PRESOLVE
IIPM Whether to use IPM as the principal solver
IBIN Whether to use an MPS input basis
IBBN Whether to use a saved (binary) basis
ICRS Whether to crash to a starting basis
IDUL Whether to use DUAL as the principal solver
IPST Whether to POSTSOLVE
IBOT Whether to output an MPS-form basis of the (LP) optimal solution
IMIP Whether Branch and Bound is to be applied
IOUT Whether to output the final solution.

The following two parameters are associated with the timing routine. See section 7.1.2.

TTYP Zero to start timer, One otherwise (INTEGER)
TTEXT Identification text (CHARACTER*12)

FortMP:- Part 3

VII-32

The following arguments constitute the external data interface. Those labelled as 'DOUBLE
PRECISION/REAL' must be DOUBLE PRECISION or REAL according to version of FortMP
provided (standard delivery is DOUBLE PRECISION). See section 7.2.3.

MR Number of rows (INTEGER)
NC Number of columns (INTEGER)
NAIJ Number of A-matrix non-zeros (INTEGER)
NSET Number of special ordered sets (INTEGER)
PNAME Model name (CHARACTER*8)
SPID SPECS identity (CHARACTER*(*))
TCTN Terminate control number (INTEGER)
STSL Solution status (see above) (INTEGER)
AIJ(NAIJ) A-matrix non-zeros (DOUBLE PRECISION/REAL)
ROWIN(NAIJ) A-matrix row indices (INTEGER)
COLIN(NAIJ) A-matrix column indices (INTEGER)
UPB(NC) Variable upper bounds (DOUBLE PRECISION/REAL)
LOB(NC) Variable lower bounds (DOUBLE PRECISION/REAL)
RHS(MR) Upper right hand sides (DOUBLE PRECISION /REAL)
LHS(MR) Lower right hand sides (DOUBLE PRECISION /REAL)
COST(NC) Objective coefficients (DOUBLE PRECISION /REAL)
MITYP(NC) MIP type code as follows (INTEGER):

0 = Continuous
1 = Binary
2 = General integer
3 = Semi-continuous
4 = SOS1 member
5 = SOS2 member

SREF(NSET) Reference-row indices of S.O.sets (INTEGER)
SFUN(NSET) Function-row indices of S.O.sets (INTEGER)
SBEG(NSET) Columns indices beginning each S.O.set (INTEGER)
SEND(NSET) Columns indices ending each S.O.set (INTEGER)
VCSOL(1+MR+NC) Primal solution values (DOUBLE PRECISION)
BSTAT(1+MR+NC) Basis status indicators (INTEGER):

0 = Basic
-1 = Non-basic at lower bound
+1 = Non-basic at upper bound

RSCOS(1+MR+NC) Dual solution values (DOUBLE PRECISION)

The following arguments and function outputs refer to the access features for model names. See
sections 7.3.3 - 7.3.5.

IROW Row index (INTEGER)
RNAME Row name (CHARACTER*8)
LRNAME Row name (CHARACTER*16)
RPTTRN Row name pattern (CHARACTER*8)

Chapter 7:- FortMP Subroutine Library and External Data Interface

VII-33

LRPTRN Row name pattern (CHARACTER*16)
JCOL Column index (INTEGER)
CNAME Column name (CHARACTER*8)
LCNAME Column name (CHARACTER*16)
CPTTRN Column name pattern (CHARACTER*8)
LCPTRN Column name pattern (CHARACTER*16)

In a pattern the following characters are wild (see 7.3.4):

'?' matches any character
'&' matches any alphabetic character
'#' matches any digit

The following are miscellaneous arguments.

KOBJ Constant term in the objective (DOUBLE PRECISION) - see 7.3.6.
SPCFIL SPECS file name (CHARACTER*n where n is any length up to

maximum 70) - see 7.4.2.
COMMND Command-line to set up a default value with subroutine SPCDFT -

see 7.4.3
EXTEN File extension used by MPSOUT (CHARACTER*3) - see 7.6.

Back to Chapter contents

7.7.3 Summary of relevant SPECS commands

The following SPECS commands have been introduced in this chapter.

- To enable access to names (see section 7.3.2):

INPUT SAVE NAMES ON * default OFF
INPUT SAVE NAMES OFF

'ON' specifies that names and name look-up tables are to be saved and re-loaded as the final
operation of MP1INP, SUBMP1 or FORTMP.

- To manage the objective constant term (see section 7.3.6):

OBJECTIVE OFFSET ON * default OFF
OBJECTIVE OFFSET OFF

'ON' indicates that the objective constant term is not zeroed by the input of the external interface
(subroutines SUBMP1 or INPMP1).

- To manage the log (see section 7.5.1):

LOG CHANNEL = n * default internal

This command assigns a channel number to the log file and indicates that it is already opened by the
user and is not to be closed.

VIII-1

8. Internal Data Interfacing Service Utilities

Contents

8. INTERNAL DATA INTERFACING SERVICE UTILITIES 1

8.1 Introduction to the Internal Data Interfacing Service Utilities 2
8.1.1 Objectives 2
8.1.2 Data Description 2
8.1.3 Description of the Utilities 4
8.1.4 How to Use the Utilities – Operating Modes 5
8.1.5 Necessary Preparation and Provision for Matrix Expansion 5
8.1.6 Single and Double precision versions of FortMP 6

8.2 The Facilities Available 6
8.2.1 General Facilities 6
8.2.2 Matrix Facilities 7
8.2.3 RIM Facilities 7
8.2.4 Solution Facilities 8
8.2.5 Tableau Facilities 8

8.3 Specifications 8
8.3.1 Arguments 8
8.3.2 General Utility Specifications 12
8.3.3 Matrix Utility Specifications 13
8.3.4 RIM Utility Specifications 14
8.3.5 Solution Utility Specifications 15
8.3.6 Tableau Utility Specifications 16
8.3.7 Some Notes on the Specifications 16

VIII-2

8.1 Introduction to the Internal Data Interfacing Service Utilities

8.1.1 Objectives

The objective of the data interfacing service utilities – DISERV utilities in brief – is to provide those who
employ FortMP as a subsystem with a means to access directly and modify the LP problem data as
seen by the algorithms of the system.

Thus for example the writer of some cutting plane algorithm could use INPUT to read in a problem from
an MPS format file, then solve that problem and then, perhaps in an overall iterative procedure, modify
the constraints or add new ones and re-solve the problem several times.

As another example researchers into PRESOLVE procedures can gain access to the problem
constraints, objective and bounds in order to execute their algorithms and can then apply any changes to
variable type or bounds before using FortMP solution algorithms to test the efficiency of their
procedures.

Back to Chapter contents

8.1.2 Data Description

It is important to note at the outset the distinction to be made between DISERV utilities described here
and the external data interface described in the previous chapter. Whereas the external data interface
relates to data which is external to FortMP, passed for example via arguments to subroutine SUBMP1,
DISERV utilities relate to data which is internal to FortMP after processing by procedures such as
INPUT, SCALE and PRESOLVE.

In both cases the general form of problem statement is ‘two-sided linear’ as stated in the previous
chapter, Section 7.2.2. Some differences to be noted are as follows.

The objective row is presented as a separate vector in the internal data interface but is
an integral part of the A-matrix in DISERV utilities. DISERV users do not need to
account for the extra row in their indexing.

In DISERV utilities the corresponding row wise and column wise elements are
combined in a single vector. Row positions are given first followed by column positions.

In DISERV utilities the absence of any bound is not necessarily to be shown by an
infinite magnitude in the corresponding bound vector. It is indicated by a type code in a
separate vector of variable type codes.

Only the following four variable types are recognised by data interfacing service
routines.

1 = Plus type variable
2 = Bounded variable

VIII-3

3 = Fixed variable
4 = Free variable

This coding applies equally to structural and to logical variables and may
be interpreted for logicals as follows.

1 = LE type row
2 = Row with RHS range
3 = EQ type row
4 = Free row

There is no internal recognition of a minus type structural or GE type
row.

The following diagrams illustrate the data that can be accessed and modified with data interfacing service
routines:

Logicals Structurals

1. Matrix data:

I Aij
Objective row

2. RIM vectors

Upper RHS Upper bounds

Lower RHS Lower bounds

Variable type codes — 1,2,3,4

MIP type codes (cannot be modified)

3. Solution vectors (cannot be modified)

VIII-4

Row values Structural values

Primal solution status codes

Shadow prices Reduced costs

Dual solution status codes

4. Updated Tableau (cannot be modified)

B-1.[I,Aij]

Back to Chapter contents

8.1.3 Description of the Utilities

Each of the access utilities provided falls into one of four categories:

General utilities provide necessary housekeeping.

‘GET’ utilities retrieve data and present it to the user without making any change.

‘CHG’ utilities change certain specific items in the data.

‘ADD’ utilities for matrix rows and columns do not actually add new rows or columns to the
matrix but rather ‘activate’ an existing spare row or column which has been provided in
advance. See Section 8.1.5 below.

Utilities are provided in connection with the following data categories.

(1) Matrix data

Utilities are provided to ‘GET’ or ‘CHG’ by row or by column and individually for
single elements. ‘ADD’ utilities are provided for a row or for a column.

(2) RIM data

Utilities are provided to ‘GET’ or ‘CHG’ all the RIM vectors, or simply to ‘GET’ or
‘CHG’ a single position within the RIM vectors. Exceptionally the MIP type code
vector may be accessed with ‘GET’ but cannot be changed with ‘CHG’

VIII-5

(3) PRIMAL and DUAL solutions

‘GET’ utilities are provided for both primal and dual solutions, together with associated
status vectors.

(4) Updated Tableau

‘GET’-type utilities are provided which calculate either a row-vector or a column-vector
in the updated tableau.

Back to Chapter contents

8.1.4 How to Use the Utilities – Operating Modes

In any interface where the user has the ability to change aspects of the internal data there must be some
necessary housekeeping to ensure that all of the data is mutually consistent. For example some changes
will render the ETA file invalid and therefore require that INVERT is executed before any algorithms can
be called.

However, it would be grossly inefficient for such housekeeping to be performed after every call in order
to make some minor change. For this reason FortMP has two separate operating ‘modes’ which are as
follows.

PROBLEM CHANGE mode

During this mode the user may apply changes to the problem and may add new rows and columns.
Algorithms may not be executed.

ALGORITHM mode

During this mode algorithms may be executed but the user may not apply changes. Retrieval access to
the primal or dual solution and to the updated tableau is available in this mode.

Retrieval access to ‘GET’ an aspect of the problem data might conceptually be carried out in either
mode. For definiteness however there is a restriction to execute these ‘GET’s only in the problem
change mode (this is because the coding would be different in the two modes).

Following execution of the algorithms ‘INPUT’, ‘SCALE’, ‘CRASH’ etc. the system is in algorithm
mode. To change from there the user executes a utility ‘BEGCHG’ (begin change) to switch into
problem change mode and enable all the access and changing utilities. Once these are completed the
user executes a utility ‘ENDCHG’ (end change) to perform necessary housekeeping and enable all the
algorithms to execute.

Back to Chapter contents

8.1.5 Necessary Preparation and Provision for Matrix Expansion

New rows and columns cannot physically be added to the data structure. Instead the system provides a
feature to make advance provision in the form of ‘inactive’ (dormant) rows and columns. The following
SPECS commands are used:

VIII-6

MAXIMUM EXTRA ROWS = nnn
MAXIMUM SPARE ROWSPACE = nnn
MAXIMUM EXTRA COLUMNS = nnn
MAXIMUM SPARE COLSPACE = nnn

Spare ‘ROWSPACE’ and ‘COLSPACE’ is provided when the matrix is initially built by leaving the
former number of positions unused at the end of each column (spare rowspace) and leaving the latter
number of positions unused at the end of the whole matrix (spare colspace).

Any update which causes the spare capacity to overflow will be rejected by the system and will cause a
fatal error.

Back to Chapter contents

8.1.6 Single and Double precision versions of FortMP

With release 2 of FortMP there is a change from single precision to double precision for storing all
problem data internally in order to give more reliability, especially for difficult problems. The user’s
interface with the internal data is accordingly also changed and REAL variables now become double
precision in the standard version..

Some users may wish to retain compatibility with their existing programs, or may prefer the older system
because it is more economical in storage. For these users a special version can be delivered having
single precision for internal problem data storage and having corresponding arguments of type REAL
rather than DOUBLE PRECISION. These arguments have their type specified as:

DOUBLE PRECISION/REAL

in section 8.3.1 below.

Back to Chapter contents

8.2 The Facilities Available

8.2.1 General Facilities

BEGCHG Begins problem change mode execution.

ENDCHG Ends problem change mode execution and carries out necessary
housekeeping for re-entry into algorithm mode.

GETSIZ Retrieves problem statistics for the user. This is an initial utility which the
user must execute in order to be able to create arrays of the required
size.

Back to Chapter contents

VIII-7

8.2.2 Matrix Facilities

ADDCOL Adds a column by activating the next dormant column provided by the
user’s ‘MAXIMUM EXTRA COLUMNS’ command. Inserts into the
matrix a set of coefficients supplied for that column by the user.

ADDROW Adds a row by activating the next dormant row provided by the user’s
‘MAXIMUM EXTRA ROWS’ command. Inserts into the matrix a set
of coefficients supplied for that row by the user.

CHGAIJ This may add or change one element of the A matrix and, by setting
AVAL=0.0 may delete the element.

CHGCOL Deletes the existing coefficients on one matrix column and replaces them
by an alternative set supplied by the user.

CHGOBJ Deletes the existing cost coefficients on the objective row and replaces
them by an alternative set supplied by the user.

CHGROW Deletes the existing coefficients on one matrix row and replaces them by
an alternative set supplied by the user.

GETAIJ Retrieves a single matrix element for the user.

GETCOL Retrieves one column of the matrix and places the coefficients in a user
supplied area.

GETOBJ Retrieves the objective row of the matrix and places the cost coefficients
in a user supplied area.

GETROW Retrieves one row of the matrix and places the coefficients in a user
supplied area.

There are no ‘DELETE’ facilities corresponding to the ‘ADD’ facilities for matrix rows and columns. It
is not possible to delete any row or column physically from the data because the user would lose the
relationship between row and column numbers and the external naming given for constraints and
variables. However, the user can achieve the same result by changing row and column type codes. See
note at the end of Section 8.2.3.

Back to Chapter contents

8.2.3 RIM Facilities

CHGCTP (change column type). Changes the lower bound, upper bound and
variable type of a single column.

CHGRIM Replaces all three RIM vectors – Lower bounds, upper bounds and
variable types.

VIII-8

CHGRTP (change row type). Changes the lower RHS, upper RHS and row type
of a single row.

GETCTP (get column type). Retrieves the lower bound, upper bound, variable
type and MIP variable type of a single column.

GETRIM Retrieves all three RIM vectors — Lower bounds, upper bounds and
variable types — together with the vector of MIP variable types and
places them in user supplied areas.

GETRTP (get row type). Retrieves the lower RHS, upper RHS and row type of a
single row.

Note that the ‘deletion’ of a row or column can be accomplished in effect by using CHGRTP or
CHGCTP. To delete a row give type ‘Free’ (code 4). To delete a column give type ‘Fixed’ (code 3)
together with the associated fixed value stated both in lower bound and in upper bound.

Back to Chapter contents

8.2.4 Solution Facilities

GETDSL Retrieves the dual solution vector together with associated status codes
and places them in user supplied areas.

GETSOL Retrieves the primal solution vector together with associated status
codes and places them in user-supplied areas.

Back to Chapter contents

8.2.5 Tableau Facilities

Tableau facities enable user to obtain acces to the updated ‘Tableau’ or matrix after pre-multiplication
by the inverse basis matrix.

GTABLC Calculates one column of the updated tableau

GTABLR Calculates one row of the updated tableau

Back to Chapter contents

8.3 Specifications

In order to avoid repeated specifications of the same item in this section, we will give argument
specifications separately in Section 8.3.1. In the subsequent utility subroutine specifications, arguments
will be listed with identical argument names.

8.3.1 Arguments

In this section certain arguments have their type specified as:

VIII-9

DOUBLE PRECISION/REAL

These arguments are DOUBLE PRECISION in a standard double-precision version of FortMP and
REAL in a single-precision version of FortMP

The scalar arguments used are as follows.

AVAL DOUBLE PRECISION/REAL. Matrix element value.

CTP INTEGER. Column type code:
1 = Plus 2 = Bounded
3 = Fixed 4 = Free

IOBJ INTEGER. Row number of the objective function.

IROW INTEGER. Matrix row number.

JCOL INTEGER. Matrix column number.

JVAR INTEGER. Problem variable number. Variables comprise Logicals,
one per row, followed by Structurals, one per column. For a logical
JVAR equals the row number and for a structural JVAR equals
MROW plus the column number.

LOV DOUBLE PRECISION/REAL. Lower bound value of a column.

LRHS DOUBLE PRECISION/REAL. Lower RHS value of a row.

MAIJ INTEGER. Maximum available AIJ (matrix element) space.

MIT INTEGER. Mixed integer type code of a structural variable. Coded as
follows:

0 = Continuous variable
1 = Binary variable
2 = Integer variable
3 = Semi-continuous variable
4 = Member of SOS, type 1 (not the 1st)
5 = Member of SOS, type 2 (not the 1st)
12 = 1st member of an SOS, type 1
13 = 1st member of an SOS, type 2

MRACT INTEGER. Number of active rows. This value increases by one each
time a new row is added.

MROW INTEGER. Total number of rows – including inactive rows and the
objective row.

VIII-10

NAIJ INTEGER. Total used AIJ space – including the spare unused space in
each column. The difference (MAIJ − NAIJ) is the space available for
new columns.

NANZ INTEGER. Number of AIJ non-zero elements.

NCMAX INTEGER. Maximum number of columns

NCNZ INTEGER. Number of non-zeros in one column.

NCOL INTEGER. Number of active columns. This value increases by one
each time a new column is added.

NRNZ INTEGER. Number of non-zeros in one row.

OBJ DOUBLE PRECISION/REAL. Cost coefficient value on the objective
row.

RTP INTEGER. Row type code:
1 = Less than 2 = Bounded
3 = Equals 4 = Free

SLST INTEGER. Solution status code, coded as:
0 = Solver did not terminate
1 = No feasible solution
2 = Unbounded
3 = Optimal solution found
4 = Integer solution found
5 = Optimum integer solution found

TCTN INTEGER. This is an important argument used by ALL of the utility
subroutines. It gives the ‘Terminate Criterion’ and so long as it is zero
the execution continues normally. On entry to any utility if its value is
non-zero then an immediate exit occurs without doing anything.
Otherwise if a fatal error occurs it will be given a non-zero value in
order to force a bypass through all subsequent stages straight to the final
exit of the program. Users should respect this convention and test
TCTN themselves before executing any algorithmic work of their own.

UPV DOUBLE PRECISION/REAL. Upper bound value of a column.

URHS DOUBLE PRECISION/REAL. Upper RHS value of a row.

The array arguments used are as follows.

BASTAB INTEGER. Table of non-basic variable assignment codes as follows:
 0 = Basic
−1 = Non-basic at lower bound (row is at upper RHS value)
+1 = Non-basic at upper bound (row is at lower RHS value)

VIII-11

Row entries come first, followed at position (MROW+1) by column
entries. Dimension/size is (MROW+NCOL).

CVTAB DOUBLE PRECISION/REAL. Table of non-zero element values in
one matrix column. When supplied for an ‘ADDCOL’ or ‘CHGCOL’
operation this table has the dimension/size NCNZ. When supplied as an
empty area to receive a column in ‘GETCOL’ it has dimension/size
NCOL.

DSLVEC DOUBLE PRECISION. Dual solution vector. Rows followed by
columns as before with dimension/size (MROW+NCOL).

DSSTAB INTEGER. Table of dual solution status codes to correspond with
DSLVEC. Code values are as follows:

1 = Zero. The primal variable is basic
3 = Basic feasible
4 = Basic infeasible negative. The primal variable is at its

lower bound
5 = Basic infeasible positive. The primal variable is at its

upper bound

 Row entries come first, followed at position (MROW+1) by column
entries. Dimension/size is (MROW+NCOL).

IRTAB INTEGER. Table of row index numbers corresponding to entries in
CVTAB described above. Dimension/size is the same as CVTAB.

JCTAB INTEGER. Table of column index numbers corresponding to
entries in RVTAB. Dimension/size is the same as RVTAB.

LOTAB DOUBLE PRECISION/REAL. Table of lower bound and lower RHS
values. Row entries come first, followed at position (MROW+1) by
column entries. Dimension/size is (MROW+NCOL).

MITTAB INTEGER. Table of mixed integer type code values coded as for scalar
MIT (see above). Dimension/size (NCOL)

OBJTAB DOUBLE PRECISION/REAL. Table of objective values with one
position for each column. Dimension/size is NCOL.

RVTAB DOUBLE PRECISION/REAL. Table of non-zero element values in
one matrix row. When supplied for an ‘ADDROW’ or ‘CHGROW’
operation this table has the dimension/size NRNZ. When supplied as an
empty area to receive a column in ‘GETCOL’ it has dimension/size
MROW.

SLSTAB INTEGER. Table of solution status codes to correspond with
SOLVEC. Code values are as follows:

VIII-12

1 = Non-basic at lower bound
2 = Non-basic at upper bound
3 = Basic feasible
4 = Basic infeasible, less than lower bound
5 = Basic infeasible, greater than upper bound

SOLVEC DOUBLE PRECISION. Solution vector. Rows followed by columns
with dimension/size (MROW+NCOL).

TCOL DOUBLE PRECISION. Column vector of the updated Tableau.
Dimension size is MROW.

TPTAB INTEGER. Table of variable type codes as follows:
1 = Plus or less than
2 = Bounded
3 = Fixed or equals
4 = Free

Row entries come first, followed at position (MROW+1) by column
entries. Dimension/size is (MROW+NCOL).

TROW DOUBLE PRECISION. Row vector of the updated Tableau.
Dimension size is (MROW+NCOL) with rows followed by columns.

UPTAB DOUBLE PRECISION/REAL. Table of upper bound and upper RHS
values. Row entries come first, followed at position (MROW+1) by
column entries. Dimension/size is (MROW+NCOL).

Back to Chapter contents

8.3.2 General Utility Specifications

General utility subroutines are specified as follows.

 CALL GETSIZ(MROW, MRACT, NCOL, NCMAX, MAIJ, NAIJ, NANZ,
* IOBJ, TCTN)

This retrieves problem statistics for the user. It is an initial utility which the user must execute in order to
be able to create arrays of the required size.

Input arguments are: TCTN
Output arguments are: MROW, MRACT, NCOL, NCMAX, MAIJ, NAIJ, NANZ, IOBJ, TCTN

CALL BEGCHG (TCTN)
Begins problem change mode execution. TCTN is an input/output argument.

CALL ENDCHG (TCTN)
Ends problem change mode execution and carries out necessary housekeeping for re-entry into
algorithm mode. TCTN is an input/output argument.

Back to Chapter contents

VIII-13

8.3.3 Matrix Utility Specifications

Matrix utility subroutines are specified as follows.

CALL GETCOL (MROW, JCOL, CVTAB, IRTAB, NCNZ, OBJ, TCTN)

This retrieves one column of the matrix and places the coefficients in the user supplied areas CVTAB
and IRTAB. GETCOL also extracts the column count (NCNZ) and objective value (OBJ). Note that
OBJ will not be among the coefficients placed in the areas CVTAB and IRTAB.

Input arguments are: MROW, JCOL, TCTN
Output arguments are: CVTAB(MROW), IRTAB(MROW), NCNZ, OBJ, TCTN
Only the first NCNZ positions in CVTAB and IRTAB are filled. The remainder will not be used.

CALL GETROW (NCOL, IROW, RVTAB, JCTAB, NRNZ, TCTN)

This retrieves one row of the matrix and places the coefficients in the user supplied areas RVTAB and
JCTAB. GETROW also retrieves the row count into the argument NRNZ.

Input arguments are: NCOL, IROW, TCTN
Output arguments are: RVTAB(NCOL), JCTAB(NCOL), NCNZ, OBJ, TCTN
Only the first NRNZ positions in RVTAB and JCTAB are filled. The remainder will not be used.

CALL GETAIJ (IROW, JCOL, AVAL, TCTN)

This retrieves the matrix element on row IROW column JCOL into the variable AVAL.

Input arguments are: IROW, JCOL, TCTN
Output arguments are: AVAL, TCTN

CALL GETOBJ (NCOL, OBJTAB, TCTN)

This retrieves the objective row of the matrix and places the cost coefficients in the user supplied area
OBJTAB. The table is zeroed first and then the non-zero entries are copied in from the matrix at their
correct index position.

Input arguments are: NCOL, TCTN
Output arguments are: OBJTAB(NCOL), TCTN

CALL ADDCOL (NCNZ, JCOL, CVTAB, IRTAB, OBJ, TCTN)

This adds a column by activating the next dormant column provided by the users ‘MAXIMUM EXTRA
COLUMNS’ command. It inserts into the matrix a set of coefficients supplied for that column by the
user in areas CVTAB and IRTAB and also inserts the objective value supplied in cell OBJ. The column
number activated is returned in cell JCOL which is obtained by adding one to the number of columns
NCOL.

Input arguments are: NCNZ, CVTAB(NCNZ), IRTAB(NCNZ), OBJ, TCTN
Output arguments are: JCOL, TCTN

CALL ADDROW (NRNZ, IROW, RVTAB, JCTAB, TCTN)

This adds a row by activating the next dormant row provided by the user’s ‘MAXIMUM EXTRA
ROWS’ command. It inserts into the matrix a set of coefficients supplied for that row in areas RVTAB

VIII-14

and JCTAB. The row number activated is returned in cell IROW which is obtained by adding one to the
number of active rows MRACT.

Input arguments are: NRNZ, RVTAB(NRNZ), JCTAB(NRNZ), TCTN
Output arguments are: IROW, TCTN

CALL CHGCOL (NCNZ, JCOL, CVTAB, IRTAB, OBJ, TCTN)

This deletes the existing coefficients on matrix column JCOL and replaces them by an alternative set
supplied by the user in areas CVTAB and IRTAB with the objective coefficient in cell OBJ.

Input arguments are: NCNZ, JCOL, CVTAB(NCNZ), IRTAB(NCNZ), OBJ, TCTN
Output arguments are: TCTN

CALL CHGROW (NRNZ, IROW, RVTAB, JCTAB, TCTN)

This deletes the existing coefficients in matrix row IROW and replaces them by an alternative set
supplied in the areas RVTAB and JCTAB.

Input arguments are: NRNZ, IROW, RVTAB(NRNZ), JCTAB(NRNZ), TCTN
Output arguments are: TCTN

CALL CHGAIJ (IROW, JCOL, AVAL, TCTN)

This changes the A matrix element on row IROW, column JCOL to the value AVAL. This may add,
change or, by setting AVAL=0.0, delete the element.

Input arguments are: IROW, JCOL, AVAL, TCTN
Output arguments are: TCTN

CALL CHGOBJ (NCOL, OBJTAB, TCTN)

This deletes the existing cost coefficients on the objective row and replaces them by an alternative set
supplied by the user in table OBJTAB (only non-zero elements are used).

Input arguments are: NCOL, OBJTAB(NCOL), TCTN
Output arguments are: TCTN

Back to Chapter contents

8.3.4 RIM Utility Specifications

RIM utility subroutine specifications are as follows.

CALL GETRIM (MROW, NCOL, LOTAB, UPTAB, TPTAB, MITTAB,
TCTN)

Retrieves all the three RIM vectors – Lower bounds, upper bounds and variable types – and places
them in user supplied areas LOTAB, UPTAB and TPTAB. See notes (2) and (3) in Section 8.3.7
below.

Input arguments are: MROW, NCOL, TCTN
Output arguments are: LOTAB(MROW+NCOL), UPTAB(MROW+NCOL),

TPTAB(MROW+NCOL), MITTAB(NCOL), TCTN

VIII-15

CALL GETCTP (JCOL, LOV, UPV, CTP, MIT, TCTN)

This retrieves the lower bound, upper bound and variable type of a single column and places them in
cells LOV, UPV and CTP. See note (2) in Section 8.3.7 below.

Input arguments are: JCOL, TCTN
Output arguments are: LOV, UPV, CTP, MIT, TCTN

CALL GETRTP (IROW, LRHS, URHS, RTP, TCTN)

This retrieves the lower RHS, upper RHS and row type of a single row and places them in cells LRHS,
URHS and RTP. See note (3) in Section 8.3.7 below.

Input arguments are: IROW, TCTN
Output arguments are: LRHS, URHS, RTP

CALL CHGRIM (MROW, NCOL, LOTAB, UPTAB, TPTAB, TCTN)

This replaces all three RIM vectors – Lower bounds, upper bounds and variable types – with the user
supplied areas LOTAB, UPTAB and TPTAB. See notes (4), (5) and (6) in Section 8.3.7 below.

Input arguments are: MROW, NCOL, LOTAB(MROW+NCOL), UPTAB(MROW+NCOL),
 TPTAB(MROW+NCOL), TCTN

Output arguments are: TCTN

CALL CHGCTP (JCOL, LOV, UPV, CTP, TCTN)

This changes the lower bound, upper bound and variable type of a single column, replacing them by cells
LOV, UPV and CTP. See notes (4) and (6) in Section 8.3.7 below.

Input arguments are: JCOL, LOV, UPV, CTP, TCTN
Output arguments are: TCTN

CALL CHGRTP (IROW, LRHS, URHS, RTP, TCTN)

This changes the lower RHS, upper RHS and row type of a single row, replacing them by cells LRHS,
URHS and RTP. See notes (5) and (6) in Section 8.3.7 below.

Input arguments are: IROW, LRHS, URHS, RTP, TCTN
Output arguments are: TCTN

Back to Chapter contents

8.3.5 Solution Utility Specifications

Solution utulities are specified as follows:

CALL GETSOL (MROW, NCOL, SLST, SOLVEC, SLSTAB, TCTN)

This retrieves the primal solution vector together with associated status codes and places them in user
supplied areas SOLVEC and SLSTAB. This utility cannot execute in problem change mode – see note
(7) in Section 8.3.7 below.

Input arguments are: MROW, NCOL, TCTN
Output arguments are: SLST, SOLVEC(MROW+NCOL), SLSTAB(MROW+NCOL), TCTN

VIII-16

CALL GETDSL (MROW, NCOL, DSLVEC, DSSTAB, TCTN)

This retrieves the dual solution vector together with associated status codes and places them in user
supplied areas DSLVEC and DSSTAB. This utility cannot execute in problem change mode – see note
(7) in Section 8.3.7 below.

Input arguments are: MROW, NCOL, TCTN
Output arguments are: DSLVEC(MROW+NCOL), DSSTAB(MROW+NCOL), TCTN

Back to Chapter contents

8.3.6 Tableau Utility Specifications

Solution utulities are specified as follows:

CALL GTABLC (MROW, JVAR, TCOL, TCTN)

This subroutine calculates and retrieves one column-vector from the updated tableau in the user-supplied
area TCOL. It cannot be executed in problem change mode - see note (7) is Section 8.3.7 below.

Input arguments are: MROW, JVAR, TCTN
Output arguments are: TCOL(MROW), TCTN

CALL GTABLR (MROW, NCOL, IROW, TROW, TCTN)

This subroutine calculates and retrieves one column-vector from the updated tableau in the user-supplied
area TCOL. It cannot be executed in problem change mode - see note (7) is Section 8.3.7 below.

Input arguments are: MROW, NCOL, IROW, TCTN
Output arguments are: TROW(MROW+NCOL), TCTN

Back to Chapter contents

8.3.7 Some Notes on the Specifications

 (1) In several of the utilities the user must supply MROW or NCOL as an input argument in order
to give the dimension/size of certain argument tables. Actually the system already knows the
values of MROW and NCOL and this is required only because of restrictions in
FORTRAN 77.The system checks to see that user has provided correct values and will return
an error (TCTN > 0) if not.

 (2) For variables given as MINUS type in external data, for example by code ‘MI’ in the MPS
form bounds section, the quoted upper bound is negated (together with the matrix column) and
presented as lower bound in the DISERV utilities. Type code is 1.

 (3) The one-sided RHS value supplied externally, for example in the RHS section of MPS form
data, is communicated in the upper RHS value after negating (together with the matrix row) if the
original row type was GE. Both GE type and LE type rows become type coded as 1.

 (4) Whenever the user supplies new variable bounds to the system the associated type coding must
be consistent. A finite lower bound must be present for all type codes other than ‘Free’ (code

VIII-17

4). Lower and upper bounds must be equal for type ‘Fixed’ (code 3). Finite lower and upper
bounds must be present for type ‘Bounded’ (code 2) with upper bound value greater than lower
bound value. For type ‘Plus’ (code 1) the upper bound is ignored whatever its value.

A system constant with the value 10 36 is used to check for finite bound values (1020 for the
single-precision version).

Type coding and bounds supplied must also be consistent with the MIP data types (if non-zero).

 (5) Whenever the user supplies new row bounds to the system the associated row type coding must
be consistent. A finite upper RHS must be present for all type codes other than ‘Free’ (code 4).
Lower and upper RHS must be equal for type ‘Equal’ (code 3). Finite lower and upper RHS
must be present for type ‘Ranged’ (code 2) with upper RHS value greater than lower RHS
value. For type ‘LE’ (code 1) the lower RHS is ignored whatever its value.

A system constant with the value 10 36 is used to check for finite RHS values (1020 for the
single-precision version).

 (6) The ‘deletion’ of a row or column can be accomplished in effect by using CHGRTP or
CHGCTP. To delete a row give type ‘Free’ (code 4). To delete a column give type ‘Fixed’
(code 3) with associated lower and upper bound values both equal.

It is not possible to delete any row or column physically from the data.

 (7) The solution access utilities GETSOL and GETDSL and the updated tableau utilities GTABLC
and GTABLR must execute in ALGORITHM mode and not in PROBLEM CHANGE mode.
This is because they require use of the ETA file which in general is not valid during problem
change mode.

The user who needs solution values or updated tableau as part of a series of GETs and CHGs
etc. should execute GETSOL and GETDSL before making the call to BEGCHG.

(8) The solution vector SOLVEC (obtained by CALL GETSOL) supplies the values of logical
variables in positions 1 to MROW. Position IOBJ (obtained by using GETSIZ) is therefore the
logical value on the objective row which is equal to the objective value reversed in sign. No
separate argument is needed to get the objective value.

Back to Chapter contents

IX-1

Chapter 9.

The Interior Point Method for Quadratic Programming

Contents

9.1 Statement of the QP Problem 2
9.1.1 The QP Problem:- Symmetric Q form 2
9.1.2 The QP problem:- Separable FFT Form 3
9.1.3 Mixed Integer QP with Binary Variables 3

9.2 IPM Solution Procedure 4
9.2.1 Formulation 4
9.2.2 Solving the System of Equations 5
9.2.3 Determining the Starting Point 6
9.2.4 Controls on the Predictor-Corrector Algorithm for QP 6

9.3 Input Data Layout 7
9.3.1 Matrix Input for the symmetric Q form 7
9.3.2 Matrix Input for the separable FFT form 8

9.4 Worked Example 10
9.4.1 Worked example using the Q form 10
9.4.2 Worked example using FFT form 14

9.5 Branch and Bound Algorithm for MIQP 18
9.5.1 Sub-problem Solution 18
9.5.2 Simplified Tree 18
9.5.3 User Controls 18

9.6 Summary of SPECS Commands 20
9.6.1 Controls for IPM 20
9.6.2 Controls for Branch and Bound 21

IX-2

9.1 Statement of the QP Problem

9.1.1 The QP Problem:- Symmetric Q form

FortMP IPM for QP is a primal dual approach to the solution of the separable convex QP problem.

The primal QP problem may be stated as follows:

 Minimise c x x QxT T+
1
2

 subject to the conditions:

Ax b
x s u
x s

=
+ =

≥, 0

Where

A is an m n× matrix of coefficients aij .

c is an n vector of the cost coefficients c c cn1 2, ,... .

x is an n vector of the structural variables x x x n1 2, ,..., .

u is an n vector of upper bounds u u un1 2, ,..., .

s is an n vector of variables s s sn1 2, , ... compliment to x with respect to the

 upper bounds u .

Q is an n n× symmetric positive semi-definite matrix.

The dual problem may be stated as follows.

 Maximise b y x Qx u wT T T− −
1

2

 subject to the conditions:

A y z Qx w c

z w

T + − − =

≥, 0

IX-3

Where the variables y i mi (, ,)= 1 L are dual variables complementary to the original rows of the primal
statement above, z j nj (, ,)= 1 K are dual variables complementary to the x j , and w j nj (, ,)= 1 K are
dual variables complementary to the s j .

Back to Chapter contents

9.1.2 The QP problem:- Separable FFT Form

FortMP currently only handles the case in which it is possible to reformulate Q as Q FF T= . This
leads to a separable formulation of the QP problem, which, in the case of the primal problem may be
stated as:

 Minimise c x p pT T+
1

2

 Subject to the conditions:

Ax b

F x p
x s u
x s

p

T

=

− =
+ =

≥
−∞ < < ∞

0

0,

In order that the separable formulation be possible, FortMP requires that either:

1) Q is positive definite and so can be Cholesky factored.

or

2) The matrix F is supplied instead of Q .

Back to Chapter contents

9.1.3 Mixed Integer QP with Binary Variables

By using Branch and Bound we may extend the QP problem statement to include models where some
elements of vector x are constrained to be binary variables (x j = 0 or x j = 1). At present the only
discrete constraints handled by FortMP-QP are binary variables. Other discrete constraint-types may
be added in a future release and in any case it is usually possible to model such constraints entirely with
binary variables (suitably chosen).

The general Branch and Bound mechanism has been described in chapter 6. A simplified version is
used for Mixed Integer QP (MIQP), which is described below in section 9.5.

Back to Chapter contents

IX-4

9.2 IPM Solution Procedure

9.2.1 Formulation

The IPM solution procedure is a modification of the predictor-corrector IPM solution for LP (see
Chapter 5). Each IPM iteration considers an interior point to be a set of fixed values and looks for a set
of ‘changes’ or ‘search directions’:

∆x x j nj j, , , , changes to the for = 1 2 L
∆s s j nj j, , , , changes to the for = 1 2 L
∆y y j mj j, , , , changes to the for = 12 L
∆z z j nj j, , , , changes to the for = 1 2 L
∆w w j nj j, , , , changes to the for = 12 L

These search directions define a new interior point:

(, , , ,)x x s s y y z z w w+ + + + +α∆ α∆ α∆ α∆ α∆

Where α is made as large as possible without taking any variable outside its bound range so that the
new point remains an interior point.

The predictor-corrector method first predicts the directions, and then corrector directions are
computed. The actual directions are a combination of both the predicted and corrector directions.

If in addition to the matrices and vectors previously defined, we define

X The n n× diagonal matrix comprising solution point values x x xn1 2, , ,L on the
diagonal and zeros elsewhere.

Z S W, and
Diagonal n n× matrices comprising dual solution point values from the z j , the s j and

the w j on the diagonal and zeros elsewhere.

∆x n -vector of variables ∆ ∆ ∆x x xn1 2, , ,L .

∆y m -vector of variables ∆ ∆ ∆y y ym1 2, , ,L .

∆ ∆ ∆z s w, and
n -vectors of variables constructed from the ∆z j , the ∆s j and the ∆w j in the same

way.

And let the ‘predicted’ directions be (, , , ,)∆ ∆ ∆ ∆ ∆x s y z wp p p p p , then solving the following system
of equations gives the predicted search directions.

IX-5

A x b Ax

x s u x s

A y z w Q x c A y z w Qx

Z x X z XZe

W s S w SWe

p

p p

T p p p p T

p p

p p

∆

∆ ∆

∆ ∆ ∆ ∆

∆ ∆

∆ ∆

= −

+ = − −

+ − − = − − + +

+ = −

= −+

The corrector search directions (, , , ,)∆ ∆ ∆ ∆ ∆x s y z wc c c c c are found by solving

A x b Ax

x s u x s

A y z w Q x c A y z w Qx

Z x X z e XZe X Z

W s S w e SWe S W

c

c c

T c c c c T

c c p p

c c p p

∆

∆ ∆

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

= −

+ = − −

+ − − = − − + +

+ = − −

= − −+

µ

µ

The search directions (, , , ,)∆ ∆ ∆ ∆ ∆x s y z w are then computed as:

(, , , ,)∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆x x s s y y z z w wp c p c p c p c p c+ + + + +

Back to Chapter contents

9.2.2 Solving the System of Equations

The set of equations defining the predictor and corrector search directions respectively differs from each
other only in their right hand side. Hence only a single factorization is required for solving both systems.

If we let R R R R R1 2 3 4 5, , , and define constant right-hand side vectors of size n except for R2 which is
of size m , then both of the above sets of equations are of the form:

 A x R∆ = 1 (1)

 ∆ ∆x s R+ = 2 (2)

 A y z w Q x RT ∆ ∆ ∆ ∆+ − − = 3 (3)

 Z x X z R∆ ∆+ = 4 (4)

 W s S w R∆ ∆+ = 5 (5)

To solve these equations we may begin by eliminating all the variables ∆ ∆ ∆s z w, and from equations
(2), (3), (4) and (5). When this is done the system is reduced to two equations as follows:

− + + + = ′− −()X Z S W Q x A y RT1 1
3∆ ∆ (new RHS for 3rd equation)

A x R∆ = 1

IX-6

This system could now be solved by finding the inverse of the matrix:

− +









()D Q A

A

T

0

Where D is the diagonal matrix ()X Z S W− −+1 1 .

However, the number of equations can be reduced still further by eliminating the variables ∆x across
these two equations. This will result in the following:

(())A D Q A Dy RT+ =−1 (new RHS).

The matrix is a symmetric positive-definite matrix and so may be inverted by the Cholesky procedure.

Back to Chapter contents

9.2.3 Determining the Starting Point

It is vital in the IPM algorithm to have a good starting interior point from which to begin iterations.
Failure in this will increase the number of iterations necessary and may indeed lead to divergence or
cycling so that a solution can never be found.

The predictor–corrector algorithm for QP computes a starting point in exactly the same way as for LP.
As with LP, the predictor-corrector algorithm can employ one of three starting point methods based on
a quadratic formula to maximise the distance from boundaries in the initial interior point. The choice of
method is described in Section 5.2.2.

Back to Chapter contents

9.2.4 Controls on the Predictor-Corrector Algorithm for QP

The controls for the predictor-corrector algorithm for QP are exactly the same as those for the LP case,
except that there is no procedure to develop the IPM solution into a basic solution. On reaching the
IPM solution, the output is written and execution halts. The reader is referred to Sections 5.2.1 - 5.2.5.

Back to Chapter contents

IX-7

9.3 Input Data Layout

The data for the QP problem is entered by using an extension of the MPS format for LP, as described in
detail in Appendix A. The MPS layout is extended to include the data definition of the Q or F matrix,
(see Section 9.1.).

Back to Chapter contents

9.3.1 Matrix Input for the symmetric Q form

When the Q-matrix is to be entered, a separate ‘QDATA’ section is prepared by the user and
presented in the MPS data-file after the ‘COLUMNS’ section and before the ‘ENDATA’ line. The
header keyword for this section is ‘QDATA’ and the layout is similar to that of the normal COLUMNS
data lines but with column names in the place of row names as follows:

Field 1 (cols 2-3) Blank
Field 2 (cols 5-12) Column name
Field 3 (cols 15-22) Column name
Field 4 (cols 25-36) Value
Field 5 (cols 15-22) Column name (optional)
Field 6 (cols 25-36) Value (if field 5 is entered)

The user enters only the diagonal and upper triangular coefficients of the Q matrix with the name that
corresponds to the row in field 2 and names corresponding to columns in fields 3 and 5. It follows that
no coupling of columns in fields 2 and 4 or in fields 2 and 5 can be repeated in the opposite order. The
normal rule of continuity also applies, that is:

- Rows of the Q-matrix defined by field 2 may not be split

The following restriction also applies:

- Q-matrix rows, that is the columns named in field 2 must appear in the same order as in
the COLUMNS section even though this may differ from the natural triangular ordering
of the Q-matrix (field 3 and field 5 columns may be named in any order).

This restriction is only necessary to support the present release of FortMP and may be removed in the
future.

Example

Minimise x x x x
x

x1 2 1 2
1

2

1
2

5 5
5 10

+ + 










(,)

 Subject to

IX-8

x x

x x
1 2

1 2

10

0

+ >

≥,

The input data for the above problem is:

Back to Chapter contents

9.3.2 Matrix Input for the separable FFT form

Given that Q FFT= , the user enters the coefficients of the F T matrix in the ROWS section of the
MPS-form input data. The rows are designated as type 'F ' (or ' F').

Example

Minimise x x x x
x

x1 2 1 2
1

2

1
2

1 2
3 1

1 3
2 1

+ + 















(,)

 Subject to

NAME PROB2
ROWS
 G R01
 N COST
COLUMNS
 X01 R01 1.0
 X02 R01 1.0
RHS
 RHS R01 10.0
QDATA
 X01 X01 5.0
 X01 X02 5.0
 X02 X02 10.0
ENDATA

IX-9

x x

x x
1 2

1 2

10

0

+ >

≥,

The input data for the above problem is:

Back to Chapter contents

NAME PROB1

ROWS

 G R01

 F F01

 F F02

 N COST

COLUMNS

 X01 R01 1.0

 X01 F01 1.0

 X01 F02 2.0

 X02 R01 1.0

 X02 F01 3.0

 X02 F02 1.0

RHS

 RHS R01 10.0

ENDATA

IX-10

9.4 Worked Example

The example presented here is that of chapter 2, section 2.1.1 with the addition of quadratic terms in the
objective function. The problem is stated as:

Minimize:

4x1 + 6x2 + 5x3 + 16x4 + 2x5 + 5x6 + x7 + 1/2{XTQX}

Subject to:

x1 + x6 = 2
x1 + 3x2 = 5
2x3 + 3x4 = 4
x1 + x2 + x3 + 4x4 + x5 = 11
x1 + 2x2 + 2x3 + 3x4 + x5 + 2x6 + x7 = 14
0.5 ≤ x1

0.5 ≤ x2

0.0 ≤ x3 ≤ 1.0
x4 = 1.0
0.0 ≤ x5 ≤ 6.0
1.0 ≤ x7

Where Q is a symmetric matrix comprising the quadratic cost factors, possibly expressible as FFT.

Back to Chapter contents

9.4.1 Worked example using the Q form

In this example the quadratic terms of the objective are as follows:

2x1
2 + x1.x2 + x2

2 + x3
2 + x3.x4 + x4

2

The Q-matrix is as follows:

Q ≡























4 1
1 2

2 1

1 2

. .

. .
. .

. .

K
K
K

K
K K K K K

With the remaining positions all zero.

Input data presented in a file ‘TESTQP.QDT’ is shown below in listing (1). Listing (2) shows the
associated SPECS commands in file ‘FORTMP.SPC’.

IX-11

Listing (1): Input data using Q form in file ‘TESTQP.QDT’

Listing (2): Specs commands for Q-form in file ‘FORTMP.SPC’.

NAME TESTQPQD
ROWS
 N COST
 EQ R1
 EQ R2
 EQ R3
 EQ R4
 EQ R5
COLUMNS
 X1 COST 4.0 R1 1.0
 X1 R2 1.0 R4 1.0
 X1 R5 1.0
 X2 COST 6.0 R2 3.0
 X2 R4 1.0 R5 2.0
 X3 COST 5.0 R3 2.0
 X3 R4 1.0 R5 2.0
 X4 COST 16.0 R3 3.0
 X4 R4 4.0 R5 3.0
 X5 COST 2.0 R4 1.0
 X5 R5 1.0
 X6 COST 5.0 R1 1.0
 X6 R5 2.0
 X7 COST 1.0 R5 1.0
RHS
 RHS R1 2.0 R2 5.0
 RHS R3 4.0 R4 11.0
 RHS R5 14.0
BOUNDS
 LO BND X1 0.5
 LO BND X2 0.5
 UP BND X3 1.0
 FX BND X4 1.0
 UP BND X5 6.0
 LO BND X7 1.0
QDATA
 X1 X1 4.0 X2 1.0
 X2 X2 2.0
 X3 X3 2.0 X4 1.0
 X4 X4 2.0
ENDATA

BEGIN
MODEL NAME (testqp)
INPUT FILE NAME (testqp.qdt)
OUTPUT FILE NAME (testqp.qrs)
LOG FILE NAME (testqp.qlg)
END

IX-12

Outputs comprising the solution in file ‘TESTQP.RES’ and the log in file ‘TESTQP.LOG’ are shown
below in listings (3) and (4).

Listing (3): Solution output for Q-form in file ‘TESTQP.QRS’.

 FORTMP SOLUTION REPORT
 PROBLEM NAME = TESTQPQD
 OBJECTIVE NAME = COST
 RHS NAME = RHS
 BOUNDS NAME = BND
 MROW = 6
 NCOL = 7
 OBJECTIVE VALUE = 0.479124D+02
 LOB/FIX OFFSET = 0.239717D+02

 COLUMNS.......STRUCTURAL VARIABLES

 NO *=INF NAME VALUE LOWER BND UPPER BND REDUCED COST
 1 X1 1.56267 .5 NONE -3.0999
 2 X2 1.14578 .5 NONE -3.29971
 3 X3 0.5 0. 1. -2.60342
 4 X4 1. 1. 1. 2.09487
 5 X5 3.79156 0. 6. 0.
 6 X6 0.43733 0. NONE 0.
 7 X7 1.47956 1. NONE 0.

 ROWS..........LOGICAL VARIABLES

 NO *=INF NAME VALUE LOWER RHS UPPER RHS SHADOW PRICE
 1 COST 42.87467 NONE NONE 0.
 2 R1 2. 2. 2. -3.
 3 R2 5. 5. 5. -2.0999
 4 R3 4. 4. 4. -2.30171
 5 R4 11. 11. 11. -1.
 6 R5 14. 14. 14. -1.

IX-13

Listing (4): Log output for Q form in file ‘TESTQP.QLG’.

Back to Chapter contents

 FORTMP release version 2.03a, Mar 1997
 begin
 model name (testqp)
 input file name (testqp.qdt)
 output file name (testqp.qrs)
 log file name (testqp.qlg)
 MPS INPUT PASS FINISHED
 INPUT DATA STATISTICS:
 PROBLEM NAME IS TESTQPQD
 NUMBER OF ROWS (INCLUDING OBJECTIVE)= 6
 NUMBER OF COLUMNS = 7
 NUMBER OF BOUNDED VAR. = 6
 NUMBER OF NONZEROS = 25
 AVERAGE NUMBER OF NONZEROS PER COLUMN = 3
 NUMBER OF ROWS IN Q-MATRIX = 4
 NUMBER OF NON-ZEROS IN Q-MATRIX = 6
 RUN TIME OPTIONS:
 MINIMIZE
 TIME TAKEN FOR INPUT/SETUP = 0.93 SECS, TOTAL SO FAR = 0.93 SECS
 SCALING IN PROGRESS ...
 SCALING COMPLETE
 PRESOLVE
 Matrix non-zeros reduced to 21 from 25
 TIME TAKEN FOR SCALE/PRSLVE = 0.11 SECS, TOTAL SO FAR = 1.04 SECS
 TIME FACTORIZING Q: 0.164835
 Q MATRIX POSITIVE DEFINITE
 Q cholesky factor nonzeros: 4
 SOLVING SEPARABLE FORM - NORMAL SYSTEM
 TIME TAKEN FOR QPM PREPROC = 0.38 SECS, TOTAL SO FAR = 1.43 SECS

 Symmetric Matrix U Non-Zeros 28
 Cholesky Factor U Non-Zeros 28
 IT# P-PHASE P-INFEZ D-PHASE D-INFEZ P-OBJVAL RELGAP
 1 1 0.68801 1 0.10588 35.495 1.9557
 2 1 0.43483E-03 1 0.69612E-02 24.605 0.18322
 3 2 0.21806E-06 1 0.15224E-02 24.548 0.22496E-01
 4 2 0.10791E-09 2 0.22964E-04 24.539 0.10774E-02
 5 2 0.63483E-13 2 0.11492E-07 24.536 0.35992E-04
 6 2 0.56903E-15 2 0.57466E-11 24.535 0.12290E-05
 7 2 0.44371E-15 2 0.29388E-14 24.535 0.41985E-07
 IPMABC: Terminated, Small Duality Gap *
 *** Optimum solution obtained ****
 *** IPM starting point saved ***
 Objective Function = 0.4853534E+02
 (offset = -0.2400000E+02)
 Elapsed structuring time = 0.164835
 Elapsed solution time = 0.384615
 IPM iteration count = 6
 TIME TAKEN FOR QPM PDSUBS = 0.55 SECS, TOTAL SO FAR = 1.98 SECS
 TIME TAKEN FOR IPM SOLUTION = 0.16 SECS, TOTAL SO FAR = 2.14 SECS
 TIME TAKEN FOR OUTPUT = 0.11 SECS, TOTAL SO FAR = 2.25 SECS

IX-14

9.4.2 Worked example using FFT form

The quadratic terms in the objective take the form

(1/2).(p1
2 + p2

2 + p3
2)

Where the variables p1, p2 and p3 are defined by equations:

p1 = x1
p2 = x1 + x2
p3 = x3 + x4

The expressions x1, x1+x2, and x3+x4 are thus to be entered as F-type rows in the data.

Input data presented in a file ‘TESTQP.FDT’ is shown below in listing (5). Listing (6) shows the
associated SPECS commands in file ‘FORTMP.SPC’.

IX-15

Listing (5): Input data using FFT form in file ‘TESTQP.FDT’

Listing (6): Specs commands for FFT form in file ‘FORTMP.SPC’.

NAME TESTQPFF
ROWS
 N COST
 EQ R1
 EQ R2
 EQ R3
 EQ R4
 EQ R5
 F F1
 F F2
 F F3
COLUMNS
 X1 COST 4.0 R1 1.0
 X1 R2 1.0 R4 1.0
 X1 R5 1.0
 X1 F1 1.0 F2 1.0
 X2 COST 6.0 R2 3.0
 X2 R4 1.0 R5 2.0
 X2 F2 1.0
 X3 COST 5.0 R3 2.0
 X3 R4 1.0 R5 2.0
 X3 F3 1.0
 X4 COST 16.0 R3 3.0
 X4 R4 4.0 R5 3.0
 X4 F3 1.0
 X5 COST 2.0 R4 1.0
 X5 R5 1.0
 X6 COST 5.0 R1 1.0
 X6 R5 2.0
 X7 COST 1.0 R5 1.0
RHS
 RHS R1 2.0 R2 5.0
 RHS R3 4.0 R4 11.0
 RHS R5 14.0
BOUNDS
 LO BND X1 0.5
 LO BND X2 0.5
 UP BND X3 1.0
 FX BND X4 1.0
 UP BND X5 6.0
 LO BND X7 1.0
ENDATA

BEGIN
MODEL NAME (testqp)
INPUT FILE NAME (testqp.fdt)
OUTPUT FILE NAME (testqp.frs)
LOG FILE NAME (testqp.flg)
END

IX-16

Outputs comprising the solution in file ‘TESTQP.FRS’ and the log in file ‘TESTQP.FLG’ are shown
below in listings (7) and (8).

Listing (7): Solution output for FFT form in file ‘TESTQP.FRS’.

 FORTMP SOLUTION REPORT
 PROBLEM NAME = TESTQPFF
 OBJECTIVE NAME = COST
 RHS NAME = RHS
 BOUNDS NAME = BND
 MROW = 9
 NCOL = 10
 OBJECTIVE VALUE = 0.468204D+02
 LOB/FIX OFFSET = 0.220000D+02

 COLUMNS.......STRUCTURAL VARIABLES

 NO *=INF NAME VALUE LOWER BND UPPER BND REDUCED COST
 1 X1 1.62899 .5 NONE 0.
 2 X2 1.12367 .5 NONE 0.
 3 X3 0.5 0. 1. 0.
 4 X4 1. 1. 1. 5.25
 5 X5 3.74734 0. 6. 0.
 6 X6 0.37101 0. NONE 0.
 7 X7 1.63432 1. NONE 0.
 8 Q 100001 1.62899 NONE NONE -0.9405
 9 Q 100002 2.75266 NONE NONE -1.58925
 10 Q 100003 1.5 NONE NONE -1.5

 ROWS..........LOGICAL VARIABLES

 NO *=INF NAME VALUE LOWER RHS UPPER RHS SHADOW PRICE
 1 COST 42.74201 NONE NONE 0.
 2 R1 2. 2. 2. -3.
 3 R2 5. 5. 5. -1.52975
 4 R3 4. 4. 4. -1.75
 5 R4 11. 11. 11. -1.
 6 R5 14. 14. 14. -1.
 7 F1 0. . . 0.9405
 8 F2 0. . . 1.58925
 9 F3 0. . . 1.5

IX-17

Listing (8): Log output for FFT form in file ‘TESTQP.FLG’.

Back to Chapter contents

FORTMP release version 2.03a, Mar 1997
 begin
 model name (testqp)
 input file name (testqp.fdt)
 output file name (testqp.frs)
 log file name (testqp.flg)
 MPS INPUT PASS FINISHED
 INPUT DATA STATISTICS:
 PROBLEM NAME IS TESTQPFF
 NUMBER OF ROWS (INCLUDING OBJECTIVE)= 9
 NUMBER OF COLUMNS = 10
 NUMBER OF BOUNDED VAR. = 6
 NUMBER OF NONZEROS = 30
 AVERAGE NUMBER OF NONZEROS PER COLUMN = 3
 NUMBER OF F-TYPE ROWS = 3
 RUN TIME OPTIONS:
 MINIMIZE
 TIME TAKEN FOR INPUT/SETUP = 0.38 SECS, TOTAL SO FAR = 0.38 SECS
 SCALING IN PROGRESS ...
 SCALING COMPLETE
 PRESOLVE
 Matrix non-zeros reduced to 28 from 33
 TIME TAKEN FOR SCALE/PRSLVE = 0.05 SECS, TOTAL SO FAR = 0.44 SECS
 TIME TAKEN FOR QPM PREPROC = 0.00 SECS, TOTAL SO FAR = 0.44 SECS

 Symmetric Matrix U Non-Zeros 28
 Cholesky Factor U Non-Zeros 28
 IT# P-PHASE P-INFEZ D-PHASE D-INFEZ P-OBJVAL RELGAP
 1 1 0.57416 1 0.12061 35.770 1.9567
 2 1 0.35614E-03 1 0.10059E-01 24.933 0.20156
 3 2 0.17924E-06 1 0.14675E-02 24.837 0.21546E-01
 4 2 0.88048E-10 1 0.26460E-03 24.825 0.20145E-02
 5 2 0.37038E-13 2 0.13203E-06 24.821 0.61993E-04
 6 2 0.15094E-15 2 0.66014E-10 24.820 0.21119E-05
 7 2 0.80189E-16 2 0.33094E-13 24.820 0.72143E-07
 IPMABC: Terminated, Small Duality Gap *
 *** Optimum solution obtained ****
 *** IPM starting point saved ***
 Objective Function = 0.4682038E+02
 (offset = -0.2200000E+02)
 Elapsed structuring time = 0.329670
 Elapsed solution time = 0.054945
 IPM iteration count = 6
 TIME TAKEN FOR QPM PDSUBS = 0.38 SECS, TOTAL SO FAR = 0.82 SECS
 TIME TAKEN FOR IPM SOLUTION = 0.05 SECS, TOTAL SO FAR = 0.88 SECS
 TIME TAKEN FOR OUTPUT = 0.00 SECS, TOTAL SO FAR = 0.88 SECS

IX-18

9.5 Branch and Bound Algorithm for MIQP

9.5.1 Sub-problem Solution

The Branch and Bound technique is no different in principle when a quadratic objective is added from
the normal LP case (see chapter 6, section 6.4). Each sub-problem arising from the tree development is
solved by using IPM-QP (as described above) rather than by using sparse simplex (Dual or Primal).

Since the addition of a fresh constraint at each branch must lead to a sub-node solution no better than its
parent, the same bounding techniques apply to limit the tree development.

Back to Chapter contents

9.5.2 Simplified Tree

IPM solution requires considerably more memory than sparse simplex and this consideration leads us to
consider a simplified Branch and Bound that itself uses less memory and can accommodate IPM for the
sub-problems.

The two most important simplifications are:

- Discrete constraint-types limited to binary variables (which can be used for other constraint-
types by special modelling)

- Tree development strategy limited to LIFO (Last In First Out).

The latter simplification means that node storage never exceeds the maximum tree-depth, which is
usually much less than the number of binary variables because integer solutions (or infeasible nodes)
appear well before all the binary variables have been fixed.

Back to Chapter contents

9.5.3 User Controls

The main user-control available for tree development is the following:

MIP PRIORITY UP ON * Default OFF

(OFF may also be used). When 'ON' is specified the first sub-branch of each node to be developed is
always the UP branch and variable selection considers the UP fraction of the candidate binary variables
(see chapter 6, section 6.5.3). If the model contains many CLQ-type (Σx j ≤ 1) or XOR-type (Σx j = 1)
constraints - the x j in each case being binary - then this option will have an important effect.

Other elements of the tree development strategy are fixed as follows:

Variable choice = 1 (minimum fraction)
First node choice = 1 (LIFO)
Second node choice = 1 (LIFO)

User-control for these elements may be added in a future release.

IX-19

Control of the Bound and Cutoff can be obtained with the following commands:

MIP BOUND = v * Default high value
MIP CUTOFF TOLERANCE = v * Default 1.0e-12

Which are described in Chapter 6, section 6.8.2.

The criterion for fractional part considered as zero in a binary variable is set with the following
command:

INTEGER TOLERANCE = v * Default 0.001

The level of log-messages issued may be controlled with:

MIP LOG LEVEL = n * 0-4, default 1

It may also be convenient to set the log level for IPM to zero in order to prevent excessive output on the
log.

Other outputs can also be obtained with the following commands:

MIP AGENDA OUTPUT ON * Default OFF
MIP AGENDA OUTPUT ALL
MIP INTSOL OUTPUT ON

Agenda outputs have already been described - see Chapter 6, sections 6.6.3 and 6.6.5. However the
corresponding input features are not available (as yet). Integer Solution output causes the complete set
of primal solution values to be listed in the log whenever an integer solution is found.

Back to Chapter contents

IX-20

9.6 Summary of SPECS Commands

9.6.1 Controls for IPM

There are no SPECS commands specific to IPM for QP. On reading in the data, FortMP automatically
detects the problem is QP, and solves using predictor-corrector IPM. The following are all the IPM
specific commands that are also applicable to QP. They have already been described in Chapter 5.

IPM PHI = v * Default is 10.0
This command sets the PHI control in the elementary formula for calculating µ. See 5.2.1.

IPM POWER = n * n=0-3. Default is 4
This parameter sets the 'POWER' applied to the numerator in the more advanced formula for µ, which
is used in the earlier phase of the predictor-corrector algorithm. See 5.2.1.

IPM DARE = v * Default is 0.9995
‘DARE’ is a fraction between 0 and 1 controlling how closely to approach the nearest boundary when
moving from one interior point to the next. See 5.2.1.

IPM RELATIVE EPSILON = v * Default is 1.0e-7
The relative epsilon is the tolerance within which the duality gap can be considered to be zero. Thus the
optimum solution is reached provided the point is feasible. See 5.2.1.

IPM FEASIBILITY EPSILON = v * Default is 1.0e-4
The feasibility epsilon is the tolerance governing feasibility of the current primal and dual

IPM STARTING POINT METHOD = n * Default is 3

This command selects one of three starting point methods for the predictor–corrector algorithm.

IPM SOLVER CHOLESKY
IPM SOLVER SUPERNODE
IPM SOLVER XSUPERNODE

These commands select the solution mechanism to be used. The default is ‘XSUPERNODE’. See
5.2.3.

IPM TOFIX = n * default = 1.0e-12
This command sets the criterion for minimum pivot size in the Cholesky factorisation. See 5.2.3.

CHOLESKY CG TOLERANCE = v * default = 1.0e-4
CHOLESKY ERROR TOLERANCE = v * default = 10.0

These commands set lower and upper levels to the solution error between which CG iterations are used
to refine the major IPM iterations. See 5.2.4.

MAXIMUM CG ITERATIONS = n * 0-3, default is 3
This command limits the number of CG steps taken at each major IPM iteration. See 5.2.4.

IPM RESTART ON
IPM RESTART OFF

This command specifies whether to ‘RESTART’ the IPM algorithm. Default is OFF. See 5.2.5.

IX-21

IPM SAVE FREQUENCY = n * default n=10
This command specifies the frequency for making a SAVE in IPM. See 5.2.5.

MAXIMUM IPM ITERATIONS = n * default 80
This command sets the termination limit for IPM. A SAVE is made before exit at termination. See
5.2.5.

IPM LOG LEVEL = n * 1-4, default is 1

This command specifies the ‘level’ of the output to be sent to the log file. See 5.2.7.

IPM GRAPHICAL DISPLAY ON
IPM GRAPHICAL DISPLAY OFF

Certain implementations of FortMP have the graphical feature, which displays the pattern of non-zeros
in the matrices followed by a progress display of the iterations. The default is OFF. See 5.2.7.
Back to Chapter contents

9.6.2 Controls for Branch and Bound
Only certain of the MIP controls described in Chapter 6 are available in the simplified Branch and
Bound (others may be added in a future release). The commands available are summarised below (see
section 9.5.3 above for more details).

MIP PRIORITY UP ON * Default OFF
MIP PRIORITY UP OFF

When 'ON' is specified the first sub-branch developed takes the UP direction (see chapter 6, section
6.5.3).

MIP BOUND = v * Default high value
MIP CUTOFF TOLERANCE = v * Default 1.0e-12

These commands control Bound and Cutoff as described in Chapter 6, section 6.8.2.

The criterion for fractional part considered as zero in a binary variable is set with the following
command:

INTEGER TOLERANCE = v * Default 0.001

Sets the criterion for fractional part considered as zero in a binary variable.

MIP LOG LEVEL = n * 0-4, default 1

Sets the level for messages to the log file.

MIP AGENDA OUTPUT ON * Default OFF
MIP AGENDA OUTPUT ALL
MIP INTSOL OUTPUT ON

These commands control out of integer solutions. Agenda output is described in Chapter 6, sections
6.6.3 and 6.6.5. Integer Solution output causes the complete set of primal solution values to be listed in
the log.

Back to Chapter contents

FortMP Manual - CRASH supplement

X-1

Chapter 10.

Advanced Starting Bases

Contents

10.1 Introduction 2

10.2 Primary CRASH Algorithms 3
10.2.1 Basic CRASH Procedure 3
10.2.2 CRASH(LTSF) 3
10.2.3 CRASH(ART) 4
10.2.4 CRASH(ADG) 4
10.2.5 User Controls 4
10.2.6 Logged Output from CRASH 5

10.3 Crossover Algorithms: Purify and Basis Recovery 7
10.3.1 Introduction to Crossover 7
10.3.2 The Push Algorithms 7
10.3.3 The starting CRASH 8
10.3.4 User Controls 8
10.3.5 Logged Output from Crossover Algorithms 9

10.4 Iterative Crash Algorithm 10
10.4.1 Introduction to CRASH(SOR) 10
10.4.2 The iterative SOR procedure 10
10.4.3 Crossover 11
10.4.4 User Controls 11
10.4.5 Logged Output from the SOR algorithm 12

10.5 Summary of SPECS Commands 13
10.5.1 Primary Crash Commands 13
10.5.2 Crossover Commands 13
10.5.3 SOR Commands 14

Advanced Starting Bases

X-2

10.1 Introduction

Two main kinds of solver for LP problems have been described and are available in the
FortMP system:

- Simplex algorithms (Primal and Dual)
- Interior Point Method (IPM)

Both can obtain optimal solutions but only Simplex can obtain a basic, optimal solution - that
is one with exactly m basic and n non-basic variables (see chapter 4, section 4.1).

Because post-optimal work (including MIP) always requires the solver to find a basic
solution, Simplex is the preferred solver and occasions where the end user can be satisfied
with an IPM solution are exceptional.

However, Simplex requires a basic solution before it even starts (of course not necessarily
optimal or even feasible). One such is the UNIT basis obtained by fixing all structural
variables to be non-basic at lower bound, and the logical variables are basic. The unit basis
leaves Simplex with all the work still to do, and a procedure that creates a more advanced
starting basis quickly may improve the overall solution time. Such a procedure may be
termed 'CRASH'.

There are two kinds of CRASH: first the direct kind that starts from the unit basis and
performs rapid basis exchanges without the usual Simplex paraphernalia. These methods are
described below in section 10.2

Then there is the indirect kind, which requires that an initial set of solution values be
obtained. With this solution to start from an iterative procedure is used to generate a basic
solution without either increasing the infeasibility or degrading the objective value. The
better the initial solution, the better is the overall effect in crashing. Iterating to obtain a basic
solution is referred to variously as CROSSOVER, BASREC or sometimes PUSH. The method
is described in section 10.3 below.

In a sense we may consider IPM followed by BASREC to be a highly advanced form of
CRASH - particularly as the final solving with Simplex is usually completed without further
iterations. Most of the time is spent in the IPM algorithm.

FortMP also includes a supplemental version that applies 'SUCCESSIVE OVER
RELAXATION ' (SOR) to develop a set of solution values, and then by using the
CROSSOVER technique creates a starting basis. This is termed CRASH(SOR) and is
described below in section 10.4. SOR is not so effective as IPM for large problems, but
nevertheless can produce an improvement over other methods in certain cases.

Back to Chapter contents

FortMP Manual - CRASH supplement

X-3

10.2 Primary CRASH Algorithms

10.2.1 Basic CRASH Procedure

Before starting any CRASH procedure an initial basis is always set up that comprises all the
logicals, with the structural variables set to zero (i.e. set to lower bound or to zero in the case
of a free variable). This is termed the ‘Unit’ basis. Then the CRASH procedure performs a
succession of exchanges, each of which replaces a basic logical with a non-basic structural.

In any such exchange the pivot element - that is the intersection of row (logical) with column
(structural) in the updated matrix must be non-zero. Updating the matrix in order to verify
this requirement is time-consuming and therefore the large majority of pivots are chosen in a
way that avoids any need for updating. This can be done if the column selected at every step
has nothing but zeros on the pivotal rows of previous steps. The process is called triangular
selection because it leads to a basis matrix that has a lower triangular form when the rows and
columns are re-ordered in the sequence of their selection.

Further steps that require updates before a pivot can be chosen take place, if at all, after a
maximum number of triangular pivots have been chosen. In any case, a final INVERT is
performed as the quickest way to generate an Eta-file so that other SSX algorithms can
follow.

Back to Chapter contents

10.2.2 CRASH(LTSF)

The ‘LTSF’ designation symbolizes “Lower Triangular, Symbolic, designed for Feasibility’.
These attributes may be described as follows:

Lower Triangular: As described above in 10.2.1.

Symbolic: Actual coefficient values are not relevant and Eta-creation is unnecessary
thanks to the triangularity.

Feasibility design: Selection priorities are used to promote feasibility in the eventual
basic solution.

In order to achieve a maximum of lower triangular selection, an over-riding priority for row-
selection is given to sparsity - the row should be selected that has the fewest elements on
those columns which are candidates for selection. Then a pivot column is selected and every
other candidate column intersecting the selected row is ruled out as a pivot for later selection.
 It is also important to keep the basis as sparse as possible and therefore the column selection
itself is similarly governed by sparsity.

In practice there are many ties for selection based solely on sparsity - both the row selection
and the column selection. The way in which ties are broken has a major influence on the
eventual feasibility. For row-selection secondary priority is given to EQ-type rows in order
to remove artificials from the basis, and thereafter to other row-types according to the degree
of restriction. Free rows of course are never selected. Ties in the column selection are

Advanced Starting Bases

X-4

broken by a similar consideration of the feasibility-range; secondary priority being given to
free columns and so on with fixed columns never selected in any case.

Studies have shown that a good measure of feasibility is achieved in most cases with fewer
iterations needed in phase 1 of a following Primal solve-algorithm.

Back to Chapter contents

10.2.3 CRASH(ART)

This CRASH procedure is a follow-up to CRASH(LTSF) designed specifically to exclude
artificials (that is logicals on EQ-type rows) from the basis, in so far as this is possible. Here
of course the selection is no longer triangular or purely symbolic. Each column must be
‘tried out’ before selection and updated by the previous pivot-steps in order to ensure that the
selected basis will be non-singular.

Priority for row-selection is absolute - only artificials can be selected. Column-selection is
based on a heuristic designed to eliminate any obviously singular choices and secure the
stability of the eventual inverse by choosing pivots of a reasonable size.

Back to Chapter contents

10.2.4 CRASH(ADG)

This CRASH procedure is designed to counter degeneracy in the eventual basis (Anti-
degeneracy). It is a modification of CRASH(LTSF) in which the secondary criterion for row-
selection is modified so as to promote a reduction in the degeneracy that often appears at the
outset of the Primal algorithm.

Such degeneracy is simply the result of the initial basic solution having a large proportion of
zero values. In order to overcome it priority must be given to selection of pivot rows where
the solution value is non-zero. As a result the non-zeros are propagated elsewhere when the
basis exchange is applied.

In order to apply this priority the RHS must be updated at each basis-exchange. However the
procedure remains ‘Symbolic’ because actual values are not needed, only a set of markers to
show where the non-zeros were originally and where fill-in took place.

CRASH(ADG) is controlled by the ‘ADG Factor’, which is a code expressing at what level
the ADG-criterion is to take priority over the Feasibility-criterion in the row-selection. By
default EQ-type rows take priority, then come the selected rows of the ADG-criterion and
then come the other row-types. However, this can be changed by means of a SPECS
command, or the ADG-criterion can be ignored altogether.

Back to Chapter contents

10.2.5 User Controls

Although CRASH(LTSF) has been described as purely symbolic, in practice this is not so
because values can sometimes be important. In certain cases a basis can be chosen which,
although triangular and hence strictly non-singular, nevertheless results in numerical

FortMP Manual - CRASH supplement

X-5

difficulty. If a large number of the selected pivots have small values then the application of
the inverse can lead to a progressively expanding numerical error in the calculation.

For this reason a control is applied to prevent selection of any pivot whose size is less than a
certain fraction of the maximum element size in that column. The user may set this fraction
with the following SPECS command:

CRASH ADMIT THRESHOLD = v

Where the default value for ‘v’ is 0.001.

In order to control the use of CRASH(ART) after CRASH(LTSF) the following command
may be used:

CRASH ART = n

Where ‘n’ is 0, 1 or 2. The significance of ‘n’ is:

0 = OFF. CRASH(ART) is not used.

1 = ON, using the normal heuristic for the selection of trial columns. This is the
default

2 = ON, using an extended heuristic for the selection of trial columns.

Finally the use of CRASH(ADG) is controlled with the command:

CRASH ADG FACTOR = n

Where ‘n’ is 0, 1, 2 or 3. The significance of ‘n’ is:

0 = Lowest priority. The ADG-criterion is considered only as the final tie-breaker,
behind any feasibility criterion. This is the default.

1 = ADG-criterion takes priority over selection of inequality constraints (LE and
GE)

2 = ADG-criterion takes priority over selection of inequality and range-constraints.

3 = ADG-criterion takes priority over selection of any constraint-type. In this case
the ADG-criterion entirely supersedes the feasibility criterion, taking second
priority after sparsity.

Back to Chapter contents

10.2.6 Logged Output from CRASH

The normal logged output from CRASH (IPM algorithm not used), based on the simple
example of chapter 7, section 7.2.5, is shown below:
 CRASH(LTSF) ENDED. VARIABLE TYPES:- PLUS BNDD FIX FREE

 LOGICALS REMOVED FROM BASIS:- 1 2 1 0
 STRUCTURALS ENTERED IN BASIS:- 3 1 0 0
 CRASH(ART) ENDED: 1 PASSES: 0 ARTIFICIALS, 0 PIVOTED OUT
 TIME TAKEN FOR CRASHING = 0.07 SECS, TOTAL SO FAR = 0.33 SECS

Advanced Starting Bases

X-6

Listing (1): Logged output from the CRASH

This shows that the LTSF-stage exchanged four logical variables in the initial UNIT basis for
four structurals, and in the ART-stage no further exchanges were made.

A higher log level can be set with command 'SIMPLEX LOG LEVEL = 3' and this will
cause every individual exchange to be listed.

Back to Chapter contents

FortMP Manual - CRASH supplement

X-7

10.3 Crossover Algorithms: Purify and Basis Recovery

10.3.1 Introduction to Crossover

Both CRASH procedures and CROSSOVER procedures aim to produce an advanced starting
basis so as to shorten the work needed by an SSX solver algorithm (Primal or Dual). In the
case of CROSSOVER as opposed to CRASH there exists an initial solution, either provided
by the user or obtained by other means, and this solution is employed in a way to ensure that
none of the work done in pre-solving is lost.

For example consider the case of IPM. This algorithm provides a solution that is both
feasible and optimal (to a certain degree of tolerance) but is not ‘basic’, which means that it
cannot be used for further analysis or for integer programming. In the Crossover we develop
a basis without either creating infeasibility or degrading the objective value.

An initial starting basis can be created by using the CRASH tools described above in 10.2.

This basis now leaves the solution in an anomalous situation because a certain number of the
non-basic variables are neither equal to lower bound nor equal to upper bound. They are
called ‘Super-basic’. In the case of IPM which provides solutions to both the primal and the
dual problems there exist both primal super-basic variables and dual super-basic variables.
We now modify the basis with iterative ‘Purify’ algorithms, which eliminate the super-basic
variables one by one.

There are two ‘Purify’ algorithms - also known as ‘PUSH’ algorithms as follows:

Primal Push which eliminates primal super-basics
Dual Push which eliminates dual super-basics

The Dual Push algorithm itself can start with a fast, crashing stage that makes exchanges
without updating the Eta-file. This is referred to as Dual Crash Push.

If there is only a primal solution known at the outset then only the primal push can be
employed.

In the case of IPM both primal and dual solutions are known and are additionally both
feasible and optimal. As shown by Megiddo, who described the push algorithms, in such a
case primal push, followed by dual push should yield a basic solution that is immediately an
optimal solution not requiring any further iterations in the primal algorithm. The number of
Push steps needed is no more than the number of super-basic values in each solution.

Back to Chapter contents

10.3.2 The Push Algorithms

In a Push iteration we evaluate the changes to solution values of basic variables resulting
from a change to one of the super-basic variables. As the size of the change is allowed to
grow one of two things may happen, either:

Advanced Starting Bases

X-8

- A basic variable may reach a bound, or:

- The super-basic variable may reach its bound in the sense of its change.

If the latter event occurs first then it is only necessary to record all the changes and one super-
basic variable has been rendered non-basic. If the former event occurs first then we make a
change to the basis, replacing the basic with the super-basic and once again the number of
super-basic variables is reduced by one. The overall procedure is the same for both primal
and dual push with re-inversions occurring at the usual intervals.

Back to Chapter contents

10.3.3 The starting CRASH

The starting CRASH is modified for use before doing Purify. The changes are designed to
meet the needs of the primal push algorithm that follows.

All those variables with a primal solution value equal to lower or upper bound are
temporarily considered as fixed. Logical slacks at zero or at range are now considered as
artificials with high priority for removal from the basis in the CRASH. Structurals at lower
or at upper bound are fixed so as never to enter the basis.

In fact the row-selection priorities of the CRASH are altered so as to concentrate entirely on
removal of artificials since otherwise much extra work will be needed by the dual push.
Default selection-heuristic for CRASH(ART) is the advanced version since this improves the
chances of removing artificials.

Variables fixed must of course be released once again when the primal push has terminated.

Back to Chapter contents

10.3.4 User Controls

The initial starting basis may be controlled with the following SPECS command:

CRASH ADMIT THRESHOLD = v * Default v = 0.001

as before with the primary CRASH algorithm. CRASH(LTSF) is followed by an enlarged
CRASH(ART) subject to pivoting controls as in the INVERT algorithm.

The Primal and Dual PUSH algorithms are subject to an 'ADMIT' threshold, which is the
minimum super-basic value considered for applying a PUSH step. The following SPECS
command may be used:

PUSH ADMIT THRESHOLD = v * Default v = 1.0e-4

Another control command available is:

PUSH CALSOL FREQUENCY = n * Default n = 10

Which specifies that a new solution must be calculated after 'n' re-inversions. Note that in
default 'n' is 10 although in standard Primal and Dual re-calculating always takes place after
every re-invert. However frequent re-calculation loses time and is very rarely needed.

FortMP Manual - CRASH supplement

X-9

It is also possible to skip over using the Dual push stage, or just its CRASH preliminary with
the following commands:

DUAL PUSH OFF * Default ON
DUAL CRASH PUSH OFF * Default ON

(ON may also be given). The reliability and efficiency of Dual Push has now greatly
improved so that these commands should not be necessary.

Output of messages to the log during the Push algorithms is controlled with the following
SPECS commands:

PUSH LOG LEVEL = n * Default n = 0
PUSH LOG FREQUENCY = n * Default n = 10

Where level 1 produces log messages only at each re-invert, level 2 at each 10th iteration or
as specified by 'PUSH LOG FREQUENCY'.

Back to Chapter contents

10.3.5 Logged Output from Crossover Algorithms

The following is a normal log from the crossover stage:

 *** No of direct P-push steps = 0
 *** No of direct D-push steps = 3
 CRASH(LTSF) ENDED. VARIABLE TYPES:- PLUS BNDD FIX FREE
 LOGICALS REMOVED FROM BASIS:- 0 0 478 0
 STRUCTURALS ENTERED IN BASIS:- 478 0 0 0
 *** Time triangular = 0.020
 *** There are 478 initial selections, 478 triangular
 *** Time TRpivots = 0.000
 650 M-targets 172 P-targets
 0 C-tried 0 C-selected
 *** Time symbolic = 0.000
 CRASH(ART) ENDED: 1 PASSES: 172 ARTIFICIALS, 0 PIVOTED OUT
 *** Elapsed time in basrec crash = 0.05
 FORREST-TOMLIN ACTIVATED
 PRIMAL PUSH ENDED AT ITER# 112 PUSH COUNT = 10
 *** Elapsed time in primal push = 0.10
 DUAL C-PUSH ENDED:- 56 Exchanges, 3 Push-steps
 *** Elapsed time in dcr-push = 0.05
 DUAL PUSH ENDED AT ITER# 118 PUSH COUNT = 0
 *** Elapsed time in dual push = 0.01
 FEASIBLE BASIS REACHED AFTER ITERATION 118
 Invert demand: Obj = 5501.85 Suminf = 0.00000 ITER# 120
 STATUS = 3 -- OPTIMUM SOLUTION FOUND. 5501.85 ITER# 120
 TIME TAKEN FOR BASREC = 0.27 SECS, TOTAL SO FAR = 3.79 SECS

Listing (2): Logged output from the CROSSOVER

It comprises:

- Two lines relating to 'direct' push-steps that can be made immediately without
any change of basis (using the UNIT basis to start off).

- CRASH log: a normal CRASH(LTSF) log followed by CRASH(ART) details,
the CRASH(ART) summary and total CRASH time.

Advanced Starting Bases

X-10

- Primal Push log: in this case 122 steps of which 112 involved basis exchange
and 10 were simple solution-updates

- Dual Crash Push log: 59 steps of which 56 involved basis exchange (implied
only - there is no Eta-file update).

- Dual Push log: After re-invert a further 6 steps, all requiring basis exchange.

- Primal log: Final optimisation and completion of the basis recovery.

Back to Chapter contents

10.4 Iterative Crash Algorithm

10.4.1 Introduction to CRASH(SOR)

SOR is an iterative procedure designed to produce a good starting primal solution. Its
parameters can be set to concentrate on reducing infeasibility only, or reducing infeasibility
while improving the objective function value. Options exist for the user to limit the process
and prevent it from consuming an excessive amount of time. For certain classes of problems,
such as set covering, set packing and set partitioning problems, the SOR procedure can be
very effective.

The iterative crash algorithm has three stages:

Stage I - an initial solution is calculated using CRASH(LTSF)

Stage II - a feasible non-basic solution is sought using an adapted Successive Over-
Relaxation method (SOR).

Stage III - a basic solution is retrieved by applying the crossover procedure.

Back to Chapter contents

10.4.2 The iterative SOR procedure

The basic iterative procedure is to cycle through the constraints and if a constraint is violated,
then the current solution vector xk is modified as follows:

x x
b a x

a a
ak k i i

T k

i
T

i
i

+ = +
−1 α .

Where α is a relaxation parameter and a a ai
T

i in= (, ... ,).1 This is an orthogonal projection of
xk onto the constraint a x bi

T k
i= . If α = 1, then a x bi

T k
i

+ =1 . If α < 1 then a x bi
T k

i
+ >1 and

the step is said to be under relaxed. If α > 1 then a x bi
T k

i
+ <1 and the step is said to be over

relaxed. Typically 1 < α < 2, hence the term Successive Over-Relaxation.

The objective function may be included as an additional constraint of the form

c x zT = / β ,

FortMP Manual - CRASH supplement

X-11

Where z is the objective function value and β is a ‘reduction’ parameter. This constraint is
included if the option to improve the objective function value is chosen.

The starting point solution x0 is calculated in the simplest way possible by using
CRASH(LTSF) which provides a basis for Invert and then a starting solution is calculated in
the usual way.

Back to Chapter contents

10.4.3 Crossover

Since there cannot be any dual push it will be most unlikely that the crossover can produce an
immediate optimal basis as should be the case with a primal-dual optimum after IPM.
However certain claims can be made.

In the first place, if the SOR solution is entirely feasible, the primal push algorithm will not
generate any infeasibility. Infeasibilities in the basis may indeed grow but equally they may
disappear and once removed cannot become infeasible again. If the non-basic infeasibilities
are quite small there is a good chance they will disappear once the solution is reset at the end
of the primal push.

In the second place the change-directions for the push-steps are taken so as never to degrade
the objective value. Hence the objective will remain as good or better than the objective
value for the SOR solution.

Back to Chapter contents

10.4.4 User Controls

The type of SOR algorithm to be used is controlled with the following commands:

SOR OBJECTIVE ON * Default OFF
SOR OBJECTIVE OFF

Where

OFF means reduce infeasibilty only. This is the default.
ON means reduce infeasibility while improving the objective function value.

If the option to improve the objective function value is chosen then the reduction parameter
β is controlled with the following command:

SOR OBJECTIVE PARAMETER = v

Where the default value for ‘v’ is 1.1.

The SOR relaxation parameter α is controlled with the command:

SOR RELAX PARAMETER = v

Where the default value for ‘v’ is 1.5.

An SOR iteration is a complete cycle through all the constraints. The maximum number of
iterations is controlled with the command:

Advanced Starting Bases

X-12

SOR MAXIMUM ITERATIONS = n

Where the default value for ‘n’ is 2.

Feasibility of a constraint is governed by the violation tolerance. A constraint is considered
violated if |b a xi i

T k− | > violation tolerance. The violation tolerance parameter is controlled
with the command:

SOR VIOLATION TOLERANCE = v

Where the default value for ‘v’ is 1×10-7.

An SOR solution is considered feasible if ||Axk+1-b||<feasibility tolerance. The feasibility
tolerance parameter is controlled with the command:

SOR FEASIBILITY TOLERANCE = v

Where the default value for ‘v’ is 1×10-3.

Convergence of SOR is considered to have occurred when the infeasibilty of the current
solution is not reduced significantly in the next iteration i.e. convergence is considered to
have occurred if ||Axk+1-b|| -||Axk-b|| < converge tolerance. The converge tolerance
parameter is controlled with the command:

SOR CONVERGE TOLERANCE = v

Where the default value for ‘v’ is 1×10-2.

Back to Chapter contents

10.4.5 Logged Output from the SOR algorithm

An example of the log messages listed by SOR is as follows:

TIME TAKEN FOR SCALE/PRSLVE= 0.24 SECS, TOTAL SO FAR = 5.19 SECS
 CRASH(LTSF) ENDED. VARIABLE TYPES:- PLUS BNDD FIX FREE
 LOGICALS REMOVED FROM BASIS:- 1 0 125 0
 STRUCTURALS ENTERED IN BASIS:- 125 1 0 0
 TIME TAKEN FOR CRASHT SOLN = 0.11 SECS, TOTAL SO FAR = 5.30 SECS
 TIME TAKEN FOR KCR PREPROC = 0.05 SECS, TOTAL SO FAR = 5.35 SECS
 CRASH(SOR):- CONVTOL .10000D-01
 TERMTOL .10000D-02
 FREQ 10
 PUSH FOR FEASIBILITY ONLY
 CRASH(SOR):- ITERATIONS = 3
 |Ax-b| = 0.8467392312D+01
 OBJ = 0.1165835523D+05
 TIME TAKEN FOR K-CRASH ALG = 0.03 SECS, TOTAL SO FAR = 5.38 SECS
 TIME TAKEN FOR KCR SOLUTION= 0.07 SECS, TOTAL SO FAR = 5.45 SECS

Listing (3): Logged output from SOR

Back to Chapter contents

FortMP Manual - CRASH supplement

X-13

10.5 Summary of SPECS Commands

10.5.1 Primary Crash Commands

The following commands relate to a primary CRASH:

CRASH ADMIT THRESHOLD = v * Default v = 0.001

This command applies a limit to admissible pivots in the LTSF-stage (relative to row-wise
maxima).

In order to control the use of CRASH(ART) after CRASH(LTSF) the following command
may be used:

CRASH ART = n * Default n = 1

Where ‘n’ is 0, 1 or 2. The significance of ‘n’ is:

0 = CRASH(ART) is not used.
1 = Normal heuristic
2 = Extended heuristic

CRASH ADG FACTOR = n

Where ‘n’ is 0, 1, 2 or 3 giving the priority to assign the ADG-criterion.

Back to Chapter contents

10.5.2 Crossover Commands

The following commands relate to a primary CROSSOVER:

CRASH ADMIT THRESHOLD = v * Default v = 0.001

This command limits the admissible pivots in the CRASH(LTSF) stage (as in a primary
CRASH).

PUSH ADMIT THRESHOLD = v * Default v = 1.0e-4

This controls the minimum super-basic value considered for applying a PUSH step.

PUSH CALSOL FREQUENCY = n * Default n = 10

This control specifies the frequency of re-calculating super-basic solutions, in number of re-
inversions.

DUAL PUSH OFF * Default ON
DUAL PUSH ON
DUAL CRASH PUSH OFF * Default ON
DUAL CRASH PUSH ON

OFF instructions cancel the Dual Push stages. However, these commands should not be
necessary.

PUSH LOG LEVEL = n * Default n = 0

Advanced Starting Bases

X-14

PUSH LOG FREQUENCY = n * Default n = 10

These commands control logged output during PUSH.

Back to Chapter contents

10.5.3 SOR Commands

The following commands relate to SOR:

SOR OBJECTIVE ON * Default OFF
SOR OBJECTIVE OFF

These commands control whether SOR considers both objective and feasibility criteria.

SOR OBJECTIVE PARAMETER = v * Default v = 1.1

Controls the reduction parameter β when objective criterion is considered.

SOR RELAX PARAMETER = v * Default v = 1.5

Controls the relaxation parameter α.

SOR MAXIMUM ITERATIONS = n * Default n = 2

Controls the number of complete cycles through all the constraints.

SOR VIOLATION TOLERANCE = v * Default 1.0d-7
SOR FEASIBILITY TOLERANCE = v * Default 1.0d-3
SOR CONVERGE TOLERANCE = v * Default 1.0d-2

These commands control tolerances and limit the algorithm.

Back to Chapter contents

Appendix A: Input/Output Data Layouts

A-1

APPENDIX A: Input/Output Data Layouts

Contents

A1. MPS-FORM DATA LAYOUTS 2

A1.1 MPS Layout for LP and MIP problem data 2

A1.2 Marker data for Binary, Integer and SOS specification 19

A1.3 MPS-format of external BASIS data (input or output) 21

A2. FREE-FORM LAYOUT AND LONG NAMES 22

A2.1 Free-form input layout 22

A2.2 Name length 25

A3. TABULAR LAYOUTS (MG/RW INTERFACE) 26

A3.1 Tabular input layout 26

A3.2 Tabular output layouts 29

A4. MIP AGENDA LAYOUTS 32

A4.1 Standard, named agenda layout 32

A4.2 Listed, un-named agenda layout 33

FortMP:- Appendices

A-2

A1. MPS-form data layouts

A1.1 MPS Layout for LP and MIP problem data

In MPS format the data is divided into five sections as follows:

Section name Purpose

ROWS To specify the name and type of each constraint row in the problem. This
includes the objective row to be minimised (or maximised).

COLUMNS To specify the name of each variable and give the associated constraint and
objective coefficients (only non-zeros need be entered).

RHS To specify a name for the right hand side and give the RHS values.

RANGES To specify a name for any range-set and give RHS range values. If there are no
RHS ranges in the data then this section is omitted.

BOUNDS To specify a name for any bound-set and give the lower and upper bounds of the
variables. The BOUNDS section is also used to specify binary and integer
variables for MIP. If there are no bounds in the data then this section is omitted.

These five sections appear in this order in the input data, each section headed by an indicator record
which consists of section name beginning in position 1.

The data-file begins with a 'NAME' record and ends with an 'ENDATA' record so that the
complete layout is as follows:

- NAME record
- ROWS header record
- ROWS data section
- COLUMNS header record
- COLUMNS data section
- RHS header record
- RHS data section
- RANGES header record
- RANGES data section
- BOUNDS header record
- BOUNDS data section
- ENDATA record

Appendix A: Input/Output Data Layouts

A-3

In the optional RANGES and BOUNDS sections the header may be omitted if there is no data to
follow. Note however that the RHS header record must appear even if there is no RHS data.

Comment lines bearing an asterisk (*) in position 1 may appear anywhere and will be ignored.

Data records in all five sections have a common fixed layout of six fields as follows:

Field Positions Contents

1 2-3 A type code (depending on the section)

2 5-12 A name

3 15-22 A name

4 25-36 Value corresponding to the name in field 3

5 40-47 A name of the same type as field 3

6 50-61 Value corresponding to the name in field 5

The contents of each field in each section is described below.

ROWS section:-

Field Entry Meaning

1 GE, G, >= or > Greater than or equal to

LE, L, <= or < Less than or equal to

EQ, E or = Equal to

N No constraint (i.e. free row or objective)

2 Row name The name of the row

Fields 3, 4 and 5 are not used

A row name may contain any characters including blanks after the leading character. Leading
blanks are ignored, however the user is always advised to enter names left-justified to avoid
confusion. Note that the name 'R1 11' is different from the name 'R 111' for example.

FortMP:- Appendices

A-4

COLUMNS section:-

Field Contents

1 Blank

2 Column name

3 Row name

4 Value on the column/row given on fields 2 and 3

5 Row name (optional)

6 Value on the column/row given in fields 2 and 5 (blank if field 5
is not used)

Fields 5 and 6 may be omitted.

Column names have the same description as row names given above.

Values must be entered at the right in fields 4 and 6 unless the decimal point is coded (any trailing
blanks are treated as zeros).

All the data for any one column must be collected together (including the objective row) and appear
on consecutive records. The order of rows within a column is insignificant, however the same row
should not appear more than once.

RHS section:-

Field Contents

1 Blank

2 RHS set name

3 Row name

4 Value on the RHS/row given on fields 2 and 3

5 Row name (optional)

Appendix A: Input/Output Data Layouts

A-5

6 Value on the RHS/row given in fields 2 and 5 (blank if field 5 is
not used)

Fields 5 and 6 may be omitted.

The user may provide for alternative problems in one data-file by including multiple RHS-sets. By
default the system selects only the first RHS-set and ignores the remainder. RHS-set names have
the same description and values are entered in the same way as given above.

All the data for any one RHS-set must be collected together and appear on consecutive records.
The order of rows within an RHS-set is insignificant, however the same row should not appear more
than once.

An empty RHS-set (values all zero) can be built with one record assigning the RHS-set name and
specifying zero on some row. This is not necessary if the RHS-set is to be the only RHS-set
provided.

RANGES section:-

Field Contents

1 Blank

2 RANGE set name

3 Row name

4 Value on the RANGE/row given on fields 2 and 3

5 Row name (optional)

6 Value on the RANGE/row given in fields 2 and 5 (blank if field
5 is not used)

Fields 5 and 6 may be omitted.

Range values apply in a manner dependant on the row-type to form lower and upper bounds on the
LHS expression (Σaijx j) as follows:

For an LE-type constraint:
RHS-RANGE <= Σaijx j <= RHS

For a GE-type constraint:
RHS+RANGE >= Σaijx j >= RHS

For an EQ-type constraint with positive range-value:

FortMP:- Appendices

A-6

RHS+RANGE >= Σaijx j >= RHS
For an EQ-type constraint with negative range-value:

RHS+RANGE <= Σaijx j <= RHS

No other possibilities exist. The range-value for a GE-type or LE-type constraint must be positive
or zero - if range value is zero then the constraint becomes an equality.

The user may provide for alternative problems in one data-file by including multiple RANGE-sets.
By default the system selects only the first RANGE-set and ignores the remainder. RANGE-set
names have the same description and values are entered in the same way as given above.

All the data for any one RANGE-set must be collected together and appear on consecutive records.
 The order of rows within a RANGE-set is insignificant, however the same row should not appear
more than once.

There is no such thing as an empty RANGE-set. Zero values, indicating an equality constraint, must
be explicitly entered.

BOUNDS section:-

Field Contents

1 Bound-type code as specified below

2 Bound set name

3 Column name

4 Value of the bound whenever relevant

Fields 5 and 6 are not used

The bounds section is used not only to specify bounds on continuous variables, but also to specify
binary and integer variable types in MIP.

Each variable is given a default type of PL, meaning a continuous variable with upper bound plus
infinity and lower bound zero. This is modified by bounds data as follows:-

Type code Bound description

UP Upper bound - value is given in field 4

LO Lower bound - value is given in field 4

FX Fixed value - upper and lower bound both equal and given in field 4

Appendix A: Input/Output Data Layouts

A-7

FR Free variable - upper bound plus infinity and lower bound minus
infinity.

PL Plus-type (this is allowed but redundant)

MI Minus-type - lower bound minus infinity

BV Binary variable. Only legal values are zero and one.

UI Integer variable with upper bound given by the value in field 4

LI Integer variable with lower bound given by the value in field 4

SC Semi-continuous variable. Either zero or lies in the range from 1.0 to
the value given in field 4.

A variable may require two records to specify it in full and the possible combinations allowed for the
same variable are:-

Combine Meaning

LO and UP Bounded variable

LO and PL Plus-type variable with given lower bound

MI and UP Minus-type variable with given upper bound

LI and UI Integer variable with lower and upper bounds both given.

LO and UI Same as LI/UI (not recommended)

LI and UP Same as LI/UI (not recommended)

LI and PL Same as LI on its own (no upper bound)

MI and UI Integer variable with upper bound and no lower bound

The user may provide for alternative problems in one data-file by including multiple BOUND-sets.
By default the system selects only the first BOUND-set and ignores the remainder. BOUND-set
names have the same description and values are entered in the same way as given above.

All the data for any one BOUND-set must be collected together and appear on consecutive
records. The order of columns within a BOUND-set is insignificant, however the same column
should not appear more than once except in one of the legal combinations given above.

FortMP:- Appendices

A-8

NAME record:-

The NAME record at the beginning of the data-file has the following layout:

Position Contents

1-4 NAME

15-22 (field 3) Problem-name which may comprise any characters.

ENDATA record:-

The ENDATA record at the end of the data-file has the following layout:

Position Contents

1-6 ENDATA

The proformas given on the following pages are intended as a convenience for the user to copy and
use as data-entry forms.

Appendix A: Input/Output Data Layouts

A-9

 ROWS proforma

Field 1
2-3

Field 2
5-12

Field 3
15-22

Field 4
26-36

Field 5
40-47

Field 6
50-61

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

FortMP:- Appendices

A-10

Field 1, Row-type:- LE = Less than or Equal GE = Greater than or Equal
EQ = Equal N = Non-binding (objective)

Field 2, Row name

Appendix A: Input/Output Data Layouts

A-11

 COLUMNS proforma

Field 1
2-3

Field 2
5-12

Field 3
15-22

Field 4
26-36

Field 5
40-47

Field 6
50-61

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

FortMP:- Appendices

A-12

Field 2, Column name
Field 3, Row name Field 4, Value
Field 5, Row name Field 6, Value

Appendix A: Input/Output Data Layouts

A-13

 RHS proforma

Field 1
2-3

Field 2
5-12

Field 3
15-22

Field 4
26-36

Field 5
40-47

Field 6
50-61

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

FortMP:- Appendices

A-14

Field 2, RHS-set name
Field 3, Row name Field 4, Value
Field 5, Row name Field 6, Value

Appendix A: Input/Output Data Layouts

A-15

 RANGES proforma

Field 1
2-3

Field 2
5-12

Field 3
15-22

Field 4
26-36

Field 5
40-47

Field 6
50-61

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

¦¦¦¦¦¦¦

FortMP:- Appendices

A-16

Field 2, RANGE-set name
Field 3, Row name Field 4, Value
Field 5, Row name Field 6, Value

Appendix A: Input/Output Data Layouts

A-17

 BOUNDS proforma

Field 1
2-3

Field 2
5-12

Field 3
15-22

Field 4
26-36

Field 5
40-47

Field 6
50-61

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

¦¦¦¦¦¦¦ ¦¦¦¦¦¦¦¦¦

Field 1, Bound type code LO = Lower bound UP = Upper bound
FX = Fixed value FR = Free variable
MI = Minus-type PL = Plus-type (default)
LI = Integer variable, lower bound UI = Integer variable, upper bound

FortMP:- Appendices

A-18

BV = Binary variable SC = Semi-continuous, upper bound
Field 2, Bound-set name
Field 3, Column name Field 4, Value

Back to Chapter contents

Appendix A: Input/Output Data Layouts

A-19

A1.2 Marker data for Binary, Integer and SOS specification

Marker lines are used in the COLUMNS section of the MPS-form input data to define a list of
consecutively sequenced variables. Four types of marker line can be used as follows:

Marker Meaning

INTORG Beginning of a consecutive sequence of Integer or Binary
variables

INTEND End of a consecutive sequence of Integer or Binary variables

SOSORG Beginning of a special ordered set (type SOS1 or SOS2)

SOSEND End of a special ordered set (type SOS1 or SOS2)

A marker line has the keyword 'MARKER' (quotes included) in Field 3 of the standard MPS-form
layout and the type keyword 'xxxORG' or 'xxxEND' either in Field 4 or in Field 5 (quotes included).

The full layout is as follows:

Field 1
(2-3)

Field 2
(5-12)

Field 3
(15-22)

Field 4
(25-32)

Field 5
(40-47)

Field 6
(50-61)

blank Label 'MARKER' 'INTORG' blank blank

blank Label 'MARKER' 'INTEND' blank blank

SOS type Label 'MARKER' 'SOSORG' REF-row blank

blank Label 'MARKER' 'SOSEND' blank blank

Each marker line must appear between one column and another - a column may not be split by a
marker.

It is not allowed to overlap sections of the data with marker lines since all sets must be mutually
exclusive. Thus markers are always to be in pairs with the 'ORG' type marker followed by its
corresponding 'END' type marker before any other marker can appear.

Fields 4 and 5 are interchangeable - the marker type keyword may be placed in field 5 and when
'SOSORG' is placed in field 5 the 'REF-row' data is placed in field 4.

Blank fields should be left blank (but may contain unused material).

FortMP:- Appendices

A-20

The 'Label' field is intended for the user to attach a name or label to a set. For this purpose the
'END' marker should have the same label as its corresponding 'ORG' marker. However this is quite
optional.

'SOS type' in Field 1 is either 'S1' or 'S2' meaning type SOS1 or type SOS2 respectively

'REF-row' in field 5 (or field 4) of a SOSORG-type marker line is optional. If left blank then a
default row with coefficients 1,2,3,... is assumed.

Further information on defining binary or integer variables with markers is given in chapter 6, section
6.3.3.

Back to Chapter contents

Appendix A: Input/Output Data Layouts

A-21

A1.3 MPS-format of external BASIS data (input or output)

In this format the input basis data comprises:

NAME record
BASIS header record (optional)
BASIS data section
ENDATA record

In the BASIS data section the layout employs fields as before described as follows:-

Field 1 Code for the type of record as follows:
XL, XU introducing a basic variable
UL, LL introducing a non-basic variable

Field 2 Name of a structural variable which becomes basic for codes XL, XU or remains
non-basic for codes UL, LL.

Field 3 Name of a logical variable which becomes non-basic for codes XL, XU. Not used
for codes UL, LL

The letter U or L in the code indicates whether the non-basic variable is to receive upper bound or
lower bound status.

The rationale behind this layout is that an initial starting basis is defined and each record defines an
exchange to this basis. Initially all row variables are basic and all column variables are non-basic at
lower bound. Each record of type XL or XU defines an exchange between a column variable
(structural) which becomes basic and a row variable (logical) which becomes non-basic. The UL
records simply name non-basic columns which are to receive at-bound status and LL records are
actually redundant.

An external basis is intended for use even when the input problem has been revised so that a variety
of inconsistencies in MPS format basis data are allowed. For example if a name is not recognised
then a warning message is given on the log but the system carries on by simply ignoring that record.

Back to Chapter contents

FortMP:- Appendices

A-22

A2. Free-form Layout and Long Names

A2.1 Free-form input layout

The following SPECS commands:

INPUT FREE FORMAT ON
INPUT LONG NAMES ON

are both associated with Free-format input. Free-format input is based upon and is very similar to
MPS-form input with just one difference that there is no fixed field layout beyond position 5 in free-
form data lines.

A Free-form data line consists of the fixed-form MPS field 1 in positions 2-3 and from positions 5
onwards a number of 'tokens' separated by one or more blank spaces, where a 'token' is a string of
1 to 16 characters that are not blank. For each type of MPS-form data-line there is a precise free-
form equivalent with blank-separated tokens replacing the fixed fields from positions 5-62 in the
same order from left to right. Indeed an MPS-form data file can perfectly well be read in as free-
form data, provided that no names are blank or have interior embedded blanks, and provided that
no material exists in the unused part of the fixed layout. For 'MARKER' lines the label is treated as a
name and must be non-blank.

Free-form data is sectioned by header lines:

ROWS
COLUMNS
RHS
RANGES
BOUNDS

with the keyword beginning in position 1, and the last section is terminated by:

ENDATA

again beginning in position 1.

Any line beginning with '*' in position 1 is treated as commentary and ignored.

Apart from comment-lines the first line in the free-form input data must have 2 tokens:

NAME beginning in position 1
PROBLEM Problem name located freely

The remaining data lines within each section have positions 1-4 fixed exactly as in MPS-form, that is
to say with a type-code (if any) in positions 2-3 and blank otherwise. The first name in the line
begins at or after position 5, optionally preceded by one or more blanks.

Appendix A: Input/Output Data Layouts

A-23

Since a token must inherently obey the following:

- First character is non-blank
- There are no embedded blanks

these are rules that must apply to all names - that is to:

- Row names
- Column names
- RHS-set names
- RANGE-set names
- BOUND-set names
- Problem name
- Label in a ‘marker’ line

Free-form layouts are summarised in the following tables:

Field Token
no

ROWS section COLUMNS
section

MARKER line

2-3 Row type SOS-type

5-end 1 Row name Column name Label

2 Row name 1 ‘MARKER’

3 Value 1 Marker type in
quotes (‘xxxORG’,
‘xxxEND’)

4 Row name 2 Ref-row name

5 Value 2

Field Token
no

RHS section RANGES section BOUNDS section

2-3 Bound-type code

5-end 1 RHS-set name RANGE-set name BOUND-set name

2 Row name 1 Row name 1 Column name

3 Value 1 Value 1 Value

FortMP:- Appendices

A-24

4 Row name 2 Row name 2

5 Value 2 Value 2

where the details of type-codes and other meanings, options etc are exactly as described for
corresponding fields in MPS-form data - see Appendix A1 above.

In a MARKER line the SOS-type in positions 2-3 and the reference-row in token 4 apply only to
marker type SOSORG and are omitted for other marker-types. Token 4 may also be omitted for
the default reference-row. It is also permitted to switch the order of tokens 3 and 4, putting a
dummy as token 3 if the REF-row name is not given.

Back to Chapter contents

Appendix A: Input/Output Data Layouts

A-25

A2.2 Name length

Long names, up to 16 characters, can be employed with the SPECS command:

INPUT LONG NAMES ON

This applies to Row names and Column names only, not to RHS-set, RANGE-set, Bound-set and
Problem names which remain of maximum length 8 characters.

If long names apply then the form of input layout used is free-format - there is no fixed layout for
long-name input. Therefore the rules given above in section A2.1 for free-format input necessarily
apply.

Back to Chapter contents

FortMP:- Appendices

A-26

A3. Tabular Layouts (MG/RW interface)

A3.1 Tabular input layout

Tabular input is an alternative to the normal MPS-form of input layout in which the rows and
columns are not identified by name but rather by index. This layout is invoked with the SPECS-
command 'INPUT TYPE MG'

Problem data is presented on the standard input channel (file name 'model.mps') in a FORTRAN
formatted file which is described below. The data is essentially the same as for the internally callable
interface - see chapter 6, section 6.2. In this description the names used are those of section 6.2.3
which gives a more detailed description.

Data is organised in sections as follows:-

- Header section
- Coefficient section
- Columns section
- Rows section
- Special ordered set section

Each section is described below.

Input Header Section

The header section comprises two records as follows:-

Record 1 holds the problem name - PNAME - in positions 1 to 8

Record 2 holds the following

Name Description Format

NC Number of columns (structural variables) I10

MR Number of rows (logical variables) I10

NAIJ Number of non-zero coefficients in the matrix I10

NSET Number of special ordered sets I10

If there are no special ordered sets then NSET must be zero.

Appendix A: Input/Output Data Layouts

A-27

Input Coefficient Section

The coefficient section contains NAIJ records (i = 1,2,...,NAIJ) as follows:-

Name Description Format

COLIN(i) Column number I10

ROWIN(i) Row number I10

AIJ(i) Coefficient 3X,D20.13

The sequence of data presentation is not material. Although normally to be presented either column-
wise (as in MPS format) or row-wise, the system accepts any sequence and re-orders the data
internally.

The data is subject to consistency conditions as in MPS format:

- Every column must contain at least one entry.
There may not be any duplicate entries

Input Columns section

One record for each structural variable (j = 1,2,...,NC) as follows:-

Name Description Format

j Column number I10

LOB(j) Lower bound 3X,D20.13

UPB(j) Upper bound 3X,D20.13

COST(j) Cost (objective value) 3X,D20.13

MITYP(j) Mixed Integer type code as follows:
 0 = Continuous variable
 1 = Binary variable
 2 = Integer variable

I10

FortMP:- Appendices

A-28

 3 = Semi-continuous
 4 = Member of SOS1
 5 = Member of SOS2

Input Rows section

One record for each logical variables (i = 1,2,...,MR) as follows:-

Name Description Format

i Row number I10

LHS(i) Left hand side, or lower bound of the
expression

3X,D20.13

RHS(i) Right hand side, or upper bound of the
expression

3X,D20.13

Input Special Ordered Set section

If the model has special ordered sets then a further section is added with one record for each set (i =
1,2,...,NSET) as follows:

Name Description Format

i Set number I10

SREF(i) Reference row number I10

SFUN(i) Function row number I10

SBEG(i) Column number of 1st member I10

SEND(i) Column number of last member I10

The type of each SOS is indicated by the corresponding entries in array MITYP.

A reference row and a function row must exist for each set and sets may not overlap each other.

Back to Chapter contents

Appendix A: Input/Output Data Layouts

A-29

A3.2 Tabular output layouts

Tabular output is an alternative to the standard form of output layout in which the rows and columns
are not identified by name but rather by index. This layout is invoked with the SPECS-command
'OUTPUT TYPE RW'

Problem data is written to the standard output channel (file name 'model.res') in a FORTRAN
formatted file which is described below. The data written is essentially unchanged.

Data is organised in sections as follows:-

- Header section
- Columns section
- Rows section

Each section is described below.

Output Header Section

The header section comprises one record as follows:-

Name Description Format

PROBNM Problem name A8

MROW Number of rows I8

NCOL Number of columns I8

OBJVAL Objective value E14.6

STCODE A 3-character code for the solution status. Values are
given below.

2X,A3

Possible values for the code STCODE are as follows:

'OPT' indicates the LP optimum solution
'INF' indicates there is no feasible solution (the output solution is infeasible)
'UNB' indicates that solutions exist with unbounded objective value.
'***' This code is given for any other case

Output Columns section

FortMP:- Appendices

A-30

One record for each structural variable (j = 1,2,...,NCOL) as follows:-

Name Description Format

JCOL 'X' followed by the column number A8

STAT A 1-character status code for the column. Values are
given below.

2X,A1

XVAL Solution value E14.6

DJ Reduced cost (dual solution value) E14.6

LOB Lower bound E14.6

UPB Upper bound E14.6

MARK A 1-character marker for infeasibility 2X,A1

The column number JCOL is written with full leading zeros after the 'X'. Example: column 1 is
written 'X0000001'

Possible values for the status code STAT are:

'B' Indicates a basic variable
'L' Variable is at lower bound
'U' Variable is at upper bound
'F' The variable has a fixed value (this code overrides any possible alternatives)

Possible values for the feasibility marker MARK are:

'F' Feasible in both the primal and the dual
'P' Primal infeasible
'D' Dual infeasible
'B' Infeasible in both the primal and the dual

Output Rows section

One record for each logical variable (i = 1,2,...,MROW) as follows:-

Name Description Format

ICOL 'R' followed by the row number A8

Appendix A: Input/Output Data Layouts

A-31

STAT A 1-character status code for the row. See description
below.

2X,A1

RVAL Value of the row expression ΣAijXj. E14.6

SP Shadow price (dual solution value) E14.6

LRHS Lower bound to the RHS E14.6

URHS Upper bound to the RHS E14.6

MARK A 1-character marker for infeasibility 2X,A1

The row number JCOL is written with full leading zeros after the 'R'. Example: column 1 is written
'R0000001'.

The solution value RVAL represents the value of the row-expression ΣAijXj and not the value of
the logical variable. This is according to the usage of the standard output layout and the values
LRHS and URHS give the lower and upper bounds of this expression.

Possible values for the status code STAT are the same as for columns given above. Note that the
status refers to the logical variable (or slack) and in non-basic situations is opposite to the status of
the row-expression.

Possible values for the feasibility marker MARK are the same as for columns.

Back to Chapter contents

FortMP:- Appendices

A-32

A4. MIP AGENDA Layouts

A4.1 Standard, named agenda layout

MIP agenda is divided in two sections as follows:

Section name Purpose

FIX (FIXMIX or
FIXTRY)

To specify integer-feasible values in order to obtain an initial integer
solution rapidly

PRIORITY To specify priority classes for selection of branch-entity

Either or both sections may appear in either order (once only). The FIX section follows a header
FIXMIX or FIXTRY according to whether to create tree nodes normally during FIX processing or
simply to probe for the indicated solution. The PRIORITY section follows a header - PRIORITY.

The following keywords are used to begin and end the file

AGENDA
ENDATA

Comment lines beginning with '*' (asterisk) in position 1 may appear anywhere and will be ignored.

The fields used are the same as those of MPS-format, or free-format with either of the SPECS
commands:

INPUT FREE FORMAT ON
INPUT LONG NAMES ON

The layout of both sections is the same, as follows:

Field no
(MPS-form)

Token no
(Free-form)

Contents

2 (5-12) 1 Name of 1st column to be assigned

3 (15-22) 2 Name of last column to be assigned

4 (25-36) 3 Value to assign

Appendix A: Input/Output Data Layouts

A-33

The default value zero is assigned to every discrete variable before assignment begins. It is
permitted to overwrite one assignment with a later one in the same data section.

Standard agenda data is input/output via disk-file named:

modname.agn

where ‘modname’ is the model nmae.

Back to Chapter contents

A4.2 Listed, un-named agenda layout

Listed agenda data employs the same overall structure as standard agenda data with the same
keywords as before:

AGENDA
FIXMIX
FIXTRY
PRIORITY
ENDATA

In addition the same default value zero is used for every assignment and assignments can be
overwritten as before. The data layout is fixed as follows:

Field Contents

1-10 Index of 1st column to be assigned

11-20 Index of last column to be assigned

21-30 Integer value to assign

with data right-justified in each field.

The input/output file name is as follows:

modname.agl

where ‘modname’ is the model name as before.

Note that the use of standard agenda data causes equivalent listed form agenda to be created
internally as scratch files.

Back to Chapter contents

Appendix B: SPECS Commands

B-1

APPENDIX B: SPECS Commands

This appendix lists all the SPECS commands available in the current version (V2.3) of FORTMP.
Those commands which have already been specified in this manual are listed with reference to the
chapter/section concerned. Other commands are described and the general syntax is given in full.

Contents

B1. SYNTAX 3

B1.1 Meta-syntax 3

B1.2 Simplification and abbreviation 3

B1.3 BEGIN and END commands 4

B1.4 Commentary 5

B2. COMMAND DESCRIPTIONS 5

B2.1 Model name and data file names 5

B2.2 Input type and problem selection 6

B2.3 Choice of main algorithm 7

B2.4 Maximum limits 8

B2.5 Save and restart commands 10

B2.6 SSX controls:- algorithmic 11

B2.7 SSX controls:- parameters 12

B2.8 IPM controls:- algorithmic 14

B2.9 IPM controls:- parameters 15

B2.10 MIP controls:- algorithmic 16

B2.11 MIP controls:- parameters 17

B2.12 Minor algorithm controls 18

B2.13 Log level and frequency 20

FortMP: Appendices

B-2

B2.14 Output controls 21

B2.15 Limits for cut-generation and matrix extension 22

B3. ALPHABETICAL LIST OF COMMANDS 23

Appendix B: SPECS Commands

B-3

B1. Syntax

B1.1 Meta-syntax

In what follows the syntax of a command is indicated in bold lettering.

Keywords are given in capitals (exceptionally in lower case with duplicate commands), user
provided information is given in lower case. An integer value is indicated by the conventions 'n', 'nn',
'nnn'. Real values are indicated by the convention 'vvv'.

Square brackets are used for an optional part of the syntax, for example 'MODEL [NAME]
(name)' indicates a command that may be written 'MODEL (name)'. Note that ordinary
parentheses are a part of the syntax and may not be omitted.

Angle brackets are used for alternatives, separated by a slash, for example 'INPUT TYPE
<MPS/FREE/MG/MPL>' implies four possible alternative commands 'INPUT TYPE MPS',
'INPUT TYPE FREE', 'INPUT TYPE MG' and 'INPUT TYPE MPL'.

Extra blank spacing may be added before or between syntactic components. Blank spacing must
not be embedded within a component.

Back to Chapter contents

B1.2 Simplification and abbreviation

It is possible to omit the SPECS file altogether when all commands are to be assigned to their
defaults. Input problem data is in MPS format on the file named 'model.mps'.

Any command may be omitted and in such a case the system assumes a default setting.

All keywords may be abbreviated to the first 4 or more letters. The first keyword (only) may be
abbreviated to the first 3 letters so long as no ambiguity arises. For example 'MAXIMIZE' could be
written as, 'MAXIM', 'MAXI' or as 'MAX'. No confusion arises because 'MAXIMUM' is always
followed by a further keyword.

The syntax '<ON/OFF>' may be omitted in all cases signifying 'ON'. In principal it should be given
as '[<ON/OFF>]' but for simplicity this has not been done. For example the command 'SCALE' is
the same as 'SCALE ON' and 'CRASH' is the same as 'CRASH ON' although these two
commands have opposite defaults.

Back to Chapter contents

FortMP: Appendices

B-4

B1.3 BEGIN and END commands

The SPECS command file 'fortmp.spc' is split into sections permitting different commands to apply
in multiple calls to the solver (e.g. via SUBMP1). A section is delimited by the following two lines:

BEGIN [(sectid)]

END

where 'sectid' is a string of up to 8 characters, blank if omitted, that gives an identifier to each
section. 'END' is not necessarily the end of the file but merely terminates the section, and any lines
between 'END' and the next 'BEGIN' (or end of file) are ignored.

In a stand-alone FortMP execution there is usually only one relevant section, and this starts at the
first 'BEGIN' line on the file, whatever section-id (if any) is given for it. However the special name
'ALL' - command 'BEGIN (ALL)' - can change this, as explained below.

In a run where FortMP is used as a callable sub-system (e.g. with SUBMP1) the several
invocations may well require different SPECS so that two or more lists may be needed. The list to
be used for one call is selected by the 'SPID' parameter - see chapter 7, section 7.1.2. The
following special values for 'SPID' should be noted:

SPID Meaning

Blank Select the first section. If the first section is
'ALL' then select the first and second sections.

'NOSPECS
'

Bypass SPECS-command input altogether. All
controls remain at default settings.

'DEFAULT
'

Has a special meaning and should never be
used for SPID

'ALL' Has a special meaning and should never be
used for SPID

Note that if a section named 'ALL' is to be used it should come first on the SPECS file. After
reading and interpreting this section the system continues to search for another section
corresponding to the SPID parameter. Note also that in a stand-alone FortMP execution the
parameter SPID is blank.

If the command 'CALL SPCINT(TCTN)' (see section 7.4.2) is used so as to load the
SPECS file for internal communication each time the callable sub-system is invoked, then a section
with the name 'DEFAULT' is interpreted specially. It is not stored as a section to be communicated
but rather it modifies the actual control defaults on the spot. The effect is the same as for an 'ALL'
section but 'DEFAULT' commands are applied even when the string 'NOSPECS' is used for
SPID. 'DEFAULT' commands are not listed in the log. 'DEFAULT' as a section name has no
special meaning for a stand-alone execution, nor if 'CALL SPCINT(TCTN)' is not used to
load the SPECS file.

Appendix B: SPECS Commands

B-5

Back to Chapter contents

B1.4 Commentary

The character asterisk (*) may be used to terminate the command on any line. Material that follows
is ignored and can be used as commentary for that command.

Any line with asterisk (*) as the first non-blank character is ignored. This provides a means to
cancel a command without removing it from the SPECS file.

Another way to introduce commentary is to place the 'END' command after the last active
command and all lines following 'END' are ignored.

Back to Chapter contents

B2. Command descriptions

In the tables that follow the range of possible values is given for each command, together with the
coding and default value. This is intended as a reference for the user to find the syntax of any
command quickly. The tables also give the reference in this manual to the chapter and section where
each command is specified and references to other relevant sections.

In addition to commands already described in the manual there are additional commands for
specialised purposes. The description of these commands is given with manual reference to
'Appendix'.

Also included in the tables are several commands shown in lower case lettering. These are
alternative forms for other commands (mentioned in upper case above the lower-case command)
which have been retained for compatibility with earlier versions of FortMP.

Back to Chapter contents

B2.1 Model name and data file names

Command Manual
ref

Lowest
value

Highest
Value

Default
value

MODEL NAME (modnam) 3.6 'model'

INPUT FILE NAME (fnam) 3.6 ' .mps'

OUTPUT FILE NAME (fnam) 3.6 ' .res'

LOG FILE NAME (fnam) 3.6 ' .log'

BASIS FILE NAME (fnam) 3.6 ' .bsf'

BBASIS FILE NAME (fnam) Below ' .bbf'

AGENDA FILE NAME (fnam) Below ' .agn'

FortMP: Appendices

B-6

DIRECTORY NAME (pthnam)

PATH NAME (pthnam)

3.6 blank

Default for all file names is initially blank and unless entered by command is then set to
'modname.xtn' where:

modname is the model name

xtn is a 3-character extension

The following additional commands are available:

AGENDA FILE NAME (fnam)
BBASIS FILE NAME (fnam)

These commands assign names to the corresponding input files (the output files always receive the
default file-name).

Back to Chapter contents

B2.2 Input type and problem selection

Command Manual
ref

Lowest
value

Highest
value

Default
value

MAXIMIZE 4.6.1 0=MIN 1=MAX 0 (MIN)

MINIMIZE 4.6.1

INPUT TYPE <MPS/FREE/MG/MPL>
input type inf

3.2.1
3.2.2
3.2.3

Code:- 1=MPS
2=FREE

3=MG/MPL/inf

MPS

INPUT LONG NAMES <ON/OFF> 3.2.3 0=OFF 1=ON OFF

INPUT INTORG [UPPER] BOUND
 = v

6.3.3 1 - 0 (See
below)

OBJECTIVE NAME (objname) 3.2.1 blank

RHS NAME (rhsname) 3.2.1 blank

RANGES NAME (rngname) 3.2.1 blank

BOUNDS NAME (bndname) 3.2.1 blank

INPUT SAVE NAMES <ON/OFF> 7.3.2 0=OFF 1=ON OFF

Appendix B: SPECS Commands

B-7

OBJECTIVE OFFSET <ON/OFF> 7.3.6 0=OFF 1=ON OFF

INPUT PERTURBATION = n Below Code:- 0=OFF
1=Fixed

2=Variable

0

MAXIMUM INPUT ERRORS = n Below 1 - 50

INPUT ERRORS ACCEPTED Below 0=Not
acc.ptd

1=
acc.ptd

Not
acc.ptd

The default INPUT INTORG BOUND = 0 is translated to a high value - i.e. variables specified as
integer by 'INTORG' markers have no upper bound.

The following additional commands are available:

INPUT PERTURBATION = n (Default: 0)

The above command may invoke perturbations applied to the RHS immediately after INPUT
(occasionally useful to resolve problems).

MAXIMUM INPUT ERRORS = n (Default: 50)
INPUT ERRORS ACCEPTED (Default: Not accepted)

These commands control the handling of non-trivial errors in the data input. 'MAXIMUM INPUT
ERRORS' controls how many can be accepted after which an abort will occur whether
'ACCEPTED' or not. 'INPUT ERRORS ACCEPTED' allows the calculations to proceed
provided that less than 'MAXIMUM' errors have occurred.

Back to Chapter contents

B2.3 Choice of main algorithm

Command Manual
ref

Lowest
value

Highest
value

Default
value

SCALE <ON/OFF> 3.3.6 0=OFF 1=ON ON

PRESOLVE <ON/OFF> 3.3.5 0=OFF 1=ON OFF

ALGORITHM PRIMAL 3.3.1
4.6.1

0=OFF 1=ON =0 (PRIM)

ALGORITHM DUAL
dual <on/off>

3.3.1
4.6.1

0=OFF 1=ON =1 (DUAL)
(dflt:OFF)

ALGORITHM IPM
ipm <on/off>

3.3.3
5.2.1

0=OFF 1=ON =1 (IPM)
(dflt:OFF)

IPM SCALE <ON/OFF> Below 0=OFF 1=ON ON

FortMP: Appendices

B-8

IPM BASREC <ON/OFF> 3.3.3
5.2.6

0=OFF 1=ON ON

POSTSOLVE <ON/OFF> 3.3.5 0=OFF 1=ON ON

MIP <ON/OFF> 3.3.4
6.8.5

0=OFF 1=ON ON

The following command:

IPM SCALE <ON/OFF> (Default: ON)

controls scaling when the IPM algorithm is selected.

Back to Chapter contents

B2.4 Maximum limits

Command Manual
ref

Lowest
value

Highest
value

Default
value

MAXIMUM SIMPLEX ITERATIONS =n
maximum primal iterations = n

3.3.1
3.7.2

4.6.4

1 - 10000

MAXIMUM IPM ITERATIONS = n 3.3.3
3.7.2
5.2.5

1 - 80

MAXIMUM MIP INTEGER
 [SOLUTIONS] = n
MAXIMUM MIP INTSOL = n

3.3.4
3.7.2
6.8.3

1 - 300

MAXIMUM MIP NODES = n
maximum mip subproblems = n

3.3.4
3.7.2
6.8.3

1 - 50000

MAXIMUM MIP TIME = v 3.3.4
6.8.3

0.0 - 50000.0

MAXIMUM AROUND INTEGER
 [SOLUTIONS] = n
MAXIMUM AROUND INTSOL = n

6.8.3 1 - 1

MAXIMUM AROUND NODES = n
maximum AROUND subproblems = n

6.8.3 1 - 5000

MAXIMUM AROUND TIME = v 6.8.3 0.0 - 5000.0

MAXIMUM MIP SPACE = n 6.8.3 1 - 10000

Back to Chapter contents

Appendix B: SPECS Commands

B-9

FortMP: Appendices

B-10

B2.5 Save and restart commands

Command Manual
ref

Lowest
value

Highest
value

Default
value

SIMPLEX SAVE FREQUENCY = n 3.5.1
4.6.4
7.5.3

0 - 10

IPM SAVE FREQUENCY = n 3.5.1
5.2.5
7.5.3

0 - 10

MIP SAVE FREQUENCY = n 3.5.1
6.8.4
7.5.3

0 - 500

INPUT RESTART <ON/OFF>
input mps skip

3.5.2
3.7.2

0=OFF 1=ON OFF

SIMPLEX START RESTART
bbasis input <on/off>
bbasis <on/off>

3.3.2
3.5.1
3.7.2
4.6.2
4.6.4

0=OFF 1=ON OFF

IPM RESTART <ON/OFF> 3.5.1
3.7.2
5.2.5

0=OFF 1=ON OFF

BASREC RESTART <ON/OFF>
restart basrec
ipm skip <on/off>

5.2.6 0=OFF 1=ON OFF

MIP RESTART <ON/OFF> 3.5.1
3.7.2
6.8.4

0=OFF 1=ON OFF

Back to Chapter contents

Appendix B: SPECS Commands

B-11

B2.6 SSX controls:- algorithmic

Command Manual
ref

Lowest
value

Highest
value

Default
value

SIMPLEX START INPUT BASIS 3.3.2
3.5.3
4.6.2
4.6.5

0=OFF 1=ON OFF

SIMPLEX START CRASH
crash <on/off>

3.3.2
4.6.2

0=OFF 1=ON ON

SIMPLEX START UNIT BASIS 3.3.2
4.6.2

0=ON 1=OFF CRASH

PRIMAL DEVEX <ON/OFF/
 SINGLE/DOUBLE>

4.6.1 Code:- 0=OFF
1=ON/SINGLE
2=DOUBLE

OFF(=0)

DUAL DEVEX <ON/OFF> 4.6.1 Code:- 0=OFF
1=ON

OFF(=0)

DUAL ADEGEN = n 4.6.1 Code:- 0=OFF
1=ON (simple)

2=ON (advanced)

OFF(=0)

FORTOM <ON/OFF/AUTO> 4.6.1 Code:- 0=OFF
1=ON

2=AUTO

AUTO

Back to Chapter contents

FortMP: Appendices

B-12

B2.7 SSX controls:- parameters

Command Manual
ref

Lowest
value

Highest
value

Default
value

Controls for all SSX algorithms

RHS TOLERANCE = v
FEASIBILITY TOLERANCE = v

4.6.3 1.0d-25 1.0 1.0e-5

DJ TOLERANCE = v 4.6.3 1.0d-25 1.0 1.0e-5

ZERO TOLERANCE = v 4.6.3 1.0d-25 1.0 1.0e-15

PIVOT DIFFERENCE EPSILON = V 4.6.7 1.0d-25 1.0 1.0d-2

INVERT FREQUENCY = n 3.3.1
4.6.1

1 - 50

FORTOM ACTIVATE PERCENT = n 4.6.3 0 101 40

FORTOM ACTIVATE GROWTH = n 4.6.3 0 1000 100

PRIMAL controls

PRIMAL DEVEX RATIO = v 4.6.3 >0.0 <1.0 0.4

PRIMAL MSUB = n 4.3.2
4.6.1

1 10 4

PRIMAL PIVOT ZERO TOLERANCE = v 4.6.7 Fixed 1.0D-35

PRIMAL PIVOT ADMIT THRESHOLD = v
pivot tolerance = v

4.6.3
4.6.7

1.0d-25 1.0 1.0d-8

PRIMAL PIVOT ADMIT RELATIVE = v 4.6.7 Fixed 0.0

PRIMAL RELATIVE EPSILON = v 4.6.7 Fixed 0.0

DUAL controls

DPROGRESS CRITERION = v 4.6.3 1.0d-25 1.0 1.0e-25

DPROGRESS FREQUENCY = n 4.6.3 1 5 1

DUAL PIVOT ZERO TOLERANCE = v 4.6.7 1.0d-25 1.0 1.0D-14

DUAL PIVOT ADMIT THRESHOLD = v 4.6.3
4.6.7

1.0d-25 1.0 1.0e-8

DUAL PIVOT ADMIT RELATIVE = v 4.6.7 1.0d-25 1.0 0.0

DUAL RELATIVE EPSILON = v 4.6.7 1.0d-25 1.0 0.0

DFTRAN ROWWISE <ON/OFF> Below 0=OFF 1=ON ON

INVERT controls

Appendix B: SPECS Commands

B-13

INVERT PIVOT ZERO TOLERANCE = v
invert tolerance = v

4.6.3
4.6.7

1.0d-25 1.0 1.0D-7

INVERT PIVOT ADMIT THRESHOLD = v 4.6.7 Fixed 0.0

INVERT PIVOT ADMIT RELATIVE = v
pivot threshold = v

4.6.3
4.6.7

1.0d-25 1.0 1.0d-2

INVERT RELATIVE EPSILON = v 4.6.7 Fixed 0.0

INVERT MEDIUM DENSITY = v Below -0.1 100.1 10.0

INVERT RELEPS <ON/OFF> Below 0=OFF 1=ON 1 (ON)

INVERT THRESHOLD COLWISE Below 0=OFF 1=ON 0 (OFF)

PIVOT RATIO LIMIT = v Below 10.0 1.0d+25 1.0d+12

The following additional commands are available:

DFTRAN ROWWISE <ON/OFF> (Default ON)

This controls the sequence of dot-product calculations in DUAL - normally faster row-wise than
column-wise because the sparsity permits more skipping. Some cases may arise where this is not
true - particularly if there is a large proportion of rows to columns.

INVERT MEDIUM DENSITY = v
INVERT RELEPS <ON/OFF>
INVERT THRESHOLD COLWISE
PIVOT RATIO LIMIT = V

These commands control specialised tuning of the INVERT algorithm.

Back to Chapter contents

FortMP: Appendices

B-14

B2.8 IPM controls:- algorithmic

Command Manual
ref

Lowest
value

Highest
value

Default
value

IPM ALGORITHM <AFFINE/
 BARRIER/PDC>
ipm algorithm = n

5.2.1 Code:- 1=AFFINE
2=BARRIER

3=PDC

3 (=PDC)

IPM SOLVER <CHOLESKY/
 SUPERNODE/
 XSUPERNODE/
 AUGMENTED>
ipm version = n

5.2.3 Code:- 1=CHOLESKY
2=SUPERNODE
3=XSUPERNODE
4=AUGMENTED

3 (=XSUP)

IPM STARTING POINT METHOD =n
ipm method = n

5.2.2 1 3 1

The following commands are reserved for future use:

IPM SOLVER AUGMENTED
ipm version = 4

The augmented solver is currently available in a specially licensed release.

Back to Chapter contents

Appendix B: SPECS Commands

B-15

B2.9 IPM controls:- parameters

Command Manual
ref

Lowest
value

Highest
value

Default
value

IPM RELATIVE EPSILON = v
ipm releps = v

5.2.1 1.0d-25 1.0 1.0e-7

IPM FEASIBILITY EPSILON = v
ipm feaseps = v

5.2.1 1.0d-25 1.0 1.0e-4

CHOLESKY CG TOLERANCE = v 5.2.4 1.0d-8 10.0 1.0e-4

CHOLESKY ERROR TOLERANCE = v 5.2.4 0.1 1.0d+10 10.0

MAXIMUM CG ITERATIONS = n 5.2.4 0 (=OFF) 3 3

IPM BIGM WEIGHT = v
ipm weight = v

5.2.2 >0.0 <1.0 0.1

IPM DARE = v 5.2.1 0.1 0.99995 0.9995

IPM PHI = v 5.2.1 0.0 - 10.0

IPM POWER = n 5.2.1 1 5 4

IPM TOFIX = v 5.2.3 1.0d-25 1.0 1.0e-12

IPM GRAPHICAL DISPLAY
 <ON/OFF>
ipm display = n

3.3.3
5.2.7

0=OFF 1=ON OFF

Back to Chapter contents

FortMP: Appendices

B-16

B2.10 MIP controls:- algorithmic

Command Manual
ref

Lowest
value

Highest
value

Default
value

MIP PREPROCESS <ON/OFF/
 ROOT ONLY>

3.3.4
6.7.2

Code:- 0=OFF
1=ON

2=ROOT ONLY

OFF

GENERATE CUTS <ON/OFF> 6.7.3 0=OFF 1=ON OFF

MIP ANALYSE DUAL <ON/OFF> 6.7.4 0=OFF 1=ON OFF

MIP DUAL <ON/OFF> 6.8.6 0=OFF 1=ON ON

MIP AGENDA INPUT <ON/OFF> 6.6.4 0=OFF 1=ON OFF

MIP LIST INPUT <ON/OFF>
mip priority list <on/off>

6.6.6 0=OFF 1=ON OFF

MIP AUTO ROUNDING <ON/OFF> 6.8.1 0=OFF 1=ON OFF

MIP AROUND SOLVER <SSX/IPM> 6.8.1 Code:- 0=SSX

1=IPM

SSX

MIP CLASSIFIY ROWS <ON/OFF> 6.10.1 0=OFF 1=ON OFF

Back to Chapter contents

Appendix B: SPECS Commands

B-17

B2.11 MIP controls:- parameters

Command Manual
ref

Lowest
value

Highest
value

Default
value

MIP FNODECHOICE = n 6.5.2 Code:- See below 1

MIP SNODECHOICE = n 6.5.2 Code:- See below 7

MIP VARCHOICE = n 6.5.2 Code:- See below 1

MIP PRIORITY UP <ON/OFF> 3.3.4

6.5.3

0=OFF 1=ON OFF

INTEGER TOLERANCE = v 6.8.2 1.0d-25 <0.5 1.e-3

MIP BOUND = v
mip cutoff bound = v

6.8.2 - - High value

MIP BOUND RELATIVE = v 6.8.2 - - High value

MIP CUTOFF TOLERANCE = v 6.8.2 0.0 1.0d+5 1.0e-12

MIP CUTOFF RELATIVE = v 6.8.2 0.0 - 0.0

MIP CUTOFF RELISOL = v 6.8.2 0.0 - 0.0

ACT QUOTA = n 6.7.3 1 - 2

CUT QUOTA = n 6.7.3 1 - 5

MIP FIX QUOTA = n 6.7.2 1 - 10

MIP ROUNDING FRACTION = v 6.8.1 0.0 <0.5 0.0

MIP PREPROCESS LEVEL = n 6.7.2 1 3 3

Codes for MIP FNODCH/SNODCH are:-

1 = LIFO
2 = FIFO
3 = Best objective value
4 = Worst objective value
5 = Minimum number non-integer
6 = Minimum sum of fractions
7 = Best projection heuristic

Codes for MIP VARCH are:-

FortMP: Appendices

B-18

1 = Minimum fraction
2 = Maximum fraction
3 :- Invalid
4 = Maximum cost
5 = Minimum cost times fraction

Back to Chapter contents

B2.12 Minor algorithm controls

Command Manual
ref

Lowest
value

Highest
value

Default
value

SCALE controls

SCALE PASSES = n 3.3.6 1 4 4

SCALE VARIANCE = v 3.3.6 0.1 1000.0 10.0

SCALE OBJECTIVE <ON/OFF> Appendix 0=OFF 1=ON OFF (ON=2)

SCALE USING OBJECTIVE
 <ON/OFF>

Appendix 0=OFF 1=ON OFF

PRESOLVE controls

PRESOLVE LEVEL = n 3.3.5 1 5 5

PRESOLVE PASSES = n Appendix 1 4 4

PRESOLVE SAFE LEVEL = n Appendix 1 5 5

CRASH controls

CRASH ADMIT THRESHOLD = v Appendix 1.00d-12 10.0 0.001

CRASHY PIVOTS = n Appendix 0 50 1

CRASH SELECTION LIMIT = n Appendix 1 10 2

CRASH TOLERANCE FACTOR = v Appendix 1.0 1.0d+8 10000.0

BASREC (push) controls

PUSH CALSOL FREQUENCY = n Appendix 1 - 10

PUSH IGNORE THRESHOLD = n Appendix 1.0d-25 10.0 1.0e-4

DUAL CRASH PUSH <ON/OFF> Appendix 0=OFF 1=ON OFF

DUAL PUSH <ON/OFF> 5.2.6 0=OFF 1=ON ON

The following commands are also available:

Appendix B: SPECS Commands

B-19

SCALE OBJECTIVE <ON/OFF> (Default OFF)
SCALE USING OBJECTIVE <ON/OFF> (Default OFF)

By default the SCALE algorithm does not scale the objective row and does not include objective
values in the calculations that derive column-scales. Either or both features can be set ON to handle
special cases with a very wide range of objective values in the model.

PRESOLVE PASSES = n (Default = 4)
PRESOLVE SAFE LEVEL = n (Default = 5)

The limit to PRESOLVE passes prevents over-running which is generally not profitable after 4
repeats. 'SAFE LEVEL' can be used to define a lower than maximum level at which to re-try if
PRESOLVE finds infeasibility. PRESOLVE may find spurious infeasibility (particularly at higher
levels) if the model has poor scaling.

CRASH ADMIT THRESHOLD = v (Default = 0.001)
CRASHY PIVOTS = n (Default = 1)
CRASH SELECTION LIMIT= n (Default = 2)
CRASH TOLERANCE FACTOR = v (Default = 10000.0)

These commands refer to experimental CRASH procedures which are present in the code for tuning
difficult problems. They should not be employed by the end-user without expert advice.

PUSH CALSOL FREQUENCY = n (Default = 10)
PUSH IGNORE THRESHOLD = n (Default = 1.0e-4)
DUAL CRASH PUSH <ON/OFF> (Default OFF)

These commands refer to experimental BASREC procedures which are present in the code for
tuning difficult problems. They should not be employed by the end-user without expert advice.

Back to Chapter contents

FortMP: Appendices

B-20

B2.13 Log level and frequency

Command Manual
ref

Lowest
value

Highest
value

Default
value

PRIMAL LOG FREQUENCY = n
simplex log frequency = n

3.3.1
4.6.6

1 - 1

SIMPLEX LOG LEVEL = n
primal log level = n

3.3.1
3.4.3
4.6.6

(7.5.2)

0 4 1

INVERT LOG LEVEL = n 3.3.1
3.4.3
4.6.6

(7.5.2)

0 4 1

IPM LOG LEVEL = n 3.3.3
3.4.3
5.2.7

(7.5.2)

0 4 1

MIP LOG LEVEL = n 3.3.4
3.4.3
6.9

(7.5.2)

0 4 1

NODE LOG FREQUENCY = n 3.3.4
6.9

1 - 1

MIP PREPROCESS LOG LEVEL = n 6.7.2
(7.5.2)

0

MIP SIMPLEX LOG LEVEL = n
mip ssx log level = n

Appendix 0 4 0

PRESOLVE LOG LEVEL = n 3.3.5
(7.5.2)

0 4 1

PUSH LOG FREQUENCY = n 5.2.7 1 - 10

PUSH LOG LEVEL = n 5.2.7
(7.5.2)

0 4 1

LOG DISPLAY 3.4.3 0 5 1

LOG DISPLAY LEVEL = n 3.4.3

LOG DISPLAY ONLY 3.4.3 OFF

The following commands are also available:

Appendix B: SPECS Commands

B-21

MIP SIMPLEX LOG LEVEL = n (Default: 0)
mip ssx log level = n (Default: 0)

During MIP the standard logs of PRIMAL, DUAL and INVERT are switched off by resetting the
level to zero. However this can be countermanded with 'MIP <SIMPLEX/SSX> LOG [LEVEL] =
n' giving a level which then applies to all three algorithms.

LOG DISPLAY LEVEL = n (Default: 1)

This command is used to restrict or expand the display of logged messages to any level. The
command does not change the level of messages that are issued to the log in the first place.

Back to Chapter contents

B2.14 Output controls

Command Manual
ref

Lowest
value

Highest
value

Default
value

OUTPUT <ON/OFF> 3.4.4 0=OFF 1=ON ON

OUTPUT TYPE <MPL/RW/STD> 3.4.1
3.4.2

Code:- 1=STD
2=RW/MPL

STD

OUTPUT SUPPRESS ZERO 3.4.4 0=OFF 1=ON OFF

OUTPUT CHANNEL = n Appendix -18

OUTPUT DISPLAY [ONLY] Appendix

OUTPUT BASIS <ON/OFF>
basis output <on/off>

3.5.3
4.6.5

0=OFF 1=ON OFF

LOG CHANNEL = n 7.5.1 -19

MIP AGENDA OUTPUT
 <ON/OFF/ALL>

6.6.5 Code:- 0=OFF
1=ON
2=ALL

OFF

MIP LIST OUTPUT
 <ON/OFF/ALL>

6.6.6 Code:- 0=OFF
1=ON
2=ALL

OFF

DISPLAY MEMORY Appendix 0=OFF 1=ON OFF

The following commands are also available:

OUTPUT DISPLAY [ONLY] (Default: No display)

'OUTPUT DISPLAY' (with or without 'ONLY') causes the normal output file to be suppressed and
solution output to be displayed or written to the standard output.

FortMP: Appendices

B-22

OUTPUT CHANNEL = n (Default: -18)

As with the log channel a negative number indicates that the system must open the channel internally.
 A positive number indicates that the channel is opened externally. Using n = 6 (standard output
unit) the solutions are written out online to the screen.

OUTPUT TYPE MPL (Default: STD)

This is an alternative for output type 'RW'.

DISPLAY MEMORY (Default: None)

This command causes a record of memory assignments to be issued to the log (and displayed if
display-level is 2 or more).

Back to Chapter contents

B2.15 Limits for cut-generation and matrix extension

Command Manual
ref

Lowest
value

Highest
value

Default
value

MAXIMUM CUT NONZEROS = n Appendix 0 - 0
(See note
below)

MAXIMUM CUTS = n Appendix 0 -

MAXIMUM EXTRA ROWS = n 8.1.5 0 -

MAXIMUM EXTRA COLUMNS = n
maximum extra cols = n

8.1.5 0 -

MAXIMUM SPARE ROWSPACE = n 8.1.5 0 -

MAXIMUM SPARE COLSPACE = n 8.1.5 0 -

The following commands are also available:

MAXIMUM CUT NONZEROS = n (Default: 0
MAXIMUM CUTS = n (Default: 0

These commands specify user-given limits on the cut pool space.

To determine the maximum limits for cut generation and matrix extension the system takes the
maximum of the user-given value and a quota-based calculation. Quotas are forced to zero when
GENERATE CUTS is OFF.

Back to Chapter contents

Appendix B: SPECS Commands

B-23

B3. Alphabetical list of commands
 Command Default References
 ------- ------- ----------

 ACT QUOTA = n 2 6.7.3
 AGENDA FILE (fnam) 'model.agn' B2.1
 ALGORITHM DUAL OFF 3.3.1/4.6.1
 ALGORITHM IPM OFF 3.3.3/5.2.1
 ALGORITHM PRIMAL Primal ON 3.3.1/4.6.1
 BASREC RESTART <ON/OFF> 0 (norestart) 5.2.6
 BASIS FILE (fnam) 'model.bas' 3.6
 BASIS OUTPUT <ON/OFF> OFF B2.14
 BBASIS FILE (fnam) 'model.bbf' B2.1
 BBASIS INPUT <ON/OFF> OFF B2.5
 BBASIS <ON/OFF> OFF B2.5
 BOUNDS NAME (bndname) blank 3.2.1
 CHOLESKY CG TOLERANCE = v 1.e-4 5.2.4
 CHOLESKY ERROR TOLERANCE = v 10.0 5.2.4
 CRASH ADMIT THRESHOLD = v 0.001 B2.12
 CRASH <ON/OFF> ON B2.6
 CRASH SELECTION LIMIT = n 2 B2.12
 CRASH TOLERANCE FACTOR = v 10000.0 B2.12
 CRASHY PIVOTS = n 1 B2.12
 CUT QUOTA = n 5 6.7.3
 DFTRAN ROWWISE <ON/OFF> ON B2.7
 DIRECTORY NAME (pthnam) none 3.6
 DISPLAY MEMORY 0 (none) B2.14
 DJ TOLERANCE = v 1.0e-5 4.6.3
 DPROGRESS CRITERION = v 1.0e-25 4.6.3
 DPROGRESS FREQUENCY = n 1 4.6.3
 DUAL ADEGEN = n 0 (OFF) 4.6.1
 DUAL CRASH PUSH <ON/OFF> OFF B2.12
 DUAL <ON/OFF> OFF B2.3
 DUAL PIVOT THRESHOLD = v 1.0d-8 4.6.3
 DUAL PUSH <ON/OFF> ON 5.2.6
 FEASIBILITY TOLERANCE = v 1.0e-5 B2.7
 FORTOM ACTIVATE PERCENT = n 40 4.6.3
 FORTOM ACTIVATE GROWTH = n 100 4.6.3
 FORTOM <ON/OFF/AUTO> OFF 4.6.1
 GENERATE CUTS <ON/OFF> OFF 6.7.3
 INPUT ERRORS ACCEPTED Not accepted B2.2
 INPUT FILE (fnam) 'model.mps' 3.6
 INPUT INTORG BOUND = v High value 6.3.3
 INPUT LONG NAMES <ON/OFF> OFF 3.2.3
 INPUT MPS SKIP 0 (noskip) B2.5
 INPUT PERTURBATION = n 0 B2.2
 INPUT RESTART <ON/OFF> OFF 3.5.2/3.7.2/5.2.5
 INPUT SAVE NAMES <ON/OFF> OFF 7.3.2
 INPUT TYPE <NGC/MPL/MG/MAG/
 MPS/FREE/INF> MPS 3.2.1/3.2.2/3.2.3

Back to Chapter contents

FortMP: Appendices

B-24

B3. Alphabetical list of commands (cont)

 Command Default References
 ------- ------- ----------

 INVERT FREQUENCY = n 50 3.3.1/4.6.1
 INVERT LOG LEVEL = n 1 3.3.1/3.4.3/7.5.2
 INVERT MEDIUM DENSITY = v 10.0 B2.7
 INVERT RELEPS <ON/OFF> 1 (ON) B2.7
 INVERT THRESHOLD COLWISE 0 (OFF) B2.7
 INVERT TOLERANCE = v 1.0e-7 4.6.3
 IPM ALGORITHM = n 3 (PDC alg) B2.8
 IPM ALGORITHM AFFINE =1 5.2.1
 IPM ALGORITHM BARRIER =2 5.2.1
 IPM ALGORITHM PDC =3 5.2.1
 IPM BASREC <ON/OFF> ON 3.3.3/5.2.6
 IPM BIGM WEIGHT = v 0.1 5.2.2
 IPM DARE = v 0.9995 5.2.1
 IPM DISPLAY = n 0 B2.9
 IPM FEASEPS = v 1.0e-4 B2.9
 IPM FEASIBILITY EPSILON = v 1.0e-4 5.2.1
 IPM GRAPHICAL DISPLAY <ON/OFF> OFF 3.3.3/5.2.7
 IPM LOG LEVEL = n 1 3.3.3/3.4.3/

5.2.7/7.5.2
 IPM METHOD = n 1 B2.8
 IPM <ON/OFF> OFF B2.3
 IPM PHI = v 10.0 5.2.1
 IPM POWER = n 4 5.2.1
 IPM RELATIVE EPSILON = v 1.0e-7 5.2.1
 IPM RELEPS = v 1.0e-7 B2.9
 IPM RESTART <ON/OFF> OFF 3.5.1/3.7.2/5.2.5
 IPM SAVE FREQUENCY = n 10 3.5.1/5.2.5/7.5.3
 IPM SCALE <ON/OFF> OFF B2.3
 IPM SKIP <ON/OFF> OFF B2.5
 IPM SOLVER AUGMENTED =4 B2.8
 IPM SOLVER CHOLESKY =1 5.2.3
 IPM SOLVER SUPERNODE =2 5.2.3
 IPM SOLVER XSUPERNODE =3 5.2.3
 IPM STARTING POINT METHOD = n 1 5.2.2
 IPM TOFIX = v 1.0e-12 5.2.3
 IPM VERSION = n 1 (Cholesky) B2.8
 IPM WEIGHT = v 0.1 B2.9
 LOG CHANNEL = n -19 7.5.1
 LOG DISPLAY Level = 1 3.4.3
 LOG DISPLAY LEVEL = n 1 3.4.3
 LOG DISPLAY ONLY OFF 3.4.3
 LOG FILE (fnam) 'model.log' 3.6
 MAXIMIZE 0 (min) 4.6.1
 MAXIMUM CG ITERATIONS = n 3 5.2.4
 MAXIMUM CUTS = n Mrow*qta B2.15
 MAXIMUM CUT NONZEROS = n Mnnz*qta B2.15

Back to Chapter contents

Appendix B: SPECS Commands

B-25

B3. Alphabetical list of commands (cont)

 Command Default References
 ------- ------- ----------

 MAXIMUM EXTRA COLS = n 0 B2.15
 MAXIMUM EXTRA COLUMNS = n 0 8.1.5
 MAXIMUM EXTRA ROWS = n 0 8.1.5
 MAXIMUM INPUT ERRORS = n 50 B2.2
 MAXIMUM IPM ITERATIONS = n 80 3.3.3/3.7.2/5.2.5
 MAXIMUM MIP INTEGER
 <SOLUTIONS> = n 300 3.3.4/3.7.2/6.8.3
 MAXIMUM MIP INTSOL = n 300 3.3.4/3.7.2/6.8.3
 MAXIMUM MIP NODES = n 50000 3.3.4/3.7.2/6.8.3
 MAXIMUM MIP SPACE = n 10000 6.8.3
 MAXIMUM MIP SUBPROBLEMS = n 50000 B2.4
 MAXIMUM MIP TIME = v 50000.0 3.3.4/6.8.3
 MAXIMUM PRIMAL ITERATIONS = n 10000 3.3.1/3.7.2/4.6.4
 MAXIMUM SIMPLEX ITERATIONS = n 10000 B2.4
 MAXIMUM SPARE COLSPACE = n 0 8.1.5
 MAXIMUM SPARE ROWSPACE = n 0 8.1.5
 MINIMIZE 0 (min) 4.6.1
 MIP ANALYSE DUAL <ON/OFF> OFF 6.7.4
 MIP AGENDA INPUT <ON/OFF> OFF 6.6.4
 MIP AGENDA OUTPUT <ON/OFF> OFF 6.6.5
 MIP AUTO ROUNDING <ON/OFF> OFF 6.8.1

 MIP BOUND = v High value B2.11
 MIP CLASSIFY ROWS <ON/OFF> OFF 6.10.1
 MIP CUTOFF BOUND = v High value 6.8.2
 MIP CUTOFF TOLERANCE = v 1.0e-12 6.8.2
 MIP DUAL <ON/OFF> ON 6.8.6
 MIP FIX QUOTA = n 10 6.7.2
 MIP FIXMIX OUTPUT <ON/OFF/ALL> OFF B2.14
 MIP FNODECHOICE = n 1 6.5.2
 MIP LIST INPUT <ON/OFF> OFF 6.6.6
 MIP LIST OUTPUT <ON/OFF> OFF 6.6.6
 MIP LOG LEVEL = n 1 3.3.4/3.4.3/

6.9/7.5.2
 MIP <ON/OFF> ON 3.3.4/6.8.5
 MIP PREPROCESS LEVEL = n 3 6.7.2
 MIP PREPROCESS LOG LEVEL = n 0 6.7.2/7.5.2
 MIP PREPROCESS <ON/OFF> OFF 3.3.4/6.7.2
 MIP PREPROCESS ROOT ONLY 2 6.7.2
 MIP PRIORITY LIST <ON/OFF> OFF B2.10
 MIP PRIORITY UP <ON/OFF> OFF 3.3.4/6.5.3
 MIP PROBE ROUNDING = n 0 6.8.1
 MIP PROBE ROUNDING <ON/OFF> OFF 6.8.1
 MIP RESTART <ON/OFF> OFF 3.5.1/3.7.2/6.8.4

Back to Chapter contents

FortMP: Appendices

B-26

B3. Alphabetical list of commands (cont)

 Command Default References
 ------- ------- ----------

 MIP ROUNDING FRACTION = v 0.0 6.8.1
 MIP SAVE FREQUENCY = n 500 3.5.1/6.8.4/7.5.1
 MIP SIMPLEX LOG LEVEL = n 0 B2.13
 MIP SNODECHOICE = n 7 6.5.2
 MIP SSX LOG [LEVEL] = n 0 B2.13
 MIP VARCHOICE = n 1 6.5.2
 MODEL NAME (modnam) 'model' 3.6
 NODE LOG FREQUENCY = n 1 3.3.4/6.9
 OBJECTIVE NAME (objname) blank 3.2.1
 OBJECTIVE OFFSET <ON/OFF> OFF 7.3.6
 OUTPUT BASIS <ON/OFF> OFF 3.5.3/4.6.5
 OUTPUT CHANNEL = N -18 B2.14
 OUTPUT DISPLAY [ONLY] OFF B2.14
 OUTPUT FILE (fnam) 'result.dat' 3.6
 OUTPUT <ON/OFF> ON 3.4.4
 OUTPUT SUPPRESS ZERO OFF 3.4.4
 OUTPUT TYPE <MPL/RW/STD> STD 3.4.1/3.4.2
 PATH NAME (pthnam) none B2.1
 PIVOT RATIO LIMIT = v 1.e+12 B2.7
 PIVOT THRESHOLD = v 1.e-2 4.6.3
 PIVOT TOLERANCE = v 1.e-8 4.6.3
 POSTSOLVE <ON/OFF> ON 3.3.5
 PRESOLVE LEVEL = n 5 3.3.5
 PRESOLVE LOG LEVEL = n 1 3.3.5/7.5.2
 PRESOLVE <ON/OFF> ON 3.3.5
 PRESOLVE PASSES = n 4 B2.12
 PRESOLVE SAFE LEVEL = n 5 B2.12
 PRIMAL DEVEX <ON/OFF/
 SINGLE/DOUBLE> OFF (=0) 4.6.1
 PRIMAL DEVEX RATIO = v 0.4 4.6.3
 PRIMAL LOG FREQUENCY = n 1 B2.13
 PRIMAL LOG LEVEL = n 1 B2.13
 PRIMAL MSUB = n 4 4.3.2/4.6.1
 PUSH CALSOL FREQUENCY = n 10 B2.12
 PUSH IGNORE THRESHOLD = n 1.0e-4 B2.12
 PUSH LOG FREQUENCY = n 10 5.2.7
 PUSH LOG LEVEL = n 1 5.2.7/7.5.2
 RESTART BASREC 0 (norestart) B2.5
 RHS NAME (rhsname) blank 3.2.1
 RANGES NAME (rngname) blank 3.2.1
 SCALE OBJECTIVE <ON/OFF> OFF (ON>=2) B2.12
 SCALE <ON/OFF> ON 3.3.6
 SCALE PASSES = n 4 3.3.6
 SCALE USING OBJECTIVE <ON/OFF> OFF B2.12
 SCALE VARIANCE = v 10.0 3.3.6
 SIMPLEX LOG FREQUENCY = n 1 3.3.1/4.6.6

Back to Chapter contents

Appendix B: SPECS Commands

B-27

B3. Alphabetical list of commands (cont)

 Command Default References
 ------- ------- ----------

 SIMPLEX LOG LEVEL = n 1 3.3.1/3.4.3/
4.6.4/7.5.2

 SIMPLEX SAVE FREQUENCY = n 10 3.5.1/4.6.4/7.5.3
 SIMPLEX START INPUT BASIS OFF 3.3.2/3.5.3/

4.6.2/4.6.5
 SIMPLEX START CRASH ON 3.3.2/4.6.2
 SIMPLEX START RESTART OFF 3.3.2/3.5.1/3.7.2

4.6.2/4.6.4
 SIMPLEX START UNIT BASIS OFF (crash ON) 3.3.2/4.6.2
 ZERO TOLERANCE = v 1.0e-15 4.6.3

The following commands have not been described. They are provided for research and testing
purposes only.

 Command Default
 ------- -------

 ALGORITHM KCRASH OFF
 AUGMENTED LOG LEVEL = n 2
 BASREC LGLFLAG <ON/OFF> OFF
 BASREC POSTSOLVE <ON/OFF> ON
 DUAL RESTRICTED PUSH <ON/OFF> OFF
 DUMP LENGTH = n 0
 EXPLICIT OBJECTIVE <ON/OFF> OFF
 HINIT FREQUENCY = n 1
 INDIRECT ETAS <ON/OFF> OFF
 INDIRECT UETAS (ON/OFF> OFF (2=OFF)
 INTERFACE SORT <ON/OFF> ON
 IPM INDICATE <ON/OFF> OFF
 IPM PREFIX <ON/OFF> ON
 IPM UPIV = v 1.0e-6
 KCRASH EQONLY <ON/OFF> OFF
 KCRASH <ON/OFF> OFF
 MIP DISK <ON/OFF> OFF
 MIP FIXMIX = n 0
 MIP FIXMIX OUTPUT LEVEL = n 0 (OFF)
 MIP INFEAS OUTPUT 0 (OFF)
 MIP NODS OUTPUT 0 (OFF)
 MIP PRIORITY BRANCH <ON/OFF> OFF
 MIP ROUNDING = n 0
 MIP SCOVER <ON/OFF> OFF
 PRESOLVE CANCEL FIXCOL OFF
 PRESOLVE CANCEL REDROW OFF
 PRESOLVE CANCEL REMBND OFF
 PRESOLVE CANCEL SFRCOL OFF
 PRESOLVE CANCEL SNGROW OFF
 PRESOLVE CANCEL SNGCOL OFF

FortMP: Appendices

B-28

 PRIMAL IADC <ON/OFF> OFF
 PRIMAL IAPR <ON/OFF> ON
 PRIMAL IDEG <ON/OFF> OFF
 PRIMAL ISTP <ON/OFF> OFF
 PRIMAL KSEC = n 1
 PRIMAL KVEC = n 0
 PRIMAL TEST ETA = n 0
 PRIMAL TEST ITERATION = n -1
 PUSH RESIDUAL CHECK = n 0 (OFF)
 SET Ixxxx = n (x=A,...,J) 0
 SET Vxxxx = v (x=A,...,J) 0.0
 SET RDGTOL = v 1.0d-7
 SET ACGTOL = v 1.0d-5
 SET RPFTOL = v 1.0d-6
 SET RDFTOL = v 1.0d-6
 SET APFTOL = v 1.0d-1
 SET ADFTOL = v 1.0d-1
 SET PINFS = v 1.0d-5
 SET DINFS = v 1.0d-5
 SET BARSET = v 0.25
 SET BARGROW = v 100.0
 ZCRASH = n 1

Back to Chapter contents

Appendix B: SPECS Commands

B-1

APPENDIX E: C-Language Usage

This appendix is intended to provide users of C-language with the means to interpret and make calls
to the subroutine library described in chapters 7 and 8.

Contents

E1. MIXED C/FORTRAN USAGE ON PC-WIN32 PLATFORMS 2

E1.1 Entry-point Names 2

E1.2 Argument lists 2

E1.3 Function Calls 4

FortMP: Appendices

B-2

E1. Mixed C/Fortran Usage on PC-WIN32 Platforms

E1.1 Entry-point Names

Fortran subroutines of the FortMP system are compiled using default standards. C-language
subroutines that interface with Fortran subroutines are adapted to match Fortran defaults - never the
other way around. This means that any Fortran subroutine-name or function-name is represented at
the LINK-stage by an entry-name as follows:

-<NAME>@<n>

Where <NAME> is the source name in uppercase, and <n> is the number of bytes in the argument
list.

In C-language the equivalent is to name the entry in uppercase and to apply the 'stdcall' attribute.

Given as example the FortMP entry:

Call Primal(stsl, tctn)

This would be represented by the following prototype in (say) a C header file:

extern void __stdcall PRIMAL(int *stsl, int *tctn);

and the call-statement in the executable code would be:

int stsl, tctn;
. . . .
PRIMAL(&stsl, &tctn);
. . . .

The linked entry-name for this is '_PRIMAL@8'.

Back to Chapter contents

E1.2 Argument lists

As exemplified above, arguments in Fortran are generally pointer-references to the data that is being
passed. This holds for all numerical data - both scalars and arrays - the exception being only
character data and strings. Characters or strings in Fortran always occupy a fixed number of bytes,
and there is no concept of the 'null terminator' to allow variable length strings. In order to pass such
an argument the length of the string is placed in the argument-list immediately after the pointer to the
1st character.

An example of a FortMP library entry with a character-type argument is:

call Spcdft(COMMND, TCTN)

Here 'COMMND' is a variable-length string of up to 50 characters. The corresponding prototype
in C-language would be:

Appendix B: SPECS Commands

B-3

extern void __stdcall SPCDFT(char *commnd, int lng,
int *tctn);

Where 'lng' is the actual length of the command string. In the code this routine could be called
with the following statements:

char *commnd;
int tctn;
 . . .
SPCDFT(commnd, strlen(commnd), &tctn);
 . . .

The FortMP subroutine library does not have any numerical arguments that are multi-dimensioned
arrays (two or more subscripts) or character arguments that are not scalars. Hence these
possibilities are not considered here.

For the sake of a user who only needs the one entry - SUBMP1 - in the FortMP library we give
here the prototype and an example of the calling statement:

void __stdcall SUBMP1(int *MR, int *NC, int *NAIJ, int *NSET,
 char *PNAME, int lpnm, char *SPID, int lspd,
 double *AIJ, int *ROWIN, int *COLIN,
 double *UPB, double *LOB, double *RHS, double
*LHS,
 double *COST, int *MITYPE,
 int *SREF, int *SFUN, int *SBEG, int *SEND,
 double *VCSOL, int *BSTAT, double *RSCOS,
 int *STSL, int *TCTN);

The following is an example of coding the call to SUBMP1:

int MR, NC, NAIJ, NSET, STSL, TCTN;
double *AIJ, *UPB, *LOB, *RHS, *LHS;
double *COST, *VCSOL, *RSCOS;
int *ROWIN, *COLIN, *BSTAT;
int *SREF, *SFUN, *SBEG, *SEND;
char *PNAME, *SPID;
. . .
. . ./* Fill values of MR, NC, NAIJ, NSET here */
. . .
MALLOC(*AIJ, NAIJ);
. . .
. . . /* Allocate all the arrays and strings */
. . .
. . . /* Fill contents of input arrays here */
. . . /* Fill the strings PNAME, SPID here */
. . .
SUBMP1(&MR, &NC, &NAIJ, &NSET,
 PNAME, (int)8, SPID, strlen(SPID),
 AIJ, ROWIN, COLIN, UPB, LOB, RHS, LHS,
 COST, MITYPE, SREF, SFUN, SBEG, SEND,
 VCSOL, BSTAT, RSCOS, &STSL, &TCTN);
. . .

FortMP: Appendices

B-4

The full set of C-prototypes for library entries is supplied in the file 'LIBHDR.H'.

Back to Chapter contents

E1.3 Function Calls

So far the library entries considered have been subroutines - equivalent type 'void' in C - but there
are also a few function-type entries. Complications are avoided by limiting these to functions with a
numeric, scalar result. Such a function is simply declared in the C-prototype with the corresponding
C-language type replacing 'void'.

The functions 'GIRNAM', 'GJCNAM', 'GIRLNM' and 'GJCLNM' (see chapter 7, section
7.3.5) are of character type and as such are not easily referenced in C-language. Because of this
the following subroutine calls have been added to the Fortran library:

CALL AIRNAM(irow, rname)
CALL AJCNAM(jcol, cname)
CALL AIRLNM((irow, lrname)
CALL AJCLNM(jcol, lcname)

Where the original function-result is now the second argument. Equivalent C-prototypes are to be
found in the file 'LIBHDR.H'.

Back to Chapter contents

	FortMP
	Preface
	Contents
	1. Introduction and Background
	2. Elementary Use of FortMP
	3. Overview of the Stand-alone FortMP System
	4. Sparse Simplex (SSX) Solver
	5. The Interior Point Method
	6. Mixed Integer Programming (MIP)
	7. FortMP Subroutine Library and External Data Interface
	8. Internal Data Interfacing Service Utilities
	9. The Interior Point Method for Quadratic Programming
	10. Advanced Starting Bases
	Appendix A. Input/Output Data Layouts
	Appendix B. SPECS Commands B-1

	1. Introduction and Background
	1.1 Introduction
	1.2 Background
	1.3 Scope and Purpose
	1.4 Related Documents
	1.5 Outline
	1.6 Platforms
	1.7 Statement of the Definitive Problem
	1.8 References

	2. Elementary Use of FortMP
	2.1 Initial Tutorial
	2.1.1 LP Modelling
	2.1.2 Elementary Data Preparation
	2.1.3 Simple Use of FortMP
	2.1.4 The Complete Example

	2.2 Simple Controls
	2.2.1 The SPECS Controls
	2.2.2 Controlling the Input and the Output
	2.2.3 Additional Useful Controls

	2.3 Additional Data Preparation Features
	2.4 An Example: Binary and Integer Variables
	2.5 Summary of SPECS File Controls

	3. Overview of the Stand-alone FortMP System
	3.1 Introduction and Overview
	3.1.1 The Algorithms Employed by FortMP
	3.1.2 Sparse Simplex (SSX): PRIMAL, DUAL and INVERT
	3.1.3 Interior Point Method (IPM) — When and When Not to Use
	3.1.4 Mixed Integer (MIP) with the Branch and Bound Method
	3.1.5 Overall Structure of the System
	3.1.6 Providing Controls on the SPECS File

	3.2 Data Preparation
	3.2.1 MPS Format
	3.2.2 Matrix Generator Format
	3.2.3 Free Format MPS and Long Data Names
	3.2.4 Other Types of Input Data

	3.3 Running the System
	3.3.1 Using SSX
	3.3.2 Setting up a Starting Basis for SSX
	3.3.3 Using IPM
	3.3.4 Running Mixed Integer
	3.3.5 Using the PRESOLVE Algorithm
	3.3.6 Using the SCALE Algorithm

	3.4 Output Descriptions
	3.4.1 Standard Output Description
	3.4.2 Report Writer Output
	3.4.3 Log File Output
	3.4.4 Suppressing Output

	3.5 Further Topics
	3.5.1 Saving and Restarting
	3.5.2 Bypassing the Initial MPS Input
	3.5.3 BASIS Input and Output

	3.6 Input and Output Files in FortMP
	3.7 Errors and Recovery
	3.7.1 Data Errors
	3.7.2 Maximum Iterations Reached or Other Limit Exceeded
	3.7.3 Numerical Difficulties and Instability
	3.7.4 Running Out of Memory
	3.7.5 Software Errors

	3.8 Summary of SPECS Commands

	4. Sparse Simplex (SSX) Solver
	4.1 Internal Problem Statement
	4.2 Introduction to the Algorithms
	4.3 PRIMAL Algorithm
	4.3.1 Starting Procedures
	4.3.2 Column Selection
	4.3.3 Phase I
	4.3.4 Handling Degeneracy
	4.3.5 Numerical Features
	4.3.6 Issues of Efficiency

	4.4 DUAL Algorithm
	4.4.1 Starting Procedures
	4.4.2 Row Selection
	4.4.3 DUAL Phase 1
	4.4.4 Handling Degeneracy
	4.4.5 Numerical Features

	4.5 INVERT
	4.6 SSX Algorithm Controls
	4.6.1 The Principal Controls
	4.6.2 Starting Basis Controls
	4.6.3 Tolerances and parameters
	4.6.4 Save and Restart
	4.6.5 Processing an External Basis
	4.6.6 Log Lising Controls
	4.6.7 Special Pivoting and Update Controls

	4.7 Summary of SPECS Commands

	5. The Interior Point Method
	5.1 Introduction to the IPM Algorithm
	5.1.1 IPM Problem Statement
	5.1.2 Introduction to the Solution Procedures
	5.1.3 Affine, Barrier and Predictor–Corrector Algorithms
	5.1.4 Solving the System of Equations
	5.1.5 Determining the Starting Point

	5.2 Controls on the IPM Algorithms
	5.2.1 Using the Algorithms
	5.2.2 Control and Choice of the Starting Point Methods
	5.2.3 Choice of Solution Algorithm for the Equations
	5.2.4 Refinement by Conjugate Gradient iterations
	5.2.5 IPM Save and Restart: Iteration Limit.
	5.2.6 IPM-SSX Crossover Option: BASREC
	5.2.7 Miscellaneous IPM and BASREC Commands

	5.3 Summary of SPECS Commands

	6. Mixed Integer Programming (MIP)
	6.1 Introduction to MIP
	6.2 MIP Problem, data types, and problem definition
	6.2.1 Binary and Integer Variables
	6.2.2 Semi-Continuous Variables
	6.2.3 Special Ordered Sets of Type One
	6.2.4 Special Ordered Sets of Type Two
	6.2.5 MIP model definition

	6.3 MIP Data Preparation; Marker lines
	6.3.1 Defining Binary, Integer and Semi-continuous variables in the BOUNDS section
	6.3.2 Marker lines
	6.3.3 Defining Integer and Binary Variables with Markers
	6.3.4 Defining a Special Ordered Set
	6.3.5 An Example

	6.4 Branch and Bound algorithm
	6.4.1 Branch and Bound - the Background
	6.4.2 Branch and Bound - the Algorithm
	6.4.3 The Branching Mechanism, UP and DOWN branching

	6.5 Controlling the Tree Development
	6.5.1 Definition of Tree Search Heuristics
	6.5.2 Provision of choice criteria by the user
	6.5.3 UP-direction priority option

	6.6 Detailed User-control of the Tree Search
	6.6.1 User control of variable choice
	6.6.2 Control of node choice - Fixing an Integer Solution
	6.6.3 AGENDA data for variable priorities or 'FIX' solutions
	6.6.4 SPECS commands for AGENDA input
	6.6.5 SPECS commands for AGENDA output
	6.6.6 Un-named Agenda Files

	6.7 Advanced Algorithms for MIP
	6.7.1 Recent advances
	6.7.2 Pre-processing - Variable Fixing and Constraint Relaxing
	6.7.3 Cut Generation
	6.7.4 Fixing Variables by Dual Solution Analysis

	6.8 Miscellaneous MIP controls
	6.8.1 Automatic rounding heuristics
	6.8.2 Bound, Cutoff and Tolerance control
	6.8.3 Placing Limits on the Tree Search
	6.8.4 Saving the tree and restarting MIP
	6.8.5 Bypassing Mixed Integer
	6.8.6 Making use of the PRIMAL algorithm

	6.9 Logged Output and Screen Display
	6.10 MIP Constraint Classification
	6.10.1 Introduction and SPECS command
	6.10.2 Knapsack Constraint Classification
	6.10.3 Mixed Less or Equals Constraint Classification
	6.10.4 Equality constraints
	6.10.5 Full Classification Hierarchy

	6.11 Summary of MIP SPECS Commands

	7. FortMP Subroutine Library and External Data Interface
	7.1 Using FortMP as a sub-system to solve linear problems
	7.1.1 Incorporating FortMP as a sub-system
	7.1.2 Parameter specifications
	7.1.3 Simple FORTMP subroutine with parameters
	7.1.4 Subroutine call-library specifications

	7.2 External Data Interface
	7.2.1 Introduction
	7.2.2 General description of the data interface
	7.2.3 Argument specifications
	7.2.4 Call specifications
	7.2.5 An example

	7.3 Standard Data Input to the Interface
	7.3.1 Calling the standard data input
	7.3.2 Access to row-names and column-names
	7.3.3 Looking up the index of a named variable
	7.3.4 Name pattern matching
	7.3.5 Looking up the name of an indexed variable
	7.3.6 Managing the constant term in the objective

	7.4 Internal SPECS Commands
	7.4.1 The need for faster command entry
	7.4.2 Once-off entry of SPECS commands
	7.4.3 Default initialisation
	7.4.4 Common Sections in the SPECS file

	7.5 How to Avoid Miscellaneous I/O
	7.5.1 Log channel
	7.5.2 Controlling the log
	7.5.3 Avoiding the use of SAVE files

	7.6 MPS-form Output
	7.7 Summary of callable library, external data interface and associated commands
	7.7.1 Summary of the callable library
	7.7.2 Summary of arguments and parameters
	7.7.3 Summary of relevant SPECS commands

	8. Internal Data Interfacing Service Utilities
	8.1 Introduction to the Internal Data Interfacing Service Utilities
	8.1.1 Objectives
	8.1.2 Data Description
	8.1.3 Description of the Utilities
	8.1.4 How to Use the Utilities – Operating Modes
	8.1.5 Necessary Preparation and Provision for Matrix Expansion
	8.1.6 Single and Double precision versions of FortMP

	8.2 The Facilities Available
	8.2.1 General Facilities
	8.2.2 Matrix Facilities
	8.2.3 RIM Facilities
	8.2.4 Solution Facilities
	8.2.5 Tableau Facilities

	8.3 Specifications
	8.3.1 Arguments
	8.3.2 General Utility Specifications
	8.3.3 Matrix Utility Specifications
	8.3.4 RIM Utility Specifications
	8.3.5 Solution Utility Specifications
	8.3.6 Tableau Utility Specifications
	8.3.7 Some Notes on the Specifications

	9. The Interior Point Method for Quadratic Programming
	9.1 Statement of the QP Problem
	9.1.1 The QP Problem:- Symmetric Q form
	9.1.2 The QP problem:- Separable FF T Form
	9.1.3 Mixed Integer QP with Binary Variables

	9.2 IPM Solution Procedure
	9.2.1 Formulation
	9.2.2 Solving the System of Equations
	9.2.3 Determining the Starting Point
	9.2.4 Controls on the Predictor-Corrector Algorithm for QP

	9.3 Input Data Layout
	9.3.1 Matrix Input for the symmetric Q form
	9.3.2 Matrix Input for the separable FF T form

	9.4 Worked Example
	9.4.1 Worked example using the Q form
	9.4.2 Worked example using FF T form

	9.5 Branch and Bound Algorithm for MIQP
	9.5.1 Sub-problem Solution
	9.5.2 Simplified Tree
	9.5.3 User Controls

	9.6 Summary of SPECS Commands
	9.6.1 Controls for IPM
	9.6.2 Controls for Branch and Bound

	10. Advanced Starting Bases
	10.1 Introduction
	10.2 Primary CRASH Algorithms
	10.2.1 Basic CRASH Procedure
	10.2.2 CRASH(LTSF)
	10.2.3 CRASH(ART)
	10.2.4 CRASH(ADG)
	10.2.5 User Controls
	10.2.6 Logged Output from CRASH

	10.3 Crossover Algorithms: Purify and Basis Recovery
	10.3.1 Introduction to Crossover
	10.3.2 The Push Algorithms
	10.3.3 The starting CRASH
	10.3.4 User Controls
	10.3.5 Logged Output from Crossover Algorithms

	10.4 Iterative Crash Algorithm
	10.4.1 Introduction to CRASH(SOR)
	10.4.2 The iterative SOR procedure
	10.4.3 Crossover
	10.4.4 User Controls
	10.4.5 Logged Output from the SOR algorithm

	10.5 Summary of SPECS Commands
	10.5.1 Primary Crash Commands
	10.5.2 Crossover Commands
	10.5.3 SOR Commands

	APPENDIX A: Input/Output Data Layouts
	A1. MPS-form data layouts
	A1.1 MPS Layout for LP and MIP problem data
	A1.2 Marker data for Binary, Integer and SOS specification
	A1.3 MPS-format of external BASIS data (input or output)

	A2. Free-form Layout and Long Names
	A2.1 Free-form input layout
	A2.2 Name length

	A3. Tabular Layouts (MG/RW interface)
	A3.1 Tabular input layout
	A3.2 Tabular output layouts

	A4. MIP AGENDA Layouts
	A4.1 Standard, named agenda layout
	A4.2 Listed, un-named agenda layout

	APPENDIX B: SPECS Commands
	B1. Syntax
	B1.1 Meta-syntax
	B1.2 Simplification and abbreviation
	B1.3 BEGIN and END commands
	B1.4 Commentary

	B2. Command descriptions
	B2.1 Model name and data file names
	B2.2 Input type and problem selection
	B2.3 Choice of main algorithm
	B2.4 Maximum limits
	B2.5 Save and restart commands
	B2.6 SSX controls:- algorithmic
	B2.7 SSX controls:- parameters
	B2.8 IPM controls:- algorithmic
	B2.9 IPM controls:- parameters
	B2.10 MIP controls:- algorithmic
	B2.11 MIP controls:- parameters
	B2.12 Minor algorithm controls
	B2.13 Log level and frequency
	B2.14 Output controls
	B2.15 Limits for cut-generation and matrix extension

	B3. Alphabetical list of commands

	APPENDIX E: C-Language Usage
	E1. Mixed C/Fortran Usage on PC-WIN32 Platforms
	E1.1 Entry-point Names
	E1.2 Argument lists
	E1.3 Function Calls

