

CoSc 20803 – Lab #1 September 9, 2015 page # 1

CoSc 20803 – Fall, 2015
Lab #1

Due Date: GUI code – Thursday, Sept 24, 2015 (all files, including a runnable .JAR file,

related to your Lab1 project “zipped” together and submitted with TURNIN).

 Finished Project – Thursday, Oct 8, 2015 (all files, including a runnable .JAR file,

related to your Lab1 project “zipped” together and submitted with TURNIN),
hardcopy printout of User’s Manual turned in at my office by noon on Friday
morning (Oct 9, 2015) - (not accepted late!!!).

On the Friday morning following the due date for the final project, you will be
required to provide a short User’s Manual detailing the proper procedures to follow
in order to use your program. Be sure to include any information that will be
needed in order to test your code (include statements about any features that you
failed to implement).

This MUST be turned in at my office (TUC 208) or the secretary’s office (TUC 207)
by 12:00 noon. Failure to do so will result in a substantial reduction in your lab
grade for the assignment.

Language: Java

Lab Value: This assignment is worth 250 points total (it constitutes roughly 38% of the lab

grade). You should use good OOP techniques in developing your lab solution. You
were taught the MVC programming architectural pattern in COSC10403 (and
probably in COSC 20203). You are welcome to copy that design pattern.

Purpose: To exercise your knowledge of circular linked lists.

Documentation: You are expected to thoroughly document your program to the extent discussed in

class. Your program should contain “preamble” documentation like that taught in
CoSc 10403 and CoSc 20203 AND internal documentation consistent with that
expected of experienced programmers. If you don’t know what that means – ASK!!!
See the CoSc 10403 Documentation Standard for a very simple example (you will
need to do better!).

 Feel free to use JavaDoc.

Problem: The history of mathematics, science, and technology has a long tradition of

discoveries. These discoveries in recent years have been enhanced by the creation of
new computational technologies that support integrated symbolic computation for
applications ranging from mathematics to chemistry to geometry to finance. Over the
past several years, various computer algebra systems have evolved. Powerful tools

CoSc 20803 – Lab #1 September 9, 2015 page # 2

such as Wolfram Research’s Mathematica and Maplesoft’s Maple13 and MapleSim
and MatLab are examples.

 One of the “classical” problems in computer science is to perform symbolic

manipulation of polynomials with integral coefficients. Note: a polynomial is a
mathematical expression involving a sum of powers multiplied by coefficients. A
polynomial expressed in one variable is known as a univariate polynomial while one
expressed in more than one variable is known as a multivariate polynomial. Note also
that constants are considered to be multiplied by a variable raised to the zero power.
For this assignment, you will be developing a Java, stand-alone application (not an
applet) with associated GUI to manipulate polynomials based on the basic list
processing methods outlined below.

 Your program will need to support operations on multivariate polynomials in three

variables (x, y, and z) with constant non-negative whole number exponents and
coefficients. Three variable polynomials are of the following form:

p(x,y,z) = cnxA1yB1zC1+ . . . + c1xAnyBnzCn

 where the cn are non-zero coefficients and the AiBiCi, represent each variable’s
exponent.

An important issue when working with symbolic representations of polynomials involves
maintaining the order of the variables. For example it is necessary that the term x2yz be
recognized as identical to yx2z . The easiest way to achieve this is to always keep the
variable names in a consistent order. The most obvious way to do this is alphabetically.
Thus no matter what order the user enters the term x2yz, whether it be as x2yz or as
yx2z or as x2zy or any other permutation it will always be stored as x2yz.

Another idea would involve storing the individual polynomial terms such that the
exponents AiBiCi, are arranged as:

A1B1C1 > A2B2C2 > … > AnBnCn >= 0.

For Example: For the current assignment:

 p(x,y,z) = 6x9y6z3 + 5x4z5 – 3 is a valid multivariate polynomial, while:

 p(x,y,z) = 6x2y – 4/x + 7x3/2 is not because its second term involves division

by the variable x (thus making it a negative exponent) and also because its third term
contains an exponent that is not a whole number.

CoSc 20803 – Lab #1 September 9, 2015 page # 3

Operations: Given the following multivariate polynomials –

 A = 3x2 + 5xy – 8y2 + 4x – 3y + 12

 B = x3 + 6y2 – 15x + 11

 C = 2x + 3y – 5

 D = x – 4y + 1
 - - - - - - - - -- - - - - - - - - - Valid Math operations -

 (A+B) = x3 + 3x2 + 5xy – 2y2 – 11x – 3y + 23

 (A-B) = -x3 + 3x2 + 5xy – 14y2 + 19x – 3y + 1

 (C*D) = 2x2 – 5xy – 12y2 – 3x + 23y - 5

 Adding or subtracting polynomials is just a matter of searching for terms with the

same exponent and adding or subtracting their coefficients. Multiplication and
division are just a matter of properly modifying exponents. Notice however, that
dividing a single PolyTerm by another single PolyTerm might cause negative
exponents to appear which stretches our mathematical definition of polynomial.

 Further, division of two polynomials, each of multiple terms, only succeeds if the

division results in no remainder. Thus, Division is the most complicated arithmetic
operation on multivariate polynomials and the result is in general not a polynomial.

 For this assignment you will be asked to develop a system that will support

addition and subtraction of multivariate polynomials and multiplication for
“Bonus” credit. We will skip division.

Data Structure: For this program you are required to maintain a circular linked list of multivariate

PolyName nodes each of which has a rightLink pointing to the head node for its
respective polynomial and a downlink pointing to the next PolyName node.

 NOTE: You may NOT use arrays, vectors, nor any of the builtin Java classes

other than those swing classes necessary for the GUI.

CoSc 20803 – Lab #1 September 9, 2015 page # 4

 The node formats for terms in this linked list are:

 For your program, each term of the multivariate polynomial will be represented by a

separate node in a circular linked list. Each node will be of fixed size having fields
which represent the coefficient and x, y, and z exponents of a given term plus a
pointer to the next lower term. You may assume that all coefficients and exponents
are integer and that exponents are non-negative. Your PolyNode structure should
correspond to the following format:

Thus, the polynomial (6x9y6z3 + 5x4z5 – 3), shown earlier, will be represented
internally (with “Head” node) as:

Note that the nodes are organized within the list such that: 963 (the ABC exponents for
node #1) precede the 2nd node (which has ABC exponents = 405). Your algorithms will be
greatly simplified by so doing. A multivariate polynomial linked list is most easily
constructed if the incoming exponents, AiBiCi, are read in decreasing order. Feel free to
develop your program with this understanding – of course, you are not required to
make this restriction.

The data structure representation shown below is an example of what is REQUIRED
of all software submitted for this assignment.

PolyNode “Header”: 0 -1 0 0 link

PolyNode “standard term” node: coef A B C link

PolyNameList “Header”: downLink to next
PolyName node

rightLink to “Head” node
of the named polynomial “Head”

PolylName node: PolynomialName downlink rightLink

 0 -1 0 0 6 9 6 3 5 4 0 5 -3 0 0 0

p(x,y,z)

CoSc 20803 – Lab #1 September 9, 2015 page # 5

For Example: Assume the following two multivariate polynomials –

ABC = 3x5y4 + 5x3y2z2 – 5x2y1z1

XYZ = 4x2y2z1 + 5x2y1z1

Given the above two polynomials as input, your program should construct the

following data structure.

Input: Your GUI should be intuitive and must support a variety of operations (e.g., enter

new polynomial, add two polynomials, subtract two polynomials, display a
polynomial, evaluate a polynomial (given values for x, y, and z), delete a polynomial,
etc.). In this regard, you are free to design an interface that will allow the user to input
any information necessary to perform these operations (JLists, JCheckboxes,
JComboBoxes, etc).

 Obviously, your grade will depend substantially on the esthetics of your GUI and its

functionality as well as on whether the program produces correct output for the
various operations.

ABC

XYZ

•••

Polys

0 -1 0 0 3 5 4 0 5 3 2 2 5 2 1 1

5 2 1 1 4 2 2 1 0 -1 0 0

polysList

CoSc 20803 – Lab #1 September 9, 2015 page # 6

 With regard to reading an equation in polynomial form from the user – you are free to

design your program to accept that input in any form. (i.e., you may allow a user to
type the full equation into a JTextArea or JTextField in polynomial form
similar to the following:

Alpha = 6*x^9*y^6*z^3 + 5*x^4*y^0*z^5 - 3*x^0*y^0*z^0

 where “^” means exponentiation). Your program can then parse the input string into
(coefficient and exponent pairs) in order to build up the circular linked list for the
named polynomial. (The Java StringTokenizer class will be helpful).

Alternatively, you might prompt the user for one term of the polynomial, add that
term to the linked list, and prompt for the next term – terminating whenever the last
term is entered. This is entirely up to you.

Data: You should develop your own test suite to determine the correctness of your program.

You should be careful to do your testing completely. I will use my own test suite to
determine the accuracy of your program.

Your program will be enhanced by providing a “user feedback” area to supply
operational feedback to the user informing him/her of what operation was just
performed (e.g., a “new polynomial was CREATED”, two polynomials were added
or subtracted (or multiplied if attempting the “Bonus” credit) and the resulting
polynomials is:, etc).

This same area may be used to produce a nicely formatted polynomial for output
when asked to do so by the user. Note: polynomials should be displayed in an
appropriate form. Example: 5x4 might be displayed as:

 5 * x ^ 4 * y ^ 0 * z ^ 0

Interface: For this assignment, you must develop a Java stand-alone application (not an applet)

that employees an easy to use, intuitive GUI that will allow the user to input any
information necessary to perform the operations outlined below (you should use the
Java swing classes as they provide a “richer” appearing interface).

 Active “widgets” (JButtons, JTextFields, etc.) should be employed whenever

possible to make your program easier to use (you will want to use the methods:
setVisible(), setEnabled(), requestFocus(), etc…).

Requirements: Your software should provide, at a minimum, the basic functionality listed below.

You are free to implement other methods besides these.

CoSc 20803 – Lab #1 September 9, 2015 page # 7

(1) createPoly — reads in a multivariate polynomial from the user,

converts the polynomial into a circular linked list according to the
representation specified earlier, and returns the address of the “Head” node.

 The following methods should probably employ either a JComboBox or JList
widget in order for the user to select polynomials that need to be operated on.

(2) displayPoly — should allow the user to click and select a polynomial

to be displayed. The chosen trinomial should be displayed in an appropriate
form. Example., 5x4 might be displayed as:

 5 * x ^ 4 * y ^ 0 * z ^ 0).

(3) deletePoly — this method should delete the chosen polynomial.

(4) addPoly — this method should compute and display the sum (i.e., α + β)

of any two polynomials selected by the user. The original α and β polynomials
are to be left unaltered. After calculation, the user should be given the option to
name and save the resultant polynomial or to discard it.

(5) subtractPoly — this method should compute and display the difference

(i.e., α - β) of any two polynomials selected by the user. The original α and β
polynomials are to be left unaltered. After calculation, the user should be given
the option to name and save the resultant polynomial or to discard it.

(6) evalPoly — this method should evaluate the selected polynomial for the

given real values “x”, “y”, and “z” supplied by the user. (Is Horner’s rule
useful?)

(7) exitPoly — a function used to close the system down at the end of the

day. No backup of the polynonial data structure is required.

Note: For “BONUS” credit (15 points each), you may choose to implement any (or

all) of the following additional functionality:

(i) storePoly — used to store the contents of the polynomial data structure

to a disk file for later use by the loadPoly function (described below).

(ii) loadPoly — used to restore the polynomial data structure at the beginning

of the day.

(iii) multiplyPoly — this method should compute and display the product

(i.e., α * β) of any two polynomials selected by the user. The original α and β

CoSc 20803 – Lab #1 September 9, 2015 page # 8

polynomials are to be left unaltered. After calculation, the user should be given
the option to name and save the resultant polynomial or to discard it.

Requirements: Two Java interfaces are provided below. Your Lab1 solution should implement both

of these interfaces.

The following two Java interfaces MUST be included and compiled along with your program:

Interface #1: PolyNameNodeInterface
// PolyNameNode interface (** should be included as a part of your Lab1 project)
// ******************PUBLIC OPERATIONS**
// public String getPolyName();
// --> returns the name of the polynomial being pointed to
//
// public void setPolyName(String s);
// --> sets the name of this polynomial to s
//
// public PolyNameNode getDownPtr();
// --> returns the value of the “down ptr” for the specified PolyListNode
//
// public void setDownPtr(PolyNameNode p);
// --> sets the “down ptr” of the specified node to p
//
// public PolyNode getRightPtr();
// --> returns the value of the “right ptr” for the specified PolyNameNode
//
// public void setRightPtr(PolyNode p);
// --> sets the “right ptr” of the specified node to p
//
// **

/**
* Protocol for PolyNameNodeInterface
* @author James Comer
*/
public interface PolyNameNodeInterface
{
 //Method signatures
 public String getPolyName();
 public void setPolyName(String s);
 public PolyNameNode getDownPtr();
 public void setDownPtr(PolyNameNode p);
 public PolyNode getRightPtr();
 public void setRightPtr(PolyNode p);
}

CoSc 20803 – Lab #1 September 9, 2015 page # 9

Interface #2: PolyNodeInterface
// PolyNode interface (** should be included as a part of your Lab1 project)
// ******************PUBLIC OPERATIONS**
// public int getCoeff();
// --> returns the coeff of a specified polynomial term
//
// public void setCoeff(int c);
// --> sets the coeff of the specified polynomial’s term to c
//
// public int getXPower();
// --> returns the specified polynomial’s x power
//
// public void setXPower(int ix);
// --> sets the specified polynomial’s x power to ix
//
// public int getYPower();
// --> returns the specified polynomial’s y power
//
// public void setYPower(int iy);
// --> sets the specified polynomial’s y power to iy
//
// public int getZPower();
// --> returns the specified polynomial’s z power
//
// public void setZPower(int iz);
// --> sets the specified polynomial’s z power to iz
//
// public PolyNode getPtr();
// --> returns the value of the specified polynomial’s link field
//
// public void setPtr(PolyNode p);
// --> sets the specified polynomial’s link field to p
//
// **

/**
* Protocol for PolyNodeInterface
* @author James Comer
*/
public interface PolyNodeInterface
{
 //Method signatures
 public int getCoeff();
 public void setCoeff(int c);
 public int getXPower();
 public void setXPower(int ix);
 public int getYPower();
 public void setYPower(int iy);
 public int getZPower();
 public void setZPower(int iz);
 public PolyNode getPtr();
 public void setPtr(PolyNode p);
}

