
1

© I K Bray, 2004 1

Description

• A large part of RE is description
• In particular, we must describe:-

– the characteristics of the problem domain

– the behaviour of the solution system

© I K Bray, 2004 2

Description

• Quite often, we describe things by way of analytic models, for
example :-
– Data flow diagrams
– Entity relationship diagrams
– Decision tables
– Finite State Machines
– Class diagrams
– etc.

Where appropriate, use them.
• However, all these models incorporate text and, often, we use

text (Natural Language, Plain English) alone . .
and, with good reason !

© I K Bray, 2004 3

Textual Description

The bad news :-
– Good documentation requires very good writing
– Producing very good writing is difficult
– At the least, it requires years of practice
– To be blunt, some people will never get there

The good news :-
– But all can improve (!) and
– As we shall see, we have some guidelines (largely from

[KOVITZ99])

© I K Bray, 2004 4

Textual Description

Jackson identifies 2 ways of defining terms :-
• Designation

– the informal definition of fundamental terms

• (Formal) Definition
– the more or less formal definition of derived terms (in terms of

designated terms)

And (using defined terms) we can produce 2 sorts of description:-
• Rough sketch

– an informal description (generally, “work in progress”)

• Refutable description
– a description that is, in principle, testable

© I K Bray, 2004 5

Designation

• The foundations for all other descriptions
• Takes the form of a recognition rule, e.g. -

call-button := a press button situated in the foyer outside the lift
that can be pressed in order to summon a lift

• Most dictionary “definitions” are designations
– always rely upon a common understanding
– ultimately, tend to be circular
E.g. *
object – any thing which can be seen, touched or perceived by any of the

senses
thing – any material object (!)

* These and several other definitions are taken from Heineman English
Dictionary, 1993

© I K Bray, 2004 6

Designation

When and what do we designate?
• When precision is important (pretty much always in RE !)
• We designate all fundamental specialist terms and concepts (that

cannot be formally defined)
• In particular we must designate data

– inputs
– outputs

– stored data

• But other concepts may also require explanation
– states (of the PD and SS)
– problem domain jargon

– non-standard use of terms

2

© I K Bray, 2004 7

Designation mechanisms

• equivalence; means the same as e.g.
– gloaming - twilight
– parsimonious - mean

• classification and discrimination (classic) e.g.
– sea-dog – a sailor with many year’s experience.
– (also, see call-button example above)

• sum of parts or component list e.g.
– boat-details – the boat’s class, its sail number, handicap and owner’s

name

• by example, (usually used to reinforce another (poor)
definition) e.g.
– going - the condition of some thing (eg. the path was rough going)

© I K Bray, 2004 8

Designation

• Designations are inherently informal
• Rely upon some pre-existing common understanding
• Stop when you are confident that there will be too little

misunderstanding to cause significant problems.

Jackson also points out there is a big difference between :-
– Defining things that already exist (typically in the PD) and
– Defining things that, as yet, do not (typically in the SS).

You must be even more careful with the latter !

• Designations should be kept to the minimum -
– wherever possible, use formal definitions instead.

© I K Bray, 2004 9

(Formal) Definition

The principles can be applied to NL, but FD benefits from
formal notations. 3 are suggested :-
– predicate logic (Other Ian’s bit !)
– programming languages (as in data declarations)
– (Extended) Backus Naur Form ((E)BNF)

• Relatively few mechanisms are needed (or known)
- some are formalisations of designation mechanisms
– eg component parts :-
boat ::= boat-name + sail-number + boat-class-name + helm-name;
(where all the elements on the right have been designated)

– another is either or, for example :-
race-class ::= boat-class | race-class-name;

© I K Bray, 2004 10

(Formal) Definition

More complex, are formal definitions of relationships (quick
advert for VDM !)

Suppose that if a boat enters a series then it is automatically
entered into every race in that series.

We may designate a race entry and a series race:-
boat b is entered in series s ≈ series-entry (b, s)
race r is part of series s ≈ series-race (r, s)

We could also designate a race entry thus :-
boat b is entered in race r ≈ race-entry (b, r)

But a formal definition is better :-
∀ b, r, s • ((series-entry (b, s)) ∧ (series-race (r, s)) → (race-entry (b, r))

(This can be read as; for any boat, race and series, if the boat is entered in the
series and the race is part of the series, the boat will be entered in the race.)

© I K Bray, 2004 11

Designation and Definition

Notes:

• neither designations nor formal definitions can be described as
true or false -

we are simply stating what we mean by the terms

• they can, however, be poorly written and lack clarity and,
hence, be open to misunderstanding.

• not all useful information is amenable to formal definition.

– Eg “the helm is likely to be the owner”

© I K Bray, 2004 12

Description

Designations and definitions, are a means to an end; they provide
the building blocks - to build useful descriptions

Things to describe :-
– the problem domain
– the requirements (the effects that are required to be produced within the PD)

– the behaviour of the envisioned solution system

This may be generalised to descriptions of :-
– systems in terms of their components or sub-domains
– the relationships between (sub)domains in terms of the shared

phenomena (often data flows)
– system behaviour in terms of functions and, ultimately, relationships

between inputs and outputs

3

© I K Bray, 2004 13

Description

There is, as yet, no comprehensive mapping between the various
elements needing description and possible description
mechanisms

However, there are a few useful constructions :-
– the classic designation

– definition in terms of component parts

– the function statement (later !)

© I K Bray, 2004 14

Rough sketches

• “Ordinary English” descriptions

• A useful starting point

• Hopefully, develop into refutable descriptions

(but quite often don’t)

© I K Bray, 2004 15

Refutable descriptions

Once terms have been designated or defined, we can construct
refutable descriptions. Eg;
– “A boat-class always has an associated PY handicap.”

• How could this be refuted ?

• But we must be careful. Eg;
– “The entry sheets are then taken back to the club where the race officer

enters the details on the results sheets and then works out the results.”

Suppose a race officer works out the results and then enters the
details on the results sheets? Is that allowed? And what are
“the details” anyway? And suppose it was done on the way
back to the club?

• Constructing refutable descriptions is very much an art !

© I K Bray, 2004 16

Writing guidelines (Natural language)

• Write for the reader – assume the reader is intelligent, and
co-operative.

• Constantly ask :-
– Is there an easier to understand alternative expression ?

– Overloading with too much information at once ?

– What is most important, less important to them ?

– Too abstract without illustration ?

– Too disconnected without underlying principle ?

– Any reasonable misinterpretations possible ?

– Any benefit to the reader in this part ?

– What is the feel – formal, stuffy, rambling etc. ?

– Is the document boring ?

© I K Bray, 2004 17

Writing guidelines

• Select technology carefully
– Use lists (like this !)

– Allow form to follow content (do not force fit)

– Use pre-defined contents lists only as a guide

• Organise carefully (see also stuff on structure)
– A place for every detail – every detail in its place

(are tidy people the best documenters ?)
– Provide navigation clues
– Reinforcement, not repetition

A trade-off – avoid redundancy in general (why ?) but use overviews,
examples etc. to aid understanding

© I K Bray, 2004 18

Writing guidelines

• Avoid Decoy text:
– Metatext – text that describes the text (eg. “This document is the

requirements document for the XYZ lift controller system” (which
should be clear from the title)

– Generalities Eg. :- “All requirements should be testable.” We already
know that’s a good idea but is it feasible ? And what if it’s not ?

– Inclusions Don’t copy other documents – reference them

– Duckspeak Meaningless padding (eg. “The lift request validation
function will validate lift requests.”)

4

© I K Bray, 2004 19

Writing guidelines - the Naming Rules !

1. As far as is sensible, adopt the terminology of the
problem domain

2. Never use the same term for different things
3. As far as is sensible, always use the same term for the

same thing
4. Define all “special” terms (see DD, later)
5. Don’t invent unnecessary terms (including acronyms!)

© I K Bray, 2004 20

Writing guidelines

• Examples ????

© I K Bray, 2004 21

Unnatural Language

Structured English – tends to be short, precise sentences,
formatted in a similar way to program code

For example :-
2.1 The user is prompted to enter their old PIN

2.2 The user enters their old PIN

2.3 If the old PIN is incorrect :-

2.4 The message "incorrect PIN" is displayed for 4 seconds

2.5 The system returns to the main menu display

2.6 If the old PIN is correct :-

2.7 The user is prompted to enter the new PIN

etc..

A similar style is often found in use-cases

© I K Bray, 2004 22

Unnatural Language

Pseudo code – even more “codey”

For example :-

2.1 output_message (“enter old PIN”)

2.2 input (<user pin>)

2.3 if <user_pin> ≠ <stored_pin> then

2.4 output_message ("incorrect PIN")

2.5 wait (4 seconds)

2.6 goto 2.1

2.7 else

2.8 output_message (“enter the new PIN”)

etc.

© I K Bray, 2004 23

Unnatural Language

(Extended) Backus Naur Form ((E)BNF)
• provides a well-defined grammar for precise and concise

definitions

• So far I have concentrated upon semantics (meaning)

BNF helps there, but particularly useful for defining syntax
• Syntactic definitions are built upon terminals (aka. literals or

primitives)

© I K Bray, 2004 24

Unnatural Language

(Extended) Backus Naur Form ((E)BNF)
• A terminal is shown in double quotes, eg. "A"
• Non-terminals, are defined using a defining expression (or

rule) composed of :-
– terminals

– logical symbols

– defined non-terminals

Eg; my-name ::= “Ian”;

non-
terminal

logical
symbol

terminal

5

© I K Bray, 2004 25

EBNF

terminates a definition;

delimits a comment (* *) or /* */

delimits a group()

indicates a contiguous range (as in “a” . . “z”). .

zero or one occurrences of a (optionality)[a]

a is repeated between n and m times (inclusive)n{a}m

a is repeated up to m times{a}m

a is repeated at least n timesn{a}

a is repeated (zero or more times){a}

exclusive or|

is followed by (and), or +

is defined as= or := or ::=

MeaningSymbol

© I K Bray, 2004 26

EBNF

Example:-
boat := boat-name, boat-class-name, sail-number, helm;

boat-name := {alphanumeric}25;

boat-class-name := {alphanumeric}10;

sail-number := {digit}6;

helm := {alphanumeric}25;

alphanumeric := “a” . . “z” | “A” . . “Z” | digit | “-“ | “.” | “ “ ;

digit := “0” . . “9” ;

Exercise:- Which of the following are valid values of boat?
– Trapeze, TS-240, 23, Ian K Bray

– D’eau, solo, 3575, Ian K Bray

– Bori Free, spirit, K24570, Fred Basset

© I K Bray, 2004 27

EBNF

EBNF comments can be used for semantic definitions
(designations)

For example:-
sail-number ::= {digit}6;

::= (* the unique identifier of a boat within its boat-class *)

Generally, this is the only kind of “double definition” (syntactic
+ semantic) that should be used

© I K Bray, 2004 28

The Data Dictionary

• Definitions of all relevant data items (syntax and
semantics)

• A convenient place to also include designations and
definitions of:-

– Problem domain jargon
– Problem sub-domains/sub-systems

– etc.

© I K Bray, 2004 29

The naming rules (version 2!)

1.Designate or, wherever possible, formally define all terms
that might give rise to misunderstanding.
2.As far as is sensible, adopt the terminology of the
problem domain. (By all means clarify the meaning of existing
terms but do not invent new terminology (including acronyms!) just for
the sake of it.)
3.Never use the same term for different things. (If this already
happens in the PD, you must invent new terms or number them. E.g. in
the YRR PD, ‘class’ is used for both ‘boat-class’ and ‘race-class’.)
4.As far as is sensible, always use the same term for the
same thing. (If duplicates already exist, show the equivalence in the
data dictionary.)

 ©G. Kotonya and I. Sommerville 1998 Slide1

Requirements Validation

 ©G. Kotonya and I. Sommerville 1998 Slide2

Validation objectives

Certifies that the requirements document is an acceptable

description of the system to be implemented

Checks a requirements document for

•Completeness and consistency

•Conformance to standards

•Requirements conflicts

•Technical errors

•Ambiguous requirements

 ©G. Kotonya and I. Sommerville 1998 Slide3

Analysis and validation

Analysis works with raw requirements as elicited from the

system stakeholders

•“Have we got the right requirements”is the key question to be

answered at this stage

Validation works with a final draft of the requirements

document i.e. with negotiated and agreed requirements

•“Have we got the requirements right”is the key question to be

answered at this stage

 ©G. Kotonya and I. Sommerville 1998 Slide4

Validation inputs and outputs

 ©G. Kotonya and I. Sommerville 1998 Slide5

Validation inputs

Requirements document

•Should be a complete version of the document, not an unfinished draft.

Formatted and organised according to organisational standards

Organisational knowledge

•Knowledge, often implicit, of the organisation which may be used to

judge the realism of the requirements

Organisational standards

•Local standards e.g. for the organisation of the requirements document

 ©G. Kotonya and I. Sommerville 1998 Slide6

Validation outputs

Problem list

•List of discovered problems in the requirements document

Agreed actions

•List of agreed actions in response to requirements problems. Some

problems may have several corrective actions; some problems may

have no associated actions

 ©G. Kotonya and I. Sommerville 1998 Slide7

Requirements reviews

A group of people read and analyse the requirements,

look for problems, meet and discuss the problems and

agree on actions to address these problems

 ©G. Kotonya and I. Sommerville 1998 Slide8

Requirements review process

 ©G. Kotonya and I. Sommerville 1998 Slide9

Review activities

Plan review

•The review team is selected and a time and place for the review meeting is

chosen.

Distribute documents

•The requirements document is distributed to the review team members

Prepare for review

•Individual reviewers read the requirements to find conflicts, omissions,

inconsistencies, deviations from standards and other problems.

 ©G. Kotonya and I. Sommerville 1998 Slide10

Review activities

Hold review meeting

•Individual comments and problems are discussed and a set of actions to

address the problems is agreed.

Follow-up actions

•The chair of the review checks that the agreed actions have been

carried out.

Revise document

•The requirements document is revised to reflect the agreed actions. At

this stage, it may be accepted or it may be re-reviewed

 ©G. Kotonya and I. Sommerville 1998 Slide11

Problem actions

Requirements clarification

•The requirement may be badly expressed or may have accidentally omitted

information which has been collected during requirements elicitation.

Missing information

•Some information is missing from the requirements document. It is the

responsibility of the requirements engineers who are revising the document to

discover this information from system stakeholders.

Requirements conflict

•There is a significant conflict between requirements. The stakeholders

involved must negotiate to resolve the conflict.

Unrealistic requirement

•The requirement does not appear to be implementable with the technology

available or given other constraints on the system. Stakeholders must be

consulted to decide how to make the requirement more realistic.

 ©G. Kotonya and I. Sommerville 1998 Slide12

Pre-review checking

Reviews are expensive because they involve a number of

people spending time reading and checking the

requirements document

This expense can be reduced by using pre-review

checking where one person checks the document and

looks for straightforward problems such as missing

requirements, lack of conformance to standards,

typographical errors, etc.

Document may be returned for correction or the list of

problems distributed to other reviewers

 ©G. Kotonya and I. Sommerville 1998 Slide13

Pre-review checking

 ©G. Kotonya and I. Sommerville 1998 Slide14

Review team membership

Reviews should involve a number of stakeholders drawn

from different backgrounds

•People from different backgrounds bring different skills and

knowledge to the review

•Stakeholders feel involved in the RE process and develop an

understanding of the needs of other stakeholders

Review team should always involve at least a domain

expert and an end-user

 ©G. Kotonya and I. Sommerville 1998 Slide15

Review checklists

Understandability

•Can readers of the document understand what the requirements mean?

Redundancy

•Is information unnecessarily repeated in the requirements document?

Completeness

•Does the checker know of any missing requirements or is there any

information missing from individual requirement descriptions?

Ambiguity

•Are the requirements expressed using terms which are clearly defined?

Could readers from different backgrounds make different

interpretations of the requirements?

 ©G. Kotonya and I. Sommerville 1998 Slide16

Review checklists

Consistency

•Do the descriptions of different requirements include contradictions? Are

there contradictions between individual requirements and overall system

requirements?

Organisation

•Is the document structured in a sensible way? Are the descriptions of

requirements organised so that related requirements are grouped?

Conformance to standards

•Does the requirements document and individual requirements conform to

defined standards? Are departures from the standards, justified?

Traceability

•Are requirements unambiguously identified, include links to related

requirements and to the reasons why these requirements have been

included?

 ©G. Kotonya and I. Sommerville 1998 Slide17

Checklist questions

Is each requirement uniquely identified?

Are specialised terms defined in the glossary

Does a requirement stand on its own or do you have to

examine other requirements to understand what it means?

 Do individual requirements use the terms consistently

Is the same service requested in different requirements? Are

there any contradictions in these requests?

If a requirement makes reference to some other facilities, are

these described elsewhere in the document?

Are related requirements grouped together? If not, do they

refer to each other?

 ©G. Kotonya and I. Sommerville 1998 Slide18

Requirements problem example

“4. EDDIS will be configurable so that it will comply

with the requirements of all UK and (where relevant)

international copyright legislation. Minimally, this means

that EDDIS must provide a form for the user to sign the

Copyright Declaration statement. It also means that

EDDIS must keep track of Copyright Declaration

statements which have been signed/not-signed. Under no

circumstances must an order be sent to the supplier if the

copyright statement has not been signed.”

 ©G. Kotonya and I. Sommerville 1998 Slide19

Problems

Incompleteness

•What international copyright legislation is relevant?

•What happens if the copyright declaration is not signed?

•If a signature is a digital signature, how is it assigned?

Ambiguity

•What does signing an electronic form mean? Is this a physical

signature or a digital signature?

Standards

•More than 1 requirement. Maintenance of copyright is one

requirement; issue of documents is another

 ©G. Kotonya and I. Sommerville 1998 Slide20

Prototyping

Prototypes for requirements validation demonstrate the

requirements and help stakeholders discover problems

Validation prototypes should be complete, reasonably

efficient and robust. It should be possible to use them in

the same way as the required system

User documentation and training should be provided

 ©G. Kotonya and I. Sommerville 1998 Slide21

Prototyping for validation

 ©G. Kotonya and I. Sommerville 1998 Slide22

Prototyping activities

Choose prototype testers

•The best testers are users who are fairly experienced and who are open-minded

about the use of new systems. End-users who do different jobs should be

involved so that different areas of system functionality will be covered.

Develop test scenarios

•Careful planning is required to draw up a set of test scenarios which provide

broad coverage of the requirements. End-users shouldn’t just play around with

the system as this may never exercise critical system features.

Execute scenarios

•The users of the system work, usually on their own, to try the system by

executing the planned scenarios.

Document problems

•Its usually best to define some kind of electronic or paper problem report form

which users fill in when they encounter a problem.

 ©G. Kotonya and I. Sommerville 1998 Slide23

User manual development

Writing a user manual from the requirements forces a

detailed requirements analysis and thus can reveal

problems with the document

Information in the user manual

•Description of the functionality and how it is implemented

•Which parts of the system have not been implemented

•How to get out of trouble

•How to install and get started with the system

 ©G. Kotonya and I. Sommerville 1998 Slide24

Model validation

Validation of system models is an essential part of the

validation process

Objectives of model validation

•To demonstrate that each model is self-consistent

•If there are several models of the system, to demonstrate that these are

internally and externally consistent

•To demonstrate that the models accurately reflect the real requirements

of system stakeholders

Some checking is possible with automated tools

Paraphrasing the model is an effective checking technique

 ©G. Kotonya and I. Sommerville 1998 Slide25

Data-flow diagram for Issue

 ©G. Kotonya and I. Sommerville 1998 Slide26

Paraphrased description

Checkuser
InputsandsourcesUser’slibrarycardfromend-user

TransformationfunctionChecksthattheuserisavalidlibrary

user

TransformationoutputsTheuser’sstatus

ControlinformationUserdetailsfromthedatabase

Checkitem
InputsandsourcesTheuser’sstatusfromCheckuser

TransformationfunctionChecksifanitemisavailableforissue

TransformationoutputsTheitem’sstatus

ControlinformationTheavailabilityoftheitem

Issueitem
InputsandsourcesNone

TransformationfunctionIssuesanitemtothelibraryuser.Items

arestampedwithareturndate.

TransformationoutputsTheitemissuedtotheenduser

Databaseupdatedetails

ControlinformationItemstatus-itemsonlyissuedif

available

 ©G. Kotonya and I. Sommerville 1998 Slide27

Requirements testing

Each requirement should be testable i.e. it should be

possible to define tests to check whether or not that

requirement has been met.

Inventing requirements tests is an effective validation

technique as missing or ambiguous information in the

requirements description may make it difficult to

formulate tests

Each functional requirement should have an associated

test

 ©G. Kotonya and I. Sommerville 1998 Slide28

Test case definition

What usage scenario might be used to check the

requirement?

Does the requirement, on its own, include enough

information to allow a test to be defined?

Is it possible to test the requirement using a single test or

are multiple test cases required?

Could the requirement be re-stated to make the test cases

more obvious?

 ©G. Kotonya and I. Sommerville 1998 Slide29

Test record form

The requirement’s identifier

•There should be at least one for each requirement.

Related requirements

•These should be referenced as the test may also be relevant to these

requirements.

Test description

•A brief description of the test and why this is an objective requirements test.

This should include system inputs and corresponding outputs.

Requirements problems

•A description of problems which made test definition difficult or impossible.

Comments and recommendations

•These are advice on how to solve requirements problems which have been

discovered.

 ©G. Kotonya and I. Sommerville 1998 Slide30

Requirements test form

 ©G. Kotonya and I. Sommerville 1998 Slide31

Hard-to-test requirements

System requirements

•Requirements which apply to the system as a whole. In general, these are

the most difficult requirements to validate irrespective of the method used

as they may be influenced by any of the functional requirements. Tests,

which are not executed, cannot test for non-functional system-wide

characteristics such as usability.

Exclusive requirements

•These are requirements which exclude specific behaviour. For example, a

requirement may state that system failures must never corrupt the system

database. It is not possible to test such a requirement exhaustively.

Some non-functional requirements

•Some non-functional requirements, such as reliability requirements, can

only be tested with a large test set. Designing this test set does not help

with requirements validation.

 ©G. Kotonya and I. Sommerville 1998 Slide32

Key points

Requirements validation should focus on checking the final

draft of the requirements document for conflicts, omissions

and deviations from standards.

Inputs to the validation process are the requirements document,

organisational standards and implicit organisational

knowledge. The outputs are a list of requirements problems

and agreed actions to address these problems.

Reviews involve a group of people making a detailed analysis

of the requirements.

Review costs can be reduced by checking the requirements

before the review for deviations from organisational standards.

These may result from more serious requirements problems.

 ©G. Kotonya and I. Sommerville 1998 Slide33

Key points

Checklists of what to look for may be used to drive a

requirements review process.

Prototyping is effective for requirements validation if a

prototype has been developed during the requirements

elicitation stage.

Systems models may be validated by paraphrasing them.

This means that they are systematically translated into a

natural language description.

Designing tests for requirements can reveal problems with

the requirements. If the requirement is unclear, it may be

impossible to define a test for it.

