DPM104 User's Manual

Dual-Port SRAM Interface Board

®
W RTD Embedded Technologies, Inc.

(Real Time Devices) "Accessing the Analog World"®

1SO9001 and AS9100 Certified

BDM-610020080
Rev A

DPM104 User's Manual

®

RTD EMBEDDED TECHNOLOGIES, INC.
103 Innovation Blvd
State College, PA 16803-0906

Phone: +1-814-234-8087
FAX: +1-814-234-5218

E-mail
sales@rtd.com
techsupport@rtd.com

Web Site
http://www.rtd.com

Manual Revision History

Rev A Initial Release

Getting Technical Support

For help with this product, or any other product made by RTD, you can contact RTD Embedded
Technologies via the following methods:

Phone: +1-814-234-8087
E-Mail: techsupport@rtd.com

Be sure to check the RTD web site (http://www.rtd.com) frequently for product updates, including
newer versions of the board manual and application software.

Published by:

RTD Embedded Technologies, Inc.
103 Innovation Boulevard
State College, PA 16803

Copyright 2010 by RTD Embedded Technologies, Inc.
All rights reserved

Specification and features described in this manual may change without notice.

The RTD Embedded Technologies Logo is a registered trademark of RTD Embedded
Technologies. dspModule, cpuModule, and utilityModule are trademarks of RTD Embedded
Technologies. PC/104, PC/104-Plus, PCI-104, PC/104-Express, and PCle/104 are registered
trademark of PC/104 Consortium. All other trademarks appearing in this document are the
property of their respective owners.

Table of Contents Page

INTRODUCTION
Dual Port Memory
Mechanical description
Connector description
What comes with your board
Board accessories
Application software and drivers
Hardware accessories
Using this manual
When you need help
CHAPTER 1 - BOARD SETTINGS
Factory configured jumper settings
Base address jumpers
Interrupt channels
CHAPTER 2 - BOARD INSTALLATION
Board installation
CHAPTER 3 - HARDWARE DESCRIPTION
Dual Port Memory
Interrupts
Semaphores
Backup Battery connection
CHAPTER 4 - BOARD OPERATION AND PROGRAMMING
Defining the memory map
DPM datasheet reprint from IDT
Interrupts
What is an interrupt?
Interrupt request lines
8259 Programmable interrupt controller
Interrupt mask register (IMR)
End-Of-Interrupt (EOI) Command
What exactly happens when an interrupt occurs?
Using interrupts in your program
Writing an interrupt service routine (ISR)
Saving the startup IMR and interrupt vector
Common Interrupt mistakes

APPENDIX A - DPM104HR Specifications

DPM104HR (c) RTD Finland Oy 1997-2001

List of lllustrations Page

To be completed later

DPM104HR (c) RTD Finland Oy 1997-2001

INTRODUCTION

DPM104HR (c) RTD Finland Oy 1997-2001

Page 2

This user's manual describes the operation of the DPM104HR Dual Port Memory interface board.
Some of the key properties of the DPM104HR include:

¢ 8K x 16 True Dual Ported memory cells with simultaneous
reads from the same memory location

¢ Mapped into 18KB of host low memory

On-chip arbitration logic

Full on-chip hardware and software for semaphore signalling

between ports

Full asyncronous operation from either port

Interrupts from both sides

Backup with external battery and power supply supervisor

+5V only operation

-40 to +85C Operating temperature range

PC/104 compliant

* o

* 6 ¢ ¢ o o

The following paragraphs briefly describe the major features of the DPM104HR. A more
detailed discussion is included in Chapter 3 (Hardware description) @mépier 4 (Board
operation and programming. The board setup is described in Chapter 1 (Board Settings). A
full description of the Dual Port Memory chip is included in Chapter 4.

Dual Port Memory

The DPM104HR dual port memory interface is implemented using monolithic memory
chip. This chip provides a high speed low power asyncronous acess to a total of 16 KB of RAM
memory. Inter-port arbitratration is integrated into the chip. To enable high speethdatars
hardware semaphores and interrupts are supported.

To maintain memory contents in cases of power loss an external battery may be used
to provide power for the memory.

Mechanical description

The DPM104HR is designed on a PC/104 form factor. An easy mechanical interface to
PC/104 systems can be achieved. Stack two PC/104 compliant cpuModules directly on your
DPM104HR using the onboard mounting holes.

Connector description

There are two 16-bit PC/104 bus connectors on the DPM104HR to directly interface to

two cpuModules with 16-bit busses. One connector on the top side of the board is the Master
side of the DPM and the other connector on the bottom of the board is the Slave side.

DPM104HR (c) RTD Finland Oy 1997-2001

Page 3
Note! Only 16-bit CPU bus boards may be used with the DPM104HR.

What comes with your board
You receive the following items in your DPM104HR package:

* DPM104HR Dual Port Memory interface module
* User's manual

Note: DOS/WIN95/98/2000/NT 4.0 drivers and test software
are available from our website at www.rtdfinland.fi.

If any item is missing or damaged, please call Real Time Devices Finland customer service
department at (+358) 9 346 4538.

Board accessories

In addition to the items included in your DPM104HR delivery several software and
hardware accessories are available. Call your distributor for more information on these accessories
and for help in choosing the best items to support your distributed control system.

Using this manual

This manual is intended to help you install your new DPM104HR card and get it
running quickly, while also providing enough detail about the board and it's functions so
that you can enjoy maximum use of it's features even in the most demanding applications.

When you need help

This manual and all the example programs will provide you with enough information to
fully utilize all the features on this board. If you have any problems installing or using this board,
contact our Technical Support Department (+358) 9 346 4538 during European business hours,
or send a FAX to (+358) 9 346 4539 or Email to sales@rtdfinland.fi. When sending a FAX or
Email request, please include your company's name and address, your name, your telephone
number, and a brief description of the problem.

DPM104HR (c) RTD Finland Oy 1997-2001

CHAPTER 1 - BOARD SETTINGS

The DPM104HR board has jumper settings you can change to suit your application
and host computer memory configuration. The factory settings are listed and shown in
the diagram in the beginning of this chapter.

DPM104HR (c) RTD Finland Oy 1997-2001

Factory configured Jumper Settings

Page 5

Table 1-1 illustrates the factory jumper setting for the DPM104HR. Figure 1-1 shows
the board layout of the DPM104HR and the locations of the jumpers. The following paragraphs
explain how to change the factory jumper settings to suit your specific application.

Table 1-1 Factory configured jumper settings see figure 1-1 for detailed locations

JUMPER DESCRIPTION NUMBER OF
NAME OF JUMPER JUMPERS
ADDR_A BASE ADDRESS 5

ADDR_B BASE ADDRESS 5

IRQ_A HOST INTERRUPT 5

IRQ_B HOST INTERRUPT 5

FACTORY SETTING
JUMPERS INSTALLED

D8000

D8000
Not connected
Not connected

aoDd {2 ONyIMId AQ Qa0wpudds Sedpsd]] Gwn) (ddy
1
© _5_ OAPQOoOaoO0No0o0No00N00 @
OfPQOoONAQOMNQOON Q0N o0
GROQQQOQQOoQQOOQQOQORIQQQOOQ00 00
QOAQQOMAQOMNMQOMAAQOAQOQONOQONQOONO0 ~
n?unz o
(=R T
16| o .
ileXely | [
ol o T
| | | =t
IRQZ
rOo i3 Ll o o
5100 =
10| & O I Litg
e Q L %
15[O E ;
3
IRG1 il E u3
111 O
alor o |]| E +
o Q LE
5o O Lzl T - x
A00R] BN -~ o0
19O O =|".1 — -
Gtexe = —
171C © u . = E
16(C O Ak win Ak
152 O falia
w1 dscandinoeia Fi
PO QOQQ O 0QQ0 09 Q000w D Q00 0000 D
R [ROOQOONOONAQONNQNOQONQOOMNOQ0M Q)
||] PﬁHOOﬁHOOHOOOHOOO“OO
. o !EI] ODAARGORNO0NO00N000R00 o
@l} Repl Timg Dpwiceg Scondingwvio Oy FINLAKD [} 2000

DPM104HR

Fig. 1-1 - Board layout showing jumper locations

(c) RTD

Finland Oy 1997-2001

Page 6
Base Address Jumpers (Factory setting: D8000h)

The DPM104HR is memory mapped into the low memory of your host computer. The
board occupies a memory window of 18KB starting from the base address.

The most common cause of failure when you are first setting up your module is address
contention. Some of your computers memory space is already occupied by other devices and
memory resident programs. When the DPM104HR attempts to use it's reserved memory
addresses already used by another device, erratic performance may occur and data read from
the board may be corrupted.

To avoid this problem make sure you set up the base address first using the 5 jumpers
marked "ADDR" which let you choose from number of addresses in your host computers
memory map. Should the factory installed setting of D8000h be unusable for your system
configuration, you may change this setting to another using the options illustrated in Table 1-2
and in Figures 1-2 and 1-3 . The table shows the jumper settings and their corresponding values
in hexadecimal values. Make sure you verify the correct location of the base address jumpers.
When the jumper is removed it corresponds to a logical "1", connecting the jumper to a "0".
When you set the base address of the module, record the setting in the table inside the back
cover of this manual after the Appendices.

Note: If you are using a memory manager such as QEMM, make sure you exclude the
memory section you are occupying by the DPM104HR; for example X=D000-D8FF.

DPM104HR (c) RTD Finland Oy 1997-2001

Page 7

Address Settings for DPM104HR
Base Address Jumper Settings
Hex 1817161
BOXXX 00O00O
B8XXX 0 001
90XXX 0010
98XXX 0011
AOXXX 0100
ABXXX 0101
BOXXX 0110
B8XXX 0111
|COXXX 1000
JIC8XXX 1001
DOXXX 1 010
D8XXX 1011
EOXXX 1100
E8XXX 1101
FOXXX 1110
F8XXX 1111

1 =NO JUMPER, 0 = JUMPER installed
[Note : A19 is always decoded as 1!

Table 1-2 Base address jumper settings
Note: The above table illustrates only the settings for the address bits A18-A15.

Address line A19 should always be decoded as "1" since low memory area 00000 -7ffff
is normally occupied by the system.

DPM104HR (c) RTD Finland Oy 1997-2001

Page 8

Fig. 1-2 Base address jumpers for side A (Master)

Fig. 1-3 Base address jumpers for side B (Slave)

DPM104HR (c) RTD Finland Oy 1997-2001

Page 9

Interrupt Channel A (Factory setting: Not connected)

The header connector, shown on Figure 1-4a, lets you connect the onboard DPM
master side interrupt output to one of the interrupt channels available on the host AT bus.

IRQ1
150 ©

1| [ee
100 ©
g|o O

210 O

Fig. 1-4a Interrupt jumpers for side A

The header connector, shown on Figure 1-4b, lets you connect the onboard DPM
slave side interrupt output to one of the interrupt channels available on the host AT bus.

oS

3
9

O
1

;

Fig. 1-4b Interrupt jumpers for side B

DPM104HR (c) RTD Finland Oy 1997-2001

CHAPTER 2 - BOARD INSTALLATION

The DPM104HR memory interface board is very easy to connect to your industrial
distributed control system. Direct interface two PC/104 computers in one stack! This
chapter tells you step-by-step how to install your DPM104HR into your system.

DPM104HR (c) RTD Finland Oy 1997-2001

Page 11
Board Installation

Keep your board in its antistatic bag until you are ready to install it to your system!
When removing it from the bag, hold the board at the edges and do not touch the components
or connectors. Please handle the board in an antistatic environment anplawsedad
workbench for testing and handling of your hardware.

Before installing the board in your computer, check the jumper settings. Chapter 1
reviews the factory settings and how to change them. If you need to change any settings,
refer to the appropriate instructions in Chapter 1. Note that incompatible jumper settings
can result in unpredictable board operation and erratic response.

General installation guidelines:

1. Turn OFF the power to your computer and all devices connected to DPM104HR
2. Touch the grounded metal housing of your computer to discharge any
antistatic buildup and then remove the board from its antistatic bag.
3. Hold the board by it's edges and install it in an enclosure or place it on the
table on an antistatic surface.
4. Connect the board to the two PC/104 cpuModules using the two bus interface
connectors.

Installation integrated with a PC/104 module stack:

* Secure the two PC/104 installation holes opposite to the bus connectors
with standoffs.

* Connect the DPM104HR board to the two PC/104 cpuModules using the two
bus interface connectors.

DPM104HR (c) RTD Finland Oy 1997-2001

Page 12

[unt | [PARAUEL | [com | J]Jl CMVBBEDXIZ3
DPM104
: CMVB86DX133
“m]‘ | comi | | PARALLEL [T unL |

Fig. 2-1 DPM104HR integrated with two PC/104 cpuModule stacks

Note: The default connectors on the DPM104HR are two soldertail PC/104 bus
connectors. Other connector options are available upon request.

DPM104HR (c) RTD Finland Oy 1997-2001

CHAPTER 3 - HARDWARE DESCRIPTION

Chapter 3 Hardware Description describes the major features of the DPM104HR:
the Dual Port Memory chip, Interrupts , Semaphores and Backup battery supply.

DPM104HR (c) RTD Finland Oy 1997-2001

Page 14

Figure 3-1 shows the general block diagram of the DPM104HR. This chapter describes
the major features of the DPM104HR: the Dual Port Memory chip, Interrupts and the Battery

supply.

A A
%4 .74
<k <k
Sa 82
{)! {))
- -
(A (A}
g 5 a Bl I
9 & 2K x16 & 9
Py g SRAM g Y
A\ [\
ADDRESS ADDRESS
DECODER 5U,':g¥w£§og DECODER
\V4 V

Fig. 3-1 DPM104HR Block diagram

DPM104HR (c) RTD Finland Oy 1997-2001

Page 15
Dual Port Memory chip

The onboard memory is a 8K x 16 Dual port static RAM. The device provides two
independent ports with separate control, access and 1/O pins that permit independent,
asyncronous access for reads and writes to any location in the memory. Automatic
powerdown in activated when the chip is not addressed. Interrupts and semaphores are
supported, the onchip busy flag is not used.

Interrupts

If you wish to use the interrupt supported by the Dual port memory chips, a memory
mailbox is assigned to each port. The Slave port interrupt flag is set when the Master port
writes to memory location FFE (hex). The Slave port clears the interrupt by reading the same
address. Likewise for the Master writing to address FFF (hex). The messages at addresses
FFE and FFF (hex) are user definable. Refer to component specific datasheet for more detailed
information on the functionality of interrupts.

Semaphores

The Dual port RAM chip has eight locations dedicated to binary semaphore flags.
These flags allow the CPU on the Slave or Master side to claim a priviledge over the other
CPU for functions defined by the system software. As an example, the semaphore can be used
by one CPU to inhibit the other CPU from accessing blocks of memory or shared resources.

Software handshaking between CPU's offers the maximum in system flexibility by
permitting shared resources to be allocated in various system configurations. The DPM chip
does not use the semaphore to control any resources through hardware, thus allowing the
system designer maximum flexibilitRefer to component specific datasheet for more
detailed information on how to use semaphores.

Battery supply

The DPM104HR board has an onboard power supply supervisor to monitor the RAM
supply voltage. A small 10 micro Farad charge capacitor will provide enough power for small
transient power losses. This capacitor is kept in charge while power is maintained normally.

For completely non volatile operation an external 3,6V battery must be used in header connector
X1 located next to the Master 16-bit PC/104 bus connector. The polarity of the battery is
important, see picture below for correct connection of the external battery.

O
0 Pin 1 - GND (square pad)
Y1 Pin 2 - 3,6V battery power

DPM104HR (c) RTD Finland Oy 1997-2001

This chapter shows you how to program and use your DPM104HR. It provides a
complete detailed description of the memory map and a detailed discussion of programming
operations to aid you in programming. The full functionality of the Dual Port Memory chip
is described in the datasheet reprint from IDT. You may use the diagnostics and software
supplied by RTD to fully test your system under different operating systems. Please download
the latest drivers and software form our website: <www.rtdfinland.fi>.

DPM104HR (c) RTD Finland Oy 1997-2001

Defining the Memory Map

The memory map of the DPM memory occupies 18 Kbytes of host CPU memory space.
This window is freely selectable by the user as described in Chapter 1, Table 1-2. After setting
the base address you have access to the internal resources of the DPM-chip as described in

Page 17

the next sections reprinted from the IDT chip datasheet.

The memory map of the DPM chip resources is illustrated in the table below.

Address Range in HEX Memory Resources

000-1FFE Dual Port Memory mailbox area

1FFE Interrupt clear for Master (Read)

1FFE Interrupt to Master (Write)

1FFF Interrupt clear for Slave (Read)

1FFF Interrupt to Slave (Write)

2000-2008 Semaphore bits for both sides
DPM104HR

(c) RTD Finland Oy 1997-2001

Integrated Device Technology, Inc.

HIGH-SPEED
8K x 16 DUAL-PORT
STATIC RAM

IDT7025S/L

FEATURES:

True dual-ported memory cells which allow simultaneous

reads of the same memory location
+ High-speed access
— Military: 35/45/55/70ns (max.)
— Commercial: 25/30/35/45/55ns (max.)
+ Low-power operation
— 1DT7025S
Active: 750mW (typ.)
Standby: 5mW (typ.)
— IDT7025L

more than one device

M/S = H for BUSY output flag on Master

M/S = L for BUSY input on Slave

Interrupt Flag

On-chip port arbitration logic

Full on-chip hardware support of semaphore signaling
between ports

Fully asynchronous operation from either port

Battery backup operation—2V data retention

Available in 84-pin PGA, quad flatpack and PLCC

Page 18

PR S

+ TTL compatible, single 5V (+10%) power supply

Industrial temperature range (-40°C to +85°C) is avail-

Active: 750mW (typ.
) able, tested to military electrical specifications

Standby: TmW (typ.)
Separate upper-byte and lower-byte control for
multiplexed bus compatibility
+ IDT7025 easily expands data bus width to 32 bits or
more using the Master/Slave select when cascading

DESCRIPTION:
The IDT7025 is a high-speed 8K x 16 dual-port static RAM.
The IDT7025 is designed to be used as a stand-alone 128K-

FUNCTIONAL BLOCK DIAGRAM

RMWL — BMR
T%_‘ ——Cgf O
4\
| Ck
k —
LBt — Br
CEL — CEr
OEL 1 OER
A2l —; — AI2R
Ator —1 ¥ i i 11 L* Atwr
1/OsL -1/O15L . DN 7 |/O8R-I/O15R
CoL COLUMN COLUMN coL
SEL o o] SEL
V0oL -/O7L — 1/O0R-I/O7R
— — -—_i —
BUSYL ' ‘ BUSYr
AsgL Aor
: Row |[A— N MEMORY <:\ ROW B
Aol — SELECT N—/f ARRAY SELECT AR
NOTES:
1. (MASTER): At2L ————»] Je————— A=A
BUSY is output, . -
(SLAVE): BUSY AoL————» ARBITRATION |fe——->— A0R
is input. CEL— & INTERRUPT le————— CER
2. BUSY outputs BEL . SEMAPHORE OER
and INT outputs = LOGIC ==
are non-tri-stated U_BL > < UBR
push-pull. LBL ————] je———— LBR
— I T I f L [_
RWL _ RMWR
SEML S SEMR
INTL INTR
CEMOS is a trademark of Integrated Device Technology, Inc. 2683 drw 01
MILITARY AND COMMERCIAL TEMPERATURE RANGES APRIL 1992
©1992 Integrated Device Technology, Inc. 6.16 DSC1046/2

1

DPM104HR (c) RTD Finland Oy 1997-2001

IDT7025S/L
HIGH-SPEED 8K x 16 DUAL-PORT STATIC RAM

MILITARY AND COMMERCIAL TEMPERATURE RANGES

bit dual-port RAM or as a combination MASTER/SLAVE dual-
port RAM for 32-bit-or-more word systems. Using the IDT
MASTER/SLAVE dual-port RAM approach in 32-bit or wider
memory system applications results in full-speed, error-free
operation without the need for additional discrete logic.

This device provides two independent ports with separate
control, address, and /O pins that permit independent,
asynchronous access for reads or writes to any location in
memory. An automatic power down feature controlled by CE

permits the on-chip circuitry of each port to enter a very low
standby power mode.

Fabricated using IDT's CEMOS™ high-performance tech-
nology, these devices typically operate on only 750mW of
power at maximum access times as fast as 25ns. Low-power
(L) versions offer battery backup data retention capability with
typical power consumption of 500uW from a 2V battery.

The IDT7025is packaged ina ceramic 84-pin PGA, an 84-
pinquad flatpack, and a PLCC. The military devices are proc-
essed 100% in compliance to the test methods of MIL-STD-
883, Method 5004.

PIN CONFIGURATIONS
F2 2388028 2083828 ou
noex SS 696952 §|3§'§|%|3|§19 I<<<<
ninininininininisinininininininisinisinis]
% 11106 8 7 6 5 4 3 2 1 848362 81807978777675
VOsL []12 7411 A7L
VOeL [} 43 737 AsL
V0101 14 72[] Ast
VOo1L Oas 710 Aat
V0121 [1e 7017 AsL
VoL 17 69 Azt
GND 18 68 [A1l
/O14L 19 6711 Aol
VOrst 20 66 7] INTL
Vee 021 IDT7025 6571 BUSYL
GND []22 J84-1 6471 GND
VOoR 23 F84-2 83[1 WS
VO1R 24 62] BUSYR
VO2r O2s 61 [J INTR
vee O2s 601 Aor
Osn 027 597 A1R
VO04r [28 58] A2r
VOsr [20 573 Asr
1/0eR [{ao 56 {1 A4R
VO7r O34 5511 AsR
/Osr []32 54171 AeR
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
rrrccenfarnorCccCcrE 2683 drw 02
8555558085 5F888 25 <<=
SIS =
PLCC/FLATPACK
TOP VIEW
NOTES:
1. All Vec pins must be connected to power supply.
2. All GND pins must be connected to ground supply.
6.16 2

DPM104HR

(c) RTD Finland Oy 1997-2001

Page 19

Page 20

IDT7025S/L
HIGH-SPEED 8K x 16 DUAL-PORT STATIC RAM MILITARY AND COMMERCIAL TEMPERATURE RANGES

TRUTH TABLE: NON-CONTENTION READ/WRITE CONTROL

inputs®™ Outputs
CE RW | OE | UB LB SEM | VOs1s | VOo7 Mode
H X X X X H Hi-Z Hi-Z Deselected: Power Down
X X X H H H Hi-Z Hi-Z Both Bytes Deselected: Power Down
L L X L H H DATAIN Hi-Z | Write to Upper Byte Only
L L X H L H Hi-Z DATAIN | Write to Lower Byte Only
L L X L L H DATAIN | DATAIN | Write to Both Bytes
L H L L H H DATAout| Hi-Z Read Upper Byte Only
L H L H L H Hi-Z |DATAout| Read Lower Byte Only
L H L L L H DATAouT|DATAouT} Read Both Bytes
X X H X X X Hi-Z Hi-Z Outputs Disabled

NOTE: 2683 thl 01
1. AoL— A1zl # AoR — At2R

TRUTH TABLE: SEMAPHORE READ/WRITE CONTROL

PRSI S

Inputs Outputs
CE |RW | OE |UB | 1B SEM | VOsas | VOo7 Mode |
H H L X X L DATAOUT |DATAouUT| Read Data in Semaphore Flag
X H L H H L DATAouT|DATAouUT| Read Data in Semaphore Flag
H e X X X L DATAIN | DATAIN | Write DiNo into Semaphore Flag
X e X H H L DATAIN | DATAIN | Write DiNo into Semaphore Flag
L X X L X L — — Not Allowed
L X X X L L — — Not Allowed
(1) 2683 101 02
ABSOLUTE MAXIMUM RATINGS RECOMMENDED OPERATING
Symbol Rating Commercial] Military | unit| TEMPERATURE AND SUPPLY VOLTAGE
vterm®@ | Terminal Voltage| -0.5t0 +7.0 | -0.5t0+7.0] V Ambient
with Respect Grade Temperature GND Vee
to GND Military -55°C 1o +125°C ov 5.0V+10%
TA Operating 0to+70 | -55t0+125| °C Commercial 0°C to +70°C ov 5.0V +10%
Temperature 2683 16105
Toias Temperature 55104125 | -6510+135| *c | RECOMMENDED DC OPERATING
Under Bias CONDITIONS
TsTa Storage -5510+126 | -65t0+150 | °C Symbol Parameter Min. | Typ. | Max. | Unit
1t
, ;eg"—‘c%m ure = ” — Voo | Supply Voltage 45 |50 | 55| Vv |
ouT put |
Current GND Supply Voltage 0 o] 0 \]
NOTE: 268310104 ViH Input High Voltage 22 | — | 60®| Vv ‘
1. Stresses greater than those listed under ABSOLUTE MAXIMUM oM i
RATINGS may cause permanent damage to the device. This is a stress Vi Input Low Voltage 05 08 v ‘
rating only and functional operation of the device at these or any other NOTE: 2683 thl 06
conditions above those indicated in the operational sections of this 1. Viz-3.0V for pulse width less than 20ns.
specification is not implied. Exposure to absolute maximum rating 2. VTERM must not exceed Vee +0.5V.
conditions for extended periods may affect reliability.
2. VTERM must not exceed Vce + 0.5V, CAPACITANCE (Ta= +25°C, { = 1.0MHz)
Symbol Parameter(") Conditions | Max. [Unit
CIN Input Capacitance VIN = OV 11 pF
Cout Output Vout = 0V 11 pF
Capacitance
NOTE: 2682 1ol 03
1. This parameter is determined by device characterization but is not «
production tested.
6.16 4

DPM104HR (c) RTD Finland Oy 1997-2001

IDT7025S/L
HIGH-SPEED 8K x 16 DUAL-PORT STATIC RAM

Page 21

MILITARY AND COMMERCIAL TEMPERATURE RANGES

TRUTH TABLES
TRUTH TABLE | — INTERRUPT FLAG(")
Left Port Right Port
RWL | CEL OEL |AoL-A12L| INTL | RWR | CER | OER |Aor-A12r| INTR Function

L L X | 1FFF | X X X X X L | set Right INTR Flag

X X X X X X L L 1FFF | H® | Reset Right INTR Flag

X X X X IS L L X 1FFE | X Set Left INTL Flag

X L L | 1FFE | H® X X X X X Reset Left INTL Flag
NOTES: o 2683 tbi 15
1. Assumes BUSYL = BUSYR = H.
2. IfBUSYL = L, then no change.
3. If BUSYR = L, then no change.

6.16 16

DPM104HR

(c) RTD Finland Oy 1997-2001

IDT7025S/1.
HIGH-SPEED 8K x 16 DUAL-PORT STATIC RAM

Page 22

MILITARY AND COMMERCIAL TEMPERATURE RANGES

TRUTH TABLE Il — ADDRESS BUSY
ARBITRATION

Inputs Outputs
AoL-A12L
CEL | CEr | Aor-A12r |BUSYL™ |[BUSYR" | Function
X X | NO MATCH H H Normal
H X MATCH H H Normal
X H MATCH H H Normal
L L MATCH @ 2 | wnite Inhibit®
NOTES: 2683 1bl 16

1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSYx outputs on the
IDT7025 are push pull, not open drain outputs. On slaves the BUSYx input internally inhibits writes.

2.

L if the inputs to the opposite port were stable prior to the address and enable inputs of this port. H if the inputs to the opposite port became stable after

the address and enable inputs of this port. If tas is not met, either BUSYL or BUSYR = Low will result. BUSYL and BUSYR outputs cannot be low

simultaneouly.

. Writes to the left port are internally ignored when BUSYL outputs are driving low regardless of actual logic level on the pin. Writes to the right port are

internally ignored when BUSYR outputs are driving low regardless of actual logic level-on the pin.

TRUTH TABLE Il — EXAMPLE OF SEMAPHORE PROCUREMENT SEQUENCE(")

Functions Do- D15 Left | Do- D15 Right Status
No Action 1 1 Semaphore free
Left Port Writes "0" to Semaphore 0 1 Left port has semaphore token
Right Port Writes "0" to Semaphore 0 1 No change. Right side has no write access to semaphore
Left Port Writes "1" to Semaphore 1 0 Right port obtains semaphore token
Left Port Writes "0" to Semaphore 1 0 No change. Left port has no write access to semaphore
Right Port Writes "1" to Semaphore 0 1 Left port obtains semaphore token
Left Port Writes "1" to Semaphore 1 1 Semaphore free
Right Port Writes "0" to Semaphore 1 0 Right port has semaphore token
Right Port Writes "1" to Semaphore 1 1 Semaphore free
Left Port Writes "0" to Semaphore 0 1 Right port has semaphore token
Left Port Writes "1" to Semaphore 1 1 Semaphore free

NOTE:

2683l 17

1. This table denotes a sequence of events for only one of the eight semaphores on the IDT7025.

FUNCTIONAL DESCRIPTION

The IDT7025 provides two ports with separate control,
address and |/0 pins that permitindependent access for reads
or writes to any location in memory. The IDT7025 has_ an
automatic power down feature controlled by CE. The CE
controls on-chip power down circuitry that permits the
respective port to go into a standby mode when not selected
(CE high). When a port is enabled, access to the entire
memory array is permitted.

INTERRUPTS

If the user chooses to use the interrupt function, a memory
location (mail box or message center) is assigned to each port.
The left port interrupt flag (INTL) is set when the right port
writes to memory location 1FFE (HEX). Theleftport clears the
interrupt by reading address location 1FFE. Likewise, the
right port interrupt flag (INTR) is set when the left port writes to
memory location 1FFF (HEX) and to clear the interrupt flag
(INTR}, the right port must read the memory location 1FFF.

The message (16 bits) at 1FFE or 1FFF is user-defined. Ifthe
interrupt function is not used, address locations 1FFE and
1FFF are not used as mail boxes, but as part of the random
access memory. Referto Table | for the interrupt operation.

BUSY LOGIC

Busy Logic provides a hardware indication that both ports
of the RAM have accessed the same location at the same
time. It also allows one of the two accesses to proceed and
signals the other side that the RAM is *busy”. The busy pincan
thenbe usedto stall the access until the operation on the other
side is completed. If a write operation has been attempted
from the side that receives a busy indication, the write signal
is gated internally to prevent the write from proceeding.

The use of busy logic is not required or desirable for all
applications. In some cases it may be useful to logically OR
the busy outputs together and use any busy indication as an
interrupt source to flag the event of an illegal or illogical

6.16

17

B,

DPM104HR

(c) RTD Finland Oy 1997-2001

IDT7025S/L
HIGH-SPEED 8K x 16 DUAL-PORT STATIC RAM

MILITARY AND COMMERCIAL TEMPERATURE RANGES

L L it
MASTER CE SLAVE CE 8
Dual Port Dual Port o
RAM RA w
Busy (L) Busy (R) Busy (L) Busy (R)
Py } |
[1
MASTER CE SLAVE CE
Bual Port gxla\lﬂ Port
Busy (R)
Busy (L) Busy (L) Busy '(R) Busly (L) Busy 1(R)

2683 drw 20

Figure 3. Busy and chip enable routing for both width and depth expansion with IDT7025 RAMs.

operation. If the write inhibit function of busy logic is not
desirable, the busy logic can be disabled by placing the part
in slave mode with the M/S pin. Once in slave mode the BUSY
pin operates solely as a write inhibit input pin. Normal
operation can be programmed by tying the BUSY pins high. If
desired, unintended write operations can be prevented to a
port by tying the busy pin for that port low.

The busy outputs on the IDT 7025 RAM in master mode,
are push-pull type outputs and do not require pull up resistors
to operate. |f these RAMs are being expanded in depth, then
the busy indication for the resulting array requires the use of
an external AND gate.

WIDTH EXPANSION WITH BUSY LOGIC

MASTER/SLAVE ARRAYS

When expanding an IDT7025 RAM array in width while
using busy logic, one master part is used to decide which side
of the RAM array will receive a busy indication, and to output
that indication. Any number of slaves to be addressed in the
same address range as the master, use the busy signal as a
write inhibit signal. Thus onthe IDT7025 RAM the busy pin is
an output if the part is used as a master (M/S pin = H), and the
busy pinis an input if the part used as a slave (M/S pin=L) as
shown in Figure 3.

If two or more master parts were used when expanding in
width, a split decision could result with one master indicating
busy on one side of the array and another master indicating
busy on one other side of the array. This would inhibit the write
operations from one port for part of a word and inhibit the write
operations from the other port for the other part of the word.

The busy arbitration, on a master, is based on the chip
enable and address signals only. It ignores whether an
access is a read or write. In a master/slave array, both
address and chip enable must be valid long enough for a busy
flag to be output from the master before the actual write pulse
can be initiated with either the R/W signal or the byte enables.
Failure to observe this timing can result in a glitched internal
write inhibit signal and corrupted data in the slave.

SEMAPHORES

The IDT7025 is an extremely fast dual-port 8K x 16 CMOS
static RAM with an additional 8 address locations dedicated to
binary semaphore flags. These flags allow either processor
onthe left orright side of the dual-port RAM to claim a privilege
over the other processor for functions defined by the system
designer's software. As an example, the semaphore can be
used by one processor to inhibit the other from accessing a
portion of the dual-port RAM or any other shared resource.

The dual-port RAM features a fast access time, and both
ports are completely independent of each other. This means
that the activity on the left portin no way slows the access time
ofthe right port. Both ports are identical in function to standard
CMOS static RAM and can be read from, or written to, at the
same time with the only possible conflict arising from the
simultaneous writing of, or a simultaneous READ/WRITE of,
anon-semaphore location. Semaphores areprotected against
such ambiguous situations and may be used by the system
program to avoid any conflicts in the non-semaphore portion
of the dual-port RAM. These devices have an automatic
power-down feature controlled by CE, the dual-port RAM
enable, and SEM, the semaphore enable. The CE and SEM
pins control on-chip power down circuitry that permits the
respective port to go into standby mode when not selected.
This is the condition which is shown in Truth Table where CE
and SEM are both high.

Systems which can best use the IDT7025 contain multiple
processors or controllers and are typically very high-speed
systems which are software controlled or software intensive.
These systems can benefit from a performance increase
offered by the IDT7025's hardware semaphores, which pro-
vide a lockout mechanism without requiring complex pro-
gramming.

Software handshaking between processors offers the
maximum in system flexibility by permitting shared resources
to be allocated in varying configurations. The IDT7025 does
not use its semaphore flags to control any resources through
hardware, thus allowing the system designer total flexibility in
system architecture.

An advantage of using semaphores rather than the more

6.16 18

DPM104HR

(c) RTD Finland Oy 1997-2001

Page 23

IDT7025S/L
HIGH-SPEED 8K x 16 DUAL-PORT STATIC RAM

Page 24

MILITARY AND COMMERCIAL TEMPERATURE RANGES

common methods of hardware arbitration is that wait states
are never incurred in either processor. This can prove to be
a major advantage in very high-speed systems.

HOW THE SEMAPHORE FLAGS WORK

The semaphore logic is a set of eight latches which are
independent of the dual-port RAM. These latches can be used
to pass a flag, or token, from one port to the other to indicate
that a shared resource is in use. The semaphores provide a
hardware assist for a use assignment method called “Token
Passing Allocation.” In this method, the state of a semaphore
latch is used as a token indicating that shared resource is in
use. lfthe left processorwants to use this resource, it requests
the token by setting the latch. This processor then verifies its
success in setting the latch by reading it. If it was successful,
it proceeds to assume control over the shared resource. If it
was not successful in setting the latch, it determines that the
right side processor has set the latch first, has the token and
is using the shared resource. The left processor can then
either repeatedly request that semaphore’s status or remove
its request for that semaphore to perform another task and
occasionally attempt again to gain control of the token via the
set and test sequence. Once the right side has relinquished
the token, the left side should succeed in gaining control.

The semaphore flags are active low. A token is requested
by writing a zero into a semaphore latch and is released when
the same side writes a one to that latch.

The eight semaphore flags reside within the IDT7025 in a
separate memory space from the dual-port RAM. This
address space is accessed by placing a low input on the SEM
pin (which acts as a chip select for the semaphore flags) and
using the other control pins (Address, OE, and R/W) as they
would be used in accessing a standard static RAM. Each of
the flags has a unique address which can be accessed by
either side through address pins AO—A2. When accessing the
semaphores, none of the other address pins has any effect.

When writing to a semaphore, only data pin Do is used. If
alow level is written into an unused semaphore location, that
flagwillbe set to a zero on that side and a one on the other side
(see Table IIl). That semaphore can now only be modified by
the side showing the zero. When a one is writteninto the same
location from the same side, the flag willbe set to a one for both
sides (unless a semaphore request from the other side is
pending) and then can be written to by both sides. The fact
that the side which is able to write a zero into a semaphore
subsequently locks out writes from the other side is what
makes semaphore flags useful in interprocessor communica-
tions. (A thorough discussing on the use of this feature follows
shortly.) A zero written into the same location from the other
side will be stored in the semaphore request latch for that side
until the semaphore is freed by the first side.

When a semaphore flag is read, its value is spread into all
data bits so that a flag that is a one reads as a one in all data
bits and a flag containing a zero reads as ali zeros. The read
valueis latchedinto one side's output registerwhen that side's
semaphore select (SEM) and output enable (OE) signals go
active. This serves to disallow the semaphore from changing

state in the middle of a read cycle due to a write cycle from the
other side. Because of this latch, a repeated read of a
semaphore in a test loop must cause either signal (SEM or
OE) to go inactive or the output will never change.

A sequence WRITE/READ must be used by the sema-
phorein order to guarantee that no system level contention will
occur. A processor requests access to shared resources by
attempting to write a zero into a semaphore location. If the
semaphore is already in use, the semaphore request latch will
contain a zero, yet the semaphore flag will appear as one, a
fact which the processor will verify by the subsequent read
(see Table [ll). As an example, assume a processor writes a
zero to the left port at a free semaphore location. On a
subsequent read, the processor will verify that it has written
successfully to that location and will assume control over the
resource in question. Meanwhile, if a processor on the right
side attempts to write a zero to the same semaphore flag it will
fail, as will be verified by the fact that a one will be read from
thatsemaphore on the right side during subsequentread. Had
a sequence of READ/WRITE been used instead, system
contention problems could have occurred during the gap
between the read and write cycles.

Itis important to note that a failed semaphore request must
be followed by either repeated reads or by writing a one into
the same location. The reason for this is easily understood by
looking at the simple logic diagram of the semaphore flag in
Figure 4. Two semaphore request latches feed into a
semaphore flag. Whichever latch is first to present a zero to
the semaphore flag will force its side of the semaphore flag
low and the other side high. This condition will continue until
aoneis written to the same semaphore request latch. Should
the other side's semaphore request latch have been written to
azeroin the meantime, the semaphore flag will flip over to the
other side as soon as a one is written into the first side’s
request latch. The second side’s flag will now stay low until its
semaphore request latch is written to a one. From this it is
easy to understand that, if a semaphore is requested and the
processor which requested it no longer needs the resource,
the entire system can hang up until a one is written into that
semaphore request latch.

The critical case of semaphore timing is when both sides
requesta single token by attempting to write a zerointoitatthe
same time. The semaphore logic is specially designed to
resolve this problem. If simultaneous requests are made, the
logic guarantees that only one side receives the token. If one
side is earlier than the other in making the request, the first
side to make the request will receive the token. If both
requests arrive at the same time, the assignment will be
arbitrarily made to one port or the other.

One caution that should be noted when using semaphores
is that semaphores alone do not guarantee that access to a
resource is secure. As with any powerful programming
technique, if semaphores are misused or misinterpreted, a
software error can easily happen.

Initialization of the semaphores is not automatic and must
be handled via the initialization program at power-up. Since
any semaphore request flag which contains a zero must be
reset to a one, all semaphores on both sides should have a

6.16 19

DPM104HR

(c) RTD Finland Oy 1997-2001

IDT7025S/L
HIGH-SPEED 8K x 16 DUAL-PORT STATIC RAM

MILITARY AND COMMERCIAL TEMPERATURE RANGES

one written into them at initialization from both sides to assure
that they will be free when needed.

USING SEMAPHORES—SOME EXAMPLES

Perhaps the simplest application of semaphores is their
application as resource markers for the IDT7025's dual-port
RAM. Say the 8K x 16 RAM was to be divided into two 4K x
16 blocks which were to be dedicated at any one time to
servicing either the left or right port. Semaphore 0 could be
used toindicate the side which would control the lower section
of memory, and Semaphore 1 could be defined as the
indicator for the upper section of memory.

To take a resource, in this example the lower 4K of
dual-port RAM, the processor on the left port could write and
then read a zero in to Semaphore 0. If this task were
successtully completed (a zero was read back rather than a
one), the left processor would assume control of the lower 4K.
Meanwhile the right processor was attempting to gain control
of the resource after the left processor, it would read back a
one in response to the zero it had attempted to write into
Semaphore 0. At this point, the software could choose to try
and gain control of the second 4K section by writing, then
reading a zero into Semaphore 1. If it succeeded in gaining
control, it would lock out the left side.

Once the left side was finished with its task, it would write
a one to Semaphore 0 and may then try to gain access to
Semaphore 1. |f Semaphore 1 was still occupied by the right
side, the left- side could undo its semaphore request and
perform other tasks until it was able to write, then read a zero
into Semaphore 1. If the right processor performs a similar
task with Semaphore 0, this protocol would allow the two
processors to swap 4K blocks of dual-port RAM with each
other.

L PORT

SEMAPHORE
REQUEST FLIP FLOP

The blocks do not have to be any particular size and can
even be variable, depending upon the complexity of the
software using the semaphore flags. All eight semaphores
could be used to divide the dual-port RAM or other shared
resources into eight parts. Semaphores can even be as-
signed different meanings on different sides rather than being
given a common meaning as was shown in the example
above.

Semaphores are a useful form of arbitration in systems like
disk interfaces where the CPU must be locked out of a section
of memory during a transfer and the I/O device cannot tolerate
any wait states. With the use of semaphores, once the two
devices has determined which memory area was “off-limits” to
the CPU, both the CPU and the I/O devices could access their
assigned portions of memory continuously without any wait
states.

Semaphores are also useful in applications where no
memory “WAIT" state is available on one or both sides. Once
a semaphore handshake has been performed, both proces-
sors can access their assigned RAM segments at full speed.

Another application is in the area of complex data struc-
tures. Inthis case, block arbitration is very important. For this
application one processor may be responsible forbuilding and
updating a data structure. The other processorthenreads and
interprets that data structure. |If the interpreting processor
reads an incomplete data structure, a major error condition
may exist. Therefore, some sort of arbitration must be used
between the two different processors. The building processor
arbitrates for the block, locks it and then is able to go in and
update the data structure. When the update is completed, the
data structure block is released. This allows the interpreting
processor to come back and read the complete data structure,
thereby guaranteeing a consistent data structure.

R PORT

SEMAPHORE
REQUEST FLIP FLOP
Do
WRITE

SEMAPHORE
READ

SEMAPHORE
READ

2683 drw 21

Figure 4. IDT7025 Semaphore Ldglc

6.16

DPM104HR

(c) RTD Finland Oy 1997-2001

Page 25

Page 26
Interrupts

- What is an interrupt ?

An interrupt is an event that causes the processor in your computer to temporarily halt
its current process and execute another routine. Upon completion of the new routine, control is
returned to the original routine at the point where its execution was interrupted.

Interrupts are a very flexible way of dealing with asynchronous events. Keyboard activity
is a good example; your computer cannot predict when you might press a key and it would be a
waste of processor time to do nothing while waiting for a keystroke to occur. Thus the interrupt
scheme is used and the processor proceeds with other tasks. Then when a keystroke occurs,
the keyboard ‘interrupts' the processor , and the processor gets the keyboard data, placed it into
memory, and then returns to what it was doing before the interrupt occurred. Other common
devices that use interrupts are network boards, A/D boards, serial ports etc.

You can interrupt the other processor on the other side of the DPM by writing to the
topmost addresses of the memory at addresses 1FFE and 1FFF. When an interrupt is received
you may signal that data has been updated in the memory. By using interrupts you can write
powerful code to interface to your DPM104HR.

-Interrupt request lines

To allow different peripheral devices to generate interrupts on the same computer, the
PC AT bus has interrupt request channels (IRQ's). A rising edge transition on one of these lines
will be latched into the interrupt controller. The interrupt controller checks to see if the interrupts
are to be acknowledged from that IRQ and, if another interrupt is being processed, it decides if
the new request should supersede the one in progress or if it has to wait until the one in progress
is done. The priority level of the interrupt is determined by the number of the IRQ; IRQO has the
highest priority IRQ15 the lowest. Many of the IRQ's are used by the standard system resources.
IRQO is dedicated for the internal timer, IRQ1 is dedicated to the keyboard input, IRQ3 for serial
port COM2 and IRQ4 for serial port COML1. Often interrupts 3,5 and 7 are free for the user.

- 8259 Programmable Interrupt Controller

The chip responsible for handling interrupt requests in a PC is the 8259 Interrupt
Controller. To use interrupts you will need to know how to read and set the 8259's internal
interrupt mask register (IMR) and how to send the end-of-interrupt (EOI) command to
acknowledge the 8259 interrupt controller.

DPM104HR (c) RTD Finland Oy 1997-2001

Page 27

-Interrupt Mask Register (IMR)

Each bit in the interrupt mask register (IMR) contains the mask status of the interrupt
line. If a bit is set (equal to 1), then the corresponding IRQ is masked, and it will not generate
an interrupt. If a bit is cleared (equal to 0), then the corresponding IRQ is not masked, and it
can generate an interrupt. The interrupt mask register is programmed thoytigthh.

-End-of-Interrupt (EOI) Command

After an interrupt service routine is complete, the 8259 Interrupt Controller must be
acknowledged bwriting the value 20h to port 20h

-What exactly happens when an interrupt occurs?

Understanding the sequence of events when an interrupt is triggered is necessary to
correctly write interrupt handlers. When an interrupt request line is driven high by a peripheral
device (such as the ECAN527), the interrupt controller checks to see if interrupts are enabled
for that IRQ, and then checks to see if other interrupts are active or requested and determines
which interrupt has priority. The interrupt controller then interrupts the processor. The current
code segment (CS), instruction pointer (IP), and flags are pushed onto the system stack., and a
new set if CS and IP are loaded from the lowest 1024 bytes of memory.

This table is referred to as the interrupt vector table and each entry to this table is called an
interrupt vector. Once the new CS and IP are loaded from the interrupt vector table, the
processor starts to execute code from the new Code Segment (CS) and from the new
Instruction Pointer (IP). When the interrupt routine is completed the old CS and IP are popped
from the system stack and the program execution continues from the point it was interrupted.

-Using Interrupt in your Program

Adding interrupt support to your program is not as difficult as it may seem especially
when programming under DOS. The following discussion will cover programming under DOS.
Note, that even the smallest mistake in your interrupt program may cause the computer to hang
up and will only restart after a reboot. This can be frustrating and time-consuming.

-Writing an Interrupt Service Routine (ISR)

The first step in adding interrupts to your software is to write an interrupt service routine
(ISR). This is the routine that will be executed automatically each time an interrupt request occurs
for the specified IRQ. An ISR is different from other subroutines or procedures. First, on entrance
the processor registers must be pushed onto thestémie anythinglse!Second, just before
exiting the routine, you must clear the interrupt on the DPM104HR and write the EOI command
to the interrupt controller. Finally, when exiting the interrupt routine the processor registers must

DPM104HR (c) RTD Finland Oy 1997-2001

Page 28

be popped from the system stack and you must execute the IRET assembly instruction. This
instruction pops the CS, IP and processor flags from the system stack. These were pushed
onto the stack when entering the ISR:

Most compilers allow you to identify a function as an interrupt type and will automatically
add these instructions to your ISR with one exception: most compilers do not automatically add
the EOl command to the function, you must do it yourself. Other than this and a few exceptions
discussed below, you can write your ISR as any code routine. It can call other functions and
procedures in your program and it can access global data. If you are writing your first ISR, we
recommend you stick to the basics; just something that enables you to verify you have entered
the ISR and executed it successfully. For example: set a flag in your ISR and in your main
program check for the flag.

Note: If you choose to write your ISR in in-line Assembly , you must push and pop
registers correctly, and exit the routine with the IRET instruction instead of the RET instruction.

There are a few precautions you must consider when writing ISR's. The most important
is, do not use any DOS functions or functions that call DOS functions from an interrupt
routine. DOS is notreentrant; that is, a DOS function cannot call itself. In typical programming,
this will not happen because of the way DOS is written. But what about using interrupts? Then,
you could have the situation such as this in your program. If DOS function X is being executed
when an interrupt occurs and the interrupt routine makes a call to the DOS function X, then
function X is essentially being called while active. Such cases will cause the computer to crash.
DOS does not support such operation. A general rule is , that do not call any functions that use
the screen, read keyboard input and any file I/O routines should not be used in ISR's.

The same problem of reentrancy exists for many floating point emulators as well, meaning
you should avoid floating point mathematical operations in your ISR.

Note, that the problem of reentrancy exists, no matter what programming language
you use. Even, if you are writing your ISR in Assembly language, DOS and many floating
point emulators are not reentrant. Of course, there are ways to avoid this problem, such as
those which involve checking if any DOS functions are currently active when your ISR is
called, but such solutions are beyond the scope of this manual.

The second major concern when writing ISR's is to make them as short as possible in
term of execution time. Spending long times in interrupt service routines may mean that other
important interrupts are not serviced. Also, if you spend too long in your ISR, it may be called
again before you have exited. This will lead to your computer hanging up and will require
a reboot.

DPM104HR (c) RTD Finland Oy 1997-2001

Page 29

Your ISR should have the following structure:

Push any processor registers used in your ISR. Most C compiler do this automatically
Put the body of your routine here

Read interrupt status address of your DPM104HR board to clear interrupt

Issue the EOI command to the 8259 by writing 20h to address 20h

Pop all registers. Most C compilers do this automatically

* 6 6 ¢ o

The following C example shows what the shell of your ISR should be like:

[e e e o eee
| Function: new_IRQ_handler
| Inputs: Nothing
| Returns: Nothing - Sets the interrupt flag for the EVENT.
et */
void interrupt far new_IRQ _handler(void)
{
IRQ flag = 1, /I Indicate to main process interrupt has occurred
{
I/l Your program code should be here
}
/l Read address 1FFE or 1FFF to
/I Clear interrupt
outp(0x20, 0x20); [* Acknowledge the interrupt controller. */
}

-Saving the Startup Interrupt Mask Regqister (IMR) and interrupt vector

The next step after writing the ISR is to save the startup state of the interrupt mask
register (IMR) and the original interrupt vector you are using. The IMR is located in address
21h. The interrupt vector you will be using is located in the interrupt vector table which is an
array of 4-byte pointers (addresses) and it is located in the first 1024 bytes of the memory
(Segment 0 offset 0). You can read this value directly, but it is a better practice to use DOS
function 35h (get interrupt vector) to do this. Most C compilers have a special function available
for doing this. The vectors for the hardware interrupts on the XT - bus are vectors 8-15,
where IRQO uses vector 8 and IRQ7 uses vector 15. Thus if your DPM104HR is using IRQ5 it
corresponds to vector number 13.

Before you install your ISR, temporarily mask out the IRQ you will be using. This
prevents the IRQ from requesting an interrupt while you are installing and initializing your ISR.
To mask the IRQ, read the current IMR at 1/O port 21h, and set the bit that corresponds to
your IRQ. The IMR is arranged so that bit O is for IRQO and bit 7 is for IRQ7. See the paragraph

DPM104HR (c) RTD Finland Oy 1997-2001

Page 30

entitledInterrupt Mask Register (IMRearlier in this discussion for help in determining your
IRQ's bit. After setting the bit, write the new value to I/O port 21h.

With the startup IMR saved and the interrupts temporarily disabled, you can assign the
interrupt vector to point to your ISR. Again you can overwrite the appropriate entry in the
vector table with a direct memory write, but this is not recommended. Instead use the DOS
function 25h (Set Interrupt Vector) or, if your compiler provides it, the library routine for
setting up interrupt vectors. Remember , that interrupt vector 8 corresponds to IRQO, vector
9 for IRQ1 etc.

If you need to program the source of your interrupts, do that next. For example, if
you are using transmitted or received messages as an interrupt source , program it to do that.

Finally, clear the mask bit for your IRQ in the IMR. This will enable your IRQ.

-Common Interrupt mistakes

¢ Remember, hardware interrupts are from 8-15, XT IRQ's are numbered 0-7
¢ Forgetting to clear the IRQ mask bit in the IMR
+ Forgetting to send the EOl command after ISR code. Disables further interrupts.

Example on Interrupt vector table setup in C-code:

void far _interrupt new_IRQ1_handler(void); /* ISR function prototype */
#define IRQ1_VECTOR 3 /* Name for IRQ */
void (interrupt far *old_IRQ1_dispatcher)
(es,ds,di,si,bp,sp,bx,dx,cx,ax,ip,cs,flags); [* Variable to store old IRQ_Vector */
void far _interrupt new_IRQ1_handler(void);

L e e e e e e
| Function: init_irg_handlers
| Inputs: Nothing
| Returns: Nothing
| Purpose: Set the pointers in the interrupt table to point to
| our funtions ie. setup for ISR's.
R */
void init_irq_handlers(void)
{
_disable();
old_IRQ1_handler = _dos_getvect(IRQ1_VECTOR + 8);
_dos_setvect(IRQ1_VECTOR + 8, new_IRQ1_handler);
Gi_old_mask = inp(0x21);
outp(0x21,Gi_old_mask & ~(1 << IRQ1_VECTOR));
_enable();
}

DPM104HR (c) RTD Finland Oy 1997-2001

Page 31

S —
| Function: restore do this before exiting program
| Inputs: Nothing
| Returns: Nothing
| Purpose: Restore interrupt vector table.
[=== = */
void restore(void)
{
/* Restore the old vectors */
_disable();
_dos_setvect(IRQ1_VECTOR + 8, old_IRQ1_handler);
outp(0x21,Gi_old_mask);
_enable();
}

DPM104HR (c) RTD Finland Oy 1997-2001

APPENDIX A

DPM104HR Specifications

Host Interface

Memory mapped into low memory 16Kbytes
Jumper-selectable base address

16-bit data bus
Jumper selectable interrupts XT and AT

Connectors

Host bus (Master / Slave side) 16-bit PC/104 busses

Electrical
Operating temperature range -40 to +85C
Supply voltage +5V only
1,25W

Power consumption

DPM104HR (c) RTD Finland Oy 1997-2001

Limited Warranty

RTD Embedded Technologies, Inc. warrants the hardware and software products it manufactures
and produces to be free from defects in materials and workmanship for one year following the
date of shipment from RTD EMBEDDED TECHNOLOGIES, INC. This warranty is limited to the
original purchaser of product and is not transferable.

During the one year warranty period, RTD EMBEDDED TECHNOLOGIES will repair or replace,
at its option, any defective products or parts at no additional charge, provided that the product is
returned, shipping prepaid, to RTD EMBEDDED TECHNOLOGIES. All replaced parts and
products become the property of RTD EMBEDDED TECHNOLOGIES. Before returning any
product for repair, customers are required to contact the factory for an RMA number.

THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY PRODUCTS WHICH HAVE BEEN
DAMAGED AS A RESULT OF ACCIDENT, MISUSE, ABUSE (such as: use of incorrect input
voltages, improper or insufficient ventilation, failure to follow the operating instructions that are
provided by RTD EMBEDDED TECHNOLOGIES, "acts of God" or other contingencies beyond
the control of RTD EMBEDDED TECHNOLOGIES), OR AS A RESULT OF SERVICE OR
MODIFICATION BY ANYONE OTHER THAN RTD EMBEDDED TECHNOLOGIES. EXCEPT AS
EXPRESSLY SET FORTH ABOVE, NO OTHER WARRANTIES ARE EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND RTD EMBEDDED
TECHNOLOGIES EXPRESSLY DISCLAIMS ALL WARRANTIES NOT STATED HEREIN. ALL
IMPLIED WARRANTIES, INCLUDING IMPLIED WARRANTIES FOR MECHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, ARE LIMITED TO THE DURATION OF THIS
WARRANTY. IN THE EVENT THE PRODUCT IS NOT FREE FROM DEFECTS AS
WARRANTED ABOVE, THE PURCHASER'S SOLE REMEDY SHALL BE REPAIR OR
REPLACEMENT AS PROVIDED ABOVE. UNDER NO CIRCUMSTANCES WILL RTD
EMBEDDED TECHNOLOGIES BE LIABLE TO THE PURCHASER OR ANY USER FOR ANY
DAMAGES, INCLUDING ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES, EXPENSES,
LOST PROFITS, LOST SAVINGS, OR OTHER DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PRODUCT.

SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR
CONSEQUENTIAL DAMAGES FOR CONSUMER PRODUCTS AND SOME STATES DO NOT
ALLOW LIMITATIONS ON HOW LONG AN IMPLIED WARRANTY LASTS, SO THE ABOVE
LIMITATIONS OR EXCLUSIONS MAY NOT APPLY TO YOU.

THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE
OTHER RIGHTS WHICH VARY FROM STATE TO STATE.

