
NATIONAL QUALIFICATIONS CURRICULUM SUPPORT

Computing

Software Development

using VB2005/2008 EE

[INTERMEDIATE 2]

2 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

The Scottish Qualifications Authority regularly reviews
the arrangements for National Qualifications. Users of
all NQ support materials, whether published by Learning
and Teaching Scotland or others, are reminded that it is
their responsibility to check that the support materials
correspond to the requirements of the current
arrangements.

Acknowledgement
Learning and Teaching Scotland gratefully acknowledges this contribution to the
National Qualifications support programme for Computing.

© Learning and Teaching Scotland 2009

This resource may be reproduced in whole or in part for educational purposes by
educational establishments in Scotland provided that no profit accrues at any stage.

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 3

© Learning and Teaching Scotland 2009

Contents

Introduction
 Tutor guide 5
 Student guide 7

Section 1: Software development process

1.1 Software 8
1.2 The development process 10
1.3 A dragon in the dungeon eradicates mice! 13
1.4 Analysis 15
1.5 Design 16
1.6 Implementation 18
1.7 Testing 18
1.8 Documentation 18
1.9 Evaluation 19
1.10 Maintenance 20

Section 2: Languages and environments

2.1 Computer languages 22
2.2 High and low-level languages 22
2.3 Translators 25
2.4 Interpreters 26
2.5 Compilers 26
2.6 Text editors 27
2.7 Scripting languages and macros 29

Section 3: High-level programming – getting started

3.1 Introducing Visual BASIC 35
3.2 Input and output – example 38
3.3 Input and output – tasks 48
3.4 Other forms of output 49
3.5 Declaring variables 51
3.6 Working with numbers – example 53
3.7 Adding a Clear button 60
3.8 Arithmetical expressions 61
3.9 Working with numbers – tasks 62
3.10 Predefined numeric functions 63
3.11 Working with words and numbers – example 66

CONTENTS

4 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

3.12 Predefined string functions 71
3.13 Example program using Chr and Asc 79

Section 4: High-level language programming – basic constructs

4.1 Making choices 82
4.2 If .. Then .. Else 83
4.3 Multiple Ifs 86
4.4 Using AND – example 91
4.5 Using And – task 95
4.6 Complex conditions 96
4.7 Repetition 97
4.8 Repetition using For .. Next 98
4.9 Counting using For .. Next 101
4.10 For .. Next tasks 109
4.11 Using loops to work with strings 110
4.12 Do .. Loop Until 112
4.13 Random numbers 115
4.14 Arithmetic tester 118
4.15 More examples using Do .. Loop Until 121
4.16 Other forms of conditional loop 127

Section 5: High-level language programming – standard

algorithms
5.1 Input validation 129
5.2 Input validation tasks 133
5.3 Other standard algorithms 134
5.4 Using arrays 137
5.5 Examples using arrays 142

Answers to questions 146

INTRODUCTION

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 5

© Learning and Teaching Scotland 2009

Introduction

Tutor guide

This teaching and learning material is designed to cover all of the content
needed by a learner to pass the Software Development unit of Intermediate 2
Computing. However, it is the responsibility of the tutor to check the content
coverage against the SQA unit specification.

The pack covers the knowledge and understanding required for Outcome 1
assessment, and the practical skills required for Outcome 2. There are many
opportunities throughout the unit (especially in Sections 3, 4 and 5) for
students to demonstrate the practical skills required, and generate the
required evidence.

For unit assessment, use should be made of the NAB assessment materials
provided by SQA (multiple choice test and practical skills checklist).

Note that learners completing this unit as part of the Intermediate 2 Computing
course should be given opportunities to develop the higher-order problem-
solving skills required for the external course assessments (examination and
practical coursework tasks). This can be done by providing past exam paper
questions and further programming tasks, such as the specimen coursework
task provided by SQA.

The pack has not been designed for a student to use unsupported, although it
might be possible to use it in this way. Students will need significant tutor
support, particularly while attempting the practical programming sections of the
unit. This support would include giving help with the complexities of the Visual
BASIC environment, providing extra example programs where a student
needs reinforcement activities, and emphasising key teaching and learning
points as they occur.

All the examples provided are exemplified in Visual BASIC (VB) 2005 EE
(Express Edition), and the same coding should work in VB2008 EE. Minor
amendments might be required to run the programs in other versions of
VB.net. Users of versions VB5 or VB6 should use the original version of these
materials, published and distributed by Learning and Teaching Scotland. This
software development environment and programming language has been
chosen as it is one in common use in Scottish schools at

INTRODUCTION

6 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

present. However, the SQA unit specification does not require any particular
language or environment, so the examples could be adapted and/or
substituted by examples in any other structured procedural high-level
language. To facilitate this, the examples avoid where possible constructions
that are very specific to VB and that are not easily converted into other
languages.

Answers to questions are provided at the end of the pack, but not answers to
programming tasks, as many possible correct answers are possible, and
syntax may vary depending on the version of VB in use.

INTRODUCTION

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 7

© Learning and Teaching Scotland 2009

Student guide

This teaching and learning material is designed to cover all the skills,
knowledge and understanding that you need to pass the Software
Development unit of Intermediate 2 Computing.

To achieve this unit, you must develop and demonstrate knowledge and
understanding of:

• the principles of software development (Section 1)
• software development languages and environments (Section 2)
• high-level language constructs (Sections 3 and 4)
• standard algorithms (Section 5).

At the end of the unit, you will be tested on this knowledge by sitting a short
20-question multiple-choice test.

However, it is not only about passing a test. You must also develop practical
skills in software development using a suitable high-level language. Almost
any programming language can be used, but these notes (especially Sections
3 to 5) assume that you are using Visual BASIC 2005 EE (or VB 2008 EE). If
you are using a different programming language, your teacher or lecturer will
need to supply you with other materials for some parts of the unit.

Your teacher or lecturer will complete a practical skills checklist for you as you
work through the practical exercises in these notes. You should keep a folio of
evidence; this should include documentation of all the stages of the software
development process.

You will see the following icons throughout these notes:

Computer-based practical task – you will need access to a
computer with Visual BASIC 2005 EE (or similar) installed for this
task

Questions for you to answer – you can check your own
answers against the sample answers given at the end of this pack

Activity (not computer-based) – this will usually require some
written work

You should ask your teacher or lecturer to check your work whenever you
complete a computer-based practical task or a non-computer-based activity.

SOFTWARE DEVELOPMENT PROCESS

8 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Section 1: Software development process

1.1 Software

This unit is about software. What is software? You
should already know that any computer system is
made up of hardware and software.

The term hardware is fairly easy to understand
because you can see it. It is all the pieces of
equipment that make up the system – the
processor, monitor, keyboard, mouse, printer, scanner and so on.

Software is not so obvious. It is all the programs, instructions and data that
allow the hardware to do something useful and interesting.

Think about all the different items of software that you have used in the last
week or so.

Here is the list of programs that I have used recently:

• Microsoft Word (the word processing program that I use – I regularly use

three versions of it: Word 2000, Word 98 for MacOS 8, Word v.X for
MacOS X)

• Microsoft Excel (spreadsheet used to keep charity accounts for which I
am the treasurer)

• ClarisWorks 4 (integrated package – I mainly use its word processor and
simple database sections)

• Internet Explorer (both PC and Mac versions – for browsing the web)
• Safari (web browser for MacOS X)
• three different email clients (Netscape Communicator, MS Outlook and

Mail)
• iPhoto (for organising my digital photographs)
• iMovie (for editing digital movies)
• Adobe Photoshop (for editing digital photographs)
• Citrix ICA thin client (allows me to connect to my work computer from

home)
• Toast (for burning CDs)

SOFTWARE DEVELOPMENT PROCESS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 9

© Learning and Teaching Scotland 2009

• Print to pdf (a shareware program for creating pdf files)
• Adobe Acrobat and Preview (for viewing pdf files)
• Macromedia Flash (for developing animated graphics)
• Home Page (an ancient but reliable web page editor)
• some game programs
• Symantec Anti-virus suite.

But that’s not all! On each computer that I have used, a program (or group of
programs) called the operating system must have been running. So I must
add the following to my list:

• Windows 97 (on the ancient laptop I am using to type these notes)
• Windows XP (on another laptop)
• Windows 2000 (on a computer at school)
• MacOS 8.1 (on my trusty old Mac clone)
• MacOS X.2 (on my iMac).

Thirdly, a full list would include all the actual documents, files, web pages,
emails and so on that I had accessed, as these are also software. That would
be too long a list, so I’ll ignore it here.

How about you? Make a list of all the software (programs and
operating systems) that you have used over the last few days.

The point about all these programs is this: they didn’t grow on trees! They are
available for us to use because they have been designed and created by
teams of software developers. In this unit, we are going to learn about the
process of developing software, and to apply this process to develop some
(simple) programs of our own.

1. What is the meaning of the term hardware?

2. Give three examples of software.

SOFTWARE DEVELOPMENT PROCESS

10 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

3. Identify each of the following as either hardware or software:

Item Hardware Software

Monitor

Database

Windows 97

Scanner

An email

Internet Explorer

Mouse

Modem

Computer game

Word processor

Digital camera

1.2 The development process

Before we think about how software is developed, it is worth
considering how any product is developed because the
process is essentially the same.

For example, think about the process of developing a new
model of television.

Stage 1: Analysis

Before a new product is developed, someone within the company, probably in
the marketing department, analyses what people want. They consider which
products are selling well, look at what rival companies are producing and
maybe even carry out a survey to see what people want. From this they can
work out which features are required in their newest model, including its size,
target price range and various technical requirements.

They use this information to produce a specification for the new model of TV.
This states clearly all the features that it must have.

SOFTWARE DEVELOPMENT PROCESS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 11

© Learning and Teaching Scotland 2009

Stage 2: Design

The next stage is to turn the specification into a design. Designers will get to
work, alone or in groups, to design various aspects of the new TV. What will it
look like? How will the controls be laid out? Sketches will be drawn up and
checked against the specification. Another team of designers will be planning
the internal circuitry, making sure it will allow the TV to do all the things set out
in the specification.

Stage 3: Implementation

Once the design phase is over, engineers will get to work to actually build a
prototype. Some will build the case according to the design, while others will
develop the electronics to go inside. Each part will be tested on its own, then
the whole thing will be assembled into a (hopefully) working TV set.

Stage 4: Testing

Before the new model can be put on sale, it will be thoroughly tested. A wide
range of tests will be carried out.

It might be tested under “normal” conditions. It could be put in a room at
normal room temperature, and checked to see that all the controls work
correctly, the display is clear, it is nice and stable, and so on.

If it passes this type of testing, it might next be tested under “extreme”
conditions. For example, does it still work if the temperature is below freezing,
or very hot and humid, if it used for long periods of time, or with the volume or
the brightness or contrast set to their maximum values.

Finally, it could be tested under “exceptional” circumstances. What happens if
a 2-year-old picks up the remote and presses all the buttons at once? What
happens if there is a power cut or a power surge?

If it fails any of these tests, it might be necessary to go back to the
implementation (or even design) stage and do some further work,
before re-testing.

If it passes all the testing, then it can go into production.

Stage 5: Documentation

However, the development isn’t yet complete! Some
documentation will be needed to go with the TV. A user manual

SOFTWARE DEVELOPMENT PROCESS

12 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

containing all the instructions about how to work the new TV, and probably a
technical manual for repair engineers.

Stage 6: Evaluation

Once the model is in production, the company will want to evaluate the new
product. Does it do what it is supposed to do? Is it easy to use? And, from the
engineer’s point of view, is it easy to repair?

Stage 7: Maintenance

Stage 6 should be the end of the story, but in the real world there needs to be
Stage 7: Maintenance. There are different kinds of maintenance: fixing faults
that turn up once it is being used regularly, improving the design to make it
even better or making changes for other situations (like making a version that
will work in another country).

These seven stages are required for the production process.

Ok, let’s see if you have got the idea …

Choose any type of manufactured object – it could be a car,
an item of clothing, a ready-made meal, a toy, a piece of
furniture, a building, etc.

Now copy and complete this table, writing one sentence to describe each of
the seven stages in the production of your chosen object:

Object chosen:

Stage Description

1. Analysis

2. Design

3. Implementation

4. Testing

5. Documentation

6. Evaluation

7. Maintenance

SOFTWARE DEVELOPMENT PROCESS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 13

© Learning and Teaching Scotland 2009

1.3 A dragon in the dungeon eradicates mice!

Exactly the same process goes into the production of a piece of software. The
software engineers and their colleagues carry out all the stages of the
software development process in order – analysis, design, implementation,
testing, documentation, evaluation, maintenance.

Activity

Consider the production of a new game program by a software company.

Here are descriptions of the seven stages, but they are in the wrong order.
Copy and complete another table like the one above, and slot the stages into
the correct places:

A. Writing a user guide and technical guide for the software.

B. Deciding what type of game you want to create and what features you

want it to have.

C. Adapting the game to run on a different type of computer.

D. Actually writing all the program code.

E. Checking that the program does what it is supposed to do, is easy to use

and can be fixed if there is a problem.

F. Working out the details of what the screens will look like, what menus and

functions there will be, and other detailed aspects of the program.

G. Getting users to try out the program to make sure it works under most conditions.

Stage description

1. Analysis

2. Design

3. Implementation

4. Testing

5. Documentation

6. Evaluation

7. Maintenance

SOFTWARE DEVELOPMENT PROCESS

14 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Check your answers below.

You should have the following:

Stage Description

1. Analysis B. Deciding what type of game you want to create and
what features you want it to have.

2. Design
F. Working out the details of what the screens will look

like, what menus and functions there will be, and
other detailed aspects of the program.

3. Implementation D. Actually writing all the program code.

4. Testing G. Getting users to try out the program to make sure it
works under most conditions.

5. Documentation A. Writing a user guide and technical guide for the
software

6. Evaluation
E. Checking that the program does what it is supposed

to do, is easy to use and can be fixed if there is a
problem.

7. Maintenance C. Adapting the game to run on a different type of
computer.

SOFTWARE DEVELOPMENT PROCESS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 15

© Learning and Teaching Scotland 2009

In this course, especially in Section 3
onward, you will be putting this
software development process into
practice when you produce some
simple programs in a high-level
computer programming language.

For the moment, it is worth trying to
learn the steps in the correct order. I
usually use a silly mnemonic for this,
like:

A Dragon In The
Dungeon Eradicates
Mice

which helps me remember ADITDEM:

Analysis
Design
Implementation
Testing
Documentation
Evaluation
Maintenance

You might be able to make up a better
mnemonic than this one – so long as it
helps you, then it’s OK!

Next, we will take a closer look at each of the stages.

1.4 Analysis

The main purpose of the analysis stage is to be absolutely clear about what
the program is supposed to do. Often, a new program will start from a rough
idea. Before getting started, it is important to turn the rough idea into an exact
description of how the program will behave. What will it do? What are the
inputs and the outputs? What type of computer is it to run on? All these
questions, and many more, must be asked and answered at this stage.

Analysis

Design

Implementation

Testing

Documentation

Evaluation

Maintenance

SOFTWARE DEVELOPMENT PROCESS

16 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

The result of this is the production of a program specification, agreed by
both the customer (whoever wants the program written) and the developer
(the person or company who is developing the program).

1.5 Design

Inexperienced programmers are often tempted to jump straight from the
program specification to coding, but this is not a good idea. It is worth
spending time at the design stage working out some of the important details,
including how the program will look on the screen, how the user will interact
with the program and how the program might be structured. Program
designers use a variety of methods for describing the program structure. Two
common ones are called pseudocode and structure diagrams. There are
many others, but we will only consider these two.

It is easy to understand these if we think about an everyday example, rather
than a computer program.

Think about making tea. Here is a list of instructions for this task.

1. Get a mug out of the cupboard.
2. Put a teabag in it.
3. Boil the kettle.
4. Pour boiling water from the kettle into the mug.
5. Stir.

This is an example of pseudocode. It is a numbered list of instructions written
in normal human language (in this case, English). It doesn’t go into all the
details, but it gives the main steps.

Another way of showing this is as a structure diagram. It could look like this:

Each instruction goes into a separate box. You read pseudocode from top to
bottom. You read a structure diagram from left to right.

Making tea

Get mug
from
cupboard

Put
teabag in
mug

Boil kettle Pour water
from kettle
into mug

Stir

SOFTWARE DEVELOPMENT PROCESS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 17

© Learning and Teaching Scotland 2009

Activity

Now try a couple for yourself. Here are some simple tasks.

• Going to school.
• Going to New York.
• Having a shower.
• Phoning a friend.
• Becoming a millionaire.

Choose any two, and write pseudocode instructions and draw a structure
diagram for each one.

Don’t make it too complicated. In the tea example, I broke “making tea” into
five steps. You could have broken it into many more detailed steps. For
example, getting a mug out of the cupboard could be broken down into smaller
steps – walk across to the cupboard, open the door, choose a mug, lift it out,
close the door, walk back across the room. Try to break the task down into
between four and eight steps.

We will use pseudocode in Section 3 when we start to develop our own
computer programs.

There are other graphical methods of representing the structure of a program.
These include structure charts and flowcharts. Some use a variety of “boxes”
to represent different types of instruction. For example, you might see:

to represent a repeated action

to represent a choice

to represent a step which will be broken down into
smaller steps

SOFTWARE DEVELOPMENT PROCESS

18 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

1.6 Implementation

In software development, implementation is the process of converting a
program design into a suitable programming language.

There are thousands of different programming languages out there, all with
their own advantages and disadvantages. For the purposes of this course, you
only need to know about two main groups: machine code and high-level
languages. You will learn more about these in Section 2.

1.7 Testing

We thought a bit about testing at the start of this section. Whether we are
talking about a new TV, a new item of clothing or a new computer program,
the manufacturers will spend a great deal of time in testing. This testing will be
carefully planned to test a wide variety of conditions. We can divide this up
into three types of testing.

Testing normal conditions

Making sure the program does what it should do when used “normally”.

Testing extreme conditions

Making sure the program can handle situations that are at the edge of what
would be considered normal.

Testing exceptional conditions

Making sure the program can handle situations or inputs that it has not been
designed to cope with.

You will see examples of all of these in Section 3.

1.8 Documentation

When you buy a product, whether it is a computer
program or anything else, you usually get some kind of
user guide with it. This tells you how to use the product. It
might also contain a tutorial, taking you through the use of
the product step by step.

SOFTWARE DEVELOPMENT PROCESS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 19

© Learning and Teaching Scotland 2009

Some software comes with a big fat book called user guide or manual; others
come with the user guide on a CD.

As well as documentation for the user of the software, there should also be a
technical guide of some sort. This gives technical information, which is of little
interest to most users, except that it will usually include information about the
specification of computer required, including how much RAM it needs, how
fast a processor it must have and which operating system is required. The
technical guide should also include instructions on how to install the software.

Get hold of a software package that has been bought by your
school or college, or one you have bought yourself at home,
open it up and take a look inside the box that it came in.
Make a list of all the items of documentation that you find there.

1.9 Evaluation

The final stage in the process before the software can be distributed or sold is
evaluation. Evaluation involves reviewing the software under various headings
to see if it of the quality required.

In this course, we will review software under three headings: fitness for
purpose, user interface and readability.

Is the software fit for purpose? The answer is “yes” if the software does all
the things that it is supposed to do under all reasonable conditions. This
means going back to the program specification (produced at the analysis
stage) and checking that all the features of the software have been
implemented. It also means considering the results of testing, and making
sure that the program works correctly and is free from bugs.

The user interface should also be evaluated. Is the program easy to use? Is it
clear what all the menus, commands and options are supposed to do? Could it
be improved in any way?

The third aspect of evaluation that we will consider is readability. This is of no
direct concern to the user of the software, but is important for any
programmer who may need to understand how the program works. It is to do
with the way that the coding has been implemented. Is it possible for the
program code to be read and understood by another programmer, perhaps at
a later date when the program is being updated in some way? In Section 3 we
will see some techniques for improving the readability of a program.

SOFTWARE DEVELOPMENT PROCESS

20 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

1.10 Maintenance

This final phase happens after the program has been put
into use. There are different types of maintenance that
might be required. These are called corrective
maintenance, perfective maintenance and adaptive
maintenance. You don’t need to know these names until
Higher level, but it is useful to think about what they mean.

Corrective maintenance means fixing any bugs that appear once the
program is in use. Of course, these should all have been discovered during
testing. However, most programs (but not the ones you will be writing) are so
huge and complex that some bugs are bound to slip through unnoticed. If the
bugs are serious in nature, the software company might issue a free “patch”
on its website so that users can download the patch and install it with the
software, so fixing the bug. If it is a minor bug, they may not bother.

Perfective maintenance is adding new features to the software. These might
be suggested as a result of the evaluation stage or they might be suggested
by users. These new features will then be added to the software and re-issued
as a new version. That’s why software often has version numbers.
Each version results from corrective and perfective maintenance of the earlier
versions. So, for example, BloggProg 3.2 will be similar to BloggProg 3.1, but
with bugs fixed and some new features added.

The third type of maintenance is adaptive maintenance. This is where the
software has to be changed to take account of new conditions. The most
obvious example is when a new operating system comes out. Perhaps
BloggProg 3.2 was designed to run under Windows 2000. When Windows XP
came along, changes had to be made to BloggProg so that it would work
under the new operating system.

SOFTWARE DEVELOPMENT PROCESS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 21

© Learning and Teaching Scotland 2009

Questions

1. Match up these descriptions of the stages of the software development
process with the correct names (one has been done for you):

Stage Description

Evaluation Writing a user guide and technical guide
for the software

Testing

Working out the details of what the
screens will look like, what menus and
functions there will be and other detailed
aspects of the program.

Implementation
Deciding what type of game you want to
create and what features you want it to
have.

Design Actually writing all the program code.

Documentation Adapting the game to run on a different
type of computer.

Analysis
Checking that the program does what it is
supposed to do, is easy to use and can be
fixed if there is a problem.

Maintenance Getting users to try out the program to
make sure it works under most conditions.

2. What three criteria will be used for evaluating software in this unit?

3. What is the relationship between pseudocode and a structure diagram?

4. Name two items of documentation usually provided with a software

package, and describe what you would expect each one to contain.

5. What three types of testing should be applied to, any software?

6. Describe two examples of maintenance that could be required on a

game program.

LANGUAGES AND ENVIRONMENT

22 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Section 2: Languages and environments

2.1 Computer languages

Just as there are many human languages, there are many computer
programming languages that can be used to develop software. Some are
named after people, like Ada and Pascal. Some are abbreviations, like PL/1
and Prolog. All have different strengths and weaknesses. FORTRAN was
designed for carrying out mathematical and scientific calculations. Prolog is
good for developing programs in artificial intelligence. COBOL is for
developing commercial data processing programs.

Activity

Make a list of six or so programming languages (you can find
these in textbooks or on websites). For each one, write down
where it gets its name from and what it is “good” for.

Here are some examples to get you started:

Name Source of name Used for
Ada After Countess Lovelace US military systems
Logo Greek for “thought” Education
FORTRAN FORmula TRANslation Early scientific language

All these languages are what we call high-level languages. That is to
distinguish them from low-level languages! What do we mean?

2.2 High- and low-level languages

Inside every computer, there is a processor. This is a chip containing digital
electronic circuits. These circuits work with tiny pulses of electricity and
electronic components. The pulses of electricity can be represented by the
digits 1 and 0. Every item of data, and every instruction for the processor, is
represented by a group of these binary digits.

Processors only “understand” these binary digits. The only inputs you can
make to a processor are groups of binary digits. The only output that a
processor can make is a group of binary digits.

LANGUAGES AND ENVIRONMENT

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 23

© Learning and Teaching Scotland 2009

Instructions and commands made in these binary
digital form for processors are known as machine
codes. Here are a few machine codes for a 6502
processor:

10101001 00000001
10000101 01110000
10100101 01110000

There are several problems with machine code:

• machine codes for different processors are different
• they are very hard for humans to understand and use
• they take up a lot of space to write down
• it is difficult to spot errors in the codes.

Unfortunately, processors don’t understand anything else, so machine code
has to be used. The earliest computers could only be programmed by entering
these machine codes directly. It was a slow process, easy to get it wrong, and
very difficult to track down and fix any bugs in the programs. Machine codes
are an example of low-level languages, understood by the low-level
components of the computer system (the processor and other electronic
circuits).

To get round these difficulties, computer scientists invented high-level
languages.

High-level languages are similar to human languages. Instead of using binary
codes, they use “normal” words. For example, the computer language BASIC
uses words like PRINT, IF, THEN, REPEAT, END, FOR, NEXT, INPUT and so
on. That means that high-level languages are easier to understand than
machine code and are more “readable”, that is it is easier to spot and correct
errors.

Not very easy
to understand,
are they?!

LANGUAGES AND ENVIRONMENT

24 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Here is a simple program written in a number of high- and low-level
languages:

This final one is 6502 machine code, which is
completely unintelligible to (most) humans.

In fact, all five of these programs do more or less the
same job! I think you will agree that high-level
languages are much more practical for writing
programs than machine code!

10 Number:= 1
20 Answer:= Number + 1
30 PRINT Answer
40 END

make ‘number 1
make ‘answer ‘number + 1
say ‘answer

PROGRAM adder;
VAR answer,number: real;
BEGIN
 Number:=1;
 Answer:=number+1;
WRITELN(answer);

LDA #1
STA 1000
LDA 1000
ADC
STA 1001
JSR OSWRCH

The first three are all examples
of high-level languages (BASIC,
Logo and Pascal). All use words
that are understandable to
humans.

This is a low-level
language called
6502 assembler –
not so easy to
understand!

10101001 00000001
10000101 01110000
10100101 01110000
01101001 00000001
10000101 01110001
00100000 11101110

LANGUAGES AND ENVIRONMENT

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 25

© Learning and Teaching Scotland 2009

Questions:

1. Which type of language (high- or low-level) is easier to understand?
2. Which type would be easiest to correct if it had a mistake in it?
3. Name two low-level languages.
4. Name two high-level languages.
5. Explain the main differences between high- and low-level languages
6. Write down two advantages of high-level languages.

It looks like high-level languages have all the advantages compared to
machine code. However, there is one major problem – processors don’t
understand high-level languages at all! To get round this problem, computer
scientists have developed translator programs which can translate high-level
languages (written by humans) into machine code (understood by
processors).

2.3 Translators

There are two main types of translator program that you need to know
something about. These are called interpreters and compilers.

To understand the difference, it is useful to think about an analogy from the
“non-computer” world.

Imagine that you were the world expert in some obscure
subject, like “the anatomy of the microscopic tube worms
of the steppes of Khazakstan”. You have been invited to
present a lecture on this subject at a conference to be
held in Japan. Most of the delegates at the conference do
not speak or understand English, and you do not know
any Japanese. How are you going to communicate?

There are two options that you can take.

Translator
program

High-level
language

Machine
code

LANGUAGES AND ENVIRONMENT

26 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

2.4 Interpreters

Option 1 is to go to the conference yourself and deliver your speech in English
one sentence at a time. After each sentence, a professional translator (who
can understand English and also speaks fluent Japanese) will turn your
sentence into Japanese. This will continue right through your lecture, with the
interpreter translating each sentence as you go along.

Computer interpreter programs work in the same way. The interpreter takes
each line of high-level language code, translates it into machine code and
passes it to the processor to carry out that instruction. It works its way through
the high-level language program one line at a time in this way.

This works fine, but it has a couple of important
disadvantages. Think about the analogy again. Your 1-
hour lecture will take 2 hours to deliver, as each
sentence is spoken by you in English, then by the
interpreter in Japanese. The other disadvantage is that
if you are then asked to deliver your lecture again in
another Japanese city, you will need to have it
translated all over again as you are delivering it the
second time.

The same problem is true of computer interpreters. The process of translating
the high-level language program slows down the running of the program.
Secondly, the high-level language program needs to be translated every time
it is used. This is a waste of computer resources and means that the user
must always have an interpreter as well as the high-level language program
(often called source code).

2.5 Compilers

An alternative approach is to use a compiler.

Going back to the Japanese lecture example, instead of using a translator at
the conference, you could write down the text of your lecture in English and
get a translator to translate it all into Japanese is advance. You could then
send the translated lecture script to the conference and have it read out by a
Japanese person there.

The advantages are obvious – your lecture can be delivered in the 1 hour
allowed in the conference program, and it can be used as often as required
without it needing to be translated over and over again.

LANGUAGES AND ENVIRONMENT

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 27

© Learning and Teaching Scotland 2009

A compiler program works in the same way. It takes your high-level language
program and translates the whole program into machine code once. This
machine code can then be saved and kept. Once translated, it can be used
over and over again without needing to be translated every time. The compiled
program therefore runs more quickly, and the user doesn’t need to have a
translator program on their own computer.

Software that you buy, such as a games program or an application, will have
been compiled into machine code before being distributed and sold. What
you get on the disk or CD is a machine code program that can run on your
computer without needing to be translated.

Questions:

1. Name the two main types of translator programs.
2. Which one translates a whole program into machine code before it is

executed?
3. Which one translates a program line by line as it is being executed?
4. Why do machine code programs run more quickly on a computer than

high-level language programs?

2.6 Text editors

During the development of a high-level language program, after the analysis
and design stages, the programmer (or team of programmers) have to
implement the design by coding it in a suitable high-level language.

LANGUAGES AND ENVIRONMENT

28 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Here is an example Visual BASIC program:

You can see that a high-level language has features that make it similar to a
human language – the use of ordinary words, for example. This means that
the implementation is often carried out using similar tools to those used for
writing an essay or report. For example, cut and paste would be useful when
typing the program shown above. To write an essay or report, you would
normally use a word-processing package. High-level language programs can
also be written using a word-processing package. The “source code” can be
saved as a text file, which can then be translated into machine code by a
compiler.

However, some software development environments provide a text editor,
which incorporates many of the usual features of a word processor. The most
useful of these is probably the ability to cut and paste sections of code.

Activity

Consider the software development environment you are using
for the programming section of this unit. Does it have a text
editor, or do you use a separate word processing package?
What useful text editing features does it incorporate?

Private Sub btnOK_Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles btnOK.Click
 ‘ coding for the OK command button
 ‘ displays an appropriate message for each possible number entered
 ‘ written by A. Programmer on 21/09/07

 Dim Number as Integer

 Number = txtNumber.text

 If Number = 1 Then MsgBox Number & “ wins you a colour TV”
 If Number = 2 Then MsgBox Number & “ wins you a mobile phone”
 If Number = 3 Then MsgBox Number & “ wins you a holiday in Spain”
 If Number = 4 Then MsgBox Number & “ wins you 10p”
 If Number = 5 Then MsgBox Number & “ wins you a day at the beach”
 If Number < 1 Then MsgBox Number & “ is too small”
 If Number > 5 Then MsgBox Number & “ is too large”
End Sub

LANGUAGES AND ENVIRONMENT

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 29

© Learning and Teaching Scotland 2009

2.7 Scripting languages and macros

Most of this unit is concerned with the process of developing programs written
in a high-level language to create stand-alone applications.

However, small programs called macros can be developed within some
existing application packages.

Example: Creating an Excel spreadsheet macro

• Set up a small spreadsheet like the one shown below. Save it as
course.xls.

• Save a second copy of the same spreadsheet as course_copy.xls.

• From the Tools menu, select Macro, then Record New Macro

The following dialog box should appear:

LANGUAGES AND ENVIRONMENT

30 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

• Enter the name (tidy_up_SS).
• Enter the shortcut key (Ctrl + Shift + K).
• Then click OK.

Warning: Follow these instructions very carefully – all your actions are being
recorded!

• Select cell a1 (the title of the spreadsheet).
• Change its font to 18pt Bold.
• Select A3 to D13 (all the data).
• Centre it all using the centre button on the menu bar.
• Select row 3 (the column headings).
• Make them bold.

The spreadsheet should now look like this:

• Click on “stop recording”.

Save the improved spreadsheet as course2.xls. All the series of actions that
you applied to course.xls to turn it into course2.xls have been recorded and
stored as a macro.

LANGUAGES AND ENVIRONMENT

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 31

© Learning and Teaching Scotland 2009

To see the macro you have created:

• Go to the Tools menu.
• Select Macro.
• Select Macros.

A dialog box like the one shown below should appear, with your named macro
listed under the name you gave it.

• Click on Edit

LANGUAGES AND ENVIRONMENT

32 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Another window will open, which displays the code of the macro you have
recorded, like this:

The macro is actually coded in a scripting language called Visual BASIC for
Applications, or VBA for short.

What use is a macro?

• Keep course 2.xls open.
• Open course_copy.xls.
• Hold down Ctrl + Shift + K.

The file course_copy.xls should be automatically formatted by the macro to
be the same as course2.xls.

If the user had several similar unformatted spreadsheets and wanted them all
formatted in this way, he could save a great deal of time by using the macro.

A macro is a time-saving program written in a scripting language which can be
activated by a series of key strokes for repeated use. A macro cannot exist
alone – it only works with an application program (in this case, Excel). In this
example, we have seen a macro being used with a spreadsheet. Macros can
be used with many other application packages.

You should be able to
recognise the actions you
took.

For example, the first section
records the macro’s name
and shortcut key.

Next comes the action of
selecting cell AI, changing
the font to18 point, making it
bold, and so on.

LANGUAGES AND ENVIRONMENT

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 33

© Learning and Teaching Scotland 2009

Example 2: Creating a word processing macro

• Open any word processing document.
• As before, from the Tools menu, select Macro, then Record New Macro.
• Name the macro bold_red_text.
• Assign a shortcut key combination (perhaps Ctrl + Alt + R).
• Click OK.

Now the macro is being recorded.

• Select bold and text colour red from the menu bar.
• Click to stop the macro recording.

Now you can use the macro.

• Select any block of text.
• Activate the macro by using the shortcut key combination.

You can also activate the macro by selecting it from Tools, Macro, Macros.

This macro would be useful if you have several documents to work through, in
each of which you have been asked to change the main heading to bold red
text.

If you needed to change all the sub-headings to italic blue text, you could set
up a similar macro to do that. Alternatively, you could edit the macro directly
by changing the VBA code in the edit window. Try editing the above macro to
make it produce blue italic text.

The examples above are very simple ones. Macros can be used to automate
any task within an application program. For example, they can be used to
activate long and complex data manipulations within a database application or
specialised formatting within any type of document.

Some applications, such as AppleWorks, allow you to record macros, but don’t
allow you to edit the code as you can in MS Office. If you have time, you could
explore any other applications that you use to see if they have a macro facility.

LANGUAGES AND ENVIRONMENT

34 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Questions

1. What is a macro?
2. What type of language is sued to write macros?
3. What are the advantages of using macros?
4. Describe two situations where a macro could be useful.

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 35

© Learning and Teaching Scotland 2009

Section 3: High-level programming – getting

started

3.1 Introducing Visual BASIC

For this section of the course, you are going to learn to develop programs
using a high-level language called Visual BASIC (often shortened to VB)

The first stage is to become familiar with the Visual BASIC environment. Here
is what a simple Visual BASIC program might look like.

 Caption

 Label

 Text box

 Button

Notice the following features of the program:

• The whole program appears as a form.
• At the top of the form, there is a caption (club membership).
• There are two text boxes for entering the name and age.
• At the bottom there are two buttons.
• Some text appears in labels on the form.

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

36 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Each of these items is called an object. Each object has properties, and
some objects (including buttons) can have program code associated with
them, so that something happens when a user (for example) clicks the button.
Clicking a button is an example of an event. VB allows a programmer to
create event-driven programs.

To develop a program in Visual BASIC, you need to open the VB
programming environment. To begin with, it looks a little complicated, but you
will soon learn how to use it.

Here is the same program while it was being developed, showing some of the
main features of the VB environment:

At the top is the menu bar, with the usual menus (File, edit) and some
specialised VB menus.

Below this is the VB toolbar. The item you will use most is the icon, which
you use to run a program.

Down the left side is the toolbox, from which you will select objects to place on
your form. The form appears in the form window in the middle of the screen.

VB toolbox Menu bar VB tool bar Solution
explorer window

Properties
window

Form
window

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 37

© Learning and Teaching Scotland 2009

On the right side of the screen you will see
the solution explorer window and the
properties window. All of these will be
explained as you work through the
examples.

We are going to learn to develop Visual
BASIC programs, using the steps of the
software development process that you
have already met.

Here is a reminder of these important steps:

 making sure you know what the
 program has to do

 deciding on the form layout, the inputs,
 outputs and processes required

 creating the form and writing
 the code for any actions

 making sure the program
 works correctly

 writing a user guide and
 a technical guide

 reviewing how well the
 program solves the original
 problem

 making any upgrades
 required

Analysis

Design

Implementation

Testing

Documentation

Evaluation

Maintenance

Important advice!
If any of the windows
disappear unexpectedly,
you can get it back by
selecting it in the View
menu.

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

38 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Questions

1. Name three types of object that could be found on a VB form.

2. What does this icon do?

3. Give an example of a VB event.

3.2 Input and output – example

Almost every program that has ever been written follows a pattern called IPO.
This stands for input–process–output. Most programs are designed to take in
some data, to process it in some way, then to give out some data.

Example 1

To keep things simple for your first VB program, we are going to develop one
which misses out the middle step! It will simply take in some information and
give it out again. It’s not very useful, but it will teach you some of the basics of
VB programming.

We start with the program specification.

Design, implement and test a program which will prompt the user to enter his
or her name. The program should then display the name and a welcome
message.

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 39

© Learning and Teaching Scotland 2009

Stage 1 – Analysis

Start by thinking about what data goes in and what data comes out of the
program while it is running. A data flow diagram is a good way of analysing
this.

Start by representing the
program as a “blob” ….

Think, what information
comes out of the program?

Show this as an arrow coming
out of the blob …

Now think – what information
needs to go into the program
to give this output?

Show this as an arrow going
in to the blob …

Copy this diagram – you have drawn your first data flow diagram.

Name and
welcome message

Name and
welcome message name

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

40 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Stage 2 – Design – user interface

Next we need to think about what we want the program to look like.

We can sketch out how we want the form to look like this

Our form has:

• a title caption at the top
• a label (Enter your name)
• a text box to type your name into
• a button to activate the message
• another label with your name and the date.

If you’re wondering where the message is going to appear, we are going to
make it pop up in a separate message box.

Stage 2 – Design – pseudocode

Pseudocode is just a fancy name for a list of steps that the program should
carry out every time you run it. You write it in a sort of cross between English
and computer language. It lets you think about the steps carefully without
getting bogged down in the actual coding. Another advantage of pseudocode
is that it can then be easily converted into almost any high-level language you
want – in our case, Visual BASIC.

Here is a list of steps for our program (pseudocode):

• Store the name.
• Display the message.

That’s it! That is all our program is supposed to do.

My First Program in VB

Enter your name

by A. Programmer 15/12/03 Click for
message

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 41

© Learning and Teaching Scotland 2009

Stage 3 – Implementation – creating a form

Now we are ready to start coding. Start
up Visual BASIC on your computer.

Choose File, New Project, and select Windows
Application. Name it first_project.

Your screen should now display the VB environment:

• Change the caption of the form from “Form 1” to “My first program in VB”,

by changing the text property in the properties window.

• Add the “Enter your name” label. To do this, double click the label
icon from the toolbar.

A blank label should appear on your form.

• Change its text to read “Enter your name” (do this in the properties

window). Move the label to wherever you want it to appear on the
form.

• Add a second label with your name and today’s date, in the same
way.

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

42 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

• Next, add a text box. Double click on the text box icon from the
toolbar.

You may need to scroll down to find it (they are listed in
alphabetical order). Use the properties window to change its name
property (you’ll need to scroll up the properties window to find it)
from “TextBox1” to “txtName”

• Finally, add a button. Double click on the button icon on the

toolbar

• Use the properties window to change the button’s text to “click

for message”, and its name to “btnMessage”. Re-size it and position it on
the form

If you’ve done all that correctly, your form should
now look like this:

If not, don’t worry – ask your teacher for help – it
gets very confusing at this stage, with lots of
things that can go wrong, but you’ll soon get the
hang of it!

It’s a good idea at this stage to save your work
by selecting Save all from the File menu. It will be saved using the name you
gave it when you started.

Now you can try to run your program.

• To do this, either choose start from the run menu, or just click on the

start icon on the menu bar.

Note: VB uses a built-in interpreter to translate your program into machine
code line by line as it executes the program. Some versions of VB also have a
compiler which lets you convert completed VB programs into stand-alone
executable files

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 43

© Learning and Teaching Scotland 2009

The form should appear, with a cursor in
the text box.

• Enter your name and click the

command button.

• Click on the end icon to return to the

editing environment.

Stage 3 – Implementation – coding

We need to implement
the coding for the button.

• Double click on the

button.

A code window should
appear:

You will enter your VB
coding for this button in
the space between the
first and last lines which
have been inserted
automatically.

• Enter the lines of code which are highlighted below in bold. Read the

explanatory notes as you go along, so that you understand what the code
does.

The first two lines of code are as follows:

‘code for the Message button
‘by A. Programmer on 21/09/07

(These two lines start with a single apostrophe (‘), which means that they are
comment lines – they are ignored by the computer, but make the program
more readable. It is always good practice to start any new section of coding
with some comment lines like these.)

Nothing happens!!

That’s because we have only
created the form. We need to
write program code for what is to
happen when someone clicks
the command button (an event)

Note the button’s name
(btnMessage) and the
event (click) which will
activate this code
appear automatically.

Be careful not to change
any of the text which
appears here!

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

44 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

The next line is: Dim name As String

(This line tells the computer to set aside a storage location in memory which
will need to hold a string of characters, and to call it “name” – we know this is
required from the data flow diagram – remember, the program will input a
name, then output the name, so it has to be able to store it in between.)

Now we need to turn the pseudocode we wrote at the design stage into Visual
BASIC.

Pseudocode Visual BASIC

Store the name name = txtName.Text

Display the message MsgBox(“welcome to VB,” & name)

These two lines need a little explaining:

name = txtName.Text

(This line is best read from right to left – it tells the computer to take the text from
the text box called txtName and store it in the memory location called name.)

MsgBox(“Welcome to VB,” & name)

(The final line tells the computer to create a message box on the screen, and
to display the words Welcome to VB, followed by whatever is stored in the
location called name.)

The commas and speech marks must all be there in the correct order! If you
have entered all that correctly, it should look like this:

Notice the extra blank lines –
they don’t do anything, but
they make the program more
readable just like gaps
between paragraphs in an
essay or report.

Now save the program again
(click Save all).

Note: VB keywords are displayed in blue, comment lines in green, text in red
and other code in black.

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 45

© Learning and Teaching Scotland 2009

Stage 4 – Testing

The next stage is to make sure the program works correctly.

• As before, click on the start icon on the menu bar:
• Enter your name in the text box.
• Click on the button.

A message box should pop up with the appropriate
message in it! If not, click on the end icon, go back to
the coding and check it carefully. Correct any errors.
Run it again.

If it does work, well done!

Would you buy a piece of software that had only been tested
once? Probably not. One test is not enough. We need to test
the program systematically.

So run some more tests – some “normal” tests, like the one above – but also
try some more “extreme” testing. For example, what happens if you enter a
number instead of a name or if you click the button before entering a name?

Stage 5 – Documentation

Firstly, you might want some hard copy evidence of your program – it’s your
first VB program, so you may feel justifiably proud of it!

Printing your program

Select Print from the File menu to obtain a hard copy of your coding.

If you want a hardcopy of your form:

• Run your program.
• Hold down the <alt> + <prtsc> keys.
• Paste into an application.
• Print it.

Saving your program

• Choose Save all from the File menu to save any changes you have made.

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

46 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

When you exit, you may be
prompted to save changes to
both the project file and the form
file. Click Yes to both of these.

Visual BASIC will have created
several files to store your project
which will be found in a single
folder. Do not delete any of
these!

User guide

Write a couple of sentences describing
how to use your program:

Technical guide

Write a note of the types of hardware and
software you have used.

User guide

Start the program by double
clicking on the first_project icon.

Click on the start icon on the menu
bar.

Enter your name in the text box.

Click the button.

A message should appear.

Technical guide

Hardware used:

Compaq Presario 2100 laptop

Operating System:

MS Windows XP

Software used:

Visual BASIC 2005 EE

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 47

© Learning and Teaching Scotland 2009

Stage 6 – Evaluation

The evaluation of your program should answer the
following questions:

• Is the program fit for purpose? (Does it do what is

required by the specification?)
• Is the user interface good to use? Could it be improved?
• Is the program coding readable (so that another programmer could

understand how it works)?

Your answers might look like this:

Stage 7 – Maintenance

Maintenance might involve making the change suggested
above or adapting the program to run on a different type
of computer system. You don’t need to do either of these
for Intermediate 2

Evaluation

The program fulfils the specification. If you enter a name, it
responds with an appropriate message.

The user interface is easy to use – it prompts for input, and the
command button is clearly labelled.

The coding has comment lines and uses sensible variable
names to make it readable.

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

48 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Private Sub btnMessage_Click(……)

Dim name As String
Dim age As String

name = txtName.Text
age = txtAge.Text

…

3.3 Input and output – tasks

Task 1 – A similar program

Develop a similar program to the one you have already written to
output a personalised Happy Birthday message. Obtain hard
copies of the form and code for your new program.

Task 2 – Develop a new program

Develop a new program which asks the user to enter their name
and age, and displays a message saying something like “Bryan,
how does it feel to be 17 years old?”

Hints for Task 2

(a) Work through the stages of the software development process following

the example on the previous pages as a model.

(b) The data flow diagram will look something like this (incomplete):

(c) You will need two text boxes on your form, one for each of the inputs,

and each with a different name.

(d) You will need two variables to store

the two items of data, so your code
will begin something like this:

Note: Age is a number so we should
really store it as a number rather than as
a string, but it doesn’t matter here
because we are not going to do any
calculations with it.

Message, including
name and age

Name

Age

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 49

© Learning and Teaching Scotland 2009

3.4 Other forms of output

In the “Welcome to VB” program, the output message appeared in a message
box. The line of code to do this was

MsgBox(“welcome to VB, ” & name)

It is also possible to make the output message appear either:

• directly on the form in a label, or
• in a text box on the form.

Output to a label

Two changes are needed to the program:

Firstly, add a label on the form, and name it lblMessage.

Secondly, change the line of code from:

MsgBox(“welcome to VB, ” & name)

to:

lblMessage.Text = “welcome to VB, ” & name

Run the program. The result will look
something like this (depending on
where you placed your label).

The alternative is to make the output appear in another text box.

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

50 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Output to a text box

Again, two changes are needed to the program.

Firstly, add a second text box to the form and name it
txtMessage.

Secondly, change the line of code from:

MsgBox(“welcome to VB, ” & name)

to:

txtMessage.Text = “welcome to VB, ” & name

Run the program.

The result will look something like this
(depending on where you placed your
second text box).

Choosing the style of output

You have now seen three ways of outputting the same
message:

• in a message box
• directly on the form in a label
• in a text box on the form.

This may be stated in the program specification. If not, it is a
decision that you can make at the design stage.

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 51

© Learning and Teaching Scotland 2009

3.5 Declaring variables

The programs in Sections 3.2 and 3.3 were designed to process words, like
your name or address. The program in Task 2 also handled a phone number,
but it treated this as a string of characters (Dim phone as String).

If a program has to process numbers, then we have to “tell” the computer to
expect a number rather than a “string”.

The reason for this (as you probably know from the Computer Systems unit) is
that computers store different types of data in different ways. It is good
programming practice to consider all the data that will need to be stored while
the program is running. We do this at the design stage. A data flow diagram is
a useful tool for doing this, although it only tells us the data that goes in and
out of the program. There may also be other data which needs to be stored
during the processing between input and output.

We will consider three types of data in this
course.

Activity

Look at these items of data. Can you group them
into three basic types?

You might have grouped them into these three lists:

List 1: 120 699 -100 5700 9999

List 2: computing book A.Einstein TD7 Monaco

List 3: 29.5 5.7 0.006

List 1 are all whole numbers. We call them integers and so does VB.

List 2 are all groups of characters. We call them strings and so does VB.

List 3 are all numbers with fractions. We call these real numbers. VB calls
them single.

120 computing 699

book 29.5 Int2

5.7 A.Einstein -100

TD7 5700 dog

Monaco 0.006 9999

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

52 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Activity

Classify each of the following as integer, string or single:

(a) 150 (b) Bob the Builder (c) 49.99 (d) EH16 1AB
(e) 0.5 (f) -500 (g) 5S3 (h) 123
(i) Albert (j) -99.99 (k) 0.00006 (l) 5 High Street

Visual BASIC needs to know what type of data it will be storing and
processing in any program. To do this, we “declare variables” at the start of
the program, using lines like:

Dim no_in_class as Integer

Dim name as String

Dim price as Single

When the VB system “reads” these statements at the start of a program, it sets
up a storage space of the appropriate type in the computer’s RAM, and labels
it with the variable name given. Of course, these are “electronic” storage
locations, but it is useful to imagine them as labelled boxes in which data can
be stored, like this:

An integer variable,
called no_in_class,
storing value 18.

A string variable,
called name,
storing value “Albert”.

A single variable,
called price,
storing value 27.99.

no_in_class

18

name

Albert

price

27.99

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 53

© Learning and Teaching Scotland 2009

These “storage boxes” are called variables because the actual value of the
data they store can vary or change during the running of a program.

It is important to make sure that all variables are correctly declared – the right
type (integer, string or single) – and with sensible, readable variable names.

Variables can have almost any name, but each variable name:
• must begin with a letter
• must not be a VB keyword (like End or Print or MsgBox)
• must not contain spaces (no_of_pupils is OK, but no of pupils is not).

Note: There are several other types of variable, but we will only use these
three in this unit.

3.6 Working with numbers – example

The programs in Section 3.3 were designed to process words, like your name
or address. In this section, we will develop programs to process numbers –
both integers and real numbers (singles).

The first example is called Belinda’s
Slab Calculator!

Here is the problem …

The first step is to be absolutely clear about what
the program must do. This must be agreed
between the customer (Belinda) and the
programmer before starting. The agreed definition
of what the program must do is called the program
specification.

Belinda works in a garden centre, selling
paving stones. Customers come in with the
plans for their patio, and ask how many slabs
they will need and how much it will cost. For
example, Mr McInally says his back garden is
35 slabs wide and 16 slabs deep. He wants
the pink granite slabs at £2.99 each. How
many slabs will he need, and what will they
cost?

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

54 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Stage 1 – Analysis – program specification

Design, write and test a program to:

• input two whole numbers (the no. of slabs wide and no. of slabs deep)
• multiply them together (no. of slabs needed = no. wide × no. deep)
• input the price of a single slab
• multiply to get the total price
• display the results (number of slabs required and total cost).

The program should work for any numbers.

Stage 1 – Analysis – data flow diagram

A “blob” for the program …

What information comes out of the
program?

What information does the program need as input?

Number of slabs

Total cost

No. of slabs wide

No. of slabs deep

Cost of a slab

Number of slabs

Total cost

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 55

© Learning and Teaching Scotland 2009

Stage 2 – Design – user interface

Sketch out how we want the
form to look.

This time we will use text
boxes for both input and
output of data.

This form has:

• a title caption
• six labels
• three text boxes for input
• two text boxes for output
• one button.

Stage 2 – Design – pseudocode

Here is a list of steps (pseudocode) to describe what this program has to do:

1. store the number of slabs wide
2. store the number of slabs deep
3. store the cost of one slab
4. calculate the number of slabs required
5. calculate the total cost
6. display the number of slabs required
7. display the total cost.

Stage 3 – Implementation – creating the form

Start a new Visual BASIC project, give it a suitable name and
create a form to match the one above.

• Set the caption (text property) of the form to be Belinda’s Slab Calculator.
• Add the six labels.
• Add five text boxes and position them on the form.
• Name the textboxes (from top to bottom): txtWide, txtDeep,

txtCost, txtTotalNumber, txtTotalCost.
• Add a button, and position it on the form.
• Change the name of the button to btnCalculate.
• Change the text on the button to “Calculate slabs and cost”.

Before going any further, make sure you have saved your work.

At the implementation
stage, we will turn
each of these steps
into VB code.

If you can’t
remember how to
do these, look
back to pages 41
to 42.

Belinda’s Slab Calculator

How many slabs wide?

How many slabs deep?

Cost of one slab (£)

by A.
Programmer
22/12/03

Calculate
slabs
and cost

Number of slabs required:

Total cost (£)

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

56 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Stage 3 – Implementation – coding

Double click on the command
button to open a code window. It
should already have the first line
of code, which should read:

 Private Sub btnCalculate_Click(……………..)

Enter the first two lines of code as comment lines, as you did in the previous example:

‘ code for the Calculate button
‘ by A. Programmer 21/09/07

The next stage is to declare all the variables that the program will need. It will
need to store:

• number of slabs wide (a whole number)
• number of slabs deep (a whole number)
• the cost of a single slab (a real number, as it could be 2.99)
• the total number of slabs (a whole number)
• the total cost (a real number).

This can be coded into two lines, like this:

Dim wide, deep, no_of_slabs as Integer
Dim slab_cost, total_cost as Single

The next lines of code are translated from the pseudocode, as shown below:

Pseudocode Visual BASIC
Store the number of slabs
wide

 wide = txtWide.Text

Store the number of slabs
deep

 deep = txtDeep.Text

Store the cost of one slab slab_cost = txtCost.Text

Calculate the number of slabs
required

 no_of_slabs = wide * deep

Calculate the total cost total_cost = no_of_slabs *
slab_cost

Display the number of slabs
required

 txtTotalNumber.Text = no_of_slabs

Display the total cost txtTotalCost.Text = total_cost

Don’t worry about all
the stuff that appears
automatically in here.
You will learn what it
means later. But don’t
delete or alter it in any
way!

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 57

© Learning and Teaching Scotland 2009

If you have done all of this correctly,
you should have a form that looks like
this:

and a code window like this:

If it all looks correct, then:

• Run the program to

make sure it is working
correctly.

• Enter the following data:

 slabs wide: 4
 slabs deep: 5
 cost per slab: 2.99

• Click the button

The following results should appear in the result text boxes:

• total number: 20
• total cost (£): 59.8 (as shown below).

If it has worked correctly, save it.

If it doesn’t work, then go back and check for
errors.

The most common mistakes
are to make a spelling error
in the name of a variable or
a text box, so always check
these carefully!

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

58 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Stage 4 – Testing

Testing is a very important stage in the software development
process. Proper testing of a commercially produced program
may take as long as the implementation.

We will test this program methodically using normal, extreme
and exceptional data.

Normal data is data that you would expect to be input to the program.

Extreme data is data that is on the limits of acceptability – it should work, but
you need to check to make sure. Extreme data could include zero, or very
large numbers, or numbers close to any limit relevant to the program.

Exceptional data is data that shouldn’t be input under normal use, for
example entering a letter when asked for a number, or clicking a command
button when there is no data in the input text boxes.

It is best to draw up a table of testing, choosing suitable test data, as shown
below. Fill in the expected results column (what the program should do).
Finally, run the program using your chosen test data and compare the actual
results with the expected results. If they agree, all is well. If not, you may need
to go back and de-bug the program.

Table of testing for Belinda’s slab calculator

 Inputs Expected outputs Actual outputs Comment

 Wide Deep
Cost
of
slab

Total
number

Total cost
Total
number

Total
cost

Normal
data

4 5 2.00 20 40.00

10 20 1.99 200 398.00

4.5 5.9 2.99 20 59.80

Extrem
e data

10000 9000 2.00 90000000 180000000

0 any any 0 0

-5 -4 2.50 20 50.00

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 59

© Learning and Teaching Scotland 2009

Activity

Add some other examples of normal and extreme data to the
table, then test the program to make sure it handles them all
correctly.

Finally run some exceptional data tests and note the results (either in the table
or as notes below it).

Summarise your testing …

The program carries out all calculations according to the specification
when supplied with sensible data. However, the program does give
results when supplied with negative data, without generating an error
message. Also, the program does not display the total cost in the
standard format (e.g. £59.80 is displayed as 59.8)

Stage 5 – Documentation

Print the form image and code as before.

Save your program and tidy up the files into a
single folder.

Write a brief user guide.

Write a brief technical guide.

Stage 6 – Evaluation

As before, write a brief report, answering these questions:

• Does the program fulfil the specification?
• Is the user interface appropriate?
• Is the program coding readable?

If you need a
reminder how
to do these,
look back to
page 45.

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

60 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

3.7 Adding a Clear button

One possible criticism of the previous program is that once you
have used it once, you need to delete the contents of the text
boxes before using it again.

We can easily improve this by adding a second command button which will
clear each of the text boxes.

• Add a second button.
• Position it on the form.
• Name it btnClear.
• Make its text “Clear”.
• Double-click on the clear

button.

A code window will appear, with
the start and finish of the coding
for the clear button.

Complete this as below:

Private Sub btnClear_Click(……….)
 ‘clears all text boxes
 txtWide.Text = “ ”
 txtDeep.Text = “ ”
 txtCost.Text = “ ”
 txtTotalNumber.Text = “ ”
 txtTotalCost.Text = “ ”
End Sub

Test the new version of the
program. When you click the
Clear button, all the text boxes
should clear, ready to be used
again.

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 61

© Learning and Teaching Scotland 2009

3.8 Arithmetical expressions

In Section 3.7, the example program carried out two simple multiplications,
using the lines of code:

no_of_slabs = wide * deep
total_cost = no_of_slabs * slab_cost.

All other calculations can be carried out in a similar way. Some of the symbols
used are the same as in “normal” arithmetic, but some are different.

Adding +
Subtraction -
Multiplication *
Division /
Raising to a power ^

For complex calculations involving several operations, multiplication and
division take precedence over addition and subtraction. However, where the
order of the operators matters, it is safest to use brackets.

Here are some examples in Visual BASIC:

total = first + second + third
age = 2009 - birth_year
time_in_australia = time_in_scotland + 12
tax = (salary - 4600) * 0.23
years = months/12
area_of_circle = 3.14 * (radius ^ 2)
volume_of_sphere = (4 * 3.14 * (radius ^ 3)) / 3.

Note:
• the use of brackets where the order is important
• the use of readable variable names.

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

62 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

3.9 Working with numbers – tasks

For each task below, you should:

• clarify the specification (analysis)
• draw a data flow diagram (analysis)
• sketch the user interface (design)
• write pseudocode for the button (design)
• create the form (implementation)
• write the coding (implementation)
• draw up a table of testing
• test the program with normal, extreme and exceptional data
• write brief user and technical guides (documentation)
• evaluate the program.

1. Design, write and test a program to calculate the average of six test

marks.

2. Design, write and test a program to calculate the volume of a cylindrical

water tank, using the formula: volume = π r2 h (r = radius of tank, h =
height of tank)

3. Design, write and test a program to calculate the number of points

gained by a football team, given the number of wins, draws and lost
games, assuming a win is worth 3 points, a draw 1 point, and no points
for a lost game.

4. Design, write and test a program to calculate the storage requirements

in megabytes for a bit-mapped graphics. The inputs should be the
breadth and height of the graphic in inches, the resolution in dots per
inch and the colour depth in bits per pixel.

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 63

© Learning and Teaching Scotland 2009

3.10 Predefined numeric functions

There are some standard mathematical calculations that you may want to use
in your programs. Visual BASIC (along with most other high-level languages)
provides predefined functions to carry these out for you. We’ll take a look at
some predefined functions provided by Visual BASIC:

INT takes a number and removes any fractional part, leaving the
whole number part

CINT takes a number and returns the nearest whole number
ROUND rounds a number to any number of decimal places
SQRT returns the square root of any number

Function Tester program

We will use a simple VB program to test these functions.

• Create a form like this:

• Name the text boxes txtEnter and
txtResult.

• Name the command buttons
btnClear and btnFunction.

• Write the code for the clear button

as you did in Section 3.7.

• Copy this code for

the btnFunction
command button:

• Save the project and

form.

• Run the program to

test the INT
function.

As you do this, copy and complete a table of testing as shown below.

Private Sub btnFunction_Click(….)
 Dim number, result As Single

 number = txtEnter.Text

 result = INT(number)

 txtResult.Text = result
End Sub

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

64 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Testing the INT function

Input Expected output Actual output Comment

2.5

9.999

9.001

–5.5

–9.001

Testing the CINT function

Edit the coding of the program, to change:

result = Int(number) into result = CInt(number)

Run the program again and complete a similar table of testing to the one above.

Can you summarise the difference between INT and CINT?

Testing the ROUND function

Edit the coding of the program, to change:

result = CInt(number) into result = System.Math.Round (number,2)

Run the program again and complete a similar table of testing to the one above.

Experiment with different numbers instead of 2. Summarise how this function
works.

Testing the SQRT function

Edit the coding of the program, to change:

result = CInt(number) into result = System.Math.Sqrt (number)

Run the program again and complete a similar table of testing to the one above.

What happens when you enter a negative number? Can you explain this?

What happens when you enter a number like 0.000000001? What does this mean?

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 65

© Learning and Teaching Scotland 2009

Other predefined functions

Visual BASIC provides many other predefined functions, including the
trigonometric functions (sine, cosine and tangent). If you complete this unit,
then continue to Higher Software Development, you will also learn to create
your own functions, so that you are not limited to the predefined ones provided
by Visual BASIC.

If you want to experiment with the trigonometric functions, the code you need
is:

result = System.Math.Sin (number*3.14128/180) to get the Sine of a
number (in degrees)

result = System.Math.Cos (number*3.14128/180) to get the Cosine of
a number

result = System.Math.Tan (number*3.14128/180) to get the Tangent of
number

Your table of testing might look like this:

Input Expected output Actual output Comment

0 0

90 1

180 0

30 0.5

Important! Make sure you save this function tester program as you will use it
again later in the course.

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

66 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

3.11 Working with words and numbers – example

The next example program uses all three data types – integer, single and
string.

The problem

A basketball team manager wants a program which will input a player’s
name, squad number and points scored in the first three games of the
season. It should then calculate the player’s average score (to the nearest
whole number) and display a summary of the player’s details.

Stage 1 – Analysis – program specification

Design, write and test a program to:
• prompt the user to enter a player’s name, squad number and points scored

in games 1, 2 and 3
• calculate the player’s average score, rounded to the nearest whole number
• display the player’s name, squad number and average clearly on a form.

Stage 1 – Analysis – data flow diagram

Stage 2 – Design – user interface

This time, we will use input boxes (which are like message boxes, but used
for input) to enter the data, so the form only needs a command button, two text
boxes for the output, and the usual labels and caption.

Player’s name

Squad number

Average points

Player’s name

Squad number

Score 1

Score 2

Score 3

Basketball Team Manager

by A.
Programmer
18/10/2007

Start
Player
details:

Average
score:

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 67

© Learning and Teaching Scotland 2009

Stage 2 – Design – pseudocode

When the user clicks on the start button, input boxes should pop up to input
each of the six items of data, then the average should be calculated, and the
results displayed.

In pseudocode:

1. prompt for and store the player’s name
2. prompt for and store the player’s number
3. prompt for and store each of the three scores
4. calculate the average score
5. display the player’s name and number
6. display the player’s average score (rounded to the nearest whole number).

Stage 3 – Implementation – creating a form

• Create a new form matching your design.
• Name the text boxes txtDetails and txtAverage.
• Name the button btnStart.

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

68 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Stage 3 – Implementation – coding the start button

First, think about the variables that will be needed to store the six items of
data:

• players_name will be a string variable (e.g. Belinda McSporran)
• squad_number will be an integer as it will be a whole number (e.g. 73)
• game_1, game_2 and game_3 will be integers (e.g. 3, 2 and 0)
• average will be a single as it might not be a whole number (e.g. 1.667).

• Now double click on the button to open a code window. Declare all of

these variable using Dim statements:

Private Sub btnStart_Click(………)
 ‘code for the start command button
 ‘by A. Programmer on 18/10/07

 Dim players_name As String
 Dim squad_number As Integer
 Dim game_1, game_2, game_3 As Integer
 Dim average As Single

For the next section of code, translate each line of pseudocode into Visual
BASIC. The only new syntax is that for an input box:

 players_name = InputBox(“Enter the player’s name”)
 squad_number = InputBox(“Enter the player’s number”)
 game_1 = InputBox(“Score in 1st game”)
 game_2 = InputBox(“Score in 2nd game”)
 game_3 = InputBox(“score in 3rd game”)

 average = (game_1 + game_2 + game_3) / 3

 txtDetails.Text = players_name & squad_number
 txtAverage.Text = CInt (average)

End Sub

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 69

© Learning and Teaching Scotland 2009

Notes:

(a) InputBox(“Enter the

player’s name”) generates
a box on the screen like this;
whatever the user types into
the text box is stored in the
variable players_name when
the OK button is clicked.

(b) The & between players_name and squad_number simply makes the

contents of these two string variables follow on after each other in the
txtDetails text box.

(c) CInt(average) turns the value of average into the nearest whole number

(see Section 3.10). Alternatively, you could use System.Math.Round
(average, 0).

Stage 4 – Testing

• Run the program to make sure it works.

You will notice that the output looks like this:

It would be better to make it look like this:

To do this, make the following two changes:

On the form:

• select the txtDetails box
• scroll down the properties window to find multiline
• change the multiline property to true
• resize the text box so it is deep enough for two lines of text.

(This allows the text in the text box to word wrap at the end of a line.)

Belinda McSporran73

Name: Belinda McSporran
Number: 73

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

70 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Also, in the code, change:

txtDisplay.text = players_name & squad_number
into
txtDisplay.text = “Name: ” & players_name & VbCrLf & “Number: ” & squad_number

After making these changes to improve the appearance of the output, you
should carry out methodical testing of the program. Assuming that the program
displays the name and squad number of the player correctly, you only need to
test that it calculates averages correctly.

Draw up a table of testing with some:

• normal data
• extreme data
• exceptional data,

If there are any errors, correct them. Save and print the program. Summarise
your test results by completing these three sentences:

• The program gives the correct result if ……
• The program gives a wrong answer if …. because ….
• The program cannot give an answer if …

Stage 5 – Documentation

Now that your program is complete, write:

• a user guide
• a technical guide.

Stage 6 – Evaluation

Write a brief evaluation of the program:

• Is it fit for purpose?
• Does it have a good user interface
• Is the code readable?

this puts in the
word Name and a
colon : followed by
2 spaces

VbCrLf forces a
new line (Visual
BASIC carriage
return line feed)

If an item has speech marks (‘),
then it is copied exactly; if not,
then the value of the variable is
displayed

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 71

© Learning and Teaching Scotland 2009

3.12 Predefined string functions

In Section 3.10, we looked at the predefined functions Int, CInt, Round, Sqrt
and Sin. These functions are all designed to work with numbers. There are
also some useful predefined functions for manipulating strings. We are going
to examine UCase, LCase, Len, Mid$, Asc and Chr.

Make a new function tester
program similar to the one
you used in Section 3.10.

• Start a new project, calling it String
Function Tester.

• Create a form like this:
• Enter the following code for the Apply

Function button:

Private Sub btnFunction_Click(
….)
 Dim string_in As String
 Dim string_out As String

 string_in = txtEnter.Text
 string_out = UCase(string_in)

 txtResult.Text = string_out
End Sub

Add code for the
clear button, as
you did in Section
3.7

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

72 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Testing the UCase function

Run the String Function Tester program.

Record the results in a table like the one below, adding a few
tests of your own:

UCase predefined function
Input string Output string Comment
Hello, world
HELLO, WORLD
123 One Two Three
*?&!

Write a brief statement summarising the effect of the UCase function.

Testing the LCase function

Edit the coding of the Function Tester 2 program.

Change:

string_out = UCase(string_in)

into
string_out = LCase(string_in)

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 73

© Learning and Teaching Scotland 2009

Run the program to test the LCase function. Record the results in a table like
the one below, adding a few tests of your own:

LCase predefined function
Input string Output string Comment
Hello, world
HELLO, WORLD
123 One Two Three
*?&!

Write a brief statement summarising the effect of the LCase function.

Testing the Len function

Edit the coding of the String Function Tester program.

Change:

string_out = LCase(string_in)

into

string_out = Len(string_in)

Run the program to test the Len function. Record the results in a table, like the
one below, adding a few tests of your own. Note: Make sure there are no
hidden spaces in the input text box, as this will affect your results.

Len predefined function
Input string Output string Comment
Hello, world
HELLO, WORLD
123 One Two Three
*?&!
A

Write a brief statement summarising the effect of the Len function.

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

74 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Note: The Len function takes a string input, and returns a numeric output, so
really we should make a further change to the program:

Dim string_out as String

should be changed to

Dim number_out as Integer

(with other references to string_out also changed to number_out).

Testing the Mid$ function

Edit the coding of the String Function Tester program.

Change:

string_out = Len(string_in)

into

string_out = Mid$(string_in, 1, 1)

Run the program to test the Mid$ function. This time, you will need to edit the
Mid$ line of code each time you run the program.

Record the results in a table like the one below, adding a few tests of your
own until you are sure you understand how Mid$ works:

Mid$ predefined function
Input
string Coding used Output string Comment

Hello, world Mid$(string_in, 1, 1)
Hello, world Mid$(string_in, 2, 1)
Hello, world Mid$(string_in, 3, 1)
Hello, world Mid$(string_in, 1, 2)
Hello, world Mid$(string_in, 1, 3)
Hello, world Mid$(string_in, 5, 4)

Write a brief statement summarising the effect of the mid$ function.

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 75

© Learning and Teaching Scotland 2009

Testing the Asc function

Edit the coding of the String Function Tester program.
Like Len, Asc is another function that takes a string as its input,
and returns a number, so make the following changes:

Change:

string_out = Mid$(string_in,1,1)

into

number_out = Asc(string_in)

and change:

Dim string_out as String

to:

Dim number_out as Integer

Run the program to test the Asc function.

Record the results in a table like the one below, adding a few tests of your
own until you are sure you understand what Asc does:

Asc predefined function
Input string Output number Comment
A
B
C
a
b
c

Write a brief statement summarising the effect of the Asc function.

You will also have to
change the
reference to
string_out in the final
line of code

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

76 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

I hope you realised that the numbers produced by the
Asc function are the ASCII codes for the characters
you input. As you should know from the Computer
Systems unit, all characters (letters, numerals and
punctuation marks) are stored in a computer system
in a numeric code called ASCII (American Standard
Code for Information Interchange). The Asc
predefined function returns this code.

Visual BASIC also provides a way to do the opposite
trick. Chr takes any number, and returns the
character which this ASCII code represents.

Testing the Chr function

Edit the coding of the String Function Tester program.
Make the following changes:

Change To
Private Sub
btnFunction_Click(…..)
 Dim string_in As String
 Dim number_out As Integer

 string_in = txtEnter.Text

 number_out = Asc(string_in)

 txtResult.Text = number_out
End Sub

Private Sub
btnFunction_Click(……)
 Dim number_in As Integer
 Dim string_out As String

 number_in = txtEnter.Text

 string_out = Chr(number_in)

 txtResult.Text = string_out
End Sub

Note: You should also change the label on the form to read “Enter a number”
rather than “Enter a string”.

Run the program to test the Chr function.

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 77

© Learning and Teaching Scotland 2009

Record the results in a table, like this, adding a few tests to check that Chr
turns any ASCII code into the character it represents:

Chr predefined function
Input number Output character Comment
65
66
97
98
63
20

Write a brief statement summarising the effect of the Chr function.

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

78 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Questions

1. Match these predefined functions to their descriptions (one has been
done for you):

Description Predefined function

Returns the ASCII code of a
character Mid$

Selects a group of characters out
of a string Asc

Turns any character into upper
case Lcase

Takes an ACII code and returns
the character it represents Ucase

Changes any character into lower
case Len

Counts the number of characters
in a string Chr

2. If sentence = “What is 25 times 8?”, what would be the output from:

(a) Mid$(sentence,1,1)
(b) Mid$(sentence,1,4)
(c) Mid$(sentence,9,2)
(d) Mid$(sentence,19,1)

3. Which predefined functions are represented by these data flow

diagrams?

ASCII code any letter

character ASCII code

No. of characters string

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 79

© Learning and Teaching Scotland 2009

3.13 Example program using Chr and Asc

Using these two predefined functions you can manipulate strings in all sorts of
interesting ways.

Maybe when you were younger, you tried communicating with
your friends using codes. The simplest code is the one which
replaces each letter with the following letter from the alphabet, so:

A → B
B → C
Hello → Ifmmp
Visual BASIC → Wjtvbm CBTJD
and so on …

Let’s create a simple program to generate this type of code. It only works for
single letters. In Section 4.11 you will see how to code whole words or even
sentences.

Stage 1 – Analysis – program specification

Design, write and test a program to take any character in the alphabet, and
code it using the system A → B, etc.

Stage 1 – Analysis – data flow diagram

Stage 2 – Design – user interface

We will use a simple design, with text
boxes for both the input and output
letters, a “code” command button, and a
“clear” command button:

coded letter any letter

Simple character coding program

Enter a character

Coded character

by A. Programmer 19/10/07

code

clear

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

80 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Stage 2 – Design – pseudocode

The program must carry out the following steps:

1. enter and store the input character
2. convert it to an ASCII code
3. add 1 to the code
4. convert it back to a character
5. display the character.

Stage 3 – Implementation

• Start a new project called AB_code.
• Create a form like the one above.
• Name the text boxes txtIn and txtOut.
• Name the buttons btnCode and btnClear.

The variables needed will be:

A string variable to hold the input character uncoded_char
A string variable to hold the coded character coded_char
An integer variable for the ASCII code of the input character ascii_uncoded
An integer variable for the ASCII code of the coded character ascii_coded

Complete the code for the btnCode button, by using Dim to declare these four
variables, and converting each step of the pesudocode into VB code:

Private Sub btnCode_Click(…..)
 ‘coding for the Code command button
 ‘by A. Programmer on 19/10/07

 Dim uncoded_char, coded_char As String
 Dim ascii_uncoded, ascii_coded As Integer

 uncoded_char = txtIn.text
 ascii_uncoded = Asc(uncoded_char)
 ascii_coded = ascii_uncoded + 1
 coded_char = Chr(ascii_coded)
 txtOut.text = coded_char

 End Sub

Code the Clear button in the usual way. Save the project as AB_code.

Step 1

Step 2

Step 3

Step 4

Step 5

HIGH-LEVEL LANGUAGE PROGRAMMING – GETTING STARTED

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 81

© Learning and Teaching Scotland 2009

Stage 4 – Testing

Run some tests using normal, extreme and exceptional data. Record your
results in a table.

Stage 5 – Documentation

As usual, write a brief user guide and technical guide for the
program, and attach a hard copy of the code and the form
layout.

Stage 6 – Evaluation

Write a brief evaluation of the program. You should include a
note about the letter(s) which it codes incorrectly. You will learn
how to deal with these in Section 4.3.

Congratulations! You have completed Section 3.

Here is a summary of what you should be able to do using VB:

• design and create a form
• add text boxes, buttons, labels and captions
• add code for a button
• change the properties of an object
• analyse a problem using a data flow diagram
• write pseudocode and convert it into VB code
• declare string, integer and single(real) variables
• use text boxes for both input and output
• use message boxes for output
• use input boxes for input
• write VB code for simple calculations
• test a program using normal, extreme and exceptional data
• use Int, CInt, Round, Sqrt and Sin predefined functions
• use Ucase, Lcase, Len, Mid$, Asc and Chr predefined functions
• write brief user guides and technical guides for simple programs
• evaluate a program in terms of fitness for purpose, user interface and

readability.

Check all the items on this list. If you are not sure, look back through this
section to remind yourself. When you are sure you understand all of these
items, you are ready to move on to Section 4.

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

82 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Section 4: High-level language programming –

basic constructs

4.1 Making choices

So far, all the programs you have written follow the
same list of steps from beginning to end, whatever
data you input. This limits the usefulness of the
program. Imagine a game program that was exactly
the same every time you ran it!

In this section, you will learn how to make programs
that do different things depending on the data that is
entered. This means that you can write programs with
choices for the user, and with different options and
branches within them. To do this in Visual BASIC is very easy, as you will see.

Here are some examples of VB statements that use the keywords IF, THEN
and ELSE.

If Number < 0 Then txtAnswer.text = “That was a negative number!”

If Reply = “No” Then MsgBox (“Are you sure?”)

If Salary > 5000 Then Pay = Salary - Tax Else Pay = Salary

If Guess = Correct_Answer Then MsgBox (“Well Done!”) Else
MsgBox (“Wrong – try again!”)

The first two examples follow a simple pattern:

If condition Then action

We will study using this pattern in Section 4.2

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 83

© Learning and Teaching Scotland 2009

Note: We will use the following symbols in this section:

> greater than
< less than
>= greater than or equal to
<= less than or equal to
= equal to
<> not equal to

4.2 If ... Then ... Else

Example 1: Credit limit

The problem: When you try to take money out of an ATM
(automatic teller machine, commonly called a “hole in the wall”),
you are only allowed to withdraw cash up to your credit limit. For
example, if your credit limit is £100 and you try to withdraw £50,
then it should work fine. However, if you try to withdraw £150,
you will not be allowed to and a message will appear on the
screen advising you that this is over your credit limit.

Stage 1 – Analysis – program specification

Design, write and test a program to:

• take a number entered by the user
• compare it with a credit limit (100)
• report “over the credit limit” if the number is over 100.

Stage 1 – Analysis – data flow diagram

The last two examples follow a slightly more complex
pattern:

If condition Then action Else alternative action

We will study using this pattern in Section 4.3

‘over credit limit’ message on
screen if appropriate any number

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

84 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Stage 2 – Design – user interface

The user interface will use a text box for data
entry, with two buttons, and use a message
box for the response:

Stage 2 – Design – pseudocode

There are only two steps for the OK command
button. When it is clicked:

1. store the number entered by the user
2. if it is over 100, display the warning message.

There is only one variable required – a numeric variable to store the amount
entered by the user. As this could be something like 23.50, it needs to be a
single rather than an integer.

Stage 3 – Implementation

• Start a new project, called ATM.
• Create a form as shown above.
• Name the text box txtInput.
• Name the buttons btnOK and btnClear.

• Enter the coding for the OK command button, as shown below:

Private Sub btnOK_Click(………)
 ‘coding for the OK command button
 ‘warns the user if the amount is over the credit limit (£100)
 ‘written by A. Programmer on 19/10/07

 Dim Number as Single

 Number = txtInput.Text

 If Number > 100 Then MsgBox(Number & “ is over your credit
limit”)
End Sub

• Enter the coding for the Clear button as usual.

ATM – credit limit check

How much do you
wish to withdraw?

Click to confirm ..

by A. Programmer 19/10/07

OK clear

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 85

© Learning and Teaching Scotland 2009

Stage 4 – Testing

Devise some test data. This should include:

• some normal data, for example:

20 (clearly under the limit)
120 (clearly over the limit)

• some extreme data, for example:
99.99 (just under the limit)
100.00 (exactly on the limit)
100.01 (just over the limit)

• some exceptional data, for example
–5 (a negative number)
999999.9999 (a ridiculously large number)
A (a letter when a number is expected).

Run the program, using your test data, and record the results in a table.

Stages 5 and 6 – Documentation and evaluation

As usual, you should:

• print out hard copies of your form and the coding
• write a short user guide and technical guide
• write a brief evaluation of the program in terms of its fitness for purpose,

user interface and readability.

Extra task

Modify the program so that it asks your age and gives you the
message “You can learn to drive” if you are 17 or over.

Note: You will need to use one of the symbols listed in Section 4.1.

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

86 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

4.3 Multiple Ifs

Example: Lucky Winner

The problem: A program is required that will select a
suitable prize, depending on which number between 1 and 5
is entered by the user.

Stage 1 – Analysis – program specification

Design, write and test a program to:

• prompt the user to enter a number between 1 and 5
• store the number
• output an appropriate message:

Enter a 1 – “You have won a colour TV”
Enter a 2 – “You have won a mobile phone”
and so on. There is no prize if the number is not between 1 and 5.

Stage 1 – Analysis – data flow diagram

Stage 2 – Design – user interface

The user interface will use a text box for data
entry, with two buttons, and use a message
box for the response:

Stage 2 – Design – pseudocode

Here are the steps for the OK command
button. When it is clicked:

1. store the number entered by the user
2. if the number is 1, display “You have won a colour TV”
3. if the number is 2, display “You have won a mobile phone”
4. and so on.

There is only one variable required – a numeric variable to store the number entered
by the user. As this must be 1, 2, 3, 4 or 5, it should be declared as an Integer.

appropriate message on
screen any number

Prize Draw

Enter a number
between 1 and 5…

Click to confirm ..

by A. Programmer 19/10/07

OK clear

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 87

© Learning and Teaching Scotland 2009

Stage 3 – Implementation

• Start a new project called Winner
• Create a form as shown above
• Name the text box txtNumber
• Name the buttons btnOK and btnClear

Enter the coding for the OK command button, as below:

Private Sub btnOK_Click(…..)
 ‘ coding for the OK command button
 ‘ displays an appropriate message for each possible number
 ‘ written by A. Programmer on 19/10/07

 Dim Num as Integer

 Num = txtNumber.Text

 If Num = 1 Then MsgBox (Num & “ wins you a colour TV”)
 If Num = 2 Then MsgBox (Num & “ wins you a mobile phone”)
 If Num = 3 Then MsgBox (Num & “ wins you a week in Spain”)
 If Num = 4 Then MsgBox (Num & “ wins you 10p”)
 If Num = 5 Then MsgBox (Num & “ wins you a meal for two”)

 If Num < 1 Then MsgBox (Num & “ is too small”)
 If Num > 5 Then MsgBox (Num & “ is too large”)
End Sub

Enter the coding for the Clear button as usual.

Stage 4 – Testing

Devise some test data. This should include:

• some normal data
• some extreme data
• some exceptional data.

Run the program using your test data and record the results in a table.

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

88 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Stages 5 and 6 – Documentation and evaluation

As usual, you should:

• print out hard copies of your form and the coding
• write a short user guide and technical guide
• write a brief evaluation of the program in terms of its fitness for purpose,

user interface and readability.

Extra task: changing form colours

You may have discovered that the colour of forms and buttons can be
changed using the properties window when you are creating a form.
Properties such as colour can also be changed during the running of the
program, as the next example shows.

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 89

© Learning and Teaching Scotland 2009

Lucky Winner (with colours)

As well as the program displaying the prize that has been won, we want the
colour of the form to change. We will use the following colours : red (1), blue
(2), green (3), yellow (4), black (5).

All we need to do is change the
coding, so that each If statement has
two actions to be performed –
displaying the appropriate message
and changing the form colour.

This is how the code should
look now:

Modify the Lucky
Number program and
check to see that it
correctly changes the
form colour.

Note: Me.BackColor refers to the
background colour property of the
current Form.

One further change that is useful is to
make the Clear button turn the form
back to its standard grey colour, as
well as clearing the text box. The
coding for this is:

Private Sub btnClear_Click(…)
 txtNumber.Text = “ ”
 Me.BackColor = Color.Gainsboro
End Sub

Note: Gainsboro is the name for the
default light grey colour.

Usually, a conditional
statement is of the format:

If condition Then action

Where multiple actions are required, a
conditional statement is of the format:

If condition Then
 Action 1
 Action 2
 Action 3 (and so on)
End If

 Private Sub btnOK_Click(…..)
 ' coding for the OK command button
 ' displays an appropriate message for each number
 ' and changes the form colour
 ' written by A. Programmer on 19/10/07

 Dim Number As Integer

 Number = txtNumber.Text

 If Number = 1 Then
 Me.BackColor = Color.Red
 MsgBox(Number & ‘ wins you a colour TV’)
 End If

 If Number = 2 Then
 Me.BackColor = Color.Blue
 MsgBox(Number & ‘ wins you a mobile phone’)
 End If

 If Number = 3 Then
 Me.BackColor = Color.Green
 MsgBox(Number & ‘ wins you a holiday in Spain’)
 End If

 If Number = 4 Then
 Me.BackColor = Color.Yellow
 MsgBox(Number & ‘ wins you 10p’)
 End If

 If Number = 5 Then
 Me.BackColor = Color.Gold
 MsgBox(Number & ‘ wins you a day at the beach’)
 End If

 If Number < 1 Then MsgBox(Number & ‘ is too small’)
 If Number > 5 Then MsgBox(Number & ‘ is too large’)
End Sub

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

90 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Practical task 1 – adapt the “Lucky Winner” program to fulfil this specification:

Design, implement and test a program that asks the user to enter a
grade (A, B, C, D or F), and gives you messages like “A means you
got over 70%”, “B means you got between 60% and 70%”, and so
on. The form should change colour depending on the grade entered.

As usual, you should:

• print out hard copies of your form and the coding
• write a short user guide and technical guide
• write a brief evaluation of the program in terms of its fitness for purpose,

user interface and readability.

Practical task 2 – Adapt the AB_code program to correctly code Z and z

Remember the program we developed in Section 3.13, for
coding letters using the A -> B code? When you tested it, you
should have discovered that it works well for every letter, except
Z. The problem is that if you add one to the ASCII code for Z you
get the ASCII code for a bracket symbol.

We can correct this by using two
conditional statements to cover the two
special cases – upper case and lower case
Z.

• Load the program AB_code.
• Select Export Template from the File

menu.
• Choose Project Template as the

project type.
• Click Finish to save your AB_code

project as a template.
• Select New Project from the File menu.
• Instead of Windows Application, select

the template you have just created.
• Name the new project AB_codev2.
• Alter the coding as shown (changes in

bold).
• Run the program, carefully testing that it

handles Z and z correctly.
• Save all changes.

Private Sub btnCode_Click(……)
 'adapted coding for the Code button (version 2)
 'by A. Programmer on 19/10/07

 Dim uncoded_char, coded_char As String
 Dim ascii_uncoded, ascii_coded As Integer

 uncoded_char = txtIn.text
 ascii_uncoded = Asc(uncoded_char)

 ascii_coded = ascii_uncoded + 1

 coded_char = Chr(ascii_coded)

 ‘special case for Z and z
 If uncoded_char = “Z” Then coded_char = “A”
 If uncoded_char = “z” Then coded_char = “a”

 txtOut.text = coded_char
End Sub

Note: Follow the steps above carefully whenever you
want to create a new program based on an older one.

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 91

© Learning and Teaching Scotland 2009

4.4 Using AND – example

Example: Exam Mark Grader

The problem: A program is required that can be used to assign
grades to exam marks automatically. Over 70% is an A, over 60%
is a B, over 50% is a C, over 45% is a D and less than 45% is a
fail.

Stage 1 – Analysis – program specification

Design, write and test a program to:

• prompt the user to enter the highest possible score for an exam (e.g. 80)
• prompt the user to enter a student’s name (first name an surname)
• prompt the user to enter the student’s mark (e.g. 63)
• calculate the percentage mark
• display a message giving the student’s initials, percentage and grade.

Stage 1 – Analysis – data flow diagram

Stage 2 – Design – user interface

The user interface will use text
boxes for data entry, with two
command buttons, and use a
message box for the response.

message on screen, including
student name, percentage mark
and grade

exam out of ..

student name

student mark

Exam Mark Grader

Enter possible score

Enter student’s first name

Enter student’s surname

Enter students score

Click to confirm ..
by A. Programmer 19/10/07

OK clear

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

92 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Stage 2 – Design – pseudocode

There are several steps for the OK button. When it is clicked:

1. store the possible score for the exam
2. store the student’s first name
3. store the student’s surname
4. store the student’s mark
5. calculate the percentage mark
6. calculate the grade
7. extract the initial letter from the first name
8. extract the initial letter from the surname
9. display an appropriate message box, showing initials, percentage and

grade.

The program will use several variables. It is useful to write them down as a table.

Variable name Variable type Used to store
Max_mark Integer What the exam is out of (e.g.80)
First_name String Student’s first name (e.g. Albert)
Surname String Student’s surname (e.g. Einstein)
Mark Integer Student’s actual mark (e.g. 63)
Percent Single Student’s percentage (e.g. 53.7)
Grade String Student’s grade (e.g. D)
Init1 String Student’s first initial (e.g. A)
Init2 String Student’s second initial (e.g. E)

Converting these into variable declarations, and the pseudocode into VB code,
we should get the following code for the OK button.

First, the initial comment lines and variable declarations:

Private Sub btnOK_Click(……..)
 ‘code for the OK button
 ‘by A. Programmer 19/10/07

 ‘variable declarations
 Dim max_mark As Integer
 Dim first_name, surname As String
 Dim mark As Integer
 Dim percent As Single
 Dim grade As String
 Dim init1, init2 As String

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 93

© Learning and Teaching Scotland 2009

Next, storing the user inputs from the text boxes into variables (pseudocode
steps 1 to 4):

‘ store user inputs
 max_mark = txtMax.Text
 first_name = txtName.Text
 surname = txtSurname.Text
 mark = txtMark.Text

Next, the calculation of the percentage mark (pseudocode step 5):

‘ calculate percentage mark
 percent = (mark / max_mark) * 100

Step 6 is the calculation of the grade from the percentage, using a series of If
statements. The statements for grades A and Fail are straightforward. For
grades B, C and D, complex conditions are required using And:

‘ calculate grade
 If percent >= 70 Then grade = “A”
 If percent >= 60 And percent < 70 Then grade = “B”
 If percent >= 50 And percent < 60 Then grade = “C”
 If percent >= 45 And percent < 50 Then grade = “D”
 If percent < 45 Then grade = “Fail”

Steps 7 and 8 use Mid$ to extract the first character of the first name and
surname:

‘ extract initials from name
 init1 = Mid$(first_name, 1, 1)
 init2 = Mid$(surname, 1, 1)

Finally, step 9 uses a message box to display the results. This is a little bit complicated:

• init1, init2, percent and grade display the values of these variables
• “, ” inserts a comma and space after the initials
• “%, grade ” inserts a % sign, comma and the word “grade” after the

percentage mark.

Note use of a comment line to
indicate the purpose of the code.

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

94 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

All the above is the actual message, then:

• the two commas separate the message from the title
• “student result” at the end is the title of the message box.

 ‘ display message in format .. AE, 70% (to 2 dec. places), grade A
 percent = System.Math.Round(percent, 2)

 MsgBox(init1 & init2 & “, ” & percent & “ %, grade ” & grade, ,
“student result”)
End Sub

Stage 3 – Implementation

• Start a new project called exam_grader.
• Create a form as above.
• Name the text boxes txtMax, txtName, txtSurname and

txtMark.
• Name the buttons btnOK and btnClear.
• Enter the coding for the OK button.
• Enter the usual coding for the Clear button.

Stage 4 – Testing

Devise some test data. This should include:

• some normal data
• some extreme data
• some exceptional data.

Run the program, using your test data, and record the results in a table.

Stages 5 and 6 – Documentation and evaluation

Don’t print out your program or write documentation or an evaluation report
yet, as you are going to make some minor improvements to the program first.

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 95

© Learning and Teaching Scotland 2009

Extra task (1): Upper case initials

If you entered a student’s name as (e.g.) “albert einstein”, the
initials would be displayed as “ae”. It would be better if they were
changed automatically to “AE”. A simple change in the coding of
the OK button is required.

Hint: You will need to use the Ucase predefined function.

Extra task (2): A+ grade

A new grade called A+ has been introduced for marks of 80%
and over.
Change the coding to reflect this new grade. Remember to
change the condition for an A as well as introducing a new
condition for A+.

Stages 5 and 6 – Documentation and evaluation

As usual, you should:

• print out hard copies of your form and the coding
• write a short user guide and technical guide
• write a brief evaluation of the program in terms of its fitness for purpose,

user interface and readability.

4.5 Using And – task

Example: Can I drive?

The problem: A program is required that asks the user to
enter their age, then displays one of the following
messages, as appropriate:

• Sorry, you can’t drive (if you are under 16).
• You can only drive a moped (if you are 16).
• You can only drive a car or moped (if you are 17–20).
• You can drive any vehicle (if you are 21–74).
• You need a medical check (if over 75).

Design, implement and test a program to solve the problem given above.

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

96 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

4.6 Complex conditions

In Section 4.4, we used a conditional statement with an AND in it:

If percent >= 60 And percent < 70 Then grade = “B”

This is an example of a complex condition. Complex conditions use a
combination of the terms AND, OR and NOT in logical combinations. Here are
some examples:

If age > 60 And gender = “F” Then pension = “true”

If country = “UK” Or country = “USA” Then language = “English”

If (temp < 12 And heat = “T”) Or (heat = “X”) Then turn_heating_on

If Not(password = correct_password) Then MsgBox (“Try again”)

If age < 5 Or Age > 85 Then eligible = “No”

If Not(age >=5 And age <=85) Then eligible = “No”

If Not(txtInput.Text = “Y”) Then MsgBox (“Are you sure?”)

If Ans = “Too” Or Ans = “Two” Or Ans = “To” Then Correct = “True”

Programming Task – Colour changer

Design, write and test a program which asks the user to enter a letter, and
turns the form:

• red if R or D is entered
• green if G or N is entered
• blue if B or E is entered
• yellow if Y or W is entered
• black if C, A or K is entered.

The program should respond to both upper case and lower case inputs.

Note: These two
examples are equivalent
to each other!

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 97

© Learning and Teaching Scotland 2009

4.7 Repetition

So far, every program you
have written starts at the beginning, executes each line once, then stops at the
end. If you want to repeat the program you have to click on the start icon to
run it again. It is often useful in a program to be able to repeat a line or group
of lines automatically.

To do this, you can use a FOR ... NEXT loop. Here
is a simple example program that would benefit
from a FOR ... NEXT loop.

• Create a form like this, with a single button,

called btnLoop.

• Add a listbox (you will find this in the tool box,

just below label), and name it lstMessage.

• Enter this coding:

Private Sub btnLoop_Click(……..)
 ‘ code to display 10 greetings on the screen
 ‘ by a not very good programmer
 ‘ who hasn’t been taught about FOR..NEXT loops

 lstMessage.Items.Add(“Have a nice day!”)
 lstMessage.Items.Add(“Have a nice day!”)
 lstMessage.Items.Add(“Have a nice day!”)
 lstMessage.Items.Add(“Have a nice day!”)
 lstMessage.Items.Add(“Have a nice day!”)
 lstMessage.Items.Add(“Have a nice day!”)
 lstMessage.Items.Add(“Have a nice day!”)
 lstMessage.Items.Add(“Have a nice day!”)
 lstMessage.Items.Add(“Have a nice day!”)
 lstMessage.Items.Add(“Have a nice day!”)
End Sub

lstMessage.Items.Add
simply adds the text to the
items displayed in the list box.

Note: This is
the letter l, not
the number 1

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

98 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Here is a second version of the program that uses a FOR... NEXT loop to cut
down the amount of coding required:

Private Sub btnLoop_Click()
 ‘ code to display 10 greetings on the screen
 ‘ by a much better programmer
 ‘ using a FOR .. NEXT loop

 Dim counter As Integer

 For counter = 1 To 10
 lstMessage.Items.Add(“Have a nice day!”)
 Next
End Sub

You might be wondering why we used a list box instead of displaying the
output in a text box or a label. A list box allows multiple items to be displayed
without overwriting each other.

4.8 Repetition using For .. Next

In this example, we will develop another program to display a repeated
message in a list box.

Stage 1 – Analysis

Program specification Data flow diagram

Design, write and test a program to
display the message:
 “Hello, Hello, Hello ….(25 times)”.

Alter the coding as
shown and run the
program again

It does exactly the
same, but takes much
less coding.

‘Hello, Hello ..’
message

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 99

© Learning and Teaching Scotland 2009

Stage 2 – Design

We want the user interface to look like this:

It has a button, a label and a list box.

To create a list box,
click on this icon.

Next, we design the list of steps (pseudocode) and then the coding for the
button:

Pseudocode

Visual BASIC coding

1. Do the following 25 times For Counter = 1 to 25
2. Add the word “Hello” to the list box LstGreeting.Items.Add (“Hello, Hello, Hello!”)
 Next

Stage 3 – Implementation

• Start a new Visual BASIC project.
• Create a form as above.
• Name the button btnStart.
• Name the listbox lstGreeting.
• Enter the code for the button (declare a variable Counter as Integer).

Make sure you save all.

Note: It is usual to indent
the code within the loop to
improve readability.

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

100 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Stage 4 – Testing

Run the program to make sure it works correctly. There is no
need for a table of testing for a simple program like this.

It is tricky to be sure that the program has actually printed the message 25
times, so alter the line of code to include the counter, like this:

lstGreeting.Items.Add(counter & “ Hello!”) …

then try running it again.

Modifications (1)

Alter the coding so that it displays the messages:

• “Goodbye” 12 times
• “I must work harder” 200 times
• “This is very easy” 100 times.

Modifications (2)

The program would be much more useful if it was possible to make changes to
the message and the number of times it was displayed, without having to alter
the coding each time. This can be achieved by using variables.

Change the coding as follows:

Private Sub btnStart_Click(…)
 ‘ improved For .. Next example

 Dim counter As Integer
 Dim message As String
 Dim how_many As Integer

 message = InputBox(“Message required ...”)
 how_many = InputBox(“How many repetitions?”)

 lstGreeting.Items.Clear

 For counter = 1 To how_many
 lstGreeting.Items.Add (counter & “ ” & message)
 Next
End Sub

A string variable called message
will store the message, and an
integer variable called how_many
will store the number of
repetitions.

An InputBox is like a Message
Box, but is used to get input from
the user, and store it in a variable

This command clears the list box

Instead of a fixed number here,
the loop will continue up to the
number stored in how_many

Whatever string is stored in the variable called
message will be displayed in the list box.

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 101

© Learning and Teaching Scotland 2009

Now test the program thoroughly using normal, extreme and exceptional
values for both “message” and “how_many”.

Modifications (3)

At the moment, this program can display any message over and
over again, but it is the same message on each line.

Can you adapt the program to produce displays like:

4.9 Counting using For .. Next

Each For … Next loop that we have used so far is of the format:

For counter = 1 to maximum
 Action
Next

Note that we have called the loop variable “counter” (because that is what it
does), but it can be called anything you like. The following versions would
work in exactly the same way:

For silly_name_for_a_variable = 1 to maximum
 Action
Next

For i = 1 to maximum
 Action
Next

The last of these (using i as the loop variable) is probably the most commonest.

Tick
Tock
Tick
Tock
Tick
Tock
Tick
Tock
Tick
Tock

Left
Right
Left
Right
Left
Right
Left
Right
Left

Go home
Now!

Go home
Now!

Go home
Now!

Hint: You will need
two (or three) lines
of code within the
For .. Next loop.

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

102 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Example 4.9.1 Counting Program

Stage 1 – Analysis

Program specification Data flow diagram

Design, write and test a program to
display 1, 2, 3, 4, 5, …, 99, 100.

Stage 2 – Design

We want the user interface to look like this:

It has a command button, a label and a list box
(called lstNumbers).

Here is the list of steps (pseudocode)
and then the coding for the button:

Pseudocode

Visual BASIC coding

1. Clear the list box LstNumbers.Items.Clear
2. Do the following 100 times For counter = 1 to 100
3. Display the counter in the list box LstNumbers.Items.Add (counter)
 Next

1, 2, 3, … 99, 100
on the screen

Instead of ‘message’ being displayed in the
list box, the current value of counter is
displayed instead

Counting program

by A.
Programmer

click
to

start

For .. Next loops are an
example of ‘fixed loops’. This
is because the number of
times the action is executed is
fixed in advance by the
programmer, using the value
of maximum.

Later, we will see
that it is possible to
construct loops
where the number of
times the action is
executed is NOT
known in advance.

1,2,3,4,5,6,7,8,………

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 103

© Learning and Teaching Scotland 2009

Stage 3 – Implementation

• Start a new Visual BASIC project, called Counter.
• Create a form as above.
• Name the command button btnStart.
• Name the listbox lstNumbers.
• Enter the code for the button (declare a variable Counter as

integer).

Stage 4 – Testing

Run the program to make sure it works correctly (it should produce a list of
numbers from 1 to 100 in the list box). There is no need for a table of testing
for a simple program like this.

You are going to use this program as a template to experiment with For .. Next
loops. In each case below,

• Replace the line of code For counter = 1 To 100 with the modification

suggested.
• Run the program.
• Note the results in a table like this:

Coding used Results
For counter = 1 To 100 1 2 3 4 ……. 99 100

Modifications

1. For counter = 1 To 9999
2. For counter = 1 To 100 Step 2
3. For counter = 2 To 100 Step 2
4. For counter = 0 To 100 Step 10
5. For counter = -10 To 10 Step 5
6. For counter = 100 To 1 Step –5
7. For counter = 0 To 5 Step 0.5

The final modification will
require a change to another
line of coding. Can you
work out what it will be?
Hint: 0.5 is not an integer

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

104 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Questions

Write the Visual BASIC coding of a For .. Next loop to produce each of the
following lists of numbers:

1. 3, 6, 9, 12, 15, 18, …, 33, 36
2. 0, 9, 18, 27, …, 99
3. 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
4. 0, 0.75, 1.5, 2.25, 3, 3.75, 4.5
5. 50, 40, 30, 20, 10, 0, –10, –20, –30, –40, –50
6. 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 (Hint: These are all numbers

squared)
7. 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048 (Hint: These are powers

of 2)

Example 4.9.2 General Purpose Counting Program

Stage 1 – Analysis

Program specification Data flow diagram

(copy and complete …)

Design, write and test a program to
display any list of numbers, given the
starting number (lower limit), the final
number (upper limit) and the step
size.

Stage 2 – Design

Sketch a user interface; something like
this:

It should have a command button, labels,
three text boxes for input and a list box
for the output.

General counting program

click

lower limit

upper limit

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 105

© Learning and Teaching Scotland 2009

A list of steps (pseudocode) is shown below. Copy and complete the coding
yourself.

Pseudocode

Visual BASIC coding

1. Set up variables to store the three
numbers and the loop counter

Dim ……
Dim ……
Dim ……
Dim ……

2. Clear the list box Lst ………..Items.Clear
3. Store the lower limit entered by

the user
lower = txt ……… . Text

4. Store the upper limit entered by
the user

Upper = ………………..

5. Store the step size entered by the
user

Stepsize = ……………..

6. Repeat the following, starting at
lower limit, and going up to upper
limit in steps of stepsize

For ….. = …….. To ……. Step ……..

7. Display the counter ………… Items.Add (………..)
 Next

Stage 3 – Implementation

• Start a new Visual BASIC project, called GPCounter.
• Create a form as above.
• Give the button, list box and text boxes appropriate names.
• Enter the code for the button.
• Save all.

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

106 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Stage 4 – Testing

Carry out systematic testing of the program, completing a table like the one
shown below:

 Inputs Expected

outputs
Actual outputs Comment

 Lower
limit

Upper
limit

Step
size

Normal
data

10 20 3 10, 13, 16, 19

1000 8000 2500
1000, 1250,
1500, 1750

10 0 -2 10, 8, 6, 4, 2, 0

Devise your own test data, covering a range of normal, extreme and
exceptional data.

Write a short summary of your testing.

If all the tests results were as expected, move on to stages 5 and 6. If not, go
back and correct your coding until it works correctly.

Stages 5 and 6 – Documentation and evaluation

As usual, you should

• print out hard copies of your form and the coding
• write a short user guide and technical guide
• write a brief evaluation of the program in terms of its fitness for purpose,

user interface and readability.

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 107

© Learning and Teaching Scotland 2009

Example 4.9.3 Multiplication tables

Stage 1 – Analysis

Program specification Data flow diagram

(copy and complete …)

Design, write and test a program to
display any multiplication table
(chosen by the user) in the form: 1 x 5
= 5, 2 x 5 = 10 and so on as far as 12
x 5 = 60

Stage 2 – Design

Sketch a user interface, something like
this:

It should have a button, labels, a text box
for inputting the user’s choice of table and
a list box to display the output.

Each line that
appears in the
list box should
look like this
(made up of
five parts):

1 X 5 = 10

the
counter
(1,2,3 …)

the
symbol X

the
multiplier
chosen by
the user

the
symbol =

the answer
(counter x
multiplier)

To do this, we need several variables:

• the counter (an integer)
• the multiplier (an integer supplied by the user)
• the answer (an integer calculated by the program),
• a string variable, which we’ll call “message”, which links together the five

parts shown above, and stores them as a single message to be displayed
in each line of the list box.

The line of code to assemble this message will look like:

message = counter & “ x ” & multiplier & “ = ” & answer

Multiplication tables

 click

Which table do you want?

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

108 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Here is the list of steps (pseudocode) required. Copy and complete the coding
yourself.

Pseudocode

Visual BASIC coding

1. Set up variables to store the
three numbers and the loop
counter

Dim ……
Dim ……
Dim ……
Dim ……

2. Clear the list box lst ……….Items.Clear
3. Store the multiplier entered by

the user
multiplier = txt ……… . Text

4. Repeat the following from 1 to
12

For ….. = …….. To ……. Step ……..

4.1. Calculate the answer answer = counter * multiplier
4.2. Assemble the message message = ……………………
4.3. Display the message lst ……….. Items.Add (message)
5. Next Next

Stage 3 – Implementation

• Start a new Visual BASIC project, called Tables.
• Create a form as above.
• Give the command button, list box and text box appropriate names.
• Enter the code for the command button.
• Save all.

Stages 4, 5 and 6 – Testing, documentation and evaluation

Complete the testing, documentation and evaluation of the program in the
usual way.

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 109

© Learning and Teaching Scotland 2009

4.10 For .. Next tasks

Choose one (or more) of the following program specifications, and design,
implement and test a program to fulfil the specification. Work through all the
stages of the software development process from analysis to evaluation for
your chosen task.

Remember: A dragon in the dungeon eradicates mice!

Times tables (advanced version)

A primary school teacher wants a program which will allow a pupil to
type in any whole number. The program will then display the relevant
times table, up to a maximum multiplier set by the pupil. The display
should be in the format:

5 times 1 equals 5
5 times 2 equals 10
5 times 3 equals 15 and so on.

Cost and weight calculator

A greengrocer needs a program which will allow him to type in the price
of 1 kg of any item. The program should then display the cost of 1, 0.1,
0.2 up to 1.8, 1.9, 2.0 kg of the item.
The output might look something like this:

0 kg costs £0
0.1 kg costs £0.20
0.2 kg costs £0.40
0.3 kg costs £0.60 and so on.

Cubic numbers

A mathematician wants a list of cubic numbers (1, 8, 27, 64, 125, ….) starting
and finishing at any point on the list. The results should be displayed like this:

2 cubed = 8
3 cubed = 27
4 cubed = 64 and so on.

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

110 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Quadratic function calculator

A pupil has been asked to draw a graph of the function y = 3x2 + 4.
She needs a table of the values of the function between –5 and +5.
She is not sure about the step size between points, so wants the
program to allow her to choose any step size.

The results should be displayed like this:

x = 1 >>>>>>>> y = 7
x = 2 >>>>>>>> y = 16
x = 3 >>>>>>>> y = 31 and so on …

4.11 Using loops to work with strings

So far, we have only used the loop counter variable to display numbers.
However, it can be used to do other things too.

Example 4.11.1 – Adapting the AB_coder program to code whole words

Version 2 of the AB_coder program from Section 4.3 can code single
characters. We can use a For .. Next loop to adapt the program to code whole
words instead of single characters.

Here is how it works (in pseudocode):

1. Prompt the user to enter a word.
2. Check how many characters there are in the word.
3. Create a new “empty” coded word.
4. Repeat the following for each letter in the word:

4.1.1 extract the letter from the word
4.1.2 code it
4.1.3 add it on to the new coded word.

5. Next letter.
6. Display coded word.

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 111

© Learning and Teaching Scotland 2009

and here is the code:

Stage 4 – testing

Devise some test data. This should include:

• some normal data
• some extreme data
• some exceptional data.

Run the program, using your test data, and record the results in a table.

Private Sub btnCode_Click(….)
 'adapted coding for the Code button
 ' by A. Programmer on 19/10/07

 Dim uncoded_char, coded_char As String
 Dim uncoded_word As String
 Dim length_of_word As Integer
 Dim coded_word As String
 Dim ascii_uncoded, ascii_coded As Integer
 Dim counter As Integer

 uncoded_word = txtIn.text
 length_of_word = Len(uncoded_word)
 coded_word = “ ”

 For counter = 1 To length_of_word
 uncoded_char = Mid$(uncoded_word,counter,1)
 ascii_uncoded = Asc(uncoded_char)
 ascii_coded = ascii_uncoded + 1
 coded_char = Chr(ascii_coded)
 If uncoded_char = “Z” Then coded_char = “A”
 If uncoded_char = “z” Then coded_char = “a”
 coded_word=coded_word + coded_char
 Next
 txtOut.Text = coded_word
End Sub

Make a copy of the AB_code_v2
project, and call it AB_code_v3

(check how to do this on page 90)

Alter the coding like this.

You will also need to alter the labels on
the form to prompt for a word rather than
a letter, and to enlarge the text boxes to
hold a word.

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

112 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Stages 5 and 6 - Documentation and evaluation

As usual, you should:

• print out hard copies of your form and the coding
• write a short user guide and technical guide
• write a brief evaluation of the program in terms of its fitness for purpose,

user interface and readability.

4.12 Do .. Loop Until

We have used For .. Next loops to repeat a section of program a set number
of times. This is fine if we know how many times the section of program is to
be repeated. What about times when the number of repetitions is not known in
advance?

For example, a quiz program might give the user
repeated chances to get the answer correct. The
programmer doesn’t know in advance whether the
user will get the question right the first time, or take
two, three, four or more attempts.

In this type of situation, the programmer needs to use
another kind of loop. Visual BASIC provides several

other types of loop. We will use a type called Do .. Loop Until.

The pattern (syntax) for this type
of loop is very simple:

Do
 Line(s) of code
 To be repeated
Loop Until condition

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 113

© Learning and Teaching Scotland 2009

Here is a simple example:

Set up a form like
this:

Enter the following coding for the button:

 Private Sub btnQuestion_Click(……)
 ‘ generates a question to the user
 ‘ and waits for the correct answer

 Dim user_answer As Integer
 Dim correct_answer As Integer

 correct_answer = 4

 Do
 user_answer = InputBox(“What is 2 + 2?”)
 Loop Until user_answer = correct_answer

 MsgBox (“Well done!”)
End Sub

Run the program. Does it behave as predicted?

Adapt the program to ask:

• a different arithmetical question (e.g. What is 100 × 100?)
• a general knowledge question (e.g. Who won Big Brother in 2006?).

Improvements to the program

This simple program works fine, but there are some obvious
changes which would improve it!

Improvement 1
When you give the wrong answer, the program doesn’t tell you. It
could be improved by presenting a message which told the user
to try again.

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

114 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

To do this, you need to add in the following line of code:

If user_answer <> correct_answer Then MsgBox (“Wrong, try
again!”)

Can you work out where this line of code should go? Edit it into your program,
and check that it works.

To do this, we need to include a counter in the loop. Here is the pseudocode
(the new sections are in bold).

1. Declare integer variables for the user’s answer and the correct answer.
2. Declare an integer variable for the counter.
3. Set the counter equal to zero.
4. Set the correct answer equal to 4.
5. Do:

• get the user’s answer to the question (What is 2 + 2)
• add one to the counter
• if the answer is not the correct answer, display “Wrong, try again”

message.
6. Until user’s answer is equal to the correct answer.
7. Display message (You took counter tries to get that right).

Turn the pseudocode into Visual BASIC, and adapt your program accordingly.
Edit the changes into your program, and check that it works.

Improvement 3
The third improvement would be if the program could be made to
ask a different question each time, instead of always asking 2 + 2.
To do this, we need to use VB’s random number generator.

Improvement 2
The program would be improved if it told you how many guesses
you made before you got the correct answer.

The code for this is
counter = counter + 1

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 115

© Learning and Teaching Scotland 2009

4.13 Random numbers

Visual BASIC provides the programmer with a predefined
function Rnd to generate random numbers. Before we use it in
the Arithmetic Tester program, we will use a simple program with
a For .. Next loop to learn how the Rnd function operates.

Set up a form like this:

Enter the following coding for the
command button:

Private Sub btnStart_Click(……)
 ‘generates lists of random number

 Dim number as Single
 Dim counter As Integer

 lstRandoms.Items.Clear

 For counter = 1 To 10
 number = Rnd()
 lstRandoms.Items.Add (number)
 Next
End Sub

• Name the command button
btnStart

• Name the list box lstRandoms

Run this program. Write down the list of 10 random numbers produced.

The Rnd function produces random numbers between 0 and 1. To produce
random whole numbers between 1 and 10, we need to do three things to the
line number = Rnd().

• First, we need to multiply by 10 to produce a random fraction between 0

and 10.
• Then we need to “chop off” the fraction part using the function Int (see

Section 3.10).
• Finally, we need to add 1, otherwise the highest number will always be 9,

as it is rounded down by the Int function.

Change the line

number = Rnd()
into

number = Int (Rnd() * 10) + 1

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

116 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Now run the program again. Write down the list of random numbers. This time
they should all be whole numbers between 1 and 10.

Stop the program. Then run the program again. And again!

You will notice that it always generates the same list of “random” numbers. To
make them really random, you need to add the keyword Randomize at the
start of the program (anywhere before the keyword Rnd).

The coding for your random number generator should now look like this:

Private Sub btnStart_Click(…)
 ‘ generates lists of random number

 Dim number as Single
 Dim counter As Integer

 Randomize()
 lstRandoms.Items.Clear()

 For counter = 1 To 10
 number = Int (Rnd() * 10) + 1
 lstRandoms.Items.Add(number)
 Next
End Sub

For example, to produce:

• random numbers between 1 and 20, change it to
 number = Int (Rnd() * 20) + 1

• random numbers between 51 and 60, change it to
 number = Int (Rnd() * 10) + 51

• random even numbers between 0 and 10, change it to
 number = 2 * Int (Rnd() * 6)

You can adapt this line in a
variety of ways to produce
other sets of random numbers.

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 117

© Learning and Teaching Scotland 2009

Try experimenting with this line until you understand how it works.
Sometimes it take a little thought to work out exactly what
numbers to put in, so that you get the right range and don’t miss
out the highest or lowest number.

Test your program with the following lines of code. In each case, make a note
of the results, and explain what you get.

Line of code Results Explanation
number = Int(Rnd() * 200) + 1
number = Int(Rnd() * 20) + 1
number = Int(Rnd() * 100) + 2000
number = 2 * (Int(Rnd() * 50) + 1)
number = 2 ˆ (Int(Rnd() * 8) + 1)

Tasks:

• Modify your program so that when you click on the button, it

produces a single dice roll (a random number between 1 and 6).
Hint: You won’t need a For .. Next loop.

• Modify your program so that it produces a double dice roll, and

displays the number on each dice and the total score. Hint: You
will need to generate two random numbers every time you click the button.

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

118 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

4.14 Arithmetic tester

We can now combine what we have learned
about random numbers with our arithmetic
tester program from Section 4.12.

Here is the current version of the form and
coding for the command button:

Coding for command button

Private Sub btnQuestion_Click(…….)
 ‘ generates a question to the user
 ‘ and waits for the correct answer

 Dim user_answer As Integer
 Dim correct_answer As Integer
 Dim counter as Integer

 counter = 0
 correct_answer = 4

 Do
 user_answer = InputBox(“What is 2 + 2?”)
 counter = counter + 1
 If user_answer <> correct_answer Then MsgBox(“Wrong, try again!”)
 Loop Until user_answer = correct_answer
 MsgBox(“Well done! You took ” & counter & “ tries”)
End Sub

Make sure you have
added the extra
lines of code here

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 119

© Learning and Teaching Scotland 2009

• Change the label on the form to read version 3.
• Modify the coding as below (changes in bold):

Private Sub btnQuestion_Click(……..)
 ‘ generates a random question to the user
 ‘ and waits for the correct answer

 Dim user_answer As Integer
 Dim correct_answer As Integer
 Dim first, second as Integer
 Dim counter as Integer

 Randomize()
 first = Int(Rnd() * 10) + 1
 second = Int(Rnd() * 10) + 1
 counter = 0
 correct_answer = first + second

 Do
 user_answer = InputBox(“What is “ & first & “ + “ & second & “?”)
 counter = counter + 1
 If user_answer <> correct_answer Then MsgBox(“Wrong, try again!”)
 Loop Until user_answer = correct_answer
 MsgBox(“Well done! You took “ & counter & “ tries”)
End Sub

The variables first and second
hold the two random numbers to
be used for the question.

This displays the value of the
variables first and second, rather
than the numbers 2 + 2

These lines generate the two
random numbers for the question

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

120 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

One more modification!

The program only asks one random addition question each time it is run. By
adding three lines of code, we can make it give the user a series of (say) six
questions.

We can do this by putting the whole of the middle section of the program
inside a For .. Next loop, like this:

Private Sub btnQuestion_Click(……)
 ‘ generates 6 random question to the user
 ‘ and waits for the correct answer

 Dim user_answer As Integer
 Dim correct_answer As Integer
 Dim first, second as Integer
 Dim counter as Integer
 Dim question as Integer

 Randomize()
 For question = 1 To 6
 first = Int(Rnd() * 10) + 1
 second = Int(Rnd() * 10) + 1
 counter = 0
 correct_answer = first + second

 Do
 user_answer = InputBox(“What is “ & first & “ + “ & second & “?”, “Question”
& question)
 counter = counter + 1
 If user_answer <> correct_answer Then MsgBox(“Wrong, try again!”)
 Loop Until user_answer = correct_answer
 MsgBox(“Well done! You took “ & counter & “ tries”)
 Next
End Sub

You now have a loop within a loop. The technical term for this is nested
loops.

• Make the above changes to the coding.
• Alter the form to call this version 4.
• Save the revised form and project.

Carry out some thorough testing of your program, using normal,
extreme and exceptional data.

This new variable here is the loop
counter for the For .. Next loop .

This adds the Question number
as a title for the Input Box

Here is the For ... Next loop to
repeat the next section six times.

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 121

© Learning and Teaching Scotland 2009

Now export your program as a template, so that you can keep the original, and
create a new final version based on the template.

Modify the program so that it:
• asks multiplication questions rather than addition
• uses random numbers between 1 and 12
• asks five questions
• displays “Well done – right first time!” if the user gets it right

first time
• displays “Keep practising! You took X tries to get it right!”

otherwise.

Test the program using normal, extreme and exceptional data.
Write brief user and technical guides, and an evaluation report.

4.15 More examples using Do .. Loop Until

Example 4.15.1 Class lists

Design, write and test a program for a teacher. The program should
prompt the user to enter any list of names, which will be displayed on the
screen. The program should count how many of these names begin with
the letter A, and display this information at the end of the list.

Stage 1 – Analysis – Data Flow Diagram

Stage 2 – Design

We want the user interface to look like this:

It has a command button, a title and a list box
(called lstNames).

Next, we design the list of steps (pseudocode)
and then the coding for the command button:

Names entered
at keyboard

List of names

Number of As

Class lists

Click to
enter

names

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

122 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Q: We will need to use a loop. Should it be a For .. Next loop, or a Do .. Loop
Until?

A: As we don’t know in advance how many names there will be in the list, we
need to use a Do .. Loop Until.

Q: What condition will we use to stop the loop?
A: Ask the user to enter the word END after entering all the names. The loop

can then continue until name = “END”.

Pseudocode Visual BASIC coding
1. Clear the list box lstNames.Items.Clear()
2. Set a counter equal to zero counter = 0
3. Do the following: Do
3.1 prompt the user to enter a

name
 name = InputBox(“Enter a name (or
END)”)

3.2 add the name to the list box lstNames.Items.Add(name)
3.3 extract the first letter of the

name initial = Mid$(name,1,1)

3.4 if the first letter is A, add 1 to
the counter

 If initial = “A” Then counter = counter +
1

3.5 until the user enters end Loop Until name = “END”
4. Add the counter to the list box lstNames.Items.Add(counter)

Variables required:
counter (integer), name (string), initial (string)

Stage 3 – Implementation

• Start a new Visual BASIC project.
• Create a form as above.
• Name the command button btnStart.
• Name the listbox lstNames.
• Enter the code for the button (declare all required variables).
• Save the project and form in a new folder.

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 123

© Learning and Teaching Scotland 2009

Stage 4 – Testing

Test the program with the following sets of test data and add some more of
your own.

 Test data
1

Test data
2

Test data
3

Test data Andrew
Bill
Cliff
Doris
Sarah

Alison
Albert
Bill
Bert
Ahmed

Alison
alison
end
END

Comment

You should have noticed three problems with the program:

• it doesn’t count names which start with a lower case ‘a’
• it doesn’t stop when you enter ‘end’ in lower case
• it adds the word END to the list.

You should be able to modify your code to solve these problems.

Hints:

• Use the function UCase in step 3.4.
• Make step 3.2 conditional (If name <> “END”).
• Make the end of loop condition into a complex condition using OR.

Stages 5 and 6 – Documentation and evaluation

As usual, you should:

• print out hard copies of your form and the coding
• save your program and tidy up the files into a folder
• write a short user guide and technical guide
• write a brief evaluation of the program in terms of its fitness for purpose,

user interface and readability.

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

124 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Example 4.15.2 Password protection

Design, write and test a program for a bank cash machine. The
program should prompt the user to enter their PIN. If the PIN is
correct, it should display “Welcome to the VB Bank” (message 1).
If not, it should notify the user that their PIN was entered wrongly
(message 2) and let them try again, but only allow three tries. If
the user enters their PIN wrongly three times, they should be
warned that their card is being kept (message 3).

Stage 1 – Analysis – data flow diagram

Stage 2 – Design

We want the user interface to look like this:

It has a command button, a title and a text
box for messages to appear. The user will be
prompted to enter their PIN through an input
box.

First, we design the list of steps (pseudocode) and then the coding for the
command button:

We will use a Do .. Loop Until, as the number of attempts the user makes is
unknown in advance by the programmer.

The condition to end the loop will be that the PIN is correct OR that the user
has had three attempts.

PIN entered at
keyboard

Appropriate
message

VB Bank

Click to
enter PIN

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 125

© Learning and Teaching Scotland 2009

Pseudocode Visual BASIC coding
1. Set a counter equal to zero counter = 0
2. Store correct PIN correct_pin = 1347
3. Do the following: Do
3.1 prompt the user to enter their

PIN
 pin = InputBox(“Enter your PIN”)

3.2 if PIN is correct display
message(1) Else display
message(2)

 If pin = correct_pin then txtMessage.Text
= “Welcome to VB Bank” else
txtMessage.Text = “PIN entered wrongly –
try again”

3.3 add 1 to the counter counter = counter + 1
4. Until the PIN is correct or counter

= 3
Until (pin = correct_pin) Or (counter = 3)

5. If counter = 3 then display
message(3)

If counter = 3 Then txtMessage.Text =
“The card is being kept for security”

Variables required:
counter (integer), pin (integer), correct_pin (integer)

Stage 3 – Implementation

• Start a new Visual BASIC project.
• Create a form as above.
• Name the command button btnStart.
• Name the text box txtMessage.
• Enter the code for the command button (declare all required variables).
• Save the project and form in a new folder.

Stage 4 – Testing

Create some suitable test data, and use it to test the program.

 Test data 1 Test data 2 Test data 3
Test data 1347

9999
8888
1347

1234
4321
9999

Comment

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

126 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Stages 5 and 6 – Documentation and evaluation

As usual, you should:

• print out hard copies of your form and the coding
• save your program
• write a short user guide and technical guide
• write a brief evaluation of the program in terms of its fitness for purpose,

user interface and readability.

Task: Password Checker

Modify the program to:

• prompt the user to enter a password (which could contain letters as well

as numbers)
• allow five attempts at guessing the password.

Note: If you want to keep the original PIN program, but use it to begin the
new program …

1. Select Export Template from the File menu
2. Choose Project Template as the template type.
3. Leave all the default settings on the next page, and click Finish. VB

will save the PIN program as a template.
4. Select New Project from the File menu
5. Instead of Windows Application, select the template you have just

created.
6. Give the new project a name (e.g. Password_program), and continue

as normal.

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 127

© Learning and Teaching Scotland 2009

4.16 Other forms of conditional loop

There are four variations of conditional loop in Visual BASIC. So far, we have
only used the Do .. Loop Until form of loop. In some high-level languages, this
is the only kind of conditional loop, and it is possible to manage without the
other kinds. However, for completeness, here is a brief summary of all four.

Type of loop Syntax Comments

Do .. Loop Until

Do

Line(s) of code to be
repeated

Loop Until condition

Always executed at least
once, as condition is
tested at the end; stops
when the condition
becomes true

Do .. Until Loop

Do Until condition

Line(s) of code to be
repeated

Loop

Only executed if the
condition is true, as it is
tested at the beginning

Do .. Loop While

Do

Line(s) of code to be
repeated

Loop While condition

Loops while the
condition is true, and
Stops when the
condition becomes false

Do .. While Loop

Do While condition

Line(s) of code to be
repeated

Loop

Only executed while the
condition is true, as it is
tested at the beginning

Do I need to
know about all
four types?

No, for this unit it is
enough to be able to
use one type of
conditional loop!

HIGH-LEVEL LANGUAGE PROGRAMMING – BASIC CONSTRUCTS

128 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Congratulations! You have completed Section 4.

Here is a summary of what you should now be able to do using VB:

• design and create a form, using text boxes, command buttons,

labels and captions
• change the properties of an object
• analyse a problem using a data flow diagram
• write pseudocode, convert it into VB code, and assign it to an event
• declare string, integer and single(real) variables
• use text boxes, message boxes and input boxes
• test a program using normal, extreme and exceptional data
• use a range of predefined functions
• write brief user guides and technical guides for simple programs
• evaluate a program in terms of fitness for purpose, user interface and

readability
• use conditional statements involving If, Then, Else and End If
• use simple and complex conditions involving comparison operators, And,

Or and Not
• create fixed loops using For .. Next
• create conditional loops using Do .. Loop Until
• make use of the loop counter within a loop
• create nested loops (a loop within a loop)
• create and use a Project Template.

Check all the items on this list. If you are not sure, look back through this
section to remind yourself. When you are sure you understand all of these
items, you are ready to move on to Section 5.

HIGH-LEVEL LANGUAGE PROGRAMMING – STANDARD ALGORITHMS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 129

© Learning and Teaching Scotland 2009

Section 5: High-level language programming –

standard algorithms

5.1 Input validation

There is a saying in computing, which goes:

Garbage in, garbage out! (or just GIGO)

You have probably heard stories about people who have
received a gas bill for £1,000,000 or similar. Usually the
company will blame this on a “computer error”. However,
computers very rarely make mistakes! More often, the
problem is that the computer has been fed with the wrong
data to start with. If you feed in wrong data, then the
answer that comes out of the system will be wrong too.

A well designed program should prevent (or at least reduce the likelihood) of
wrong data being entered into a system.

For example, there was a program in Section 4.4 which took in a student’s
exam mark and worked out their grade. Suppose a student scored 59, so
should have been given a “B”, but the teacher was in a hurry, and the mark
was entered as 599 by mistake. The computer doesn’t have any “common
sense”, so it processes the data it is given, and awards the student an “A”.
Garbage in, garbage out!

You could prevent this sort of error by making it impossible to enter a mark of
over 100. We would describe a mark of over 100 as being invalid. Invalid data
is data which couldn’t possibly be correct or which doesn’t make sense in the
context.

To prevent the input of invalid data, we can put the coding for input of data
inside a conditional loop, which only proceeds if the data entered is valid. A

wrong data in wrong answer out

HIGH-LEVEL LANGUAGE PROGRAMMING – STANDARD ALGORITHMS

130 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

conditional (If) statement can also be inserted to warn the user if invalid data is
entered. In VB, it could look like this:

Do
 mark = InputBox(“Enter a mark (up to 100)”)
 If mark > 100 then MsgBox (“Too high”)
Loop Until mark <=100

• Create a form like the one shown here:
• Name the textbox txtValidMark.
• Enter the code above for the button click

event.
• Add a variable declaration for the variable

“mark”.
• Add the line txtValidMark.Text = mark to

display the valid mark in the text box on
the form.

Run the program to test that it prevents the user from entering an invalid mark
(i.e. one that is over 100).

If you tested the program thoroughly, you might have discovered that it is still
possible to enter invalid data. For example, the program would accept a
negative number, which would not be a valid mark in any exam that I know.

We can easily adapt the program to also prevent invalid negative numbers
being entered, as follows (changes in bold), using complex conditions:

Private Sub btnDataEntry_Click(…………..)
Dim mark As Single
Do
 mark = InputBox(“Enter a mark (between 0 and 100)”)
 If (mark > 100) Or (mark < 0) Then MsgBox (“That was not a valid
mark”)
Loop Until (mark >=0) And (mark <= 100)
txtValidMark.Text = mark
End Sub

Make these changes and test the program
again using the following test data:

Normal: 23, 55, 99, 150, -10
Extreme: 0, 100, 0.0001, 99.999, 100.001
Exceptional: A, <spacebar>

Save this program
as valid_mark.
You will use it as a
basis for the tasks
in section 5.2.

HIGH-LEVEL LANGUAGE PROGRAMMING – STANDARD ALGORITHMS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 131

© Learning and Teaching Scotland 2009

Validation or verification?

Notice that input validation doesn’t prevent wrong data being entered. For
example, if a student had scored 55 in an exam and the operator entered the
mark as 56 by mistake, the program would accept this data. The data would
be wrong but still valid!

The process of preventing incorrect data being entered is called verification.
Many commercial data processing systems involve both verification and
validation. In this unit, we are only considering validation.

Standard algorithm for input validation

The coding for input validation always follows a standard pattern. The details
will vary depending on the specification of the program, but the same pattern
can always be used. This standard pattern saves programmers time when
designing programs. A pattern like this is called a standard algorithm.

Here is a simple version of a standard algorithm for input validation. It involves
a conditional loop and an If statement, like this:

Do
 Prompt user for valid input
 If input is invalid, warn user
Loop until input is valid

Adapting Program 4.4

We can use the standard algorithm for input validation to improve the exam
grade program we developed in Section 4.4. Here is the section of code used
to input the data.

 ‘ store user inputs
 max_mark = txtMax.Text
 first_name = txtName.Text
 surname = txtSurname.Text
 mark = txtMark.Text

As it is at the moment, you could enter any mark into the txtMark text box.

HIGH-LEVEL LANGUAGE PROGRAMMING – STANDARD ALGORITHMS

132 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Let’s alter the coding so that it won’t accept the following types of
invalid marks:

• no marks less than 0
• no marks greater than the maximum mark for the exam.

All you need to do is replace the single line

mark = txtMark.Text

with an input validation loop, like this:

Do
 mark = InputBox(“Enter a valid mark”)
 If (mark > max_mark) Or (mark < 0) Then MsgBox (“That was not a
valid mark”)
Loop Until (mark >=0) And (mark <= max_mark)
txtMark.text = mark

Test the program to ensure that the input validation is working.

Extra task:

Change the line max_mark = txtMark.Text to ensure that the user cannot enter
a maximum mark less than 0 or greater than 200, by replacing it with a
standard input validation loop.

HIGH-LEVEL LANGUAGE PROGRAMMING – STANDARD ALGORITHMS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 133

© Learning and Teaching Scotland 2009

5.2 Input validation tasks

Adapt the valid_mark program from Section 5.1 to do each of the
following. (You should start by exporting the valid_mark program
as a template, so that you can base each of these task on the
template; that way you won’t need to start each program from
scratch.):

• Prompt the user to enter their age.

Do not accept ages less than 0 or greater than 120 as valid ages.

• Prompt the user to enter a 4 digit PIN.

The program should only accept the PIN if it is 4 digits long.
(Hint: Make it an integer; what is the smallest and largest value?)

• Prompt the user to enter what year they are in at school.

Only accept 1, 2, 3, 4, 5 or 6 as valid years.

• Prompt the user to enter their type of membership in a club.

Membership codes are J (for Junior), I (for Intermediate) and S (for
Senior).

• Prompt the user to enter Yes or No.

The program should accept “YES”, “Yes”, “yes”, “NO”, “No” or “no”

• Prompt the user to enter a name.

The program should only accept a name beginning with the letter “A”.
(Hint: Use Mid$)

• Prompt the user to enter a password, which can include letters and

numbers.
The program should only accept a password that is at least 6 characters

long. (Hint: Use Len)

HIGH-LEVEL LANGUAGE PROGRAMMING – STANDARD ALGORITHMS

134 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

5.3 Other standard algorithms

There are many other standard algorithms used by programmers. For this unit,
you need to:

• be able to recognise and code the standard algorithm for input validation
• know about four other standard algorithms, and understand where and

when they might be used.

(You don’t need to be able to code these other standard algorithms unless you
study the Higher Software Development unit)

The other standard algorithms you need to know about are:

• finding a minimum
• finding a maximum
• counting occurrences
• linear search.

All of these algorithms apply to a list of data items stored in a computer
system. These could be lists of names or lists of numbers (student marks, for
example).

Finding a minimum

This algorithm works its way through a list of numbers and finds the number
with the lowest value. For example, here is a list of daily midday
temperatures recorded at a weather station during February 2003:

Date 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Temperature (°C) 4 6 5 7 11 9 8 5 3 4 3 6 7 4

Date 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Temperature
(°C) 5 6 2 3 8 6 12 10 11 9 6 11 8 6

The finding a minimum algorithm would search through all the daily
temperatures in the list and find the lowest one. In this case, it would be 2°C
(on the 17th of the month). The algorithm would return the value 2 (the actual
minimum temperature).

HIGH-LEVEL LANGUAGE PROGRAMMING – STANDARD ALGORITHMS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 135

© Learning and Teaching Scotland 2009

Other examples could include:

• finding the lowest mark in a list of exam marks
• finding the winner in a list of golf scores
• finding the youngest member in a club membership list.

It can also be used to search a list of names to find the first if arranged
alphabetically (this is possible because strings are stored as ASCII codes,
which are numbers.

Finding a maximum

This algorithm works its way through a list of numbers and finds
the number with the highest value. In the example above, it
would find 12°C (on the 21st of the month).

Counting occurrences

This algorithm also works its way through a list of numbers. As it does so, it
counts how many occurrences of a given value there are in the list. For
example, if the counting occurrences algorithm was applied to the list of
midday temperatures, with a search value of 9°C, it would return the answer 2,
as there are 2 days (the 6th and the 24th) when the temperature was 9°C.

Date 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Temperature (°C) 4 6 5 8 11 9 8 5 3 4 3 6 7 4

Date 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Temp. (°C) 5 6 2 3 8 6 12 10 11 9 6 11 8 6

Linear search

The final standard algorithm which you need to know about is called linear
search. The idea is simple – it searches through a list looking for a particular
item and reports where the item is found.

In the above list of temperatures, if linear search were given the search value
7°C, it would return the answer 13, as 7°C is found at position 13 in the list.

HIGH-LEVEL LANGUAGE PROGRAMMING – STANDARD ALGORITHMS

136 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Questions

1. Look at these lists of data items:

1. 27.3
2. 15.6
3. 9.93
4. 15.6
5. 1.56
6. 28.3
7. 23.8
8. 2.38
9. 15.6
10. 99.3

1. 999
2. 333
3. –500
4. 0
5. 299
6. 929
7. –922
8. 99
9. –99
10. 299

1. 0.001
2. 0.002
3. 0.010
4. 0.100
5. 0.020
6. 0.111
7. 0.001
8. 0.002
9. 0.200
10. 0.120

What value would each of the following standard algorithms return (numbers
in brackets refer to columns 2 and 3:

(a) find minimum
(b) find maximum
(c) count occurrence of 15.6 (99) (0.001)
(d) linear search for 2.38 (929) (0.111).

Which standard algorithm would be used by the national census organisation
to:

(a) find out how many people called Mary live in the UK
(b) find out the oldest person living in the UK
(c) discover whether or not there was an individual called “Stan D. Ard al-

Gorithm” in the UK.

HIGH-LEVEL LANGUAGE PROGRAMMING – STANDARD ALGORITHMS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 137

© Learning and Teaching Scotland 2009

5.4 Using arrays

All of the standard algorithms which you met in the last section operate on a
list of data items. In this section, we will see how a computer program can
store a list of items.

Suppose a program was required which would prompt the user to enter and
store the names and test marks for three students. Let’s try.

Stage 1 – Analysis – data flow diagram

Stage 2 – Design

We want the user interface to look like this:

It has a single command button, and a title.
We will use input boxes to enter the data and
the output will appear in a listbox.

Next, we design the list of steps (pseudocode) and then the coding for the
button:

Pseudocode Visual BASIC coding
1. Enter and store the first student’s name first_name = InputBox(“Enter 1st name”)
2. Enter and store the first student’s mark first_mark = InputBox (“and their mark”)
3. Enter and store the second student’s name second_name =InputBox (“Enter next name”)
4. Enter and store the second student’s mark second_mark = InputBox (“and their mark”)
5. Enter and store the third student’s name

and so on ….
6. Enter and store the third student’s mark
11 Display the first student’s name lstOutput.Items.Add (first_name)
12 Display the first student’s mark lstOutput.Items.Add (first_mark)
13 Display the second student’s name

and so on ….
14. Display the second student’s mark
15. Display the third student’s name
16. Display the third student’s mark

three names

names and marks
displayed on form

three sets of test

Names and marks

Click to
enter
data

HIGH-LEVEL LANGUAGE PROGRAMMING – STANDARD ALGORITHMS

138 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

The variables required are:

• first_name, second_name, third_name (all stings)
• first_mark, second_mark, third_mark (all integers).

Stage 3 – Implementation

• Start a new Visual BASIC project.
• Create a form as above.
• Name the button btnDataEntry.
• Enter the code for the button (declaring all required variables).
• Save the project and form in a new folder.

Stage 4 – Testing

Test the program with some normal test data.

You might well be thinking
that this is a very tedious
example and that there
should be an easier way of
implementing the program.

You are right! You should be
thinking ‘Loop!’
This is an ideal situation to
employ a For .. Next loop, as
the same action has to be
repeated three times.

HIGH-LEVEL LANGUAGE PROGRAMMING – STANDARD ALGORITHMS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 139

© Learning and Teaching Scotland 2009

Here is simpler version using two For..Next loops:

Private Sub btnDataEntry_Click(……….)
 Dim student_name As String
 Dim mark As Integer
 Dim i as Integer

 For i = 1 to 3
 Student_name = InputBox(“Enter a name”)
 mark = InputBox(“and their mark”)
 Next

 For i = 1 to 3
 lstOutput.Items.Add (student_name)
 lstOutput.Items.Add (mark)
 Next
End Sub

Implement and test this new version.

There is a problem! The program has only stored the last name and mark we
entered. Each name (and mark) has been stored in the same variable, each
time overwriting the previous value. We need to have different variable
names for each name and mark, but we can’t do that within the For..Next loop.

The answer to our problem is a special type of data structure called an array.
An array can be sued for any number of items – in this example, we are
assuming there are five students:

Note: we can’t call the
variable ‘name’ as
‘name’ is a VB object
property, so we use
‘student_name’ instead

HIGH-LEVEL LANGUAGE PROGRAMMING – STANDARD ALGORITHMS

140 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Rather than setting up five variables
for five names, like this….

…we can set up a name array, like
this …

 Dim first_name As String
 Dim second_name As String
 Dim third_name As String
 Dim fourth_name As String
 Dim fifth_name As String

Dim student_name(4) as String

.. and rather than setting up another
set of five variables for the marks, like
this …

… we can set up a mark array, like
this …

 Dim first_mark As Integer
 Dim second_mark As Integer
 Dim third_mark As Integer
 Dim fourth_mark As Integer
 Dim fifth_mark As Integer

Dim mark(4) as Integer

What does Dim student_name(4) as String mean? Instead of setting up five
separately named variables to hold the five names.

Visual BASIC sets up a variable structure called an array that can store all five
names, with each array element being referred to by its index number (0, 1, 2,
3 or 4) …

Similarly, Dim mark(4) as Integer sets up an array that can store five integers …

mark(0) mark(1) mark(2) mark(3) mark(4)

first_name second_
name

third_
name

fourth_
name

fifth_name

student_
name(0)

student_
name(1)

student_
name(2)

student_
name(3)

student_
name(4)

HIGH-LEVEL LANGUAGE PROGRAMMING – STANDARD ALGORITHMS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 141

© Learning and Teaching Scotland 2009

The really useful thing about an array is that the program can refer to the
whole array at once, or to any single element.

Now let’s see how using arrays lets us simplify the program we have been
working on.

Here is the version that doesn’t work (adapted for five students):

Private Sub btnDataEntry_Click(……..)
 Dim student_name As String
 Dim mark As Integer
 Dim i as Integer

 For i = 1 to 5
 student_name = InputBox(“Enter a name”)
 mark = InputBox(“and their mark”)
 Next

 For i = 1 to 5
 lstOutput.Items.Add (student_name)
 lstOutput.Items.Add (mark)
 Next
End Sub

and here is a version that does work, using arrays:

Private Sub btnDataEntry_Click(…….)
 Dim student_name(4) As String
 Dim mark(4) As Integer
 Dim i as Integer

 For i = 0 to 4
 student_name(i) = InputBox(“Enter a name”)
 mark(i) = InputBox(“and their mark”)
 Next

 For i = 0 to 4
 lstOutput.Items.Add (student_name(i))
 lstOutput.Items.Add (mark(i))
 Next
End Sub

The first time through the
loop, i = 0, so the first name
and mark are stored in array
elements student_name(0)
and mark(0). Next time, i = 1,
so student_name(1) and
mark(1) are used, and so on

The same thing happens here,
with i taking the values 0, 1, 2, 3
and 4 in turn, so each name and
mark are displayed in the list
box.

x

HIGH-LEVEL LANGUAGE PROGRAMMING – STANDARD ALGORITHMS

142 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Implement and test this new version. It should work correctly
now.

Stages 5 and 6 – Documentation and evaluation

As usual, you should:

• print out hard copies of your form and the coding
• save your program and tidy up the files into a folder
• write a short user guide and technical guide
• write a brief evaluation of the program in terms of its fitness for purpose,

user interface and readability.

5.5 Examples using arrays

Lucky prize Draw (version 1)

Stage 1 – Analysis

Program specification Data flow diagram

Design, write and test a program which
prompts the user to enter 10 names,
then selects and displays one chosen at
random.

Stage 2 – Design

We want the user interface to look like
this:

It has a command button, two labels, a
title and a text box (called txtWinner).
The user will enter the 10 names using
input boxes.

name chosen
at random 10 names

Prize Draw

by A. Programmer 05/01/04

click
to

start

The lucky winner is ..

HIGH-LEVEL LANGUAGE PROGRAMMING – STANDARD ALGORITHMS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 143

© Learning and Teaching Scotland 2009

Next, we design the list of steps (pseudocode) and then the coding for the
command button:

Pseudocode Visual BASIC coding
1. Do the following 10 times For i = 0 To 9
1.1. prompt the user to enter a name Stored_name(i) = InputBox(“Enter a

name”) 1.2. store the name in an array
2. Next Next
3. Select a random number between
1 and 10

Randomize
Number = …………..

4. Display the selected array
element

TxtWinner.Text =
Stored_name(number)

Variables required:

i and number (both integers)
stored_name(9) (array of strings).

Stage 3 – Implementation

• Start a new Visual BASIC project.
• Create a form as above.
• Name the command button btnStart and the textbox txtWinner.
• Enter the code for btnStart (declare the 2 variables and the array).
• Save the project and form in a new folder.

Stage 4 – Testing

Run the program to make sure it works correctly, selecting a different winner
every time. To save time, you can enter the names as Q, W, E, R, T, etc. from
the top row of the keyboard.

HIGH-LEVEL LANGUAGE PROGRAMMING – STANDARD ALGORITHMS

144 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Lucky Prize Draw (version 2)

Program specification

Design, write and test a program which prompts the user to enter four names
and four prizes.

The program should select a lucky winner at random and assign them a prize
chosen at random. The program should then display the name of the winner
and the chosen prize.

Work through all the stages of the software development
process for this program – analysis, design, implementation,
testing, documentation and evaluation.

HIGH-LEVEL LANGUAGE PROGRAMMING – STANDARD ALGORITHMS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 145

© Learning and Teaching Scotland 2009

Congratulations! You have completed Section 5.

Here is a summary of what you should now be able to do using
VB:

• everything from the Section 3 checklist
• everything from the Section 4 checklist
• write the pseudocode for the input validation standard algorithm
• write VB coding for a standard input validation algorithm
• use complex conditions (using Or and And) for input validation
• declare arrays
• use For..Next loops to handle arrays.

You have now completed the whole unit on
software development. By working your way
through all the example programs and tasks in
this package, you should have demonstrated all
the practical skills required to pass the unit, and
have enough evidence to support this.

You should also now
be ready to sit the
multiple choice NAB
for this unit.

Good luck!

ANSWERS TO QUESTIONS

146 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Answers to questions

Section 1.1

Q1. Hardware is the items of equipment that make up a computer system.

Q2. Examples of software include any application packages (e.g. Microsoft

Word), any operating system (e.g. Windows 97) or any document or file.

Q3.

Item Hardware Software

monitor √

database √

Windows 97 √

scanner √

an email √

Internet Explorer √

mouse √

modem √

a computer game √

a word processor √

digital camera √

ANSWERS TO QUESTIONS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 147

© Learning and Teaching Scotland 2009

After Section 1.10

Q1.

Stage Description

Evaluation Writing a user guide and technical guide for the
software

Testing Working out the details of what the screens will
look like, what menus and functions there will
be, and other detailed aspects of the program.

Implementation Deciding what type of game you want to
create, and what features you want it to have.

Design Actually writing all the program code.

Documentation Adapting the game to run on a different type of
computer.

Analysis Checking that the program does what it is
supposed to do, is easy to use and can be
fixed if there is a problem.

Maintenance Getting users to try out the program to make
sure it works under most conditions.

Q2. The three criteria used to evaluate software in this unit are fitness for

purpose, user interface and readability.

Q3. Both show the main steps in any process. Pseudocode is read from top

to bottom; a structure diagram is read from left to right.

Q4. A user guide tells you the features of the software, how to use it and

possibly a tutorial. The technical guide gives information on installation
and the technical specification of the computer required to run the
program.

Q5. Normal, extreme and exceptional testing.

Q6. A game could have bugs fixed, or new features added.

ANSWERS TO QUESTIONS

148 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

After Section 2.1

Q1. High-level is easier to understand.

Q2. High-level is easier to correct.

Q3. Machine code and assembler are low-level languages.

Q4. Pascal and BASIC are two high-level languages (there are many more).

Q5. High-level languages are designed to be understood by humans; LLLs

are designed to be understood by computers.

Q6. High-level languages are more readable, easier to fix bugs, designed for

problem solving.

After Section 2.4

Q1. Interpreters and compilers.

Q2. A compiler translates a whole program before executing it.

Q3. An interpreter translates line-by-line.

Q4. Compiled programs run more quickly because they are already in

machine code, so don’t need to be translated.

After Section 2.6

Q1. A macro is a program to automate a process in an application; it can be

activated by a combination of keys whenever it is needed.

Q2. Macros are written in scripting languages like VBA.

Q3. They allow automation of frequently repeated complicated combinations

of actions.

Q4. For automating a complex set of formatting commands in a word

processor or automating a complex query in a database.

ANSWERS TO QUESTIONS

SOFTWARE DEVELOPMENT (INT 2, COMPUTING) 149

© Learning and Teaching Scotland 2009

After Section 3.1

Q1. A command button, a text box, a label.
Q2. This icon starts the execution of a program.
Q3. Clicking on a command button is a common VB event.

After Section 3.12

Q1.

Description Predefined function

Returns the ASCII code of a
character

 Mid$

Selects a group of characters out
of a string Asc

Turns any character into upper
case Lcase

Takes an ACII code and returns
the character it represents Ucase

Changes any character into lower
case Len

Counts the number of characters
in a string Chr

Q2. Mid$(sentence,1,1) - W
 Mid$(sentence,1,4) - What
 Mid$(sentence,9,2) - 25
 Mid$(sentence,19,1) - ?

Q3.
 ASCII code any letter

character ASCII code

no. of characters string

Asc

Chr

Len

ANSWERS TO QUESTIONS

150 SOFTWARE DEVELOPMENT (INT 2, COMPUTING)

© Learning and Teaching Scotland 2009

Section 4.9

(a) For counter = 3 To 36 Step 3
(b) For counter = 0 To 99 Step 9
(c) For counter = 10 To 0 Step –1
(d) For counter = 0 To 4.5 Step 0.75
(e) For counter = 50 To -50 Step –10
(f) For counter = 1 To 10 with counter^2
(g) For counter = 1 To 11 with 2^counter

Section 5.3

Q1.

 Column 1 Column 2 Column 3
Finding minimum 1.56 -922 0.001
Finding
maximum

99.3 999 0.200

Count
occurrences

(15.6) 3 (99) 1 (0.001) 2

Linear search (2.38) 8 (929) 6 (0.111) 6

Q2.

(a) Count occurrences
(b) Finding maximum (or minimum if searching dates of birth)
(c) Linear search

	Tutor guide
	Student guide
	Software development process
	Software
	The development process
	Stage 1: Analysis
	Stage 2: Design
	Stage 3: Implementation
	Stage 4: Testing
	Stage 5: Documentation
	Stage 6: Evaluation
	Stage 7: Maintenance
	Activity

	Analysis
	Design
	Activity

	Implementation
	Testing
	Documentation
	Evaluation
	Maintenance
	Questions

	Stage
	Languages and environments
	Computer languages
	High- and low-level languages
	Translators
	Interpreters
	Compilers
	Text editors
	Scripting languages and macros
	Example: Creating an Excel spreadsheet macro
	What use is a macro?
	Example 2: Creating a word processing macro
	Questions

	High-level programming – getting started
	Introducing Visual BASIC
	Questions

	Input and output – example
	Example 1

	Input and output – tasks
	Task 1 – A similar program
	Task 2 – Develop a new program

	Other forms of output
	Output to a label
	Output to a text box
	Choosing the style of output

	Declaring variables
	Activity
	Activity

	Working with numbers – example
	Stage 1 – Analysis – program specification
	Stage 1 – Analysis – data flow diagram
	Stage 2 – Design – user interface
	Stage 2 – Design – pseudocode
	Stage 3 – Implementation – creating the form
	Stage 3 – Implementation – coding
	Stage 4 – Testing
	Stage 5 – Documentation
	Stage 6 – Evaluation

	Adding a Clear button
	Arithmetical expressions
	Working with numbers – tasks
	Predefined numeric functions
	Function Tester program
	Other predefined functions

	Working with words and numbers – example
	The problem
	Stage 1 – Analysis – program specification
	Stage 1 – Analysis – data flow diagram
	Stage 2 – Design – user interface
	Stage 2 – Design – pseudocode
	Stage 3 – Implementation – creating a form
	Stage 3 – Implementation – coding the start button
	Stage 4 – Testing
	Stage 5 – Documentation
	Stage 6 – Evaluation

	Predefined string functions
	Questions

	Example program using Chr and Asc
	Stage 1 – Analysis – program specification
	Stage 1 – Analysis – data flow diagram
	Stage 2 – Design – user interface
	Stage 2 – Design – pseudocode
	Stage 3 – Implementation
	Stage 4 – Testing
	Stage 5 – Documentation

	Important advice!
	High-level language programming – basic constructs
	Making choices
	If ... Then ... Else
	Stage 1 – Analysis – program specification
	Stage 1 – Analysis – data flow diagram
	Stage 2 – Design – user interface
	Stage 2 – Design – pseudocode
	Stage 3 – Implementation
	Stage 4 – Testing
	Stages 5 and 6 – Documentation and evaluation
	Extra task

	Multiple Ifs
	Stage 1 – Analysis – program specification
	Stage 1 – Analysis – data flow diagram
	Stage 2 – Design – user interface
	Stage 2 – Design – pseudocode
	Stage 3 – Implementation
	Stage 4 – Testing
	Stages 5 and 6 – Documentation and evaluation
	Extra task: changing form colours
	Practical task 1 – adapt the “Lucky Winner” program to fulfil this specification:

	Using AND – example
	Stage 1 – Analysis – program specification
	Stage 1 – Analysis – data flow diagram
	Stage 2 – Design – user interface
	Stage 2 – Design – pseudocode
	Stage 3 – Implementation
	Stage 4 – Testing
	Stages 5 and 6 – Documentation and evaluation
	Extra task (1): Upper case initials
	Extra task (2): A+ grade
	Stages 5 and 6 – Documentation and evaluation

	Using And – task
	Example: Can I drive?

	Complex conditions
	Programming Task – Colour changer

	Repetition
	Repetition using For .. Next
	Stage 1 – Analysis
	Stage 2 – Design
	Stage 3 – Implementation
	Stage 4 – Testing

	Counting using For .. Next
	Example 4.9.1 Counting Program
	Stage 1 – Analysis
	Stage 2 – Design
	Stage 3 – Implementation
	Stage 4 – Testing
	Stage 1 – Analysis
	Stage 2 – Design
	Stage 3 – Implementation
	Stage 4 – Testing
	Stages 5 and 6 – Documentation and evaluation
	Example 4.9.3 Multiplication tables
	Stage 1 – Analysis
	Stage 2 – Design
	Stage 3 – Implementation
	Stages 4, 5 and 6 – Testing, documentation and evaluation

	For .. Next tasks
	Times tables (advanced version)
	Cost and weight calculator
	Cubic numbers
	Quadratic function calculator

	Using loops to work with strings
	Example 4.11.1 – Adapting the AB_coder program to code whole words
	Stage 4 – testing
	Stages 5 and 6 - Documentation and evaluation

	Do .. Loop Until
	Improvements to the program

	Random numbers
	Tasks:

	Arithmetic tester
	One more modification!

	More examples using Do .. Loop Until
	Example 4.15.1 Class lists
	Stage 1 – Analysis – Data Flow Diagram
	Stage 3 – Implementation
	Stage 4 – Testing
	Stages 5 and 6 – Documentation and evaluation
	Example 4.15.2 Password protection
	Stages 5 and 6 – Documentation and evaluation
	Task: Password Checker

	Other forms of conditional loop

	End If
	High-level language programming – standard algorithms
	Input validation
	Validation or verification?
	Standard algorithm for input validation
	Adapting Program 4.4

	Input validation tasks
	Other standard algorithms
	Finding a minimum
	Linear search

	Using arrays
	Examples using arrays

	Good luck!
	Stage
	Len

