
TALON COMPUTING 

Rule Engine Express    

 

User Manual

Version 

1 



 

Talon Computing 

RULE ENGINE EXPRESS 

USER MANUAL 
 

 

 Talon Computing 

http://www.taloncomputing.com 

 



 

 

Table of Contents

Introduction .................................................................................... 1 

Why you should use REX ....................................................................... 1 

Requirements ......................................................................................... 1 

Licensing ........................................................................................ 2 

Model ...................................................................................................... 2 

Redistribution .......................................................................................... 2 

Installation Procedure .................................................................... 2 

Download ................................................................................................ 2 

Purchase License ................................................................................... 2 

Unzip and install ...................................................................................... 3 

Order License Key .................................................................................. 3 

Installing Your License ............................................................................ 4 

Applications ................................................................................... 5 

Licensing Authority Client ....................................................................... 6 

Rule Builder ............................................................................................ 7 

Knowledge Base, rule sets and rules ................................................................. 7 

Rule Engine API .......................................................................... 23 

Introduction ........................................................................................... 23 



 

 

Linking References ............................................................................... 23 

Application or web configuration .......................................................... 23 

Classes ................................................................................................. 24 

Sample Program ................................................................................... 26 



R U L E  E N G I N E  E X P R E S S  

 

1 

INTRODUCTION 
Welcome to the Talon Computing Rule Engine Express (REX) user manual. This 

manual will introduce step by step to the engine, from installation to how to use it 

effectively.  

Why you should use REX 
REX is a lightweight software utility that will help you to decouple your business 

rules from your application. By making use of an independent tool you are able to 

focus your software on providing the engine with a set of inputs and then writing 

code to handle very specific outcomes.  

The advantage of this is decoupling. Your software focuses less on how decisions 

are made for certain business rules and rather concentrates on handling the 

desired outcome or decision. This frees the developer from hard coding business 

rules into the code. This increases maintainability and productivity in the long run. 

If new logic needs to be added or changed it can be done without necessarily 

having to make any code changes, thereby reducing defects from being 

introduced into the application. 

Requirements 
Currently the only system requirements that REX needs is Microsoft .NET 4.5. 

When you start using REX in your application, you need to simply incorporate the 

core Dynamic Link Libraries (DLL’s) into your application. This will be detailed in 

later sections. 

  



R U L E  E N G I N E  E X P R E S S  

 

2 

LICENSING 

Model 
Talon Computing licenses REX on an as-required basis; meaning that while you are 

busy with the development of your application you may need to build and edit 

your rules. If your business rules stay relatively stable there may not be a need to 

have a license. In the event that your business rules do change at some point and 

you need to maintain or make changes to your business rules, you would only 

need to purchase a license for the minimum period you require.  

Redistribution 
Talon Computing grants you the rights to re-distribute the REX DLL’s with your 

application in unmodified form. When redistributing your application, you need to 

distribute your license key in your application configuration file also. 

INSTALLATION PROCEDURE 
In order to use REX, ensure that you have downloaded the latest copy from the 

Talon Computing website (http://taloncomputing.com). Also ensure that you have 

purchased the correct license as well. Talon Computing uses PayPal as our secure 

payment processor. 

Download 
You can download the latest version of REX by visiting 

http://taloncomputing.com/downloads/rex.zip. 

Purchase License 
Once you have downloaded REX we recommend that you purchase a license key 

for the development time period that you require. You won’t be able to execute 

the application or use REX without a valid license. If you are only trying out REX 

and would like a demo license, complete the next two steps and then follow the 

procedure for ordering a demo license. 



R U L E  E N G I N E  E X P R E S S  

 

3 

Unzip and install 
Once you have downloaded REX, unpack it into a temporary folder and proceed 

with the installation application. We recommend using all the default settings for 

the installation process. 

Order License Key 
Once you have completed the installation procedure, you need to request a 

license key. If you have purchased a license you still need to complete the process 

by requesting a key to match your purchase. When your license has expired and 

you need to request a new license, use the following application to request a new 

license. 

When ordering the license key you need to make use of the application titled: 

TalonComputing.DesktopApp.LicensingClient.exe. 

 

Step 1: Select the product, in this case REX. 

Step 2: Select the development time period purchased. If you are trying the 

product out, select the Demo – 1 month development option. 



R U L E  E N G I N E  E X P R E S S  

 

4 

Step 3: Next provide the receipt number of your purchase. If you are requesting a 

demo account specify 0 as the receipt number. If you have not purchased a license 

yet, click on the Pay Now button. By clicking the Pay Now button, your default 

browser will be opened and you will be directed to the product page on the Talon 

Computing website. On the website you need to then select and purchase the 

appropriate development time period that you require. 

Step 4: Next supply your full name as this is your personal license for your 

machine. 

Step 5: Finally specify your email address. This is necessary for us to email your 

license keys to. Once you have completed all the fields click on the Send Request 

button. You will receive a confirmation message indicating that your request has 

been successfully submitted to our servers, thus you will require internet access in 

order to complete the procedure. 

Installing Your License 
After receiving your license request, we will verify that what you purchased 

matches that which you are requesting. If there are no discrepancies we will send 

you your license bundle. In the bundle you will receive three files: 

1. rex-{your full name}-{expiry date}.license 

This file contains textual description of your license keys and indicates 

when your license expires. This file is for your information only. 

2. app-rex-{your full name}-{expiry date}.config 

This file contains the application configuration setting you need to include 

in your app.config or web.config file. This should be incorporated as is, i.e.  

The key:  

<add key="TalonComputing.License.REX" value="D5E26CAF2C5E2B05D57ED7C755B1BBC3" /> 



R U L E  E N G I N E  E X P R E S S  

 

5 

Should be incorporated into your appSettings section in your app.config or 

web.config file. This is your redistributable client license. 

3. rex--{your full name}-{expiry date}.reg 

This file contains your personal development license. This file should be 

executed to install the necessary settings in your Windows Registry and 

therefore will require administrator privileges. 

APPLICATIONS 
The installation of REX results in two applications being installed and accessible 

from the start menu under: Talon Computing/Talon Computing Rule Engine 

Express. The applications are the Talon Computing Licensing Client and the Talon 

Computing Rule Builder. In addition to these applications, the Rule Engine Core 

files are installed to the location (if you used the default installation paths) 

C:\Program Files\Talon Computing\Talon Computing Rule Engine Express\Core. 

  



R U L E  E N G I N E  E X P R E S S  

 

6 

Licensing Authority Client 
Known as: Launch TalonComputing.DesktopApp.LicensingClient.exe 

Menu Location: Talon Computing / Talon Computing Rule Engine Express 

 

 

As mentioned in the Order License Key section, the License Authority Client is used 

to request a license from Talon Computing. Once we receive the request made by 

the application we verify your request with your purchase unless you are 

requesting a demonstration license. You will only be entitled to one 

demonstration license. 

  



R U L E  E N G I N E  E X P R E S S  

 

7 

Rule Builder 
Known as: Launch TalonComputing.DesktopApp.RuleEngine.exe 

Menu Location: Talon Computing / Talon Computing Rule Engine Express 

 

 

The rule builder application is responsible for creating and maintaining your 

knowledge bases.  

KNOWLEDGE BASE, RULE SETS AND RULES 
A knowledge base consists of a collection of rule sets. A rule set is a collection of 

rules. When applying certain rules in your application you will base it off a 

particular knowledge base rule set combination, i.e. your application uses the rule 

engine to apply rules from a specific rule set from a specific knowledge base. 

  



R U L E  E N G I N E  E X P R E S S  

 

8 

Creating a new knowledge base 
Step 1: Click on New from the menu. 

Step 2: Enter your project name and a description. 

Step 3: Click on Save. 

 

  



R U L E  E N G I N E  E X P R E S S  

 

9 

Loading an existing knowledge base 
Step 1: Click on Load from the Management menu section. 

Step 2: Select the knowledge file and then click Open. 

 

  



R U L E  E N G I N E  E X P R E S S  

 

10 

Saving your knowledge base 
Step 1: Once you have created your knowledge base or made changes to it, click 

 on the Save or Save As button. 

Step 2: Specify the filename for the knowledge base. 

 

  



R U L E  E N G I N E  E X P R E S S  

 

11 

Creating a new rule set 
Step 1: Under the Manage Rule Sets menu group, click on Create. 

Step 2: Enter the name and description of the rule set in the Properties section. 

Step 3: Click Save. 

 

Editing a rule set 
Step 1: In the Rule Set Management view, click on an existing rule set. 

Step 2: Make changes to the Rule Set Properties. 

Step 3: Click Save. 

  



R U L E  E N G I N E  E X P R E S S  

 

12 

Creating Conditions 
Step 1: In the Rule Conditions menu group, click on New Condition. 

Step 2: Complete the condition properties. 

Step 3: Click Save. 

 

About conditional operators 
Operator IsBetweenExclusive 

Description Determines if a numeric value is between two numeric values 

exclusively. The values must be separated by a comma. 

Definition � > �	���	� < 	   



R U L E  E N G I N E  E X P R E S S  

 

13 

Example Variable:   age 

Conditional Operator:  IsBetweenExclusive 

Value:    18,34 

 

Operator IsBetweenMaxExclusive 

Description Determines if a numeric value is between two numeric values. 

The lower bound value is inclusive and the upper bound value is 

exclusive. The values must be separated by a comma. 

Definition � ≥ �	���	� < 	   

Example Variable:   age 

Conditional Operator:  IsBetweenMaxExclusive 

Value:    18,34 

 

Operator IsBetweenMinExclusive 

Description Determines if a numeric value is between two numeric values. 

The lower bound value is exclusive and the upper bound value is 

inclusive. The values must be separated by a comma. 

Definition � > �	���	� ≤ 	   

Example Variable:   age 

Conditional Operator:  IsBetweenMinExclusive 

Value:    18,34 

 

 



R U L E  E N G I N E  E X P R E S S  

 

14 

Operator IsBetween 

Description Determines if a numeric value is between two numeric values 

inclusively. The values must be separated by a comma. 

Definition � ≥ �	���	� ≤ 	   

Example Variable:   age 

Conditional Operator:  IsBetween 

Value:    18,34 

 

Operator IsEqualTo 

Description Determines if a variable is equal to a particular value.  

Definition � = �   

Example Variable:   age 

Conditional Operator:  IsEqualTo 

Value:    18 

 

Operator IsFalse 

Description Determines if a Boolean variable is false. 

Definition � = ����   

Example Variable:   smokes 

Conditional Operator:  IsFalse 

Value:     

 



R U L E  E N G I N E  E X P R E S S  

 

15 

Operator IsGreaterThan 

Description Determines if a numeric variable is greater than a specific value. 

Definition � > �   

Example Variable:   age 

Conditional Operator:  IsGreaterThan 

Value:    34 

 

Operator IsGeaterThanOrEqualTo 

Description Determines if a numeric variable is greater than or equal to a 

specific value. 

Definition � ≥ �   

Example Variable:   age 

Conditional Operator:  IsGreaterThanOrEqualTo 

Value:    34 

 

Operator IsIn 

Description Determines if a value is in one of the values specified. The values 

must be separated by a comma. 

Definition �	 ∈ {��, … , ��}   

Example Variable:   age 

Conditional Operator:  IsIn 

Value:    18,20,22,24,26 

 



R U L E  E N G I N E  E X P R E S S  

 

16 

Operator IsLessThan 

Description Determines if a numeric variable is less than a specific value. 

Definition � < �   

Example Variable:   age 

Conditional Operator:  IsLessThan 

Value:    18 

 

Operator IsLessThanOrEqualTo 

Description Determines if a numeric variable is less than or equal to a specific 

value. 

Definition � ≤ � 

Example Variable:   age 

Conditional Operator:  IsBetweenLessThanOrEqualTo 

Value:    18 

 

Operator IsNotEqualTo 

Description Determines if a variable is not equal to a particular value. 

Definition � ≠ �   

Example Variable:   age 

Conditional Operator:  IsNotEqualTo 

Value:    55 

 



R U L E  E N G I N E  E X P R E S S  

 

17 

Operator IsNot 

Description Evaluates to the opposite of a particular Boolean variable. 

Definition ! �   

Example Variable:   smokes 

Conditional Operator:  IsNot 

Value:     

 

Operator IsTrue 

Description Determines if a variable is true. 

Definition � = ����   

Example Variable:   smokes 

Conditional Operator:  IsTrue 

Value:     

 

Creating actions 
Step 1: Under the Rule Actions menu group, click on New Action. 

Step 2: Select the Action Type from the drop down list. 

Step 3: Specify the name of the property or variable you want to modify or create 

conclusion for. 

Step 4: Specify the value that the property should have when the action is 

executed. 

Step 5: Click on Save. 



R U L E  E N G I N E  E X P R E S S  

 

18 

 

ACTION TYPE DESCRIPTION 

MODIFY A modify action allows you to change the value of a 

variable if a set of conditions are met. 

CONCLUSION A conclusion action allows you to make a decision when 

a particular set of conditions are met. Satisfied 

conclusions are collected when all rules have been 

executed.  

If no conclusion is returned by the engine then no 

conditions were satisfied based on the inputs that were 

provided. 

 

 

 



R U L E  E N G I N E  E X P R E S S  

 

19 

Rule set verification 
Once you have completed the creation of your rule set and rule specifications you 

may want to verify that you don’t have conflicting rules or that your rules cover all 

scenarios. 

REX provides you with a facility to test your rules against specific input values. 

Step 1: On the Verify menu section, click on Configure Variables. Configuring the 

variables lets you assign types to variables used in your knowledge base. This will 

be necessary for the test harness. In the Variables list, a list of your variables are 

displayed. 

Step 2: Click on a variable. 

Step 3: Select the Variable Type from the drop down list in the property section. 

Step 4: Click Save. 

Step 5: Repeat Step 2-4 for all remaining variables. 

 



R U L E  E N G I N E  E X P R E S S  

 

20 

Step 6: Configure the test harness inputs by clicking on Configure Inputs on the 

Verify menu section. 

 

Step 7: Click on Load to load the inputs from a Comma-Separated Value (CSV) file. 

CSV Format: 

The first row is the header and represents the variable names. These names 

should be the same as the names identified in the Variable Configuration. 

  



R U L E  E N G I N E  E X P R E S S  

 

21 

Example: 

age,smokes,activities,product 

34,TRUE,,none 

29,FALSE,,bronze 

31,FALSE,,silver 

31,FALSE,gym,gold 

25,FALSE,gym,platinum 

 

 

Step 8: Run the tests by clicking on Run Tests on the Verify menu group. This will 

display the test harness view with a view of the test results. 



R U L E  E N G I N E  E X P R E S S  

 

22 

Step 9: When you are ready to start executing the tests, click on Run Tests. 

 

When the tests have run, the results will be displayed in the Test Results area. 

 

  



R U L E  E N G I N E  E X P R E S S  

 

23 

RULE ENGINE API 

Introduction 
The rule engine has a very simple and easy to use programming interface. We will 

be describing only the classes you require to successfully integrate the rule engine 

into your application. We will also illustrate how to use the application 

programming interface by means of a coded example. 

Linking References 
The following references should be added to your project when starting to use the 

rule engine API. These references should be located in (if you used the default 

installation location) C:\Program Files\Talon Computing\Talon Computing Rule 

Engine Express\Core. 

Dynamic Link Library 

TalonComputing.Licensing.Core.dll 

TalonComputing.Licensing.CoreModels.dll 

TalonComputing.Licensing.Hardware.dll 

TalonComputing.Licensing.Interfaces.dll 

TalonComputing.Licensing.Utilities.dll 

TalonComputing.RuleEngine.Core.dll 

TalonComputing.RuleEngine.Interfaces.dll 

TalonComputing.RuleEngine.Models.dll 

 

Application or web configuration 
Next configure your application with the client distributable key that was emailed 

to you. This is the file that has a .config file extension. 



R U L E  E N G I N E  E X P R E S S  

 

24 

 

<?xml version="1.0" encoding="utf-8" ?> 

<configuration> 

 <appSettings> 

  <add key="TalonComputing.License.REX"    

   value="D5E26CAF2C5E2B05D57ED7C755B1BBC3" /> 

 </appSettings> 

</configuration> 

 

Classes 
The primary classes you need to be concerned with are:  

Class Name FileLoader 

Overview This class facilitates the loading of your knowledge base. You 

only need to use the constructor, specifying where to locate 

your knowledge base. 

Usage FileLoader loader = new FileLoader( @"App_Data\insuran

ce.knowledge" ); 

 

Class Name RuleBaseProcessor 

Overview This class is the key to the rule engine. Construct it using the file 

loader as a parameter. Add some inputs and call the Process 

method on the instance. This will generate a collection of 

outputs if one or more rules were triggered. 

Usage var processor = new RuleBaseProcessor(loader); 

 

 

 



R U L E  E N G I N E  E X P R E S S  

 

25 

Class Name RuleInputs 

Overview This class is a specialized Dictionary that allows you to 

add/update an input. Initially add inputs using the add method. 

Later you can simply modify the input by changing its value. 

The key identifies the name of the input property. 

The value is comprised of a Tuple identifying: 

Item1: as the input value. 

Item2: as the input type. 

Usage processor.Inputs = new RuleInputs(); 

insurance.Inputs.Add("age",  

 new ObjectType(25, typeof(int))); 

 

 

Class Name RuleOutputs 

Overview This class is specialized Dictionary that allows you to view the 

outcome of a particular processing of rule inputs. 

The key of the conclusions identifies the rule that was triggered. 

The value is comprised of a Tuple identifying: 

Item1: as the conclusion property. 

Item2: as the conclusion property value. 

Usage foreach( var conclusions in insurance.Outputs ) 

{ 

    foreach( var conclusion in conclusions ) 

    { 

        Console.WriteLine( "{0}: {1}", conclusion.Key, 

 conclusion.Value ); 

    } 

} 

 



R U L E  E N G I N E  E X P R E S S  

 

26 

 

Sample Program 
This sample application demonstrates how to use the library with relative ease. 

using System; 

using TalonComputing.RuleEngine.Core; 

using TalonComputing.RuleEngine.Core.Loaders; 

using TalonComputing.RuleEngine.Interfaces.Models; 

using TalonComputing.RuleEngine.Models; 

  

namespace LoanApproval 

{ 

    internal class Program 

    { 

        private static void Main( string[] args ) 

        { 

  // specify where our knowledge base file is, the rule  

  // processor will 

  // automatically load the knowledge file when it needs  

  // it using this loader 

            var loader = new FileLoader(  

   @"App_Data\insurance.knowledge" ); 

  

            // create a rule processor 

            var insurance = new RuleBaseProcessor( loader ); 

  

            // add inputs 

            insurance.Inputs = new RuleInputs(); 

            insurance.Inputs.Add( "age", new ObjectType( 25, typeof( 

   int ) ) ); 

            insurance.Inputs.Add( "smokes", new ObjectType( false,  

   typeof( bool ) ) ); 

            insurance.Inputs.Add( "activities", new ObjectType("gym", 

   typeof( string ) ) ); 

  

            // run the processor 

            insurance.Process(); 

  

            // process the outputs / handle the conclusions 

            Console.WriteLine( "Conclusions: " ); 

            foreach( RuleOutputs conclusions in insurance.Outputs ) 

            { 

                foreach( var conclusion in conclusions ) 

                { 

                    Console.WriteLine( "{0}: {1}", conclusion.Key,  

    conclusion.Value ); 

                } 

            } 



R U L E  E N G I N E  E X P R E S S  

 

27 

  

            Console.WriteLine( "Done." ); 

            Console.ReadKey(); 

        } 

    } 

} 

 

 

 


