
Framework for Synchronous Gathering of Interaction- and
Eyetracking-Data

Nico Lässig, Marius Maaß, Vithunan Maheswaran
Universität Stuttgart

Figure 1: Representation of the developed framework. 1) The application (VarifocalReader) where interaction and eye tracking
data is recorded. 2) The resulting data being displayed in a spreadsheet application (LibreOffice Calc) 3) The commandline
interface of the server application managing the recording sessions

Abstract— The evaluation of user behavior has become a leading aspect when developing user-friendly software or analyzing
the influence software modifications have on the user experience. These days, many methods to evaluate this data are available.
This paper will focus on eye tracking, which is a method to evaluate user behavior by measuring the eye movement of a participant
during the interaction with a graphical user interface of an application. Tracking the eyes is an important step for gathering eye
movement data. However without more information about other actions of a user the value of the recorded data is limited. To
supplement the eye tracking data other data sources like mouse movements or keystrokes can also be recorded. In this paper we
present a framework that automatically records this data while keeping the different data sources synchronous in order to make
analysis as accurate as possible.

Index Terms—Eyetracking, Synchronous Interaction, Data Collection, Thinking Aloud, Fixation Filtering

1 INTRODUCTION

Recording interaction data is a key aspect when analyzing the us-
ability of a user interface of an application. Additionally, tracking
the eye of a user yields important data about the user experience
[4]. Recording interaction data as well as eye tracking data is mostly
accomplished by using an external software. However, the applica-
tion recording the eye movement data is typically not able to record
the interaction data. This data has to be recorded using another
application. So, the storage of the measurements occurs separately
and without a uniform timestamp. As a consequence, the measured
data has to be merged and synchronized manually.

Nico Lässig Marius Maaß Vithunan Maheswaran
st103855@

stud.uni-
stuttgart.de

marius.maass@
studi.informatik.
uni-stuttgart.de

vithunan.maheswaran@
studi.informatik.
uni-stuttgart.de

Consequently, by having to manually synchronize the eye track-
ing and interaction data the accuracy for the analysis gets lost. There
is no unified architecture capable of handling both in a synchronous
manner which leads to complications when analyzing the recorded
data [4]. For this reason we have designed, implemented, and tested
a framework which is capable of providing synchronous measure-
ment and storage of interaction and eye tracking data. This makes
the analysis much more accurate. The challenges and goals of our
approach are to create a data model which is necessary to put the in-
teraction data into a cohesive relationship and to ensure synchronous
storage and recording when using the framework.

There are some important concepts that need to be explained
before going into detail about the framework.

Interaction events: There are multiple forms how the user can
interact with a given interface. This includes mouse movements,

1

mouse clicks, or keystrokes.
Thinking Aloud: To understand the user behavior, data is not

always sufficient. For this reason the thoughts of the user must be
considered. This is could be done by additionally asking the user to
say their thoughts out loud. [6]

Area of Interest: In many user interfaces there are areas that
need special attention. These are called “areas of interest” which
means that events occurring within this area should be handled
specially when analyzing the interaction data. There are static and
dynamic AOIs. Static AOIs do not change position during the
entire runtime of an application. Consequently, dynamic AOIs can
change form and position at runtime which is especially useful when
analyzing user interfaces with moving interface elements.

2 RELATED WORK

The history of eye tracking dates back to over a century ago where
initial observations about the eye movements were made [9]. The
techniques improved over time and today eye tracking is used for
a diverse set of problems e.g. marketing, psychology or usability
research in Human-Computer Interaction (HCI).

These days and in previous work eye tracking and interaction data
are measured separately using different external applications. For
this reason eye tracking and interaction data have to be synchronized
manually afterwards [4]. A consequence of merging the tracked data
is that this could lead to an inaccurate analysis.

A modern approach to reduce the workload is called ”eTaddy”[5],
an integrative framework that should guide the supervisor in tracking
and evaluating the eye tracking data. However this framework does
not ensure synchronous tracking of eye activity and interaction
data. Another modern approach of automatic processing is called
”AdELE”, a framework for Adaptive E-Learning through Eye
Tracking [3]. This framework tracks the interaction and eye tracking
data synchronous as a requirement to enable an effective adaptive
e-learning.

3 MODEL

Before we proceed to the documentation of our framework we will
have a closer look at the model which we have created to describe
how the measured data is represented in the framework and how
each entry is structured.

The UML diagram in Figure 2 shows how the data of one session
is organized. How each individual entry is structured up is described
in the following:

• Session: A session contains all data items from one user inter-
face recording session. In the implementation the data items
are not kept in the memory but are instead streamed to multiple
data files to reduce memory usage as the memory required to
store all data items would put unnecessary strain on the system
running the framework.

• Metadata: Each recording session has a small data structure
that contains additional data related to one session. This con-
tains a title and a description of the test that is currently being
conducted. Both strings are entered by the test supervisor
before the actual recording session begins.

• DataItem: The framework is designed around the idea that
each interaction is saved in the form of a single specialized data
item that contains all relevant information. Every data item
has a globally unique numeric identifier and a timestamp that
indicates when this event has occurred. This timestamp is the
zero-based number of µs that have passed since the beginning
of the recording session. Although the time is saved in µs the
actual resolution of the timestamp depends on the operating
system.

• AOIChangeItem: This item is generated when an AOI has
changed. It contains the id, name, and the new screen bounds
of the AOI.

• EyeGazeDataItem: The used eye tracker captures the loca-
tion the user looks at every 16 ms. This data consists of four
IEEE 754 double-precision binary floating-point numbers that
specify the X and Y coordinates of each eye. The data is then
converted into this data item and the framework also deter-
mines which AOI the user looked at.

• KeyboardDataItem: Whenever the user types on the key-
board this data item is generated. It contains the pressed keys
and modifiers both as a textual description (e.g. Ctrl+Shift
for modifiers and F for the pressed key) and as a numerical
identifier which depends on the used UI framework. It also
specifies which kind of event has happened by indicating if the
button was pressed, released or typed. Normally one keyboard
interaction generates multiple events because a single inter-
action consists of pressing and releasing the button. A typed
event is generated if the button was quickly pressed and then
released which happens when the user is typing text.

• MouseClickDataItem: Similarly to the keyboard interactions
the mouse clicks are also captured. The contents of the data
item are similar to the keyboard data but the application being
tracked can also associate additional data with each event in
order to provide additional data for later analysis.

• MouseMotionDataItem: In addition to individual mouse
clicks the location of the mouse pointer is recorded. This
data item only contains the current location of the pointer and
the AOIs in which the pointer is currently located.

• MouseScrollDataItem: Typically a mouse also contains
a scroll wheel. Interaction events from this device
are also captured and are represented by a subclass of
MouseMotionDataItem. In addition to the properties of
the superclass it also contains the amount of how much the
user has scrolled with this event.

• ScreenshotDataItem: When a screenshot is captured then a
data item which contains the image data is generated. For each
screen connected to the system one screenshot is captured.
The data is a fully encoded image file which can be saved to
disk without needing any further encoding.

4 IMPLEMENTATION

Based on the work shown in previous sections we created a list of
design goals that the implementation of this framework would have
to fulfill:

• Collection of the interaction data should require as little inte-
gration effort as possible

• Independence from UI-framework or programming language
so the framework can be easily extended in the future

• Tracking of multiple AOIs that may be added or change posi-
tion at runtime

The first design goal was solved by keeping the programming in-
terface as minimal as possible. Most of the recorded data is captured
automatically without further intervention of the application that is
being tracked.

We solved the second design goal by turning the framework into
a client-server application. A small language and UI-framework
specific library would handle collecting the interaction data and then
send it to the server application via a standard TCP-socket. This also
opens up the possibility to run the client application on a different

2

Figure 2: Framework Model in UML notation

device than the server which could be useful if the framework is
extended to other types of devices (e.g. smarthphones) where saving
and retrieving the data could be a problem.

4.1 The Client Library

As a part of this project the target language was Java and the targeted
UI-framework was AWT/Swing which meant that we had to use
these technologies when implementing the client library.

To start recording interaction data the client application only has
to initialize the library and optionally add the AOIs by calling a
method on the tracking state object. Mouse clicks are handled sepa-
rately because they are frequently associated with some metadata.
The client application must handle these events in some way (e.g.
by registering a mouse click listener on the right component) and
associate them with the appropriate metadata. The mouse event and
the corresponding metadata is then passed to the client library which
will handle the event similarly to the other events as described below.

4.1.1 Internal Structure of the Client Library

The client library is based on the concept of having multiple data
sources (IDataSource) which generate a stream of data items
(IDataItem) that have to be recorded. By keeping the data sources
behind a generic interface, adding new data sources at a later time
is easy to do without major changes of the client library. When a
data source generates a new data item the client library uses the
IDataItem interface to serialize it into the OutputStream of
the TCP socket so the server can then process the data.

For tracking the eye movements of the user the Tobii Analytics
SDK [1] is used. However it’s relatively easy to add support for
a different kind of eye tracker by implementing a new data source
that uses the appropriate SDK. The Tobii SDK does not expose a
Java API so we created a small JNI library that uses the C++ API to
expose the API functions needed for our framework.

Recording of user interface events (e.g. mouse movements
or keyboard events) is done by registering multiple global
AWTEventlisteners which get called by AWT whenever a spe-
cific event has occurred. These AWT events are converted into
appropriate implementations of IDataItem and then sent to the
server like all other data items.

To support any possible shape of an AOI we decided to expose this
functionality by using an interface. The interface has two functions:

• Expose a function that checks if a screen coordinate is within
the AOI which has the signature boolean hitTest(int
x, int y)

• Handling a set of listeners that get notified if the bounds of an
AOI have changed

When using AWT, every interface element is a subclass of the
Component class which has all the necessary information to per-
form the mentioned hit test and and notify the listeners should the
bounds of the AOI component change. We used this to implement
IAreaOfInterest for a Component instance. This makes the
AOI usage easier to realize for client applications and can also be
used as an example for how an implementation should be written.

The framework also handles recording an audio stream for when a
user is thinking aloud. The Java Runtime offers an API for capturing
audio from various sources in the system. However choosing which
source to capture has to be done by test supervisor. To minimize
the required level of interaction while performing the recording our
framework simply captures all audio streams and saves them to
multiple files. After the user studies are finished the right files can
be selected by checking which file contains the right audio.

Initially, we also wanted to capture periodic screenshots or even
a full video of the screen the user is looking at. However this
caused performance issues because the system locked up for a
few milliseconds each time the framework took a screenshot. This
would distort the interaction data captured of a user.

4.2 The Server Application
The server application is responsible for deserializing the data re-
ceived from the client and saving it into multiple Character Separated
Values (CSV) formatted files. After deserializing the data items, they
are handed to a separate thread which demultiplexes them into multi-
ple streams of the same type (e.g., all eye gaze data items will be in
one stream, mouse move items in another). The data items are then
formatted into a line where each value is separated by a ; character.
This format is supported by common spreadsheet applications.

After a client has connected to the server, there is the possibility of
specifying some metadata for this session that gets saved alongside
the recorded data. This can be used to give the session a meaningful
title and description. After the supervisor of the test has entered this
data it is saved to a JSON (JavaScript Object Notation) formatted
file which can be read at a later time to reconstruct the data.

3

Figure 3: Server commandline interface running in a terminal emu-
lator on Ubuntu GNOME

Currently, the server application only uses a basic commandline
interface (see Figure 3) which allows to enter the required meta data.
The internal structure of the server was designed around the idea
that the UI could be easily replaced. The server uses an interface
to communicate with the user interface. Creating a graphical user
interface for the server could be done without major changes to the
server code.

The server is written in C# and runs on both the Microsoft .NET
and the open-source Mono platforms. This it can run on all major
desktop platforms without modifications.

4.3 Communication Protocol

The communication protocol between the client and the server is a
central part of our framework. It is the basis for future extensions
to other programming languages or UI frameworks. After the
TCP-connection is established the client first sends the ASCII string
"EyeTrackingEvaluation" followed by a carriage return
(CR) and a line feed (LF) character. The next line contains a version
number (currently that is 1) again ended by the CR LF sequence.
The client library can send some additional options to the server.
The only option currently supported is Application-Name
which should identify the application that is used. The format of
these options is the same as in the HTTP-Header [7]. After sending
all options, the client sends an empty line (just containing CR
and LF) to signal the server that all options have been sent. The
client now waits for the server to send the string "Ready\r\n"
until proceeding with initializing the interaction tracking. This
mechanism allows the server to interactively ask the supervisor
to enter the metadata for this session. After all this data has been
gathered, the server sends the ready string ("Ready\r\n") and the
client begins transmitting the serialized interaction data in binary
form. After one session has ended, the server begins to listen on the
same port (by default 43248) as before so the next tracking session
can begin without interruption.

4.4 Data Import

Once the data has been recorded it needs to be analyzed somehow.
The amount of recorded data is commonly too much to be analyzed
manually. So, it needs to be converted into a data structure suitable
for automatic processing. A common data structure for this kind
of task is a database that contains all the data and allows a more
efficient retrieval of individual items or a group of related records.
For this project the database is a Microsoft SQL Server which can
be accessed with a .NET based language. For this reason a generic
parser for the generated interaction data was written in C#. The
language features of C# make writing a CSV parser easy while
keeping it fairly robust.

At the beginning of the parsing process, the saved metadata is con-
verted into the appropriate data structure using the JSON deserializer
available in the standard .NET and Mono framework.

To ensure a proper initialization order, the parser first reads the
file containing the individual AOI events. Most other data items
depend on this data so it is important that the AOI data is available
when the rest of the data is parsed. The AOI events are converted
into so called “AreaOfInterestPoint” data structures which
contain the timing and location information. If an event contains in-
formations about a new AOI, then the importer will also generate an
“AreaOfInterest” object that contains the ID and the name of
the AOI. Additionally, this object holds all points related to that AOI.
The final data structure contains a list of AOIs with each individual
object again containing a list consisting of the individual AOI points.

After creating the AOI data structure, parsing the actual interac-
tion data is a simple process. Most importers parse the text data into
the appropriate number formats (e.g. a 32 bit integer or a IEEE 754
double-precision binary floating-point) and create an object for the
event. If an event contains information about which AOI was hit,
then the parser has to do some additional work to cross-reference
this event with the right AOI object. This is done by parsing the list
of hit IDs (in the format (1|2|...)) into a sequence of integers.
These represent the IDs of the hit AOIs. Then the parser searches
in the AOI list for the first AOI object that has the same ID. This
generates a list of references to the right AOIs.

After the importer is finished the DataBase object contains all
data recorded in one session at which point it can be converted into
the right data structure suitable for analysis.

5 POST-PROCESSING

During the recording, several CSV files are generated, which can be
used for the analysis. The recorded data of the eye movement looks
like the following (Fig. 4):

1 Each recorded data has its own ID.

2 The timestamp of the recorded data. It starts with 0, when the
first data is recorded.

3 The range of the validity is between 0-4, it depicts how good
the eye was tracked (0 = eye coordinates tracked without any
problems, 4 = the eye movement could not be tracked)

4 These are the tracked eye coordinates. If the validity equals 4,
then the coordinates in the table are default, -1920 and -1200.

5 The AOI where the coordinates are located. If they are located
in a none predefined area, the default is “()”, which means that
no AOI is behold. This is also the case, when the eye gaze
could not be tracked.

As one can see, the raw data consists of data from both eyes, the data
is recorded for each eye independently. In this figure the data of the
left eye is depicted as red, the other one as blue.

However, for our evaluation of the user study not all eye gazes
are important to consider. There are two general types of eye move-
ments, fixations and saccades. Fixations are eye movements where
participants focuses on a particular region whilst saccades are rapid
eye movements between such fixations. For most analyses the fix-
ations are needed, that is why we decided to implement another
external program. Thus, the users can decide if they need every
eye movement or just the fixations. This program filters out the
saccades because they make the dataparsing more complex and the
analysis gets more elaborate because more points are considered.
The algorithm which determines eye gazes fixations or saccades has
an impact on the analysis, because bad algorithms rather filter out
too many points or too few.

4

Figure 4: Eye Gaze Data file generated by our framework. Described in chapter 5.

The raw data we get from our implementation returns the coor-
dinates and the AOIs seen by the right and the left eye separately.
Therefore, we first have to average the value of both eye gazes. The
exact process is explained in the next subchapter.

Additionally, we define two types of saccades [11]. When
both eye gazes are not tracked, it is a type-1 saccade. The entries
of type-1 saccades are removed immediately. So they are not
part of the computation of our algorithm. Type-2 saccades are
removed at the end of the process and are detected by implemented
algorithm. Thus, the characteristic which determines if an eye gaze
is a fixation or saccade depends on the implemented algorithm.
The detection of the type-2 saccades in our algorithm is described
in the subsection “Detection and filtering of Fixations and Saccades”.

5.1 Eye Gaze Computation
As already mentioned above, the raw eye gaze data consists of
data from the left and right eye separately. For the evaluation, and
therefore for our algorithm, however, we need one eye gaze in each
entry. We first have to calculate the eye gaze via the coordinates of
the left and right eye. If both eyes are tracked, the arithmetic mean
of the coordinate is determined. If both eyes could not be tracked,
the entry is deleted immediately, as already noted. If just one eye is
tracked, we take the coordinates of the tracked eye. Furthermore, we
have another idea which can be realised as well. The x-coordinates of
the tracked left eye is mostly left to the x-coordinates of the tracked
right eye. Therefore, we could find an average distance and then
adapt the eye gaze. This slight change would make the coordinates
of the eye gaze more realistic and therefore it would enhance the
accuracy of the algorithm.

Finally, we have to determine and adopt the focused AOI. For
that, we have to import the data where the bounds of the AOIs are
predefined.

5.2 Detection of Fixation- and Saccade-Points
We chose the “Velocity-Threshold Identification” algorithm as the
basis for the implementation, which we call ”Fixation Filter”. We
chose it for several reasons: it is a fast algorithm, which is easy to
implement compared to other algorithms and the accuracy of the
algorithm is also good [12].

The idea of the “Velocity-Threshold Identification” algorithm is,
that the points get a type (fixation or saccade) assigned based on
their point-to-point velocities. The formula for the calculation is:

velocity =
distance
timespan

distance =√
(x-coord.−prev. x-coord.)2 +

√
(y-coord.−prev. y-coord.)2

timespan = timestamp−prev. timestamp

We decided to assign eye movements with a point-to-point velocity
≤ 100 deg/sec as a fixation, otherwise as a saccade.

Furthermore we categorize all tracked eye movements as a sac-
cade, when the coordinates are not located in a defined AOI. This
idea is used in the I-AOI algorithm [12].

After we categorized the fixations and saccades, we have to deter-
mine the duration of the fixations. The duration defines how long a
participant looks at a particular region.

5.2.1 Duration
There are two steps to identify the duration of a fixation. First,
fixation points are formed into fixation groups, if they fulfill two
conditions. Condition one is that these points are between two (type-
2) saccades. The other condition is, that the recognized AOI is the
same in successive fixation points.

To get the duration of a fixation, we take the first and last times-
tamp of the fixations in the fixation group and compute the differ-
ence.

At the end, we remove all saccade points as well as fixation
groups with a duration < 200 ms.

5.3 GUI and Visualization
We implemented a GUI that provides a front end for the previously
described algorithm. The GUI (shown in Figure 5) allows to select
an eye gaze data file and an AOI data file which were generated by
our framework. The user can then select an algorithm for computing
the fixations, execute it and examine the results which are shown in
a table. At this time, the program provides the described algorithm
as well as the I-AOI and I-VT algorithm itself which are used for it.

The resulting fixation data is written to a new CSV file which
can be used as input for a visualization of the data. Figure 6 shows
a possible visualization which was generated using the software
presented in [4].

6 USE CASE

In the following, we present a user study based on our implementa-
tion. For the user study we used the program “VarifocalReader” [10].

6.1 VarifocalReader
The VarifocalReader offers a multi-layer visualization approach and
supports analysts in exploring and understanding documents based
on the inherent structure of a document (e.g. chapters, pages and
paragraphs) [4]. The VarifocalReader provides several views to show
different abstractions of text, annotations appropriate to users needs,
as well as results of search requests.

There are different visualizations that can be attached to each
layer, except the last one which displays the text. These are either
bar charts, pictograms, or word clouds. Clicking on a word in the
word cloud marks all such words.

The hierarchical perspective on text documents and the navigation
concept are based on the SmoothScroll approach [13]. It enables an
analyst to navigate through the visualization and to keep track of the
current position across all layers.

5

Figure 5: The GUI of the Fixation Filter. 1) Selection of eye gaze and AOI data files 2) Selection of which algorithm should be used to
compute the fixations 3) Table showing the results of the algorithm

Figure 6: Visualization of the recorded data using an AOI Sequence Chart [8]. This figure shows AOI sequence charts from three different
participants. Interaction data are classified and therefore each interaction has a specific color based on the classification. All interaction
categories and their visual representation are precisely described in [4].

Each layer was defined as an AOI, independently of the used
visualization. Hence, it made no difference for the AOI if the
participants used a bar chart or pictogram. These layers are: chapters
(1), subchapters (2), pages (3), paragraphs (4), and the text itself (5)
as depicted in Figure 7.

6.2 Integration of the Framework

Integrating the framework into “VarifocalReader” was a fast
process. In the source code of “VarifocalReader” we called
InteractionTracker.initialize in the main function
and stored the returned TrackingState object in a global vari-
able.

As soon as the main window was created, multiple AOIs
for the individual user interface areas (see Figure 7) were
added. From previous studies there was already code present
which saved the mouse click interactions into an Excel file.
We used this code and redirected the MouseEvents to the
TrackingState.onMouseClicked function. The additional
data for this function call was also already recorded. This data
was converted into a InteractionInfo instance which was also
passed to TrackingState.onMouseClicked.

This shows that our design goal of creating an easy to integrate
framework has been fulfilled. The recorded data also fully meets our
expectations. It contains all data that was captured by previous tools
and also has additional data streams like keyboard events or mouse
scroll events. Using the data importer presented in section 4.4 we
also successfully imported the data into an existing eye tracking data
visualization application which was presented in [4]. The resulting

visualization is shown in Figure 6.

6.3 Tobii Studio
For our approach we work with the tracking system developed
by Tobii [2]. It is a complete eye tracking studio which provides
many features to record analyze and visualize eye tracking data of a
participant.
Before the use case starts, Tobii studio is used to calibrate the
eye tracker for each user. The calibration is necessary to provide
accurate test results during a study. In the first testing sequence with
Tobii Studio we noticed that eye tracking requires some demands on
the quality. An example would be a user wearing glasses. Glasses
lead to difficulties in tracking the eye coordinates. Using an external
dialog offered by Tobii Studio, we could examine the tracking
status. When we noticed that the track status is under 80% of suc-
cessful eye tracking, it was recommended to cancel the task of a user.

6.4 Example User Study
For the user study, we prepared several questions for the literary
texts “Grundbegriffe der Poetik” (english: Basic Terms of Poetic) by
Emil Staiger and “Iliad” by Homer.

6.4.1 Environmental Conditions and Technical Setup
The study was performed in a laboratory isolated from external
distractions and with the rollers shuttered down. The participants
had to turn off their mobile phones and other electronic devices
which could disturb the user study.

6

Figure 7: VarifocalReader. The literary texts are divided into layers showing chapters (1) (with word clouds), subchapters (2) (with bar
charts and pictograms), pages (3) (with bar charts), paragraphs (4) (with word clouds), and the text itself (5). As can be seen in this figure,
the word Hektors is selected. The red marked bar charts in the second layer show in which subchapters the word is used and how often it is
used.

We tracked all eye and mouse movements as well as the interac-
tions made by the participant. Additionally, we recorded an audio
file, where the user described what their intentions are for each action
as well as what their answers are for the tasks.

To start the user study, first “Tobii Studio” and the server had to
be started. After calibrating the participant we selected the program
for our user study. Before the program started we had to select an
ID for the user and give additional information about him/her which
we use for the analysis.

Eye movement data was recorded with a Tobii T60 XL eye tracker
(sampling rate 60 Hz) with a 24-inch screen and a resolution of 1920
× 1200 pixels. To calibrate the eye tracker we conducted a five point
calibration. For the thinking aloud part we used the Rode NT-USB
studio mic.

The raw data was exported as .CSV-files. Each category (Eye
Gaze, Mouse Movement, Mouse Click, Mouse Scroll, Keystroke
and AOI) had its own file. The keystroke file is irrelevant in this user
study, as the keyboard is not used in this program. In the AOI-file,
the predefined AOI bounds are saved. Which AOI is viewed each
time can then be looked up in the eye gaze file. Later described in
Figure 4.
The recorded audio files had to be moved manually by us, because
these files were saved in a subfolder of the client.

6.4.2 Participants
We conducted the study with six participants (one female, five
male). The average age of the participants was 22.8 years (min
= 21, max = 25). four of the participants had a slight experience
with the program whilst two participants have never seen or
used it before. Each participant successfully performed an
Ishihara test and a Snellen chart to confirm that participants were
physically able to accomplish the given task. The study took
about 25 min, depending on the speed and experience of participants.

6.4.3 Procedure
First, the participants were asked to fill out some personal informa-
tion (e.g. about their age and if they already have used the Varifo-

calReader). Then, we gave the participants a brief introduction into
Thinking Aloud. They were admonished to always tell, what they
are doing, what their intention is, as well as to answer the prepared
questions. We also informed the participants on how to scroll in the
program. Nevertheless, they were not informed on how the program
exactly works.

Afterwards, we tested their visual ability with an eyesight test as
well as a color test. Then, we calibrated the participant with a five
point calibration as mentioned before.

Each participant had to solve several tasks where each new task
was slightly harder than the previous one. All questions were based
on a single text and with no pause between them for a continuous
flow.

For each task, participants had to find out, for example, where
specific words or topics are or where specific words are used most.

Afterwards, participants answered several questions about the
VarifocalReader. How they found the tasks and the program itself,
if it is easy to use, and how useful they find this program. The
participants also gave some advice about how to improve the
program and had the chance to give final remarks.

7 ANALYSIS

The main reason for the use case is that we want to test our framework
and evaluate the results after we filter out the saccades with help of
our fixation filter to see if the evaluation is facile and how big the
effort is for the analysis.

We analyze the results from the participants using three main
categories: speed, correctness and eye gazes. Additionally, we
distinguish other characteristics as well. Furthermore, we grouped
the probands for the analysis into two different classes based on their
experience with the VarifocalReader: inexperienced and experienced
users.

At the end, we want to evaluate the evaluation, because the reason
for use case was not to test the VarifocalReader, instead to test the
workload with aid of our implementations.

7

7.1 Hypothesis
Our hypothesis for the user study is that inexperienced users need
way more time than the experienced ones, but that it will become
less time difference between the experienced and inexperienced
probands for each new task, because the inexperienced probands
learn more and more about the program in the progress and therefore
become slightly experienced probands themselves. However, we
believe that there is not any difference about the correctness of the
answers between the probands.

7.2 Visualization of Recorded Data
Fig. 6 shows a sector of the visualization from the eye gaze of the
tracked data from our use case, after saccades were filtered with
the “Fixationizer”, using an “AOI Sequence Chart” [8]. This repre-
sentation of the data is used for the analysis of the use case. Every
participant has its own AOI Sequence chart with each AOI having its
own timeline. This allows an easy comparison of individual partici-
pants. Eye movements are represented as gray rectangles connected
by lines whilst interaction data are depicted by colored circles. The
meaning of each color is described in [4].

In this part of the visual representation it can be seen that partici-
pant 3 has the focus on the paragraph layer at first, then looks at the
text and then back at the paragraph again. It also can be seen e.g.
that participant 3 reads the text often for a short time whilst the other
two participants focus on the text for a longer timespan, but not as
often as participant 3.

The visualization of the complete user study can be analyzed
simply, because of the visual representation with the same timeline
used for each participant and because the interactions are categorized
and each category has its own color.

7.3 Task Solving

• Speed: The slightly more experienced users needed ∼ 4 1
2 min

less to solve the tasks in comparison to the inexperienced users.
This is kind of unsurprisingly, however, the inexperienced users
needed about the same time for each task. The experienced
users, though, needed more time for each new task, because
the tasks got harder and more elaborate each.

• Correctness: There was no major difference between the ex-
perienced and inexperienced users. Most tasks were solved
correctly, but there were few tasks which several probands
struggled to solve.

• Eye Gazes: Another significant difference between experi-
enced and inexperienced users is that the experienced ones
nearly did not look on the icons, only for short time to se-
lect them whereas the inexperienced ones watched them more
closely, to understand what they could mean, before selecting
them. The biggest difference however was that the experienced
participants did not watch the text often, because you did not
really needed to read or watch it in order to answer the ques-
tions. They just looked on the text to verify if they selected
the right word etc.. The inexperienced users have read pretty
much at the beginning of the tasks and also tried to find some
solutions in the text.

• Other Characteristics: The inexperienced participants played
a little bit around with the program before trying to solve the
first question. The reason behind this is that they wanted to get
familiar with the program first in order to solve the rest of the
tasks more quickly.

One common problem which five out of six probands faced
was that they struggled a few times with scrolling, because it
is an extraordinary technique, but it got better the more time
they were into the tasks. For two participants a mouse scroll
.csv-file was created, which means that they still tried to use to

scroll with the mouse.

7.4 Usability of our Implementations
Evaluating the user study is more efficient and less complex, because
when using our framework, the results of the use case are more
precise because all data is synchronized automatically. Tracking of
data with our framework is working without any issues.

We represent the results with the software from [4] as depicted in
Fig. 6. With aid of our fixation filter we reduce the exported data to
the important informations we need for the evaluation, that is why
the analysis of the user study is neither hard nor time-expensive.

As already mentioned in section “6.2 Integration of the Frame-
work” the integration of our framework into the VarifocalReader
was a fast process as well. The visualization of our data with the
visualization software also proceeded without any complications.

In conclusion, with aid of our framework the workload of analysis
of user studies is reduced.

8 FUTURE WORK

The focus for future work should be put on the visualization of the
captured data and expansion to other UI-frameworks and devices.

The server application could be extended to provide a more user
friendly interface as opposed to the current commandline based
interface. Furthermore the server could be optimized to consume
fewer system resources in order to reduce the impact of the recording
on the use case.

The client library could be changed to conduct the eye tracker
calibration without needing to use the Tobii Studio. As mentioned
above the methods provided by the Java Runtime to record screen-
shots causes unacceptable performance problems. This could be
solved or at least reduced by using a dedicated screen recording
software that is specifically designed to perform more efficiently
than the Java Runtime. The current method of recording what the
proband says captures all available audio sources on the system. The
correct audio stream must be selected later by the person doing the
analysis. Providing a way to choose which audio source to record
would streamline the process of recording interaction data. Currently
the audio capture system is also limited to saving the recorded au-
dio on the system the client runs on. By sending the audio data to
the server via the TCP-socket and saving it with the other recorded
data the files would not need to be copied by the person conducting
the test which would remove another step needed for successfully
executing a use case.

The preparation of the tested application needed before being
able to conduct a use case is already pretty minimal but it could
be further reduced by creating an external application that could be
used to specify the AOIs that should be tracked. This could be done
by selecting user interface elements and saving this information for
later use by the client library.

The “Fixationizer” is yet an extern application for detecting
and removing saccades and computing the duration of fixations.
Future work could integrate the filter algorithm in our framework,
so that saccades will be filtered out internal and automatically.
The user should decide if saccades are needed or are not needed,
therefore the filtering should be optional. Furthermore, there are
many approaches for filtering fixations and saccades, that is why
the algorithm can be optimized and/or new algorithms could be
added to our existing implementation, that the user can choose the
preferred filter algorithm.

9 CONCLUSION

The goal of this project was to create a framework for synchronously
recording various interaction data from an application. This was
done creating a model containing the various types of interaction
data which share a common time base. The implementation uses
this model to capture the data and save it in multiple data files but

8

now all these individual data files are sharing a synchronous time
base and can be easily analyzed. The conducted use case has shown
that the framework fulfills this goal adequately.

REFERENCES

[1] Tobii analysis sdk. http://www.tobiipro.com/product-listing/tobii-pro-
analytics-sdk/. Accessed: 2015-06-10.

[2] Tobii studio manual. http://www.tobiipro.com/siteassets/tobii-pro/user-
manuals/user-manual—tobii-studio.pdf. Accessed: 2015-10-04.

[3] V. M. G. Barrios, C. Gütl, A. M. Preis, K. Andrews, M. Pivec,
F. Mödritscher, and C. Trummer. Adele: A framework for adaptive e-
learning through eye tracking. Proceedings of IKNOW, pages 609–616,
2004.

[4] T. Blascheck, M. John, S. Koch, K. Kurzhals, and T. Ertl. Va2: A visual
analytics approach for evaluating visual analytics applications. IEEE
Transactions on Visualization and Computer Graphics, 22(1), 2015.

[5] T. Blascheck, M. Raschke, and T. Ertl. etaddy-ein integratives frame-
work für die erstellung, durchführung und analyse von eyetracking-
daten. Gesellschaft für Informatik, editor, GI-Edition Lecture Notes in
Informatics Informatiktage, 12:111–114, 2013.

[6] K. A. Ericsson and H. A. Simon. Verbal reports as data. Psychological
review, 87(3):215, 1980.

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616
(Draft Standard), June 1999. Obsoleted by RFCs 7230, 7231, 7232,
7233, 7234, 7235, updated by RFCs 2817, 5785, 6266, 6585.

[8] K. Holmqvist, M. Nyström, R. Andersson, R. Dewhurst, H. Jarodzka,
and J. Van de Weijer. Eye tracking: A comprehensive guide to methods
and measures. Oxford University Press, 2011.

[9] R. Jacob and K. S. Karn. Eye tracking in human-computer interaction
and usability research: Ready to deliver the promises. Mind, 2(3):4,
2003.

[10] S. Koch, M. John, M. Wörner, and T. Ertl. Varifocalreader in-depth
visual analysis of large text documents. IEEE Transactions on Visual-
ization and Computer Graphics (TVCG), 2014.

[11] N. Lässig. Detection of fixations and saccades. Eye-Tracking in der
Visualisierung, 2015.

[12] D. D. Salvucci and J. H. Goldberg. Identifying fixations and saccades
in eye-tracking protocols. In Proceedings of the 2000 Symposium on
Eye Tracking Research & Applications, ETRA ’00, pages 71–78, New
York, NY, USA, 2000. ACM.

[13] M. Wörner and T. Ertl. Smoothscroll: A multi-scale, multi-layer
slider. In G. Csurka, M. Kraus, L. Mestetskiy, P. Richard, and J. Braz,
editors, Computer Vision, Imaging and Computer Graphics. Theory
and Applications, volume 274 of Communications in Computer and
Information Science, pages 142–154. Springer Berlin Heidelberg, 2013.

9

