
Version 2.4.0
November 2001

The LEON Processor User’s Manual

Jiri Gaisler
Gaisler Research

2 The LEON processor user’s manual

Gaisler Research

jiri@gaisler.com

The LEON processor user’s manual

Copyright 2001 Gaisler Research.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions
for verbatim copying, provided also that the entire resulting derived work is distributed under the
terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, un-
der the above conditions for modified versions.

Gaisler Research 3 LEON user’s manual
1 Introduction .. 6
1.1 Overview .. 6
1.2 Performance.. 6
1.3 News in LEON-1 version 2.4.0 .. 6
1.4 License.. 6
1.5 Fault-tolerant LEON (LEON-FT) .. 6
1.6 Functional overview... 7
1.6.1 Integer unit ... 7
1.6.2 Floating-point unit and co-processor.. 7
1.6.3 Cache sub-system... 7
1.6.4 Memory interface ... 8
1.6.5 Timers... 8
1.6.6 Watchdog.. 8
1.6.7 UARTs.. 8
1.6.8 Interrupt controller ... 8
1.6.9 Parallel I/O port .. 8
1.6.10 AMBA on-chip buses... 8
1.6.11 Boot loader ... 8
1.6.12 Watchpoint registers... 8

2 LEON integer unit .. 9
2.1 Overview .. 9
2.2 Instruction pipeline... 10
2.3 Multiply instructions .. 10
2.4 Multiply and accumulate instructions .. 11
2.5 Divide instructions ... 11
2.6 Watch-points .. 11
2.7 ASI assignment... 12
2.8 Exceptions .. 12
2.9 Processor reset operation.. 13

3 Floating-point unit and co-processor.. 14
3.1 Generic CP interface .. 14
3.2 FPU interface.. 15

4 Cache sub-system... 16
4.1 Instruction cache... 16
4.1.1 Operation .. 16
4.1.2 Instruction cache flushing .. 16
4.1.3 Diagnostic cache access ... 16
4.1.4 Instruction cache tag... 17
4.2 Data cache .. 17
4.2.1 Operation .. 17
4.2.2 Write buffer .. 17
4.2.3 Data cache flushing .. 18
4.2.4 Diagnostic cache access ... 18
4.2.5 Cache bypass .. 18
4.2.6 Data cache tag .. 18
4.3 Cache Control Register .. 19

Gaisler Research 4 LEON user’s manual
5 AMBA on-chip buses... 21
5.1 AHB bus ... 21
5.2 APB bus.. 22
5.3 AHB status register .. 22
5.4 AHB cache aspects ... 23

6 On-chip peripherals .. 24
6.1 On-chip registers .. 24
6.2 Interrupt controller ... 25
6.2.1 Operation .. 25
6.2.2 Interrupt assignment ... 26
6.2.3 Control registers ... 26
6.3 Secondary interrupt controller.. 28
6.3.1 Operation .. 28
6.3.2 Control registers ... 29
6.4 Timer unit ... 30
6.4.1 Operation .. 30
6.4.2 Registers ... 31
6.5 UARTs.. 32
6.5.1 Transmitter operation ... 32
6.5.2 Receiver operation.. 33
6.5.3 Baud-rate generation .. 33
6.5.4 Loop back mode ... 33
6.5.5 Interrupt generation .. 34
6.5.6 UART registers... 34
6.6 Parallel I/O port .. 35
6.7 LEON configuration register.. 36
6.8 Power-down.. 37

7 External memory access... 38
7.1 Memory interface ... 38
7.2 Memory controller.. 38
7.3 RAM access.. 39
7.4 PROM access ... 40
7.5 Memory mapped I/O .. 40
7.6 Burst cycles .. 41
7.7 8-bit and 16-bit memory configuration .. 41
7.8 8- and 16-bit I/O access.. 42
7.9 Memory configuration register 1.. 42
7.10 Memory configuration register 2.. 43
7.11 Write protection.. 43

8 Signals .. 45
8.1 Memory bus signals.. 45
8.2 System interface signals ... 45
8.3 Signal description ... 46

9 VHDL model architecture .. 48
9.1 Model hierarchy ... 48

Gaisler Research 5 LEON user’s manual
9.2 Model coding style ... 49
9.3 Clocking scheme .. 49

10 Model Configuration .. 50
10.1 Synthesis configuration .. 50
10.2 Integer unit configuration... 51
10.3 Cache configuration ... 52
10.4 Memory controller configuration ... 52
10.5 Debug configuration... 52
10.6 Peripheral configuration ... 53
10.7 Boot configuration.. 54
10.7.1 Booting from internal prom.. 54
10.7.2 PMON S-record loader... 54
10.7.3 Rdbmon .. 55
10.8 AMBA configuration ... 55
10.8.1 AHB master configuration ... 55
10.8.2 AHB slave configuration.. 56
10.8.3 AHB cachability configuration .. 56
10.8.4 APB configuration.. 56

11 Simulation .. 58
11.1 Un-packing the tar-file ... 58
11.2 Compilation of the model... 58
11.3 Generic test bench .. 58
11.4 Disassembler .. 59
11.5 Test suite... 59
11.6 Simulator specific support.. 59
11.7 Post-synthesis simulation ... 59

12 Synthesis... 60
12.1 General ... 60
12.2 Synthesis procedure.. 60
12.2.1 Synplify .. 61
12.2.2 Synopsys-DC.. 61
12.2.3 Synopsys-FC2 and Synopsys-FE ... 61
12.2.4 Leonardo... 62

13 Porting to a new technology or synthesis tool.. 63
13.1 General ... 63
13.2 Target specific mega-cells.. 63
13.2.1 Integer unit register-file.. 63
13.2.2 Parallel FPU & co-processor register file... 64
13.2.3 Cache ram memory cells .. 64
13.2.4 Pads .. 65
13.2.5 Adding a new technology or synthesis tool.. 65

Gaisler Research 6 LEON user’s manual
1 Introduction

1.1 Overview

The LEON VHDL model implements a 32-bit processor conforming to the SPARC V8
architecture. It is designed for embedded applications with the following features on-chip:
separate instruction and data caches, hardware multiplier and divider, interrupt controller,
two 24-bit timers, two UARTs, power-down function, watchdog, 16-bit I/O port and a
flexible memory controller. Additional modules can easily be added using the on-chip
AMBA AHB/APB buses. The VHDL model is fully synthesisable with most synthesis tools
and can be implemented on both FPGAs and ASICs. Simulation can be done with all VHDL-
87 compliant simulators.

1.2 Performance

Using 4K + 4K caches and a 16x16 multiplier, the dhrystone 2.1 benchmark reports 1,400
iteration/s/MHz. This translates to 1.0 dhrystone MIPS/MHz using the VAX 11/780 value a
reference for one MIPS.

1.3 News in LEON-1 version 2.4.0

The following modifications has been done in 2.4.0:

• Correction of PMON boot-monitor to preserve the configured wait-states settings

• Testbench ram (IRAM) did not read last line in program file

1.4 License

The LEON VHDL model is provided under two licenses: the GNU Public License (GPL) and
the Lesser GNU Public License (LGPL). The LGPL applies to the LEON model itself while
remaining support files and test benches are provided under GPL. This means that you can
use LEON as a core in a system-on-chip design without having to publish the source code of
any additional IP-cores you might use. You must however publish any modifications you
have made to the LEON core itself, as described in LGPL.

1.5 Fault-tolerant LEON (LEON-FT)

The original LEON design includes advanced fault-tolerance features to withstand arbitrary
single-event upset (SEU) errors without loss of data. The fault-tolerance is provided at design
(VHDL) level, and does not require an SEU-hard semiconductor process, nor a custom cell
library or special back-end tools. The LGPL version of LEON is a sub-set derived from the
fault-tolerant model. This document provides some references to LEON-FT functionality,
which users of the LGPL version safely can disregard.

Gaisler Research 7 LEON user’s manual
1.6 Functional overview

A block diagram of LEON can be seen in figure 1.

1.6.1 Integer unit

The LEON integer unit implements the full SPARC V8 standard, including all multiply and
divide instructions. The number of register windows is configurable within the limit of the
SPARC standard (2 - 32), with a default setting of 8.

1.6.2 Floating-point unit and co-processor

The LEON model does not include an FPU, but provides a direct interface to the Meiko FPU
core, and a general interface to connect other floating-point units. A generic co-processor
interface is provided to allow interfacing of custom co-processors.

1.6.3 Cache sub-system

Separate instruction and data caches are provided, each configurable to 1 - 64 kbyte, with 8
- 32 bytes per line. Sub-blocking is implemented with one valid bit per 32-bit word. The
caches uses streaming during line-refill to minimise refill latency. The data cache uses write-
through policy and implements a double-word write-buffer.

Figure 1: LEON block diagram

LEON SPARC V8
Integer unit

I-Cache D-Cache

FPU

Co-proc

Memory
Controller

AMBA AHB

UARTS

Timers IrqCtrl

I/O port

AMBA APB

AHB/APB
Bridge

AHB
Controller

PCI

User I/O

LEON processor

SRAMPROM I/O

8/16/32-bits memory bus

Gaisler Research 8 LEON user’s manual
1.6.4 Memory interface

The memory interface provides a direct interface PROM, SRAM and memory mapped I/O
devices. The memory areas can be programmed to either 8-, 16- or 32-bit data width.

1.6.5 Timers

Two 24-bit timers are provided on-chip. The timers can work in periodic or one-shot mode.
Both timers are clocked by a common 10-bit prescaler.

1.6.6 Watchdog

A 24-bit watchdog is provided on-chip. The watchdog is clocked by the timer prescaler.
When the watchdog reaches zero, an output signal (WDOG) is asserted. This signal can be
used to generate system reset.

1.6.7 UARTs

Two 8-bit UARTs are provided on-chip. The baud-rate is individually programmable and
data is sent in 8-bits frames with one stop bit. Optionally, one parity bit can be generated and
checked.

1.6.8 Interrupt controller

The interrupt controller manages a total of 15 interrupts, originating from internal and
external sources. Each interrupt can be programmed to one of two levels. A chained,
secondary controller for up to 32 extra interrupts is also available.

1.6.9 Parallel I/O port

A 16-bit parallel I/O port is provided. Each bit can be programmed to be an input or an
output. Some of the bits have alternate usage, such as UART inputs/outputs and external
interrupts inputs.

1.6.10 AMBA on-chip buses

The processor has a full implementation of AMBA AHB and APB on-chip buses. A flexible
configuration scheme makes it simple to add new IP cores. Also, all provided peripheral units
implement the AMBA AHB/APB interface making it easy to add more of them, or reuse
them on other processors using AMBA.

1.6.11 Boot loader

A on-chip boot loader can optionally be enabled, allowing to boot the processor and
download applications without any external boot prom. This feature is mostly suitable for
FPGA implementations. In larger FPGAs, a monitor compatible with the GNU debugger
(gdb) can also be included.

1.6.12 Watchpoint registers

To aid software debugging, up to four watchpoint registers can be configured. Each register
can cause a trap on an arbitrary instruction or data address range.

Gaisler Research 9 LEON user’s manual
2 LEON integer unit

The LEON integer unit (IU) implements SPARC integer instructions as defined in SPARC
Architecture Manual version 8. It is a new implementation not based on any previous
designs. The implementation is focused on portability and low complexity.

2.1 Overview

The LEON integer unit has the following features:

• 5-stage instruction pipeline

• Separate instruction and data cache interface

• Support for 2 - 32 register windows

• Configurable multiplier (iterative, 16x16, 32x8, 32x16 & 32x32)

• Optional 16x16 bit MAC with 40-bit accumulator

• Radix-2 divider (non-restoring)

Figure 2 shows a block diagram of the integer unit.

Figure 2: LEON integer unit block diagram

alu/shift mul/div
y

regfile

D-cache
address/dataout
datain

32
32

operand2rs1

imm, tbr, wim, psr

Ywres

result ytmp

Decode

Execute

Memory

Write

rs2rs1

rd
tbr, wim, psr

30 jmpl address

32 ex pc

30

+1

d_pc

jmpa

f_pc

Add

call/branch address

tbr‘0’

e_pc

m_pc

w_pc

d_inst

e_inst

m_inst

w_inst

Fetch

I-cache
addressdata

Gaisler Research 10 LEON user’s manual
2.2 Instruction pipeline

The LEON integer unit uses a single instruction issue pipeline with 5 stages:

1. FE (Instruction Fetch): If the instruction cache is enabled, the instruction is fetched
directly from the instruction cache. Otherwise, the fetch is forwarded to the memory
controller. The instruction is valid at the end of this stage and is latched inside the IU.

2. DE (Decode): The instruction is decoded and the operands are read. Operands may come
from the register file or from internal data bypasses. CALL and Branch target addresses
are generated in this stage.

3. EX (Execute): ALU, logical, and shift operations are performed. For memory operations
(e.g., LD) and for JMPL/RETT, the address is generated.

4. ME (Memory): Data cache is accessed. For cache reads, the data will be valid by the end
of this stage, at which point it is aligned as appropriate. Store data read out in the E-stage
is written to the data cache at this time.

5. WR (Write): The result of any ALU, logical, shift, or cache read operations are written
back to the register file.

Table 1 lists the cycles per instruction (assuming cache hit and no load interlock):

* depends on multiplier configuration

2.3 Multiply instructions

The LEON processor supports the SPARC integer multiply instructions UMUL, SMUL
UMULCC and SMULCC. These instructions perform a 32x32-bit integer multiply,
producing a 64-bit result. SMUL and SMULCC performs signed multiply while UMUL and
UMULCC performs unsigned multiply. UMULCC and SMULCC also set the condition
codes to reflect the result. Several multiplier implementation are provided, making it possible
to choose between area, delay and latency (see “Integer unit configuration” on page 51 for
more details).

Instruction Cycles

JMPL 2

Double load 2

Single store 2

Double store 3

SMUL/UMUL 1/2/4/35*

SDIV/UDIV 35

Taken Trap 4

Atomic load/store 3

All other instructions 1

Table 1: Instruction timing

Gaisler Research 11 LEON user’s manual
2.4 Multiply and accumulate instructions

To accelerate DSP algorithms, two multiply&accumulate instructions are implemented:
UMAC and SMAC. The UMAC performs an unsigned 16-bit multiply, producing a 32-bit
result, and adds the result to a 40-bit accumulator made up by the 8 lsb bits from the %y
register and the %asr18 register. The least significant 32 bits are also written to the
destination register. SMAC works similarly but performs signed multiply and accumulate.
The MAC instructions execute in one clock but have two clocks latency, meaning that one
pipeline stall cycle will be inserted if the following instruction uses the destination register
of the MAC as a source operand.

Assembler syntax:

umac rs1, reg_imm, rd

smac rs1, reg_imm, rd

Operation:

prod[31:0] = rs1[15:0] * reg_imm[15:0]

result[39:0] = (Y[7:0] & %asr18[31:0]) + prod[31:0]

(Y[7:0] & %asr18[31:0]) = result[39:0]

rd = result[31:0]

%asr18 can be read and written using the rdasr and wrasr instructions.

2.5 Divide instructions

Full support for SPARC V8 divide instructions is provided (SDIV/UDIV/SDIVCC/
UDIVCC). The divide instructions perform a 64-by-32bit divide and produce a 32-bit result.
Rounding and overflow detection is performed as defined in the SPARC V8 standard.

2.6 Watch-points

The integer unit can be configured to include up to four hardware watch-points. Each watch-
point consists of a pair of application-specific registers (%asr24/25, %asr26/27, %asr28/30
and %asr30/31) registers; one with the break address and one with a mask:

01231

DL

WADDR[31:2]
%asr24, %asr26
%asr28, %asr30

0231

DSWMASK[31:2]
%asr25, %asr27
%asr29, %asr31

Figure 3: Watch-point registers

IF

Gaisler Research 12 LEON user’s manual
Any binary aligned address range can be watched - the range is defined by the WADDR field,
masked by the WMASK field (WMASK[x] = 1 enables comparison). On a watch-point hit,
trap 0x0B is generated. By setting the IF, DL and DS bits, a hit can be generated on
instruction fetch, data load or data store. Clearing these three bits will effectively disable the
watch-point function.

2.7 ASI assignment

The table shows the address space identifier (ASI) usage for LEON. Only ASI[3:0] are used
for the mapping, ASI[7:4] have no influence on operation.

2.8 Exceptions

LEON adheres to the general SPARC trap model. The table below shows the implemented
traps and their individual priority.

ASI Usage

0x0, 0x1, 0x2, 0x3, 0x4, 0x7 Uncached access. Will update the cache on read hit.

0x5 Flush instruction cache

0x6 Flush data cache

0x8, 0x9, 0xA, 0xB Cached access

0xC Instruction cache tags

0xD Instruction cache data

0xE Data cache tags

0xF Data cache data

Table 2: ASI usage

Trap TT Pri Description

reset 0x00 1 Power-on reset

write error 0x2b 2 write buffer error

instruction_access_error 0x01 3 Error during instruction fetch

illegal_instruction 0x02 5 UNIMP or other un-implemented instruction

privileged_instruction 0x03 4 Execution of privileged instruction in user mode

fp_disabled 0x04 6 FP instruction while FPU disabled

cp_disabled 0x24 6 CP instruction while Co-processor disabled

watchpoint_detected 0x0B 7 Instruction or data watchpoint match

window_overflow 0x05 8 SAVE into invalid window

window_underflow 0x06 8 RESTORE into invalid window

register_hadrware_error 0x20 9 register file EDAC error (LEON-FT only)

mem_address_not_aligned 0x07 10 Memory access to un-aligned address

fp_exception 0x08 11 FPU exception

cp_exception 0x28 11 Co-processor exception

data_access_exception 0x09 13 Access error during load or store instruction

Table 3: Trap allocation and priority

Gaisler Research 13 LEON user’s manual
2.9 Processor reset operation

The processor is reset by asserting the RESET input for at least one clock cycle. The
following table indicates the reset values of the registers which are affected by the reset. All
other registers maintain their value (or are undefined).

Execution will start from address 0.

tag_overflow 0x0A 14 Tagged arithmetic overflow

divide_exception 0x2A 15 Divide by zero

interrupt_level_1 0x11 31 Asynchronous interrupt 1

interrupt_level_2 0x12 30 Asynchronous interrupt 2

interrupt_level_3 0x13 29 Asynchronous interrupt 3

interrupt_level_4 0x14 28 Asynchronous interrupt 4

interrupt_level_5 0x15 27 Asynchronous interrupt 5

interrupt_level_6 0x16 26 Asynchronous interrupt 6

interrupt_level_7 0x17 25 Asynchronous interrupt 7

interrupt_level_8 0x18 24 Asynchronous interrupt 8

interrupt_level_9 0x19 23 Asynchronous interrupt 9

interrupt_level_10 0x1A 22 Asynchronous interrupt 10

interrupt_level_11 0x1B 21 Asynchronous interrupt 11

interrupt_level_12 0x1C 20 Asynchronous interrupt 12

interrupt_level_13 0x1D 19 Asynchronous interrupt 13

interrupt_level_14 0x1E 18 Asynchronous interrupt 14

interrupt_level_15 0x1F 17 Asynchronous interrupt 15

trap_instruction 0x80 -
0xFF

16 Software trap instruction (TA)

Register Reset value

PC (program counter) 0x0

nPC (next program counter) 0x4

PSR (processor status register) ET=0, S=1

CCR (cache control register) 0x0

Table 4: Processor reset values

Trap TT Pri Description

Table 3: Trap allocation and priority

Gaisler Research 14 LEON user’s manual
3 Floating-point unit and co-processor

3.1 Generic CP interface

LEON can be configured to provide a generic interface to a special-purpose co-processor.
The interface allows an execution unit to operate in parallel to increase performance. One co-
processor instruction can be started each cycle as long as there are no data dependencies.
When finished, the result is written back to the co-processor register file. The execution unit
is connected to the interface using the following two records:

type cp_unit_in_type is record -- coprocessor execution unit input
 op1 : std_logic_vector (63 downto 0); -- operand 1
 op2 : std_logic_vector (63 downto 0); -- operand 2
 opcode : std_logic_vector (9 downto 0); -- opcode
 start : std_logic; -- start
 load : std_logic; -- load operands
 flush : std_logic; -- cancel operation
end record;

type cp_unit_out_type is record -- coprocessor execution unit output
 res : std_logic_vector (63 downto 0); -- result
 cc : std_logic_vector (1 downto 0); -- condition codes
 exc : std_logic_vector (5 downto 0); -- exception
 busy : std_logic; -- eu busy
end record;

The waveform diagram for the execution unit interface can be seen in figure 4:

The execution unit is started by asserting the start signal together with a valid opcode. The
operands are driven on the following cycle together with the load signal. If the instruction
will take more than one cycle to complete, the execution unit must drive busy from the cycle
after the start signal was asserted, until the cycle before the result is valid. The result,
condition codes and exception information are valid from the cycle after the de-assertion of

Figure 4: Execution unit waveform diagram

CLK

cpi.op1 op 1“X”

OPC“X”

cpi.start

cpi.load

cpo.busy

“X” exception codes

“X”

“X”

cpi.op2

cpi.opcode

cpo.exc

cpo.cc

cpo.result

op 2“X” “X”

“X” result

“X” condition codes

Gaisler Research 15 LEON user’s manual
busy, and until the next assertion of start. The opcode (cpi.opcode[9:0]) is the concatenation
of bits [19,13:5] of the instruction. If execution of a co-processor instruction need to be pre-
maturely aborted (due to an IU trap), cpi.flush will be asserted for two clock cycles. The
execution unit should then be reset to its idle condition.

3.2 FPU interface

The LEON model can be connected to the Meiko floating-point core, thereby providing full
floating-point support according to the SPARCV8 standard. Two interface options are
available: either a parallel interface identical to the above described co-processor interface,
or an integrated interface where FP instruction do not execute in parallel with IU instruction.
The FPU interface is enabled/selected by setting of the FPU element of the configuration
record.

The direct FPU interface does not implement a floating-point queue, the processor is stopped
during the execution of floating-point instructions. This means that QNE bit in the %fsr
register always is zero, and any attempts of executing the STDFQ instruction will generate a
FPU exception trap. The parallel interface lets FPU instructions execute in parallel with IU
instructions and only halts the processor in case of data- or resource dependencies. Refer to
the SPARC V8 manual for a more in-depth discussion of the FPU and co-processor
characteristics.

Gaisler Research 16 LEON user’s manual
4 Cache sub-system

4.1 Instruction cache

4.1.1 Operation

The LEON instruction cache is a direct-mapped cache, configurable to 1 - 64 kbyte. The
instruction cache is divided into cache lines with 8 - 32 bytes of data. Each line has a cache
tag associated with it consisting of a tag field and one valid bit for each 4-byte sub-block. On
an instruction cache miss to a cachable location, the instruction is fetched and the
corresponding tag and data line updated.

If instruction burst fetch is enabled in the cache control register (CCR) the cache line is filled
from main memory starting at the missed address and until the end of the line. At the same
time, the instructions are forwarded to the IU (streaming). If the IU cannot accept the
streamed instructions due to internal dependencies or multi-cycle instruction, the IU is halted
until the line fill is completed. If the IU executes a control transfer instruction (branch/CALL/
JMPL/RETT/TRAP) during the line fill, the line fill will be terminated on the next fetch. If
instruction burst fetch is enabled, instruction streaming is enabled even when the cache is
disabled. In this case, the fetched instructions are only forwarded to the IU and the cache is
not updated.

If a memory access error occurs during a line fill with the IU halted, the corresponding valid
bit in the cache tag will not be set. If the IU later fetches an instruction from the failed
address, a cache miss will occur, triggering a new access to the failed address. If the error
remains, an instruction access error trap (tt=0x1) will be generated.

4.1.2 Instruction cache flushing

The instruction cache is flushed by executing the FLUSH instruction or by writing to
ASI=0x5. The flushing will take one cycle per cache line during which the IU will not be
halted, but during which the instruction cache will be disabled. When the flush operation is
completed, the cache will resume the state (disabled, enabled or frozen) indicated in the
cache control register.

4.1.3 Diagnostic cache access

Diagnostic software may read the tags directly by executing a single word load alternate
space instructions in ASI space 0xC. Address bits making up the cache offset will be used to
index the tag to be read, all other address bits are ignored. Similarly, the data sub-blocks may
be read by executing a single word load alternate space instructions in ASI space 0xD. The
cache offset indexes the line to be read while A[4:2] indexes which of the eight sub-blocks
to be read.

The tags can be directly written by executing single word store alternate space instructions
in ASI space 0xC. The cache offset will index the tag to be written, and D[31:12] is written
into the ATAG filed (see below). The valid bits are written with the D[7:0] of the write data.

The data sub-blocks can be directly written by executing single word store alternate space
instructions in ASI space 0xD. The cache offset indexes the cache line and A[4:2] selects the

Gaisler Research 17 LEON user’s manual
sub-block. Note that diagnostic access to the cache is not possible during a FLUSH operation
and will cause a data exception (trap=0x09) if attempted.

4.1.4 Instruction cache tag

A instruction cache tag entry consists of several fields as shown in figure 5:

Field Definitions:

• [30:10]: Address Tag (ATAG) - Contains the tag address of the cache line.
• [7:0]: Valid (V) - When set, the corresponding sub-block of the cache line contains valid data.

These bits is set when a sub-block is filled due to a successful cache miss; a cache fill which results
in a memory error will leave the valid bit unset. A FLUSH instruction will clear all valid bits. V[0]
corresponds to address 0 in the cache line, V[1] to address 1, V[2] to address 2 and so on.

NOTE: only the necessary bits will be implemented in the cache tag, depending on the cache
configuration. As an example, a 2 kbyte cache with 32 bytes per line would only have eight
valid bits and 21 tag bits. The cache rams are sized automatically by the ram generators in
the model.

4.2 Data cache

4.2.1 Operation

The LEON data cache is a direct-mapped cache, configurable to 1 - 64 kbyte. The write
policy for stores is write-through with no-allocate on write-miss. The data cache is divided
into cache lines of 8 - 32 bytes. Each line has a cache tag associated with it, containing a tag
field and one valid bit per 4-byte sub-block. On a data cache read-miss to a cachable location,
4 bytes of data are loaded into the cache from main memory.

4.2.2 Write buffer

The write buffer (WRB) consists of three 32-bit registers used to temporarily hold store data
until it is sent to the destination device. For half-word or byte stores, the stored data replicated
into proper byte alignment for writing to a word-addressed device, before being loaded into
one of the WRB registers. The WRB is emptied prior to a load-miss cache-fill sequence to
avoid any stale data from being read in to the data cache.

Since the processor executes in parallel with the write buffer, a write error will not cause an
exception to the store instruction. Depending on memory and cache activity, the write cycle
may not occur until several clock cycles after the store instructions has completed. If a write
error occurs, the currently executing instruction will take trap 0x2b.

Figure 5: Instruction cache tag layout

07891031

0 0 VALIDATAG

Gaisler Research 18 LEON user’s manual
Note: the 0x2b trap handler should flush the data cache, since a write hit would update the
cache while the memory would keep the old value due the write error.

4.2.3 Data cache flushing

The data cache can be flushed by executing the flush instruction or by writing to ASI=0x6
(any address or data). The flushing will take one cycle per line during which the IU will not
be halted, but during which the data cache will be disabled. When the flush operation is
completed, the cache will resume the state (disabled, enabled or frozen) indicated in the
cache control register.

4.2.4 Diagnostic cache access

Diagnostic software may read the tags directly by executing a single word load alternate
space instructions in ASI space 0xE. The cache offset indexes the tag to be read, all other
address bits are ignored. Similarly, the data sub-blocks may be read by executing a single
word load alternate space instructions in ASI space 0xF. The cache offset indexes the line to
be read while A[4:2] index which of the sub-blocks to be read.

The tags can be directly written by executing single word store alternate space instructions
in ASI space 0xE. The cache offset indexes the tag to be written, and A[31:10] is written into
the ATAG filed (see below). The valid bits are written with the D[7:0] of the write data.

The data sub-blocks can be directly written by executing single word store alternate space
instructions in ASI space 0xF. Address bits The cache offset indexes the cache line and
A[4:2] selects the sub-block. The sub-block is written with the write data.

Note that diagnostic access to the cache is not possible during a FLUSH operation. An
attempt to perform a diagnostic access during an ongoing flush will cause a data exception
trap (trap = 0x09).

4.2.5 Cache bypass

The memory can be accessed directly without caching by using ASI=0x0. However, if the
accessed location is in the (data) cache, the cache will be updated to reflect the changed
memory contents.

4.2.6 Data cache tag

A data cache tag entry consists of several fields as shown in figure 6:

Field Definitions:

Figure 6: Data cache tag layout

07891031

0 0 VALIDATAG

Gaisler Research 19 LEON user’s manual
• [30:12]: Address Tag (ATAG) - Contains the address of the data held in the cache line.
• [3:0]: Valid (V) - When set, the corresponding sub-block of the cache line contains valid data.

These bits is set when a sub-block is filled due to a successful cache miss; a cache fill which results
in a memory error will leave the valid bit unset. V[0] corresponds to address 0 in the cache line,
V[1] to address 1, V[2] to address 2 and V[3] to address 3.

NOTE: only the necessary bits will be implemented in the cache tag, depending on the cache
configuration. As an example, a 2 kbyte cache with 32 bytes per line would only have eight
valid bits and 21 tag bits. The cache rams are sized automatically by the ram generators in
the model.

4.3 Cache Control Register

The operation of the instruction and data caches is controlled through a common Cache
Control Register (CCR) (figure 7). Each cache can be in one of three modes: disabled,
enabled and frozen. If disabled, no cache operation is performed and load and store requests
are passed directly to the memory controller. If enabled, the cache operates as described
above. In the frozen state, the cache is accessed and kept in sync with the main memory as if
it was enabled, but no new lines are allocated on read misses.

Field Definitions:

• [31:17]: Reserved
• [16]: Instruction burst fetch (IB). This bit enables burst fill during instruction fetch.
• [15]: Instruction cache flush pending (IP). This bit is set when an instruction cache flush operation

is in progress.
• [14]: Data cache flush pending (DP). This bit is set when an data cache flush operation

is in progress.
• [5]: Data Cache Freeze on Interrupt (DF) - If set, the data cache will automatically be frozen when

an asynchronous interrupt is taken.
• [4]: Instruction Cache Freeze on Interrupt (IF) - If set, the instruction cache will automatically be

frozen when an asynchronous interrupt is taken.
• [3:2]: Data Cache state (DCS) - Indicates the current data cache state according to the following:

X0= disabled, 01 = frozen, 11 = enabled.
• [1:0]: Instruction Cache state (ICS) - Indicates the current data cache state according to the

following: X0= disabled, 01 = frozen, 11 = enabled.

If the DF or IF bit is set, the corresponding cache will be frozen when an asynchronous
interrupt is taken. This can be beneficial in real-time system to allow a more accurate

Figure 7: Cache control register

RESERVED ICSDCSIFIB

0123451415161731

DPIP DFRESERVED

Gaisler Research 20 LEON user’s manual
calculation of worst-case execution time for a code segment. The execution of the interrupt
handler will not evict any cache lines and when control is returned to the interrupted task, the
cache state is identical to what it was before the interrupt.

If a cache has been frozen by an interrupt, it can only be enabled again by enabling it in the
CCR. This is typically done at the end of the interrupt handler before control is returned to
the interrupted task.

Gaisler Research 21 LEON user’s manual
5 AMBA on-chip buses

Two on-chip buses are provided: AMBA AHB and APB. The APB bus is used to access on-
chip registers in the peripheral functions, while the AHB bus is used for high-speed data
transfers. The specification for the AMBA bus can be downloaded from ARM, at:
www.arm.com. The full AHB/APB standard is implemented and the AHB/APB bus
controllers can be customised through the TARGET package. Additional (user defined)
AHB/APB peripherals should be added in the MCORE module.

5.1 AHB bus

LEON uses the AMBA-2.0 AHB bus to connect the processor (cache controllers) to the
memory controller and other (optional) high-speed units. In the default configuration, the
processor is the only master on the bus, while two slaves are provided: the memory controller
and the APB bridge. Table 5 below shows the default address allocation.

An attempt to access a non-existing device will generate an AHB error response.

The AHB bus can connect up to 16 masters and any number of slaves. The LEON processor
core is normally connected as master 0, while the memory controller and APB bridge are
connected at slaves 0 and 1. Each master is connected to the bus through two records,
corresponding to the AHB signals:

-- AHB master inputs (HCLK and HRESETn routed separately)
 type AHB_Mst_In_Type is
 record
 HGRANT: Std_ULogic; -- bus grant
 HREADY: Std_ULogic; -- transfer done
 HRESP: Std_Logic_Vector(1 downto 0); -- response type
 HRDATA: Std_Logic_Vector(HDMAX-1 downto 0); -- read data bus

HCACHE: Std_ULogic; -- cacheable access
 end record;

 -- AHB master outputs
 type AHB_Mst_Out_Type is
 record
 HBUSREQ: Std_ULogic; -- bus request
 HLOCK: Std_ULogic; -- lock request
 HTRANS: Std_Logic_Vector(1 downto 0); -- transfer type
 HADDR: Std_Logic_Vector(HAMAX-1 downto 0); -- address bus (byte)
 HWRITE: Std_ULogic; -- read/write
 HSIZE: Std_Logic_Vector(2 downto 0); -- transfer size
 HBURST: Std_Logic_Vector(2 downto 0); -- burst type
 HPROT: Std_Logic_Vector(3 downto 0); -- protection control
 HWDATA: Std_Logic_Vector(HDMAX-1 downto 0); -- write data bus
 end record;

Each slave is similarly connected through two records:

Address range Size Mapping Module

0x00000000 - 0x1FFFFFFF
0x20000000 - 0x3FFFFFFF
0x40000000 - 0x7FFFFFFF

512 M
512 M

1G

Prom
Memory bus I/O
Ram

Memory controller

0x80000000 - 0x9FFFFFFF 256 M On-chip registers APB bridge

Table 5: AHB address allocation

Gaisler Research 22 LEON user’s manual
-- AHB slave inputs (HCLK and HRESETn routed separately)
 type AHB_Slv_In_Type is
 record
 HSEL: Std_ULogic; -- slave select
 HADDR: Std_Logic_Vector(HAMAX-1 downto 0); -- address bus (byte)
 HWRITE: Std_ULogic; -- read/write
 HTRANS: Std_Logic_Vector(1 downto 0); -- transfer type
 HSIZE: Std_Logic_Vector(2 downto 0); -- transfer size
 HBURST: Std_Logic_Vector(2 downto 0); -- burst type
 HWDATA: Std_Logic_Vector(HDMAX-1 downto 0); -- write data bus
 HPROT: Std_Logic_Vector(3 downto 0); -- protection control
 HREADY: Std_ULogic; -- transfer done
 HMASTER: Std_Logic_Vector(3 downto 0); -- current master
 HMASTLOCK: Std_ULogic; -- locked access
 end record;

 -- AHB slave outputs
 type AHB_Slv_Out_Type is
 record
 HREADY: Std_ULogic; -- transfer done
 HRESP: Std_Logic_Vector(1 downto 0); -- response type
 HRDATA: Std_Logic_Vector(HDMAX-1 downto 0); -- read data bus
 HSPLIT: Std_Logic_Vector(15 downto 0); -- split completion
 end record;

The AHB controller (AHBARB) controls the AHB bus and implements both bus decoder/
multiplexer and the bus arbiter. The arbitration scheme is fixed priority where the bus master
with highest index has highest priority. The processor is by default put on the lowest index.
Note to be granted the bus, a master must drive both the request signal and a valid (i.e. non-
idle) transfer type on HTRANS.

5.2 APB bus

The APB bridge is connected to the AHB bus as a slave and acts as the (only) master on the
APB bus. The slaves are connected through a pair of records containing the APB signals:

-- APB slave inputs (PCLK and PRESETn routed separately)
 type APB_Slv_In_Type is
 record
 PSEL: Std_ULogic;
 PENABLE: Std_ULogic;
 PADDR: Std_Logic_Vector(PAMAX-1 downto 0);
 PWRITE: Std_ULogic;
 PWDATA: Std_Logic_Vector(PDMAX-1 downto 0);
 end record;

 -- APB slave outputs
 type APB_Slv_Out_Type is
 record
 PRDATA: Std_Logic_Vector(PDMAX-1 downto 0);
 end record;

The number of APB slaves and their address range is defined through the APB slave table in
the TARGET package. The default table has 10 slaves.

5.3 AHB status register

Any access triggering an error response on the AHB bus will be registered in two registers;
AHB failing address register and AHB status register. The failing address register will store
the address of the access while the memory status register will store the access and error
types. The registers are updated when an error occur, and the NE (new error) is set. When the

Gaisler Research 23 LEON user’s manual
NE bit is set, interrupt 1 is generated to inform the processor about the error. After an error,
the NE bit has to be reset by software.

Figure 8 shows the layout of the AHB status register.

• [8]: NE - New error. Set when a new error occurred.
• [7]: RW - Read/Write. This bit is set if the failed access was a read cycle, otherwise it is cleared.
• [6:3]: HMASTER - AHB master. This field contains the HMASTER[3:0] of the failed access.
• [2:0] HSIZE - transfer size. This filed contains the HSIZE[2:0] of the failed transfer.

5.4 AHB cache aspects

Since no MMU is provided with LEON, the AHB controller generates a signal which
indicates to the AHB masters whether the current access may be cached. The areas
containing cachable data are defined through a table in the AHB configuration record.

The standard configuration is to mark the PROM and RAM areas of the memory controller
as cachable while the remaining AHB address space is non-cachable. There is no cache-
snooping performed by the cache controllers - if data is sent to memory from an other AHB
master than the processor, a (data) cache flush operation should be done before the new data
can safely be used by the processor. Alternatively, the data can be accessed through ASI=0
to bypass the cache.

Figure 8: AHB status register

02367831

NE RW HMASTER HSIZERESERVED

Gaisler Research 24 LEON user’s manual
6 On-chip peripherals

6.1 On-chip registers

A number of system support functions are provided directly on-chip. The functions are
controlled through registers mapped APB bus according to the following table:

Address Register Address

0x80000000 Memory configuration register 1 0x800000B0 Secondary interrupt pending register

0x80000004 Memory configuration register 2 0x800000B4 Secondary interrupt mask register

0x80000008 Reserved 0x800000B8 Secondary interrupt status register

0x8000000C AHB Failing address register 0x800000B8 Secondary interrupt clear register

0x80000010 AHB status register

0x80000014 Cache control register

0x80000018 Power-down register

0x8000001C Write protection register 1

0x80000020 Write protection register 2

0x80000024 LEON configuration register

0x80000040 Timer 1 counter register

0x80000044 Timer 1 reload register

0x80000048 Timer 1 control register

0x8000004C Watchdog register

0x80000050 Timer 2 counter register

0x80000054 Timer 2 reload register

0x80000058 Timer 2 control register

0x80000060 Scaler counter register

0x80000064 Scaler reload register

0x80000070 Uart 1 data register

0x80000074 Uart 1 status register

0x80000078 Uart 1 control register

0x8000007C Uart 1 scaler register

0x80000080 Uart 2 data register

0x80000084 Uart 2 status register

0x80000088 Uart 2 control register

0x8000008C Uart 2 scaler register

0x80000090 Interrupt mask and priority register

0x80000094 Interrupt pending register

0x80000098 Interrupt force register

0x8000009C Interrupt clear register

0x800000A0 I/O port input/output register

0x800000A4 I/O port direction register

0x800000A8 I/O port interrupt register

Table 6: On-chip registers

Gaisler Research 25 LEON user’s manual
6.2 Interrupt controller

The LEON interrupt controller is used to prioritize and propagate interrupt requests from
internal or external devices to the integer unit. In total 15 interrupts are handled, divided on
two priority levels. Figure 9 shows a block diagram of the interrupt controller.

6.2.1 Operation

When an interrupt is generated, the corresponding bit is set in the interrupt pending register.
The pending bits are ANDed with the interrupt mask register and then forwarded to the
priority selector. Each interrupt can be assigned to one of two levels as programmed in the
interrupt level register. Level 1 has higher priority than level 0. The interrupts are prioritised
within each level, with interrupt 15 having the highest priority and interrupt 1 the lowest. The
highest interrupt from level 1 will be forwarded to the IU - if no unmasked pending interrupt
exists on level 1, then the highest unmasked interrupt from level 0 will be forwarded. When
the IU acknowledges the interrupt, the corresponding pending bit will automatically be
cleared.

Interrupt can also be forced by setting a bit in the interrupt force register. In this case, the IU
acknowledgement will clear the force bit rather than the pending bit.

After reset, the interrupt mask register is set to all zeros while the remaining control registers
are undefined.

Interrupts 10 - 15 are unused by the default configuration of LEON and can be use by added
IP cores. Note that interrupt 15 cannot be maskable by the integer unit and should be used
with care - most operating system do safely handle this interrupt.

Figure 9: Interrupt controller block diagram

Irq & trig
select

IRQ
Pending

11

4 4

15

4
IRL[3:0]

Priority
select

IRQ
mask

PIO[15:0]

PER_IRQ[10:0]

IRQ
Force

Priority
encoder

Gaisler Research 26 LEON user’s manual
6.2.2 Interrupt assignment

Table 7 shows the assignment of interrupts.

6.2.3 Control registers

The operation of the interrupt controller is programmed through the following registers:

Field Definitions:

• [31:17]: Interrupt level (ILEVEL[15:1]) - indicates whether an interrupt belongs to priority level
1 (ILEVEL[n]=1) or level 0 (ILEVEL[n]=0).

• [15:1]: Interrupt mask (IMASK[15:0]) - indicates whether an interrupt is masked (IMASK[n]=0)
or enabled (IMASK[n]=1).

• [16], [0]: Reserved

Interrupt Source

15 user defined

14 user defined

13 user defined

12 user defined

11 user defined

10 user defined

9 Timer 2

8 Timer 1

7 Parallel I/O[3]

6 Parallel I/O[2]

5 Parallel I/O[1]

4 Parallel I/O[0]

3 UART 1

2 UART 2

1 AHB error

Table 7: Interrupt assignments

Figure 10: Interrupt mask and priority register

0115161731

IMASK[15:1]ILEVEL[15:1] RR

Gaisler Research 27 LEON user’s manual
Field Definitions:

• [15:1]: Interrupt pending (IPEND[15:1]) - indicates whether an interrupt is pending
(IPEND[n]=1).

• [31:16], [0]: Reserved

Field Definitions:

• [15:1]: Interrupt force (IFORCE[15:1]) - indicates whether an interrupt is being forced
(IFORCE[n]=1).

• [31:16], [0]: Reserved

Field Definitions:

• [15:1]: Interrupt clear (ICLEAR[15:1]) - if written with a ‘1’, will clear the corresponding bit(s)
in the interrupt pending register. A read returns zero.

• [31:16], [0]: Reserved

Figure 11: Interrupt pending register

01151631

IPEND[15:1]RESERVED R

Figure 12: Interrupt force register

01151631

IFORCE[15:1]RESERVED R

Figure 13: Interrupt clear register

01151631

ICLEAR[15:1]RESERVED R

Gaisler Research 28 LEON user’s manual
6.3 Secondary interrupt controller

The (optional) secondary interrupt controller is used add up to 32 additional interrupts, to be
used by on-chip units in system-on-chip designs. Figure 9 shows a block diagram of the
interrupt controller.

6.3.1 Operation

The incoming interrupt signals are filtered according to the setting in the configuration
record. The filtering condition can be one of four: active low, active high, negative edge-
triggered and positive edge-triggered. When the condition is fulfilled, the corresponding bit
is set in the interrupt pending register. The pending bits are ANDed with the interrupt mask
register and then forwarded to the priority selector. If at least one unmasked pending interrupt
exists, the interrupt output will be driven, generating interrupt 10 (by default). The highest
unmasked pending interrupt can be read from the interrupt status register (see below).

Interrupts are not cleared automatically upon a taken interrupt - the interrupt handler must
reset the pending bit by writing a ‘1’ to the corresponding bit in the interrupt clear register.
It must then also clear interrupt 10 in the primary interrupt controller. Testing of interrupts
can be done by writing directly to the interrupt pending registers. Bits written with ‘1’ will
be set while bits written with ‘0’ will keep their previous value.

Note that not all 32 interrupts have to be implemented, how many are actually used depends
on the configuration. Unused interrupts are ignored and the corresponding register bits are
not generated. Mapping of interrupts to the secondary interrupt controller is done by editing
mcore.vhd. See the configuration section on how to enable the controller and how to
configure the interrupt filters.

After reset, the interrupt mask register is set to all zeros while the remaining control registers
are undefined.

Figure 14: Secondary interrupt controller block diagram

Filtering

IRQ
Pending

32 32 5
IRL[4:0]

IRQ
mask

IRQ[31:0]

Priority
encoder

IRQ10

Gaisler Research 29 LEON user’s manual
6.3.2 Control registers

The operation of the interrupt controller is programmed through the following registers:

• [31:0]: Interrupt mask - indicates whether an interrupt is masked (IMASK[n]=0) or enabled
(IMASK[n]=1).

• [31:0]: Interrupt pending - indicates whether an interrupt is pending (IPEND[n]=1).

• [4:0]: Interrupt request level - indicates the highest unmasked pending interrupt.
• [5]: Interrupt pending - if set, then IRL is valid. If cleared, no unmasked interrupt is pending.

• [31:0]: Interrupt clear - if written with a ‘1’, will clear the corresponding bit(s) in the interrupt
pending register.

Figure 15: Interrupt mask register

031

IMASK[31:0]

Figure 16: Interrupt pending register

031

IPEND[31:0]

Figure 17: Interrupt status register

04531

IRL[4:0]RESERVED IP

Figure 18: Interrupt clear register

031

ICLEAR[31:0]

Gaisler Research 30 LEON user’s manual
6.4 Timer unit

The timer unit implements two 24-bit timers, one 24-bit watchdog and one 10-bit shared
prescaler (figure 19).

6.4.1 Operation

The prescaler is clocked by the system clock and decremented on each clock cycle. When
the prescaler underflows, it is reloaded from the prescaler reload register and a timer tick is
generated for the two timers and watchdog. The effective division rate is therefore equal to
prescaler reload register value + 1.

The operation of the timers is controlled through the timer control register. A timer is enabled
by setting the enable bit in the control register. The timer value is then decremented each time
the prescaler generates a timer tick. When a timer underflows, it will automatically be
reloaded with the value of the timer reload register if the reload bit is set, otherwise it will
stop (at 0xffffff) and reset the enable bit. An interrupt will be generated after each underflow.

The timer can be reloaded with the value in the reload register at any time by writing a ‘one’
to the load bit in the control register.

The watchdog operates similar to the timers, with the difference that it is always enabled and
upon underflow asserts the external signal WDOG. This signal can be used to generate a
system reset.

To minimise complexity, the two timers and watchdog share the same decrementer. This
means that the minimum allowed prescaler division factor is 4 (reload register = 3).

Figure 19: Timer unit block diagram

prescaler reload

-1

prescaler value timer1 value

timer2 value

watchdog

timer1 reload

timer2 reload

-1

tick

irq 8

irq 9

WDOG

Gaisler Research 31 LEON user’s manual
6.4.2 Registers

Figures 20 to 23 shows the layout of the timer unit registers.

• [2]: Load counter (LD) - when written with ‘one’, will load the timer reload register into the timer
counter register. Always reads as a ‘zero’.

• [1]: Reload counter (RL) - if RL is set, then the counter will automatically be reloaded with the
reload value after each underflow.

• [0]: Enable (EN) - enables the timer when set.

Figure 20: Timer 1/2 and Watchdog counter registers

0232431

RESERVED TIMER/WATCHDOG VALUE

Figure 21: Timer 1/2 reload registers

0232431

RESERVED TIMER RELOAD VALUE

Figure 22: Timer 1/2 control registers

012331

LD RL ENRESERVED

Figure 23: Prescaler reload register

091031

RESERVED RELOAD VALUE

Figure 24: Prescaler counter register

091031

RESERVED COUNTER VALUE

Gaisler Research 32 LEON user’s manual
6.5 UARTs

Two identical UARTs are provided for serial communications. The UARTs support data
frames with 8 data bits, one optional parity bit and one stop bit. To generate the bit-rate, each
UART has a programmable 12-bits clock divider. Hardware flow-control is supported
through the RTSN/CTSN hand-shake signals. Figure 25 shows a block diagram of a UART.

6.5.1 Transmitter operation

The transmitter is enabled through the TE bit in the UART control register. When ready to
transmit, data is transferred from the transmitter holding register to the transmitter shift
register and converted to a serial stream on the transmitter serial output pin (TXD). It
automatically sends a start bit followed by eight data bits, an optional parity bit, and one stop
bits (figure 26). The least significant bit of the data is sent first

Following the transmission of the stop bit, if a new character is not available in the transmitter
holding register, the transmitter serial data output remains high and the transmitter shift
register empty bit (TSRE) will be set in the UART control register. Transmission resumes and
the TSRE is cleared when a new character is loaded in the transmitter holding register. If the

Figure 25: UART block diagram

RXD TXD

CTSN

RTSN

Receiver shift register Transmitter shift register

Receiver holding register Transmit. holding register

Internal I/O Bus

Serial port
Controller8*bitclkBaud-rate

generator

Figure 26: UART data frames

Start D0 StopD6D5D4D3D2D1 D7

Start D0 D6D5D4D3D2D1 D7 StopParity

Data frame, no parity:

Data frame with parity:

Gaisler Research 33 LEON user’s manual
transmitter is disabled, it will continue operating until the character currently being
transmitted is completely sent out. The transmitter holding register cannot be loaded when
the transmitter is disabled.

If flow control is enabled, the CTSN input must be low in order for the character to be
transmitted. If it is deasserted in the middle of a transmission, the character in the shift
register is transmitted and the transmitter serial output then remains inactive until CTSN is
asserted again. If the CTSN is connected to a receivers RTSN, overrun can effectively be
prevented.

6.5.2 Receiver operation

The receiver is enabled for data reception through the receiver enable (RE) bit in the USART
control register. The receiver looks for a high to low transition of a start bit on the receiver
serial data input pin. If a transition is detected, the state of the serial input is sampled a half
bit clocks later. If the serial input is sampled high the start bit is invalid and the search for a
valid start bit continues. If the serial input is still low, a valid start bit is assumed and the
receiver continues to sample the serial input at one bit time intervals (at the theoretical centre
of the bit) until the proper number of data bits and the parity bit have been assembled and one
stop bit has been detected. The serial input is sampled three times for each bit and averaged
to filter out noise.

During this process the least significant bit is received first. The data is then transferred to the
receiver holding register (RHR) and the data ready (DR) bit is set in the USART status
register. The parity, framing and overrun error bits are set at the received byte boundary, at
the same time as the receiver ready bit is set.

If both receiver holding and shift registers contain an un-read character when a new start bit
is detected, then the character held in the receiver shift register will be lost and the overrun
bit will be set in the UART status register. If flow control is enabled, then the RTSN will be
negated (high) when a valid start bit is detected and the receiver holding register contains an
un-read character. When the holding register is read, the RTSN will automatically be
reasserted again.

6.5.3 Baud-rate generation

Each UART contains a 12-bit down-counting scaler to generate the desired baud-rate. The
scaler is clocked by the system clock and generates a UART tick each time it underflows. The
scaler is reloaded with the value of the UART scaler reload register after each underflow. The
resulting UART tick frequency should be 8 times the desired baud-rate. If the EC bit is set,
the scaler will be clocked by the PIO[3] input rather than the system clock. In this case, the
frequency of PIO[3] must be less than half the frequency of the system clock.

6.5.4 Loop back mode

If the LB bit in the UART control register is set, the UART will be in loop back mode. In this
mode, the transmitter output is internally connected to the receiver input and the RTSN is
connected to the CTSN. It is then possible to perform loop back tests to verify operation of
receiver, transmitter and associated software routines. In this mode, the outputs remain in the
inactive state, in order to avoid sending out data.

Gaisler Research 34 LEON user’s manual
6.5.5 Interrupt generation

The UART will generate an interrupt under the following conditions: when the transmitter is
enabled, the transmitter interrupt is enabled and the transmitter holding register moves from
full to empty; when the receiver is enabled, the receiver interrupt is enabled and the receiver
holding register moves from empty to full; when the receiver is enabled, the receiver interrupt
is enabled and a character with either parity, framing or overrun error is received.

6.5.6 UART registers

• 0: Receiver enable (RE) - if set, enables the receiver.
• 1: Transmitter enable (TE) - if set, enables the transmitter.
• 2: Receiver interrupt enable (RI) - if set, enables generation of receiver interrupt.
• 3: Transmitter interrupt enable (TI) - if set, enables generation of transmitter interrupt.
• 4: Parity select (PS) - selects parity polarity (0 = odd parity, 1 = even parity)
• 5: Parity enable (PE) - if set, enables parity generation and checking.
• 6: Flow control (FL) - if set, enables flow control using CTS/RTS.
• 7: Loop back (LB) - if set, loop back mode will be enabled.
• 8: External Clock - if set, the UART scaler will be clocked by PIO[3]

• 0: Data ready (DR) - indicates that new data is available in the receiver holding register.
• 1: Transmitter shift register empty (TS) - indicates that the transmitter shift register is empty.
• 2: Transmitter hold register empty (TH) - indicates that the transmitter hold register is empty.
• 3: Break received (BR) - indicates that a BREAK has been received.
• 4: Overrun (OV) - indicates that one or more character have been lost due to overrun.
• 5: Parity error (PE) - indicates that a parity error was detected.
• 6: Framing error (FE) - indicates that a framing error was detected.

Figure 27: UART control register

0123456731

RESERVED RETERITIPSPEFLLB

8

EC

Figure 28: UART status register

0123456731

RESERVED DRTSTHBROVPEFE

Figure 29: UART scaler reload register

0111231

RESERVED SCALER RELOAD VALUE

Gaisler Research 35 LEON user’s manual
6.6 Parallel I/O port

A partially bit-wise programmable 32-bit I/O port is provided on-chip. The port is split in
two parts - the lower 16-bits are accessible via the PIO[15:0] signal while the upper 16-bits
uses D[15:0] and can only be used when all areas (rom, ram and I/O) of the memory bus are
in 8- or 16-bit mode (see “8-bit and 16-bit memory configuration” on page 41).

The low 16 I/O ports can be individually programmed as output or input, while the high 16
I/O ports only be configures as outputs or inputs on byte basis. Two registers are associated
with the operation of the I/O port; the combined I/O input/output register, and I/O direction
register. When read, the input/output register will return the current value of the I/O port;
when written, the value will be driven on the port signals (if enabled as output). The direction
register defines the direction for each individual port bit (0=input, 1=output).

• IODIRn - I/O port direction. The value of IODIR[15:0] defines the direction of I/O ports 0 - 15.
If bit n is set the corresponding I/O port becomes an output, otherwise it is an input. IODIR[16]
controls D[15:8] while IODIR[17] controls D[7:0]

The I/O ports can also be used as interrupt inputs from external devices. A total of four
interrupts can be generated, corresponding to interrupt levels 4, 5, 6 and 7. The I/O port
interrupt configuration register (figure 31) defines which port should generate each interrupt
and how it should be filtered.

• ISELn - I/O port select. The value of this field defines which I/O port (0 - 31) should generate
parallel I/O port interrupt n.

• PL - Polarity. If set, the corresponding interrupt will be active high (or edge-triggered on positive
edge). Otherwise, it will be active low (or edge-triggered on negative edge).

• LE - Level/edge triggered. If set, the interrupt will be edge-triggered, otherwise level sensitive.
• EN - Enable. If set, the corresponding interrupt will be enabled, otherwise it will be masked.

Figure 30: I/O port direction register

0171831

IODIR[17:0]

Figure 31: I/O port interrupt configuration register

0456781213141516202122232428293031

ISEL0PLLEENISEL1PLLEENISEL2PLLEENISEL3PLLEEN

Gaisler Research 36 LEON user’s manual
To save pins, I/O pins are shared with other functions according to the table below:

6.7 LEON configuration register

Since LEON is synthesised from a extensively configurable VHDL model, the LEON
configuration register (read-only) is used to indicate which options were enabled during
synthesis. For each option present, the corresponding register bit is hardwired to ‘1’. Figure
32 shows the layout of the register.

• [25]: UMAC/SMAC instruction implemented
• [24:20]: Number of register windows. The implemented number of SPARC register windows -1.
• [19:17]: Instruction cache size. The size (in Kbytes) of the instruction cache. Cache size = 2ICSZ.
• [16:15]: Instruction cache line size.The line size (in 32-bit words) of each line. Line size = 2ILSZ.
• [14:12]: Data cache size. The size (in kbytes) of the data cache. Cache size = 2DCSZ.
• [11:10]: Data cache line size. The line size (in 32-bit words) of each line. Line size = 2DLSZ.
• [9]: UDIV/SDIV instruction implemented
• [8]: UMUL/SMUL instruction implemented
• [6]: Memory status and failing address register present
• [5:4]: FPU type (00 = none, 01=Meiko)
• [3:2]: PCI core type (00=none, 01=InSilicon, 10=ESA, 11=other)
• [1:0]: Write protection type (00=none, 01=standard)

I/O port Function Type Description Enabling condition

PIO[15] TXD1 Output UART1 transmitter data UART1 transmitter enabled

PIO[14] RXD1 Input UART1 receiver data -

PIO[13] RTS1 Output UART1 request-to-send UART1 flow-control enabled

PIO[12] CTS1 Input UART1 clear-to-send -

PIO[11] TXD2 Output UART2 transmitter data UART2 transmitter enabled

PIO[10] RXD2 Input UART2 receiver data -

PIO[9] RTS2 Output UART2 request-to-send UART2 flow-control enabled

PIO[8] CTS2 Input UART2 clear-to-send -

PIO[4] Boot select Input Internal or external boot prom -

PIO[3] UART clock Input Use as alternative UART clock -

PIO[1:0] Prom width Input Defines prom width at boot time -

Table 8: UART/IO port usage

Figure 32: LEON configuration register

UDIV/SDIV inst.
SMUL/UMUL inst.

Watchdog present
Memory status reg.

FPU
PCI core

Write protection

01234567891011121415161719202425262728293031

NWINDOWS ICSZ ILSZ DCSZ DLSZ

UMAC/SMAC inst
.

Gaisler Research 37 LEON user’s manual
6.8 Power-down

The processor can be powered-down by writing (an arbitrary) value to the power-down
register. Power-down mode will be entered on the next load or store instruction. To enter
power-down mode immediately, two consecutive stores to the power-down register should
be performed. During power-down mode, the integer unit will effectively be halted. The
power-down mode will be terminated (and the integer unit re-enabled) when an unmasked
interrupt with higher level than the current processor interrupt level (PIL) becomes pending.
All other functions and peripherals operate as nominal during the power-down mode.

Gaisler Research 38 LEON user’s manual
7 External memory access

7.1 Memory interface

The memory bus provides a direct interface to PROM, static RAM and memory mapped I/O
devices. Chip-select decoding is done for two PROM banks, one I/O bank and four RAM
banks. Figure 33 shows how the connection to the different device types is made.

7.2 Memory controller

The external memory bus is controlled by a programmable memory controller. The controller
acts as a slave on the AHB bus. The function of the memory controller is programmed
through memory configuration registers 1 & 2 (MCR1 & MCR2) through the APB bus. The
memory bus supports three types of devices: prom, ram and local I/O. The memory bus can
also be configured in 8-bit mode for applications with low memory and performance
demands. The controller can decode a 2 Gbyte address space, divided according to table
table 9:

Address range Size Mapping

0x00000000 - 0x1FFFFFFF 512 M Prom

0x20000000 - 0x3FFFFFFF 512M I/O

0x40000000 -0x7FFFFFFF 1G RAM

Table 9: ASI map

Figure 33: Memory device interface

CS
OE
WE

A

D
PROM

CS
OE
WE

A

D
I/O

CS
OE
WE

A

D
SRAM

RAMSN[3:0]
RAMOEN[3:0]

RWEN[3:0]

ROMSN[1:0]
OEN

WRITEN

IOSN

A D

LEON

A[27:0]

D[31:0]

A[27:2]

Gaisler Research 39 LEON user’s manual
7.3 RAM access

The RAM area can be up to 1 Gbyte, divided on four RAM banks. The size of each bank is
programmed in the RAM bank-size field (MCR2[12:9]) and can be set in binary steps from
8 Kbyte to 256 Mbyte. A read access to static RAM consists of two data cycles and between
zero and three waitstates. On non-consecutive accesses, a lead-out cycle is added after a read
cycle to prevent bus contention due to slow turn-off time of memories or I/O devices. Figure
34 shows the basic read cycle waveform (zero waitstate).

For read accesses, a separate output enable signal (RAMOEN[n]) is provided for each RAM
bank, and only asserted when that bank is selected. If you use memory modules with several
banks but a common output enable, use the OEN signal instead which is asserted on any read
cycle. A write access is similar to the read access but has takes a minimum of three cycles:

Through a feed-back loop from the write strobes, the data bus is guaranteed to be driven until
the write strobes are de-asserted. Each byte lane has an individual write strobe to allow
efficient byte and half-word writes. If you memory used a common write strobe for the full
16- or 32-bit data, set the read-modify-write bit MCR2 which will enable read-modify-write
cycles for sub-word writes.

data1 data2

D1

lead-out

A1

CLK

A

RAMSN

D

RAMOEN

Figure 34: Static ram read cycle

Figure 35: Static ram write cycle

lead-in data lead-out

D1

A1

CLK

A

RAMSN

D

RWEN

Gaisler Research 40 LEON user’s manual
7.4 PROM access

Accesses to prom have the same timing as RAM accesses, the differences being that PROM
cycles can have up to 15 waitstates.

Two PROM chip-select signals are provided, ROMSN[1:0]. ROMSN[0] is asserted when the
lower half (0 - 0x10000000) of the PROM area as addressed while ROMSN[1] is asserted for
the upper half (0x10000000 - 0x20000000). When the VHDL model is configured to boot
from internal prom (see “Boot configuration” on page 54), ROMSN[0] is never asserted and
all accesses between 0 - 0x10000000 are mapped on the internal prom. When the model is
configured to support both external and internal boot prom, the PIO[4] input is used to enable
the internal prom.

7.5 Memory mapped I/O

Accesses to I/O have similar timing to ROM/RAM accesses, the differences being that a
additional waitstates can be inserted by de-asserting the BRDYN signal. The I/O select signal
(IOSN) is delayed one clock to provide stable address before IOSN is asserted.

Figure 36: Prom read cycle

data1 data2

D1

lead-out

A1

CLK

A

ROMSN

D

OEN

Figure 37: I/O read cycle

lead-in data

D1

lead-out

A1

CLK

A

IOSN

D

OEN

BRDYN

Gaisler Research 41 LEON user’s manual
7.6 Burst cycles

To improve the bandwidth of the memory bus, accesses to consecutive addresses can be
performed in burst mode. Burst transfers will be generated when the memory controller is
accessed using an AHB burst request. These includes instruction cache-line fills, double
loads and double stores. The timing of a burst cycle is identical to the programmed basic
cycle, with the exception that a lead-out cycle will only occurs after the last transfer.

7.7 8-bit and 16-bit memory configuration

To support applications with low memory and performance requirements efficiently, it is not
necessary to always have full 32-bit memory banks. The RAM and PROM areas can be
individually configured for 8- or 16-bit operation by programming the ROM and RAM size
fields in the memory configuration registers. Since access to memory is always done on 32-
bit word basis, read access to 8-bit memory will be transformed in a burst of four read cycles
while access to 16-bit memory will generate a burst of two 16-bits reads. During writes, only
the necessary bytes will be writen. Figure 38 shows an interface example with 8-bit PROM
and 8-bit RAM. Figure 39 shows an example of a 16-bit memory interface.

Figure 38: 8-bit memory interface example

CS
OE
WE

A

D
PROM

CS
OE
WE

A

D
SRAM

RAMSN[0]
RAMOEN[0]

RWEN[0]

ROMSN[0]
OEN

A D

LEON

A[27:0]

D[31:24]

RWE[0]

D[31:24]

D[31:24]

A[27:0]

A[27:0]

WRITEN

8-bit PROM

8-bit RAM

Gaisler Research 42 LEON user’s manual
7.8 8- and 16-bit I/O access

Similar to the PROM/RAM areas, the I/O area can also be configured to 8- or 16-bits mode.
However, the I/O device will NOT be accessed by multiple 8/16 bits accesses as the memory
areas, but only with one single access just as in 32-bit mode. To accesses an I/O device on a
16-bit bus, LDUH/STH instructions should be used while LDUB/STB should be used with
an 8-bit bus.

7.9 Memory configuration register 1

Memory configuration register 1 is used to program the timing of rom and local I/O accesses.

• [3:0]: Prom read waitstates. Defines the number of waitstates during prom read cycles (“0000”=0,
“0001”=1,... “1111”=15).

• [7:4]: Prom write waitstates. Defines the number of waitstates during prom write cycles
(“0000”=0, “0001”=1,... “1111”=15).

• [9:8]: Prom with. Defines the data with of the prom area (“00”=8, “01”=16, “10”=32).

Figure 39: 16-bit memory interface example

CS
OE
WE

A

D
PROM

CS
OE
WE

A

D
SRAM

RAMSN[0]
RAMOEN[0]

RWEN[0:1]

ROMSN[0]
OEN

A D

LEON

A[27:0]

D[31:16]

RWE[1:0]

D[31:16]

D[31:16]

A[27:1]

A[27:1]

WRITEN

16-bit PROM

16-bit RAM

I/O enable
External alatch

Prom write enable
Prom width

Figure 40: Memory configuration register 1

03478910111217181920232425262731

Prom read wsProm write wsReserved

I/O width
I/O ready enable
BEXCN enable

I/O waitstates Reserved

2829

Gaisler Research 43 LEON user’s manual
• [10]: Reserved
• [11]: Prom write enable. If set, enables write cycles to the prom area.
• [17:12]: Reserved
• [18]: External address latch enable. If set, the address is sent out unlatched and must be latched

by external address latches.
• [19]: I/O enable. If set, the access to the memory bus I/O area are enabled.
• [23:20]: I/O waitstates. Defines the number of waitstates during I/O accesses (“0000”=0,

“0001”=1, “0010”=2,..., “1111”=15).
• [25]: Bus error (BEXCN) enable.
• [26]:Bus ready (BRDYN) enable.
• [28:27]: I/O bus width. Defines the data with of the I/O area (“00”=8, “01”=16, “10”=32).

During power-up, the prom width (bits [9:8]) are set with value on PIO[1:0] inputs. The prom
waitstates fields are set to 15 (maximum). External bus error and bus ready are disabled. All
other fields are undefined.

7.10 Memory configuration register 2

Memory configuration register 2 is used to control the timing of static ram accesses.

• [1:0]: Ram read waitstates. Defines the number of waitstates during ram read cycles (“00”=0,
“01”=1, “10”=2, “11”=3).

• [3:2]: Ram write waitstates. Defines the number of waitstates during ram write cycles (“00”=0,
“01”=1, “10”=2, “11”=3).

• [5:4]: Ram with. Defines the data with of the ram area (“00”=8, “01”=16, “1X”= 32).
• [6]: Read-modify-write. Enable read-modify-write cycles on sub-word writes to 16- and 32-bit

areas with common write strobe (no byte write strobe).
• [8:6]: Reserved
• [12:9]: Ram bank size. Defines the size of each ram bank (“0000”=8 Kbyte, “0001”=16 Kbyte...

“1111”=256 Mbyte).

7.11 Write protection

Write protection is provided to protect the memory and I/O areas against accidental over-
writing. It is implemented as two block protect units capable of disabling or enabling write
access to a binary aligned memory block in the range of 32 Kbyte - 1 Mbyte. Each block
protect unit is controlled through a control register (figure 42). The units operate as follows:
on each write access to RAM, address bits (29:15) are xored with the tag field in the control
register, and anded with the mask field. A write protection error is generated if the result is

Read-modify-write
Ram width

Write waitstates
Read waitstates

012345689121331

Not used Bank size

Figure 41: Memory configuration register 2

7

Gaisler Research 44 LEON user’s manual
not equal to zero, the corresponding unit is enabled and the block protect bit (BP) is set, or
if the BP bit is cleared and the result is equal to zero. If a write protection error is detected,
the write cycle is aborted and a memory access error is generated.

• [14:0] Address mask (MASK) - this field contains the address mask
• [29:15] Address tag (TAG) - this field is compared against address(29:15)
• [30] Block protect (BP) - if set, selects block protect mode
• [31] Enable (EN) - if set, enables the write protect unit

The ROM area can be write protected by clearing the write enable bit MCR1.

Figure 42: Write protection register 1 & 2

01415293031

MASK[14:0]TAG[14:0]BPEN

Gaisler Research 45 LEON user’s manual
8 Signals

All input signals are latched on the rising edge of CLK. All outputs are clocked on the rising
edge of CLK.

8.1 Memory bus signals

8.2 System interface signals

Name Type Function Active

A[30:0] Output Memory address High

BEXCN Input Bus exception Low

BRDYN Input Bus ready strobe Low

D[31:0] Bidir Memory data High

IOSN Output Local I/O select Low

OEN Output Output enable Low

RAMOEN[3:0] Output RAM output enable Low

RAMSN[3:0] Output RAM chip-select Low

READ Output Read strobe High

ROMSN[1:0] Output PROM chip-select Low

RWEN[3:0] Output RAM write enable Low

WRITEN Output Write strobe Low

Table 10: Memory bus signals

Name Type Function Active

CLK Input System clock High

ERRORN Open-drain System error Low

PIO[15:0] Bidir Parallel I/O port High

RESETN Input System reset Low

WDOGN Open-drain Watchdog output Low

Table 11: System interface signals

Gaisler Research 46 LEON user’s manual
8.3 Signal description

A[30:0] - Address bus (output)

These active high outputs carry the address during accesses on the memory bus. When no
access is performed, the address of the last access is driven (also internal cycles).

BEXCN - Bus exception (input)

This active low input is sampled simultaneously with the data during accesses on the memory
bus. If asserted, a memory error will be generated.

BRDYN - Bus ready (input)

This active low input indicates that the access to a memory mapped I/O area can be
terminated on the next rising clock edge.

D[31:0] - Data bus (bi-directional)

D[31:0] carries the data during transfers on the memory bus. The processor only drives the
bus during write cycles. During accesses to 8-bit areas, only D[31:24] are used.

IOSN - I/O select (output)

This active low output is the chip-select signal for the memory mapped I/O area.

OEN - Output enable (output)

This active low output is asserted during read cycles on the memory bus.

ROMSN[1:0] - PROM chip-select (output)

These active low outputs provide the chip-select signal for the PROM area. ROMSN[0] is
asserted when the lower half of the PROM area is accessed (0 - 0x10000000), while
ROMSN[1] is asserted for the upper half.

RAMOEN[3:0] - RAM output enable (output)

These active low signals provide an individual output enable for each RAM bank.

RAMSN[3:0] - RAM chip-select (output)

These active low outputs provide the chip-select signals for each RAM bank.

Gaisler Research 47 LEON user’s manual
READ - Read cycle

This active high output is asserted during read cycles on the memory bus.

RWEN [3:0] - RAM write enable (output)

These active low outputs provide individual write strobes for each byte lane. RWEN[0]
controls D[31:24], RWEN[1] controls D[23:16], etc.

WRITEN - Write enable (output)

This active low output provides a write strobe during write cycles on the memory bus.

CLK - Processor clock (input)

This active high input provides the main processor clock.

ERROR - Processor error (open-drain output)

This active low output is asserted when the processor has entered error state and is halted.
This happens when traps are disabled and an synchronous (un-maskable) trap occurs.

PIO[15:0] - Parallel I/O port (bi-directional)

These bi-directional signals can be used as inputs or outputs to control external devices.

RESETN - Processor reset (input)

When asserted, this active low input will reset the processor and all on-chip peripherals.

WDOGN - Watchdog time-out (open-drain output)

This active low output is asserted when the watchdog times-out.

Gaisler Research 48 LEON user’s manual
9 VHDL model architecture

9.1 Model hierarchy

The LEON VHDL model hierarchy can be seen in table 12 below.

Table 13 shows the packages used in the LEON model.

Entity/Package File name Function

LEON leon.vhd LEON top level entity

LEON_PCI leon_pci.vhd LEON/PCI top level entity

LEON/MCORE mcore.vhd Main core

LEON/MCORE/CLKGEN clkgen.vhd Clock generator

LEON/MCORE/RSTGEN rstgen.vhd Reset generator

LEON/MCORE/AHBARB ahbarb.vhd AMBA/AHB controller

LEON/MCORE/APBMST apbmst.vhd AMBA/APB controller

LEON/MCORE/MCTRL mctrl.vhd Memory controller

LEON/MCORE/MCTRL/BPROM bprom.vhd Internal boot prom

LEON/MCORE/PROC proc.vhd Processor core

LEON/MCORE/PROC/CACHE cache.vhd Cache module

LEON/MCORE/PROC/CACHEMEM cachemem.vhd Cache ram

LEON/MCORE/PROC/CACHE/DCACHE dcache.vhd Data cache controller

LEON/MCORE/PROC/CACHE/ICACHE icache.vhd Instruction cache controller

LEON/MCORE/PROC/CACHE/ACACHE acache.vhd AHB/cache interface module

LEON/MCORE/PROC/IU iu.vhd Processor integer unit

LEON/MCORE/PROC/IU/MUL mul.vhd Multiplier state machined

LEON/MCORE/PROC/IU/DIV div.vhd radix-2 divider

LEON/MCORE/PROC/REGFILE regfil.vhd Integer unit register file

LEON/MCORE/PROC/FP1EU fp1eu.vhd parallel FPU interface

LEON/MCORE/IRQCTRL irqctrl.vhd Interrupt controller

LEON/MCORE/IOPORT ioport.vhd Parallel I/O port

LEON/MCORE/TIMERS timers.vhd Timers and watchdog

LEON/MCORE/UART uart.vhd UARTs

LEON/MCORE/LCONF lconf.vhd LEON configuration register

LEON/MCORE/AHBSTAT ahbstat.vhd AHB status register

Table 12: LEON model hierarchy

Package File name Function

TARGET target.vhd Pre-defined configurations for various targets

DEVICE device.vhd Current configuration

CONFIG config.vhd Generation of various constants for processor and caches

SPARCV8 sparcv8.vhd SPARCV8 opcode definitions

IFACE iface.vhd Type declarations for module interface signals

Table 13: LEON packages

Gaisler Research 49 LEON user’s manual
9.2 Model coding style

The LEON VHDL model is designed to be used for both synthesis and board-level
simulation. It is therefore written using rather high-level VHDL constructs, mostly using
sequential statements. Typically, each module only contains two processes, one
combinational process describing all functionality and one process implementing registers.
Records are used extensively to group signals according their functionality. In particular,
signals between modules are passed in records.

9.3 Clocking scheme

The model implements two clocking schemes: a continuous clock and the use of multiplexers
to enable loading of pipe-line registers, or a gated clock which is stopped during pipe-line
stalls. While a continuous clock provides easier timing analysis, gated clocks usually cost
less area and power. The selection of clock scheme is done by setting the configuration
element GATEDCLK to true or false.

MACRO macro.vhd Various utility functions

AMBA amba.vhd Type definitions for the AMBA buses

AMBACOMP ambacomp.vhd AMBA component declarations

MULTLIB multlib.vhd Multiplier modules

FPULIB fpu.vhd FPU interface package

DEBUG debug.vhd Debug package with SPARC disassembler

TECH_GENERIC tech_generic.vhd Generic regfile and pad models

TECH_ATC25 tech_atc25.vhd Atmel ATC25 specific regfile, ram and pad generators

TECH_ATC35 tech_atc35.vhd Atmel ATC35 specific regfile, ram and pad generators

TECH_FS90 tech_fs90.vhd UMC/FS90AB specific regfile, ram and pad generators

TECH_UMC18 tech_umc18.vhd UMC 0.18 um specific regfile, ram and pad generators

TECH_MAP tech_map.vhd Maps mega-cells according to selected target

Package File name Function

Table 13: LEON packages

Gaisler Research 50 LEON user’s manual
10 Model Configuration

The model is configurable to allow different cache sizes, multiplier performance, clock
generation, and target technologies. Several configurations are defined as constant records in
the TARGET package while the active configuration record is selected in the DEVICE
package. The model is configured from a master configuration record which contains a
number of sub-records which each configure a specific module/function:

-- complete configuration record type
type config_type is record
 synthesis: syn_config_type;
 iu : iu_config_type;
 fpu : fpu_config_type;
 cp : cp_config_type;
 cache: cache_config_type;
 ahb : ahb_config_type;
 apb : apb_config_type;
 mctrl: mctrl_config_type;
 boot : boot_config_type;
 debug: debug_config_type;
 pci : pci_config_type;
 peri : peri_config_type;
end record;

10.1 Synthesis configuration

The synthesis configuration sub-record is used to adapt the model to various synthesis tools
and target libraries:

type targettechs is (gen, virtex, atc35, atc25);
-- synthesis configuration
type syn_config_type is record
 targettech: targettechs;
 infer_ram : boolean;-- infer cache ram automatically
 infer_regf : boolean;-- infer regfile automatically
 infer_rom: boolean;-- infer boot prom automatically
 infer_pads: boolean;-- infer pads automatically
 infer_mult: boolean;-- infer multiplier automatically
 gatedclk : boolean;-- select clocking strategy
 rftype : integer;-- register file implementation option
end record;

Depending on synthesis tool and target technology, the technology dependant mega-cells
(ram, rom, pads) can either be automatically inferred or directly instantiated. Using direct
instantiation, three types of target technologies are currently supported: Xilinx Virtex
(FPGA), Atmel ATC35 (0.35 um CMOS) and Atmel ATC25 (0.25 um CMOS). In addition,
any technology that is supported by synthesis tools capable of automatic inference of mega-
cells (Synplify and Leonardo) is also supported. When using tools with inference capability
targeting Xilinx Virtex, a choice can be made to either infer the mega-cells automatically or
to use direct instantiation. The choice is done by setting the parameters infer_ram,
infer_regf and infer_rom accordingly.

The rftype option has impact on target technologies which are capable of providing more
than one type of register file. Currently, this is only used when infer_regf is true and the
synthesis tool infers the register file. Infer_mult selects how the multiplier is generated, for
details see section 10.2 below.

Gaisler Research 51 LEON user’s manual
10.2 Integer unit configuration

The integer unit configuration record is used to control the implementation of the integer
unit:

-- integer unit configuration
type multypes is (none, iterative, m32x8, m16x16, m32x16, m32x32);
type divtypes is (none, radix2);
type iu_config_type is record
 nwindows: integer;-- # register windows (2 - 32)
 multiplier: multypes;-- multiplier type
 divider : divtypes;-- divider type
 mac : boolean;-- multiply/accumulate
 fpuen : integer range 0 to 1;-- FPU enable
 cpen : boolean;-- co-processor enable
 fastjump : boolean;-- enable fast jump address generation
 icchold : boolean;-- enable fast branch logic
 lddelay: integer range 1 to 2; -- # load delay cycles (1-2)
 fastdecode : boolean;-- optimise instruction decoding (FPGA only)
 watchpoints: integer range 0 to 4; -- # hardware watchpoints (0-4)
 impl : integer range 0 to 15; -- IU implementation ID
 version: integer range 0 to 15; -- IU version ID
end record;

nwindows set the number of register windows; the SPARC standard allows 2 - 32 windows,
but to be compatible with the window overflow/underflow handlers in the LECCS compiler,
8 windows should be used.

The multiplier option selects how the multiply instructions are implemented The table
below show the possible configurations:

If infer_mult in the synthesis configuration record (see above) is false, the multipliers are
implemented using the module generators in multlib.vhd. If infer_mult is true, the synthesis
tool will infer a multiplier. For FPGA implementations, best performance is achieved when
infer_mult is true and m16x16 is selected. ASIC implementations (using synopsys DC)
should set infer_mult to false since the provided multiplier macros in MULTLIB are faster
than the synopsys generated equivalents. The mac option enables the SMAC/UMAC
instructions. Requires the multiplier to use the m16x16 configuration.

The divider field select how the UDIV/SDIV instructions are implemented. Currently, only
a radix-2 divider is available.

If an FPU will be attached, fpuen should be set to 1. If a co-processor will be attached, cpen
should be set to true.

Configurati
on

latency
(clocks)

approx. area
(Kgates)

iterative 35 1000

m16x16 4 6,000

m32x8 4 5,000

m32x16 2 9,000

mx32x32 1 15,000

Table 14: Multiplier configurations

Gaisler Research 52 LEON user’s manual
To speed up branch address generation, fastjump can be set to implement a separate branch
address adder. The pipeline can be configured to have either one or two load delay cycles
using the lddelay option. One cycle gives higher performance (lower CPI) but may result in
slower timing in ASIC implementations. In FPGA implementations, setting icchold will
improve timing by adding a pipeline hold cycle if a branch instruction is preceded by an icc-
modifying instruction. Similarly, fastdecode will improve timing by adding parallel logic
for register file address generation.

Setting watchpoint to a value between 1 - 4 will enable coresponding number of watch-
points. Seeting it to 0, will disable all watch-point logic.

The impl and version fields are used to set the fixed fields in the %psr register.

10.3 Cache configuration

The cache is configured through the cache configuration record:

type cache_config_type is record
 icachesize: integer;-- size of I-cache in Kbytes
 ilinesize: integer;-- # words per I-cache line
 dcachesize: integer;-- size of D-cache in Kbytes
 dlinesize: integer;-- # words per D-cache line
 bootcache : boolean;-- boot from cache (Xilinx only)
end record;

Valid settings for the cache size are 1 - 64 (Kbyte), and must be a power of 2. The line size
may be 2 - 4 (words/line). The instruction and data caches may be configured independently.

10.4 Memory controller configuration

The memory controller is configured through the memory controller configuration record:

type mctrl_config_type is record
 bus8en : boolean;-- enable 8-bit bus operation
 bus16en : boolean;-- enable 16-bit bus operation
 rawaddr : boolean;-- enable unlatched address option
end record;

The 8- and 16-bit memory interface features are optional; if set to false the associated
function will be disabled, resulting in a smaller design. The rawaddr fields enables the raw
(unlatched) address output option in the memory controller. If enabled, timing analysis of the
address bus might be difficult since the bus outputs can be driven both by registers
(synchronous) and combinational logic (asynchronous).

10.5 Debug configuration

Various debug features are controlled through the debug configuration record:

type debug_config_type is record
 enable : boolean;-- enable debug port
 uart : boolean;-- enable fast uart data to console
 iureg : boolean;-- enable tracing of iu register writes
 fpureg : boolean;-- enable tracing of fpu register writes
 nohalt : boolean;-- dont halt on error
 pclow : integer;-- set to 2 for synthesis, 0 for debug
end record;

Gaisler Research 53 LEON user’s manual
The enable field has to be true to enable the built-in disassembler (it does not affect
synthesis). Setting uart to true will tie the UART transmitter ready bit permanently high for
simulation (does not affect synthesis) and output any sent characters on the simulator console
(line buffered). The UART output (TX) will not simulate properly in this mode. Setting
iureg will trace all IU register writes to the console. Setting fpureg will trace all FPU
register writes to the console.

Setting nohalt will cause the processor to take a reset trap and continue execution when
error mode (trap in a trap) is encountered. Do NOT set this bit for synthesis since it will
violate the SPARC standard and will make it impossible to halt the processor.

Since SPARC instructions are always word-aligned, all internal program counter registers
only have 30 bits (A[31:2]), making them difficult to trace in waveforms. If pclow is set to
0, the program counters will be made 32-bit to aid debugging. Only use pclow=2 for
synthesis.

10.6 Peripheral configuration

Enabling of some peripheral function is controlled through the peripheral configuration
record:

type irq_filter_type is (lvl0, lvl1, edge0, edge1);
type irq_filter_vec is array (0 to 31) of irq_filter_type;

type irq2type is record
 enable : boolean;-- secondary interrupt controller
 channels : integer;-- number of additional interrupts (1 - 32)
 filter: irq_filter_vec; -- irq filter definitions
end record;

type peri_config_type is record
 cfgreg : boolean;-- enable LEON configuration register
 ahbstat : boolean;-- enable AHB status register
 wprot : boolean;-- enable RAM write-protection unit
 wdog : boolean;-- enable watchdog
 irq2cfg : irq2type;-- secondary interrupt controller config
end record;

If not enabled, the corresponding function will be suppressed resulting in a smaller design.

The secondary interrupt controller is enabled by selecting a configuration record with
irq2cfg.enable = true. An example record defining four extra interrupts could look like this:

constant irq2chan4 : irq2type := (enable => true, channels => 4,
 filter => (lvl0, lvl1, edge0, edge1, others => lvl0));

Lvl0 mean that the interrupt will be treated as active low, lvl1 as active high, edge0 as
negative edge-triggered and edge1 as positive edge-triggered. Since the registers in the
secondary interrupt controller are accessed through the APB bus, an APB configuration with
the interrupt controller present must be selected.

Gaisler Research 54 LEON user’s manual
10.7 Boot configuration

Apart from that standard boot procedure of booting from address 0 in the external memory,
LEON can be configured to boot from an internal prom. The boot options are defined on the
boot configuration record as defined in the TARGET package:

type boottype is (memory, prom, dual);
type boot_config_type is record
 boot : boottype; -- select boot source
 ramrws : integer range 0 to 3;-- ram read waitstates
 ramwws : integer range 0 to 3;-- ram write waitstates
 sysclk : integer;-- cpu clock
 baud : positive;-- UART baud rate
 extbaud : boolean;-- use external baud rate setting
 pabits : positive;-- internal boot-prom address bits
end record;

10.7.1 Booting from internal prom

If the boot option is set to ‘prom’, an internal prom will be inferred. When booting from
internal prom, the UART baud generator, timer 1 scaler, and memory configuration register
2 are preset to the values calculated from the boot configuration record. The UART scaler is
preset to generate the desired baud rate, taking the system clock frequency into account. The
timer 1 scaler is preset to generate a 1 MHz tick to the timers. The ram read and write
waitstate are set directly from to the boot configuration record. If the extbaud variable is set
in the boot configuration record, the UART scalers will instead be initialised with the value
on I/O port [7:0] (the top 4 bits of the scalers will be cleared). Using external straps or
assigning the port as pull-up/pull-down, the desired baud rate can be set regardless of clock
frequency and without having to regenerate the prom or re-synthesise. If a different boot
program is desired, use the utility in the pmon directory to generate a new prom file. When
the dual boottype is configured, the boot source is defined by PIO[4]. If PIO[4] is asserted
(=1), the internal prom will be enabled, otherwise the external prom will be used.

Which content is placed in the boot-prom is decided by the infer_prom and the pabits settings
in the configuration record. If infer_prom is true, the contents is generated from bprom.vhd,
which by default contains PMON (see below). If infer_prom is false, only Xilinx Virtex
devices can be targetted and the prom is directly instantiated. Depending on the value of
pabits, either a prom with 1, 2, 4 or 8 kbyte is instantiated. The xilinx sub-directory contains
two templates, virtex_prom256 (1 kbyte) and virtex_prom2048 (8 kbyte). The
virtex_prom256 contains PMON, while virtex_prom2048 contains a prom version of
rdbmon from LECCS-1.1.1. The pre-defined configuration virtex_2k1k_rdbmon in
device.vhd will instantiate the virtex_prom2048 prom.

10.7.2 PMON S-record loader

Pmon is a simple monitor that can be placed in an on-chip boot prom, external prom or cache
memories (using the boot-cache configuration). Two versions are provided, one to be used
for on-chip prom or caches (bprom.c) and one for external proms (eprom.c).

On reset, the monitor scans all ram-banks and configures the memory control register 2
accordingly. The monitor can detect if 8-, 16- or 32-bit memory is attached, if read-modify-
write sub-word write cycles are needed and the size of each ram bank. It will also set the stack
pointer to the top of ram. The monitor writes a boot message on UART1 transmitter

Gaisler Research 55 LEON user’s manual
describing the detected memory configuration and then waits for S-records to be downloaded
on UART1 receiver. It recognises two types of S-records: memory contents and start address.
A memory content S-record is saved to the specified address in memory, while a start address
record will cause the monitor to jump to the indicated address. Applications compiled with
LECCS can be converted to a suitable S-record stream with:

sparc-rtems-objcopy -O srec app app.srec

See the README files in the pmon directory for more details. After successful boot, the
monitor will write a message similar to:

LEON-1: 2*2048K 32-bit memory
>

10.7.3 Rdbmon

A promable version of rdbmon is provided in pmon/lmon.o. It can be put in the boot-prom if
infer_prom is false and pabits = 11. Note that rdbmon needs to be re-compiled for each
specific target hardware, it does not automatically detect the memory configuration. To do
this, change the makefile in the pmon directory so that the mkprom settings will reflect your
hardware. Then, do a ‘make’ which will produce a virtex_prom2048.mif file. Use the Xilinx
Coregen to produce a synchronous ram from the .mif file, and put the resulting edif file
(virtex_prom2048.edn) in the syn directory so that the Xilinx place&route tools will find it
during design expansion. The file virtex_prom2048.xco contains a suitable project file for
coregen. LECCS-1.1.1 or higher is needed to build rdbmon for the boot-prom. Rdbmon
consumes 8 kbyte (16 Virtex blockrams), so at least an XCV800 device is needed to fit both
the boot prom and ram for the caches and register file.

10.8 AMBA configuration

The AMBA buses are the main way of adding new functional units. The LEON model
provides a flexible configuration method to add and map new AHB/APB compliant modules.
The full AMBA configuration is defined through two configuration sub-records, one for the
AHB bus and one for APB:

type ahb_config_type is record
 masters: integer range 1 to AHB_MST_MAX;
 defmst : integer range 0 to AHB_MST_MAX-1;
 split : boolean;-- add support for SPLIT reponse
 slvtable : ahb_slv_config_vector(0 to AHB_SLV_MAX-1);
 cachetable : ahb_cache_config_vector(0 to AHB_CACHE_MAX-1);
end record;

type apb_config_type is record
 table : apb_slv_config_vector(0 to APB_SLV_MAX-1);
end record;

10.8.1 AHB master configuration

The number of attached masters is defined by the masters field in the AHB configuration
record. The masters are connected to the ahbmi/ahbmo buses in the MCORE module. AHB
master should be connected to index 0 - (masters-1) of the ahbmi/ahbmo buses. The defmst
field indicates which master is granted by default if no other master is requesting the bus.

Gaisler Research 56 LEON user’s manual
10.8.2 AHB slave configuration

The number of AHB slaves and their address range is defined through the AHB slave table.
The default table has only two slaves: the memory controller and the APB bridge:

-- standard slave config
constant ahbslvcfg_std : ahb_slv_config_vector(0 to AHB_SLV_MAX-1) := (
-- first last index split enable function HADDR[31:28]
 ("0000", "0111", 0, false, true), -- memory controller, 0x0- 0x7
 ("1000", "1000", 1, false, true), -- APB bridge, 128 MB 0x8- 0x8
 others => ahb_slv_config_void);

The table also indicates if the slave is capable of returning a SPLIT response; if so, the split
element should be set to true, thereby generating the necessary split support logic in the AHB
arbiter. To add or remove an AHB slave, edit the configuration table and the AHB bus
decoder/multiplexer and will automatically be reconfigured. The AHB slaves should be
connected to the ahbsi/ahbso buses. The index field in the table indicates which bus index
the slave should connect to.

10.8.3 AHB cachability configuration

The AHB controller controls which areas contains cachable data. This is defined through a
table in the AHB configuration record:

type ahb_cache_config_type is record
 firstaddr: ahb_cache_addr_type;
 lastaddr: ahb_cache_addr_type;
end record;
type ahb_cache_config_vector is array (Natural Range <>) of ahb_cache_config_type;
constant ahb_cache_config_void : ahb_cache_config_type :=
 ((others => ’0’), (others => ’0’));

The standard configuration is to mark the PROM and RAM areas of the memory controller
as cachable while the remaining AHB address space is non-cachable:

-- standard cachability config
constant ahbcachecfg_std : ahb_cache_config_vector(0 to AHB_CACHE_MAX-1) := (
-- first last function HADDR[31:29]
 ("000", "000"), -- PROM area 0x0- 0x0
 ("010", "011"), -- RAM area 0x2- 0x3
 others => ahb_cache_config_void);

10.8.4 APB configuration

The number of APB slaves and their address range is defined through the APB slave table in
the TARGET package. The default table has 10 slaves.

constant APB_SLV_MAX : integer := 16; -- maximum APB slaves
constant APB_SLV_ADDR_BITS : integer := 10; -- address bits to decode APB slaves
subtype apb_range_addr_type is std_logic_vector(APB_SLV_ADDR_BITS-1 downto 0);
type apb_slv_config_type is record
 firstaddr: apb_range_addr_type;
 lastaddr: apb_range_addr_type;
 index : integer;
 enable: boolean;
end record;
type apb_slv_config_vector is array (Natural Range <>) of apb_slv_config_type;
constant apb_slv_config_void : apb_slv_config_type :=
 ((others => ’0’), (others => ’0’), 0, false);

Gaisler Research 57 LEON user’s manual
-- standard config
constant apbslvcfg_std : apb_slv_config_vector(0 to APB_SLV_MAX-1) := (
-- first last index enable function PADDR[9:0]
("0000000000", "0000001000", 0, true), -- memory controller, 0x00 - 0x08
("0000001100", "0000010000", 1, true), -- AHB status reg., 0x0C - 0x10
("0000010100", "0000011000", 2, true), -- cache controller, 0x14 - 0x18
("0000011100", "0000100000", 3, true), -- write protection, 0x1C - 0x20
("0000100100", "0000100100", 4, true), -- config register, 0x24 - 0x24
("0001000000", "0001101100", 5, true), -- timers, 0x40 - 0x6C
("0001110000", "0001111100", 6, true), -- uart1, 0x70 - 0x7C
("0010000000", "0010001100", 7, true), -- uart2, 0x80 - 0x8C
("0010010000", "0010011100", 8, true), -- interrupt ctrl 0x90 - 0x9C
("0010100000", "0010101100", 9, true), -- I/O port 0xA0 - 0xAC
 others => apb_slv_config_void);

type apb_config_type is record
 table : apb_slv_config_vector(0 to APB_SLV_MAX-1);
end record;

constant apb_std : apb_config_type := (table => apbslvcfg_std);

The table is used to automatically configure the AHB/APB bridge. To add APB slaves, edit
the slave configuration table and add your modules in MCORE. The APB slaves should be
connected to the apbi/apbo buses. The index field in the table indicates which bus index the
slave should connect to.

Gaisler Research 58 LEON user’s manual
11 Simulation

11.1 Un-packing the tar-file

The model is distributed as a gzipped tar-file; leon-2.x.x.tar.gz. On unix systems, use the
command ‘gunzip -c leon-2.x.x.tar.gz | tar xf -’ to unpack the model in the current directory.
The LEON model has the following directory structure:

leon top directory
leon/Makefile top-level makefile
leon/leon/ LEON vhdl model
leon/modelsim/ Modelsim simulator support files
leon/pmon Boot-monitor
leon/syn Synthesis support files
leon/tbench LEON VHDL test bench
leon/tsource LEON test bench (C source)

11.2 Compilation of the model

On unix systems (or MS-windows with cygwin installed), the LEON VHDL model and test
bench can be built using ‘make’ in the top directory. Doing make without a target (or ‘make
all’) will build the model and test benches using the modeltech compiler. Doing a ‘make vss’
will build the model with Synopsys VSS.

To use an other simulator, the makefiles in the leon and tbench sub-directories have to be
modified to reflect the simulator commands. On non-unix systems (e.g. windows), the
compile.bat file in the leon and tbench directories can be used to compile the model in correct
order.

11.3 Generic test bench

A generic test bench is provided in tbench/tbgen.vhd. This test bench allows to generate a
model of a LEON system with various memory sizes and configuration, by setting the
appropriate generics. A default configuration of the test bench, TBDEF, is in tbench/
tbdef.vhd. The file tbench/tbleon.vhd contains a number of alternative configuration using
the generic test bench.

Once the LEON model have been compiled, one of the test benches (e.g. TBDEF) can be
simulated to verify the behaviour of the model. Simulation should be started in the top
directory. The output from the simulation should be as follows:

*** Starting LEON system test ***
Memory interface test
Cache memory
Register file
Interrupt controller
Timers, watchdog and power-down
Parallel I/O port
UARTs
Test completed OK, halting with failure
** Failure: TEST COMPLETED OK, ending with FAILURE

Simulation is halted by generating a failure.

Gaisler Research 59 LEON user’s manual
11.4 Disassembler

A SPARC disassembler is provided in the DEBUG package. It is used by the test bench to
disassemble the executed instructions and print them to stdout (if enabled). Test bench
configurations with names ending in a ‘_d’ have disassembly enabled.

11.5 Test suite

The supplied test suite which is run by the test bench and only tests on-chip peripherals and
interfaces, compliance to the SPARC standard has been tested with proprietary test vectors,
not supplied with the model. To re-compile the test program, the LEON/ERC32 GNU Cross-
Compiler System (LECCS) provided by Gaisler Research (www.gaisler.com) needs to be
installed. The test programs are in the tsource directory and are built by executing ‘make
tests’ in the top directory or in the tsource directory. The makefile will build the program and
generate prom and ram images for the test bench. Pre-compiled images are supplied so that
the test suite can be run without installing the compiler.

The test programs probes the LEON configuration register to determine which options are
enabled in the particular LEON configuration, and only tests those. E.g., if no FPU is present,
the test program will not attempt to perform FPU testing.

11.6 Simulator specific support

The file modelsim/wave.do is a macro file for modelsim to display some useful internal
LEON signals. A modelsim init file (modelsim.ini) is present in the top directory and in the
leon and tbench directory to provide appropriate library mapping.

A .synopsys_vss.setup file is present in the top directory and in the leon and tbench directory
to provide appropriate library mapping for Synopsys VSS.

11.7 Post-synthesis simulation

The supplied test-benches can be used to simulate the synthesised netlist. Use the following
procedure:

• Compile the complete model (i.e. do a ‘make’ at the top level). It is essential that you use
the same configuration as during synthesis! This step is necessary because the test bench
uses the target, config and device packages.

• In the top directory, compile the simulation libraries for you ASIC/FPGA technology, and
then your VHDL netlist.

• Cd to tbench, and do ‘make clean all’. This will rebuild the test bench, ‘linking’ it with
your netlist.

• Cd back to the top directory and simulate you test bench as usual.

• If you get problem with ‘X’ during simulation, enable the cache-ram initialisation
routines in tsource/leon_test.c and rebuild the test programs (make all).

Gaisler Research 60 LEON user’s manual
12 Synthesis

12.1 General

The model is written with synthesis in mind and has been tested with Synopsys DC,
Synopsys FPGA-Compiler (FPGA-Express), Exemplar Leonardo and Synplicity Synplify
synthesis tools. Technology specific cells are used to implement the IU/FPU register files,
cache rams and pads. These cells can be automatically inferred (Synplify and Leonardo only)
or directly instantiated from the target library (Synopsys).

Non-synthesisable code is enclosed in a set of embedded pragmas as shown below:

-- pragma translate_off

... non-synthesisable code...

-- pragma translate_on

This works with most synthesis tools, although in Synopsys requires the
hdlin_translate_off_skip_text variable be set to “true”.

12.2 Synthesis procedure

Synthesis should be done from the ‘syn’ directory. It includes scripts/project-files for
Synplify, Synopsys-DC, Synopsys-FC2 and Leonardo. The source files are read from the
leon directory, so it is essential that the configuration in the TARGET and DEVICE packages
is correct. To simplify the synthesis procedure, a number of pre-defined configuration are
provided in the TARGET package. The selection of the active configuration is done in the
DEVICE package. The following table shows the characteristics of some of the pre-defined
configurations:

Note:

• 8/16-bit memory support is optional, make sure that you enable the option(s) if needed.

• Make sure that the selected configuration in the DEVICE package correctly reflects your
synthesis tools and target technology!

Configuration cache regfile mul/div rom pads target syntool

fpga_2k2k inferred inferred none none inferred any synp, leo

fpga_2k2k_softprom inferred inferred none inferred inferred any synp, leo

fpga_2k2k_v8_softprom inferred inferred inferred inferred inferred any synp, leo

virtex_2k2k_blockprom inferred instance none instance inferred virtex any

virtex_2k2k_v8_blockprom inferred instance inferred instance inferred virtex any

gen_atc25 instance instance instance none instance ATC25 any

gen_atc35 instance instance instance none instance ATC35 any

gen_fs90 instance instance instance none instance FS90AB any

Table 15: Some pre-defined synthesis configurations

Gaisler Research 61 LEON user’s manual
12.2.1 Synplify

To synthesise LEON using Synplify, start synplify in the syn directory and open leon.prj. A
synthesis run takes about 15 minutes on a 650 MHz Pentium-II PC (128 MB ram necessary).
The table below shows some obtained synthesis results (post-layout timing):

If you use synplify-6.11 or earlier versions, the FSM complier must be switched off or the
UART receiver will not be correctly synthesised due to synplify bugs. With synplify_pro
(6.2.4), re-timing and pipelining must be disabled to guarantee correct result.

12.2.2 Synopsys-DC

To synthesise LEON using Synopsys DC, start synopsys in the syn directory and execute the
script ‘leon.dcsh’. Before executing the script, edit the beginning of the script to insure that
the library search paths reflects your synopsys installation and that the timing constraints are
appropriate:

/***/
/* Script to compile leon with synopsys DC */
/* Jiri Gaisler, Gaisler Research, 2001 */
/***/

/* List paths to your sources, target, and link libraries below. */

include atc35setup.dcsh

/* constraints - tailor to your own technology. */

frequency = 62.5
clock_skew = 0.25
input_setup = 2.0
output_delay = 5.0

/* don’t touch anything from here unless you know what you are doing */

The top-level constraints are used to generate the appropriate synopsys constraints
commands.

12.2.3 Synopsys-FC2 and Synopsys-FE

To synthesise LEON using Synopsys-FC2/FE, start fc2_shell (fe2_shell) in the syn directory
and execute the script ‘leon.fc2’. The script will analyse all source files and create a ‘leon’
project. Compilation and optimisation is left to the user. Note: FC2/FE-3.4 do NOT support
automatic inference of ram cells, rams have to be directly instantiated from the target library.
Currently, only the Xilinx VIRTEX technology is supported through the TECH_VIRTEX
package.

Icache
(Kbyte)

Dcache
(Kbyte

Regfile
implement.

Device
Freq

(MHz)
Area

2 2 EAB EPF10K200E-1 20 5,800 LC

8 4 blockRam XCV300E-8 45 5,000 LUT

8 8 RAM16X1 XCV400E-8 48 6,300 LUT

Table 16: Synplify project files

Gaisler Research 62 LEON user’s manual
12.2.4 Leonardo

Use the following steps to synthesise LEON using Exemplar Leonardo:

• Start Leonardo, and select target technology and device
• Read the technology library
• Set working directory to leon/syn
• Run the ‘leon.tcl’ script which will analyse and elaborate the design

Compilation and optimisation is left to the user. It is essential that the source files are read
with the -dont_elaborate switch, or Leonardo will not be able to properly resolve certain
generate statements. Note: only Leonardo version 2001.1a or later can be used, the earlier
2000.x versions have bugs in type resolution functions and will fail during analysis of the
model. Leonardo is capable of automatically inferring the necessary ram cells for register file
and caches.

Gaisler Research 63 LEON user’s manual
13 Porting to a new technology or synthesis tool

13.1 General

LEON uses three types of technology dependant cells; rams for the cache memories, 3-port
register file for the IU/FPU registers, and pads. These cells can either be inferred by the
synthesis tool or directly instantiated from a target specific library. For each technology or
instantiation method, a specific package is provided. The selection of instantiation method
and target library is done through the configuration record in the TARGET package. The
following technology dependant packages are provided:

The technology dependant packages can be seen a wrappers around the mega cells provided
by the target technology or synthesis tool. The wrappers are then called from TECH_MAP,
where the selection is done depending on the configured synthesis method and target
technology. To port to a new tool or target library, a technology dependant package should
be added, exporting the proper cell generators. In the TARGET package, the targettechs type
should be updated to include the new technology or synthesis tool, while the TECH_MAP
package should be edited to call the exported cell generators for the appropriate
configuration.

13.2 Target specific mega-cells

13.2.1 Integer unit register-file

The IU register-file must have one 32-bits write port and two 32-bits read ports. The number
of registers depend on the configured number of register windows. The standard
configuration of 8 windows requires 136 registers, numbered 0 - 135. Note that register 128
is not used and will never be written (corresponds to SPARC register %g0).

If the Meiko FPU is enabled using the direct interface, the register file should have 32 extra
registers to store the FPU registers (i.e 168 registers for 8 register windows + FPU). For all
target technologies (FPGA and ASIC), the register file is currently implemented as two
parallel dual-port rams, each one with one read port and one write port.

The register file must provide the read-data at the end of the same cycle as the read address
is provided (figure 43). This can be implemented with asynchronous read ports, or by
clocking a synchronous read port on the negative clock (CLKN). Read/write collisions in the

package Function Instantiation method

TECH_GENERIC Behavioural models inferred

TECH_VIRTEX Generators for Xilinx VIRTEX direct instantiated

TECH_ATC25 Generators for Atmel ATC25 direct instantiated

TECH_ATC35 Generators for Atmel ATC35 direct instantiated

TECH_FS90 Generators for UMC FS90A/B direct instantiated

TECH_UMC18 Generators for UMC 0.18 um CMOS direct instantiated

TECH_MAP Selects mega-cells depending on configuration -

Table 17: Technology mapping packages

Gaisler Research 64 LEON user’s manual
same cycle (RA1/WA1) does not have to be handled since this will be detected in the IU
pipeline and the write data will be bypassed automatically. However, collision between two
consecutive cycles (WA1/RA2) is not handled and the register file must provide a bypass in
case write-through is not supported.

The TECH_ATC35 package provides an example of a synchronous register file clocked on
the inverted clock, while TECH_ATC25 shows an example of a fully asynchronous register
file. TECH_GENERIC contains an example of WA1/RA2 contention and associated bypass
logic.

13.2.2 Parallel FPU & co-processor register file

The parallel FPU and co-processor uses a separate register file with 32 32-bit words. The
FPU/CP controller (fp1eu.vhd) instantiates two 16x32 register files to make up one 32x32
register file with two 64-bit read ports and one 64-bit write port with individual(32-bits) write
enables. To use fp1eu.vhd, the technology file must contain a register file with two 32-bit
read ports and one 32-bit write port. All ports should operate synchronously on the rising
edge. Read/write contention in the same cycle does not have to be handled, the FPU/CP
controller contains contention and bypass logic. See TECH_GENERIC and TECH_ATC25
for examples.

13.2.3 Cache ram memory cells

Synchronous single-port ram cells are used for both tag and data in the cache. The width and
depth depends on the configuration as defined in the configuration record. The table below
shows the ram size for certain cache configurations:

Cache size Words/line tag ram data ram

 1 kbyte 8 32x30 256x32

 1 kbyte 4 64x26 256x32

 2 kbyte 8 64x29 512x32

 2 kbyte 4 128x25 512x32

4 kbyte 8 128x28 1024x32

Table 18: Cache ram cell sizes

Figure 43: IU register file read/write timing

RD2

RA1

CLK

Read address

Write address

Read data

Write data

RA2

WA1 WA2

RD1

WD2WD1

CLKN

Gaisler Research 65 LEON user’s manual
The cache controllers are designed such that the used ram cells do NOT have to support
write-through (simultaneous read of written data).

13.2.4 Pads

Technology specific pads are usually automatically inferred by the synthesis tool targeting
FPGA technologies. For ASIC technologies, generate statements are used to instantiate
technology dependant pads. The selection of pads is done in TECH_MAP. Output pads has
a generic parameter to select driving strength, see TECH_ATC25 for examples.

13.2.5 Adding a new technology or synthesis tool

Adding support for a new target library or synthesis tool is done as follows:

1. Create a package similar to tech_*.vhd, containing the specific rams, regfile, and pads.

2. Edit target.vhd to include your technology or synthesis tool in targettechs.

3. Edit tech_map.vhd to instantiate the cells when the technology is selected.

4. Define and select a configuration using the new technology (target.vhd/device.vhd).

5. Submit your changes to jiri@gaisler.com for inclusion in future version of LEON!

4 kbyte 4 256x24 1024x32

8 kbyte 8 256x27 2048x32

8 kbyte 4 512x23 2048x32

16 kbyte 8 512x26 4096x32

16 kbyte 4 1024x22 4096x32

Cache size Words/line tag ram data ram

Table 18: Cache ram cell sizes

	1 Introduction
	1.1 Overview
	1.2 Performance
	1.3 News in LEON-1 version 2.4.0
	1.4 License
	1.5 Fault-tolerant LEON (LEON-FT)
	1.6 Functional overview
	1.6.1 Integer unit
	1.6.2 Floating-point unit and co-processor
	1.6.3 Cache sub-system
	1.6.4 Memory interface
	1.6.5 Timers
	1.6.6 Watchdog
	1.6.7 UARTs
	1.6.8 Interrupt controller
	1.6.9 Parallel I/O port
	1.6.10 AMBA on-chip buses
	1.6.11 Boot loader
	1.6.12 Watchpoint registers

	2 LEON integer unit
	2.1 Overview
	2.2 Instruction pipeline
	2.3 Multiply instructions
	2.4 Multiply and accumulate instructions
	2.5 Divide instructions
	2.6 Watch-points
	2.7 ASI assignment
	2.8 Exceptions
	2.9 Processor reset operation

	3 Floating-point unit and co-processor
	3.1 Generic CP interface
	3.2 FPU interface

	4 Cache sub-system
	4.1 Instruction cache
	4.1.1 Operation
	4.1.2 Instruction cache flushing
	4.1.3 Diagnostic cache access
	4.1.4 Instruction cache tag

	4.2 Data cache
	4.2.1 Operation
	4.2.2 Write buffer
	4.2.3 Data cache flushing
	4.2.4 Diagnostic cache access
	4.2.5 Cache bypass
	4.2.6 Data cache tag

	4.3 Cache Control Register

	5 AMBA on-chip buses
	5.1 AHB bus
	5.2 APB bus
	5.3 AHB status register
	5.4 AHB cache aspects

	6 On-chip peripherals
	6.1 On-chip registers
	6.2 Interrupt controller
	6.2.1 Operation
	6.2.2 Interrupt assignment
	6.2.3 Control registers

	6.3 Secondary interrupt controller
	6.3.1 Operation
	6.3.2 Control registers

	6.4 Timer unit
	6.4.1 Operation
	6.4.2 Registers

	6.5 UARTs
	6.5.1 Transmitter operation
	6.5.2 Receiver operation
	6.5.3 Baud-rate generation
	6.5.4 Loop back mode
	6.5.5 Interrupt generation
	6.5.6 UART registers

	6.6 Parallel I/O port
	6.7 LEON configuration register
	6.8 Power-down

	7 External memory access
	7.1 Memory interface
	7.2 Memory controller
	7.3 RAM access
	7.4 PROM access
	7.5 Memory mapped I/O
	7.6 Burst cycles
	7.7 8-bit and 16-bit memory configuration
	7.8 8- and 16-bit I/O access
	7.9 Memory configuration register 1
	7.10 Memory configuration register 2
	7.11 Write protection

	8 Signals
	8.1 Memory bus signals
	8.2 System interface signals
	8.3 Signal description

	9 VHDL model architecture
	9.1 Model hierarchy
	9.2 Model coding style
	9.3 Clocking scheme

	10 Model Configuration
	10.1 Synthesis configuration
	10.2 Integer unit configuration
	10.3 Cache configuration
	10.4 Memory controller configuration
	10.5 Debug configuration
	10.6 Peripheral configuration
	10.7 Boot configuration
	10.7.1 Booting from internal prom
	10.7.2 PMON S-record loader
	10.7.3 Rdbmon

	10.8 AMBA configuration
	10.8.1 AHB master configuration
	10.8.2 AHB slave configuration
	10.8.3 AHB cachability configuration
	10.8.4 APB configuration

	11 Simulation
	11.1 Un-packing the tar-file
	11.2 Compilation of the model
	11.3 Generic test bench
	11.4 Disassembler
	11.5 Test suite
	11.6 Simulator specific support
	11.7 Post-synthesis simulation

	12 Synthesis
	12.1 General
	12.2 Synthesis procedure
	12.2.1 Synplify
	12.2.2 Synopsys-DC
	12.2.3 Synopsys-FC2 and Synopsys-FE
	12.2.4 Leonardo

	13 Porting to a new technology or synthesis tool
	13.1 General
	13.2 Target specific mega-cells
	13.2.1 Integer unit register-file
	13.2.2 Parallel FPU & co-processor register file
	13.2.3 Cache ram memory cells
	13.2.4 Pads
	13.2.5 Adding a new technology or synthesis tool

