
December 2015 DocID025464 Rev 5 1/70

70

UM1686
User manual

BlueNRG development kits

Introduction
This document describes the BlueNRG development kits and related hardware and
software components. The BlueNRG is a very low power Bluetooth® low energy (BLE)
single-mode network processor, compliant with Bluetooth specifications core 4.0. The
BlueNRG can act as master or slave.

There are two types of BlueNRG kits:

1. BlueNRG development platform (order code: STEVAL-IDB002V1)

2. BlueNRG USB dongle (order code: STEVAL-IDB003V1)

The BlueNRG software package includes a graphical user interface application to control
the BlueNRG through a simple ACI protocol.

www.st.com

http://www.st.com

Contents UM1686

2/70 DocID025464 Rev 5

Contents

1 Getting started . 5

1.1 STEVAL-IDB002V1 kit contents . 5

1.2 STEVAL-IDB003V1 kit . 5

1.3 System requirements . 6

1.4 BlueNRG development kit setup . 6

2 Hardware description . 7

2.1 STEVAL-IDB002V1 motherboard . 7

2.1.1 Microcontroller and connections . 8

2.1.2 Power . 10

2.1.3 Sensors . 11

2.1.4 Extension connector . 11

2.1.5 Push-buttons and joystick . 11

2.1.6 JTAG connector . 11

2.1.7 LEDs . 11

2.1.8 Daughterboard interface . 11

2.2 BlueNRG daughterboard . 12

2.2.1 Current measurements . 13

2.2.2 Hardware setup . 13

2.2.3 STM32L preprogrammed application . 14

2.3 STEVAL-IDB003V1 USB dongle . 14

2.3.1 Microcontroller and connections . 14

2.3.2 SWD interface . 16

2.3.3 RF connector . 17

2.3.4 Push-buttons . 18

2.3.5 User LEDs . 18

2.3.6 Hardware setup . 18

2.3.7 STM32L preprogrammed application . 18

3 GUI software description . 19

3.1 Requirements . 19

3.2 The BlueNRG graphical user interface . 19

3.2.1 GUI main window . 20

3.2.2 Tools . 22

DocID025464 Rev 5 3/70

UM1686 Contents

70

3.2.3 GUI ACI utilities window . 25

3.2.4 GUI Scripts window . 28

3.2.5 GUI Beacon window . 35

3.2.6 GUI RF Test window . 36

4 Programming with BlueNRG network processor 41

4.1 Requirements . 41

4.2 Software directory structure . 41

5 BlueNRG sensor profile demo . 43

5.1 Supported platforms . 44

5.2 BlueNRG app for smartphones . 44

5.3 BlueNRG sensor profile demo: connection with a central device 45

5.3.1 Initialization . 45

5.3.2 Add service and characteristics . 45

5.3.3 Set security requirements . 46

5.3.4 Enter connectable mode . 46

5.3.5 Connection with central device . 46

5.4 BlueNRG sensor demo: central profile role . 47

5.4.1 Initialization . 47

5.4.2 Discovery a sensor peripheral device . 48

5.4.3 Connect to discovered sensor peripheral device 48

5.4.4 Discovery sensor peripheral services and characteristics 48

5.4.5 Enable sensor peripheral acceleration and free fall notifications 49

5.4.6 Read the sensor peripheral temperature sensor characteristic 49

6 BlueNRG chat demo application 50

6.1 Supported platforms . 50

6.2 BlueNRG chat demo application: peripheral & central devices 50

6.2.1 Initialization . 51

6.2.2 Add service and characteristics . 51

6.2.3 Set security requirements . 51

6.2.4 Enter connectable mode . 52

6.2.5 Connection with central device . 52

7 BlueNRG Beacon demonstration application 54

7.1 Supported platforms . 54

Contents UM1686

4/70 DocID025464 Rev 5

7.2 BLE Beacon application setup . 54

7.2.1 Initialization . 54

7.2.2 Define advertising data . 54

7.2.3 Entering non-connectable mode . 55

8 BLE remote control demo application 56

8.1 Supported platforms . 56

8.2 BLE remote control application setup . 57

8.2.1 Initialization . 57

8.2.2 Define advertising data . 57

8.2.3 Add service and characteristics . 57

8.2.4 Connection with a BLE Central device . 58

9 List of acronyms . 59

10 Available board schematics . 60

11 Revision history 69

DocID025464 Rev 5 5/70

UM1686 Getting started

70

1 Getting started

This section describes all the software and hardware requirements for running the BlueNRG
GUI utility as well as the related installation procedure.

1.1 STEVAL-IDB002V1 kit contents
This kit is composed of the following items:

• 1 development motherboard

• 1 BlueNRG daughterboard

• 1 2.4 GHz Bluetooth antenna

• 1 USB cable

Figure 1. BlueNRG kit motherboard with the STEVAL-I DB002V1 daughterboard
connected

1.2 STEVAL-IDB003V1 kit
This kit is composed of the following items:

• 1 USB dongle

Getting started UM1686

6/70 DocID025464 Rev 5

Figure 2. STEVAL-IDB003V1 BlueNRG USB dongle

1.3 System requirements
The BlueNRG graphical user interface utility has the following minimum requirements:

• PC with Intel® or AMD® processor running one of the following Microsoft® operating
systems:

– Windows XP SP3

– Windows Vista

– Windows 7

• At least 128 Mb of RAM

• 2 USB ports

• 40 Mb of hard disk space available

• Adobe Acrobat Reader 6.0 or later

1.4 BlueNRG development kit setup
• Extract the content of the BlueNRG_DK_-x.x.x-Setup.zip file into a temporary directory.

• Launch the BlueNRG-DK-x.x.x-Setup.exe file and follow the on-screen instructions.

Note: EWARM Compiler 7.40.3 or later version is required for building the BlueNRG_DK_x.x.x
demonstration applications.

DocID025464 Rev 5 7/70

UM1686 Hardware description

70

2 Hardware description

The following sections describe the components of the kits.

2.1 STEVAL-IDB002V1 motherboard
The motherboard included in the development kit allows testing of the functionality of the
BlueNRG processor. The board can be used as a simple interface between the BlueNRG
and a GUI application on the PC. The STM32L microcontroller on the board can also be
programmed, so the board can be used to develop applications using the BlueNRG. A
connector on the motherboard (Figure 1) allows access to the JTAG interface for
programming and debugging. The board can be powered through a mini-USB connector
that can also be used for I/O interaction with a USB Host. The board includes sensors, and
buttons and a joystick for user interaction. The RF daughterboard can be easily connected
through a dedicated interface.

This is a list of some of the features that are available on the boards:

• STM32L151RBT6 64-pin microcontroller

• Mini USB connector for power supply and I/O

• JTAG connector

• RF daughterboard interface

• One RESET button and one USER button

• One LIS3DH accelerometer

• One STLM75 temperature sensor

• One joystick

• 5 LEDs

• One PWR LED

• One battery holder for 2 AAA batteries

• One row of test points on the interface to the RF daughterboard

Hardware description UM1686

8/70 DocID025464 Rev 5

Figure 3. Motherboard for the BlueNRG development k it

2.1.1 Microcontroller and connections

The board features an STM32L151RB microcontroller, which is an ultra low-power
microcontroller with 128 KB of Flash memory, 16 KB of RAM, 32-bit core ARM cortex-M3, 4
KB of data EEPROM, RTC, LCD, timers, USART, I2C, SPI, ADC, DAC and comparators.

The microcontroller is connected to various components such as buttons, LEDs and
connectors for external circuitry. The following table shows what functionality is available on
each microcontroller pin.

Table 1. MCU pin description versus board function

Pin
name

Pin

Board function

LEDs DB connector
Buttons /
joystick

Acceler.
Temperatur

e sensor
USB JTAG

Ext.
conn

VLCD 1

PC13 2 DB_SDN_RST

PC14 3 3

PC15 4 5

OSC_IN 5

OSC_O
UT

6

NRST 7 RESET 7

PC0 8 LED1

PC1 9 LED2

PC2 10 DB_PIN3

PC3 11 9

DocID025464 Rev 5 9/70

UM1686 Hardware description

70

VSSA 12

VDDA 13

PA0 14 11

PA1 15 13

PA2 16 15

PA3 17 17

VSS_4 18

VDD_4 19

PA4 20 SPI1_NSS

PA5 21 SPI1_SCK

PA6 22 SPI1_MISO

PA7 23 SPI1_MOSI

PC4 24 LED4

PC5 25 LED5

PB0 26
JOY_DOW

N

PB1 27
JOY_RIGH

T

PB2 28 18

PB10 29 INT1

PB11 30 INT2

VSS_1 31

VDD_1 32

PB12 33 DB_CSN(1)

PB13 34 DB_SCLK(1)

PB14 35 DB_SDO(1)

PB15 36 DB_SDI(1)

PC6 37
PUSH_BT

N

PC7 38 DB_IO0(1)

PC8 39 DB_IO1(1)

PC9 40 DB_IO2(1)

PA8 41 JOY_LEFT

PA9 42
JOY_CENT

ER

Table 1. MCU pin description versus board function (continued)

Pin
name

Pin

Board function

LEDs DB connector
Buttons /
joystick

Acceler.
Temperatur

e sensor
USB JTAG

Ext.
conn

Hardware description UM1686

10/70 DocID025464 Rev 5

2.1.2 Power

The board can be powered either by the mini USB connector CN1 (A in Figure 3) or by 2
AAA batteries. To power the board through USB bus, jumper JP1 must be in position 1-2, as
in Figure 3 (B). To power the board using batteries, 2 AAA batteries must be inserted in the
battery holder at the rear of the board, and jumper JP1 set to position 2-3.

When the board is powered, the green LED DL6 is on (C).

If needed, the board can be powered by an external DC power supply. Connect the positive
output of the power supply to the central pin of JP1 (pin 2) and ground to one of the four test
point connectors on the motherboard (TP1, TP2, TP3 and TP4).

PA10 43 JOY_UP

PA11 44
USB_D

M

PA12 45
USB_D

P

PA13 46 JTMS 16

VSS_2 47

VDD_2 48

PA14 49 JTCK 14

PA15 50 JTDI 12

PC10 51 DB_IO3_IRQ(1)

PC11 52 DB_PIN1

PC12 53 DB_PIN2

PD2 54 LED3

PB3 55 JTDO 10

PB4 56
JNTRS

T
8

PB5 57 TSEN_INT

PB6 58 I2C1_SCL

PB7 59 I2C1_SDA

BOOT0 60

PB8 61 4

PB9 62 6

VSS_3 63

VDD_3 64

1. These lines are also available on the test point row

Table 1. MCU pin description versus board function (continued)

Pin
name

Pin

Board function

LEDs DB connector
Buttons /
joystick

Acceler.
Temperatur

e sensor
USB JTAG

Ext.
conn

DocID025464 Rev 5 11/70

UM1686 Hardware description

70

2.1.3 Sensors

Two sensors are available on the motherboard:

– LIS3DH, an ultra-low power high performance three-axis linear accelerometer (D
in Figure 3). The sensor is connected to the STM32L through the SPI interface.
Two lines for interrupts are also connected.

– STLM75, a high precision digital CMOS temperature sensor, with I2C interface (E
in Figure 3). The pin for the alarm function is connected to one of the STM32L
GPIOs.

2.1.4 Extension connector

There is the possibility to solder a connector on the motherboard to extend its functionality
(F in Figure 3). 16 pins of the microcontroller are connected to this expansion slot (Table 1).

2.1.5 Push-buttons and joystick

For user interaction the board has two buttons. One is to reset the microcontroller, while the
other is available to the application. There is also a digital joystick with 4 possible positions
(left, right, up, down) (G in Figure 3).

2.1.6 JTAG connector

A JTAG connector on the board (H in Figure 3) allows the programming and debugging of
the STM32L microcontroller on board(a), using an in-circuit debugger and programmer such
as the ST-LINK/V2.

2.1.7 LEDs

Five LEDs are available (I in Figure 3).

– DL1: green

– DL2: orange

– DL3: red

– DL4: blue

– DL5: yellow

2.1.8 Daughterboard interface

The main feature of the motherboard is the capability to control an external board,
connected to the J4 and J5 connectors (L in Figure 3). Table 1 shows which pins of the
microcontroller are connected to the daughterboard.

Some of the lines are connected also to a row of test points (M).

a. The STM32L is preprogrammed with a DFU firmware that allows the downloading of a firmware image without
the use of a programmer. If an user accidentally erases DFU firmware, he can reprogram it through STLink
using the hex image DFU_Bootloader.hex available on BlueNRG DK SW package, firmware folder.

Hardware description UM1686

12/70 DocID025464 Rev 5

2.2 BlueNRG daughterboard
The BlueNRG daughterboard (Figure 4) included in the development kit is a small circuit
board to be connected to the main board. It contains the BlueNRG network processor (in a
QFN32 package), an SMA antenna connector, discrete passive components for RF
matching and balun, and small number of additional components required by the BlueNRG
for proper operation (see the schematic diagram in Figure 24).

Figure 4. BlueNRG daughterboard

The main features of the BlueNRG daughterboard are:

– BlueNRG low power network processor for Bluetooth low energy (BLE), with
embedded host stack

– High frequency 16 MHz crystal

– Low frequency 32 kHz crystal for the lowest power consumption

– Balun, matching network and harmonic filter

– SMA connector

The daughterboard is also equipped with a discrete inductor for the integrated high-
efficiency DC-DC converter, for best-in-class power consumption. It is still possible to
disable the DC-DC converter. In this case the following changes must be performed on the
daughterboard (see Figure 24):

– Remove inductor from solder pads 1 and 2 of D1

– Place a 0 ohm resistor between pads 1 and 3

– Move resistor on R2 to R1

For proper operation, jumpers must be set as indicated in Figure 4.

The following tables show the connections between the daughterboard and the main board.

DocID025464 Rev 5 13/70

UM1686 Hardware description

70

2.2.1 Current measurements

To monitor power consumption of the entire BlueNRG daughterboard, remove the jumper
from U2 and insert an ammeter between pins 1 and 2 of the connector. Since power
consumption of the BlueNRG during most operation time is very low, an accurate instrument
in the range of few microamps may be required.

2.2.2 Hardware setup

1. Plug the BlueNRG daughterboard into J4 and J5 connectors as in Figure 1.

2. Ensure the jumper configuration on the daughterboard is as in Figure 1

3. Connect the motherboard to the PC with an USB cable (through connector CN1).

4. Verify the PWR LED lights is on.

Table 2. Connections between BlueNRG board and moth erboard on left connector

Pin J4 motherboard J3 daughterboard

1 DB_PIN1 NC

2 3V3 3V3

3 DB_PIN3 NC

4 NC NC

5 GND GND

6 DB_PIN2 nS

7 GND GND

8 3V3 U2 pin 1

9 DB_SDN_RST RST

10 3V3 U2 pin 1

Table 3. Connections between BlueNRG board and moth erboard on right connector

Pin J5 motherboard J4 daughterboard

1 GND GND

2 GND GND

3 DB_CSN CSN

4 DB_IO3_IRQ IRQ

5 DB_SCLK CLK

6 DB_IO2 NC

7 DB_SDI MOSI

8 DB_IO1 NC

9 DB_SDO MISO

10 DB_IO0 NC

Hardware description UM1686

14/70 DocID025464 Rev 5

2.2.3 STM32L preprogrammed application

The STM32L on STEVAL-IDB002V1 motherboard is preprogrammed with the sensor demo
application when the kits components are assembled (refer to Section 5 for the application
description).

2.3 STEVAL-IDB003V1 USB dongle
The BlueNRG USB dongle allows users to easily add BLE functionalities to their PC by
plugging it into a USB port. The USB dongle can be used as a simple interface between the
BlueNRG and a GUI application on the PC. The on-board STM32L microcontroller can also
be programmed, so the board can be used to develop applications that use the BlueNRG.
The board can be powered through the USB connector, which can also be used for I/O
interaction with a USB host. The board also has two buttons and two LEDs for user
interaction.

Below is a list of some of the main features that are available on the board (see Figure 2):

• BlueNRG network coprocessor

• STM32L151CBU6 48-pin microcontroller

• USB connector for power supply and I/O

• One row of pins with SWD interface

• Chip antenna

• Two user buttons (SW1, SW2)

• Two LEDs (D2, D3)

2.3.1 Microcontroller and connections

The board utilizes an STM32L151CBU6, which is an ultra low-power microcontroller with
128 KB of Flash memory, 16 KB of RAM, 32-bit core ARM cortex-M3, 4 KB of data
EEPROM, RTC, timers, USART, I2C, SPI, ADC, DAC and comparators.

The microcontroller is connected to various components such as buttons, LEDs and
connectors for external circuitry. The following table shows which functionality is available
on each microcontroller pin.

DocID025464 Rev 5 15/70

UM1686 Hardware description

70

Table 4. MCU pin description versus board function

Pin name
Pin

num.

Board function

LEDs BlueNRG Buttons USB SWD

VLCD 1 VBAT

PC13 2

PC14 3

PC15 4

OSC_IN 5

OSC_OUT 6

NRST 7

VSS_A 8

VDD_A 9

PA0 10

PA1 11 Button SW2

PA2 12

PA3 13

PA4 14

PA5 15

PA6 16

PA7 17

PB0 18 Led D2

PB1 19 Led D3

PB2 20 Button SW1

PB10 21 BlueNRG_IRQ

PB11 22

VSS1 23

VDD1 24

PB12 25 SPI2_CS

PB13 26 SPI2_CLK

PB14 27 SPI2_MISO

PB15 28 SPI2_MOSI

PA8 29

PA9 30 EEPROM_CS

PA10 31

PA11 32 USB_DM

Hardware description UM1686

16/70 DocID025464 Rev 5

2.3.2 SWD interface

The SWD interface is available through the J2 pins. The SWD interface allows programming
and debugging of the STM32L microcontroller on the board, using an in-circuit debugger
and programmer like the ST-LINK/V2. In Figure 5 the connection scheme illustrating how to
connect the ST-LINK/V2 with the board pins is shown.

Figure 5. SWD connection scheme with ST-LINK/V2

PA12 33 USB_DP

PA13 34 SWDIO

VSS2 35

VDD2 36

PA14 37 SWCLK

PA15 38

PB3 39 SWO

PB4 40

PB5 41

PB6 42

PB7 43

BOOT0 44

PB8 45

PB9 46

VSS_3 47

VDD_4 48

Table 4. MCU pin description versus board function (continued)

Pin name
Pin

num.

Board function

LEDs BlueNRG Buttons USB SWD

DocID025464 Rev 5 17/70

UM1686 Hardware description

70

The signals available on the STEVAL-IDB003V1 are:

1. GND

2. VDD

3. nRESET

4. SWDIO

5. SWO/TRACE

6. SWCLK

The connection to the ST-LINK/V2 interface is given in the table below, as shown in
Figure 5:

2.3.3 RF connector

The STEVAL-IDB003V1 provides two different RF connections: antenna (chip antenna,
default configuration) and UFL connector. Although the default configuration allows
communication on air, it can be useful to switch to the UFL connector in order to connect the
STEVAL-IDB003V1 to RF equipment such as a spectrum analyzer or RF signal generator.

To switch from antenna to UFL connector, capacitor C10 must be removed and capacitor
C42 must be soldered. To restore the default configuration and use the antenna, capacitor
C42 must be removed and capacitor C10 must be soldered. Both capacitors C10 and C42
have the same value: 56 pF. In Figure 6, the two pads for C10 and C42 are shown together
with the chip antenna and UFL connector.

Figure 6. RF connector scheme

Table 5. SWD connection

Signal name
STEVAL-IDS001Vx

pin number

ST-LINK/V2

pin number

GND 1 14 /6

VDD 2 2 / 1

nRESET 3 15

SWDIO 4 7

SWO/TRACE 5 13

SWCLK 6 9

Hardware description UM1686

18/70 DocID025464 Rev 5

2.3.4 Push-buttons

For user interaction the board has two buttons, both available to the application

– SW1

– SW2

Note: SW1 is the DFU button. The BlueNRG USB dongle is preprogrammed with a DFU
application allowing upgrades to the STM32L firmware image through USB and using the
BlueNRG GUI. To activate the DFU, press button SW1 and plug the BlueNRG USB dongle
into a PC USB port.

2.3.5 User LEDs

Two LEDs are available:

– D2: red

– D3: orange

Note: When DFU is activated, LED D3 is blinking

2.3.6 Hardware setup

Plug the BlueNRG USB dongle into a PC USB port.

2.3.7 STM32L preprogrammed application

The STM32L on the STEVAL-IDB003V1 motherboard is preprogrammed with the
BlueNRG_VCOM_x_x.hex application when the kits components are assembled (refer to
Section 3.1 for the application description).

DocID025464 Rev 5 19/70

UM1686 GUI software description

70

3 GUI software description

The BlueNRG GUI included in the software package is a graphical user interface that can be
used to interact and evaluate the capabilities of the BlueNRG network processor.

This utility can send standard and vendor-specific HCI commands to the controller and
receive events from it. It lets the user configure each field of the HCI command packets to
be sent and analyzes all received packets. In this way BlueNRG can be easily managed at
low level.

3.1 Requirements
In order to use the BlueNRG GUI, make sure you have correctly set up your hardware and
software (BlueNRG GUI installed). The STM32L in the STEVAL-IDB002V1 kit has been
preprogrammed with a demo application (see Section 5). Hence, new firmware must be
loaded into the STM32L. Firmware images can be found within the firmware folder. The
firmware image that must be programmed is latest BlueNRG_VCOM_x_x.hex available
within the BlueNRG DK SW package. The GUI has the ability to Flash new firmware.

In order to download binary images into the internal Flash of the STM32L, the
microcontroller must be put into a special DFU (device firmware upgrade) mode. To enter
DFU mode:

1. BlueNRG development platform (STEVAL-IDB002V1)

– Power up the board

– Press and hold USER button

– Reset the board using RESET button (keep USER button pressed while resetting)
The orange LED DL2 will start to blink

– Release USER button

– Use BlueNRG GUI to Flash the device with new firmware (Tools -> Flash
motherboard FW).

2. BlueNRG USB Dongle (order code: STEVAL-IDB003V1)

– Press and hold SW1 button

– Plug the USB dongle on a PC USB port. The orange LED D3 will start to blink.

– Use BlueNRG GUI to Flash the device with a new firmware (Tools -> Flash
Motherboard FW).

3.2 The BlueNRG graphical user interface
This section describes the main functions of BlueNRG GUI application.

You can run this utility by clicking on the BlueNRG GUI icon on the Desktop or under:

Start → STMicroelectronics → BlueNRG DK X.X.X → BlueNRG GUI

GUI software description UM1686

20/70 DocID025464 Rev 5

3.2.1 GUI main window

Figure 7. BlueNRG GUI main window

The BlueNRG GUI main window is characterized by different zones. Some of these zones
can be resized.

Port and interface selection

The uppermost zone allows the user to open the COM port associated to the BTLE
controller.

When a COM port is opened the following information are displayed:
– BlueNRG HW version
– BlueNRG FW version
– STM32L motherboard GUI firmware (VCOM) version

HCI commands

The HCI Commands tab contains a list of all the available HCI commands. Commands can
be filtered by checking/unchecking boxes under the filter section. After clicking on one of the
commands, all the packet fields will be displayed on the command packet table in the upper-
right section of the tab (see Figure 8).

Figure 8. Command packet table

DocID025464 Rev 5 21/70

UM1686 GUI software description

70

The command packet table contains four columns:

• Parameter : name of the packet field as they are named in volume 2, part E of
Bluetooth specification.

• Value : field value represented in hexadecimal format (right-click on a cell to change its
representation format).

• Literal : meaning of the current field value.

• Info : description of the corresponding field.

Only the yellow cells of this table can be modified by the user. The Parameter Total Length is
fixed or automatically calculated after modifying cell content.

After the fields have been modified (if required) the command can be sent using the Send
button.

HCI Packet history and details

At the bottom of the main window, two tables show packets sent to and received from the
BTLE controller, as well as other events. The left table (sent/received packets) holds a
history of all packets (see Figure 9). The right one (packet details) shows all the details of
the selected packet as is done in the command packet table (Figure 9).

Figure 9. Packet history and details

Double-clicking on a row of the sent/received packets table shows the raw packet.

Figure 10. Raw packet dump

Some events (displayed in yellow cells) can provide other information. HCI packets sent
towards the BTLE controller are displayed in gray cells while received packets are shown
inside white cells.

The Sent/received packets table can be cleared by clicking on clear list button. Update and
auto-scrolling check boxes enable or disable updating and auto-scrolling of the
Sent/received packets table while new packets are sent or received (however, information
will still be printed).

The sent/received packets can be stored and later reloaded on the GUI, by using the utilities
provided on File menu:

GUI software description UM1686

22/70 DocID025464 Rev 5

1. Save History... : it saves the current list of sent commands and received events on a
CSV file

2. Load History... : it loads a list of sent commands and received events, previously
stored on a CSV file.

3. Save as Python Script... : it allows to store the current list of sent commands and
received events as a script file (Python format). This script file can be used on GUI
Script window, after proper customization (by adding specific code for handling events,
parameters, ...), in order to address an user application scenario (refer to Section 3.2.5:
GUI Beacon window).

3.2.2 Tools

The BlueNRG GUI has some functions that can be accessed through the tools menu. These
tools are described in this section.

BlueNRG updater

This tool can be used to update the firmware inside the BlueNRG by using its internal
bootloader. VCOM firmware must be present on the STM32L and COM port must be open,
in order to use this function.

1. Go to Tools -> BlueNGR updater

2. Select the correct stack firmware (.img)

3. Press update to start the update procedure. If the procedure completes with no errors,
the new firmware has been loaded into the BlueNRG internal Flash.

BlueNRG IFR

To preserve BlueNRG's flexibility, its firmware uses a table of configurable parameters. This
table resides in a sector of the Flash called Information Register (IFR). The BlueNRG IFR
tool can read and modify this portion of BlueNRG's Flash. This tool is available in BlueNRG
GUI, Tools, BlueNRG IFR... item.

The BlueNRG GUI IFR utility is a tool that allow the customer to define the IFR data in a
controller way. Using this utility is the only supported mode to define IFR data based on
customer needs. The utility provides the following windows:

• View/Edit view: displays the IFR regions with related fields and description. The user can
modify some of these fields according to his needs.

• Memory view: displays the IFR field memory addresses and related values that are
generated by BlueNRG GUI according to the specified values.

• C view: displays the C language structure related to the IFR configuration data region
matching the View/Edit and Memory view.

DocID025464 Rev 5 23/70

UM1686 GUI software description

70

Figure 11. BlueNRG GUI IFR tool: View/Edit view

In the View/Edit view, the following operations are available:

• Select the high speed (HS) crystal (16 or 32 MHz) and the low speed oscillator source (32
kHz or the internal ring oscillator)

• Set the Power Management options (SMPS inductor or SMPS off configuration)

• Change stack mode. Each mode has a different functionality:
– Mode 1: slave/master, 1 connection only, small GATT database (RAM2 off during

sleep)
– Mode 2: slave/master, 1 connection only, large GATT database (RAM2 on during

sleep)
– Mode 3: only master, 8 connections, small GATT database (RAM2 on during sleep)

• Change HS startup time parameter. This parameter control the time offset between the
wakeup of the device and the start of RX/TX phase. It must be big enough to allow the
device to be ready to transmit or receive after wakeup from sleep. This time depends on
the startup time of the high speed crystal.

GUI software description UM1686

24/70 DocID025464 Rev 5

• Change sleep clock accuracy. This must reflect the actual clock accuracy, depending on
the low speed oscillator or crystal in use.

• Set low speed (LS) crystal period and frequency

• View/change date to distinguish between different versions of configurations.

• View registers that are written into the radio (hot and cold table)

• Set some test modes for specific tests

• Read IFR content from BlueNRG.

• Write IFR configuration to BlueNRG IFR.

The following general utilities are also available:

• Load button: allows to load a configuration file.

• Save button: allows to save the current parameters into a configuration file.

Flash motherboard firmware

The BlueNRG GUI embeds a utility that allows to Flash firmware to the STM32L
microcontroller on the motherboard without a JTAG/SWD programmer. This utility uses a
bootloader that has been programmed in the first 12 KB of the Flash. Any application to be
programmed to the STM32L by this tool must first consider that the lower area of the Flash
is used by the bootloader(b).

OTA bootloader

OTA bootloader is a tool that allows to Flash new firmware to the STM32L of a remote
device via Bluetooth low energy technology. Refer to the dedicated application note for
more information.

Get production data

From the tools menu it is possible to retrieve production information from the BlueNRG
daughterboard. This data is stored in the EEPROM on the daughterboard.

Get version

The Get version tool is used to retrieve the version of the BlueNRG GUI firmware (VCOM)
on the STM23L, and hardware and firmware version from the BlueNRG.

Settings

This tool allows to configure the firmware stack version to be used from the GUI (when no
device is actually connected to a PC USB port). Further, it allows to configure the GUI serial
baud rate (valid only for communication over serial UART and not through USB Virtual
COM).

In order to use this function:

1. Go to Settings --> FW 6.4 for BlueNRG device

2. Go to Settings --> select Set Baud Rate… and choose the value (default is 115200)

b. Two precautions must be taken for any firmware: 1) change memory regions in linker script (vector table and
Flash must start at 0x08003000); 2) Change the vector table offset (NVIC_SetVectorTable())

DocID025464 Rev 5 25/70

UM1686 GUI software description

70

3.2.3 GUI ACI utilities window

The BlueNRG GUI ACI utilities window provides several tabs to allow testing of some
BlueNRG application scenarios.

Figure 12. BlueNRG GUI ACI utilities window

Central and Peripheral roles are supported with the BLE operations described in Table 6,
Table 7 and Table 8.

GUI software description UM1686

26/70 DocID025464 Rev 5

Table 6. GUI ACI utilities window: available genera l operations

Operation Associated actions Notes

Init Device…

Allows to initialize a device by selecting:

- Role
- Stack Mode (1,2,3);
- Address type (Public, Random) and value

- Tx power level
- Power mode
- Device Name

Service
Management …

Allows to add a service by selecting:
- UUID type (16 or 128 bits)

- Service Type (Primary or Secondary)
- Set max number of records
For each service, it allows to add a characteristic by
selecting:
- UUID type (16 or 128 bits)

- Properties
- Security permissions
- Variable length or not

- Length
- GATT Event mask
- Encryption key size

After a characteristic is
defined, the user can
edit its parameters
and/or delete it.

Once a service and its
characteristics have
been defined, click OK
to add them.

Service Discovery...
Allows to discover all services and related
characteristics of available connections.

Service start handle,
end handle and UUID
are showed.
For each selected
Service the related
Characteristics
information are showed
(attribute handle,
property, value handle
and UUID).
For the available
characteristic with Notify
or Indication Property
it’s possible to enable
the
Notification/Indication.

Terminate
Connection...

Allows to terminate the available connections

DocID025464 Rev 5 27/70

UM1686 GUI software description

70

Table 7. GUI ACI utilities window: available centra l operations

Operation Associated actions Notes

Scanning

Allows to put device in scanning mode by selecting:

- GAP Procedure (Limited, general, general-connection
establishment and terminate general-connection
establishment procedures)
- Enable or Disable filters

- Set own address type
- Set passive or active scan
- Set Scanning interval and Window

Connection

Allows to connect to a peer device by:
- Searching for devices in Advertising

- Select the device to which to connect
- Select the connection parameters

- Peer address and type
- Scan Interval and Window
- Connection Interval (min & max)
- Latency
- Supervision timeout
- Connection event length (min & max)

The addresses of the
detected advertising
devices are displayed

Update
Connections

Allows to update the connection parameters of available
connections by:
- Selecting the specific connection to be updated
- Set the new connection parameters

- Connection interval (min & max)
- Latency
- Supervision timeout
- Connection event length (min & max)

GUI software description UM1686

28/70 DocID025464 Rev 5

3.2.4 GUI Scripts window

The GUI Scripts window allows the user to load and run a Python script built using the
available set of BlueNRG ACI commands and the related events. For a list of supported HCI
and ACI script commands and related parameters, refer to the commands available in the
BlueNRG GUI ACI Commands window.

Table 8. GUI ACI utilities window: available periph eral operations

Operation Associated actions Notes

Advertising

Allows to put a Peripheral device in Advertising mode by
selecting:
- Discoverable mode (limited, non discoverable and
general discoverable)
- Type (ADV_IND, ADV_SCAN_IND,

ADV_NONCONN_IND)
- Set Local name and type (complete or short)
- Advertising intervals (min & max)

- Policy:
- Allow scan request from any, allow connect request
from any
- Allow scan request from white list only, allow connect -
request from any
- Allow scan request from any, allow connect request
from white list only

Update
Advertising
Data

It allows to update the advertising data;
It allows to set the scan response data;
It allows to update the location UUID, major and minor
number defined on the Beacon window

DocID025464 Rev 5 29/70

UM1686 GUI software description

70

Figure 13. BlueNRG GUI Scripts window

Moreover, the script engine supports other utility commands:

Table 9. GUI Scripts window: utility commands

Command name Parameters Description

HW_BOOTLOADER None Hardware bootloader activation

HW_RESET None HW reset

INFO
String to be
displayed

Opens a message window and shows the input
parameter. Script is blocked until user presses
OK button

ERROR User message
Raises an exception with a user-defined debug
message

GET_CHAR None
Allows user to enter a specific char as input
(such as the C get_char() API)

GET_FILE None Allows the selection of a specific file as input

GET_NAME None
Returns the device name within an advertising
packet

GET_VALUE Array of bytes

Converts the array of bytes to an integer value.
Example:

X = [0x33,0x22]

GET_VALUE(X) = 0x2233

GUI software description UM1686

30/70 DocID025464 Rev 5

The following pseudo code describes how to initialize a BlueNRG device as a peripheral
using a simple Python script:
Reset BlueNRG

HW_RESET()

Init GATT

ACI_GATT_INIT()

Init GAP as central device

ACI_GAP_INIT(Role=CENTRAL)

When a script is calling a command which generates specific events, the script can detect
them by using the WAIT_EVENT (event_code=None, timeout=None,
continueOnEvtMiss=False, **param_checks) command.

GET_LIST
Integer, Number of
bytes

Converts the integer value to an array of bytes.
Example:

X = 0x2233

GET_LIST(X, 2) = [0x33,0x22]

GET_STACK_VERSION None
Returns the device information (HW version &
FW version) as (hw, fw)

GET_RAND_KEY None
Returns a random number between 0 and
999999

INSERT_PASS_KEY None
Allows to enter a pass key value used for the
security pass key method

PRINT String
Print utility: displays information on GUI
Sent/Received Packets

RESET None SW reset

SLEEP time It sleeps for “time” in milliseconds

SET_MODE Mode Set stack mode (1,2,3)

SET_PUBLIC_ADDRESS Public address Set public address (optional)

SENSORDEMO_GET_TE
MPERATURE

None
Allows to obtain the temperature value from the
ACI_ATT_READ_RESP_EVENT event (only for
the SensorDemo_Central script)

SENSORDEMO_GET_AC
CELERATION

None
Allows to obtain the acceleration values (x,y,z)
from the ACI_GATT_NOTIFICATION_EVENT
event (only for the SensorDemo_Central script)

TIME None
Returns the time as a floating point number
expressed in seconds since the epoch, in UTC

Table 9. GUI Scripts window: utility commands (cont inued)

Command name Parameters Description

DocID025464 Rev 5 31/70

UM1686 GUI software description

70

The WAIT_EVENT macro-command waits for an event with 'Event Code' parameter equal
to event_code. If no event_code is indicated, the macro-command waits for any event.

The timeout parameter allows to set the event timeout. If no timeout is set, the macro-
command waits until an event occurs. If a timeout (greater than zero) is set and
continueOnEvtMiss is False and no event occurs before the timeout, an HCITimeoutError
error occurs. Otherwise, if the input parameter continueOnEvtMiss is True and a timeout
(greater than zero) is set, the macro-command returns the value None even when no event
occurs before the timeout.

If one or more optional filtering parameters are specified, the macro-command performs a
check on them and returns only the first detected event that satisfies these parameters. The
events received before the one returned are discarded.

The WAIT_EVENT() command return value can be:

• an event

• None, if a timeout occurs and the input parameter “continueOnEvtMiss” is set to True

An HCITimeoutError error exception is raised when a timeout occurs

The event_code parameter can be one of the following values:

Table 10. WAIT_EVENT macro-command

Command
name

Description Parameters Return

WAIT_EVENT

Waits for an event with
'Event Code'
parameterequal to
event_code. If no
event_code is indicated,
the macro-command
waits for any event.
Optional filtering
parameters allow
definition of additional
filters on event fields

event_code = None (default) An event with its parameters

timeout = None (default)
None, if a timeout occurs and the
input parameter “continueOnEvtMiss”
is set to True

continueOnEvtMiss = False
(default)

An HCITimeoutError error exception
is raised when a timeout occurs

param_checks = optional
filtering parameters

evt.get_param(“parameter_name”).va
l is used for getting the specific event

Table 11. WAIT_EVENT: event codes with related even t parameter types

event_code
Event

parameter type
Event parameter type value

HCI_LE_META_EVENT Subevent_Code

HCI_LE_CONNECTION_COMPLETE_EVENT

HCI_LE_ADVERTISING_REPORT_EVENT

HCI_LE_CONNECTION_UPDATE_COMPLETE_EVENT

HCI_LE_READ_REMOTE_USED_FEATURES_COMPLETE_EVENT

HCI_LE_LONG_TERM_KEY_REQUEST_EVENT

GUI software description UM1686

32/70 DocID025464 Rev 5

HCI_VENDOR_EVENT Ecode

ACI_BLUE_INITIALIZED_EVENT

ACI_GAP_LIMITED_DISCOVERABLE_EVENT

ACI_GAP_PAIRING_COMPLETE_EVENT

ACI_GAP_PASS_KEY_REQ_EVENT

ACI_GAP_AUTHORIZATION_REQ_EVENT

ACI_GAP_SLAVE_SECURITY_INITIATED_EVENT

ACI_GAP_BOND_LOST_EVENT

ACI_GAP_DEVICE_FOUND_EVENT

ACI_GAP_PROC_COMPLETE_EVENT

ACI_L2CAP_CONNECTION_UPDATE_RESP_EVENT

ACI_L2CAP_PROC_TIMEOUT_EVENT

ACI_L2CAP_CONNECTION_UPDATE_REQ_EVENT

ACI_GATT_ATTRIBUTE_MODIFIED_EVENT

ACI_GATT_PROC_TIMEOUT_EVENT

ACI_ATT_EXCHANGE_MTU_RESP_EVENT

ACI_ATT_FIND_INFO_RESP_EVENT

ACI_ATT_FIND_BY_TYPE_VALUE_RESP_EVENT

ACI_ATT_READ_BY_TYPE_RESP_EVENT

ACI_ATT_READ_RESP_EVENT

ACI_ATT_READ_BLOB_RESP_EVENT

ACI_ATT_READ_MULTIPLE_RESP_EVENT

ACI_ATT_READ_BY_GROUP_TYPE_RESP_EVENT

ACI_ATT_WRITE_RESP_EVENT

ACI_ATT_PREPARE_WRITE_RESP_EVENT

ACI_ATT_EXEC_WRITE_RESP_EVENT

ACI_GATT_INDICATION_EVENT

ACI_GATT_NOTIFICATION_EVENT

ACI_GATT_PROC_COMPLETE_EVENT

ACI_GATT_ERROR_RESP_EVENT

ACI_GATT_DISC_READ_CHAR_BY_UUID_RESP_EVENT

ACI_GATT_WRITE_PERMIT_REQ_EVENT

ACI_GATT_READ_PERMIT_REQ_EVENT

ACI_GATT_READ_MULTI_PERMIT_REQ_EVENT

HCI_DISCONNECTION_CO
MPLETE_EVENT

HCI_ENCRYPTION_CHAN
GE_EVENT

Table 11. WAIT_EVENT: event codes with related even t parameter types (continued)

event_code
Event

parameter type
Event parameter type value

DocID025464 Rev 5 33/70

UM1686 GUI software description

70

Below are some code examples using the WAIT_EVENT() macro-command:

Example 1

Wait any events

evt = WAIT_EVENT()

if evt.event_code == HCI_LE_META_EVENT:

User specific code ……

elif evt.event_code==HCI_VENDOR_EVENT:

User specific code ……

Example 2

Wait an HCI_LE_META_EVENT

evt = WAIT_EVENT(HCI_LE_META_EVENT)

Using evt.get_param('Subevent_Code').val it's possible to identify the specific
HCI_LE_META_EVENT

parameter type value

evtCode = evt.get_param('Subevent_Code').val

Check if received event is HCI_LE_CONNECTION_COMPLETE_EVENT

if (evtCode == HCI_LE_CONNECTION_COMPLETE_EVENT):

 # If Connection Complete Status is success, get connection handle

 if evt.get_param('Status').val==0x00:

 conn_handle= evt.get_param('Connection_Handle').val

HCI_READ_REMOTE_VER
SION_INFORMATION_COM
PLETE_EVENT

HCI_COMMAND_COMPLE
TE_EVENT

HCI_COMMAND_STATUS_
EVENT

HCI_HARDWARE_ERROR_
EVENT

HCI_NUMBER_OF_COMPL
ETED_PACKETS_EVENT

HCI_DATA_BUFFER_OVER
FLOW_EVENT

HCI_ENCRYPTION_KEY_R
EFRESH_COMPLETE_EVE
NT

Table 11. WAIT_EVENT: event codes with related even t parameter types (continued)

event_code
Event

parameter type
Event parameter type value

GUI software description UM1686

34/70 DocID025464 Rev 5

Example 3

Wait HCI_VENDOR_EVENT event_code

evt = WAIT_EVENT(HCI_VENDOR_EVENT)

#Using evt.get_param('Ecode').val it's possible to identify the specific
HCI_VENDOR_EVENT event parameter type value

evtCode = evt.get_param('Ecode').val

if (evtCode == ACI_GATT_NOTIFICATION_EVENT):

conn_handle=evt.get_param('Connection_Handle').val

Example 4

Wait the Ecode ACI_GATT_PROC_COMPLETE_EVENT (HCI_VENDOR_EVENT
#event_code).

if no event occurs within the selected timeout, an exception is raised

WAIT_EVENT(HCI_VENDOR_EVENT, timeout=30,
Ecode=ACI_GATT_PROC_COMPLETE_EVENT)

Note: If no timeout parameter is specified, it waits until the
ACI_GATT_PROC_COMPLETE_EVENT event occurs.

Example 5

Wait an event for 10 seconds with continueOnEvtMiss set to True

If no event occurs, the script continues (no exception is raised).

WAIT_EVENT(timeout=10, continueOnEvtMiss =True)

Note: If the continueOnEvtMiss parameter is set to False and no event within the selected timeout
occurs, an exception is raised.

Example 6

Wait the HCI_DISCONNECTION_COMPLETE_EVENT event_code

WAIT_EVENT(HCI_DISCONNECTION_COMPLETE_EVENT)

Example 7

Create a Connection and wait for the HCI_LE_CONNECTION_COMPLETE_EVENT

ACI_GAP_CREATE_CONNECTION(Peer_Address=[0x12, 0x34, 0x00, 0xE1, 0x80,
0x02])

event = WAIT_EVENT(HCI_LE_META_EVENT,
timeout=30,Subevent_Code=HCI_LE_CONNECTION_COMPLETE_EVENT)

if event.get_param('Status').val==0x00:

Store the connection handle

conn_handle= event.get_param('Connection_Handle').val

User defined code …

GUI script engine loading and running steps

To load and run a Python script using the BlueNRG GUI script engine, the following steps
must be observed:

DocID025464 Rev 5 35/70

UM1686 GUI software description

70

1. In the BlueNRG GUI, Scripts window, Script Engine section, click on tab “…”, browse to
the script location and select the script

2. Click on the “Run Script” tab to run the script. The execution flow (commands and
events) will be displayed in the BlueNRG GUI “Sent/Received Packets” section

In the BlueNRG DK 1.7.0 and future versions, some reference BlueNRG scripts are
available in the GUI/scripts folder.

Note: It is worthy of note that in order to write and use the BlueNRG scripts, the user is required to
have some knowledge of the Python language (Python 2.7.6), and a good understanding of
the BlueNRG ACI commands and related events.

3.2.5 GUI Beacon window

The BlueNRG GUI Beacon window provides some tabs allowing configuration of a
BlueNRG device as a BLE Beacon device which transmits advertising packets with specific
manufacturer data.

Figure 14. BlueNRG GUI Beacon window

The user can configure the following advertising data fields for the BLE Beacon device,
through the BlueNRG GUI Beacon window configuration parameters.

Table 12. BlueNRG GUI beacon window configuration p arameters

Data field Description Notes

Address Device address

Public or Random Device address type

Company Identifier Code SIG company identifier Default is 0x0030 (STMicroelectronics)

ID Beacon ID Fixed value

GUI software description UM1686

36/70 DocID025464 Rev 5

To configure a BlueNRG platform as a BLE beacon device, click on “Set Beacon” tab.

3.2.6 GUI RF Test window

The BlueNRG GUI provides the RF Test window that permits the performance of the
following tests:

1. Start/Stop a tone on a specific BLE RF channel

2. Perform BLE Packer Error Rate (PER) tests using BLE Direct Test Mode (DTM)
commands

Start/Stop a tone

To start a tone on a specific RF BLE channel, perform these steps:

1. Connect a BlueNRG platform to a PC USB port

2. Launch an instance of the BlueNRG GUI

3. Open related COM port

4. Go to RF Test window and in the TRANSMITTER section:
– Set the BLE channel using the TX Frequency combo box
– Set TX power in the related combo box
– Click on the “Start Tone” button

To stop a tone on a specific RF BLE channel, perform these steps:

1. Go to RF Test window and in the TRANSMITTER section:
– Click on the Stop Tone button (the Stop button is available only when a tone is

started)

Location UUID Beacons UUID
Used to distinguish specific beacons

from others

Major number Identifier for a group of beacons Used to group a related set of beacons

Minor number Identifier for a single beacon Used to identify a single beacon

Tx Power Level 2's complement of the Tx power
Used to establish how far you are from

device

Table 12. BlueNRG GUI beacon window configuration p arameters (continued)

Data field Description Notes

DocID025464 Rev 5 37/70

UM1686 GUI software description

70

Figure 15. GUI RF test: Start a tone

Direct Test Mode (DTM) tests

The BlueNRG GUI provides an RF test using the BLE Direct Test Modes commands that
allows users to target a packet error rate test scenario.

Two sections are available:

1. TRANSMITTER section for transmitting reference packets at a fixed interval

2. RECEIVER section for receiving reference packets at a fixed interval

TRANSMITTER section

This section permits to set the following items:

• The power level of the transmitter

• The Frequency of the transmitter

• Length of data to transmit in each packet

Packet payload format as defined in the Bluetooth Low Energy specification, Direct Test
Mode section

By clicking on the “Start Transmitter” button, test reference packets will be sent at a fixed
interval.

RECEIVER section

This section permits to set the following items:

• The Frequency of the receiver

By clicking on the “Receiver Test” button, test reference packets will be received at a fixed
interval.

GUI software description UM1686

38/70 DocID025464 Rev 5

Figure 16. GUI RF Test: TRANSMITTER and RECEIVER se ctions

Packet Error Rate (PER) test procedure

To perform a Packet Error Rate test using standard BLE Direct Test Mode commands
(HCI_LE_Transmitter_Test, HCI_LE_Receiver_Test and HCI_LE_Test_End), it is necessary
to perform the following procedure:

Start PER test

1. Connect two BlueNRG platforms (TX and RX) to PC USB ports

2. Open two instances of BlueNRG GUI (one for TX and RX BlueNRG devices)

3. In each instance of the BlueNRG GUI, Open the COM port related to TX/RX BlueNRG
device

4. Ensure that the antennas are plugged into the BlueNRG devices, where applicable

5. In the BlueNRG GUI related to the RX BlueNRG device,

Go to the RF Test window, RECEIVER section:
– Set the RX frequency
– Click on “Start Receiver” button to start the Receiver test

6. In the BlueNRG GUI related to TX BlueNRG device,

Go to RF Test window, TRANSMITTER section:
– Set TX power
– Set TX frequency
– Set Length of data
– Set Packet payload format
– Click on the “Start Transmitter” button, to start the Transmitter test

DocID025464 Rev 5 39/70

UM1686 GUI software description

70

Stop PER test

1. In the BlueNRG GUI related to TX BlueNRG device,
– Go to the RF Test window, TRANSMITTER section
– Click on “Stop Transmitter” button. The number of transmitted packets is displayed in

the #Packet Transmitted field

2. In the BlueNRG GUI related to Rx BlueNRG device,

Go to the RF Test window, RECEIVER section:
– Click on the “Stop Receiver” button. The number of received packets is displayed in

the #Packet Received field.

Get PER (Packet Error Rate) value

1. In the BlueNRG GUI related to RX BlueNRG device,
– Go to the RF Test window, RECEIVER section
– In the PER section, insert the number of transmitted packet from TX device into the

Packet Transmitted field (read this value from TRANSMITTER section in the
BlueNRG GUI related to TX device)

– The PER (packet error rate) value is shown in the Packet Error Rate field

Figure 17. GUI RF Test, PER test: TX device

GUI software description UM1686

40/70 DocID025464 Rev 5

Figure 18. GUI RF Test, PER test: RX device

DocID025464 Rev 5 41/70

UM1686 Programming with BlueNRG network processor

70

4 Programming with BlueNRG network processor

The BlueNRG provides a high level interface to control its operation. This interface is called
ACI (application-controller interface). The ACI is implemented as an extension to the
standard Bluetooth HCI interface. Since BlueNRG is a network processor, the stack runs
inside the device itself. Hence, no library is required on the external microcontroller, except
for profiles and all the functions needed to communicate with the BlueNRG SPI interface.

The development kit software includes sample code that shows how to configure BlueNRG
and send commands or parsing events. The source library is called simple BlueNRG HCI to
distinguish it from the library for the complete profile framework (not present in the software
development kit). This library is able to handle multiple profiles at the same time and
supports several Bluetooth GATT-based profiles for BlueNRG. Documentation on the ACI is
provided in a separate document.

Figure 19. Profile framework structure

4.1 Requirements
In order to communicate with BlueNRG network processor very few resources are needed
by the main processor. These are listed below:

– SPI interface

– Platform-dependent code to write/read to/from SPI

– A timer to handle SPI timeouts or to run Bluetooth LE Profiles

Minimum requirements in terms of Flash and RAM space largely depend on the functionality
needed by the application, on the microprocessor that will run the code and on the compiler
toolchain used to build the firmware.

On the STM32L (Cortex-M3 core), the memory footprint for the code interfacing the
BlueNRG requires few kilobytes of Flash and RAM (typically 2-4 KB of Flash, and 0.8-1.5
KB of RAM). So a complete simple application (like the BlueNRG sensor demo) could
require just 15 KB of Flash and 2 KB of RAM.

If using the complete BlueNRG profile framework, the memory footprint is around 9 KB of
code and 3 KB of data for just the ACI interface and the profile framework functions. The
memory required for the profiles can vary depending on the complexity of the profile itself.
For example, code for HID-over-GATT host is around 6 KB, while for heart rate monitor is
around 2.3 KB.

4.2 Software directory structure
The Projects folder contains some sample code that can be used on the application
processor to control the BlueNRG. Platform-dependent code is also provided for STM32L1
platforms. The example project provided in the package will run “as is” on the development
kit.

Proximity FindMe HOGP

Basic profile framework

Programming with BlueNRG network processor UM1686

42/70 DocID025464 Rev 5

The files are organized using the following folder structure:

– Drivers. It contains all the STM32L1xx Cube library framework files.

– Middlewares\ST\STM32_BlueNRG\SimpleBlueNRG_HCI. Contains the code
that is used to send ACI commands to the BlueNRG network processor. It
contains also definitions of BlueNRG events.

– platform. Contains all the platform-dependent files (only on STM32L1xx standard
library framework). These can be taken as an example to build applications that
can be run on other platforms.

– Project_Cube, Projects_STD_Library. Contains source based, respectively, on
STM32L1xx Cube library and on STM32L1xx standard library frameworks, that
will use the Bluetooth technology with the BlueNRG. Project files for IAR
embedded workbench are also available.

DocID025464 Rev 5 43/70

UM1686 BlueNRG sensor profile demo

70

5 BlueNRG sensor profile demo

The software development kit contains an example, which implements a proprietary
Bluetooth profile: the sensor profile. This example is useful for building new profiles and
applications that use the BlueNRG network processor. This GATT profile is not compliant to
any existing specification. The purpose of this project is simply to show how to implement a
given profile.

This profile exposes two services: acceleration service and environmental service.
Figure 20 shows the whole GATT database, including the GATT and GAP services that are
automatically added by the stack.

One of the acceleration service’s characteristics has been called free-fall characteristic. This
characteristic cannot be read or written but can be notified. The application will send a
notification on this characteristic (with value equal to 0x01) if a free-fall condition has been
detected by the LIS3DH MEMS sensor (the condition is detected if the acceleration on the 3
axes is near zero for a certain amount of time). Notifications can be enabled or disabled by
writing on the related client characteristic configuration descriptor.

The other characteristic exposed by the service gives the current value of the acceleration
that is measured by the accelerometer. The value is made up of six bytes. Each couple of
bytes contains the acceleration on one of the 3 axes. The values are given in mg. This
characteristic is readable and can be notified if notifications are enabled.

Another service is also defined. This service contains characteristics that expose data from
some environmental sensors: temperature, pressure and humidity(c). For each
characteristic, a characteristic format descriptor is present to describe the type of data
contained inside the characteristic. All of the characteristics have read-only properties

c. An expansion board with LPS25H pressure sensor and HTS221 humidity sensor can be connected to the
motherboard through the expansion connector (F in Figure 3). If the expansion board is not detected, only
temperature from STLM75 will be used.

BlueNRG sensor profile demo UM1686

44/70 DocID025464 Rev 5

Figure 20. BlueNRG sensor demo GATT database

5.1 Supported platforms
The BlueNRG sensor profile demo is supported only on the BlueNRG development platform
(STEVAL-IDB002V1).

5.2 BlueNRG app for smartphones
An application is available for smartphones (iOS and android), that works with the sensor
profile demo. The development kits are preprogrammed with the sensor profile demo
firmware. If the development board has been flashed with another firmware, it can be
programmed with the correct firmware. Refer to Section 4.1 for the programming procedure
using the device firmware upgrade feature and BlueNRG GUI. The correct pre-compiled
firmware can be found inside firmware folder (SensorDemo.hex). The source file for the
demo is inside the project folder.

This app enables notifications on the acceleration characteristic and displays the value on
the screen. Data from environmental sensors are also periodically read and displayed.

DocID025464 Rev 5 45/70

UM1686 BlueNRG sensor profile demo

70

Figure 21. BlueNRG app

5.3 BlueNRG sensor profile demo: connection with a central
device
This section describes how to interact with a central device, while BlueNRG is acting as a
peripheral. The central device can be another BlueNRG acting as a master, or any other
Bluetooth smart or smart-ready device.

First, BlueNRG must be set up. In order to do this, a series of ACI command need to be sent
to the processor.

5.3.1 Initialization

BlueNRG’s stack must be correctly initialized before establishing a connection with another
Bluetooth LE device. This is done with two commands:

– aci_gatt_init()

– aci_gap_init(GAP_PERIPHERAL_ROLE,&service_handle,
&dev_name_char_handle, &appearance_char_handle);

Where: Role = GAP_PERIPHERAL_ROLE.

See ACI documentation for more information on these commands and on those that follow
as well. Peripheral role must be specified inside the GAP_INIT command.

5.3.2 Add service and characteristics

BlueNRG’s Bluetooth LE stack has both server and client capabilities. A characteristic is an
element in the server database where data are exposed. A service contains one or more
characteristics. Add a service using the following command. Parameters are provided only
as an example.

– aci_gatt_add_serv(0x01, 0xA001, 0x01, 0x06, & Service_Handle);

Where: Service_UUID_Type=0x01, Service_UUID_16=0xA001, Service_Type=0x01,
Max_Attributes_Records=0x06.

BlueNRG sensor profile demo UM1686

46/70 DocID025464 Rev 5

The command will return the service handle on variable Service_Handle (e.g., 0x0010). A
characteristic must now be added to this service. This service is identified by the service
handle.

– aci_gatt_add_char (Service_Handle, 0x01, 0xA002, 10, 0x1A,0x00, 0x01, 0x07,
0x01, &Char_Handle);

Where: Char_UUID_Type=0x01, Char_UUID_16=0xA002, Char_Value_Length=10,
Char_Properties=0x1A,Security_Permissions=0x00, GATT_Evt_Mask=0x01,
Enc_Key_Size=0x07, Is_Variable=0x01.

With this command a variable-length characteristic has been added, with read, write and
notify properties. The characteristic handle is also returned (Char_Handle).

5.3.3 Set security requirements

BlueNRG exposes a command that the application can use to specify its security
requirements. If a characteristic has security restrictions, a pairing procedure must be
initiated by the central in order to access that characteristic. Let's assume we want the user
to insert a passcode during the pairing procedure.

– aci_gap_set_authentication_requirement (0x01, 0,0, 7, 16, 123456, 1);

Where: Char_UUID_Type=0x01, Char_UUID_16=0xA002, Char_Value_Length=10,
Char_Properties=0x1A,Security_Permissions=0x00, GATT_Evt_Mask=0x01,
Enc_Key_Size=0x07, Is_Variable=0x01.

5.3.4 Enter connectable mode

Use GAP ACI commands to enter one of the discoverable and connectable modes.

– aci_gap_set_discoverable (0x00, 0x800,0x900, 0x00, 0x00, 0x08, local_name,
0x00, 0x00, 0x0000, 0x0000);

Where: Advertising_Type=0x00, Advertising_Interval_Min=0x800,
Advertising_Interval_Max=0x900, Own_Address_Type=0x00,
Advertising_Filter_Policy=0x00, Local_Name_Length=0x08, local_name[] =
{AD_TYPE_COMPLETE_LOCAL_NAME,'B','l','u','e','N','R','G'};
Service_UUID_Length=0x00, Service_UUID_List=0x00,
Slave_Connection_Interval_Min=0x0000, Slave_Connection_Interval_Max=0x0000.

The Local_Name parameter contains the name that will be present in advertising data, as
described in Bluetooth core specification version 4.0, Vol. 3, Part C, Ch. 11.

5.3.5 Connection with central device

Once BlueNRG is put in a discoverable mode, it can be seen by a central device in
scanning.

Any Bluetooth smart and smart-ready device can connect to BlueNRG, such as a
smartphone. LightBlue is one of the applications in the Apple store for iPhone® 4S/5 and
later versions of Apple’s iPhone.

Start the LightBlue application. It will start to scan for peripherals. A device with the
BlueNRG name will appear on the screen. Tap on the box to connect to the device. A list of
all the available services will be shown on the screen. Touching a service will show the
characteristics for that service.

DocID025464 Rev 5 47/70

UM1686 BlueNRG sensor profile demo

70

BlueNRG has added two standard services: GATT Service (0x1801) and GAP service
(0x1800).

Try to read the characteristic from the service just added (0xA001). The characteristic has a
variable length attribute, so you will not see any value. Write a string into the characteristic
and read it back.

BlueNRG can send notifications of the characteristic that has been previously added, with
UUID 0xA002 (after notifications have been enabled). This can be done using the following
command:

– aci_gatt_update_char_value (Service_Handle, Char_Handle, 0,0x05,'hello');

where: Val_Offset=0, Char_Value_Length=0x05, Char_Value='hello'.

Once this ACI command has been sent, the new value of the characteristic will be displayed
on the phone.

5.4 BlueNRG sensor demo: central profile role
This application implements a basic version of the BlueNRG Sensor Profile Central role
which emulates the BlueNRG Sensor Demo applications available for smartphones (iOS
and Android).

It configures a BlueNRG device as a BlueNRG Sensor device, Central role which is able to
find, connect and properly configure the free fall, acceleration and environment sensor
characteristics provided by a BlueNRG development platform, configured as a BlueNRG
Sensor device, Peripheral role.

This application uses a new set of APIs that allow the performance of the following
operations on a BlueNRG Master/Central device:

– Master Configuration Functions
– Master Device Discovery Functions
– Master Device Connection Functions
– Master Discovery Services & Characteristics Functions
– Master Data Exchange Functions
– Master Security Functions
– Master Common Services Functions

These APIs are provided through binary libraries available on Projects\Bluetooth
LE\Profile_Framework_Central\library. The master library APIs are documented in doxygen
format within the SW package.

The BlueNRG Sensor Demo Central role is supported on the BlueNRG development
platform (STEVAL-IDB002V1) and on the BlueNRG USB dongle (STEVAL-IDB003V1).

The sections that follow describe how to use the master library APIs for configuring a
BlueNRG Sensor Demo Central device.

5.4.1 Initialization

BlueNRG's master library must be correctly initialized before establishing a connection with
another

Bluetooth LE device. This is done with this command:
– Master_Init(¶m)

BlueNRG sensor profile demo UM1686

48/70 DocID025464 Rev 5

param variable allows to set the initialization parameters (device address, name, …).

Refer to the master library doxygen documentation for more information about the
command and related parameters.

On the application main loop, the Master_Process() API has to be called in order to process
the Master library state machines.

5.4.2 Discovery a sensor peripheral device

In order to discover a Sensor Peripheral device, a discovery procedure has to be started
with the master library command:

– Master_DeviceDiscovery(&devDiscParam);

devDiscParam variable allows to set the discovery parameters (discovery procedure,
interval, window, …).

Refer to the master library doxygen documentation for more information about the
command and related parameters.

The found devices are returned through the Master_DeviceDiscovery_CB() master library
callback (DEVICE_DISCOVERED status).

5.4.3 Connect to discovered sensor peripheral devic e

Once a Sensor Peripheral device has been found, the Sensor Central device connects to it
by using the following master library command:

– Master_DeviceConnection(&connParam);

connParam variable allows to set the connection parameters (connection procedure, scan
duration, window,…).

Refer to the master library doxygen documentation for more information about the
command and related parameters.

When the connection is established with success, the Master_Connection_CB() master
library callback is called with CONNECTION_ESTABLISHED_EVT event.

5.4.4 Discovery sensor peripheral services and char acteristics

Once a Sensor Peripheral device has been connected, the Sensor Central device starts
discovery all primary service procedure, by using the following master library command:

– Master_GetPrimaryServices()

Refer to the master library doxygen documentation for more information about the
command and related parameters.

When services are discovered, the Master_ServiceCharacPeerDiscovery_CB master library
callback is called with PRIMARY_SERVICE_DISCOVERY code. In particular the sensor
and environmental services are discovered.

For each discovered service, the related characteristics are discovered by using the
following master library command:

– Master_GetCharacOfService()

Refer to the master library doxygen documentation for more information about the
command and related parameters.

DocID025464 Rev 5 49/70

UM1686 BlueNRG sensor profile demo

70

When the characteristics of a service are discovered, the
Master_ServiceCharacPeerDiscovery_CB master library callback is called with
GET_CHARACTERISTICS_OF_A_SERVICE code. In particular the sensor acceleration,
free fall and temperature characteristics are discovered.

5.4.5 Enable sensor peripheral acceleration and fre e fall notifications

Once the Sensor Peripheral device sensor acceleration and free fall characteristics have
been discovered, the Sensor Central device can enable the related characteristics
notification by using the following master library command:

– Master_NotifIndic_Status(masterContext.connHandle, handle, TRUE, FALSE);

Refer to the master library doxygen documentation for more information about the
command and related parameters.

When a characteristic notification is enabled, the Master_PeerDataExchange_CB() master
library callback is called with NOTIFICATION_INDICATION_CHANGE_STATUS code. On a
Sensor Central device context, the sensor acceleration and free fall characteristics
notifications coming from the Sensor Peripheral device are received through the
Master_PeerDataExchange_CB() master library callback,
NOTIFICATION_DATA_RECEIVED code. Each received values is displayed on the
connected hyper terminal (115200, 8, N, 1).

5.4.6 Read the sensor peripheral temperature sensor characteristic

Once the Sensor Peripheral device sensor temperature characteristic is discovered, the
Sensor Central device can read the related characteristic value by using the following
master library command:

– Master_Read_Value()

Refer to the master library doxygen documentation for more information about the
command and related parameters.

The characteristic value is received though the Master_PeerDataExchange_CB() master
library callback, READ_VALUE_STATUS code. Each received value is also displayed on
the connected hyper terminal (115200, 8, N, 1).

BlueNRG chat demo application UM1686

50/70 DocID025464 Rev 5

6 BlueNRG chat demo application

The software development kit contains another example, which implements a simple 2-way
communication between two BlueNRG devices. It shows a simple point-to-point wireless
communication using the BlueNRG product.

This demo application exposes one service: chat service.

The chat service contains 2 characteristics:

• The TX characteristic: the client can enable notifications on this characteristic. When
the server has data to be sent, it will send notifications which will contain the value of
the TX characteristic.

• The RX characteristic: this is a writable characteristic. When the client has data to be
sent to the server, it will write a value into this characteristic.

• The maximum length of the characteristic value is 20 bytes.

There are 2 device roles which can be selected through the specific EWARM workspace:

– The “Server” that exposes the chat service (BLE peripheral device).

– The “Client” that uses the chat service (BLE central device).

The application requires 2 devices to be programmed respectively with the 2 devices roles:
server and client. The user must connect the 2 devices to a PC through USB and open a
serial terminal on both, with the following configurations:

The application will listen for keys typed into one device and upon pressing the keyboard
return key, it will send them to the remote device. The remote device will listen for RF
messages and will output them in the serial port. In other words, anything typed in one
device will be visible to the other device.

6.1 Supported platforms
The BlueNRG chat demo (server & client roles) is supported on the BlueNRG development
platform (STEVAL-IDB002V1) and on the BlueNRG USB dongle (STEVAL-IDB003V1).

6.2 BlueNRG chat demo application: peripheral & cen tral
devices
This section describes how two BLE chat devices (server-peripheral & client-central)
interact with each other in order to set up a point-to-point wireless chat communication.

First, BlueNRG must be set up on both devices. In order to do this, a series of ACI
commands need to be sent to the processor.

Table 13. Serial port configuration

Baudrate 115200 bit/sec

Data bits 8 bit

Parity None bit

Stop bits 1 bit

DocID025464 Rev 5 51/70

UM1686 BlueNRG chat demo application

70

6.2.1 Initialization

BlueNRG’s stack must be correctly initialized before establishing a connection with another
Bluetooth LE device. This is done with two commands

• aci_gatt_init()

• BLE Chat, “Server” role:

– aci_gap_init(GAP_PERIPHERAL_ROLE, &service_handle,
&dev_name_char_handle, &appearance_char_handle);

• BLE Chat, “Client role:

– aci_gap_init(GAP_CENTRAL_ROLE, &service_handle,
&dev_name_char_handle, &appearance_char_handle);

Peripheral & central BLE roles must be specified inside the GAP_INIT command. See ACI
documentation for more information on these commands and on those that follow.

6.2.2 Add service and characteristics

The chat service is added on the BLE chat, server role device using the following command:

aci_gatt_add_serv(UUID_TYPE_128, service_uuid, PRIMARY_SERVICE, 7,
&chatServHandle);

Where service_uuid is the private service UUID 128 bits allocated for the chat service
(Primary service).

The command will return the service handle in chatServHandle.

The TX characteristic is added using the following command (on BLE Chat, Server role
device):

aci_gatt_add_char(chatServHandle, UUID_TYPE_128, charUuidTX, 20,
CHAR_PROP_NOTIFY, ATTR_PERMISSION_NONE, 0, 16, 1, &TXCharHandle);

Where charUuidTX is the private characteristic UUID 128 bits allocated for the TX
characteristic (notify property). The characteristic handle is also returned (on
TXCharHandle).

The RX characteristic is added using the following command (on BLE Chat, Server role
device):

aci_gatt_add_char(chatServHandle, UUID_TYPE_128, charUuidRX, 20,
CHAR_PROP_WRITE|CHAR_PROP_WRITE_WITHOUT_RESP,
ATTR_PERMISSION_NONE, GATT_SERVER_ATTR_WRITE,16, 1, &RXCharHandle);

Where charUuidRX is the private characteristic UUID 128 bits allocated for the RX
characteristic (write property). The characteristic handle is also returned (on
RXCharHandle).

See ACI documentation for more information on these commands as well as those that
follow.

6.2.3 Set security requirements

BlueNRG exposes a command that the application can use to specify its security
requirements. If a characteristic has security restrictions, a pairing procedure must be
initiated by the central in order to access that characteristic. On BLE chat demo, a fixed pin
(123456) is used as follows:

BlueNRG chat demo application UM1686

52/70 DocID025464 Rev 5

aci_gap_set_auth_requirement(MITM_PROTECTION_REQUIRED,OOB_AUTH_DATA_AB
SENT,NULL,7,16, USE_FIXED_PIN_FOR_PAIRING,123456,BONDING);

6.2.4 Enter connectable mode

On BLE chat, server role device uses GAP ACI commands to enter into general
discoverable mode:

aci_gap_set_discoverable(ADV_IND, 0, 0, PUBLIC_ADDR, NO_WHITE_LIST_USE,8,
local_name, 0, NULL, 0, 0);

The local_name parameter contains the name that will be present in advertising data, as
described in the Bluetooth core specification version 4.0, Vol. 3, Part C, Ch. 11.

6.2.5 Connection with central device

Once the BLE chat, server role device is put in a discoverable mode, it can be seen by the
BLE chat, client role device in order to create a Bluetooth low energy connection.

On BLE chat, client role device uses GAP ACI commands to connect with the BLE chat,
server role device in advertising mode:

aci_gap_create_connection(0x4000, 0x4000, PUBLIC_ADDR, bdaddr, PUBLIC_ADDR, 9,
9, 0, 60, 1000, 1000);

where bdaddr is the peer address of the BLE chat, client role device.

Once the 2 devices are connected, the user can set up a serial terminal and type into each
of them. The typed characters will be respectively stored in 2 buffers and upon pressing the
keyboard return key, BLE communication will work as follows:

1. On BLE chat, server role device, the typed characters will be sent to BLE chat, client
role device by notifying the TX characteristic that has been previously added (after
notifications have been enabled). This can be done using the following command:

aci_gatt_update_char_value(chatServHandle,TXCharHandle,0,len,(tHalUint8 *)cmd+j)

2. On BLE chat, client role device, the typed characters will be sent to the BLE chat,
server role device, by writing the RX characteristic that has been previously added.
This can be done using the following command:
aci_gatt_write_without_response(connection_handle, RX_HANDLE+1, len, (tHalUint8
*)cmd+j)
Where connection_handle is the handle returned on connection creation as a
parameter of the EVT_LE_CONN_COMPLETE event.

Once these ACI commands have been sent, the values of the TX, RX characteristics are
displayed on the serial terminals.

DocID025464 Rev 5 53/70

UM1686 BlueNRG chat demo application

70

Figure 22. BLE chat client example Figure 23. BLE ch at server example

BlueNRG Beacon demonstration application UM1686

54/70 DocID025464 Rev 5

7 BlueNRG Beacon demonstration application

The software development kit contains another example, which shows how to configure a
BlueNRG device to advertise specific manufacturing data and allow another BLE device to
know if it is in the range of the BlueNRG beacon device.

7.1 Supported platforms
The BlueNRG Beacon demo is supported by the BlueNRG development platform (STEVAL-
IDB002V1) and the BlueNRG USB dongle (STEVAL-IDB003V1).

7.2 BLE Beacon application setup
This section describes how to configure a BlueNRG device for acting as a beacon device.

7.2.1 Initialization

The BlueNRG stack must be correctly initialized as follows:
– aci_gatt_init()
– aci_gap_init(GAP_PERIPHERAL_ROLE, &service_handle,

&dev_name_char_handle, &appearance_char_handle);

7.2.2 Define advertising data

The BLE Beacon application advertises the following manufacturing data:

Note: SIG company identifiers are available at:

https://www.bluetooth.org/en-us/specification/assigned-numbers/company-identifiers

Table 14. BlueNRG Beacon advertising manufacturing data

Data field Description Notes

Company identifier code SIG company identifier
Default is 0x0030

(STMicroelectronics)

ID Beacon ID Fixed value

Location UUID Beacons UUID
Used to distinguish specific

beacons from others

Major number Identifier for a group of beacons
Used to group a related set of

beacons

Minor number Identifier for a single beacon Used to identify a single beacon

Tx Power 2's complement of the Tx power
Used to establish how far you

are from device

DocID025464 Rev 5 55/70

UM1686 BlueNRG Beacon demonstration application

70

7.2.3 Entering non-connectable mode

The BLE Beacon device uses the GAP ACI command to enter non-connectable mode as
follows:

aci_gap_set_discoverable(ADV_NONCONN_IND, 160, 160, PUBLIC_ADDR,
NO_WHITE_LIST_USE,0, NULL, 0, NULL, 0, 0);

In order to advertise the specific selected manufacturer data, the BLE Beacon application
uses the following GAP ACIs:

/* Remove TX power level field from the advertising data: it is necessary to have enough
space for the beacon manufacturing data */

ret = aci_gap_delete_ad_type(AD_TYPE_TX_POWER_LEVEL);

/* Define the beacon manufacturing payload */

const uint8_t manuf_data[] = {26, AD_TYPE_MANUFACTURER_SPECIFIC_DATA,

 0x30, 0x00, //Company identifier code (Default is 0x0030 - STMicroelectronics)

 0x02, // ID

 0x15, //Length of the remaining payload

 0xE2, 0x0A, 0x39, 0xF4, 0x73, 0xF5, 0x4B, 0xC4, //Location UUID

 0xA1, 0x2F, 0x17, 0xD1, 0xAD, 0x07, 0xA9, 0x61,

 0x00, 0x00, // Major number

 0x00, 0x00, // Minor number

 0xC8 //2's complement of the Tx power (-56dB)};

 };

/* Set the beacon manufacturing data on the advertising packet */

ret = aci_gap_update_adv_data(27, manuf_data);

BLE remote control demo application UM1686

56/70 DocID025464 Rev 5

8 BLE remote control demo application

This demo application shows how to control a remote device (like an actuator) using a
BlueNRG device.This application periodically sends broadcast data (temperature values)
that can be read by any device. The broadcast data is encapsulated in a manufacturer-
specific AD type. The data content (besides the manufacturer ID, i.e. 0x0030 for
STMicroelectronics) is as follows:

The temperature value is given in tenths of degrees Celsius.

The device is also connectable and exposes a characteristic used to control the LEDs on
the BlueNRG platform. The value of this characteristic is a bitmap of 1 byte. Each bit
controls one of the LEDs:

• bit 0 is the status of LED 1

• bit 1 is the status of LED 2.

• bit 2 is the status of LED 3.

• bit 3 is the status of LED 4.

• bit 4 is the status of LED 5.

As a consequence, a remote device can connect and write this byte to change or read the
status of these LEDs (1 for LED ON, 0 for LED OFF).

The peripheral disconnects after a timeout (DISCONNECT_TIMEOUT), to prevent that a
central is always connected to the device.

By default, no security is used, but it can be enabled with ENABLE_SECURITY (refer to file
BLE_RC_main.h). When security is enabled the central has to be authenticated before
reading or writing the device characteristic.

In order to interact with a BlueNRG device configured as a BLE Remote control, another
BLE device (a BlueNRG or any SMART READY device) can be used to scan and see
broadcast data.

To control one of the LEDs, the device has to connect to a BlueNRG BLE Remote Control
device and write into the exposed control point characteristic. The Service UUID is
ed0ef62e-9b0d-11e4-89d3-123b93f75cba. The control point characteristic UUID is
ed0efb1a-9b0d-11e4-89d3-123b93f75cba.

8.1 Supported platforms
The BlueNRG BLE Remote Control is supported on the BlueNRG development platform
(STEVAL-IDB002V1) and on the BlueNRG USB dongle (STEVAL-IDB003V1).

Table 15. BLE remote advertising data

Byte 0 Byte 1 Byte2

App ID (0x05) Temperature value (little-endian)

DocID025464 Rev 5 57/70

UM1686 BLE remote control demo application

70

8.2 BLE remote control application setup
This section describes how to configure a BlueNRG device to acting as a remote control
device.

8.2.1 Initialization

The BlueNRG's stack must be correctly initialized before establishing a connection with
another Bluetooth LE device. This is done with two commands

• aci_gatt_init()

• aci_gap_init(GAP_PERIPHERAL_ROLE, &service_handle, &dev_name_char_handle,
&appearance_char_handle)

8.2.2 Define advertising data

The BLE Remote Control application advertises some manufacturing data as follows:

/* Set advertising device name as Node */

const uint8_t scan_resp_data[] =
{0x05,AD_TYPE_COMPLETE_LOCAL_NAME,'N','o','d','e'}

/* Set scan response data */

hci_le_set_scan_resp_data(sizeof(scan_resp_data),scan_resp_data);

/* Set Undirected Connectable Mode */

ret = aci_gap_set_discoverable(ADV_IND, (ADV_INTERVAL_MIN_MS*1000)/625,
(ADV_INTERVAL_MAX_MS*1000)/625, PUBLIC_ADDR, NO_WHITE_LIST_USE, 0,
NULL, 0, NULL, 0, 0);

 /* Set advertising data */

ret = hci_le_set_advertising_data(sizeof(adv_data),adv_data);

On the BlueNRG development platform (STEVAL-IDB002V1), the temperature sensor value
is set within the adv_data variable. On the BlueNRG USB dongle (STEVAL-IDB003V1), a
random value is set within the adv_data variable (no temperature sensor is available on this
platform).

8.2.3 Add service and characteristics

The BLE Remote Control service is added using the following command:

aci_gatt_add_serv(UUID_TYPE_128, service_uuid, PRIMARY_SERVICE, 7,
&RCServHandle);

Where service_uuid is the private service 128-bit UUID allocated for the BLE remote service
(ed0ef62e-9b0d-11e4-89d3-123b93f75cba).

The command returns the service handle in RCServHandle.

The BLE Remote Control characteristic is added using the following command:

#if ENABLE_SECURITY

BLE remote control demo application UM1686

58/70 DocID025464 Rev 5

 ret = aci_gatt_add_char(RCServHandle, UUID_TYPE_128, controlPointUuid, 1,
CHAR_PROP_READ|CHAR_PROP_WRITE|CHAR_PROP_WRITE_WITHOUT_RESP|CH
AR_PROP_SIGNED_WRITE,
ATTR_PERMISSION_AUTHEN_READ|ATTR_PERMISSION_AUTHEN_WRITE,
GATT_NOTIFY_ATTRIBUTE_WRITE, 16, 1, &controlPointHandle);

#else

ret = aci_gatt_add_char(RCServHandle, UUID_TYPE_128, controlPointUuid, 1,
CHAR_PROP_READ|CHAR_PROP_WRITE|CHAR_PROP_WRITE_WITHOUT_RESP,
ATTR_PERMISSION_NONE, GATT_NOTIFY_ATTRIBUTE_WRITE, 16, 1,
&controlPointHandle);

#endif

Where controlPointUuid is the private characteristic 128-bit UUID allocated for BLE Remote
Control characteristic (ed0efb1a-9b0d-11e4-89d3-123b93f75cba).

If security is enabled, the characteristic properties must be set accordingly to enable
authentication on controlPointUuid characteristic read and write.

8.2.4 Connection with a BLE Central device

When connected to a BLE Central device (another BlueNRG device or any SMART READY
device), the controlPointUuid characteristic is used to control the BLE Remote Control
platform LED. Each time a write operation is done on controlPointUuid, the
EVT_BLUE_GATT_ATTRIBUTE_MODIFIED event is raised on the HCI_Event_CB ()
callback and the selected LED/LEDs are turned on or off.

DocID025464 Rev 5 59/70

UM1686 List of acronyms

70

9 List of acronyms

Table 16. List of acronyms used in this document

Term Meaning

BLE Bluetooth low energy

IFR Information register

USB Universal serial bus

Available board schematics UM1686

60/70 DocID025464 Rev 5

10 Available board schematics

Figure 24. STEVAL-IDB002V1 BlueNRG daughterboard

VBAT1

V
B

A
T

1

NO_SMPS

NO_SMPS

n
S

C
L
K

M
O

S
I

M
IS

O

RST

M
O

S
I

C
L
K

IR
Q

MISO
CSN

V
B

A
T

2
V

B
A

T
3

FTEST

CSN

V
B

A
T

3

CLK

JTMS

MOSI

JTDO
JTDI

MISO

J
T

C
K

IRQ

n
S

F
T

E
S

T

RST
J
T

M
S

J
T

C
K

J
T

D
O

J
T

D
I

V
B

A
T

2

SOSCOUT

AUXADP
AUXADN

S
O

S
C

O
U

T

A
U

X
A

D
P

A
U

X
A

D
N

V
D

D

V
D

D
V

D
D

V
D

D

V
D

D

V
D

D
3
V

3

3
V

3

V
D

D

V
D

D

M
a
l
e

C
o
n
n
e
c
t
o
r

2
x
5

11
NN

DD
AA

XX
UU

AA

S
o
l
d
e
r

a

1
0
u
_
0
8
0
5

b
e
t
w
e
e
n

1
-
2

o
r

a

0
R
0
_
0
8
0
5

b
e
t
w
e
e
n

1
-
3

22
LL

22
00

44
00

__
DD

BB
TT

11
RR

cc
nn

11
22

CC

RR
77

XX
__

22
00

44
00

__
nn

00
00

11

11
CC

RR
55

XX
__

22
00

44
00

__
uu

11

44
JJ

2
4
6
8

22
XX

55
RR

EE
DD

AA
EE

H H

10

1
3
5
7
9

33
CC

GG
OO

CC
__

22
00

44
00

__
pp

00
00

11

99
CC

GG
OO

CC
__

22
00

44
00

__
DD

BB
TT

11
PP

JJ

1

2

TT
SS

E E
TT

FF

3

22
QQ

MM
66

11
__

LL
AA

TT
X X

55
CC

GG
OO

CC
__

22
00

44
00

__
pp

22
22

88
C C

GG
OO

CC
__

22
00

44
00

__
DD

BB
TT

22
CC

11
JJ

1
2

RR
77

XX
__

22
00

44
00

__
nn

00
00

11

GG
AA

TT
JJ

3
4

5
6

7
8

9
1
0

66
1 1

CC

33
RR

cc
nn

RR
77

XX
__

22
00

44
00

__
nn

00
00

11

22
RR

22
00

44
00

__
kk

00
11

33
UU

1
n
S

2
Q

00
44

66
55

99
MM

3
n
W

4
V

s
s

V
c
c

8

n
H

O
L
D

7

C
6

D
5

11
TT

UU
OO

CC
SS

OO
SS

99
RR

22
00

44
00

__
DD

BB
TT 11

11
CC

GG
OO

C C
__

22
00

44
00

__
DD

BB
TT

22
00

44
00

__
kk

00
00

11

55
11

CC

66
RR

cc
nn

GG
OO

C C
__

22
00

44
00

__
pp

00
00

11

22
22

CC

RR
55

XX
__

22
00

44
00

__
uu

11

00
11

CC

GG
OO

CC
__

22
00

44
00

__
DD

BB
TT

66
CC

GG
OO

CC
__

22
00

44
00

_ _
pp

22
22

77
CC

GG
OO

CC
__

22
00

44
00

__
DD

BB
TT

44
11

CC

GG
OO

CC
__

22
00

44
00

__
pp

55
11

77
RR

22
00

44
00

__
kk

00
00

11

33
JJ

2
4
6
8

22
XX

55
RR

EE
DD

AA
EE

HH

10

1
3
5
7
9

77
11

CC

RR
55

XX
__

22
00

44
00

__
uu

11

22
11

CC

GG
OO

CC
__

22
00

44
00

__
DD

BB
TT

99
11

CC
RR

77
XX

__
22

00
44

00
__

nn
00

00
11

33
22

CC

RR
77

XX
__

22
00

44
00

__
nn

00
00

11

QQ
11

kk
22

33
__

LL
AA

TT
XX

11
LL

22
00

44
00

__
DD

BB
TT

44
RR

cc
nn

11
PP

DD
AA

XX
UU

AA

44
CC

RR
55

XX
__

22
00

44
00

__
nn

00
55

11

33
11

CC

GG
OO

CC
__

22
00

44
00

__
pp

55
11

00
22

CC

RR
55

XX
__

22
00

44
00

__
uu

11

11
UU

NN
--
G G

RR
NN

e e
uu

ll
BB

1
S

P
I_

M
O

S
I

2
S

P
I_

C
L
K

3
D

IO
7

4
D

IO
6

5
V

B
A

T
3

6
D

IO
5

7
D

IO
4

9
JTAG_TM

8
J
T

A
G

_
T

C
K

S
10

JTAG_TDO
11

JTAG_TDI
12

VDD1V8

F
X

T
A

L
0

1
8

F
X

T
A

L
1

1
7

16
AUXADN

15
AUXADP

14
N.C.

13
SOSCOUT

V
B

A
T

1
2
4

S
X

T
A

L
0

2
3

S
X

T
A

L
1

2
2

R
F

0
2
1

R
F

1
2
0

V
B

A
T

2
1
9

GND
33

RESETN
25

SMPSFILT1
26

NO_SMPS
27

SMPSFILT2
28

VDD1V2
29

FTEST
30

SPI_CS
31

SPI_MISO
32

22
UU1

1
2

2

22 rr
ee

pp
mm

uu
JJ

33
LL

111
DD

2

3

22
JJ

eel l
aarr

eett
aall

AA
MM

SS

88
11

CC

55
RR

cc
nn

RR
77

XX
_ _

22
00

44
00

__
nn

00
00

11

GSPG0210DI1215

DocID025464 Rev 5 61/70

UM1686 Available board schematics

70

Figure 25. STEVAL-IDB002V1 temperature sensor

Figure 26. STEVAL-IDB002V1 accelerometer

Vcc_3V3

VDD_SENS

VDD_SENS

I2C1_SCL I2C1_SDA

TSEN_INT

3V3

22RR

33006600__kk0011__RR 22UU

1 SDA

5577MMLLTTSS

11CC

RR77XX__33006600__NN000011__CC

2 SCL
3 nOS/INT
4 GND

VDD 8

A0 7

A1 6

A2 5

22CC

RR55XX__33006600__UU11__CC

11RR 33006600__00RR00__RR

GSPG0210DI1130

Vcc_3V3

V
c
c
_

3
V

3

Vcc_3V3

SPI1_SCK SPI1_MOSI SPI1_MISO SPI1_NSS

INT1

INT2

3V3
33RR

1
2

3

33006600__00RR00__RR
33CC

11UU

1 Vdd_IO

HHDD33SSIILL

RR77XX__33006600__NN000011__CC

2 NC
3 NC
4 SCL/SPC
5 GND

A
D

C
1

1
6

A
D

C
2

1
5

6
S

D
A

/S
D

I/
S

D
O

7
S

D
O

/S
A

0
8

C
S

V
d

d
1

4

ADC3 13

GND 12

INT1 11

RES 10

INT2 9

44CC

RR55XX__33006600__UU11__CC

GSPG0210DI1135

Available board schematics UM1686

62/70 DocID025464 Rev 5

Figure 27. STEVAL-IDB002V1 MCU

J
T

M
S

JTDI
JTCK

PB2

JTDO
JNTRST

N
R

S
T

V
C

C
A

_
M

C
UP

C
1

4
P

C
1

5

P
C

3

P
A

0

PA3

PB9
PB8

V
D

D
1

V
D

D
2

V
D

D
4

V
D

D
3

VDD1

V
D

D
2

VDD3

VDD4

P
A

1
P

A
2

P
C

1
4

P
C

1
5

N
R

S
T

P
C

3
P

A
0

P
A

1
P

A
2

P
A

3
P

B
2

J
T

M
S

J
T

C
K

J
T

D
I

J
T

D
O

J
N

T
R

S
T

P
B

8
P

B
9

SPI1_MOSI
SPI1_MISO

SPI1_NSS
SPI1_SCK

U
S

B
_

D
M

U
S

B
_
D

P

JTCK
JTDI

J
T

M
S

JOY_DOWN

JOY_RIGHT

JTDO
JNTRST
TSEN_INT
I2C1_SCL

I2C1_SDA

INT1
INT2

R
E

S
E

T

D
B

_
S

D
N

_
R

S
T

DB_PIN2
DB_PIN1

DB_IO3_IRQ

D
B

_
IO

2
D

B
_

IO
1

D
B

_
IO

0
D

B
_

P
IN

3

LED3

L
E

D
1

LED4

L
E

D
2

LED5

D
B

_
S

D
O

D
B

_
S

C
L

K

D
B

_
S

D
I

D
B

_
C

S
N

J
O

Y
_

L
E

F
T

P
u

s
h

_
B

u
tt
o

n

J
O

Y
_

C
E

N
T

E
R

J
O

Y
_

U
P

3
V

3

3
V

3
3
V

3

3
V

3
3
V

3

3
V

3

55
CC

R
S

5
4
7
-
6
2
0
0

F
O
X

E
l
e
c
t
r
o
n
i
c
s

F
O
X
S
L
F
/
0
8
0
-
2
0
,

8
M
H
z
,

5
0
p
p
m
,

2
0
p
F

GG
00

CC
_ _

33
00

66
00

__
PP

00
22

__
CC

66
CC

GG
00

CC
__

33
00

66
00

__
PP

00
22

__
CC

11
XX

11
11

C C
33

VV
66

__
KK

__
55

00
88

00
__

UU
00

11
__

CC

))tt
ee

kk
cc

oo
ss

hhttii
ww((

zz
HH

MM
88

LL
11

JJ
11

1

EE
NN

2
3

4
5

6

7
8

9
1

0
1

1

V
C

C
A

_
M

C
U

MM
00

00
11

__
MM

HH
OO

00
33

__
55

00
88

00
__

DD
AA

EE
BB

__
LL

1
2

1
3

1
4

1
5

1
6

1
7

1
8

44
RR

00
11

CC

RR
77

XX
__

33
00

66
00

__
NN

00
00

11
__

CC

33
00

66
00

__
MM

11
__

RR

99
CC

RR
77

XX
__

33
00

66
00

_ _
NN

00
00

11
__

CC

33
UU

88
CC

RR
77

XX
__

3 3
00

66
00

__
NN

00
00

11
__

CC

nnii
pp

44
66

__
22

33
MM

TT
SS

17
PA3

18
VSS_4

1
V

L
C

D
2

P
C

1
3

-R
T

C
_

A
F

1
-W

K
U

P
2

3
P

C
1

4
-O

S
C

3
2
_

IN
4

P
C

1
5

-O
S

C
3

2
_

O
U

T
5

P
H

0
-O

S
C

_
IN

6
P

H
1

-O
S

C
_
O

U
T

7
N

R
S

T
8

P
C

0
9

P
C

1

19
VDD_4

20
PA4

1
0

P
C

2
1

1
P

C
3

1
2

V
S

S
A

1
3

V
D

D
A

1
4

P
A

0
-W

K
U

P
1

1
5

P
A

1
1

6
P

A
2

21
PA5

22
PA6

23
PA7

24
PC4

25
PC5

26
PB0

27
PB1

28
PB2

29
PB10

30
PB11

31
VSS_1

32
VDD_1

VDD_3
64

VSS_3
63

PB9
62

PB8
61

BOOT0
60

PB7
59

PB6
58

PB5
57

PB4
56

PB3
55

PD2
54

PC12
53

PC11
52

PC10
51

PA15
50

PA14
49

V
D

D
_

2
4

8

V
S

S
_

2
4

7

P
A

1
3

4
6

P
A

1
2

4
5

P
A

1
1

4
4

P
A

1
0

4
3

P
A

9
4

2

P
A

8
4

1

P
C

9
4

0

P
C

8
3

9

P
C

7
3

8

P
C

6
3

7

P
B

1
5

3
6

P
B

1
4

3
5

P
B

1
3

3
4

P
B

1
2

3
3

77
CC

RR
77

XX
__

33
00

66
00

__
NN

00
00

11
__

CC

GSPG0210DI1140

DocID025464 Rev 5 63/70

UM1686 Available board schematics

70

Figure 28. STEVAL-IDB002V1 JTAG/SWD

Figure 29. STEVAL-IDB002V1 USB

PB4
PA13
PA14
PB3
PA15
NRSTRESET

JTCK

JNTRST
JTMS

JTDO
JTDI

GND

GND

3V3

3V3

GND GND GND GND GND GND

RS 710-4288

Male Connector
2x10 HDR straight

RS 473-8282

ST Link: 3.0-3.6V, 5V tolerant
IAR J-Link: 1.2-3.6V, 5V tolerant

99RR

EENN

55DD
11

VV
55

ZZ
44DD

11
VV

55
ZZ

33DD

11
VV

55
ZZ

77RR

EENN

22DD

11
VV

55
ZZ

22JJ

1 2

GGAATTJJ

3 4
5 6
7 8
9 10

11 12
13 14
15 16
17 18
19 20

66RR

EENN

EENN3311RR

0011RR

EENN

66DD

11
VV

55
ZZ

11DD

11
VV

55
ZZ

GSPG0210DI1145

DM
DP

PA12

PA11

DP

DM

USB_DP

USB_DM

USB_5V

3V3

SOT23-6L

era: USBUF02W6

44UU

1
I/O11

2
GND

66PP22--66CCLLBBSSUU

VBUS
5

3
I/O21 I/O22

4

I/O12
6

3311CC

RR77XX__33006600__77NN44__CC

55RR

EENN

2211CC

RR77XX__33006600__NN000011__CC

11NNCC

1
VBUS

2
DM

BBiinniimm__BBSSUU

3
DP

4
ID nc

5
GND

6
SHELL

7
SHELL

8
SHELL

9
SHELL

10
GND

11
GND

88RR

33006600__00RR00__RR

1111RR

33006600__00RR00__RR

2211RR

33006600__MM11__RR

GSPG0210DI1150

Available board schematics UM1686

64/70 DocID025464 Rev 5

Figure 30. STEVAL-IDB002V1 LED

PD2PD1

PD4PD3

PD0 LED3LED2

LED5LED4

LED1

3V3 3V3 3V3

3V3
3V3

7711RR

33006600__008866__RR

4411RR

33006600__001155__RR

44LLDD
EEUULLBB

55LLDD
WWOOLLLLEEYY

22LLDD
EEGGNNAARROO

6611RR

33006600__008866__RR

DDEERR

8811RR

33006600__001155__RR

5511RR

33006600__008866__RR

11LLDD
NNEEEERRGG

GSPG0210DI1155

DocID025464 Rev 5 65/70

UM1686 Available board schematics

70

Figure 31. STEVAL-IDB002V1 power supply

U
S

B
_

5
V

3
V

3

5
V

G
R

E
E

N

c
o
d
.

R
S

3
6
7
-
4
7
1
1

H
o
l
d
e
r

b
o
x

2
x
A
A
A

c
o
d
.

R
S

6
1
4
-
2
3
5
2

00
22

RR

33
00

66
00

__
00

77
44

__
RR

11
XX

AA
AA

AA
rr

ee
dd ll

oo
h h yyrr

eetttt
aa

BB

55
11

CC

RR
55

XX
__

33
0 0

66
00

__
UU

11
__

CC

66
11

CC

RR
55

XX
__

33
00

66
00

__
22

UU
22

__
CC

44
11

CC

33
VV

66
__

KK
__

55
00

88
00

__
UU

00
11

__
CC

11
PP

TT

DD
NN

GG

22
PP

TT

DD
NN

GG

44
PP

TT

DD
N N

GG

22
LL

33
PP

TT

DD
NN

GG

MM
00

22
33

__
JJ

__
00

11
22

11
__

22
UU

22
__

L L

11
PP

JJ

1

2

3

33 rr
ee

pp
mm

uu
JJ

66
LL

DD

55
UU

1
VIN

3
VOUT

GND
4

KK
AA

PP
DD

__
00

55
11

99
33

DD
LL

GSPG0210DI1200

Available board schematics UM1686

66/70 DocID025464 Rev 5

Figure 32. STEVAL-IDB002V1 button and joystick

R
E

S
E

T
P

u
s
h

_
B

u
tt
o

n

J
O

Y
_

R
IG

H
T

J
O

Y
_

C
E

N
T

E
R

J
O

Y
_

U
P

J
O

Y
_

L
E

F
T

J
O

Y
_

D
O

W
N

3
V

3
3

V
3

3
V

3

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D

G
N

D
G

N
D

G
N

D
G

N
D

3
V

3

G
N

D

3
V

3

3
V

3
3

V
3

R
S
:
4
7
9
-
1
5
0
8

2
0

0
8

D
i
s
t
r
e
l
e
c

5
9

R
S

5
1
6
-
1
1
0

R
S
:
4
7
9
-
1
5
0
8

2
0

0
8

D
i
s
t
r
e
l
e
c

5
9

99
11

CC

RR
77

XX
__

33
00

66
00

__
NN

00
11

__
CC

88
11

CC

RR
77

XX
__

33
00

66
00

__
NN

00
11

__
CC

77
11

CC

RR
77

X X
_ _

33
00

66
0 0

__
N N

00
11

__
CC

99
22

RR

3 3
00

66
00

__
KK

00
00

11
__

RR

88
22

RR

33
0 0

66
00

__
KK

00
00

11
__

RR

11
WW

SS

77
22

RR

TT
SS

PP
DD--

NN
OO

TT
TT

UU
BB

HH
SS

UU
PP

WW
SS

33
00

66
00

__
KK

00
00

11
__

RR

66
22

RR

33
00

66
00

__
KK

00
00

11
__

RR

55
22

RR

33
00

66
0 0

__
KK

0 0
00

11
__

RR

44
22

RR

33
00

66
00

_ _
00

00
11

__
RR

11
22

RR

33
00

66
00

__
KK

0 0
00

11
__

RR

33
22

R R

33
00

66
00

__
00

00
11

__
RR

22
22

RR

33
00

66
00

__
K K

00
00

11
__

RR

22
WW

SS

TT
SS

PP
DD--

NN
OO

TT
TT

UU
BB

HH
SS

UU
PP

WW
SS

66
UU

1
U

P

2
L
E

F
T

00
11

00
E E

BB
DD

UU
QQ

KK
SS

3
D

O
W

N
C

O
M

M
O

N
4

R
IG

H
T

5

C
E

N
T

E
R

6

00
33

RR

33
00

66
00

_ _
00

0 0
11

__
RR

33
2 2

CC

RR
77

XX
__

33
00

66
00

__
NN

00
11

__
CC

22
22

CC

RR
77

XX
__

33
00

66
00

__
N N

00
11

__
CC

11
22

CC

RR
77

XX
__

33
00

66
0 0

__
NN

00
11

__
CC

00
22

CC

RR
77

XX
_ _

33
00

66
00

__
NN

00
11

__
CC

GSPG0210DI1205

DocID025464 Rev 5 67/70

UM1686 Available board schematics

70

Figure 33. STEVAL-IDB002V1 daughterboard connectors

GPIO3

SDO
SDI
SCLK
CSN

SDN

GPIO0
GPIO1

GPIO2

CSN

SCLK

SDI
SDO

SDN

GPIO0
GPIO1
GPIO2
GPIO3

DB_PIN3
DB_PIN1

DB_SDN_RST

DB_SDO

DB_CSN
DB_SCLK
DB_SDI

DB_PIN2

DB_IO0
DB_IO1
DB_IO2
DB_IO3_IRQ

3V3

3V3

3V3

RS 668-9549

Gradconn BB02-KY102-K03-A00000

44JJ

8
6
4
2

10 9
7
5
3
1

0000000000AA--3300KK--220011YYKK--2200BBBB

55JJ

8
6
4
2

10 9
7
5
3
1

0000000000AA--3300KK--220011YYKK--2200BBBB

33JJ

SSEEBBOORRPP

10

1
2
3
4
5
6
7
8
9

11
12

GSPG0210DI1210

Available board schematics UM1686

68/70 DocID025464 Rev 5

Figure 34. STEVAL-IDB003V1 USB dongle schematics

DocID025464 Rev 5 69/70

UM1686 Revision history

70

11 Revision history

Table 17. Document revision history

Date Revision Changes

28-Nov-2013 1 Initial release

24-Apr-2014 2

– Added reference to the STEVAL-IDB003V1 BlueNRG
USB Dongle

– Added: Section 6
– Added: Section 9
– Added: Section 10

– Minor text edits throughout the document

10-Dec-2014 3

– Added: Section 3.2.3

– Added Section 3.2.5
– Added Section 7
– Renamed APIs with prefix BLUEHCI_ in Section 5.3.1

to 5.3.5 and 6.2.1

11-Mar-2015 4

– Updated: Figure 7, 11, 12, 13 and 14, and caption of
Figure 1

– Updated: Table 6, Table 7, Table 8 and Table 9
– Updated: Section 3.2.2 and Section 3.2.3
– Added: Table 10, Table 11 and Table 14

– Added: Section 5.4 and Section 8
– Added: Figure 26, 27, 28, 29, 30, 31, 32, 33 and 34

09-Dec-2015 5

– Updated: Figure 7, Figure 11, Figure 12, Figure 13,
Figure 14, Figure 15, Figure 16, Figure 17 and
Figure 18

– Updated: Section 3.2.4: GUI Scripts window

– Updated: Table 10
– Added: Section 3.2.6: GUI RF Test window

UM1686

70/70 DocID025464 Rev 5

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

	1 Getting started
	1.1 STEVAL-IDB002V1 kit contents
	Figure 1. BlueNRG kit motherboard with the STEVAL-IDB002V1 daughterboard connected

	1.2 STEVAL-IDB003V1 kit
	Figure 2. STEVAL-IDB003V1 BlueNRG USB dongle

	1.3 System requirements
	1.4 BlueNRG development kit setup

	2 Hardware description
	2.1 STEVAL-IDB002V1 motherboard
	Figure 3. Motherboard for the BlueNRG development kit
	2.1.1 Microcontroller and connections
	Table 1. MCU pin description versus board function

	2.1.2 Power
	2.1.3 Sensors
	2.1.4 Extension connector
	2.1.5 Push-buttons and joystick
	2.1.6 JTAG connector
	2.1.7 LEDs
	2.1.8 Daughterboard interface

	2.2 BlueNRG daughterboard
	Figure 4. BlueNRG daughterboard
	Table 2. Connections between BlueNRG board and motherboard on left connector
	Table 3. Connections between BlueNRG board and motherboard on right connector
	2.2.1 Current measurements
	2.2.2 Hardware setup
	2.2.3 STM32L preprogrammed application

	2.3 STEVAL-IDB003V1 USB dongle
	2.3.1 Microcontroller and connections
	Table 4. MCU pin description versus board function

	2.3.2 SWD interface
	Figure 5. SWD connection scheme with ST-LINK/V2
	Table 5. SWD connection

	2.3.3 RF connector
	Figure 6. RF connector scheme

	2.3.4 Push-buttons
	2.3.5 User LEDs
	2.3.6 Hardware setup
	2.3.7 STM32L preprogrammed application

	3 GUI software description
	3.1 Requirements
	3.2 The BlueNRG graphical user interface
	3.2.1 GUI main window
	Figure 7. BlueNRG GUI main window
	Figure 8. Command packet table
	Figure 9. Packet history and details
	Figure 10. Raw packet dump

	3.2.2 Tools
	Figure 11. BlueNRG GUI IFR tool: View/Edit view

	3.2.3 GUI ACI utilities window
	Figure 12. BlueNRG GUI ACI utilities window
	Table 6. GUI ACI utilities window: available general operations
	Table 7. GUI ACI utilities window: available central operations
	Table 8. GUI ACI utilities window: available peripheral operations

	3.2.4 GUI Scripts window
	Figure 13. BlueNRG GUI Scripts window
	Table 9. GUI Scripts window: utility commands
	Table 10. WAIT_EVENT macro-command
	Table 11. WAIT_EVENT: event codes with related event parameter types

	3.2.5 GUI Beacon window
	Figure 14. BlueNRG GUI Beacon window
	Table 12. BlueNRG GUI beacon window configuration parameters

	3.2.6 GUI RF Test window
	Figure 15. GUI RF test: Start a tone
	Figure 16. GUI RF Test: TRANSMITTER and RECEIVER sections
	Figure 17. GUI RF Test, PER test: TX device
	Figure 18. GUI RF Test, PER test: RX device

	4 Programming with BlueNRG network processor
	Figure 19. Profile framework structure
	4.1 Requirements
	4.2 Software directory structure

	5 BlueNRG sensor profile demo
	Figure 20. BlueNRG sensor demo GATT database
	5.1 Supported platforms
	5.2 BlueNRG app for smartphones
	Figure 21. BlueNRG app

	5.3 BlueNRG sensor profile demo: connection with a central device
	5.3.1 Initialization
	5.3.2 Add service and characteristics
	5.3.3 Set security requirements
	5.3.4 Enter connectable mode
	5.3.5 Connection with central device

	5.4 BlueNRG sensor demo: central profile role
	5.4.1 Initialization
	5.4.2 Discovery a sensor peripheral device
	5.4.3 Connect to discovered sensor peripheral device
	5.4.4 Discovery sensor peripheral services and characteristics
	5.4.5 Enable sensor peripheral acceleration and free fall notifications
	5.4.6 Read the sensor peripheral temperature sensor characteristic

	6 BlueNRG chat demo application
	Table 13. Serial port configuration
	6.1 Supported platforms
	6.2 BlueNRG chat demo application: peripheral & central devices
	6.2.1 Initialization
	6.2.2 Add service and characteristics
	6.2.3 Set security requirements
	6.2.4 Enter connectable mode
	6.2.5 Connection with central device
	Figure 22. BLE chat client example
	Figure 23. BLE chat server example

	7 BlueNRG Beacon demonstration application
	7.1 Supported platforms
	7.2 BLE Beacon application setup
	7.2.1 Initialization
	7.2.2 Define advertising data
	Table 14. BlueNRG Beacon advertising manufacturing data

	7.2.3 Entering non-connectable mode

	8 BLE remote control demo application
	Table 15. BLE remote advertising data
	8.1 Supported platforms
	8.2 BLE remote control application setup
	8.2.1 Initialization
	8.2.2 Define advertising data
	8.2.3 Add service and characteristics
	8.2.4 Connection with a BLE Central device

	9 List of acronyms
	Table 16. List of acronyms used in this document

	10 Available board schematics
	Figure 24. STEVAL-IDB002V1 BlueNRG daughterboard
	Figure 25. STEVAL-IDB002V1 temperature sensor
	Figure 26. STEVAL-IDB002V1 accelerometer
	Figure 27. STEVAL-IDB002V1 MCU
	Figure 28. STEVAL-IDB002V1 JTAG/SWD
	Figure 29. STEVAL-IDB002V1 USB
	Figure 30. STEVAL-IDB002V1 LED
	Figure 31. STEVAL-IDB002V1 power supply
	Figure 32. STEVAL-IDB002V1 button and joystick
	Figure 33. STEVAL-IDB002V1 daughterboard connectors
	Figure 34. STEVAL-IDB003V1 USB dongle schematics

	11 Revision history
	Table 17. Document revision history

