ﬁ' UM1686

User manual
BlueNRG development kits

Introduction

This document describes the BlueNRG development kits and related hardware and
software components. The BlueNRG is a very low power Bluetooth® low energy (BLE)
single-mode network processor, compliant with Bluetooth specifications core 4.0. The
BlueNRG can act as master or slave.

There are two types of BlueNRG kits:

1. BlueNRG development platform (order code: STEVAL-IDB002V1)

2. BlueNRG USB dongle (order code: STEVAL-IDB0O03V1)

The BlueNRG software package includes a graphical user interface application to control
the BlueNRG through a simple ACI protocol.

December 2015 DoclD025464 Rev 5 1/70

www.st.com

http://www.st.com

Contents UM1686

Contents
1 Getting started 5
1.1 STEVAL-IDBOO2V1 kitcontents 5
1.2 STEVAL-IDBOO3VI Kit 5
1.3 System reqUIrEMENtS 6
1.4 BlueNRG development kitsetup 6
2 Hardware description 7
2.1 STEVAL-IDB002V1 motherboard, 7
211 Microcontroller and connections 8
212 POWer . 10
2.1.3 SBNSOIS . o 11
2.1.4 EXtENSION CONNECIOr e 11
2.15 Push-buttons and joystick 11
2.1.6 JTAG CONNECIONo e e e 11
217 LEDS .. 11
2.1.8 Daughterboard interface 11
2.2 BlueNRG daughterboard 12
221 Current measurementsttt 13
2.2.2 Hardware Setup e 13
2.2.3 STM32L preprogrammed application 14
2.3 STEVAL-IDB0OO3V1USBdongle 14
2.3.1 Microcontroller and connections 14
2.3.2 SWDinterface 16
233 RFE connector 17
234 Push-buttons 18
2.35 User LEDS 18
2.3.6 Hardware Setup e 18
2.3.7 STM32L preprogrammed application 18
3 GUI software description 19
3.1 ReqUIrEMENtS 19
3.2 The BlueNRG graphical userinterface 19
3.2.1 GUIMain window 20
3.2.2 TO0IS . 22

2170 DoclD025464 Rev 5 ‘Yl

UM1686 Contents
3.2.3 GUI ACI utilities window e 25

3.24 GUI SCripts WindOWo e 28

3.25 GUI Beacon Windowt 35

3.2.6 GUIRF TeStWINdOWo e 36

4 Programming with BlueNRG network processor 41
4.1 Requirements 41

4.2 Software directory structurec. e e 41

5 BlueNRG sensor profiledemo 43
5.1 Supported platforms 44

5.2 BlueNRG app for smartphones 44

5.3 BlueNRG sensor profile demo: connection with a central device 45

53.1 Initialization 45

5.3.2 Add service and characteristics 45

5.3.3 Set security requIremeNntst e 46

5.34 Enter connectablemode 46

5.3.5 Connection with central device 46

5.4 BlueNRG sensor demo: central profilerole 47

5.4.1 Initialization 47

5.4.2 Discovery a sensor peripheral device 48

5.4.3 Connect to discovered sensor peripheral device 48

5.4.4 Discovery sensor peripheral services and characteristics 48

5.4.5 Enable sensor peripheral acceleration and free fall notifications 49

5.4.6 Read the sensor peripheral temperature sensor characteristic 49

6 BlueNRG chat demo application 50
6.1 Supported platforms 50

6.2 BlueNRG chat demo application: peripheral & central devices 50

6.2.1 Initialization e 51

6.2.2 Add service and characteristics 51

6.2.3 Set security requIremeNntst e 51

6.2.4 Enter connectablemode 52

6.2.5 Connection with central device 52

7 BlueNRG Beacon demonstration application 54
7.1 Supported platforms 54

‘W DoclD025464 Rev 5 3/70

Contents UM1686
7.2 BLE Beacon application setup e 54

7.2.1 Initialization 54

7.2.2 Define advertisingdata i 54

7.2.3 Entering non-connectablemode L. 55

8 BLE remote control demo application 56
8.1 Supported platforms 56

8.2 BLE remote control applicationsetup 57

8.2.1 Initialization 57

8.2.2 Define advertisingdata i 57

8.2.3 Add service and characteristics 57

8.2.4 Connection with a BLE Central device 58

9 Listof acronyms 59
10 Available board schematics 60
11 Revision history 69
4170 DoclD025464 Rev 5 Kys

UM1686 Getting started

1 Getting started

This section describes all the software and hardware requirements for running the BlueNRG
GUI utility as well as the related installation procedure.

1.1 STEVAL-IDB002V1 kit contents

This kit is composed of the following items:
¢ 1 development motherboard

¢ 1 BlueNRG daughterboard

. 1 2.4 GHz Bluetooth antenna

e 1USB cable

Figure 1. BlueNRG kit motherboard with the STEVAL-I DB002V1 daughterboard
connected

1.2 STEVAL-IDB0O03V1 kit

This kit is composed of the following items:
e 1USBdongle

3

DoclD025464 Rev 5 5/70

Getting started

UM1686

1.3

1.4

Note:

6/70

Figure 2. STEVAL-IDB003V1 BlueNRG USB dongle

System requirements

The BlueNRG graphical user interface utility has the following minimum requirements:

PC with Intel® or AMD® processor running one of the following Microsoft® operating
systems:

— Windows XP SP3

— Windows Vista

— Windows 7

At least 128 Mb of RAM

2 USB ports

40 Mb of hard disk space available
Adobe Acrobat Reader 6.0 or later

BlueNRG development kit setup

Extract the content of the BlueNRG_DK_-x.x.x-Setup.zip file into a temporary directory.
Launch the BlueNRG-DK-x.x.x-Setup.exe file and follow the on-screen instructions.

EWARM Compiler 7.40.3 or later version is required for building the BlueNRG_DK_ x.x.x
demonstration applications.

3

DoclD025464 Rev 5

UM1686 Hardware description
2 Hardware description

The following sections describe the components of the kits.
2.1 STEVAL-IDB002V1 motherboard

3

The motherboard included in the development kit allows testing of the functionality of the
BlueNRG processor. The board can be used as a simple interface between the BlueNRG
and a GUI application on the PC. The STM32L microcontroller on the board can also be
programmed, so the board can be used to develop applications using the BlueNRG. A
connector on the motherboard (Figure 1) allows access to the JTAG interface for
programming and debugging. The board can be powered through a mini-USB connector
that can also be used for I/O interaction with a USB Host. The board includes sensors, and
buttons and a joystick for user interaction. The RF daughterboard can be easily connected
through a dedicated interface.

This is a list of some of the features that are available on the boards:

e STM32L151RBT6 64-pin microcontroller

. Mini USB connector for power supply and 1/0

. JTAG connector

. RF daughterboard interface

. One RESET button and one USER button

. One LIS3DH accelerometer

. One STLM75 temperature sensor

e One joystick

« b5 LEDs

» OnePWRLED

* One battery holder for 2 AAA batteries

* One row of test points on the interface to the RF daughterboard

DoclD025464 Rev 5 7170

Hardware description

UM1686

Figure 3. Motherboard for the BlueNRG development k

it

|
=Y} \lr} lr'l
=l

= ol

DLS

| e

! 1
Y] I"J L 2
e b=l e
5 o o !
No %W, & o o

s

211 Microcontroller and connections
The board features an STM32L151RB microcontroller, which is an ultra low-power
microcontroller with 128 KB of Flash memory, 16 KB of RAM, 32-bit core ARM cortex-M3, 4
KB of data EEPROM, RTC, LCD, timers, USART, I°C, SPI, ADC, DAC and comparators.
The microcontroller is connected to various components such as buttons, LEDs and
connectors for external circuitry. The following table shows what functionality is available on
each microcontroller pin.
Table 1. MCU pin description versus board function
Board function
Pin Pin
name LEDs DB connector Buttops/ Acceler. Temperatur uUsB JTAG Ext.
joystick e sensor conn
VLCD 1
PC13 2 DB_SDN_RST
PC14 3 3
PC15 4 5
OSC_IN| 5
0sCO|
uT
NRST 7 RESET 7
PCO 8 LED1
PC1 9 LED2
PC2 10 DB_PIN3
PC3 11 9
8/70 DoclD025464 Rev 5 Kys

UM1686

Hardware description

Table 1. MCU pin description versus board function

(continued)

Board function

Pin .
name o LEDs DB connector Buttops / Acceler. Temperatur USB JTAG Ext.
joystick e sensor conn
VSSA | 12
VDDA | 13
PAO 14 1
PA1 15 13
PA2 16 15
PA3 17 17
VSS 4 | 18
VDD 4 | 19
PA4 20 SPI1_NSS
PA5 21 SPI1_SCK
PAG 22 SPI1_MISO
PA7 23 SPI1_MOSI
PC4 24 | LED4
PC5 25 | LED5
PBO 26 JOY_DOW
N
PB1 7 JOY_RIGH
T
PB2 28 18
PB10 | 29 INT1
PB11 | 30 INT2
VSS 1| 31
vDD 1 | 32
PB12 | 33 DB_CSN®
PB13 | 34 DB_SCLK®
PB14 | 35 pB_spo®
PB15 | 36 DB_sDID
PCE 37 PUSH_BT
N
PC7 38 DB_100®
PC8 39 DB_101®M)
PC9 40 DB_102M
PA8 41 JOY_LEFT
PA » JOYECF;ENT
‘W DoclD025464 Rev 5 9/70

Hardware description UM1686
Table 1. MCU pin description versus board function (continued)
Board function
Pin Pin
name LEDs DB connector Suttops/ Acceler. Temperatur UsB JTAG Ext.
joystick e sensor conn
PA10 43 JOY_UP
PA11 44 USB_D
M
PA12 45 USB_D
P
PA13 46 JTMS 16
VSS 2 | 47
VDD _2 | 48
PA14 49 JTCK 14
PA15 50 JTDI 12
PC10 51 DB_IO3_IRQW
PC11 52 DB_PIN1
PC12 53 DB_PIN2
PD2 54 LED3
PB3 55 JTDO 10
PB4 56 INTRS 8
T
PB5 57 TSEN_INT
PB6 58 12C1_SCL
PB7 59 12C1_SDA
BOOTO | 60
PB8 61 4
PB9 62 6
VSS 3 | 63
VDD 3 | 64

1. These lines are also available on the test point row

2.1.2

10/70

Power

The board can be powered either by the mini USB connector CN1 (A in Figure 3) or by 2

AAA batteries. To power the board through USB bus, jumper JP1 must be in position 1-2, as
in Figure 3 (B). To power the board using batteries, 2 AAA batteries must be inserted in the
battery holder at the rear of the board, and jumper JP1 set to position 2-3.

When the board is powered, the green LED DL6 is on (C).

If needed, the board can be powered by an external DC power supply. Connect the positive
output of the power supply to the central pin of JP1 (pin 2) and ground to one of the four test
point connectors on the motherboard (TP1, TP2, TP3 and TP4).

DoclD025464 Rev 5

&y

UM1686 Hardware description
2.1.3 Sensors
Two sensors are available on the motherboard:
— LIS3DH, an ultra-low power high performance three-axis linear accelerometer (D
in Figure 3). The sensor is connected to the STM32L through the SPI interface.
Two lines for interrupts are also connected.
— STLMT75, a high precision digital CMOS temperature sensor, with 12C interface (E
in Figure 3). The pin for the alarm function is connected to one of the STM32L
GPIOs.
214 Extension connector
There is the possibility to solder a connector on the motherboard to extend its functionality
(F in Figure 3). 16 pins of the microcontroller are connected to this expansion slot (Table 1).
2.1.5 Push-buttons and joystick
For user interaction the board has two buttons. One is to reset the microcontroller, while the
other is available to the application. There is also a digital joystick with 4 possible positions
(left, right, up, down) (G in Figure 3).
2.1.6 JTAG connector
A JTAG connector on the board (H in Figure 3) allows the programming and debugging of
the STM32L microcontroller on board@), using an in-circuit debugger and programmer such
as the ST-LINK/V2.
2.1.7 LEDs
Five LEDs are available (I in Figure 3).
— DL21: green
— DL2: orange
— DL3:red
— DL4: blue
— DL5: yellow
2.1.8 Daughterboard interface

3

The main feature of the motherboard is the capability to control an external board,
connected to the J4 and J5 connectors (L in Figure 3). Table 1 shows which pins of the
microcontroller are connected to the daughterboard.

Some of the lines are connected also to a row of test points (M).

a. The STM32L is preprogrammed with a DFU firmware that allows the downloading of a firmware image without
the use of a programmer. If an user accidentally erases DFU firmware, he can reprogram it through STLink
using the hex image DFU_Bootloader.hex available on BlueNRG DK SW package, firmware folder.

DoclD025464 Rev 5 11/70

Hardware description UM1686

2.2

12/70

BlueNRG daughterboard

The BlueNRG daughterboard (Figure 4) included in the development kit is a small circuit
board to be connected to the main board. It contains the BlueNRG network processor (in a
QFN32 package), an SMA antenna connector, discrete passive components for RF
matching and balun, and small number of additional components required by the BlueNRG
for proper operation (see the schematic diagram in Figure 24).

Figure 4. BlueNRG daughterboard

The main features of the BlueNRG daughterboard are:

— BlueNRG low power network processor for Bluetooth low energy (BLE), with
embedded host stack

— High frequency 16 MHz crystal

— Low frequency 32 kHz crystal for the lowest power consumption

— Balun, matching network and harmonic filter

— SMA connector
The daughterboard is also equipped with a discrete inductor for the integrated high-
efficiency DC-DC converter, for best-in-class power consumption. It is still possible to

disable the DC-DC converter. In this case the following changes must be performed on the
daughterboard (see Figure 24):

— Remove inductor from solder pads 1 and 2 of D1
— Place a 0 ohm resistor between pads 1 and 3
— Move resistor on R2 to R1
For proper operation, jumpers must be set as indicated in Figure 4.

The following tables show the connections between the daughterboard and the main board.

3

DoclD025464 Rev 5

UM1686 Hardware description
Table 2. Connections between BlueNRG board and moth erboard on left connector
Pin J4 motherboard J3 daughterboard
1 DB_PIN1 NC
2 3Vv3 3V3
3 DB_PIN3 NC
4 NC NC
5 GND GND
6 DB_PIN2 nS
7 GND GND
8 3Vv3 U2 pin1
9 DB_SDN_RST RST
10 3Vv3 U2 pin1
Table 3. Connections between BlueNRG board and moth erboard on right connector
Pin J5 motherboard J4 daughterboard
1 GND GND
2 GND GND
3 DB_CSN CSN
4 DB_I03_IRQ IRQ
5 DB_SCLK CLK
6 DB_I02 NC
7 DB_SDI MOSI
8 DB_IO1 NC
9 DB_SDO MISO
10 DB_IO0 NC
2.2.1 Current measurements
To monitor power consumption of the entire BlueNRG daughterboard, remove the jumper
from U2 and insert an ammeter between pins 1 and 2 of the connector. Since power
consumption of the BlueNRG during most operation time is very low, an accurate instrument
in the range of few microamps may be required.
2.2.2 Hardware setup

3

1. Plug the BlueNRG daughterboard into J4 and J5 connectors as in Figure 1.

2. Ensure the jumper configuration on the daughterboard is as in Figure 1

3. Connect the motherboard to the PC with an USB cable (through connector CN1).
4

Verify the PWR LED lights is on.

DoclD025464 Rev 5

13/70

Hardware description UM1686

2.2.3

2.3

231

14/70

STM32L preprogrammed application

The STM32L on STEVAL-IDB002V1 motherboard is preprogrammed with the sensor demo
application when the kits components are assembled (refer to Section 5 for the application
description).

STEVAL-IDB0O03V1 USB dongle

The BlueNRG USB dongle allows users to easily add BLE functionalities to their PC by
plugging it into a USB port. The USB dongle can be used as a simple interface between the
BlueNRG and a GUI application on the PC. The on-board STM32L microcontroller can also
be programmed, so the board can be used to develop applications that use the BlueNRG.
The board can be powered through the USB connector, which can also be used for 1/0
interaction with a USB host. The board also has two buttons and two LEDs for user
interaction.

Below is a list of some of the main features that are available on the board (see Figure 2):
. BlueNRG network coprocessor

e STM32L151CBUG6 48-pin microcontroller

. USB connector for power supply and 1/O

e One row of pins with SWD interface

* Chip antenna

e Two user buttons (SW1, SW2)

« Two LEDs (D2, D3)

Microcontroller and connections

The board utilizes an STM32L151CBUS6, which is an ultra low-power microcontroller with
128 KB of Flash memory, 16 KB of RAM, 32-bit core ARM cortex-M3, 4 KB of data
EEPROM, RTC, timers, USART, I1°C, SPI, ADC, DAC and comparators.

The microcontroller is connected to various components such as buttons, LEDs and
connectors for external circuitry. The following table shows which functionality is available
on each microcontroller pin.

3

DoclD025464 Rev 5

UM1686

Hardware description

Table 4. MCU pin description versus board function

Board function
Pin name Pin
num.
LEDs BlueNRG Buttons usB SWD
VLCD 1 VBAT
PC13 2
PC14 3
PC15 4
OSC_IN 5
OSC_OuT 6
NRST 7
VSS_A 8
VvDD_A 9
PAO 10
PA1 11 Button SW2
PA2 12
PA3 13
PA4 14
PA5 15
PAG6 16
PA7 17
PBO 18 Led D2
PB1 19 Led D3
PB2 20 Button SW1
PB10 21 BlueNRG_IRQ
PB11 22
VSS1 23
VDD1 24
PB12 25 SPI2_CS
PB13 26 SPI2_CLK
PB14 27 SPI2_MISO
PB15 28 SPI12_MOSI
PA8 29
PA9 30 EEPROM_CS
PA10 31
PA11 32 USB_DM
‘W DoclD025464 Rev 5 15/70

Hardware description

UM1686

2.3.2

16/70

Table 4. MCU pin description versus board function

(continued)

Board function

Pin name Pin
num.
LEDs BlueNRG Buttons USB SWD
PA12 33 USB_DP
PA13 34 SWDIO
VSS2 35
VDD2 36
PA14 37 SWCLK
PA15 38
PB3 39 SWO
PB4 40
PB5 41
PB6 42
PB7 43
BOOTO 44
PBS 45
PB9 46
VSS 3 47
VDD_4 48

SWD interface

The SWD interface is available through the J2 pins. The SWD interface allows programming
and debugging of the STM32L microcontroller on the board, using an in-circuit debugger

and programmer like the ST-LINK/V2. In Figure 5 the connection scheme illustrating how to
connect the ST-LINK/V2 with the board pins is shown.

Figure 5. SWD connection scheme with ST-LINK/V2

v
19171513119 7 6 3 1

O0@E0E@000
ooooo0ooo0o@

20 181614 1210 8 6 4 2

DoclD025464 Rev 5

3

UM1686 Hardware description
The signals available on the STEVAL-IDB0O03V1 are:
1. GND
2. VDD
3. nRESET
4. SWDIO
5. SWO/TRACE
6. SWCLK
The connection to the ST-LINK/V2 interface is given in the table below, as shown in
Figure 5:
Table 5. SWD connection
Signal name STEYAL-IDSOOlVX ST—LINK/VZ
pin number pin number
GND 1 1416
VDD 2 2/1
NnRESET 3 15
SWDIO 4 7
SWO/TRACE 5 13
SWCLK 6 9
2.3.3 RF connector

)

The STEVAL-IDB003V1 provides two different RF connections: antenna (chip antenna,
default configuration) and UFL connector. Although the default configuration allows
communication on air, it can be useful to switch to the UFL connector in order to connect the
STEVAL-IDB003V1 to RF equipment such as a spectrum analyzer or RF signal generator.

To switch from antenna to UFL connector, capacitor C10 must be removed and capacitor
C42 must be soldered. To restore the default configuration and use the antenna, capacitor
C42 must be removed and capacitor C10 must be soldered. Both capacitors C10 and C42
have the same value: 56 pF. In Figure 6, the two pads for C10 and C42 are shown together
with the chip antenna and UFL connector.

Figure 6. RF connector scheme

UFL Connector

c42
C10

Antenna

DoclD025464 Rev 5 17170

Hardware description UM1686

234

Note:

2.3.5

Note:

2.3.6

2.3.7

18/70

Push-buttons

For user interaction the board has two buttons, both available to the application
- swi
- SW2

SW1 is the DFU button. The BlueNRG USB dongle is preprogrammed with a DFU
application allowing upgrades to the STM32L firmware image through USB and using the
BlueNRG GUI. To activate the DFU, press button SW1 and plug the BlueNRG USB dongle
into a PC USB port.

User LEDs

Two LEDs are available:
- D2:red
— DS3: orange

When DFU is activated, LED D3 is blinking

Hardware setup
Plug the BlueNRG USB dongle into a PC USB port.

STM32L preprogrammed application

The STM32L on the STEVAL-IDB003V1 motherboard is preprogrammed with the
BlueNRG_VCOM_x_x.hex application when the kits components are assembled (refer to
Section 3.1 for the application description).

3

DoclD025464 Rev 5

UM1686

GUI software description

3

3.1

3.2

3

GUI software description

The BlueNRG GUI included in the software package is a graphical user interface that can be
used to interact and evaluate the capabilities of the BlueNRG network processor.

This utility can send standard and vendor-specific HCI commands to the controller and
receive events from it. It lets the user configure each field of the HCI command packets to
be sent and analyzes all received packets. In this way BlueNRG can be easily managed at
low level.

Requirements

In order to use the BlueNRG GUI, make sure you have correctly set up your hardware and
software (BlueNRG GUI installed). The STM32L in the STEVAL-IDB002V1 kit has been
preprogrammed with a demo application (see Section 5). Hence, new firmware must be
loaded into the STM32L. Firmware images can be found within the firmware folder. The
firmware image that must be programmed is latest BlueNRG_VCOM_x_x.hex available
within the BlueNRG DK SW package. The GUI has the ability to Flash new firmware.

In order to download binary images into the internal Flash of the STM32L, the
microcontroller must be put into a special DFU (device firmware upgrade) mode. To enter
DFU mode:

1. BlueNRG development platform (STEVAL-IDB002V1)
— Power up the board
— Press and hold USER button

— Reset the board using RESET button (keep USER button pressed while resetting)
The orange LED DL2 will start to blink

— Release USER button

— Use BlueNRG GUI to Flash the device with new firmware (Tools -> Flash
motherboard FW).

2. BlueNRG USB Dongle (order code: STEVAL-IDB003V1)
— Press and hold SW1 button
— Plug the USB dongle on a PC USB port. The orange LED D3 will start to blink.

— Use BlueNRG GUI to Flash the device with a new firmware (Tools -> Flash
Motherboard FW).

The BlueNRG graphical user interface

This section describes the main functions of BlueNRG GUI application.
You can run this utility by clicking on the BlueNRG GUI icon on the Desktop or under:
Start — STMicroelectronics — BlueNRG DK X.X.X — BlueNRG GUI

DoclD025464 Rev 5 19/70

GUI software description UM1686

3.2.1

20/70

GUI main window

Figure 7. BlueNRG GUI main window

57 BlueNRG GUIv1.90 [ESEET=)
File Tool Settings Help
BlusiRG HI v3.0
pert: [CoMas (5TDK) - | [gese] [(rwReset BlueliRG FW v6.4
°’ e
ACICommands | ACIUtites | Saipts | Beacon | RFTest
ACI_GAP_SET_NON_DISCOVERABLE | Commend Packet
ACIGAP_SET_LIMITED_DISCOVERABLE e T Literal Info
ACIGAP_SET_DISCOVERABLE Ty
poipriyeiaplemll ==
ACIGAP_SET_IO_CAPABILITY ‘ Lot
ACLGAP _SET_AUTHENTICATION_REQUIREM oL Peiphersl O1:Peripheral0:02 Broodeoster 003 Central 004 Observer

ACLGAP_SET_AUTHORIZATION_REQUIREME
ACILGAP_PASS KEV_RESP
ACLGAP_AUTHORIZATION_RESP
ACLGAP_INIT
ACI_GAP_SET_NON_CONNECTABLE
ACI_GAP_SET_UNDIRECTED_CONNECTABLE
ACI_GAP_SLAVE_SECURITY_REQ
ACI_GAP_UPDATE_ADV_DATA

AC‘I _GAP DELETE AD TYPE _ &
< I

Fiter

[seLECT ALL

¥ cap 7] GaTT - ATT Flna

[L2cap (7] HeT Test Bl wa
e ere—
Sent/Received Packets Packet Details

N Time Type Parameter Value Literal Info

1 10229388 HCLCOMMAND_COMPLETE EVENT
3 104251151 HCLCOMMAND_COMPLETE EVENT

5 104301871 HCLCOMMAND_COMPLETE EVENT ‘

The BlueNRG GUI main window is characterized by different zones. Some of these zones
can be resized.

Port and interface selection

The uppermost zone allows the user to open the COM port associated to the BTLE
controller.
When a COM port is opened the following information are displayed:

— BlueNRG HW version

— BlueNRG FW version

— STM32L motherboard GUI firmware (VCOM) version

HCI commands

The HCI Commands tab contains a list of all the available HCI commands. Commands can
be filtered by checking/unchecking boxes under the filter section. After clicking on one of the
commands, all the packet fields will be displayed on the command packet table in the upper-
right section of the tab (see Figure 8).

Figure 8. Command packet table

ACI GATT INIT » | Command Packet

ACI_GATT_ADD_SERVICE E Parameter Value Literal Info

AL NLpE SR] o AGLGATEADD SERACE |1
ACI_GATT_ADD_CHAR

ACL_GATT_ADD_CHAR_DESC 005 I
ACLGATT_UPDATE_CHAR_VALUE B0 16bitUUD 001 =16-bit UUID, 0:02 = 128-bit ..
ACLGATT_DEL_CHAR 0:0A01]
AClGaTT D scvice Do imaySmie 001 ey Senice 002 =S
o e w5 e bttt
ACI_GATT_SET_EVENT_MASK

ACI_GATT_EXCHANGE_CONFIG "

Pl —T v

DoclD025464 Rev 5 ‘Yl

UM1686

GUI software description

)

The command packet table contains four columns:

. Parameter : name of the packet field as they are named in volume 2, part E of
Bluetooth specification.

* Value: field value represented in hexadecimal format (right-click on a cell to change its
representation format).

. Literal : meaning of the current field value.
. Info : description of the corresponding field.

Only the yellow cells of this table can be modified by the user. The Parameter Total Length is
fixed or automatically calculated after modifying cell content.

After the fields have been modified (if required) the command can be sent using the Send
button.

HCI Packet history and details

At the bottom of the main window, two tables show packets sent to and received from the
BTLE controller, as well as other events. The left table (sent/received packets) holds a
history of all packets (see Figure 9). The right one (packet details) shows all the details of
the selected packet as is done in the command packet table (Figure 9).

Figure 9. Packet history and details

Sent/Received Packets Packet Details

N Time Type Parameter Value Literal
0 165549818 ACIGATTINIT 00E 'HCICOMMAND_COMPLETE EVENT
1 16:5549.828 HCLCOMMAND_COMPLETE_EVENT 00A
2 165555058 ACLGAPINIT [Num_HCT Comman.. | 0:01
3 16:55:55.068 0xFCBA ACI_GAP_INIT
0:00 Success
00005

0x0006
0x0008

4 m | »

Double-clicking on a row of the sent/received packets table shows the raw packet.

Figure 10. Raw packet dump

Raw Packet

[0%01, 000, 020,031 9, 0x00, 040, 0x00, 0340, 000,000, 000, 0x00,
000, 0300, 0x00, 0300, 0x00,0x06, 000, 0x80, 05:0C, 0x00,0x00, 0xE0,0
*0C, 000,000, DxFF, 0FF]

Some events (displayed in yellow cells) can provide other information. HCI packets sent
towards the BTLE controller are displayed in gray cells while received packets are shown
inside white cells.

The Sent/received packets table can be cleared by clicking on clear list button. Update and
auto-scrolling check boxes enable or disable updating and auto-scrolling of the
Sent/received packets table while new packets are sent or received (however, information
will still be printed).

The sent/received packets can be stored and later reloaded on the GUI, by using the utilities
provided on File menu:

DoclD025464 Rev 5 21/70

GUI software description UM1686

1. Save History... : it saves the current list of sent commands and received events on a
CSV file

2. Load History... : it loads a list of sent commands and received events, previously
stored on a CSYV file.

3. Save as Python Script... : it allows to store the current list of sent commands and
received events as a script file (Python format). This script file can be used on GUI
Script window, after proper customization (by adding specific code for handling events,
parameters, ...), in order to address an user application scenario (refer to Section 3.2.5:
GUI Beacon window).

3.2.2 Tools

The BlueNRG GUI has some functions that can be accessed through the tools menu. These
tools are described in this section.

BlueNRG updater

This tool can be used to update the firmware inside the BlueNRG by using its internal
bootloader. VCOM firmware must be present on the STM32L and COM port must be open,
in order to use this function.

1. Goto Tools -> BlueNGR updater
2. Select the correct stack firmware (.img)

3. Press update to start the update procedure. If the procedure completes with no errors,
the new firmware has been loaded into the BlueNRG internal Flash.

BlueNRG IFR

To preserve BlueNRG's flexibility, its firmware uses a table of configurable parameters. This
table resides in a sector of the Flash called Information Register (IFR). The BlueNRG IFR
tool can read and modify this portion of BlueNRG's Flash. This tool is available in BlueNRG
GUI, Tools, BlueNRG IFR... item.

The BlueNRG GUI IFR utility is a tool that allow the customer to define the IFR data in a
controller way. Using this utility is the only supported mode to define IFR data based on
customer needs. The utility provides the following windows:

» View/Edit view: displays the IFR regions with related fields and description. The user can
modify some of these fields according to his needs.

» Memory view: displays the IFR field memory addresses and related values that are
generated by BlueNRG GUI according to the specified values.

« C view: displays the C language structure related to the IFR configuration data region
matching the View/Edit and Memory view.

3

22/70 DoclD025464 Rev 5

UM1686

GUI software description

)

Figure 11. BlueNRG GUI IFR tool: View/Edit view

=
&7 BlueNRG IFR

S5

[Load..

]’ Save... l

View/Edit | Memory View | Cview |

[BlueNRG (v3.0) - |

Crystal selection
HS crystal:

LS source:

1BMHz

[32.768 kHz crystal

7

Power Management
@ 10 uH SMPS inductor

4.7 uH SMPS inductor

(") Force SMPS Off

Configuration Data

Stack Mode ’Mode 2 (Large DB, 1 connection)

d

Day

[}

Month Year

-

=1 7 = 15 =

| HS startup time (} 642 us
Slavesca 100 =] ppm Master SCA
LS Crystal Period 0x120000 LS Crystal Freg 0x28F5C2
Cold Table Hot Table
Reg Addr Value Reg Addr Value
" 0:39 0xA2 020 0xEC
0x34 0x5B 0dF OxAF
[Test modes]]
@ User mode () LS crystal measure () HS startup time measure

Warning: use Read button to read IFR content->

Read] [

Write

In the View/Edit view, the following operations are available:
» Selectthe high speed (HS) crystal (16 or 32 MHz) and the low speed oscillator source (32

kHz or the internal ring oscillator)

» Set the Power Management options (SMPS inductor or SMPS off configuration)

» Change stack mode. Each mode has a different functionality:

— Mode 1: slave/master, 1 connection only, small GATT database (RAM2 off during

sleep)

— Mode 2: slave/master, 1 connection only, large GATT database (RAM2 on during

sleep)

— Mode 3: only master, 8 connections, small GATT database (RAM2 on during sleep)

» Change HS startup time parameter. This parameter control the time offset between the
wakeup of the device and the start of RX/TX phase. It must be big enough to allow the
device to be ready to transmit or receive after wakeup from sleep. This time depends on
the startup time of the high speed crystal.

DoclD025464 Rev 5

23/70

GUI software description UM1686

» Change sleep clock accuracy. This must reflect the actual clock accuracy, depending on
the low speed oscillator or crystal in use.

e Set low speed (LS) crystal period and frequency

» View/change date to distinguish between different versions of configurations.
» View registers that are written into the radio (hot and cold table)

» Set some test modes for specific tests

* Read IFR content from BlueNRG.

» Write IFR configuration to BlueNRG IFR.

The following general utilities are also available:
» Load button: allows to load a configuration file.
e Save button: allows to save the current parameters into a configuration file.

Flash motherboard firmware

The BlueNRG GUI embeds a utility that allows to Flash firmware to the STM32L
microcontroller on the motherboard without a JTAG/SWD programmer. This utility uses a
bootloader that has been programmed in the first 12 KB of the Flash. Any application to be
programmed to the STM32L by this tool must first consider that the lower area of the Flash
is used by the bootloader®).

OTA bootloader

OTA bootloader is a tool that allows to Flash new firmware to the STM32L of a remote
device via Bluetooth low energy technology. Refer to the dedicated application note for
more information.

Get production data

From the tools menu it is possible to retrieve production information from the BlueNRG
daughterboard. This data is stored in the EEPROM on the daughterboard.

Get version

The Get version tool is used to retrieve the version of the BlueNRG GUI firmware (VCOM)
on the STM23L, and hardware and firmware version from the BlueNRG.

Settings

This tool allows to configure the firmware stack version to be used from the GUI (when no
device is actually connected to a PC USB port). Further, it allows to configure the GUI serial
baud rate (valid only for communication over serial UART and not through USB Virtual
COM).

In order to use this function:

1. Go to Settings --> FW 6.4 for BlueNRG device

2. Go to Settings --> select Set Baud Rate... and choose the value (default is 115200)

b. Two precautions must be taken for any firmware: 1) change memory regions in linker script (vector table and
Flash must start at 0x08003000); 2) Change the vector table offset (NVIC_SetVectorTable())

24/70 DoclD025464 Rev 5 ‘Yl

UM1686

GUI software description

3.2.3

3

GUI ACI utilities window

The BlueNRG GUI ACI utilities window provides several tabs to allow testing of some

BlueNRG application scenarios.

Figure 12. BlueNRG GUI ACI utilities window

&
7 BlueNRG GUIv19.0 1 [E=REN)
File Tools Settings Help
BluelRG HW v3.0
Port: [COMSS (STDK) - HW Reset BluehRG FW v6.4
— Motherboard FW v1.8
| AciCommands | ACIUtiites | Scipts | Beacon | RFTest |
[Init Device...
[Service
Central Role Peripheral Role
[Scanning...]
[Advertising...
[Connections...]
[Update Advertising Data...
il [Update Connections. ..]
I [Service Discovery...
il [Terminate Connections..
I
ST —
Sent/Received Packets Packet Details
N. Time = Parameter Value Literal Info
|7 USLLIUUSLY FU_CUMIMIANU_UUIVIPLE [E_EVEN T
|
9 09:17:00.920 HCI_COMMAND_COMPLETE_EVENT fl
11 09:17:00920 HCI.COMMAND_COMPLETE_EVENT i
13 09:17:00.930 HCI_COMMAND_COMPLETE_EVENT E
15 09:17:00940 HCI COMMAND_COMPLETE_EVENT
16 09:17:00950 Job finished. -

Central and Peripheral roles are supported with the BLE operations described in Table 6,

Table 7 and Table 8.

DoclD025464 Rev 5

25/70

GUI software description

UM1686

26/70

Table 6. GUI ACI utilities window: available genera

| operations

Operation

Associated actions

Notes

Init Device...

Allows to initialize a device by selecting:

- Role

- Stack Mode (1,2,3);

- Address type (Public, Random) and value
- Tx power level

- Power mode

- Device Name

Service
Management ...

Allows to add a service by selecting:

- UUID type (16 or 128 bits)

- Service Type (Primary or Secondary)
- Set max number of records

For each service, it allows to add a characteristic by

selecting:

- UUID type (16 or 128 hits)
- Properties

- Security permissions

- Variable length or not

- Length

- GATT Event mask

- Encryption key size

After a characteristic is
defined, the user can
edit its parameters
and/or delete it.

Once a service and its
characteristics have
been defined, click OK
to add them.

Service Discovery...

Allows to discover all services and related
characteristics of available connections.

Service start handle,
end handle and UUID
are showed.

For each selected
Service the related
Characteristics
information are showed
(attribute handle,
property, value handle
and UUID).

For the available
characteristic with Notify
or Indication Property
it's possible to enable
the
Notification/Indication.

Terminate
Connection...

Allows to terminate the available connections

DoclD025464 Rev 5

3

UM1686

GUI software description

3

Table 7. GUI ACI utilities window: available centra

| operations

Operation

Associated actions

Notes

Scanning

Allows to put device in scanning mode by selecting:

- GAP Procedure (Limited, general, general-connection
establishment and terminate general-connection
establishment procedures)

- Enable or Disable filters

- Set own address type

- Set passive or active scan

- Set Scanning interval and Window

Connection

Allows to connect to a peer device by:
- Searching for devices in Advertising
- Select the device to which to connect
- Select the connection parameters
- Peer address and type
- Scan Interval and Window
- Connection Interval (min & max)
- Latency
- Supervision timeout
- Connection event length (min & max)

The addresses of the
detected advertising
devices are displayed

Update
Connections

connections by:
- Selecting the specific connection to be updated
- Set the new connection parameters

- Connection interval (min & max)

- Latency

- Supervision timeout

- Connection event length (min & max)

Allows to update the connection parameters of available

DoclD025464 Rev 5

27170

GUI software description

UM1686

3.24

28/70

Table 8. GUI ACI utilities window: available periph

eral operations

Operation

Associated actions

Notes

Advertising

Allows to put a Peripheral device in Advertising mode by
selecting:

- Discoverable mode (limited, non discoverable and
general discoverable)
- Type (ADV_IND, ADV_SCAN_IND,
ADV_NONCONN_IND)
- Set Local name and type (complete or short)
- Advertising intervals (min & max)
- Policy:
- Allow scan request from any, allow connect request
from any
- Allow scan request from white list only, allow connect -
request from any
- Allow scan request from any, allow connect request
from white list only

Update
Advertising
Data

It allows to update the advertising data;
It allows to set the scan response data;

It allows to update the location UUID, major and minor
number defined on the Beacon window

GUI Scripts window

The GUI Scripts window allows the user to load and run a Python script built using the
available set of BlueNRG ACI commands and the related events. For a list of supported HCI
and ACI script commands and related parameters, refer to the commands available in the
BlueNRG GUI ACI Commands window.

DoclD025464 Rev 5

3

UM1686

GUI software description

)

Figure 13. BlueNRG GUI Scripts window

&7 BlueNRG GUIv1.3.0

e S

File Tools Settings Help

Port: | COMB5 (ST Dk HW Reset |

ACI Commands | ACI Utiities | Scripts

Beacon | RFTest |

BlueNRG HW v3.0
BlueNRG FW v6.4
Motherboard FW v1.8

Saripts Engine

Load Script File:

(Run Script

C:/Program Files (x86)/STMicroelectronics/BlueNRG DK 1.9.0/Application/scripts/BLE_Beacon/BLE_Beacon.py e

18 09:17:31.752 External script finished.

Y UMLASLILL AU_CUMMANU_CUMPLE | E_EVEN |
{10 091731711 ACIHAL SET_TX_POWER LEVEL

1 09:17:31.721 HCI_COMMAND_COMPLETE_EVENT
12 097:31732 ACIGAP_SET_DISCOVERABLE

13 09:17:31.732 HCI_COMMAND_COMPLETE_EVENT
114 0917:31.742 ACI GAP_DELETE AD_TYPE

15 09:17:31.742 HCI_COMMAND_COMPLETE_EVENT
116 09:17:31.742 ACIGAP_UPDATE ADV_DATA

17 09:17:31.752 HCI_COMMAND_COMPLETE_EVENT

m

f Clear List | [¥] Update [V] Autoscroll Send
I sentReceived Packets Packet Details
N. Time & Parameter Value Literal Info

Moreover, the script engine supports other utility commands:

Table 9. GUI Scripts window: utility commands

Command name Parameters Description
HW_BOOTLOADER None Hardware bootloader activation
HW_RESET None HW reset
. Opens a message window and shows the input
String to be SO :
INFO displaved parameter. Script is blocked until user presses
play OK button
ERROR User message Raises an exception with a user-defined debug
message
Allows user to enter a specific char as input
GET_CHAR None (such as the C get_char() API)
GET_FILE None Allows the selection of a specific file as input
GET NAME None Returns the device name within an advertising
- packet
Converts the array of bytes to an integer value.
Example:
GET_VALUE Array of bytes X = [0x33,0x22]
GET_VALUE(X) = 0x2233
DoclD025464 Rev 5 29/70

GUI software description

UM1686

30/70

Table 9. GUI Scripts window: utility commands (cont

inued)

Command name

Parameters

Description

GET_LIST

Integer, Number of
bytes

Converts the integer value to an array of bytes.
Example:

X =0x2233

GET_LIST(X, 2) = [0x33,0x22]

Returns the device information (HW version &

GET_STACK_VERSION None FW version) as (hw, fw)
Returns a random number between 0 and
GET_RAND_KEY None 999999
INSERT PASS KEY None AIIOW§ to enter a pass key value used for the
- - security pass key method
. Print utility: displays information on GUI
PRINT String Sent/Received Packets
RESET None SW reset
SLEEP time It sleeps for “time” in milliseconds
SET_MODE Mode Set stack mode (1,2,3)

SET_PUBLIC_ADDRESS

Public address

Set public address (optional)

SENSORDEMO_GET_TE

Allows to obtain the temperature value from the

MPERATURE None ACI_ATT_READ_RESP_EVE_NT event (only for
the SensorDemo_Central script)
Allows to obtain the acceleration values (x,y,z)
SENSORDEMO_GET_AC None from the ACI_GATT_NOTIFICATION_EVENT
CELERATION — = — .
event (only for the SensorDemo_Central script)
TIME None Returns the time as a floating point number

expressed in seconds since the epoch, in UTC

The following pseudo code describes how to initialize a BlueNRG device as a peripheral
using a simple Python script:

Reset Bl ueNRG
HW RESET()

Init GATT
ACl _GATT_INIT()

Init GAP as central

devi ce

ACl _GAP_I NI T(Rol e=CENTRAL)

When a script is calling a command which generates specific events, the script can detect
them by using the WAIT_EVENT (event_code=None, timeout=None,
continueOnEvtMiss=False, **param_checks) command.

DoclD025464 Rev 5

3

GUI software description

Table 10. WAIT_EVENT macro-command

Description Parameters Return

Waits for an event with event_code = None (default) | An event with its parameters
‘Event Code'
parameterequal to
event_code. If no
event_code is indicated,

None, if a timeout occurs and the
timeout = None (default) input parameter “continueOnEvtMiss”
is set to True

WAIT_EVENT |the macro-command continueOnEvtMiss = False | An HCITimeoutError error exception

waits for any event. (default) is raised when a timeout occurs
Optional filtering

parameters allow
definition of additional
filters on event fields

param_checks = optional evt.get_param(“parameter_name”).va
filtering parameters | is used for getting the specific event

The WAIT_EVENT macro-command waits for an event with 'Event Code' parameter equal
to event_code. If no event_code is indicated, the macro-command waits for any event.

The timeout parameter allows to set the event timeout. If no timeout is set, the macro-
command waits until an event occurs. If a timeout (greater than zero) is set and
continueOnEvtMiss is False and no event occurs before the timeout, an HCITimeoutError
error occurs. Otherwise, if the input parameter continueOnEvtMiss is True and a timeout
(greater than zero) is set, the macro-command returns the value None even when no event
occurs before the timeout.

If one or more optional filtering parameters are specified, the macro-command performs a
check on them and returns only the first detected event that satisfies these parameters. The
events received before the one returned are discarded.

The WAIT_EVENT() command return value can be:
* anevent
* None, if a timeout occurs and the input parameter “continueOnEvtMiss” is set to True

An HCITimeoutError error exception is raised when a timeout occurs

The event_code parameter can be one of the following values:

Table 11. WAIT_EVENT: event codes with related even t parameter types

Event

event_code Event parameter type value

parameter type

HCI_LE_CONNECTION_COMPLETE_EVENT

HCI_LE_ADVERTISING_REPORT_EVENT

HCI_LE_META_EVENT Subevent_Code |HCI_LE_CONNECTION_UPDATE_COMPLETE_EVENT

HCI_LE_READ_REMOTE_USED_FEATURES_COMPLETE_EVENT

HCI_LE_LONG_TERM_KEY_REQUEST_EVENT

3

DoclD025464 Rev 5 31/70

GUI software description

UM1686

Table 11. WAIT_EVENT: event codes with related even t parameter types (continued)

event_code

Event
parameter type

Event parameter type value

HCI_VENDOR_EVENT

Ecode

ACI_BLUE_INITIALIZED_EVENT

ACI_GAP_LIMITED_DISCOVERABLE_EVENT

ACI_GAP_PAIRING_COMPLETE_EVENT

ACI_GAP_PASS_KEY_REQ_EVENT

ACI_GAP_AUTHORIZATION_REQ_EVENT

ACI_GAP_SLAVE_SECURITY_INITIATED_EVENT

ACI_GAP_BOND_LOST_EVENT

ACI_GAP_DEVICE_FOUND_EVENT

ACI_GAP_PROC_COMPLETE_EVENT

ACI_L2CAP_CONNECTION_UPDATE_RESP_EVENT

ACI_L2CAP_PROC_TIMEOUT_EVENT

ACI_L2CAP_CONNECTION_UPDATE_REQ_EVENT

ACI_GATT_ATTRIBUTE_MODIFIED_EVENT

ACI_GATT_PROC_TIMEOUT_EVENT

ACI_ATT_EXCHANGE_MTU_RESP_EVENT

ACI_ATT_FIND_INFO_RESP_EVENT

ACI_ATT_FIND_BY_TYPE_VALUE_RESP_EVENT

ACI_ATT_READ_BY_TYPE_RESP_EVENT

ACI_ATT_READ_RESP_EVENT

ACI_ATT_READ_BLOB_RESP_EVENT

ACI_ATT_READ_MULTIPLE_RESP_EVENT

ACI_ATT_READ_BY_GROUP_TYPE_RESP_EVENT

ACI_ATT_WRITE_RESP_EVENT

ACI_ATT_PREPARE_WRITE_RESP_EVENT

ACI_ATT_EXEC_WRITE_RESP_EVENT

ACI_GATT_INDICATION_EVENT

ACI_GATT_NOTIFICATION_EVENT

ACI_GATT_PROC_COMPLETE_EVENT

ACI_GATT_ERROR_RESP_EVENT

ACI_GATT_DISC_READ_CHAR_BY_UUID_RESP_EVENT

ACI_GATT_WRITE_PERMIT_REQ_EVENT

ACI_GATT_READ_PERMIT_REQ_EVENT

ACI_GATT_READ_MULTI_PERMIT_REQ_EVENT

HCI_DISCONNECTION_CO
MPLETE_EVENT

HCI_ENCRYPTION_CHAN
GE_EVENT

32/70

DoclD025464 Rev 5

3

UM1686

GUI software description

Table 11. WAIT_EVENT: event codes with related even

t parameter types (continued)

event_code

Event
parameter type

Event parameter type value

HCI_READ_REMOTE_VER
SION_INFORMATION_COM
PLETE_EVENT

HCI_COMMAND_COMPLE
TE_EVENT

HCI_COMMAND_STATUS_
EVENT

HCI_HARDWARE_ERROR_
EVENT

HCI_NUMBER_OF COMPL
ETED_PACKETS_EVENT

HCI_DATA_BUFFER_OVER
FLOW_EVENT

HCI_ENCRYPTION_KEY_R
EFRESH_COMPLETE_EVE
NT

Below are some code examples using the WAIT_EVENT() macro-command:

Example 1

Wait any events

evt = WAIT_EVENT()
if evt.event_code == HCI_LE_META_EVENT:

User specific code

elif evt.event_code==HCI_VENDOR_EVENT:

User specific code

Example 2

Wait an HCI_LE_META_EVENT

evt = WAIT_EVENT(HCI_LE_META_EVENT)

Using evt.get_param('Subevent_Code').val it's possible to identify the specific
HCI_LE_META_EVENT

parameter type value

evtCode = evt.get_param('Subevent_Code").val

Check if received event is HCI_LE_CONNECTION_COMPLETE_EVENT
if (evtCode == HCI_LE_CONNECTION_COMPLETE_EVENT):

3

If Connection Complete Status is success, get connection handle
if evt.get_param('Status').val==0x00:

conn_handle= evt.get_param(‘Connection_Handle").val

DoclD025464 Rev 5

33/70

GUI software description UM1686

Note:

Note:

34/70

Example 3
Wait HCI_VENDOR_EVENT event_code
evt = WAIT_EVENT(HCI_VENDOR_EVENT)

#Using evt.get_param('Ecode’).val it's possible to identify the specific
HCI_VENDOR_EVENT event parameter type value

evtCode = evt.get_param('Ecode").val
if (evtCode == ACI_GATT_NOTIFICATION_EVENT):
conn_handle=evt.get_param(‘Connection_Handle").val

Example 4

Wait the Ecode ACI_GATT_PROC_COMPLETE_EVENT (HCI_VENDOR_EVENT
#event_code).

if no event occurs within the selected timeout, an exception is raised
WAIT_EVENT(HCI_VENDOR_EVENT, timeout=30,
Ecode=ACI_GATT_PROC_COMPLETE_EVENT)

If no timeout parameter is specified, it waits until the
ACI_GATT_PROC_COMPLETE_EVENT event occurs.

Example 5
Wait an event for 10 seconds with continueOnEvtMiss set to True
If no event occurs, the script continues (no exception is raised).
WAIT_EVENT (timeout=10, continueOnEvtMiss =True)

If the continueOnEvVtMiss parameter is set to False and no event within the selected timeout
occurs, an exception is raised.

Example 6
Wait the HCI_DISCONNECTION_COMPLETE_EVENT event_code
WAIT_EVENT(HCI_DISCONNECTION_COMPLETE_EVENT)

Example 7
Create a Connection and wait for the HCI_LE_ CONNECTION_COMPLETE_EVENT

ACl_GAP_CREATE_CONNECTION(Peer_Address=[0x12, 0x34, 0x00, OXE1, 0x80,
0x02])

event = WAIT_EVENT(HCI_LE_META_EVENT,
timeout=30,Subevent_Code=HCI_LE_CONNECTION_COMPLETE_EVENT)

if event.get_param('Status').val==0x00:

Store the connection handle
conn_handle= event.get_param('Connection_Handle").val
User defined code ...

GUI script engine loading and running steps

To load and run a Python script using the BlueNRG GUI script engine, the following steps
must be observed:

3

DoclD025464 Rev 5

UM1686

GUI software description

Note:

3.2.5

)

1. Inthe BlueNRG GUI, Scripts window, Script Engine section, click on tab “...”, browse to
the script location and select the script

2. Click on the “Run Script” tab to run the script. The execution flow (commands and
events) will be displayed in the BlueNRG GUI “Sent/Received Packets” section

In the BlueNRG DK 1.7.0 and future versions, some reference BlueNRG scripts are
available in the GUl/scripts folder.

It is worthy of note that in order to write and use the BlueNRG scripts, the user is required to
have some knowledge of the Python language (Python 2.7.6), and a good understanding of
the BlueNRG ACI commands and related events.

GUI Beacon window

The BlueNRG GUI Beacon window provides some tabs allowing configuration of a
BlueNRG device as a BLE Beacon device which transmits advertising packets with specific
manufacturer data.

Figure 14. BlueNRG GUI Beacon window

N
57 BlueNRG GUIv1.9.0 = |)
File Tools Settings Help
BlueNRG HW v3.0
Port: |COMB5 (STD Close HW Reset BlueNRG FW v6.4
Motherboard FW v1.8
ACI Commands | ACIUtiities | Scripts | Beacon | RFTest |
Beacon
Address (hex)
123456789AAA @ Public () Random
Company Identifier Code (hex) (*): ID (hex):
0030 02
() SIG company identifiers are available at the following link
Location UUID (hex): Major Number (hex): Minor Number (hex): TX Power Level (dBm):
E20A39F4-73F5-48C4-A12F-17D1AD07A%61 0000 0000 56
[SetBeacon |
Clear List | [¥] Update [¥] Autoscrol send |
| sentReceived Packets Packet Details
N. Time Type 2 Parameter Value Literal Info

Y USLADD./03 HLLLUMIVAND_UUMFLE [E_EVEN]
10 09:17:56.763 ACLGAP_INIT

1 09:17:56.773 HCI_COMMAND_COMPLETE_EVENT
112 097:56773 ACI.GAP_SET_DISCOVERABLE

13 09:17:56.782 HCI_.COMMAND_COMPLETE_EVENT
14 09:17:56.782 ACI.GAP_DELETE_AD_TYPE

15 09:17:56.782 HCI_COMMAND_COMPLETE_EVENT
16 09:17:56.792 ACIGAP_UPDATE ADV_DATA

17 09:17:56.792 HCI_COMMAND_COMPLETE_EVENT
18 09:17:56.802 Job finished. -

The user can configure the following advertising data fields for the BLE Beacon device,
through the BlueNRG GUI Beacon window configuration parameters.

Table 12. BlueNRG GUI beacon window configuration p arameters

Data field Description Notes
Address Device address
Public or Random Device address type
Company Identifier Code SIG company identifier Default is 0x0030 (STMicroelectronics)
ID Beacon ID Fixed value
DoclD025464 Rev 5 35/70

GUI software description UM1686

3.2.6

36/70

Table 12. BlueNRG GUI beacon window configuration p arameters (continued)

Data field Description Notes
Location UUID Beacons UUID Used to distinguish specific beacons
from others
Major number Identifier for a group of beacons | Used to group a related set of beacons
Minor number Identifier for a single beacon Used to identify a single beacon
Tx Power Level 2's complement of the Tx power Used to establlsz:\%\;far you are from

To configure a BlueNRG platform as a BLE beacon device, click on “Set Beacon” tab.

GUI RF Test window

The BlueNRG GUI provides the RF Test window that permits the performance of the
following tests:

1. Start/Stop a tone on a specific BLE RF channel

2. Perform BLE Packer Error Rate (PER) tests using BLE Direct Test Mode (DTM)
commands

Start/Stop a tone

To start a tone on a specific RF BLE channel, perform these steps:
1. Connect a BlueNRG platform to a PC USB port
2. Launch an instance of the BlueNRG GUI
3. Open related COM port
4. Go to RF Test window and in the TRANSMITTER section:
— Set the BLE channel using the TX Frequency combo box
— Set TX power in the related combo box
— Click on the “Start Tone” button

To stop a tone on a specific RF BLE channel, perform these steps:
1. Goto RF Test window and in the TRANSMITTER section:

— Click on the Stop Tone button (the Stop button is available only when a tone is
started)

3

DoclD025464 Rev 5

UM1686

GUI software description

)

Figure 15. GUI RF test: Start a tone

-
&7 BlueNRG GUIv1.9.0

P

File Tools Settings Help

BlueNRG HW v3.0
BlueNRG FW v6.4
Motherboard FW v1.8

Port: [COMSS (STDK)

ACI Commands | ACIUtiites | Sripts | Beacon | RFTest |

Test

TRANSMITTER RECEIVER

PER

[Stop Tone

] Update [7] Autoscrol [send
| sent/Received Packets Packet Details
0l N Time Type \ Parameter Value Literal Info
0 09:18:20614 Job start. OxFC15 'ACLHAL_TONE_START l
1 0982061 HCLRESET o1 \
2 09:18:20624 HCLCOMMAND_COMPLETE EVENT 000 | BEE
3 09:18:20.634 ACIBLUEINITIALIZED_EVENT
5 09:18:20.733 HCLCOMMAND_COMPLETE EVENT
T o
7 091820743 HCLCOMMAND_COMPLETE EVENT
& 091820743 Job finished. I

Direct Test Mode (DTM) tests

The BlueNRG GUI provides an RF test using the BLE Direct Test Modes commands that
allows users to target a packet error rate test scenario.

Two sections are available:
1. TRANSMITTER section for transmitting reference packets at a fixed interval
2. RECEIVER section for receiving reference packets at a fixed interval

TRANSMITTER section

This section permits to set the following items:
» The power level of the transmitter

» The Frequency of the transmitter

» Length of data to transmit in each packet

Packet payload format as defined in the Bluetooth Low Energy specification, Direct Test
Mode section

By clicking on the “Start Transmitter” button, test reference packets will be sent at a fixed
interval.

RECEIVER section

This section permits to set the following items:
» The Frequency of the receiver

By clicking on the “Receiver Test” button, test reference packets will be received at a fixed
interval.

DoclD025464 Rev 5

37170

GUI software description UM1686

38/70

Figure 16. GUI RF Test: TRANSMITTER and RECEIVER se ctions

7 BlueNRG GUI v1.90 -
File Tools Settings Help
T (e BlueNRG HW v3.0
Port; (COMBS (ST DK ‘ HW Reset } BlueNRG FW v6.4
= Motherboard FW v1.8
ACICommands | ACIUtiities | Saipts | Beacon | RFTest |
Test
TRANSMITTER RECEIVER
[¥] High Power \7(+adsm) v‘ RX Frequency: | 2402 MHz (Channel 0) =
TXFrequency: (2402 MHz (Channel 0)] # Packet Received
[Start Receiver 0
Length of Data: [0x25 y) | R
PER
Packet Payload [0x00 - Pseudo-Random bit sequence 8 |
Packet Transmitted: 0
il Packet Recelved: 0
Start Transmitter 0
Packet Error Rate (PER):
[Start Tone
j [coorist | 7] update [¥] Autoscroll [send |
Sent/Received Packets Packet Details
| Time Type Parameter Value Literal Info

Packet Error Rate (PER) test procedure

To perform a Packet Error Rate test using standard BLE Direct Test Mode commands
(HCI_LE_Transmitter_Test, HCI_LE_Receiver_Testand HCI_LE_Test_End), it is necessary
to perform the following procedure:

Start PER test

1.
2.
3.

4.
5.

Connect two BlueNRG platforms (TX and RX) to PC USB ports
Open two instances of BlueNRG GUI (one for TX and RX BlueNRG devices)

In each instance of the BlueNRG GUI, Open the COM port related to TX/RX BlueNRG
device

Ensure that the antennas are plugged into the BlueNRG devices, where applicable
In the BlueNRG GUI related to the RX BlueNRG device,

Go to the RF Test window, RECEIVER section:
— Set the RX frequency

6.

Click on “Start Receiver” button to start the Receiver test
In the BlueNRG GUI related to TX BlueNRG device,

Go to RF Test window, TRANSMITTER section:

Set TX power

Set TX frequency

Set Length of data

Set Packet payload format

Click on the “Start Transmitter” button, to start the Transmitter test

3

DoclD025464 Rev 5

UM1686 GUI software description

Stop PER test

1. Inthe BlueNRG GUI related to TX BlueNRG device,
— Go to the RF Test window, TRANSMITTER section

— Click on “Stop Transmitter” button. The number of transmitted packets is displayed in
the #Packet Transmitted field

2. Inthe BlueNRG GUI related to Rx BlueNRG device,

Go to the RF Test window, RECEIVER section:

— Click on the “Stop Receiver” button. The number of received packets is displayed in
the #Packet Received field.

Get PER (Packet Error Rate) value

1. Inthe BlueNRG GUI related to RX BlueNRG device,
— Go to the RF Test window, RECEIVER section

— Inthe PER section, insert the number of transmitted packet from TX device into the
Packet Transmitted field (read this value from TRANSMITTER section in the
BlueNRG GUI related to TX device)

— The PER (packet error rate) value is shown in the Packet Error Rate field

Figure 17. GUI RF Test, PER test: TX device

- - - \ A
57 BlueNRG GUI v1.9.0 2 [

File Tools Settings Help

BlueNRG HW v3.0
Port: |COMBS (ST DK BlueNRG FW v6.4

Motherboard FW v1.8

(wirst]

ACl Utiities_|_saipts | Beacon

ACI Commands RFTest |

Test

)

TRANSMITTER

(] High Power [7.(+8dBm))

TXFrequency: 2402 Mz (Channel 0) v

Length of Data: [0x25 ~|

Packet Payload [0x00 - Pseudo-Random bit sequence 9~ |

Start Transmitter 3817

[Start Tone]

Clear List | [V] Update [¥] Autoscroll

Sent/Received Packets

RECEIVER

RX Frequency:

2402 MHz (Channel 0) X
Start Receiver 0

PER
Packet Transmitted: 0

Packet Received: 0

Packet Error Rate (PER): |- %

Send

Packet Details

N. Time
El USILSIAU.Z/Y | AU LUMIVIANU_UUMIFLE [E_EVEN

6 09:19:20279 HCLLE TRANSMITTER TEST

7 09:19:20.289 HCI_COMMAND_COMPLETE_EVENT

8 09:19:20.299 Job finished.

9 09:19:22.678 Job start.

110 09:19:22678 HCILE TEST_END

11 09:19:22.688 HCI_COMMAND_COMPLETE_EVENT
112 09:19:22688 ACIHAL LE_TX_TEST_PACKET_NUMBER
13 09:19:22.698 HCI_COMMAND_COMPLETE_EVENT
14 09:19:22.698 Job finished.

Parameter Value Literal Info

DoclD025464 Rev 5

39/70

GUI software description UM1686

Figure 18. GUI RF Test, PER test: RX device
57 BlueNRG GUIVL90 gp—] ey . _@

T T —

BlueNRG HW v3.0
Port: [COM76 (STDK) | [LGlose.] [HwReset BlueliRG FW v6.4

Motherboard FW v1.8

ACI Commands | ACIUtiites | Scripts | Beacon | RFTest |

Test

TRANSMITTER RECEIVER
V] High Power (7.(+8d8m) v] RxFrequency: 2402 MHz (Channel 0) -
TX Frequency: 2402 MHz (Channel 0) x]

Length of Data: [0x25]

Packet Payload [0x00 - Pseudo-Random bit sequence § ~ |

Packet Transmitted: .17

Packet Transmitted

Packet Received: 3817 =
Start Transmitter 0 =

Packet Error Rate (PER): |0.0 %

[Start Tone l

| ot] @lpone @ aco

Sent/Received Packets Packet Details

N. Time Type = Parameter Value Literal Info

3 09:19:18158 ACI BLUE_INITIALIZED_EVENT

5 09:19:18.259 HCI_COMMAND_COMPLETE_EVENT
6 09:19:18.269 Job finished.
7 09:19:25.658 Job start.

9 09:19:25.668 HCI_COMMAND_COMPLETE_EVENT
10 09:19:25.678 Job finished. =

i

3

40/70 DoclD025464 Rev 5

UM1686

Programming with BlueNRG network processor

4

4.1

4.2

3

Programming with BlueNRG network processor

The BlueNRG provides a high level interface to control its operation. This interface is called
ACI (application-controller interface). The ACI is implemented as an extension to the
standard Bluetooth HCI interface. Since BlueNRG is a network processor, the stack runs
inside the device itself. Hence, no library is required on the external microcontroller, except
for profiles and all the functions needed to communicate with the BlueNRG SPI interface.

The development kit software includes sample code that shows how to configure BlueNRG
and send commands or parsing events. The source library is called simple BlueNRG HCI to
distinguish it from the library for the complete profile framework (not present in the software
development kit). This library is able to handle multiple profiles at the same time and
supports several Bluetooth GATT-based profiles for BlueNRG. Documentation on the ACl is
provided in a separate document.

Figure 19. Profile framework structure
Proximity FindMe HOGP | | |

Basic profile framework

Requirements

In order to communicate with BlueNRG network processor very few resources are needed
by the main processor. These are listed below:

— SPl interface
— Platform-dependent code to write/read to/from SPI
— Atimer to handle SPI timeouts or to run Bluetooth LE Profiles

Minimum requirements in terms of Flash and RAM space largely depend on the functionality
needed by the application, on the microprocessor that will run the code and on the compiler
toolchain used to build the firmware.

On the STM32L (Cortex-M3 core), the memory footprint for the code interfacing the
BlueNRG requires few kilobytes of Flash and RAM (typically 2-4 KB of Flash, and 0.8-1.5
KB of RAM). So a complete simple application (like the BlueNRG sensor demo) could
require just 15 KB of Flash and 2 KB of RAM.

If using the complete BlueNRG profile framework, the memory footprint is around 9 KB of
code and 3 KB of data for just the ACI interface and the profile framework functions. The
memory required for the profiles can vary depending on the complexity of the profile itself.
For example, code for HID-over-GATT host is around 6 KB, while for heart rate monitor is
around 2.3 KB.

Software directory structure

The Projects folder contains some sample code that can be used on the application
processor to control the BlueNRG. Platform-dependent code is also provided for STM32L1
platforms. The example project provided in the package will run “as is” on the development
kit.

DoclD025464 Rev 5 41/70

Programming with BlueNRG network processor UM1686

42/70

The files are organized using the following folder structure:

Drivers. It contains all the STM32L1xx Cube library framework files.

Middlewares\ST\STM32_BlueNRG\SimpleBlueNRG_HCI. Contains the code
that is used to send ACI commands to the BlueNRG network processor. It
contains also definitions of BlueNRG events.

platform. Contains all the platform-dependent files (only on STM32L1xx standard
library framework). These can be taken as an example to build applications that
can be run on other platforms.

Project_Cube, Projects_ STD_Library. Contains source based, respectively, on
STM32L1xx Cube library and on STM32L1xx standard library frameworks, that
will use the Bluetooth technology with the BlueNRG. Project files for IAR
embedded workbench are also available.

3

DoclD025464 Rev 5

UM1686

BlueNRG sensor profile demo

5

3

BlueNRG sensor profile demo

The software development kit contains an example, which implements a proprietary
Bluetooth profile: the sensor profile. This example is useful for building new profiles and
applications that use the BlueNRG network processor. This GATT profile is not compliant to
any existing specification. The purpose of this project is simply to show how to implement a
given profile.

This profile exposes two services: acceleration service and environmental service.
Figure 20 shows the whole GATT database, including the GATT and GAP services that are
automatically added by the stack.

One of the acceleration service’s characteristics has been called free-fall characteristic. This
characteristic cannot be read or written but can be notified. The application will send a
notification on this characteristic (with value equal to 0x01) if a free-fall condition has been
detected by the LIS3DH MEMS sensor (the condition is detected if the acceleration on the 3
axes is near zero for a certain amount of time). Notifications can be enabled or disabled by
writing on the related client characteristic configuration descriptor.

The other characteristic exposed by the service gives the current value of the acceleration
that is measured by the accelerometer. The value is made up of six bytes. Each couple of
bytes contains the acceleration on one of the 3 axes. The values are given in mg. This
characteristic is readable and can be natified if notifications are enabled.

Another service is also defined. This service contains characteristics that expose data from
some environmental sensors: temperature, pressure and humidity(C). For each
characteristic, a characteristic format descriptor is present to describe the type of data
contained inside the characteristic. All of the characteristics have read-only properties

c. An expansion board with LPS25H pressure sensor and HTS221 humidity sensor can be connected to the
motherboard through the expansion connector (F in Figure 3). If the expansion board is not detected, only
temperature from STLM75 will be used.

DoclD025464 Rev 5 43/70

BlueNRG sensor profile demo

UM1686

5.1

5.2

4470

Figure 20. BlueNRG sensor demo GATT database

descr=0x0000}

Handle UUID (16 or 128bit) Attribute Type Properties Initial Parameter Value Comment
w
e s
B E N E
RoENSW D NGwx
D oorA T BmAT
10001 2800 Primary Senice {Senice=0x1801 (*Attribute Profile")}
2 0002 2803 Characteristic X {handle=0x0003, UUID=0x2A05}
30003 2A08 Service Changed {start handle=0x0001, end handle=0xFFFF}
4 0004 2902 Client Characteristic Configuration 0x0000
5 0005 2800 Primary Senice {Senice=0x1800 ("Generic Access Profile")}
6 0006 2803 Characteristic XXX X {handle=0x0007, UUID=0x2A00}
7 0007 2400 Device Name “bluenrg”
8 0008 2803 Characteristic X X% {nandle=0x0009, UUID=0x2A01}
9 0009 2401 Appearance 0x0000
e 0 S [Senice=0x02366EB0CT IATETOABA0N0ZABDECE B
("Acc Sevice")}
{handle=0x0012.
CRCo = SLTEELE X UUID=0xE23ETBAOCF4A11E18FFC0002A5D5C5 18}
18 o1z EZIETBAICFAATIETGFFCO oo Eail 6 Indication with value 1 when a freel fall
002A5D5C51B condition is detected
19 0013 2902 Client Characteristic Configuration 0x0000
{handle=0x0015
e 2809 Chetcteristio A S UUID=0x340A1B80CFAB11E1AC360002A5D5C5 16}
340A1BB0CFAB11E1AC3600 r X-Axis (2bytes) Y-Axis (2bytes) Z-Axis
21 0015 s Acceleration 0x000000000000 Sl
2 0016 2902 Client Characteristic Configuration 0x0000
% oo o Primary Senice [Senice=0x42021A40EATT11E262D00002AD5CE 1B
("Env Service")}
{handle=0x0019,
4 s 20 Charcieristic S UUID=0xA32E5520E47711E2AIE30002A5D5C5 18}
A32EE520E47711E2AIEI00 Temperature in tenths of degree
2 0019 et Temperature 0x0000 M
2904 Characteristic Format {format=0x0E, exp=-1, unit=0x272F n_sp=0x00. format=sint16, unit=temperature
26 001A
descr=0x0000} celsius
{handle=0x001C,
TR0 itk ST i UUID=0xCD20C4B0E48B11E2840B0002AED5C5 1B}
CD20C4B0E48B11E2840800
28 001C el U Pressure 0x000000 Pressure in hundredths of millibar
%I 507D 2904 Characteristic Format {format=0x0F , exp=5, unit=0x2780, n_sp=0x00 ka8, urit=pevsaums bar
descr=0x0000}
- {handle=0x001F
i b SEEECIETS X UUID=0x01C50860E48C 11E2A0730002A5D5C5 18}
01C50B60E48C11E2A07300 s
31 00fF DOSEneC e Humidity 0x0000 Humidity in tenths of RH
W 2904 Characteristic Format {format=0x06, exp=—1, unt=0x2700, n_sp=0x00, [0 Ll L less

Supported platforms

The BlueNRG sensor profile demo is supported only on the BlueNRG development platform
(STEVAL-IDB002V1).

BlueNRG app for smartphones

An application is available for smartphones (iOS and android), that works with the sensor
profile demo. The development kits are preprogrammed with the sensor profile demo
firmware. If the development board has been flashed with another firmware, it can be
programmed with the correct firmware. Refer to Section 4.1 for the programming procedure
using the device firmware upgrade feature and BlueNRG GUI. The correct pre-compiled
firmware can be found inside firmware folder (SensorDemo.hex). The source file for the
demo is inside the project folder.

This app enables notifications on the acceleration characteristic and displays the value on
the screen. Data from environmental sensors are also periodically read and displayed.

DoclD025464 Rev 5

3

UM1686 BlueNRG sensor profile demo

Figure 21. BlueNRG app
Locked SIM 12:13 3 Locked SIM 12:12 3 B3| Locked SIM 12:13 3 B3|

£ (P
Back | Accel. | Temp. | RssI | { Back Accel. ‘ Temp. ‘ RSS! { Back Accel. ‘ Temp. ‘ RsSI

— !

-~
\

| —\

\,
N\ 57 4

5.3 BlueNRG sensor profile demo: connection with a central
device

This section describes how to interact with a central device, while BlueNRG is acting as a
peripheral. The central device can be another BlueNRG acting as a master, or any other
Bluetooth smart or smart-ready device.

First, BlueNRG must be set up. In order to do this, a series of ACl command need to be sent
to the processor.

53.1 Initialization

BlueNRG's stack must be correctly initialized before establishing a connection with another
Bluetooth LE device. This is done with two commands:
— aci_gatt_init()
— aci_gap_init(GAP_PERIPHERAL_ROLE,&service_handle,
&dev_name_char_handle, &appearance_char_handle);

Where: Role = GAP_PERIPHERAL_ROLE.

See ACI documentation for more information on these commands and on those that follow
as well. Peripheral role must be specified inside the GAP_INIT command.

5.3.2 Add service and characteristics

BlueNRG's Bluetooth LE stack has both server and client capabilities. A characteristic is an
element in the server database where data are exposed. A service contains one or more
characteristics. Add a service using the following command. Parameters are provided only
as an example.

— aci_gatt_add_serv(0x01, 0xA001, 0x01, 0x06, & Service_Handle);

Where: Service_UUID_Type=0x01, Service_UUID_16=0xA001, Service_Type=0x01,
Max_Attributes Records=0x06.

3

DoclD025464 Rev 5 45/70

BlueNRG sensor profile demo UM1686

5.3.3

5.3.4

5.3.5

46/70

The command will return the service handle on variable Service_Handle (e.g., 0x0010). A
characteristic must now be added to this service. This service is identified by the service
handle.

— aci_gatt_add_char (Service_Handle, 0x01, 0xA002, 10, 0x1A,0x00, 0x01, 0x07,
0x01, &Char_Handle);

Where: Char_UUID_Type=0x01, Char_UUID_16=0xA002, Char_Value_Length=10,
Char_Properties=0x1A,Security Permissions=0x00, GATT_Evt Mask=0x01,
Enc_Key_Size=0x07, Is_Variable=0x01.

With this command a variable-length characteristic has been added, with read, write and
notify properties. The characteristic handle is also returned (Char_Handle).

Set security requirements

BlueNRG exposes a command that the application can use to specify its security
requirements. If a characteristic has security restrictions, a pairing procedure must be
initiated by the central in order to access that characteristic. Let's assume we want the user
to insert a passcode during the pairing procedure.

— aci_gap_set_authentication_requirement (0x01, 0,0, 7, 16, 123456, 1);

Where: Char_UUID_Type=0x01, Char_UUID_16=0xA002, Char_Value_Length=10,
Char_Properties=0x1A,Security Permissions=0x00, GATT_Evt Mask=0x01,
Enc_Key_Size=0x07, Is_Variable=0x01.

Enter connectable mode

Use GAP ACI commands to enter one of the discoverable and connectable modes.

— aci_gap_set_discoverable (0x00, 0x800,0x900, 0x00, 0x00, 0x08, local_name,
0x00, 0x00, 0x0000, 0x0000);

Where: Advertising_Type=0x00, Advertising_Interval_Min=0x800,
Advertising_Interval _Max=0x900, Own_Address_Type=0x00,
Advertising_Filter_Policy=0x00, Local_Name_Length=0x08, local_name[] =
{AD_TYPE_COMPLETE_LOCAL_NAME,'B"I''u','e',N',/'R",'G'};
Service_UUID_Length=0x00, Service_UUID_List=0x00,
Slave_Connection_Interval_Min=0x0000, Slave_Connection_Interval_Max=0x0000.

The Local_Name parameter contains the name that will be present in advertising data, as
described in Bluetooth core specification version 4.0, Vol. 3, Part C, Ch. 11.

Connection with central device

Once BlueNRG is put in a discoverable mode, it can be seen by a central device in
scanning.

Any Bluetooth smart and smart-ready device can connect to BlueNRG, such as a
smartphone. LightBlue is one of the applications in the Apple store for iPhone® 4S/5 and
later versions of Apple’s iPhone.

Start the LightBlue application. It will start to scan for peripherals. A device with the
BlueNRG name will appear on the screen. Tap on the box to connect to the device. A list of
all the available services will be shown on the screen. Touching a service will show the
characteristics for that service.

DoclD025464 Rev 5 ‘Yl

UM1686

BlueNRG sensor profile demo

5.4

5.4.1

3

BlueNRG has added two standard services: GATT Service (0x1801) and GAP service
(0x1800).

Try to read the characteristic from the service just added (0xA001). The characteristic has a
variable length attribute, so you will not see any value. Write a string into the characteristic
and read it back.

BlueNRG can send notifications of the characteristic that has been previously added, with
UUID 0xA002 (after notifications have been enabled). This can be done using the following
command:

— aci_gatt_update_char_value (Service_Handle, Char_Handle, 0,0x05,'hello");
where: Val_Offset=0, Char_Value_Length=0x05, Char_Value="hello'.

Once this ACI command has been sent, the new value of the characteristic will be displayed
on the phone.

BlueNRG sensor demo: central profile role

This application implements a basic version of the BlueNRG Sensor Profile Central role
which emulates the BlueNRG Sensor Demo applications available for smartphones (i0S
and Android).

It configures a BlueNRG device as a BlueNRG Sensor device, Central role which is able to
find, connect and properly configure the free fall, acceleration and environment sensor
characteristics provided by a BlueNRG development platform, configured as a BlueNRG
Sensor device, Peripheral role.

This application uses a new set of APIs that allow the performance of the following
operations on a BlueNRG Master/Central device:

— Master Configuration Functions

— Master Device Discovery Functions

— Master Device Connection Functions

— Master Discovery Services & Characteristics Functions
— Master Data Exchange Functions

— Master Security Functions

— Master Common Services Functions

These APIs are provided through binary libraries available on Projects\Bluetooth
LE\Profile_Framework_Central\library. The master library APIs are documented in doxygen
format within the SW package.

The BlueNRG Sensor Demo Central role is supported on the BlueNRG development
platform (STEVAL-IDB002V1) and on the BlueNRG USB dongle (STEVAL-IDB003V1).

The sections that follow describe how to use the master library APIs for configuring a
BlueNRG Sensor Demo Central device.

Initialization

BlueNRG's master library must be correctly initialized before establishing a connection with
another

Bluetooth LE device. This is done with this command:
— Master_Init(¶m)

DoclD025464 Rev 5 47/70

BlueNRG sensor profile demo UM1686

5.4.2

5.4.3

5.4.4

48/70

param variable allows to set the initialization parameters (device address, name, ...).

Refer to the master library doxygen documentation for more information about the
command and related parameters.

On the application main loop, the Master_Process() API has to be called in order to process
the Master library state machines.

Discovery a sensor peripheral device

In order to discover a Sensor Peripheral device, a discovery procedure has to be started
with the master library command:

— Master_DeviceDiscovery(&devDiscParam);

devDiscParam variable allows to set the discovery parameters (discovery procedure,
interval, window, ...).

Refer to the master library doxygen documentation for more information about the
command and related parameters.

The found devices are returned through the Master_DeviceDiscovery CB() master library
callback (DEVICE_DISCOVERED status).

Connect to discovered sensor peripheral devic e

Once a Sensor Peripheral device has been found, the Sensor Central device connects to it
by using the following master library command:

— Master_DeviceConnection(&connParam);

connParam variable allows to set the connection parameters (connection procedure, scan
duration, window,...).

Refer to the master library doxygen documentation for more information about the
command and related parameters.

When the connection is established with success, the Master_Connection_CB() master
library callback is called with CONNECTION_ESTABLISHED_EVT event.

Discovery sensor peripheral services and char acteristics

Once a Sensor Peripheral device has been connected, the Sensor Central device starts
discovery all primary service procedure, by using the following master library command:

— Master_GetPrimaryServices()

Refer to the master library doxygen documentation for more information about the
command and related parameters.

When services are discovered, the Master_ServiceCharacPeerDiscovery CB master library
callback is called with PRIMARY_SERVICE_DISCOVERY code. In particular the sensor
and environmental services are discovered.

For each discovered service, the related characteristics are discovered by using the
following master library command:

— Master_GetCharacOfService()

Refer to the master library doxygen documentation for more information about the
command and related parameters.

3

DoclD025464 Rev 5

UM1686

BlueNRG sensor profile demo

5.4.5

5.4.6

3

When the characteristics of a service are discovered, the
Master_ServiceCharacPeerDiscovery CB master library callback is called with
GET_CHARACTERISTICS_OF_A_SERVICE code. In particular the sensor acceleration,
free fall and temperature characteristics are discovered.

Enable sensor peripheral acceleration and fre e fall notifications

Once the Sensor Peripheral device sensor acceleration and free fall characteristics have
been discovered, the Sensor Central device can enable the related characteristics
notification by using the following master library command:

— Master_Notifindic_Status(masterContext.connHandle, handle, TRUE, FALSE);

Refer to the master library doxygen documentation for more information about the
command and related parameters.

When a characteristic notification is enabled, the Master _PeerDataExchange CB() master
library callback is called with NOTIFICATION_INDICATION_CHANGE_STATUS code. On a
Sensor Central device context, the sensor acceleration and free fall characteristics
notifications coming from the Sensor Peripheral device are received through the

Master _PeerDataExchange_CB() master library callback,
NOTIFICATION_DATA_RECEIVED code. Each received values is displayed on the
connected hyper terminal (115200, 8, N, 1).

Read the sensor peripheral temperature sensor characteristic

Once the Sensor Peripheral device sensor temperature characteristic is discovered, the
Sensor Central device can read the related characteristic value by using the following
master library command:

— Master_Read_ Value()

Refer to the master library doxygen documentation for more information about the
command and related parameters.

The characteristic value is received though the Master_PeerDataExchange CB() master
library callback, READ_VALUE_STATUS code. Each received value is also displayed on
the connected hyper terminal (115200, 8, N, 1).

DoclD025464 Rev 5 49/70

BlueNRG chat demo application UM1686

6

6.1

6.2

50/70

BlueNRG chat demo application

The software development kit contains another example, which implements a simple 2-way
communication between two BlueNRG devices. It shows a simple point-to-point wireless
communication using the BlueNRG product.

This demo application exposes one service: chat service.

The chat service contains 2 characteristics:

. The TX characteristic: the client can enable notifications on this characteristic. When
the server has data to be sent, it will send notifications which will contain the value of
the TX characteristic.

. The RX characteristic: this is a writable characteristic. When the client has data to be
sent to the server, it will write a value into this characteristic.

e The maximum length of the characteristic value is 20 bytes.

There are 2 device roles which can be selected through the specific EWARM workspace:
— The “Server” that exposes the chat service (BLE peripheral device).
— The “Client” that uses the chat service (BLE central device).

The application requires 2 devices to be programmed respectively with the 2 devices roles:

server and client. The user must connect the 2 devices to a PC through USB and open a
serial terminal on both, with the following configurations:

Table 13. Serial port configuration

Baudrate 115200 bit/sec

Data bits 8 bit
Parity None bit

Stop bits 1 bit

The application will listen for keys typed into one device and upon pressing the keyboard
return key, it will send them to the remote device. The remote device will listen for RF
messages and will output them in the serial port. In other words, anything typed in one
device will be visible to the other device.

Supported platforms

The BlueNRG chat demo (server & client roles) is supported on the BlueNRG development
platform (STEVAL-IDB002V1) and on the BlueNRG USB dongle (STEVAL-IDB0O03V1).

BlueNRG chat demo application: peripheral & cen tral
devices

This section describes how two BLE chat devices (server-peripheral & client-central)
interact with each other in order to set up a point-to-point wireless chat communication.

First, BlueNRG must be set up on both devices. In order to do this, a series of ACI
commands need to be sent to the processor.

DoclD025464 Rev 5 ‘Yl

UM1686 BlueNRG chat demo application

6.2.1 Initialization

BlueNRG's stack must be correctly initialized before establishing a connection with another
Bluetooth LE device. This is done with two commands

e aci_gatt_init()
* BLE Chat, “Server” role:
— aci_gap_init(GAP_PERIPHERAL_ROLE, &service_handle,
&dev_name_char_handle, &appearance_char_handle);
* BLE Chat, “Client role:

— aci_gap_init(GAP_CENTRAL_ROLE, &service_handle,
&dev_name_char_handle, &appearance_char_handle);

Peripheral & central BLE roles must be specified inside the GAP_INIT command. See ACI
documentation for more information on these commands and on those that follow.

6.2.2 Add service and characteristics

The chat service is added on the BLE chat, server role device using the following command:

aci_gatt_add_serv(UUID_TYPE_128, service_uuid, PRIMARY_SERVICE, 7,
&chatServHandle);

Where service_uuid is the private service UUID 128 bits allocated for the chat service
(Primary service).

The command will return the service handle in chatServHandle.

The TX characteristic is added using the following command (on BLE Chat, Server role
device):

aci_gatt_add_char(chatServHandle, UUID_TYPE_128, charUuidTX, 20,
CHAR_PROP_NOTIFY, ATTR_PERMISSION_NONE, 0, 16, 1, &TXCharHandle);

Where charUuidTX is the private characteristic UUID 128 bits allocated for the TX
characteristic (notify property). The characteristic handle is also returned (on
TXCharHandle).

The RX characteristic is added using the following command (on BLE Chat, Server role
device):

aci_gatt_add_char(chatServHandle, UUID_TYPE_128, charUuidRX, 20,
CHAR_PROP_WRITE|CHAR_PROP_WRITE_WITHOUT_RESP,
ATTR_PERMISSION_NONE, GATT_SERVER_ATTR_WRITE,16, 1, &RXCharHandle);

Where charUuidRX is the private characteristic UUID 128 bits allocated for the RX
characteristic (write property). The characteristic handle is also returned (on
RXCharHandle).

See ACI documentation for more information on these commands as well as those that
follow.

6.2.3 Set security requirements

BlueNRG exposes a command that the application can use to specify its security
requirements. If a characteristic has security restrictions, a pairing procedure must be
initiated by the central in order to access that characteristic. On BLE chat demo, a fixed pin
(123456) is used as follows:

3

DoclD025464 Rev 5 51/70

BlueNRG chat demo application UM1686

6.2.4

6.2.5

52/70

aci_gap_set_auth_requirement(MITM_PROTECTION_REQUIRED,O0OB_AUTH_DATA_AB
SENT,NULL,7,16, USE_FIXED_PIN_FOR_PAIRING,123456,BONDING);

Enter connectable mode

On BLE chat, server role device uses GAP ACI commands to enter into general
discoverable mode:

aci_gap_set_discoverable(ADV_IND, 0, 0, PUBLIC_ADDR, NO_WHITE_LIST_USE,8,
local_name, 0, NULL, 0, 0);

The local_name parameter contains the name that will be present in advertising data, as
described in the Bluetooth core specification version 4.0, Vol. 3, Part C, Ch. 11.

Connection with central device

Once the BLE chat, server role device is put in a discoverable mode, it can be seen by the
BLE chat, client role device in order to create a Bluetooth low energy connection.

On BLE chat, client role device uses GAP ACI commands to connect with the BLE chat,
server role device in advertising mode:

aci_gap_create_connection(0x4000, 0x4000, PUBLIC_ADDR, bdaddr, PUBLIC_ADDR, 9,
9, 0, 60, 1000, 1000);

where bdaddr is the peer address of the BLE chat, client role device.

Once the 2 devices are connected, the user can set up a serial terminal and type into each
of them. The typed characters will be respectively stored in 2 buffers and upon pressing the
keyboard return key, BLE communication will work as follows:

1. On BLE chat, server role device, the typed characters will be sent to BLE chat, client
role device by notifying the TX characteristic that has been previously added (after
notifications have been enabled). This can be done using the following command:

aci_gatt _update_char_value(chatServHandle, TXCharHandle,0,len,(tHalUint8 *)cmd+j)

2. On BLE chat, client role device, the typed characters will be sent to the BLE chat,
server role device, by writing the RX characteristic that has been previously added.
This can be done using the following command:
aci_gatt_write_without_response(connection_handle, RX_HANDLE+1, len, (tHalUint8
*)cmd+)

Where connection_handle is the handle returned on connection creation as a
parameter of the EVT_LE_CONN_COMPLETE event.

Once these AClI commands have been sent, the values of the TX, RX characteristics are
displayed on the serial terminals.

3

DoclD025464 Rev 5

UM1686

BlueNRG chat demo application

Figure 22. BLE chat client example

Figure 23. BLE ch at server example

. COM76:115200baud - Tera Term VT

[

4 COM78:115200baud - Tera Term VT EE

File Edit Setup Control Window Help

File Edit Setup Control Window Help

3

DoclD025464 Rev 5 53/70

BlueNRG Beacon demonstration application UM1686

Z

7.1

7.2

7.2.1

7.2.2

Note:

54/70

BlueNRG Beacon demonstration application

The software development kit contains another example, which shows how to configure a
BlueNRG device to advertise specific manufacturing data and allow another BLE device to
know if it is in the range of the BlueNRG beacon device.

Supported platforms

The BlueNRG Beacon demo is supported by the BlueNRG development platform (STEVAL-
IDB002V1) and the BlueNRG USB dongle (STEVAL-IDB003V1).

BLE Beacon application setup

This section describes how to configure a BlueNRG device for acting as a beacon device.

Initialization

The BlueNRG stack must be correctly initialized as follows:
— aci_gatt_init()
— aci_gap_init(GAP_PERIPHERAL_ROLE, &service_handle,
&dev_name_char_handle, &appearance_char_handle);

Define advertising data

The BLE Beacon application advertises the following manufacturing data:

Table 14. BlueNRG Beacon advertising manufacturing data

Data field Description Notes
Company identifier code SIG company identifier (S?’el\jl?éjrlct):esle%)t(?oonsi,(?s)
ID Beacon ID Fixed value
Location UUID Beacons UUID Used to distinguish specific
beacons from others
Major number Identifier for a group of beacons Used to group a related set of
beacons
Minor number Identifier for a single beacon | Used to identify a single beacon
Tx Power 2's complement of the Tx power Used to establish hqw faryou
are from device

SIG company identifiers are available at:

https://www.bluetooth.org/en-us/specification/assigned-numbers/company-identifiers

3

DoclD025464 Rev 5

UM1686 BlueNRG Beacon demonstration application

7.2.3 Entering non-connectable mode

The BLE Beacon device uses the GAP ACI command to enter non-connectable mode as
follows:

aci_gap_set_discoverable(ADV_NONCONN_IND, 160, 160, PUBLIC_ADDR,
NO_WHITE_LIST_USE,0, NULL, 0, NULL, 0, 0);

In order to advertise the specific selected manufacturer data, the BLE Beacon application
uses the following GAP ACls:

/* Remove TX power level field from the advertising data: it is necessary to have enough
space for the beacon manufacturing data */

ret = aci_gap_delete_ad_type(AD_TYPE_TX POWER_LEVEL);

/* Define the beacon manufacturing payload */

const uint8_t manuf_data[] = {26, AD_TYPE_MANUFACTURER_SPECIFIC_DATA,
0x30, 0x00, //Company identifier code (Default is 0x0030 - STMicroelectronics)
0x02, /1D
0x15, /ILength of the remaining payload
OXE2, Ox0A, 0x39, OxF4, 0x73, OxF5, 0x4B, 0xC4, //Location UUID
0xA1, Ox2F, 0x17, OxD1, OxAD, 0x07, OxA9, Ox61,
0x00, 0x00, // Major number
0x00, 0x00, // Minor number
0xC8 /12's complement of the Tx power (-56dB)};

%
* Set the beacon manufacturing data on the advertising packet */

ret = aci_gap_update_adv_data(27, manuf_data);

3

DoclD025464 Rev 5 55/70

BLE remote control demo application UM1686

8

8.1

56/70

BLE remote control demo application

This demo application shows how to control a remote device (like an actuator) using a
BlueNRG device.This application periodically sends broadcast data (temperature values)
that can be read by any device. The broadcast data is encapsulated in a manufacturer-
specific AD type. The data content (besides the manufacturer ID, i.e. 0x0030 for
STMicroelectronics) is as follows:

Table 15. BLE remote advertising data

Byte O Byte 1 Byte2

App ID (0x05) Temperature value (little-endian)

The temperature value is given in tenths of degrees Celsius.

The device is also connectable and exposes a characteristic used to control the LEDs on
the BlueNRG platform. The value of this characteristic is a bitmap of 1 byte. Each bit
controls one of the LEDs:

* bit O is the status of LED 1
* bit 1 is the status of LED 2.
* bit 2 is the status of LED 3.
» bit 3 is the status of LED 4.
* bit 4 is the status of LED 5.

As a consequence, a remote device can connect and write this byte to change or read the
status of these LEDs (1 for LED ON, 0O for LED OFF).

The peripheral disconnects after a timeout (DISCONNECT_TIMEOUT), to prevent that a
central is always connected to the device.

By default, no security is used, but it can be enabled with ENABLE_SECURITY (refer to file
BLE_RC_main.h). When security is enabled the central has to be authenticated before
reading or writing the device characteristic.

In order to interact with a BlueNRG device configured as a BLE Remote control, another
BLE device (a BlueNRG or any SMART READY device) can be used to scan and see
broadcast data.

To control one of the LEDs, the device has to connect to a BlueNRG BLE Remote Control
device and write into the exposed control point characteristic. The Service UUID is
ed0ef62e-9b0d-11e4-89d3-123b93f75cba. The control point characteristic UUID is
edOefbla-9b0d-11e4-89d3-123b93f75cba.

Supported platforms

The BlueNRG BLE Remote Control is supported on the BlueNRG development platform
(STEVAL-IDB002V1) and on the BlueNRG USB dongle (STEVAL-IDB003V1).

3

DoclD025464 Rev 5

UM1686

BLE remote control demo application

8.2

8.2.1

8.2.2

8.2.3

3

BLE remote control application setup

This section describes how to configure a BlueNRG device to acting as a remote control
device.

Initialization

The BlueNRG's stack must be correctly initialized before establishing a connection with
another Bluetooth LE device. This is done with two commands

e aci_gatt_init()

» aci_gap_init(GAP_PERIPHERAL_ROLE, &service_handle, &dev_name_char_handle,
&appearance_char_handle)

Define advertising data
The BLE Remote Control application advertises some manufacturing data as follows:
/* Set advertising device name as Node */

const uint8_t scan_resp_data[] =
{Ox05,AD_TYPE_COMPLETE_LOCAL_NAME,'N','0','d",'e'}

/* Set scan response data */
hci_le_set_scan_resp_data(sizeof(scan_resp_data),scan_resp_data);
/* Set Undirected Connectable Mode */

ret = aci_gap_set_discoverable(ADV_IND, (ADV_INTERVAL_MIN_MS*1000)/625,
(ADV_INTERVAL_MAX_MS*1000)/625, PUBLIC_ADDR, NO_WHITE_LIST_USE, 0,
NULL, 0, NULL, 0, 0);

[* Set advertising data */
ret = hci_le_set_advertising_data(sizeof(adv_data),adv_data);

On the BlueNRG development platform (STEVAL-IDB002V1), the temperature sensor value
is set within the adv_data variable. On the BlueNRG USB dongle (STEVAL-IDB003V1), a
random value is set within the adv_data variable (no temperature sensor is available on this
platform).

Add service and characteristics

The BLE Remote Control service is added using the following command:

aci_gatt_add_serv(UUID_TYPE_128, service_uuid, PRIMARY_SERVICE, 7,
&RCServHandle);

Where service_uuid is the private service 128-bit UUID allocated for the BLE remote service
(edOef62e-9b0d-11e4-89d3-123b93f75cha).

The command returns the service handle in RCServHandle.
The BLE Remote Control characteristic is added using the following command:

#if ENABLE_SECURITY

DoclD025464 Rev 5 57/70

BLE remote control demo application UM1686

8.24

58/70

ret = aci_gatt_add_char(RCServHandle, UUID_TYPE_128, controlPointUuid, 1,
CHAR_PROP_READ|CHAR_PROP_WRITE|CHAR_PROP_WRITE_WITHOUT_RESP|CH
AR_PROP_SIGNED_WRITE,
ATTR_PERMISSION_AUTHEN_READ|ATTR_PERMISSION_AUTHEN_WRITE,
GATT_NOTIFY_ATTRIBUTE_WRITE, 16, 1, &controlPointHandle);

#else

ret = aci_gatt_add_char(RCServHandle, UUID_TYPE_128, controlPointUuid, 1,
CHAR_PROP_READ|CHAR_PROP_WRITE|CHAR_PROP_WRITE_WITHOUT_RESP,
ATTR_PERMISSION_NONE, GATT_NOTIFY_ATTRIBUTE_WRITE, 16, 1,
&controlPointHandle);

#endif

Where controlPointUuid is the private characteristic 128-bit UUID allocated for BLE Remote
Control characteristic (edOefbla-9b0d-11e4-89d3-123b93f75cba).

If security is enabled, the characteristic properties must be set accordingly to enable
authentication on controlPointUuid characteristic read and write.

Connection with a BLE Central device

When connected to a BLE Central device (another BlueNRG device or any SMART READY
device), the controlPointUuid characteristic is used to control the BLE Remote Control
platform LED. Each time a write operation is done on controlPointUuid, the
EVT_BLUE_GATT_ATTRIBUTE_MODIFIED event is raised on the HCI_Event_CB ()
callback and the selected LED/LEDs are turned on or off.

3

DoclD025464 Rev 5

UM1686 List of acronyms

9 List of acronyms

Table 16. List of acronyms used in this document

Term Meaning
BLE Bluetooth low energy
IFR Information register
USB Universal serial bus
Kys DoclD025464 Rev 5 59/70

UM1686

Figure 24. STEVAL-IDB002V1 BlueNRG daughterboard

Available board schematics

¥2X720v0 U00L W ¥GX 20v0 Nk ¥2X"20v0 U0k ¥SX 20v0 Nk 20Y07%004

2
2o 220 129 020 ov9s6IN =
€IVan ZIvan = |ul
= a SSA
dan aan X 20p0 UQoL ISON_5 | 5 MU
610 10 o o €
o s
QoA 1s3ald = - en €0v0 001
= = 28
Ldr INQVXNY @—=ovro o 0
NQvXnv X 2Z0P0 U0k HeXZ0p0TL
E +AVXNY @ vy
810 210 Re
11109508 @Trg5505 LIVan
1s314 - Gan
¥IXZ0Y0 U0l * 909 20¥0 dooL
910 510
_\._El._ﬁx _
— 2> b et e -
©00720v0 dg1 H T c10 oIS EEE P
S5 Ot = %]
¥10 T oo =15191% == ——
200 20r0dgL [F° Be~e—
|) : I i
o T 2070 ¢ Przo<SSY
9007 20r0 8L 900 cov0 Q8L 25057335 i i i i
215 Lo ¥ 22060 2X6 ¥3avaH 2XS ¥3AVaH
ajesole| VINS 828 g s EEE, ~ v e
ar 900 20v0 agL Noﬁoun_m: LIVIXS = TOBOLOVL e I po NI
| Z0v0@dL 0VLXd v0Iq (—2A2LL VWHHH‘ = . Hv
o G
I AS ZIVeR mﬁ Wm? ey 1T Zieduwinp zn
21 900 20v0 a8l TEIVan z
0o 0y N-DuNentTg %94 |) z
9007 20v§ a8l 1\ vixs 010 ot
[44 = [OX]]
01V.XS Y10_1dS —28 Gaan €A
80 Zlivan o_o |SONIdS A0 su
= =z= o T 1SOW
REOBS ol
20v0 agL o12ng- =z
NES5206 2 (@)
[l S ZIBNS988 &
— — >
900 20%0” a8l _ 3 k2 n
0 ZE V. M
-l o | Bee=
= o | [FSE=
= w = o m o =
20v0 dzz o 900 20v0 dzz ARG =
909 1 bw
*1 I°
L L u g ou < ou < ou <
= = UGX Jor0 | 909 2070 dooL - N S US NS NS
T T
€0
©
aan 1 = T ia
_ 1a k] 1 [e)d]
€-T usem3aq G080 00 ® IO 13 12 IOLM
z-T usesM3Sq G080 NOT © ISPTOS ¥/X 20Y0 U0l | ¥SX 20v0 Nk |_| ' T ¢ SW
aan

§¥XZ 10303UU0) STEH

3
.|”_D
3]

Available board schematics

10

DoclD025464 Rev 5

GSPG0210DI1215

60/70

UM1686

Available board schematics

3

Figure 25. STEVAL-IDB002V1 temperature sensor

I2C1_SCL 12C1_SDA

3v3
R_10k_0603 U2
Ro DA VDD ? VDD_SENS
7 ScL A0
I . nOS/INT Al =2
TSEN_INT |J_ GND A2
= STLM75 =
Vcc 3V3
R1 { R_OR0_0603
VDD_SENS
c1 c2

C_100N_0603_X7R C_1U_0603_X5R

.@'

GSPG0210D11130

Figure 26. STEVAL-IDB002V1 accelerometer

(22
>
(3]
=
U1 99
~— N T
283
MVec 3V3 4 |
Vee 3V3 vdd lo << ADC3 (13
2 NC GND [—*
g— NC o) INT1 2 | INT1
SCL/ISPC 3 RES [—
_[jonD 52 INT2 | INT2
L oD 1
- <0 =
[aNaN)] -
nwo
[[eo
LIS3DH R3 3v3

P
0

R_OR0_0603 —

SPI1_SCK SPI1_MOSI SPI1_MISO SPI1_NSS c3 c4

C_100N_0603_X7R C_1U_0603_X5R

GSPG0210DI1135 =

DoclD025464 Rev 5 61/70

UM1686

Available board schematics

Figure 27. STEVAL-IDB002V1 MCU

NSO g
M10S_8
oas_g
1”8
uopng ysn
00I_g
Lol_g

Z0l g
1431 _AO|
¥3LINIO_AO
dN_AO|
Wa_ss
dass
SINL

€A97M G080 NOL O u“H

¥/X"€090 NOOL O MIXE090NOOL D - o M
o 6 INOOL INHOOE 5080 avas 1
NOW VOOA
vaan Fodan 1 EAe
EAE
e
o] - -
m ,.A m m% ﬂ —— =
w S m_mu,u /X €090 NOOL ™ D /X €090 NOOL ™ D
zZZ mmgag=2Z
33 52395890 ¢ £
Zaan Taan
EAE EAe
R
>
w
uidy9 ZENLS
<3
o>
n w
~
Mmm w«m It ¢vd adoz ‘wddos ‘ZHWS ‘0Z-080/4TSX0d
- ST 1vd SDTUOI3DSTH XOd
mwmm_ E:x@%mm 71 ovd 00Z9-L%S S¥
90d VSSA [—0QUYOOA_|); o
10d €0d ==t 900 €090 d0Z O
80d ¢0d £0d eNId 8a | ___
60d 10d Za3 |
8vd 00d 1a3an)
6vd _ 1SN TouN 1353y o .
oLvd 1N0Z0SO-}Hd [€090 WL mM u (195008 Um) ZHWG
L1vd _NI"0S0-0Hd [P 3 VX
zivd 1N072€080-610d g o
T £1vd NI Z£0S0-710d WWWM 909 €090 d02 3
___ MIMM\\// CdNIM-L4Y o._yw_.m_uww_w_/ 1SY NAS ga | .
Zaan 8y w << B |
TUTTUTUDT o » S [r0]
2222003300 n I mC
POO_2MNDNWARITONO D0 O©WW
RBB en
=133 B
7 0| |2 aN
)
= — —_—
° ° zad 13 pA) €vd
SWLP 91 ki 2vd
AOLr 42 €T Lvd
V. iaLr [4] 77 0vd
S55888mSZ853 oarr U3 5 £0d
o9 _2P503mQQ T T
R-5'p80322 " ISMINF L m 1Sy
©zzZ 9529 EEE] 4 . G10d
= zZog 69d 710d
3 4 T |_|
= i EAe

GSPG0210DI1140

DoclD025464 Rev 5

62/70

UM1686 Available board schematics

Figure 28. STEVAL-IDB002V1 JTAG/SWD

3v3
é R6
NE
R7
NE
R9
NE
ST Link: 3.0-3.6V, 5V tolerant
IAR J-Link: 1.2-3.6V, 5V tolerant R10
NE
3v3
INTRST. PB4
JTMS PA1S
JTCK oAl
J}P[ﬁl 1 PA15 Male Connector
RESETE:' RST _ 2x10 HDR straight
— R13 NE J2
GND 1 2
3 4
5 6
7 8
p1| Dp2| D3| D4| D5| D6 9 10
11 12
= - = - - - 13 14
g 3| 8| B3| 8| B 15 18
GND GND GND GND GND GND 19 20
JTAG
RS 710-4288 RS 473-8282 e
GSPG0210DI1145 GND
Figure 29. STEVAL-IDB002V1 USB
3v3
R5
NE
USB_5V
CN1
y
VBUS
SOT23-6L
M2 py
R8 U4 2= 3 1pp
uss_bpP PALZ AN 14 yo11 o1z [6—eBF a0
R_OR0_0603 5 5 GNT)C
GND VBUS [6
R11 DM L g:EH:
14 DM
USB_DM PATY AN 31 yo21 o022 8| SHELL
R_OR0_0603 - 9
USBLC6-2P6 SHELL
= GND
— H 2
— era: USBUF02W6 c12 R12 GND USB_miniB
C_100N_0603_X7R | R_1M_pso3s T [13
_4N7_0603_X7R
GSPG0210DI1150 =

)

DoclD025464 Rev 5 63/70

Available board schematics UM1686

64/70

Figure 30. STEVAL-IDB002V1 LED

3v3 3v3 3v3
DL1 DL2
GREEN ORANGE RED
R14 R15 R16
LEDI[> PDO LED2 PD1 LED3 PD2
R_510_0603 R_680_0603 R_680_0603
3v3 V3
BLUE oL DL5
YELLOW
R17 R18
LED4 PD3 LED5 PD4
R_680_0603 R_510_0603

GSPG0210DI11155

3

DoclD025464 Rev 5

Available board schematics

Figure 31. STEVAL-IDB002V1 power supply

¢SEC-¥19 S "Pod
WYYXZ XOq ISPTOH

XYYV
N3THO Japjoy Asapeg
£09070L Y
ozy
d = = _ L =
O &sedunr o o £A9THG0807N0LTO
o ¥SX€09072NZ 0 ¥SX €090 N0
[©]
Lar
EAe

9o |—| mvol—u TILP-L9E S "POD i4%e] I—l
. [l

\AANAS ASTESN
.77 Woze 1oLz znz 1
NS

LNOA |
NIA |

|||.r ano

Mvdd 0§16€a71

an

UM1686

65/70

GSPG0210DI1200

DoclD025464 Rev 5

UM1686

Available board schematics

Figure 32. STEVAL-IDB002V1 button and joystick

N N N aNos N
ano = = = = =
€0907004 ¥ MZX7€090 NOL O MZX7€090 NOL O ¥IX €090 NOL™ O ¥IX €090 NOL O X €090 NOL ™D
oed 0TT-91S S¥ Lz 1 A4 A4 A4
01L038aNOMS T T 220 T 120 T 0zo T 610
NOWWOO M\ NMOQ | > NMOQ AOF
5 t._o_mA (%) v 15330 | { > 14317 A0r
_lml ¥IINTO dn > dn~AOr
oA > ¥3IN3O AOM
> LHOI AOP
£0907300L Y < £0907300L Y < €090 Y00V Y < €090 200V ¥ < €090 200V <
62y Mﬁ 82y Mﬁ 124 “ﬁ 92y “ﬁ sy “ﬁ
EAE EAE EAe EAE EAe
i ayo
€090 0047y £0907004 Y
2y x4%)
ano N
6S 80 0Z 9®T®13sTQ = 6S 80 0Z PST=3I3sTA e
80ST-6LV:5¥ — B0ST-6LP:S¥
1Sda-NOLLNEHSNd MS _ _ 000~ NO L~
e 090-NO L~ X €090 NOL O
1Sda-NOLLNEHSNd MS I ¥LX €090 NO O MS 1o
ms 810
uopng ysng 1383
209075001y €090 Y004 ¥
724 XS]
he EAE

GSPG0210DI1205

DoclD025464 Rev 5

66/70

UM1686

Available board schematics

)

Figure 33. STEVAL-IDB002V1 daughterboard connectors

J3
3Vv3

.||
SDN 3
CSN 4
SDI 5
SDO 6
SCLK 7
GPIO2 8
GPIO3 9
GPIO1 10
GPIOO 11

|||_1L

RS 668-9549 PROBES

GSPG0210DI1210

J4
3V3
T —
|.
DB_PIN2 < >—6
4 DB_PIN3
3V3 ——2 :13:8DB_PIN1
| -
BB02-KY102-K03-A00000
J5 Gradconn BB02-KY102-K03-A00000
—
DB_I00 GPIO0 10 9 SDO r—~pg spo
GPIOT _ g 7 SD
DB_I01 B_SDI
- GPIOZ ¢ 5 SCLK -
DB_I02 B B_SCLK
DB_I03_IRQ GPIO3 4 3 CSN B_CSN
=i — =i

BB02-KY102-K03-A00000

DoclD025464 Rev 5

67/70

UM1686

Available board schematics

Figure 34. STEVAL-IDB003V1 USB dongle schematics

ayo o
= = £090 S
WT oo oo oo - o w050 00LLONL
DL9ONH-0ISEN 20P0 QWS 80SO-00HLSNIL
2% wrans s, aroans
22 aoroans 05 4oL nos suor 200 ans 20v0 ans Sov “hos ao
aond © 8z osmaes VU 00E WO 90) 070 VWOOE W0 90 |, 680 = a
w u Q oS Isonzids 2000 NS 2070 aWS a3na3y
8 gpmas 7 T 00
! 55 RovaT o T T z T
N ano dan QN e adi @ Gan QoA v olams 089 84 wa
= s
STONS
200 ans 20r0 aws e ao ae
001 o) er = = 20 ans iy
; %o ol
750 ans ano 5
F ayo rez e ™
® WL
ao 1 = (vvzzzo0)
= aaia aNo ssvara e dara 2000 anis an-iizvi-ior fowbi 2ov0 amis antizviior fowba
g B Jrrgnin SOz %59 P SOz %30
aw woaws %0 NoLInGHsNd 0 NoLInGHSNd
= wroans o1 3nt ayo oms ths
AE'9 dNZZ: vMI. oN HNIA 9 £€0 sn =
20r0 ans oogeusimro o v N
W0l hr _sazeorasn Prectviityiate]
e —i4 Huon b 1 e
P | I H0b Z wonng sesn uoung sn
na v T waaen la Ped pasae GaNIa AéEsn Y 2or0 ans zov0 Qs
snan ano Gon Seendseeesal o o
S zZ v 01008 T - £ 7 - ="}
o en Z uonng Jesn | “uopng Jesn
T T T omnvasn ir o i
o
A§ asn 13 ‘
NO¥d33 % gsn obejs Jwb|\ Jamod suopng1esn ‘speT Jesn 100g B AMS
=y
wovo ans
o
o o aw T
2or0 aws 2or0 ans woroans aaia
woroans A wwans W amans o
J = 2ob 001 oo Aob 001 A
oo | & 7 ao
I&? I:E ﬂi@ = ao oo ao ao awo
aan T aaA e aan e T T T T T
200 ans aoro ans aroans amans wroans wrans | zv0ans wroans | z0ans
nob 3000, m=== o0t v i o0k A8, v 0L Sooiner [0l Aer Yool ner ool or
wi aur €20 220 829 ¥20 120: 020 610 810 0o
Luo0se o i 7 wep's T r
o ao ao E E E
= e = = T Vaan 1 Taon Taon o [ow
ano ano ane wwoans| = 2000 Qs ﬁ QoA v aoia aaia aoia aaia
= = = ano ddsi—— 4d51 2.0 51 k|
T S0 i T
2000 ans . Scpeerep .
- crees
zov0ans_| A3LNNOW LON 000 ans wor0ans_| o feszzex | A goidsfag =
35 o 5 i ol ggeeg
:olﬁ :olﬁ =ano ! bwixa visaL ®»
I oG asaL
z T z Ve e Eiven
WS 4495 010 HUEL o Iy =N EIVER
200 ang O s AR — snsotsizems
v , ol [o—oromen 2
Q3LNNOW LON #6s TR HYBA EpRR ISON IS TSON™21ds o] e o v [
SHZ-IS0ZNY 2080 OGNS 280 EZsESen2 2 p—E R ST T] 2 Viva [EE EGESH)
ey Bgagercs ucung e 0] 49 8 ova [£5 WSS
7 #ove #20588:% o [ta g v [LE.
LINY 20v0 ans EDZ05R60 2] Jay ® ovd [0 50 wouama
5 = KRR EREER o oo v vt
7| o ova [
T rano 971 Giga ova [
200 ans Srenene ¢ o 1] 2o e
95 = = N] 2] z1aq 9ngoisiTzenLs ova [¥h
e E o e <5 owEE e 48 v gL
8 S0 21 5] S1Ed o)
= somo aws SIS 72 o O Zwoma
et ez B Laniwova [T voma
o 11
—{zdnmelav orelod o008 f—
- Toaouwena] iouimrad 10°26050°510d [77 oI008
S OomS S NI 6950 7104 |2
p— T A]
2000 ans m 2000 GNs 20v0 NS [~ zoroans T oms | OO o < B e S Tnaosn
A9k U001 == 4" A0 Ju0SL 4dool —J00008 El NI 0SO
Elﬂ)) E [t 55555
o ™
= = -
ave avo W mw%%m
g

OYN °nig

abeyoA NON - 103eI9SO - NON

DoclD025464 Rev 5

68/70

UM1686

Revision history

11

3

Revision history

Table 17. Document revision history

Date

Revision

Changes

28-Nov-2013

1

Initial release

24-Apr-2014

— Added reference to the STEVAL-IDB003V1 BlueNRG
USB Dongle

— Added: Section 6

— Added: Section 9

— Added: Section 10

— Minor text edits throughout the document

10-Dec-2014

— Added: Section 3.2.3
— Added Section 3.2.5
— Added Section 7

— Renamed APIs with prefix BLUEHCI_ in Section 5.3.1
to 5.3.5and 6.2.1

11-Mar-2015

— Updated: Figure 7, 11, 12, 13 and 14, and caption of
Figure 1

— Updated: Table 6, Table 7, Table 8 and Table 9

— Updated: Section 3.2.2 and Section 3.2.3

— Added: Table 10, Table 11 and Table 14

— Added: Section 5.4 and Section 8

— Added: Figure 26, 27, 28, 29, 30, 31, 32, 33 and 34

09-Dec-2015

— Updated: Figure 7, Figure 11, Figure 12, Figure 13,
Figure 14, Figure 15, Figure 16, Figure 17 and
Figure 18

— Updated: Section 3.2.4: GUI Scripts window
— Updated: Table 10
— Added: Section 3.2.6: GUI RF Test window

DoclD025464 Rev 5 69/70

UM1686

IMPORTANT NOTICE — PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST") reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics — All rights reserved

3

70/70 DoclD025464 Rev 5

	1 Getting started
	1.1 STEVAL-IDB002V1 kit contents
	Figure 1. BlueNRG kit motherboard with the STEVAL-IDB002V1 daughterboard connected

	1.2 STEVAL-IDB003V1 kit
	Figure 2. STEVAL-IDB003V1 BlueNRG USB dongle

	1.3 System requirements
	1.4 BlueNRG development kit setup

	2 Hardware description
	2.1 STEVAL-IDB002V1 motherboard
	Figure 3. Motherboard for the BlueNRG development kit
	2.1.1 Microcontroller and connections
	Table 1. MCU pin description versus board function

	2.1.2 Power
	2.1.3 Sensors
	2.1.4 Extension connector
	2.1.5 Push-buttons and joystick
	2.1.6 JTAG connector
	2.1.7 LEDs
	2.1.8 Daughterboard interface

	2.2 BlueNRG daughterboard
	Figure 4. BlueNRG daughterboard
	Table 2. Connections between BlueNRG board and motherboard on left connector
	Table 3. Connections between BlueNRG board and motherboard on right connector
	2.2.1 Current measurements
	2.2.2 Hardware setup
	2.2.3 STM32L preprogrammed application

	2.3 STEVAL-IDB003V1 USB dongle
	2.3.1 Microcontroller and connections
	Table 4. MCU pin description versus board function

	2.3.2 SWD interface
	Figure 5. SWD connection scheme with ST-LINK/V2
	Table 5. SWD connection

	2.3.3 RF connector
	Figure 6. RF connector scheme

	2.3.4 Push-buttons
	2.3.5 User LEDs
	2.3.6 Hardware setup
	2.3.7 STM32L preprogrammed application

	3 GUI software description
	3.1 Requirements
	3.2 The BlueNRG graphical user interface
	3.2.1 GUI main window
	Figure 7. BlueNRG GUI main window
	Figure 8. Command packet table
	Figure 9. Packet history and details
	Figure 10. Raw packet dump

	3.2.2 Tools
	Figure 11. BlueNRG GUI IFR tool: View/Edit view

	3.2.3 GUI ACI utilities window
	Figure 12. BlueNRG GUI ACI utilities window
	Table 6. GUI ACI utilities window: available general operations
	Table 7. GUI ACI utilities window: available central operations
	Table 8. GUI ACI utilities window: available peripheral operations

	3.2.4 GUI Scripts window
	Figure 13. BlueNRG GUI Scripts window
	Table 9. GUI Scripts window: utility commands
	Table 10. WAIT_EVENT macro-command
	Table 11. WAIT_EVENT: event codes with related event parameter types

	3.2.5 GUI Beacon window
	Figure 14. BlueNRG GUI Beacon window
	Table 12. BlueNRG GUI beacon window configuration parameters

	3.2.6 GUI RF Test window
	Figure 15. GUI RF test: Start a tone
	Figure 16. GUI RF Test: TRANSMITTER and RECEIVER sections
	Figure 17. GUI RF Test, PER test: TX device
	Figure 18. GUI RF Test, PER test: RX device

	4 Programming with BlueNRG network processor
	Figure 19. Profile framework structure
	4.1 Requirements
	4.2 Software directory structure

	5 BlueNRG sensor profile demo
	Figure 20. BlueNRG sensor demo GATT database
	5.1 Supported platforms
	5.2 BlueNRG app for smartphones
	Figure 21. BlueNRG app

	5.3 BlueNRG sensor profile demo: connection with a central device
	5.3.1 Initialization
	5.3.2 Add service and characteristics
	5.3.3 Set security requirements
	5.3.4 Enter connectable mode
	5.3.5 Connection with central device

	5.4 BlueNRG sensor demo: central profile role
	5.4.1 Initialization
	5.4.2 Discovery a sensor peripheral device
	5.4.3 Connect to discovered sensor peripheral device
	5.4.4 Discovery sensor peripheral services and characteristics
	5.4.5 Enable sensor peripheral acceleration and free fall notifications
	5.4.6 Read the sensor peripheral temperature sensor characteristic

	6 BlueNRG chat demo application
	Table 13. Serial port configuration
	6.1 Supported platforms
	6.2 BlueNRG chat demo application: peripheral & central devices
	6.2.1 Initialization
	6.2.2 Add service and characteristics
	6.2.3 Set security requirements
	6.2.4 Enter connectable mode
	6.2.5 Connection with central device
	Figure 22. BLE chat client example
	Figure 23. BLE chat server example

	7 BlueNRG Beacon demonstration application
	7.1 Supported platforms
	7.2 BLE Beacon application setup
	7.2.1 Initialization
	7.2.2 Define advertising data
	Table 14. BlueNRG Beacon advertising manufacturing data

	7.2.3 Entering non-connectable mode

	8 BLE remote control demo application
	Table 15. BLE remote advertising data
	8.1 Supported platforms
	8.2 BLE remote control application setup
	8.2.1 Initialization
	8.2.2 Define advertising data
	8.2.3 Add service and characteristics
	8.2.4 Connection with a BLE Central device

	9 List of acronyms
	Table 16. List of acronyms used in this document

	10 Available board schematics
	Figure 24. STEVAL-IDB002V1 BlueNRG daughterboard
	Figure 25. STEVAL-IDB002V1 temperature sensor
	Figure 26. STEVAL-IDB002V1 accelerometer
	Figure 27. STEVAL-IDB002V1 MCU
	Figure 28. STEVAL-IDB002V1 JTAG/SWD
	Figure 29. STEVAL-IDB002V1 USB
	Figure 30. STEVAL-IDB002V1 LED
	Figure 31. STEVAL-IDB002V1 power supply
	Figure 32. STEVAL-IDB002V1 button and joystick
	Figure 33. STEVAL-IDB002V1 daughterboard connectors
	Figure 34. STEVAL-IDB003V1 USB dongle schematics

	11 Revision history
	Table 17. Document revision history

