KNITRO 4.0

User’s Manual

KNITRO User’s Manual
Version 4.0

Richard A. Waltz
Ziena Optimization, Inc.
Northwestern University

October 2004

Copyright (©2004 by Ziena Optimization, Inc.

Contents
Contents
1 Introduction
1.1 KNITRO Overview it
1.2 Contact and Support Information
2 Installing
2.1 Windows e
2.2 Linux/UNIX
3 AMPL interface
4 The KNITRO callable library
4.1 Calling KNITRO from a C application
4.2 Example e e
4.3 Calling KNITRO from a C++ application
4.4 Calling KNITRO from a Fortran application
4.5 Building KNITRO with a Microsoft Visual C Developer Studio Project
4.6 Specifying the Jacobian and Hessian matrices in sparse form
5 User options in KNITRO
5.1 Description of KNITRO user options
5.2 The KNITRO options file,
5.3 Setting options through function calls
6 KNITRO Termination Test and Optimality
7 KNITRO Output
8 Algorithm Options
8.1 Automatic
8.2 Imterior/Direct
8.3 Imterior/CG
8.4 Active
9 Other KNITRO special features

9.1
9.2
9.3
9.4
9.5
9.6

First derivative and gradient check options
Second derivative options
Feasible version
Honor Bounds.
Solving Systems of Nonlinear Equations
Solving Least Squares Problems

14
14
22
35
35
37
37

40
40
47
48

49

51

53
53
53
93
93

9.7 Reverse Communication and Interactive Usage of KNITRO
9.8 Callbacks

References
Appendix A: Solution Status Codes

Appendix B: Upgrading from KNITRO 3.x

58
o8

60

61

63

1

Introduction

This chapter gives an overview of the the KNITRO optimization software package and details
concerning contact and support information.

1.1

KNITRO Overview

KNITRO 4.0 is a software package for finding local solutions of continuous, smooth optimiza-
tion problems, with or without constraints. Even though KNITRO has been designed for
solving large-scale general nonlinear problems, it is efficient for solving all of the following
classes of smooth optimization problems:

unconstrained,

bound constrained,

equality constrained,

systems of nonlinear equations,

least squares problems,

linear programming problems (LPs),
quadratic programming problems (QPs),

general (inequality) constrained problems.

The KNITRO package provides the following features:

Efficient and robust solution of small or large problems,

Derivative-free, 1st derivative and 2nd derivative options,

Both interior-point (barrier) and active-set optimizers,

Both feasible and infeasible versions,

Both iterative and direct approaches for computing steps,

Interfaces: AMPL, C/C++, Fortran, GAMS, Matlab, Microsoft Excel, Visual Basic

Reverse communication design for more user control over the optimization process
and for easily embedding KNITRO within another piece of software.

The problems solved by KNITRO have the form

minimize f(x) (1.1a)
subject to h(z) =0 1.1b)
g(x) <0. 1.1c)

This allows many forms of constraints, including bounds on the variables. KNITRO assumes
that the functions f(z), h(z) and g(z) are smooth, although problems with derivative
discontinuities can often be solved successfully.

KNITRO implements both state-of-the-art interior-point and active-set methods for solv-
ing nonlinear optimization problems. In the interior method (also known as a barrier
method), the nonlinear programming problem is replaced by a series of barrier sub-problems
controlled by a barrier parameter u. The algorithm uses trust regions and a merit function
to promote convergence. The algorithm performs one or more minimization steps on each
barrier problem, then decreases the barrier parameter, and repeats the process until the
original problem (1.1) has been solved to the desired accuracy.

KNITRO provides two procedures for computing the steps within the interior point ap-
proach. In the version known as Interior/CG each step is computed using a projected
conjugate gradient iteration. This approach differs from most interior methods proposed
in the literature in that it does not compute each step by solving a linear system involving
the KKT (or primal-dual) matrix. Instead, it factors a projection matrix, and uses the
conjugate gradient method, to approximately minimize a quadratic model of the barrier
problem.

The second procedure for computing the steps, which we call Interior/Direct, always
attempts to compute a new iterate by solving the primal-dual KKT matrix using direct
linear algebra. In the case when this step cannot be guaranteed to be of good quality, or
if negative curvature is detected, then the new iterate is computed by the Interior/CG
procedure.

KNITRO also implements an active-set sequential linear-quadratic programming (SLQP)
algorithm which we call Active. This method is similar in nature to a sequential quadratic
programming method but uses linear programming sub-problems to estimate the active-set
at each iteration. This active-set code may be preferable when a good initial point can be
provided, for example, when solving a sequence of related problems.

We encourage the user to try all algorithmic options to determine which one is more
suitable for the application at hand. For guidance on choosing the best algorithm see sec-
tion 8.

For a detailed description of the algorithm implemented in Interior/CG see [4] and
for the global convergence theory see [1]. The method implemented in Interior/Direct
is described in [9]. The Active algorithm is described in [3] and the global convergence
theory for this algorithm is in [2]. An important component of KNITRO is the HSL routine
MA27 [7] which is used to solve the linear systems arising at every iteration of the algorithm.
In addition, the Active algorithm in KNITRO may make use of the COIN-OR Clp linear
programming solver module. The version used in KNITRO 4.0 may be downloaded from
http://www.ziena.com/clp.html.

1.2 Contact and Support Information

KNITRO is licensed and supported by Ziena Optimization, Inc. (http://www.ziena.com).
General information regarding KNITRO can be found at the KNITRO website:

http://www.ziena.com/knitro.html

For technical support, contact your local distributor. If you purchased KNITRO directly
from Ziena, you may send support questions or comments to

support-knitro@ziena.com

Questions regarding licensing information or other information about KNITRO can be sent
to

info-knitro@ziena.com

2 Installing

Instructions for installing the KNITRO package on both Windows and Linux/UNIX plat-
forms are described below.

2.1 Windows

Download and save the installer (KNITRO-4.0.exe) on your computer. Double click on the
installer to run it. It will prompt you for a place to install and create some start menu
shortcuts. Afterwards, you can delete the installer. By default KNITRO will be installed in
the folder C:\Program Files\knitro-4.0.

If you are using the full version of KNITRO you will have to activate it for your computer.
Use the "Locking Code” start menu item to determine your computer’s code to send to
Ziena. We will send you a license key for it.

INSTALL: A file containing installation instructions.

LICENSE: A file containing the KNITRO license agreement.

README: A file with instructions on how to get started using KNITRO.

doc: Directory containing KNITRO documentation including this manual.
include: Directory containing the KNITRO header file knitro.h.

lib: Directory containing the KNITRO library file knitro.1lib.

ampl: Directory containing files and instructions for using KNITRO with AMPL

and an example AMPL model.

C: Directory containing instructions and an example for calling KNITRO from
a C (or C++) program.

fortran: Directory containing instructions and an example for calling KNITRO from
a Fortran program.

callback: Directory containing instructions and an example for calling KNITRO from
a C (or C++) program using the callback feature.

Before beginning, view the INSTALL, LICENSE and README files. To get started, go inside
the interface folder which you would like to use and view the README file inside of that
folder. Example problems are provided in the C, callback and Fortran interface folders.
It is recommended to run and understand these example problems before proceeding, as
these problems contain all the essential features of using the KNITRO callable library. The
Ampl interface folder contains instructions for using KNITRO with AMPL and an example
of how to formulate a problem in AMPL. More detailed information on using KNITRO with
the various interfaces can be found in the KNITRO manual knitroman in the doc folder.

For instructions on using KNITRO with the Visual Studio environment refer to Sec-
tion 4.5.

2.2 Linux/UNIX

Save the downloaded file (KNITRO.4.0.tar.gz) in a fresh subdirectory on your system. To

install, first type

gunzip KNITRO.4.0.tar.gz

to produce a file

KNITRO.4.0.tar. Then, type

tar -xvf KNITRO.4.0.tar

to create the directory KNITRO.4.0 containing the following files and subdirectories:

INSTALL:
LICENSE:
README:
bin:

doc:
include:

lib:

ampl:

fortran:

callback:

A file containing installation instructions.
A file containing the KNITRO license agreement.
A file with instructions on how to get started using KNITRO.

Directory containing the precompiled KNITRO/AMPL executable file,
knitro-ampl.

Directory containing KNITRO documentation including this manual.
Directory containing the KNITRO header file knitro.h.

Directory containing the KNITRO library files, libknitro.a and
libknitro.so.

Directory containing files and instructions for using KNITRO with AMPL
and an example AMPL model.

Directory containing instructions and an example for calling KNITRO from
a C (or C++) program.

Directory containing instructions and an example for calling KNITRO from
a Fortran program.

Directory containing instructions and an example for calling KNITRO from
a C (or C++) program using the callback feature.

Before beginning, view the INSTALL, LICENSE and README files. To get started, go inside
the interface subdirectory which you would like to use and view the README file inside of
that directory. Example problems are provided in the C, callback and Fortran interface
subdirectories. It is recommended to run and understand these example problems before
proceeding, as these problems contain all the essential features of using the KNITRO callable
library. The Ampl interface subdirectory contains instructions for using KNITRO with AMPL

and an example

of how to formulate a problem in AMPL. More detailed information on

using KNITRO with the various interfaces can be found in the KNITRO manual knitroman
in the doc subdirectory.

3 AMPL interface

AMPL is a popular modeling language for optimization which allows users to represent
their optimization problems in a user-friendly, readable, intuitive format. This makes ones
job of formulating and modeling a problem much simpler. For a description of AMPL see
[6] or visit the AMPL web site at:

http://www.ampl.com/

It is straightforward to use KNITRO with the AMPL modeling language. We assume in
the following that the user has successfully installed AMPL and that the KNITRO/AMPL
executable file knitro-ampl resides in the current directory or in a directory which is
specified in ones PATH environment variable (such as a bin directory).

Inside of AMPL, to invoke the KNITRO solver type:

option solver knitro-ampl;
at the prompt. Likewise, to specify user options one would type, for example,
option knitro_options ‘‘maxit=100 alg=2’’;

The above command would set the maximum number of allowable iterations to 100 and
choose the Interior/CG algorithm (see section 8). See Tables 1-2 for a summary of all
available user specifiable options in KNITRO for use with AMPL. For more detail on these
options see section 5. Note, that in section 5, user parameters for the callable library are
of the form “KTR_PARAM NAME”. In AMPL, parameters are set using only the (lowercase)
“name” as specified in Tables 1-2.

NOTE: AMPL will often perform a reordering of the variables and constraints defined in
the AMPL model (and may also simplify the form of the problem using a presolve). The
output printed by KNITRO will correspond to this reformulated problem. To view values
of the variables and constraints in the order and form corresponding to the original AMPL
model, use the AMPL display command.

Below is an example AMPL model and AMPL session which calls KNITRO to solve the
problem:

minimize 1000 — 2% — 223 — 22 — 2129 — 2123 (3.2a)
x

subject to 8x; + 14xo + 723 — 56 =0 (3.2b)

2+ ai4ai-25>0 (3.2¢)

T1,X2,T3 Z 0 (32d)

with initial point x = [z1, z2, z3] = [2,2, 2].
Assume the AMPL model for the above problem is defined in a file called testproblem.mod
which is shown below.

AMPL test program file testproblem.mod

#

Example problem formulated as an AMPL model used
to demonstate using KNITRO with AMPL.

#

Define variables and enforce that they be non-negative.
var x{j in 1..3} >= 0;
Objective function to be minimized.
minimize obj:
1000 - x[1]17°2 - 2*x[2]"2 - x[3]1°2 - x[1]1*x[2] - x[1]*x[3];
Equality constraint.
s.t. cl: 8*x[1] + 14xx[2] + 7*x[3] - 56 = 0;
Inequality constraint.
s.t. c2: x[1]°2 + x[2]"2 + x[3]"2 -25 >= 0;
data;
Define initial point.
let x[1] := 2;

let x[2] := 2;
let x[3] := 2;

The above example displays the ease with which one can express an optimization problem
in the AMPL modeling language. Below is the AMPL session used to solve this problem
with KNITRO. In the example below we set alg=2 (to use the Interior/CG algorithm),
opttol=1e-8 (to tighten the optimality stopping tolerance) and outlev=3 (to print output
at each major iteration). See section 7 for an explanation of the output.

AMPL Example

ampl: reset;
ampl: option solver knitro-ampl;

ampl: option knitro_options "alg=2 opttol=1e-8 outlev=3";

ampl: model testproblem.mod;
ampl: solve;

KNITRO 4.0.0: 10/20/04
: alg=2

opttol=1e-8
outlev=3

KNITRO 4.0.0

Ziena Optimization, Inc.
website: www.ziena.com
email: info@ziena.com

algorithm: 2
opttol: 1le-08
outlev: 3

Problem Characteristics

Number of variables:
bounded below:
bounded above:
bounded below and above:
fixed:
free:

Number of constraints:
linear equalities:
nonlinear equalities:
linear inequalities:
nonlinear inequalities:
range:

Number
Number

of nonzeros in Jacobian:
of nonzeros in Hessian:

Objective Feas err

0 9.760000e+02 1.300e+01
1 9.688061e+02 7.190e+00
2 9.397651e+02 1.946e+00

O OO O, OO F, NOOOO WWw

Opt err

6.919e+00
2.988e+00

| 1Stepl |

1.513e+00
5.659e+00

CG its

10

11

3 9.323614e+02 1.659e+00 5.003e-03 1.238e+00 2
4 9.361994e+02 1.421e-14 9.537e-03 2.395e-01 2
5 9.360402e+02 7.105e-15 1.960e-03 1.591e-02 2
6 9.360004e+02 0.000e+00 1.597e-05 4.017e-03 1
7 9.360000e+02 7.105e-15 1.945e-07 3.790e-05 2
8 9.360000e+02 0.000e+00 1.925e-09 3.990e-07 1

EXIT: LOCALLY OPTIMAL SOLUTION FOUND.

Final Statistics

Final objective value = 9.36000000040000e+02

Final feasibility error (abs / rel) 0.00e+00 / 0.00e+00
Final optimality error (abs / rel) 1.92e-09 / 1.20e-10
of iterations (major / minor) = 8/ 8
of function evaluations =

of gradient evaluations =
of Hessian evaluations =
Total program time (sec) = 0.00

0 © ©

KNITRO 4.0.0: LOCALLY OPTIMAL SOLUTION FOUND.
ampl:

See section 8 for algorithm descriptions and section 9 for other special features. A user
running AMPL can skip section 4.

12

OPTION DESCRIPTION DEFAULT
alg optimization algorithm used: 0
0: automatic algorithm selection
1: Interior/Direct algorithm
2: Interior/CG algorithm
3: Active algorithm
barrule barrier paramater update rule: 0
0: automatic barrier rule chosen
1: monotone decrease rule
2: adaptive rule
3: probing rule
4: safeguarded Mehrotra predictor-corrector type rule
5: Mehrotra predictor-corrector type rule
delta initial trust region radius scaling 1.0e0
feasible 0: allow for infeasible iterates 0
1: feasible version of KNITRO
feasmodetol | tolerance for entering feasible mode 1.0e-4
feastol feasibility termination tolerance (relative) 1.0e-6
feastolabs | feasibility termination tolerance (absolute) 0.0e-0
gradopt gradient computation method: 1
1: use exact gradients
(only option available for AMPL interface)
hessopt Hessian (Hessian-vector) computation method: 1
1: use exact Hessian
2: use dense quasi-Newton BFGS Hessian approximation
3: use dense quasi-Newton SR1 Hessian approximation
4: compute Hessian-vector products via finite
differencing
5: compute exact Hessian-vector products
(not available with AMPL interface)
6: use limited-memory BFGS Hessian approximation
honorbnds 0: allow bounds to be violated during the optimization | O
1: enforce satisfaction of simple bounds always
initpt 0: do not use any initial point strategies 0
1: wuse initial point strategy
islp 0: do not treat the problem as an LP 1
1: treat the problem as an LP (if determined by AMPL)
isqp 0: do not treat the problem as a QP 1
1: treat the problem as a QP (if determined by AMPL)

Table 1: KNITRO user specifiable options for AMPL.

13

OPTION ‘ DESCRIPTION DEFAULT
lpsolver 1: wuse internal LP solver in active-set algorithm 1

2: use ILOG-CPLEX LP solver in active-set algorithm

(requires valid CPLEX license)

maxcgit maximum allowable conjugate gradient (CG) iterations: 0

0: automatically set based on the problem size

n: maximum of n CG iterations per minor iteration
maxit maximum number of iterations before terminating 10000
maxtime maximum CPU time in seconds before terminating 1.0e8
mu initial barrier parameter value 1.0e-1
objrange allowable objective function range 1.0e20
opttol optimality termination tolerance (relative) 1.0e-6
opttolabs | optimality termination tolerance (absolute) 0.0e-0
outlev printing output level: 2

0: no printing

1: just print summary information

2: print information every 10 major iterations

3: print information at each major iteration

4: print information at each major and minor iteration

5: also print final (primal) variables

6: also print final constraint values and Lagrange

multipliers

outmode where to direct output: 0

0: print to standard out (e.g., screen)

1: print to file ’knitro.out’

2: both screen and file ’knitro.out’
pivot initial pivot threshold for matrix factorizations 1.0e-8
scale 0: do not scale the problem

1: perform automatic scaling of functions
shiftinit | shift the initial point to satisfy the bounds
soc 0: do not allow second order correction steps

1: selectively try second order correction steps

2: always try second order correction steps
xtol stepsize termination tolerance 1.0e-15

Table 2: KNITRO user specifiable options for AMPL (continued).

14

4 The KNITRO callable library

This section includes information on how to embed and call the KNITRO optimizer from
inside a program.

4.1 Calling KNITRO from a C application

The KNITRO callable library can be used to solve an optimization problem from a C code
through a sequence of three function calls which we summarize below:

e KTR_new(): get license and create KNITRO problem context pointer
e KTR_solve(): call the KNITRO optimizer to solve the problem
e KTR free(): delete KNITRO problem context pointer and free memory and license

If the user wishes to free all the temporary memory, without releasing the licensing or de-
stroying the context pointer, this can be done through a call to the function
KTR_free_tempwork ().

The prototypes and a detailed summary of the functions used for creating a problem
object, freeing temporary memory and destroying a problem object are described below.
Later on we will describe in detail the primary KNITRO solver function KTR_solve ().

KTR_context_ptr KTRnew(int install_interrupt_handler)

This function should be called first. It returns an object that is used for every other
call. The KNITRO license is reserved until the last KTR_context_ptr has KTR_free() called
for it, or the program ends. If install_interrupt_handler is nonzero, KNITRO will be
able to free a network license on abnormal program termination.

void KTR_free_tempwork(KTR_context_ptr kc)

This function will free work memory and close files associated with a context. The context
pointer can still be used to solve another problem, and keeps all its settings. The context
pointer still retains the license, if a floating license is used.

void KTR_free(KTR_context _ptr *kc_handle)

This function call will free the context pointer. You actually pass the address of your
pointer so that KNITRO can clobber it to NULL. This helps to avoid mistakes. If this was
the last context, the license is freed.

15

The KNITRO C API has two major modes of operation called “callback” and “reverse
communication”. With callback the user provides KNITRO with function pointers for it to
evaluate the functions, gradients, and Hessian (or to insert other user-defined routines).
With reverse communication, the KNITRO solve function KTR_solve () returns with a posi-
tive return value if it needs an evaluation, then is to be called again. See sections 9.7 and 9.8
for more details on these two modes of operations.

For the C interface the user must include the KNITRO header file knitro.h in the C
source code which calls KNITRO. Programs using the KNITRO 3.1 API, will need to include
knitro3.h which contains the depreciated declarations.

To use KNITRO the user must provide routines for evaluating the objective and constraint
functions, the first derivatives (i.e., gradients), and optionally, the second derivatives (i.e.,
Hessian). The ability to provide exact first derivatives is essential for efficient and reliable
performance. However, if the user is unable or unwilling to provide exact first derivatives,
KNITRO provides routines in the file KNITROgrad.c which will compute approximate first
derivatives using finite-differencing.

Exact Hessians (or second derivatives) are less important. However, the ability to pro-
vide exact second derivatives may often dramatically improve the performance of KNITRO.
Packages like ADIFOR and ADOL-C can help in coding these routines.

In the example program provided with the distribution, routines for setting up the
problem and for evaluating functions, gradients and the Hessian are provided in the file
user_problem.c as listed below.

sizes: This routine sets the problem sizes.
setup: This routine provides data about the problem.
evalfc: A routine for evaluating the objective function (1.1a) and constraints (1.1b)-(1.1¢).

evalga: A routine for evaluating the gradient of the objective function and the Jacobian
matrix of the constraints in sparse form.

evalhess/evalhessvec: A routine for evaluating the Hessian of the Lagrangian function
in sparse form or alternatively the Hessian-vector products.

Another file driverC.c provides example code for calling the above functions in conjunc-
tion with KNITRO. The function evalhess is only needed if the user wishes to provide
exact Hessian computations and likewise the function evalhessvec is only needed if the
user wishes to provide exact Hessian-vector products. Otherwise approximate Hessians or
Hessian-vector products can be computed internally by KNITRO.

The C interface for KNITRO requires the user to define an optimization problem using
the following general format.

minimize f(z) (4.3a)

subject to ¢l < c¢(z) < cu (4.3b)

16

NOTE: If constraint 7 is an equality constraint, set cl(i) = cu(i).

NOTE: KNITRO defines infinite upper and lower bounds using the constant KTR_INFBOUND
set to 1.0e+20 in the header file knitro.h. Any bounds smaller in magnitude than
KTR_INFBOUND will be considered finite and those that are equal to this value or larger
in magnitude will be considered infinite.

Please refer to section 4.2 and to the files driverC.c and user_problem.c provided with the
distribution for an example of how to specify the above functions and call the KNITRO solver
function, KTR_solve (), to solve a user-defined problem in C. The file user_problem.c contains
examples of the functions - sizes, setup, evalfc, evalga, evalhess and evalhessvec -
while driverC.c is an example driver file for the C interface which calls these functions as
well as the KNITRO solver function KTR_solve().

The KNITRO solver is invoked via a call to the function KTR_solve() which has the
following calling sequence:

int KTR_solve (KTR_context *kc,
double *f,
int ftype,
int n,
double *x,
double x*bl,
double *bu,
double *fgrad,
int m,
double *c,
double *cl,
double *cu,
int *ctype,
int nnzj,
double *cjac,
int *indvar,
int *indfun,
double *lambda,
int nnzh,
double *hess,
int *hrow,
int *hcol,
double *vector,
void *user

The following arguments are passed to the KNITRO solver function KTR_solve():

Arguments:

17

KTR_context *kc: isa pointer to a structure which holds all the relevant information about

double *f:

int ftype:

int n:

double *x:

double *Dbl:

double *bu:

a particular problem instance.
is a scalar that holds the value of the objective function at the current z.

On initial entry: f need not be set by the user.

On exit: f holds the current approximation to the optimal objective value.
If the return value from KTR_solve() = KTR_RC_EVALFC or
KTR_RC_EVALXO the user must evaluate f at the current value of x
before re-entering KTR_solve().

NOTE: Because of the reverse communication/interactive implementation
of the KNITRO callable library (see section 9.7), the scalar argument f is
passed by reference to KTR_solve() (using the & syntax).

is a scalar that describes the type of the objective function.

On initial entry: ftype should be initialized by the user as follows:

0 if £ is a nonlinear function or nothing is known about f
1 if £ is a linear function

2 if £ is a quadratic function

On exit: ftype is not altered by the function.
is a scalar specifying the number of variables.

On initial entry: n must be set by the user to the number of variables
(i.e., the length of z).

On exit: n is not altered by the function.
is an array of length n. It is the solution vector.

On initial entry: x must be set by the user to an initial estimate of the
solution.

On exit: x contains the current approximation to the solution.
is an array of length n specifying the lower bounds on x.

On initial entry: bl[i] must be set by the user to the lower bound of the
corresponding i-th variable x[i]. If there is no such bound, set it to be
-KTR_INFBOUND. The value KTR_INFBOUND is defined in the header file
knitro.h.

On exit: bl is not altered by the function.

is an array of length n specifying the upper bounds on x.

18

On initial entry: buli] must be set by the user to the upper bound of the
corresponding i-th variable x[i]. If there is no such bound, set it to be
KTR_INFBOUND. The value KTR_INFBOUND is defined in the header file
knitro.h.

On exit: bu is not altered by the function.

double *fgrad: is an array of length n specifying the gradient of f.

int m:

double *c:

double *cl:

double *cu:

On initial entry: fgrad need not be set by the user.

On exit: fgrad holds the current approximation to the optimal objective
gradient value. If the return value from KTR_solve () = KTR_RC_EVALGA
or KTR_RC_EVALXO the user must evaluate fgrad at the current value
of x before re-entering KTR_solve ().

is a scalar specifying the number of constraints.

On initial entry: m must be set by the user to the number of general
constraints (i.e., the length of ¢(x)).

On exit: m is not altered by the function.

is an array of length m. It holds the values of the general equality and in-
equality constraints at the current z. (It excludes fixed variables and simple
bound constraints which are specified using bl and bu.)

On initial entry: c need not be set by the user.

On exit: c holds the current approximation to the optimal constraint values.
If the return value from KTR_solve() = KTR.RC_EVALFC or
KTR_RC_EVALXO the user must evaluate c at the current value of x
before re-entering KTR_solve().

is an array of length m specifying the lower bounds on c.

On initial entry: cl[i] must be set by the user to the lower bound of the
corresponding i-th constraint c[i]. If there is no such bound, set it to
be -KTR_INFBOUND. The value KTR_INFBOUND is defined in the header
file knitro.h. If the constraint is an equality constraint c1[i] should
equal culi].

On exit: cl is not altered by the function.
is an array of length m specifying the upper bounds on c.

On initial entry: culi] must be set by the user to the upper bound of the
corresponding i-th constraint c[i]. If there is no such bound, set it to
be KTR_INFBOUND. The value KTR_INFBOUND is defined in the header
file knitro.h. If the constraint is an equality constraint c¢1[i] should
equal culi].

int *ctype:

int nnzj:

19

On exit: cu is not altered by the function.
is an array of length m that describes the type of the constraint functions.

On initial entry: ctype should be initialized by the user as follows:

0 if ctypel[i] is a nonlinear function or nothing is known about c[i]
1 if ctype[i] is a linear function
2 if ctypeli] is a quadratic function

On exit: ctype is not altered by the function.

is a scalar specifying the number of nonzero elements in the sparse constraint
Jacobian.

On initial entry: nnzj must be set by the user to the number of nonzero
elements in the sparse constraint Jacobian cjac.

On exit: nnzj is not altered by the function.

double *cjac: is an array of length nnzj which contains the nonzero elements of the

int *indvar:

int *indfun:

constraint gradients. There is no restriction on the ordering of these elements.

On initial entry: cjac need not be set by the user.

On exit: cjac holds the current approximation to the optimal constraint
gradients. If the return value from KTR_solve() = KTR_RC_EVALGA or
KTR_RC_EVALXO the user must evaluate cjac at the current value of x
before re-entering KTR_solve().

is an array of length nnzj. It is the index of the variables. If indvar[i]=j,
then cjac[i] refers to the j-th variable, where j = 0..n — 1.

NOTE: C array indexing starts with index 0. Therefore, the j-th variable
corresponds to C array element x[j].

On initial entry: indvar should be specified on initial entry.

On exit: Once specified indvar is not altered by the function.

is an array of type of length nnzj. If indfun[i]=Fk, then cjac[i] refers to the
k-th constraint, where k = 0..m — 1.

NOTE: C array indexing starts with index 0. Therefore, the k-th constraint
corresponds to C array element c[k].

On initial entry: indfun should be specified on initial entry.

On exit: Once specified indfun is not altered by the function.

20

indfun[i] and indvar[i] determine the row numbers and the column numbers
respectively of the nonzero constraint Jacobian elements specified in cjac]i].

NOTE: See section 4.6 for an example of how to specify the arrays cjac,
indvar and indfun which hold the elements of the constraint Jacobian matrix
in sparse form.

double *lambda: is an array of length m+n holding the Lagrange multipliers for the con-

int nnzh:

straints ¢ (4.3b) and bounds on the variables x (4.3¢) respectively.

On initial entry: lambda need not be set by the user.

On exit: lambda contains the current approximation of the optimal La-
grange multiplier values. The first m components of lambda are the
multipliers corresponding to the constraints specified in ¢ while the
last n components are the multipliers corresponding to the bounds on
X.

is a scalar specifying the number of nonzero elements in the upper triangle
of the sparse Hessian of the Lagrangian.

On initial entry: nnzh must be set by the user to the number of nonzero
elements in the upper triangle of the Hessian of the Lagrangian func-
tion (including diagonal elements) if the user is providing exact Hes-
sian (i.e., KTR_PARAM HESSOPT=1).

On exit: nnzh is not altered by the function.

NOTE: If KTR_PARAM HESSOPT = 2 — 6, then the Hessian of the Lagrangian
is not explicitly stored and one should set nnzh = 0.

double *hess: is an array of length nnzh containing the nonzero elements of the upper

int *hrow:

triangle of the Hessian of the Lagrangian which is defined as
V(@) + Y AVie(a):. (4.4)
i=0..m—1

Only the nonzero elements of the upper triangle are stored.

On initial entry: hess need not be set by the user.

On exit: hess contains the current approximation of the optimal Hessian of
the Lagrangian. If the return value from KTR_solve () = KTR_RC_EVALH
(and KTR_PARAM HESSOPT=1) the user must evaluate hess at the cur-
rent values of x and lambda before re-entering KTR_solve ().

NOTE: This array should only be specified and allocated when
KTR_PARAM_HESSOPT = 1.

is an array of length nnzh. hrow(i] stores the row number of the nonzero
element hess[i]. (NOTE: Row numbers range from 0 to n — 1).

int *hcol:

21

On initial entry: hrow should be specified on initial entry.

On exit: Once specified hrow is not altered by the function.

NOTE: This array should only be specified and allocated when
KTR_PARAM _HESSOPT = 1.

is an array of length nnzh. hcol[i] stores the column number of the nonzero
element hess[i]. (NOTE: Column numbers range from 0 to n — 1).

On initial entry: hcol should be specified on initial entry.

On exit: Once specified hcol is not altered by the function.

NOTE: This array should only be specified and allocated when
KTR_PARAM HESSOPT = 1.

NOTE: See section 4.6 for an example of how to specify the arrays hess,
hrow and hcol which hold the elements of the Hessian of the Lagrangian
matrix in sparse form.

double *vector: is an array of length n which is used for the Hessian-vector product

void *user:

option KTR_PARAM_HESSOPT=5.

On initial entry: vector need not be specified on the initial entry but
may need to be set by the user on future calls to the KTR_solve ()
function.

On exit: If the return value from KTR_solve() = KTR_RC_EVALH and
KTR_PARAM_HESSOPT=5, vector holds the vector which will be mul-
tiplied by the Hessian and on re-entry vector must hold the desired
Hessian-vector product supplied by the user.

NOTE: This array should only be specified and allocated when
KTR_PARAM _HESSOPT = 5.

is a pointer to a structure which a user can use to defined additional para-
maters needed for a callback routine. This argument is only used in the
callback feature. See section 9.8 for more details.

Return Value:

The return value of KTR_solve () specifies the exit code from the optimization and also
keeps track of the reverse communication re-entry status. If the return value is 0 or negative,
then KNITRO has finished the optimization and should be terminated. If the return value
is strictly positive, then KNITRO is requesting that the user re-enter KTR_solve() after
performing some task. Below is listed a description of the positive re-entry return values.

22

For a detailed description of all the possible non-positive termination values, see Appendix

A
Re-entry values:

KTR_RC_EVALFC (1) Evaluate functions f and c¢ and re-enter KTR_solve().
KTR_RC_EVALGA (2) Evaluate gradients fgrad and cjac and re-enter KTR_solve().
KTR_RC_EVALH (3) Evaluate Hessian hess or Hessian-vector product and re-enter KTR_solve ().

KTR_RC_EVALXO (4) Evaluate functions f and ¢ and gradients fgrad and cjac and re-enter
KTR_solve().

KTR_RC_NEWPOINT (6) KNITRO has just computed a new solution estimate. The user may
provide routine(s) if desired to perform some task (see section 9.7) before KNITRO
begins a new major iteration.

4.2 Example

The following example demonstrates how to call the KNITRO solver using C to solve the

problem:
minimize 1000 — 22 — 222 — 22 — 2129 — 123 (4.5a)
x
subject to 8z + 14x9 + Tz3 — 56 =0 (4.5b)
Tt i+ —25>0 (4.5¢)
T1,X2,T3 Z 0 (4.5(21)

with initial point x = [z1, z2, z3] = [2, 2, 2].

A sample C program for solving the above problem using the KNITRO Interior/CG
algorithm and the output from the optimization are contained in the following pages. This
sample problem is included in the distribution.

C driver program

K */
/* KNITRO DRIVER FOR C/C++ INTERFACE x/
K */

#include<stdlib.h>
#include<stdio.h>
#include<math.h>
#include "knitro.h"

23

/* User-defined functions x*/

extern "C" {
#endif

#ifdef cplusplus

void sizes(int #*n, int *m, int *nnzj, int *nnzh, int hessopt);

void setup(int n, int m, int nnzj, int nnzh,
double *x, double *bl, double *bu,
int *ftype, int *ctype, double *cl, double *cu,
int *indvar, int *indfun, int *hrow, int *hcol,
int gradopt, int hessopt);

void evalfc(int n, int m, double *x, double *f, double *c);
void evalga(int n, int m, int nnzj, double *x, double *fgrad, double *cjac);
void evalhess(int n, double *x, double *lambda, double *hess);

void evalhessvec(int n, double *x, double *lambda,
double *vector, double *tmp);

#ifdef __cplusplus
b
#endif

main()
{
/* Declare variables which are passed to function KTR_solve(). */
int *indvar, *indfun, *hrow, *hcol, *ctype;
double *x, *fgrad, *c, *cjac, *lambda, *hess, *bl, *bu, *cl, *cu, *vector;
int n, m, nnzj, nnzh, ftype;
double f;

/* Variables used for gradient check */
double *fgradfd, *cjacfd;
double fderror;

/* Declare other variables. */
int i, j, k, errorflag, status;
int hessopt, gradopt;

double *tmp;

24

KTR_context x*kc;

/* Create a new problem instance */

/* (install_interrupt_handler) =/

kc = KTR_new(1);

if (kc == NULL) {
fprintf (stderr, "Failure to get license.\n");
exit(1);

}

/* Three redundant examples of setting a parameter */
errorflag = KTR_set_int_param_by_name (kc,"algorithm", KTR_ALG_IPCG);
if (errorflag) {
fprintf (stderr, "Failure to set param. %d file=%s line=%d\n",
errorflag, _FILE__,__LINE__);
exit(1);
}
errorflag = KTR_set_int_param(kc,KTR_PARAM_ALGORITHM, KTR_ALG_IPCG);
if (errorflag) {
fprintf (stderr, "Failure to set param. %d file=%s line=)d\n",
errorflag, _FILE__,__LINE__);
exit(1);
}
errorflag = KTR_set_char_param_by_name(kc,"algorithm", "cg");
if (errorflag) {
fprintf (stderr, "Failure to set param. %d file=%s line=J)d\n",
errorflag,_ _FILE__,__LINE__);
exit(1);
}

/* Here we read and write our whole config to a file, for easy */
/* runtime changing and debugging. */

/* (uncomment the lines below to read or write an options file) */
/*KTR_load_param_file(kc,"knitro.opt") ;*/
/*KTR_save_param_file(kc,"knitro.opt") ;*/

/* Get the Hessian option used */
errorflag = KTR_get_int_param(kc,KTR_PARAM_HESSOPT,&hessopt) ;
if (errorflag) {
fprintf (stderr, "Failure to get param. %d file=%s line=)d\n",
errorflag, _FILE LINE__);

—_—

exit(1);

/* Set n, m, nnzj, nnzh */
sizes(&n, &m, &nnzj, &nnzh, hessopt);

/* Allocate arrays that get passed to KTR_solve */

bie = (double *)malloc(n*sizeof (double));
fgrad = (double *)malloc(n*sizeof (double));

c = (double *)malloc(m*sizeof (double));
cjac = (double *)malloc(nnzj*sizeof (double));
indvar = (int *)malloc(nnzj*sizeof (int));
indfun = (int *)malloc(nnzj*sizeof (int));
lambda = (double *)malloc((m+n)*sizeof (double));
bl = (double *)malloc(n*sizeof (double)) ;

bu = (double *)malloc(n*sizeof (double));
ctype = (int *)malloc(m*sizeof(int));

cl = (double *)malloc(m*sizeof (double));

cu = (double *)malloc(m*sizeof (double));

/* Arrays only needed for exact Hessian */
if (hessopt == 1) {

hess = (double *)malloc(nnzh*sizeof (double));
hrow = (int *)malloc(nnzh*sizeof (int));
hcol = (int *)malloc(nnzh*sizeof (int));

}

/* Arrays only needed for exact Hessian-vector products */
if (hessopt == 5) {

vector (double *)malloc(n*sizeof (double));
(double *)malloc(n*sizeof (double));

tmp
b

/* Arrays only needed if performing gradient check */
errorflag = KTR_get_int_param(kc,KTR_PARAM_GRADOPT,&gradopt) ;
if (errorflag) {
fprintf (stderr, "Failure to get param. %d file=%s line=)d\n",

errorflag,_ _FILE__,__LINE__);
exit(1);
}
if (gradopt == 4 || gradopt == 5) {
fgradfd = (double *)malloc(n*sizeof (double));
cjacfd = (double *)malloc(nnzj*sizeof (double));

}

25

/*

se

st

/*
/%
/*
/%
do

Initialize values which specify the problem */
tup(n, m, nnzj, nnzh, x, bl, bu, &ftype, ctype, cl, cu,
indvar, indfun, hcol, hrow, gradopt, hessopt);

atus = KTR_RC_INITIAL;

This is the main loop where we keep calling KTR_solve() until it */

stops returning a positive number. */

Positive returns mean we need to evaluate our objective function, */

gradient, or hessian again. */
{ /* loop until done (i.e, staus <=0) */

/* Evaluate function and constraint values */
if ((status == KTR_RC_EVALFC) || (status == KTR_RC_EVALX0)){
evalfc(n, m, x, &f, c);

}

/* Evaluate objective and constraint gradients */
if ((status == KTR_RC_EVALGA) || (status == KTR_RC_EVALX0)){
switch (gradopt)
{
case 1:
/* User-supplied exact gradient. */
evalga(n, m, nnzj, x, fgrad, cjac);
break;
case 2: case 3:
/* Compute finite difference gradient */
KTR_gradfd(n, m, x, fgrad, nnzj, cjac, indvar, indfun,
f, c, gradopt);
break;
case 4: case b5:

/* Perform gradient check using finite difference gradient */

evalga(n, m, nnzj, x, fgrad, cjac);
KTR_gradfd(n, m, x, fgradfd, nnzj, cjacfd, indvar, indfun,
f, c, gradopt);

fderror = KTR_gradcheck(n, fgrad, fgradfd, nnzj, cjac, cjacfd);

printf ("Finite difference gradient error = %e\n", fderror);
break;

default: printf("ERROR: Bad value for gradopt. (%d)\n", gradopt);

exit(1);
}

27

/* Evaluate user-supplied Lagrange Hessian (or Hessian-vector product) */
if (status == KTR_RC_EVALH){
if (hessopt == 1)
evalhess(n, x, lambda, hess);
else if (hessopt == b)
evalhessvec(n, x, lambda, vector, tmp);

/* We now have a new solution estimate. If newpoint feature
enabled, provide newpoint routine(s) below. */

if (status == KTR_RC_NEWPOINT) {
/* The user may insert newpoint routines here if desired. */

}

/* Call KNITRO solver routine */

status = KTR_solve(kc, &f, ftype, n, x, bl, bu, fgrad, m, c,
cl, cu, ctype, nnzj, cjac, indvar, indfun,
lambda, nnzh, hess, hrow, hcol, vector, NULL);

} while (status > 0); /* KNITRO done if status <= 0. */
/* Optimization finished */

/* Delete problem instance */
KTR_free(&kc) ;

free(x);
free(fgrad);
free(c);
free(cjac);
free(indvar) ;
free(indfun);
free(lambda) ;
free(bl);
free(bu);
free(ctype);
free(cl);
free(cu);
if (hessopt == 1) {
free(hess);
free(hrow) ;
free(hcol);

}
if (hessopt == 5) {
free(vector);
free(tmp);
}
if (gradopt == 4 || gradopt == 5) {
free(fgradfd);
free(cjacfd);
}

return O;

28

User-defined C Functions

#include "knitro.h"

void sizes(int *n, int *m, int *nnzj, int *nnzh, int hessopt)
{

/* Set n, m, nnzj, nnzh */

*n = 3;
*m = 2;
*nnzj = 6;

if (hessopt == 1) {
/* User-supplied exact Hessian */

*nnzh = 5;

} else {
/* No need to specify or allocate hess,hrow,hcol */
*nnzh = 0;

}

return;

void setup(int n, int m, int nnzj, int nnzh,
double *x, double *bl, double *bu,
int *ftype, int *ctype, double *cl, double *cu,
int *indvar, int *indfun, int *hrow, int x*hcol,
int gradopt, int hessopt)

/* Function that gives data on the problem. */

int 1i;
double zero, two;

Zero 0.0e0;

2.0e0;

two

/* Initial point. */
for (i=0; i<n; i++) {
x[i] = two;

}

/* Bounds on the variables. */
for (i=0; i<n; i++) {

bl[i] = zero;

buli] KTR_INFBOUND;

/* Indicate type of objective and constraints
0: general nonlinear or unknown

1: linear

2: quadratic */

*ftype = 2;
ctype[0] = 1;
ctypell] = 2;

/* Bounds on the constraints (cl <= c(x) <= cu). */

cl[0] = zero;
cul0] = zero;
cl[1] = zero;
cul[1] = KTR_INFBOUND;

/* Specify sparsity info for constraint Jacobian */

indvar[0] = 0O;
indfun[0] = 0O;

indvar[1] = 1;
indfun[1] = 0O;

indvar[2] = 2;
indfun[2] = 0;

indvar[3] = 0;
indfun[3] = 1;

indvar[4] = 1;
indfun[4] = 1;

indvar[5] = 2;
indfun[5] = 1;

/* Specify sparsity info for Hessian (if using exact Hessian)
*
* NOTE: Only the NONZEROS of the UPPER TRIANGLE (including
* diagonal) of this matrix should be stored.

¥

x/

if (hessopt == 1) {
hrow[0] = 0;
hcol[0] = 0;
hrow[1] = 0;
hcoll1l] = 1;
hrow[2] = 0;
hcol[2] = 2;
hrow([3] = 1;
hcoll3] = 1;
hrow[4] = 2;
hcoll[4] = 2;

/KK sk ok sk sk ok sk ok ok ok sk sk ok sk ok ok ok ok 3 ok sk sk ok 3 ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok /
void evalfc(int n, int m, double *x, double *f, double *c)

{

}

/* Objective function and constraint values for the
* given problem.

*/

*f = 1.0e3 - x[0]*x[0] - 2.0e0*x[1]1*x[1] - x[2]*x[2]
- x[0]*x[1] - x[0]*x[2];

/* Equality constraint. */
c[0] = 8.0e0*x[0] + 14.0e0*x[1] + 7.0e0*x[2] - 56.0e0;

/* Inequality constraint. =/
c[1] = x[01*x[0] + x[1]1*x[1] + x[2]*x[2] - 25.0e0;

[ok skokokok ok sk ok ok ok sk ok ok ok ok sk ok ok sk ok ook sk sk ok ok sk ok sk ok sk ok ok ok sk ok ok ok sk ok ok ok ok ok ok ok /

void evalga(int n, int m, int nnzj,

{

double *x, double *fgrad, double *cjac)

/* Routine for computing gradient values. Objective gradient
* "fgrad" specified in dense array of size n, constraint gradients
* "cjac" in sparse form.

31

*
* NOTE: Only NONZERO constraint gradient elements should be specified.
*/

/* Gradient of the objective function (dense). */

fgrad[0] = -2.0e0*x[0]-x[1]-x[2];
fgrad[1] = -4.0e0*x[1]1-x[0];
fgrad[2] = -2.0e0*x[2]-x[0];

/* Gradient of the first comnstraint, c[0]. */

cjac[0] = 8.0e0;
cjac[1] = 14.0e0;
cjac[2] = 7.0e0;

/* Gradient of the second constraint, c[1]. */

cjac[3] = 2.0e0*x[0];
cjac[4] = 2.0e0*x[1];
cjac[b] = 2.0e0*x[2];

}

/3 okokook ok sk sk sk ok ok ok ok ok ok sk sk sk ok ok ok s sk ok ok sk sk sk sk ok ok ok s ok ok sk sk sk ok ok ok ok skokok ok sk ok ok ok /
void evalhess(int n, double *x, double *lambda, double *hess)

{

/*
* Compute the Hessian of the Lagrangian.
*
* NOTE: Only the NONZEROS of the UPPER TRIANGLE (including
* diagonal) of this matrix should be stored.
*/

hess[0] = 2.0e0*(lambda[1]-1.0e0);

hess[1] = -1.0e0;

hess[2] = -1.0e0;

hess[3] = 2.0e0*(lambda[1]-2.0e0);

hess[4] = 2.0e0*(lambdal[1]-1.0e0);

¥

/KK sk ok sk ok ok sk ok ok ok sk sk ok sk ok ok ok ok 3 ok sk sk ok s ok ok ok sk sk ok sk sk ok ok ok ok ok ok ok ok ok ok k /
void evalhessvec(int n, double *x, double *lambda,
double *vector, double *tmp)

32

{
/*
* Compute the Hessian of the Lagrangian times "vector"
* and store the result in "vector".
*/
int 1i;
tmp[0] = 2.0e0*(lambdal[1]-1.0e0)*vector[0] - vector[l] - vector[2];
tmp[1] = -vector[0] + 2.0e0x(lambdal[1]-2.0e0)*vector[1];
tmp[2] = -vector[0] + 2.0e0*(lambdal[1]-1.0e0)*vector[2];

for (i=0; i<n; i++) {
vector[i] = tmpl[il;

}

}

/**/

Output

KNITRO 4.0.0
Ziena Optimization, Inc.
website: www.ziena.com
email: info@ziena.com

algorithm: 2

Problem Characteristics

Number of variables:
bounded below:
bounded above:
bounded below and above:
fixed:
free:

Number of constraints:
linear equalities:
nonlinear equalities:
linear inequalities:

O O L NOOOOWWw

33

nonlinear inequalities: 1
range: 0
Number of nonzeros in Jacobian: 6
Number of nonzeros in Hessian: 5
Iter Objective Feas err Opt err | 1Stepl |

0 9.760000e+02 1.300e+01
6 9.360004e+02 2.384e-15 1.597e-05 4.017e-03

EXIT: LOCALLY OPTIMAL SOLUTION FOUND.

Final Statistics
Final objective value = 9.36000414931828e+02
Final feasibility error (abs / rel) 2.38e-15 / 1.83e-16
Final optimality error (abs / rel) 1.60e-05 / 9.98e-07
of iterations (major / minor) = 6 / 6
of function evaluations =

of gradient evaluations =
of Hessian evaluations =
Total program time (sec) = 0.00

o ~N ~

34

35

4.3 Calling KNITRO from a C++ application

Calling KNITRO from a C++ application requires little or no modification of the C example
in the previous section. The KNITRO header file knitro.h already includes the necessary
extern C statements (if called from a C++ code) for the KNITRO callable functions.

4.4 Calling KNITRO from a Fortran application

To use KNITRO the user must provide routines for evaluating the objective and constraint
functions, the first derivatives (i.e., gradients), and optionally, the second derivatives (i.e.,
Hessian). The ability to provide exact first derivatives is essential for efficient and reliable
performance. However, if the user is unable or unwilling to provide exact first derivatives,
KNITRO provides Fortran routines in the file KNITROgradF.f which will compute approxi-
mate first derivatives using finite-differencing.

Exact Hessians (or second derivatives) are less important. However, the ability to pro-
vide exact second derivatives may often dramatically improve the performance of KNITRO.
Packages like ADIFOR and ADOL-C can help in coding these routines.

In the example program provided with the distribution, routines for setting up the
problem and for evaluating functions, gradients and the Hessian are provided in the file
user_problem.f as listed below.

sizes: This routine sets the problem sizes.
setup: This routine provides data about the problem.
evalfc: A routine for evaluating the objective function (1.1a) and constraints

(1.16)-(1.1c).

evalga: A routine for evaluating the gradient of the objective function and the
Jacobian matrix of the constraints in sparse form.

evalhess/evalhessvec: A routine for evaluating the Hessian of the Lagrangian function
in sparse form or alternatively the Hessian-vector products.

The subroutine evalhess is only needed if the user wishes to provide exact Hessian
computations and likewise the subroutine evalhessvec is only needed if the user wishes to
provide exact Hessian-vector products. Otherwise approximate Hessians or Hessian-vector
products can be computed internally by KNITRO.

The Fortran interface for KNITRO requires the user to define an optimization problem
using the following general format.

minimize f(z) (4.6a)

subject to ¢l < c¢(z) < cu (4.6b)

36

NOTE: If constraint 7 is an equality constraint, set cl(i) = cu(i).

NOTE: KNITRO defines infinite upper and lower bounds using the parameter KTR_INFBOUND
which is defined in the header file knitro.h to have the value 1.0e+20. When using the
Fortran interface, be sure that bounds which are meant to be infinite are set at least as large
as KTR_INFBOUND. Any bounds smaller in magnitude than KTR_INFBOUND will be considered
finite and those that are equal to this value or larger in magnitude will be considered infinite.

Please refer to the files driverFortran.f, user_problem.f and fortranglue.c provided with the
distribution for an example of how to specify the above subroutines and use KNITRO to
solve a user-defined problem in Fortran. The file user_problem.f contains examples of the
subroutines - sizes, setup, evalfc, evalga, evalhess and evalhessvec. The file driver-
Fortran.f is an example driver file for the Fortran interface which calls an interface/gateway
routine fortranglue.c which in turn calls the KNITRO solver function KTR_solve () described
in section 4.1.

Most of the information and instruction on calling the KNITRO solver from a Fortran
program is the same as for the C interface (see section 4.1) so that information will not be
repeated here.

The following exceptions apply:

e C variables of type int should be specified as INTEGER in Fortran.
e C variables of type double should be specified as DOUBLE PRECISION in Fortran.

e Fortran arrays start at index value 1, whereas C arrays start with index value 0.
Therefore, one must increment the array indices (but not the array values) by 1 from
the values given in section 4.1 when applied to a Fortran program.

4.5

37

Building KNITRO with a Microsoft Visual C Developer Studio Project

KNITRO comes with an example makefile for building programs on Microsoft operating
systems. This can be done using the nmake command.

Alternatively, people may wish to use a Visual Project of Microsoft Developer Studio
which is an Integrated Development Environment (IDE) that includes editor, documenta-
tion, and compiler in one unified interface. Users must create their own project, but the
steps are documented below.

1.

2.

10.

4.6

Start Microsoft Developer Studio.

Select the File->New... menu.

. Choose the appropriate project type. Since we are going to use the example C program

which calls printf (), we should choose ”Win32 Console Application”. Give the
project a name and notice the full path in the location. Click OK.

. We want ”an empty project” and click Finish.

. Outside of Developer Studio. Copy the three source files (driverC.c, KNITROgrad.c,

and user_problem.c) from C:\Program Files\knitro-4.0\C\ into the project folder.

. Back in Developer Studio add those three files to the project with the

Project->Add-to-Project->Files... menu.

Again with the Project->Add-to-Project->Files... menu, add
C:\Program Files\knitro-4.0\include\knitro.lib

. Select the Project->Settings... menu.

. In the upper left drop-down change ”Win32 Debug” to ” All Configurations”. On the

C/C++ tab select the Category Preprocessor and add
C:\Program Files\knitro-4.0\include to the ”Additional include directories”. Click
OK.

Select the Build->Execute menu.

Specifying the Jacobian and Hessian matrices in sparse form

An important issue in using the KNITRO callable library is the ability of the user to specify
the Jacobian matrix of the constraints and the Hessian of the Lagrangian function (when
using exact Hessians) in sparse form. Below we give an example of how to do this.

Example

38

Assume we want to use KNITRO to solve the following problem

minimize To + 125 (4.7a)

xT
subject to cos(xzp) = 0.5 (4.7b)
3<ad+a? <8 (4.7¢)
To+x1 + 22 <10 (4.7(1)
o, T1,T2 > 1. (4.76)

Referring to (4.3), we have

f(z) = xo+zad (4.8)
co(x) = cos(xp) (4.9)
c(r) = zi+a? (4.10)
co(x) = x0+ T+ X200 (4.11)
(4.12)

Computing the Sparse Jacobian Matrix

The gradients (first derivatives) of the objective and constraint functions are given by

1 — sin(zg) 2x0 1
Vix)= T3 ,Veo(x) = 0 ,Ver(x)=| 221 | ,Vea(z)=| 1
32123 0 0 1

The constraint Jacobian matrix J(z) is the matrix whose rows store the (transposed) con-
straint gradients, i.e.,

Veo(z)t —sin(zg) 0 0
J(x)= | Vea(o)t | = 20 221 0
Vea(z)t 1 11

In KNITRO, the array fgrad stores all of the elements of V f(x), while the arrays cjac,
indfun, and indvar store information concerning only the nonzero elements of J(z). The
array cjac stores the nonzero values in J(x) evaluated at the current solution estimate z,
indfun stores the function (or row) indices corresponding to these values and indvar stores
the variable (or column) indices corresponding to these values. There is no restrictions on
the order in which these elements are stored, however, it is common to store the nonzero
elements of J(z) in column-wise fashion. For the example above, the number of nonzero
elements nnzj in J(z) is 6, and these arrays would be specified as follows in column-wise
order.

-sin(x[0]); indfun[0] = 0; indvar[0]
2xx[0] ; indfun[1] 1; indvar[1]

0;
0;

cjac[0]
cjac[1]

39

cjac[2] = 1; indfun[2] = 2; indvar[2] = 0;
cjacl[3] = 2xx[1]; indfun[3] = 1; indvar[3] = 1;
cjac[4] = 1; indfun[4] = 2; indvar[4] = 1;
cjac[5] = 1; indfun[5] = 2; indvar[5] = 2;

As is evident, the values of cjac depend on the value of x and may change while the values
of indfun and indvar are constant.

Computing the Sparse Hessian Matrix

The Hessian of the Lagrangian matrix is defined as

H(z,) =Vf(x)+ > \Vie(a), (4.13)

1=0..m—1

where A is the vector of Lagrange multipliers (dual variables). For the example defined by
problem (4.7), The Hessians (second derivatives) of the objective and constraint functions
are given by

0 0 0 —cos(zg) 0 0
Vif(x) = |0 0 323 |, Vi(z)= 0 0 0],
| 0 323 6a12 0 0 0
(2 0 0 [0 0 0
Vie(z) = |0 2 0|, Vic(z) =10 0 0
|0 0 0 | 000

By scaling the constraint matrices by their corresponding Lagrange multipliers and sum-
ming, we get
—Xocos(zg) +2X1 0O 0
H(z,\) = 0 2\ 323
0 322 6ry70

Since the Hessian matrix will always be a symmetric matrix, we only store the nonzero ele-
ments corresponding to the upper triangular part (including the diagonal). In the example
here, the number of nonzero elements in the upper triangular part of the Hessian matrix
nnzh is 4. The KNITRO array hess stores the values of these elements, while the arrays
hrow and hcol store the row and column indices respectively. The order in which these
nonzero elements is stored is not important. If we store them column-wise, the arrays hess,
hrow and hcol would look as follows.

hess[0] = -lambdal[0]*cos(x[0]) + 2%lambda[1]; hrow[0] = 0; hcol[0] = 0;
hess[1] = 2*lambdal1l]; hrow[1] = 1; hcol[1] = 1;
hess[2] = 3*x[2]*x[2]; hrow[2] = 1; hcoll[2] = 2;
hess[3] = 6*x[1]*x[2]; hrow[3] = 2; hcoll[3] = 2;

40

5 User options in KNITRO

5.1 Description of KNITRO user options

The following user options are available in KNITRO 4.0.
The integer valued options are:

KTR_PARAM_ALG: indicates which algorithm to use to solve the problem (see section 8).
0: KNITRO will automatically try to choose the best algorithm
based on the problem characteristics.
1: KNITRO will use the Interior/Direct algorithm.
KNITRO will use the Interior/CG algorithm.
3: KNI1TRO will use the Active algorithm.

Default value: 0

KTR_PARAM BARRULE: indicates which strategy to use for modifying the barrier parameter
in the interior point code. Some strategies are only available for the Inte-
rior/Direct algorithm. (see section 8).

o

(AUTOMATIC) : KNITRO will automatically choose the rule for updating the
barrier parameter.

[y

(MONOTONE) : KNITRO will monotonically decrease the barrier parameter.

N

(ADAPTIVE) : KNITRO uses an adaptive rule based on the complementarity
gap to determine the value of the barrier parameter at every
iteration.

w

(PROBING) : KNITRO uses a probing (affine-scaling) step to dynamically
determine the barrier parameter value at each iteration.

4 (DAMPMPC) : KNITRO uses a Mehrotra predictor-corrector type rule to de-
termine the barrier parameter with safeguards on the corrector
step.

(¢

(FULLMPC) : KNITRO uses a Mehrotra predictor-corrector type rule to de-
termine the barrier parameter without safeguards on the cor-
rector step.

Default value: 0

NOTE: Only strategies 0-2 are available for the Interior/CG algorithm. All
strategies are available for the Interior/Direct algorithm. The last two strate-
gies are typically recommended for linear programs or convex quadratic pro-
grams. This parameter is not applicable to the Active algorithm.

41

KTR_PARAM_NEWPOINT: specifies whether or not the new-point feature is enabled. If en-
abled, KNITRO returns control to the driver level with the return value from
KTR_solve() = KTR_RC_NEWPOINT after a new solution estimate has been ob-
tained and quantities have been updated (see section 9.7).

0:

KNITRO will not return to the driver level after completing a
successful iteration.

KNITRO will return to the driver level with
the return value from KTR_solve() = KTR_RC_NEWPOINT after
completing a successful iteration.

Default value: 0

KTR_PARAM_FEASIBLE: indicates whether or not to use the feasible version of KNITRO.

0:

Iterates may be infeasible.

Given an initial point which sufficiently satisfies all inequality
constraints as defined by,

cl +tol < ¢(x) < cu — tol (5.14)

(for cl # cu), the feasible version of KNITRO ensures that
all subsequent solution estimates strictly satisfy the inequal-
ity constraints. However, the iterates may not be feasible with
respect to the equality constraints. The tolerance tol > 0 in
(5.14) for determining when the feasible mode is active is deter-
mined by the double precision parameter
KTR_PARAM_FEASMODETOL described below. This tolerance (i.e.
KTR_PARAM_FEASMODETOL) must be strictly positive. That is, in
order to enter feasible mode, the point given to KNITRO must
be strictly feasible with respect to the inequality constraints.

If the initial point is infeasible (or not sufficiently feasible ac-
cording to (5.14)) with respect to the inequality constraints,
then KNITRO will run the infeasible version until a point is ob-
tained which sufficiently satisfies all the inequality constraints.
At this point it will switch to feasible mode.

Default value: 0

NOTE: This option can be used only when KTR_PARAM_ALG=2. See section 9.3
for more details.

KTR_PARAM _GRADOPT: specifies how to compute the gradients of the objective and constraint
functions, and whether to perform a gradient check.

1:

user will provide a routine for computing the exact gradients

42

2: gradients computed by forward finite-differences
gradients computed by central finite differences

gradients provided by user checked with forward finite differ-
ences

5: gradients provided by user checked with central finite differ-
ences

Default value: 1

NOTE: It is highly recommended to provide exact gradients if at all possible
as this greatly impacts the performance of the code. For more information
on these options see section 9.1.

KTR_PARAM HESSOPT: specifies how to compute the (approximate) Hessian of the Lagrangian.

1 user will provide a routine for computing the exact Hessian

2 KNITRO will compute a (dense) quasi-Newton BFGS Hessian
3: KNITRO will compute a (dense) quasi-Newton SR1 Hessian
4

KNITRO will compute Hessian-vector products using finite-
differences

5: user will provide a routine to compute the Hessian-vector prod-
ucts

6: KNITRO will compute a limited-memory quasi-Newton BFGS
Hessian

Default value: 1

NOTE: If exact Hessians (or exact Hessian-vector products) cannot be pro-
vided by the user but exact gradients are provided and are not too expensive
to compute, option 4 above is typically recommended. The finite-difference
Hessian-vector option is comparable in terms of robustness to the exact Hes-
sian option (assuming exact gradients are provided) and typically not too
much slower in terms of time if gradient evaluations are not the dominant
cost.

However, if exact gradients cannot be provided (i.e. finite-differences are
used for the first derivatives), or gradient evaluations are expensive, it is
recommended to use one of the quasi-Newton options, in the event that the
exact Hessian is not available. Options 2 and 3 are only recommended for
small problems (n < 1000) since they require working with a dense Hessian
approximation. Option 6 should be used in the large-scale case.

NOTE: Options KTR_PARAM_HESSOPT=4 and KTR_PARAM_HESSOPT=5 are not
available when KTR_PARAM_ALG=1. See section 9.2 for more detail on second
derivative options.

43

KTR_PARAM_HONORBNDS: indicates whether or not to enforce satisfaction of the simple bounds
(4.3¢) throughout the optimization (see section 9.4).

0: KNITRO does not enforce that the bounds on the variables are
satisfied at intermediate iterates.

1: KNITRO enforces that the initial point and all subsequent so-
lution estimates satisfy the bounds on the variables (4.3c).

Default value: 0
KTR_PARAM_INITPT: indicates whether an initial point strategy is used.

0: No initial point strategy is employed.

Initial values for the variables are computed. This option may
be recommended when an initial point is not provided by the
user, as is typically the case in linear and quadratic program-
ming problems.

Default value: 0
KTR_PARAM_ISLP: indicates whether or not the problem is a linear program.

0: KNITRO will not recognize the problem as a linear program.

KNITRO will assume the problem is a linear program and may
perform some specializations.

Default value: 0
KTR_PARAM_ISQP: indicates whether or not the problem is a quadratic program.

0: KNITRO will not recognize the problem as a quadratic program.

1: KnNITRO will assume the problem is a quadratic program and
may perform some specializations.

Default value: 0

KTR_PARAM LPSOLVER: indicates which linear programming simplex solver the KNITRO active-
set algorithm uses to solve the LP subproblems.

1: KNITRO uses an internal LP solver.

2: KNITRO uses ILOG-CPLEX provided the user has a valid CPLEX
license. The CPLEX shared object library or dll must reside
in the current working directory or a directory specified in the
library load path in order to be run-time loadable. By de-
fault, if this option is selected, KNITRO will look for either the
shared object libraries or dlls for CPLEX 8.0 or CPLEX 9.0. If
you would like KNITRO to look for a different CPLEX library,

44

this can be specified using the KTR_set_char_param by name ()
function, using the character parameter cplexlibname. For
example, if you wanted to specifically tell KNITRO to look for
the library cplex90.d11 this could be done through the com-
mand

status = KTR_set_char_param by name(kc,"cplexlibname", "cplex90.d11");

Default value: 1

KTR_PARAM MAXCGIT: Determines the maximum allowable number of inner conjugate gra-
dient (CG) iterations per KNITRO minor iteration.

0:

KNITRO automatically determines an upper bound on the num-
ber of allowable CG iterations based on the problem size.

At most n CG iterations may be performed during one KNITRO
minor iteration, where n > 0.

Default value: 0

KTR_PARAM MAXIT: specifies the maximum number of major iterations before termination.

Default value: 10000

KTR_PARAM_OUTLEV: controls the level of output.

0:
1:
2:

printing of all output is suppressed
only summary information is printed

information every 10 major iterations is printed where a major
iteration is defined by a new solution estimate

information at each major iteration is printed

information is printed at each major and minor iteration where
a minor iteration is defined by a trial iterate

in addition, the values of the solution vector x are printed

in addition, the values of the constraints ¢ and Lagrange mul-
tipliers lambda are printed

Default value: 2

KTR_PARAM_QUTMODE: specifies where to direct the output.

0:

output is directed to standard out (e.g., screen)

output is sent to a file named knitro.out

45

2: output is directed to both the screen and file knitro.out
Default value: 0

KTR_PARAM_SCALE: performs a scaling of the objective and constraint functions based on
their values at the initial point. If scaling is performed, all internal compu-
tations, including the stopping tests, are based on the scaled values.

0: No scaling is performed.

The objective function and constraints may be scaled.
Default value: 1

KTR_PARAM _SHIFTINIT: Determines whether or not the interior-point algorithm in KNITRO
shifts the given initial point to satisfy the variable bounds (4.3c).

0: KNITRO will not shift the given initial point to satisfy the
variable bounds before starting the optimization.

1: KNITRO will shift the given initial point.
Default value: 1

KTR_PARAM_SOC: indicates whether or not to use the second order correction (SOC) op-
tion. A second order correction may be beneficial for problems with highly
nonlinear constraints.

0: No second order correction steps are attempted.

Second order correction steps may be attempted on some iter-
ations.

2: Second order correction steps are always attempted if the orig-

inal step is rejected and there are nonlinear constraints.

Default value: 1

The double precision valued options are:

KTR_PARAM DELTA: specifies the initial trust region radius scaling factor used to determine
the initial trust region size.

Default value: 1.0e0
KTR_PARAM FEASMODETOL: specifies the tolerance in (5.14) by which the iterate must be

feasible with respect to the inequality constraints before the feasible mode
becomes active. This option is only relevant when KTR_PARAM_FEASIBLE=1.

Default value: 1.0e-4

46

KTR_PARAM FEASTOL: specifies the final relative stopping tolerance for the feasibility error.
Smaller values of KTR_PARAM_FEASTOL result in a higher degree of accuracy
in the solution with respect to feasibility.

Default value: 1.0e-6

KTR_PARAM FEASTOLABS: specifies the final absolute stopping tolerance for the feasibility
error. Smaller values of KTR_PARAM_FEASTOLABS result in a higher degree of
accuracy in the solution with respect to feasibility.

Default value: 0.0e0

NOTE: For more information on the stopping test used in KNITRO see sec-
tion 6.

KTR_PARAM MAXTIME: specifies, in seconds, the maximum allowable time before termination.

Default value: 1.0e8

KTR_PARAM_MU: specifies the initial barrier parameter value for the interior-point algorithms.

Default value: 1.0e-1

KTR_PARAM_OBJRANGE: determines the allowable range of values for the objective function
for determining unboundedness. If the magnitude of the objective function is
greater than KTR_PARAM_OBJRANGE and the iterate is feasible, then the prob-
lem is determined to be unbounded.

Default value: 1.0e20

KTR_PARAM_OPTTOL: specifies the final relative stopping tolerance for the KKT (optimal-
ity) error. Smaller values of KTR_PARAM OPTTOL result in a higher degree of
accuracy in the solution with respect to optimality.

Default value: 1.0e-6

KTR_PARAM OPTTOLABS: specifies the final absolute stopping tolerance for the KKT (op-
timality) error. Smaller values of KTR_.PARAM_OPTTOLABS result in a higher
degree of accuracy in the solution with respect to optimality.

Default value: 0.0e0

NOTE: For more information on the stopping test used in KNITRO see sec-
tion 6.

KTR_PARAM_PIVOT: specifies the initial pivot threshold used in the factorization routine.
The value should be in the range [0 0.5] with higher values resulting in more
pivoting (more stable factorization). Values less than 0 will be set to 0 and
values larger than 0.5 will be set to 0.5. If pivot is non-positive initially
no pivoting will be performed. Smaller values may improve the speed of the
code but higher values are recommended for more stability (for example, if
the problem appears to be very ill-conditioned).

Default value: 1.0e-8

47

KTR_PARAM XTOL: The optimization will terminate when the relative change in the solution
estimate is less than KTR_PARAM XTOL. If using an interior-point algorithm
and the barrier parameter is still large, KNITRO will first try decreasing the
barrier parameter before terminating.

Default value: 1.0e-15

5.2 The KNITRO options file

The KNITRO options file allows the user to easily change certain parameters without needing
to recompile the code when using the KNITRO callable library. (This file has no effect when
using the AMPL interface to KNITRO.)

Options are set by specifying a keyword and a corresponding value on a line in the
options file. Lines that begin with a # character are treated as comments and blank lines
are ignored. For example, to set the maximum allowable number of iterations to 500, one
could use the following options file. In this example, let’s call the options file knitro.opt
(although any name will do):

KNITRO Options file
maxit 500

In order for the options file to be read by KNITRO the following function call must be
specified in the driver:

int KTR_load param file(KTR_context *kc, char const *filename)

Example:

status = KTR_load param file(kc,"knitro.opt");

Likewise, the options used in a given optimization may be written to a file called
knitro.opt through the function call:

int KTR_save param file(KTR_context *kc, char const *filename)

Example:

status = KTR_save_param file(kc,"knitro.opt");

A sample options file knitro.opt is provided for convenience and can be found in the C
and Fortran directories. Note that this file is only provided as a sample: it is not read by
KNITRO (unless the user specifies the function call for reading this file).

48

Most user options can be specified with either a numeric value or a string value. The
individual user options and their possible numeric values are described in section 5.1. Op-
tional string values for many of the options are indicated in the example knitro.opt file
provided with the distribution.

5.3 Setting options through function calls

The functions for setting user parameters have the form:
int KTR_set_int_param(KTR_context *kc, int param, int value)
for setting integer valued parameters or
int KTR_set_double_param(KTR_context *kc, int param, double value)
for setting double precision valued parameters.
Ezample:
The The Interior/CG algorithm can be chosen through the following function call.
status = KTR_set_int_param(kc,KTR_PARAM ALG, 2);
Similarly, the optimality tolerance can be set through the function call:

status = KTR_set_double_param(kc,KTR_PARAM OPTTOL, 1.0e-8);

NOTE: User parameters should only be set at the very beginning of the optimization
before the call to KTR_solve () and should not be modified at all during the course of the
optimization.

49

6 KNITRO Termination Test and Optimality

The first-order conditions for identifying a locally optimal solution of the problem (1.1) are:

VoL(w,\) = Vf(x)+ Y NiVhi(x)+ Y AiVgi(z) = 0 (6.15)
€€ €T

Xigi(zx 0, ieZ (6.16)

hi(r) = 0, i€ (6.17)

gilx) < 0, i€Z (6.18)

AN >0, i€T (6.19)

where £ and 7 represent the sets of indices corresponding to the equality constraints and
inequality constraints respectively, and A; is the Lagrange multiplier corresponding to con-
straint 4. In KNITRO we define the feasibility error (Feas err) at a point z* to be the
maximum violation of the constraints (6.17), (6.18), i.e.,

F = hi(z)], gi(z" 2
eas err Z.rengszz(o,] ()], gi(z")), (6.20)

while the optimality error (Opt err) is defined as the maximum violation of the first two
conditions (6.15), (6.16),

Opt err = %@X(llvxﬁ(mk, M loos [Xigi ()1, [Nl lgi (™)) (6.21)
]

The last optimality condition (6.19) is enforced explicitly throughout the optimization. In
order to take into account problem scaling in the termination test, the following scaling
factors are defined

= max(1, |hi(z?)], g:(z?)), (6.22)
7 = max(L[|Vf(2")]|), (6.23)

where 20 represents the initial point.

For unconstrained problems, the scaling (6.23) is not effective since ||V f(2*)| s — 0 as
a solution is approached. Therefore, for unconstrained problems only, the following scaling
is used in the termination test

75 = max(L, min(| f(2*)], |V £(2)]|oo)). (6.24)

in place of (6.23).
KNITRO stops and declares LOCALLY OPTIMAL SOLUTION FOUND if the following stopping
conditions are satisfied:

Feas err < max(7y * KTR_PARAM_FEASTOL, KTR_PARAM FEASTOLABS) (6.25)
Opt err < max(7y * KTR_PARAM OPTTOL, KTR_PARAM_OPTTOLABS) (6.26)

where KTR_PARAM_FEASTOL, KTR_PARAM_OPTTOL, KTR_PARAM_FEASTOLABS and
KTR_PARAM_OPTTOLABS are user-defined options (see section 5).

50

This stopping test is designed to give the user much flexibility in deciding when the
solution returned by KNITRO is accurate enough. One can use a purely scaled stopping
test (which is the recommended default option) by setting KTR_PARAM FEASTOLABS and
KTR_PARAM_OPTTOLABS equal to 0.0e0. Likewise, an absolute stopping test can be enforced
by setting KTR_PARAM_FEASTOL and KTR_PARAM_OPTTOL equal to 0.0eO.

Unbounded problems

Since by default, KNITRO uses a relative/scaled stopping test it is possible for the
optimality conditions to be satisfied for an unbounded problem. For example, if 79 — oo
while the optimality error (6.21) stays bounded, condition (6.26) will eventually be satisfied
for some KTR_PARAM OPTTOL>0. If you suspect that your problem may be unbounded, using
an absolute stopping test will allow KNITRO to detect this.

o1

7 KNITRO Output

If KTR_PARAM OUTLEV=0 then all printing of output is suppressed. For the default printing
output level (KTR_PARAM QUTLEV=2) the following information is given:

Nondefault Options:
This output lists all user options (see section 5) which are different from their default
values. If nothing is listed in this section then all user options are set to their default values.

Problem Characteristics:
The output begins with a description of the problem characteristics.

Iteration Information:

A major iteration, in the context of KNITRO, is defined as a step which generates a
new solution estimate (i.e., a successful step). A minor iteration is one which generates
a trial step (which may either be accepted or rejected). After the problem characteristic
information there are columns of data reflecting information about each iteration of the
run. Below is a description of the values contained under each column header:

Iter: Tteration number.

Res: The step result. The values in this column indicate whether or not the step
attempted during the iteration was accepted (Acc) or rejected (Rej) by the
merit function. If the step was rejected, the solution estimate was not updated.
(This information is only printed if KTR_.PARAM_OUTLEV>3).

Objective: Gives the value of the objective function at the trial iterate.
Feas err: Gives a measure of the feasibility violation at the trial iterate.

Opt Err: Gives a measure of the violation of the Karush-Kuhn-Tucker (KKT) (first-
order) optimality conditions (not including feasibility).

| 1Stepl|: The 2-norm length of the step (i.e., the distance between the trial iterate and
the old iterate).

CG its: The number of Projected Conjugate Gradient (CG) iterations required to com-
pute the step.

If KTR_PARAM QUTLEV=2, information is printed every 10 major iterations. If
KTR_PARAM_OUTLEV=3 information is printed at each major iteration. If KTR_PARAM_OUTLEV=4
in addition to printing iteration information on all the major iterations (i.e., accepted steps),
the same information will be printed on all minor iterations as well.

Termination Message: At the end of the run a termination message is printed indicating
whether or not the optimal solution was found and if not, why the code terminated. See Ap-
pendix A: for a list of possible termination messages and a description of their meaning and
corresponding return value.

52

Final Statistics:
Following the termination message some final statistics on the run are printed. Both
relative and absolute error values are printed.

Solution Vector/Constraints:

If KTR_PARAM_OUTLEV=5, the values of the solution vector are printed after the final
statistics. If KTR_PARAM_OUTLEV=6, the final constraint values are also printed before the
solution vector and the values of the Lagrange multipliers (or dual variables) are printed
next to their corresponding constraint or bound.

53

8 Algorithm Options

8.1 Awutomatic

By default, KNITRO will automatically try to choose the best optimizer for the given problem
based on the problem characteristics.

8.2 Interior/Direct

If the Hessian of the Lagrangian is ill-conditioned or the problem does not have a large-dense
Hessian, it may be advisable to compute a step by directly factoring the KKT (primal-
dual) matrix rather than using an iterative approach to solve this system. KNITRO offers
the Interior/Direct optimizer which allows the algorithm to take direct steps by setting
KTR_PARAM_ALG=1. This option will try to take a direct step at each iteration and will only
fall back on the iterative step if the direct step is suspected to be of poor quality, or if
negative curvature is detected.

Using the Interior/Direct optimizer may result in substantial improvements over Inte-
rior/CG when the problem is ill-conditioned (as evidenced by Interior/CG taking a large
number of Conjugate Gradient iterations). We encourage the user to try both options as it
is difficult to predict in advance which one will be more effective on a given problem.

NOTE: Since the Interior/Direct algorithm in KNITRO requires the explicit storage of a
Hessian matrix, this version can only be used with Hessian options, KTR_PARAM HESSOPT=1,
2, 3or 6. It may not be used with Hessian options, KTR_PARAM HESSOPT=4 or 5, which only
provide Hessian-vector products. Also, the Interior/Direct optimizer cannot be used with
the feasible option (KTR_.PARAM_FEASIBLE=1).

8.3 Interior/CG

Since KNITRO was designed with the idea of solving large problems, the Interior/CG opti-
mizer in KNITRO offers an iterative Conjugate Gradient approach to compute the step at
each iteration. This approach has proven to be efficient in most cases and allows KNITRO
to handle problems with large, dense Hessians, since it does not require factorization of the
Hessian matrix. The Interior/CG algorithm can be chosen by setting KTR_PARAM_ALG=2. It
can use any of the Hessian options as well as the feasible option.

8.4 Active

KNITRO 4.0 introduces a new active-set Sequential Linear-Quadratic Programing (SLQP)
optimizer. This optimizer is particular advantageous when “warm starting” (i.e., when the
user can provide a good initial solution estimate, for example, when solving a sequence of
closely related problems). This algorithm is also the preferred algorithm for detecting infea-
sible problems quickly. The Active algorithm can be chosen by setting KTR_PARAM_ALG=3.
It can use any of the Hessian options.

54

9 Other KNITRO special features

This section describes in more detail some of the most important features of KNITRO and
provides some guidance on which features to use so that KNITRO runs most efficiently for
the problem at hand.

9.1 First derivative and gradient check options

The default version of KNITRO assumes that the user can provide exact first derivatives
to compute the objective function gradient (in dense format) and constraint gradients (in
sparse form). It is highly recommended that the user provide at least exact first derivatives
if at all possible, since using first derivative approximations may seriously degrade the
performance of the code and the likelihood of converging to a solution. However, if this is
not possible or desirable the following first derivative approximation options may be used.

Forward finite-differences

This option uses a forward finite-difference approximation of the objective and constraint
gradients. The cost of computing this approximation is n function evaluations where n is
the number of variables. This option can be invoked by choosing KTR_PARAM_GRADOPT=2 and
calling the routine KTR_gradfd (KTR_gradfdF for the Fortran interface) at the driver level
when asked to evaluate the problem gradients. See the example problem provided with the
distribution, or the example in section 4.2 to see how the function KTR_gradfd is called.

Centered finite-differences

This option uses a centered finite-difference approximation of the objective and constraint
gradients. The cost of computing this approximation is 2n function evaluations where n is
the number of variables. This option can be invoked by choosing KTR_PARAM_GRADOPT=3 and
calling the routine KTR_gradfd (KTR_gradfdF for the Fortran interface) at the driver level
when asked to evaluate the problem gradients. The centered finite-difference approximation
may often be more accurate than the forward finite-difference approximation. However, it
is more expensive since it requires twice as many function evaluations to compute. See the
example problem provided with the distribution, or the example in section 4.2 to see how
the function KTR_gradfd is called.

Gradient Checks

If the user is supplying a routine for computing exact gradients, but would like to compare
these gradients with finite-difference gradient approximations as an error check this can eas-
ily be done in KNITRO. To do this, one must call the gradient check routine KTR_gradcheck
(KTR_gradcheckF in the Fortran interface) after calling the user-supplied gradient routine
and the finite-difference routine KTR_gradfd. See the example problem provided in the C
directory in the distribution, or section 4.2 of this document for an example of how this is
used. The call to the gradient check routine KTR_gradcheck will print the relative difference
between the user-supplied gradients and the finite-difference gradient approximations. If
this value is very small, then it is likely the user-supplied gradients are correct, whereas

95

a large value may be indicative of an error in the user-supplied gradients. To perform a
gradient check with forward finite-differences set KTR_PARAM_GRADOPT=4, and to perform a
gradient check with centered finite-differences set KTR_PARAM_GRADOPT=5.

NOTE: The user must supply the sparsity pattern for the function and constraint gradients
to the finite-difference routine KTR_gradfd. Therefore, the vectors indfun and indvar must
be specified prior to calling KTR_gradfd.

NOTE: The finite-difference gradient computation routines are provided for the user’s
convenience in the file KNITROgrad.c. (KNITROgradF.f for Fortran). These routines require
a call to the user-supplied routine for evaluating the objective and constraint functions.
Therefore, these routines may need to be modified to ensure that the call to this user-
supplied routine is correct.

9.2 Second derivative options

The default version of KNITRO assumes that the user can provide exact second derivatives
to compute the Hessian of the Lagrangian function. If the user is able to do so and the
cost of computing the second derivatives is not overly expensive, it is highly recommended
to provide exact second derivatives. However, KNITRO also offers other options which are
described in detail below.

(Dense) Quasi-Newton BFGS

The quasi-Newton BFGS option uses gradient information to compute a symmetric, positive-
definite approximation to the Hessian matrix. Typically this method requires more iter-
ations to converge than the exact Hessian version. However, since it is only computing
gradients rather than Hessians, this approach may be more efficient in some cases. This
option stores a dense quasi-Newton Hessian approximation so it is only recommended for
small to medium problems (n < 1000). The quasi-Newton BFGS option can be chosen by
setting options value KTR_PARAM_HESSOPT=2.

(Dense) Quasi-Newton SR1

As with the BFGS approach, the quasi-Newton SR1 approach builds an approximate Hes-
sian using gradient information. However, unlike the BFGS approximation, the SR1 Hessian
approximation is not restricted to be positive-definite. Therefore the quasi-Newton SR1 ap-
proximation may be a better approach, compared to the BFGS method, if there is a lot
of negative curvature in the problem since it may be able to maintain a better approxi-
mation to the true Hessian in this case. The quasi-Newton SR1 approximation maintains
a dense Hessian approximation and so is only recommended for small to medium prob-
lems (n < 1000). The quasi-Newton SR1 option can be chosen by setting options value
KTR_PARAM _HESSOPT=3.

Finite-difference Hessian-vector product option
If the problem is large and gradient evaluations are not the dominate cost, then KNITRO can
internally compute Hessian-vector products using finite-differences. Each Hessian-vector

56

product in this case requires one additional gradient evaluation. This option can be chosen
by setting options value KTR_PARAM HESSOPT=4. This option is generally only recommended
if the exact gradients are provided.

NOTE: This option may not be used when KTR_PARAM_ALG=1.

Ezact Hessian-vector products

In some cases the user may have a large, dense Hessian which makes it impractical to
store or work with the Hessian directly, but the user may be able to provide a routine for
evaluating exact Hessian-vector products. KNITRO provides the user with this option. If
this option is selected, the user can provide a routine callable at the driver level which given
a vector v stored in vector, computes the Hessian-vector product, Hv, and stores the result
in vector. This option can be chosen by setting options value KTR_PARAM_HESSOPT=5.

NOTE: This option may not be used when KTR_PARAM_ALG=1.

Limited-memory Quasi-Newton BFGS

The limited-memory quasi-Newton BFGS option is similar to the dense quasi-Newton BFGS
option described above. However, it is better suited for large-scale problems since, instead
of storing a dense Hessian approximation, it only stores a limited number of gradient vectors
used to approximate the Hessian. In general it requires more iterations to converge than
the dense quasi-Newton BFGS approach but will be much more efficient on large-scale
problems. This option can be chosen by setting options value KTR_PARAM_HESSOPT=6.

9.3 Feasible version

KNITRO offers the user the option of forcing intermediate iterates to stay feasible with
respect to the inequality constraints (it does not enforce feasibility with respect to the
equality constraints however). Given an initial point which is sufficiently feasible with
respect to all inequality constraints and selecting KTR_PARAM FEASIBLE = 1, forces all the
iterates to strictly satisfy the inequality constraints throughout the solution process. For
the feasible mode to become active the iterate x must satisfy

cl +tol < c(x) < cu —tol (9.27)

for all inequality constraints (i.e., for ¢l # cu). The tolerance tol > 0 by which an iterate
must be strictly feasible for entering the feasible mode is determined by the parameter
KTR_PARAM FEASMODETOL which is 1.0e-4 by default. If the initial point does not satisfy
(9.27) then the default infeasible version of KNITRO will run until it obtains a point which
is sufficiently feasible with respect to all the inequality constraints. At this point it will
switch to the feasible version of KNITRO and all subsequent iterates will be forced to satisfy
the inequality constraints.
For a detailed description of the feasible version of KNITRO see [5].

NOTE: This option may only be used when KTR_PARAM_ALG=2.

o7

9.4 Honor Bounds

By default KNITRO does not enforce that the simple bounds on the variables (4.3¢) are
satisfied throughout the optimization process. Rather, satisfaction of these bounds is only
enforced at the solution. In some applications, however, the user may want to enforce that
the initial point and all intermediate iterates satisfy the bounds bl < x < bu. This can be
enforced by setting KTR_PARAM_HONORBNDS=1.

9.5 Solving Systems of Nonlinear Equations

KNITRO is quite effective at solving systems of nonlinear equations. To solve a square
system of nonlinear equations using KNITRO one should specify the nonlinear equations as
equality constraints (i.e., constraints with ¢l = cu), and specify the objective function (4.3a)
as zero (i.e., f(z) =0).

9.6 Solving Least Squares Problems

There are two ways of using KNITRO for solving problems in which the objective function
is a sum of squares of the form

flz) = % 23':1 7”]'(95)2-

If the value of the objective function at the solution is not close to zero (the large residual
case), the least squares structure of f can be ignored and the problem can be solved as any
other optimization problem. Any of the KNITRO options can be used.

On the other hand, if the optimal objective function value is expected to be small (small
residual case) then KNITRO can implement the Gauss-Newton or Levenberg-Marquardt
methods which only require first derivatives of the residual functions, r;(x), and yet converge
rapidly. To do so, the user need only define the Hessian of f to be

Vf(z) = J(2)" I (z),

where

The actual Hessian is given by

V2 f(@) = J(@) T (@) +) ri(a)Vir(x);

j=1

the Gauss-Newton and Levenberg-Marquardt approaches consist of ignoring the last term
in the Hessian.

KNITRO Will behave like a Gauss-Newton method by setting KTR_PARAM_ALG=1, and will
be very similar to the classical Levenberg-Marquardt method when KTR_PARAM_ALG=2. For
a discussion of these methods see, for example, [8].

o8

9.7 Reverse Communication and Interactive Usage of KNITRO

The reverse communication design of KNITRO returns control to the user at the driver level
whenever a function, gradient, or Hessian evaluation is needed, thus giving the user complete
control over the definition of these routines. In addition, this feature makes it easy for users
to insert their own routines to monitor the progress of the algorithm after each iteration
or to stop the optimization whenever the user wishes based on whatever criteria the user
desires. If the return value from KTR_solve () is 0 or negative, the optimization is finished
(0 indicates successful completion, whereas a negative return value indicates unsuccessful
completion). Otherwise, if the return value is positive, KNITRO requires that some task
be performed by the user at the driver level before re-entering KTR_solve (). Below are a
description of the possible positive return values:

KTR_RC_EVALFC (1) Evaluate functions f and c¢ and re-enter KTR_solve().
KTR_RC_EVALGA (2) Evaluate gradients fgrad and cjac and re-enter KTR_solve().

KTR_RC_EVALH (3) Evaluate Hessian hess or Hessian-vector product and re-enter
KTR_solve().

KTR_RC_EVALXO (4) Evaluate functions f and ¢ and gradients fgrad and cjac and re-enter
KTR_solve().

KTR_RC_NEWPOINT (6) KNITRO has just computed a new solution estimate. The user may
provide routine(s) if desired to perform some task before KNITRO begins a new major
iteration (requires that KTR_PARAM_NEWPOINT=1).

By setting the user parameter KTR_PARAM NEWPOINT=1, KNITRO will return control to
the driver level with the return value from KTR_solve() = KTR_RC_NEWPOINT every time a
new approximate solution has been obtained. At this point the functions and gradients are
up-to-date and the user may enter his or her own routines to monitor progress or display
some results before re-entering KNITRO to start a new iteration.

9.8 Callbacks

In the callback feature, the user gives KNITRO several function pointers that KNITRO uses
when it needs new function, gradient or Hessian values or to execute a user-provided new-
point routine.

For convenience, every one of these callback routines receives every parameter. If your
callback requires additional parameters, you are encouraged to create a structure of them,
and pass its address with the user pointer. KNITRO does not modify or dereference the
user pointer, so it is safe to use for this purpose. Below is the prototype for the KNITRO
callback function:

/* define callback prototype */
typedef int KTR_callback(KTR_context_ptr kc,

99

double *f, int ftype, int n, double *x, double *bl, double *bu,
double *fgrad,

int m, double *c, double *cl, double *cu, int *ctype, int nnzj,
double *cjac, int *indvar, int *indfun, double *lambda,

int nnzh, double *hess, int *hrow, int *hcol, double *vector, void
xuser) ;

The callback functions for evaluating the functions, gradients and Hessian or for per-
forming some newpoint task, can be set as described below. The user callback routines
themselves should return an int value where any non-negative value indicates a successful
return from the callback function and any negative value indicates that an error occurred
in the user-provided callback function.

/* This callback should modify f and c */
int KTR_set_func_callback(KTR_context_ptr kc,KTR_callback *func);

/* This callback should modify fgrad and cjac */
int KTR_set_grad_callback(KTR_context_ptr kc,KTR_callback *func);

/* This callback should modify hess or vector, */
/* depending on which hessopt you are using. */
int KTR_set_hess_callback(KTR_context_ptr kc,KTR_callback *func);

/* This callback should modify nothing. */
/* It can be used for updating your graphical user inteface. */
int KTR_set_newpoint_callback(KTR_context_ptr kc,KTR_callback *func);

NOTE: In order for the “newpoint” callback to be operational, the user must set
KTR_PARAM_NEWPOINT=1.

NOTE: In order to use the finite-difference gradient options with the callback feature you
will need to set the gradient evaluation routine to be the finite-difference routine KTR_grad
provided with the distribution, and pass in the necessary extra parameters through the
user structure pointer.

KNITRO also provides a special callback function for output printing. By default KNITRO
prints to stdout or a knitro.out file. This is controlled with the KTR_PARAM_OUTMODE
option. Alternatively, the user can define a callback function which handles this output.
This callback function can be set as shown below.

int KTR_set_puts_callback(KTR_context_ptr kc,KTR_puts *puts_func);

The prototype for the KNITRO callback function used for handling output is:

60

typedef int KTR_puts(char #*str,void *user);

For an example of how to use the callback feature in KNITRO, please see the callback

example provided with the distribution.

References

1]

R. H. Byrd, J.-Ch. Gilbert, and J. Nocedal. A trust region method based on interior
point techniques for nonlinear programming. Mathematical Programming, 89(1):149—
185, 2000.

R. H. Byrd, N. I. M. Gould, J. Nocedal, and R. A. Waltz. On the convergence of
successive linear-quadratic programming algorithms. Technical Report OTC 2002/5,
Optimization Technology Center, Northwestern University, Evanston, 1L, USA, 2002.

R. H. Byrd, N. I. M. Gould, J. Nocedal, and R. A. Waltz. An algorithm for nonlinear
optimization using linear programming and equality constrained subproblems. Mathe-
matical Programming, Series B, 100(1):27-48, 2004.

R. H. Byrd, M. E. Hribar, and J. Nocedal. An interior point algorithm for large scale
nonlinear programming. SIAM Journal on Optimization, 9(4):877-900, 1999.

R. H. Byrd, J. Nocedal, and R. A. Waltz. Feasible interior methods using slacks for non-
linear optimization. Computational Optimization and Applications, 26(1):35-61, 2003.

R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL: A Modeling Language for Mathe-
matical Programming. Scientific Press, 1993.

Harwell Subroutine Library. A catalogue of subroutines (HSL 2002). AEA Technology,
Harwell, Oxfordshire, England, 2002.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations
Research. Springer, 1999.

R. A. Waltz, J. L. Morales, J. Nocedal, and D. Orban. An interior algorithm for nonlinear
optimization that combines line search and trust region steps. Technical Report 2003-6,
Optimization Technology Center, Northwestern University, Evanston, IL, USA, June
2003. To appear in Mathematical Programming, Series A.

61

Appendix A: Solution Status Codes

0: EXIT: LOCALLY OPTIMAL SOLUTION FOUND.

KNITRO found a locally optimal point which satisfies the stopping criterion (see sec-
tion 6 for more detail on how this is defined). If the problem is convex (for example,
a linear program), then this point corresponds to a globally optimal solution.

-1: EXIT: Iteration limit reached.
The iteration limit was reached before being able to satisfy the required stopping
criteria.

-2: EXIT: Convergence to an infeasible point.
Problem may be locally infeasible.

The algorithm has converged to an infeasible point from which it cannot further
decrease the infeasibility measure. This happens when the problem is infeasible, but
may also occur on occasion for feasible problems with nonlinear constraints or badly
scaled problems. It is recommended to try various initial points. If this occurs for a
variety of initial points, it is likely the problem is infeasible.

-3: EXIT: Problem appears to be unbounded.
The objective function appears to be decreasing without bound, while satisfying the
constraints.

-4: EXIT: Current point cannot be improved.

No more progress can be made. If the current point is feasible it is likely it may be op-
timal, however the stopping tests cannot be satisfied (perhaps because of degeneracy,
ill-conditioning or bad scaling).

-5: EXIT: Current point cannot be improved. Point appears to be
optimal, but desired accuracy could not be achieved.

No more progress can be made, but the stopping tests are close to being satisfied
(within a factor of 100) and so the current approximate solution is believed to be
optimal.

-6: EXIT: Time limit reached.

The time limit was reached before being able to satisfy the required stopping criteria.

-50 to -60:

Termination values in this range imply some input error. If KTR_PARAM OUTLEV>0
details of this error will be printed to standard output or the file knitro.out depending
on the value of outmode.

-90:

-97:

-98:

-99:

62

EXIT: Callback function error.

This termination value indicates that an error (i.e., negative return value) occurred
in a user provided callback routine.

EXIT: LP solver error.

This termination value indicates that an unrecoverable error occurred in the LP solver
used in the active-set algorithm preventing the optimization from continuing.

EXIT: Evaluation error.

This termination value indicates that an evaluation error occurred (e.g., divide by
0, taking the square root of a negative number), preventing the optimization from
continuing.

EXIT: Not enough memory available to solve problem.

This termination value indicates that there was not enough memory available to solve
the problem.

63

Appendix B: Upgrading from KNITRO 3.x
Migrating from 3.x to 4.0

KNITRO 3.x is backwardly compatible with KNITRO 4.0. That is, an old KNITRO 3.x
driver file which calls the KNITRO 3.x KNITROsolver function should work with the KNITRO
4.0 libraries provided the knitro3.h header file is included in the old KNITRO 3.x driver
file. The knitro3.h header file holds all the old KNITRO 3.x depreciated declarations.

In moving from KNITRO 3.x to 4.0, you will need to change your linker from £77 to g++,
because KNITRO 4.0 no longer has any Fortran but now includes some C++ code. Also you
will need to link against the pthread and the d1 libraries (i.e., add -1pthread and -1d1 to
the link command).

In order to use most of the new features and functionality of KNITRO 4.0, one must
migrate to the new 4.0 API. For a quick overview of the major KNITRO 4.0 API changes,
please see the section on 4.0 API Changes below.

A Summary of 4.0 API Changes

e In KNITRO 4.0, the arrays cjac/indfun/indvar now only hold the sparse elements of
the constraint gradients. The objective function gradient is stored in a new argument
called fgrad which is a dense array of size n.

e The argument nnzj now only refers to the number of nonzero constraint gradient
elements (i.e., the number of nonzeros in the new cjac). Therefore nnzj will be
less that in KNITRO 3.x (the nonzeros in the objective gradient were included in the
KNITRO 3.x value of nnzj). Please be sure to change this value.

e The arrays indvar/indfun used to describe the sparse Jacobian elements now use
C indexing (0-based) rather than Fortran indexing so they are decremented by one
compared to the old value. For example indfun[i]=0 refers to the first constraint
c[0], and indvar [i]=0 refers to the first variable x [0].

e The sparse Hessian values which used to be described by nnz_w/w/w_row/w_col are
now called nnzh/hess/hrow/hcol. As with the Jacobian indexing, the arrays
hrow/hcol now use C indexing (0-based).

e The user no longer needs to (and in fact should not) allocate the arrays hess/hrow/hcol
if not using exact Hessians. If not using exact Hessians, these arrays should be set
to NULL. Likewise, if not using exact Hessian-vector products, the argument vector
should not be allocated and should be set to NULL.

e The old argument linear has been changed to ctype. It has the following meaning:

0: constraint is general nonlinear or nothing is known about it
1: constraint is linear
2: constraint is quadratic

64

e There is a new argument called ftype which has the same meaning for the objective
function.

e KNITRO 4.0 has a new user options file format which is more flexible than the previous
KNITRO 3.x knitro.spc file. Using this new options file, the user defines a keyword
and a value to set an option. A sample options file is provided in the distribution.

e KNITRO 4.0 is threadsafe.

	Contents
	1 Introduction
	1.1 Knitro Overview
	1.2 Contact and Support Information

	2 Installing
	2.1 Windows
	2.2 Linux/UNIX

	3 AMPL interface
	4 The Knitro callable library
	4.1 Calling Knitro from a C application
	4.2 Example
	4.3 Calling Knitro from a C++ application
	4.4 Calling Knitro from a Fortran application
	4.5 Building Knitro with a Microsoft Visual C Developer Studio Project
	4.6 Specifying the Jacobian and Hessian matrices in sparse form

	5 User options in Knitro
	5.1 Description of Knitro user options
	5.2 The Knitro options file
	5.3 Setting options through function calls

	6 Knitro Termination Test and Optimality
	7 Knitro Output
	8 Algorithm Options
	8.1 Automatic
	8.2 Interior/Direct
	8.3 Interior/CG
	8.4 Active

	9 Other Knitro special features
	9.1 First derivative and gradient check options
	9.2 Second derivative options
	9.3 Feasible version
	9.4 Honor Bounds
	9.5 Solving Systems of Nonlinear Equations
	9.6 Solving Least Squares Problems
	9.7 Reverse Communication and Interactive Usage of Knitro
	9.8 Callbacks

	References
	Appendix A: Solution Status Codes
	Appendix B: Upgrading from Knitro 3.x

