1386-Drive™

C/C++ programmable, 32-bit microprocessor module with
70+ 1/0s, UARTSs, ADC, DAC, and quadrature decoders
based on the Intel386EX

Technical Manual

Trery

1724 Picasso Avenue, Suite A, Davis, CA 95616-0547, USA
Tel: 530-758-0180 Fax: 530-758-0181
Internet Email: tern@netcom.com httpwiw.tern.com

COPYRIGHT

i386-Drive, i386-Engine, i386-Engine-P, MemCard-A, NT-Kit, and ACTF are trademarks
of TERN, Inc.
Intel386EX and Intel386SX are trademarks of Intel Corporation.
Borland C/C++ is a trademark of Borland International.
Microsoft, MS-DOS, Windows, Windows95, and Windows98 are trademarks of
Microsoft Corporation.
IBM is a trademark of International Business Machines Corporation.

Version 2.02

August 13, 1999

No part of this document may be copied or reproduced in any form or by any means
without the prior written consent of TERN, Inc.

© 1999 ’| TERN

1724 Picasso Avenue, Suite A, Davis, CA 95616-0547, USA
Tel: 530-758-0180 Fax: 530-758-0181
Internet Email: tern@netcom.com http://www.tern.com

Important Notice

TERN is developing complex, high technology integration systems. These systems are
integrated with software and hardware that are not 100% defecT E& products are
not designed, intended, authorized, or warranted to be suitable for use in life-support
applications, devices, or systems, or in other critical applications. TERN the Buyer
agree thafTERN will not be liable for incidental or consequential damages arising from
the use ofTERN products. It is the Buyer's responsibility to protect life and property
against incidental failure.

TERN reserves the right to make changes and improvements to its products
without providing notice.

3.10.5 100 KHz 16-bit ADC, LTC1605 3-11

i386-Drive Table of Contents
Table of Contents
Chapter page Chapter page
1. INErOdUCTHION «.covveiiiiiiiee e 1-1 3.10.6 Dual 12-bit DAC, LTC1446....3-12
1.1 Functional Descriptionccccceeveeeens 1-1 3.10.7 Parallel 12-bit DAC, LTC1450 .3-12
1.2 FEAUIES ...ovvviiiiieeeeeeeeeee e 1-2 3.10.8 16-bit DAC, LTC1655............ 3-12
1.3 Physical Descriptionccccceevvvveinnnnes 1-3 3.10.9 HCTL202Q........cciiieeeeeeieeeenns 3-12
1.4 i386-Drive Programming Overview....1-4 3.11 Headers and Connectors.............. 3-13
1.41Step L. 1-5 3.11.1 Expansion Headers J1 and J3-13
141 Step 2. 1-6 3.11.2 Expansion Headers P1 and P2-15
141 Step 3. 1-6 3.11.3 Jumpers and Headers........... 3-15
1.5 Minimum Requirementsccccceeees 1-7
1.5.1 Minimum Hardware Requirements.1-7 SOfWAIE ..o 4-1
1.5.2 Minimum Software Requirements ..1-7 A41IE.LIB oo 4-2
4.2 Functions in IE.OBJcoviiiiinnnnen. 4-2
2. Installation ... 2-1 4.2.1 i386-Drive Initialization............... 4-2
2.1 Software Installationcccccvvvveennnnnn. 2-1 4.2.2 External Interrupt Initialization 4-4
2.2 Hardware Installationccccevvennnnnn. 2-1 4.2.3 1/0 Initializationccceeeeee. 4-5
2.2.1 Connecting the i386-Drive to 4.2.4 Analog-to-Digital Conversion 4-6
the PC .o, 2-2 4.2.5 Digital-to-Analog Conversion........ 4-7
2.2.2 Powering-on the i386-Drive........ 2-3 4.2.6 Other Library Functions................. 4-7
4.3 Functions in SER0.OBJ/SER1.0BJ 4-9
3. Hardware ... 3-1 4.4 Functions in SCC.OBJ 4-14
3.1 Intel386EX Processor............ccccceveeeee 3-1 4.5 Functions in IEEE.OBJ 4:16
3.2 Intel386EX I/O Lines.......ccooovveeeieeennnns 3-1
3.3 External Interrupts and Schmitt-Trigger
Input BUffer ..., 3-3 Appendices:
3.4 Timer Control Unit............cooeeeeiiiinnnnnnnns 3-4
3.5 ClOCK....cciiiiiiiiiiiiiieee 3-4 A. i386-Drive Layout.............cceeveeeeeeeenne. A-1
3.6 Serial POrts..........uciiiiiieeiiiiiiiiiieee 3-4 B. UART SCC2691.........cuuvvvrririirineeeennnnn. B-1
3.7 Power-Save Modeoceeevvvvviiiiinnnnnnn. 3-5 C. RTC72421/72423.......coueeeeeeeiiiiiiaaaannn. C-1
3.8 Memory Map for RAM/ROM................. 3-5 D. Serial EEPROM Mapcccccvvvvieennnn. D-1
3.9 /0 Mapped Devicescccvvvvvivnnnnnnnn. 3-6
3.9.11/0 SPACE ...ovvieeeiiiiiiiii e 3-6 Schematics:
3.9.2 Programmable Peripheral Interface
(B2CBBA)....euiiiiiieeeeiiee e 3-7 i386-Drive (sheets 1 and 2)
3.9.3 Real-time Clock RTC72423........ 3-9
3.9.4 UART SCC2691........ovvvvuiiaeannnn. 3-9
3.9.5 UART SCC2692.........ovvvviiaaennnn. 3-9
3.10 Other DeViCeS..........cccevviieiiiiiiiiiiaeeeeen, 3-9
3.10.1 On-board Supervisor with
Watchdog Timercoovvvvvvvvennnnnnn. 3-9
3.10.2 EEPROM ... 3-10
3.10.3 12-bit ADC, TLC2543............. 3-11
3.10.4 24-bit ADC, LTC2400............. 3-11

i386-Drive Chapter 1: Introduction

Chapter 1: Introduction

1.1 Functional Description

The i386-Drive (ID) is a compact, low-cost, high performance controller based on the 33 MHz, 32-bit
Intel386EX. It combines the powerful i386EX CPU and numerous peripherals on a single PCB measuring
4.7 by 4.5 inches.

The ID supports up to 512 KB 8-hit SRAM, 512 KB 8-bit Flash, 1 MB 16-bit SRAM, and 1 MB 16-bit
Flash. A 512-byte serial EEPROM, which does not require a battery backup, can be used as an additional
memory device to store important data. An optional real-time clock (RTC) provides information on the
year, month, date, hour, minute, second, 1/64 second. A lithium coin battery can be installed to back up
both the SRAM and RTC.

ROM/FLASH 8-bit SRAM 16-bit SRAM 16-bit FLASH P1 P2
512 KB 512K B 512 KB x 2 1MB 29F800 32%2| |32%2
AB8-A25
ADC V14 — J8
100KHz 16-bi Int6|386EX fS\J?l
X
HP2020"%
ADC .U21 020 C P U i H2
24-bit HP2020" | < 33 MHz ACAT | J1 SERO RS232
ADC Yo 512-BYTE ° 2% H3
L DMA (2)
11 Ch. 12-bit EEPROM 16-Bit Timers (3) SI00 SER1 RS232
Ext. Interrupts (10) SI01
ADC U1 8x31/0 lines sslo PIO, TXD | J2 H4 SCC2691
i RTC Y ’
11 Ch. 12-bit H 20x2 H1 SCC2692A
H5 SCC2692B

DAC Yo° DAC Y DAC u2s || UART Y8 |JUART Y% 241/0 PPV’ | | 24 110 PPIV%?
100KHz 12-bi 16-bit 2 ch. 12-bitl| scc2961 || scc2962 82C55 82C55

Figure 1.1 Functional block diag ram of the i386-Drive

Two asynchronous serial ports from the i386EX support relBM@A-driven serial communication at up

to 115,200 baud with RS-232 drivers. The i386EX also offers one synchronous serial port. An optional
UART SCC2691 and a dual UART SCC2692 can be added for an additional three asynchronous serial
ports with RS-232 or RS-485 drivers.

Three PC-compatible 16-bit programmable timers/counters can generate interrupts or count external
events, at a rate of up to 8 MHz, or can generate pulse outputs. Three 8-bit, multifunctional, user-
programmable I/O ports are included in the i386EX. Four external interrupts are buffered by Schmitt-
trigger inverters and provide active low inputs. A supervisor chip (LTC691) with a watchdog timer is on-
board.

Two PPI chips (82C55) provide 48 user-programmable I/O lines totally free for application use. The
optional SCC2692 UART provides 15 additional 1/O lines.

ThelD supports many optional ADC and DACs. Up to 22 channels of 12-bit ADC (LTC2543, 0-5V, 10
KHz), one 16-bit ADC (LTC1605, £10V, 100 KHz), and one 24-bit ADC (LTC2400, 0-5V, 5 Hz) can be

1-1

Chapter 1: Introduction i386-Drive

installed. Two 12-bit DACs (LTC1446, 0-4.095V, 10 KHz), one 100 KHz 12-bit DAC (LTC1450,
0-4.095V), and one 16-bit DAC (LTC1655, 0-4.095V, 10 KHz) are available.

Two quadrature decoders (HP2020) can interface to optical encoders for motion control. Schmitt-trigger
inverters are provided.

On-board expansion headers provide data lines, address lines, control signals, and pre-decoded chip select
lines.

By default, a 5V switching regulator (up to 35V DC input) is installed to reduce power consumption and
heat. The switching regulator introduces more noise than a linear regulator: a linear regulator can be
installed upon request.

In “power-off” mode, theD consumes very lowyA) power. Users can turn off the switching regulator
via software, and use the RTC or an external signal to turn it on.

A MemCard-A can be installed on tHe to provide an additional 33 12-bit ADC, 6 24-bit ADC, 420 MB
PCMCIA memory, and an Ethernet interface.

Figure 1.2 An i 386-Drive with a MemCard-A installed

1.2 Features

Standard Features:
* Dimensions: 4.7 x 4.5 x 0.6 inches
» Easyto program in C/C++
» Power consumption: 300/160/80/30 mA at 8.5/12/24/35V
* Power input: +8.5t0+35V
* Temperature range: -40°C to +80°C
e 32-bit CPU (Intel i386EX, 33 MHz), C/C++ programmable
e 24 multiplexed 1/0Os
e interrupts, DMA
e 512-byte serial EEPROM
e 48 bi-directional I/O lines from 2 PPIs
* Up to 3 MB SRAM/Flash supported

i386-Drive

Chapter 1: Introduction

* 2 asynchronous serial ports with RS-232 drivers, 1 synchronous serial port
e Supervisor chip (691) for power failure, reset and watchdog

Optional Featureg* surface-mounted components)
» 32KB, 128KB, or 512KB 8-bit SRAM*

+ 256KB or 1 MB 16-bit SRAM*

« 512KBor1l

MB 16-bit Flash*

e up to 22 channels of 12-hit ADC, sample rate up to 10 KHz*
e 16-hit ADC (LTC1605£10V, 100 KHz)*
e 24-hit ADC (LTC2400, 0-5V, 5 Hz)*

* 2 channels of 12-bit DAC, 0-4.095V output*
e 100 KHz 12-bit DAC (LTC1450, 0-4.095V)*
e 16-hit DAC (LTC1655, 0-4.095V, 10 KHz)*

« SCC2691 UART (on-board) supports 8-bit or 9-bit networking, with RS-232* or RS-485 drivers

e SCC2692 dual UART, with RS-232* or RS-485 drivers
e upto 2 quadrature decoders (HP2020)
* Real-time clock RTC72423%*, lithium coin battery*

1.3Physical D

escription

The physical layout of the i386-Drive is shown in Figure 1.3.

O friie | O
ool forace] fisee a5
T U014 U19 =)
og SCC2693 U PRI ass U0
H2 uo: °
oo |5 2327 uo4 u02
J7 ul4
ar O
B3 s U3 1
RTC 8-bit SRAM [U18 °
us UART | 3
ua . Ul ROM/ 16-bit SRAM [%
~ Flash
u17 °
iI386EX 8‘21 i(C 16-bit SRAM
Flash — HO
29Fx00 T —
66 MHz © j} o
J2 U2 u15 5| | g oy
S K1
ik wleE] L
UI7- u23 U4 (£
HP2020 uo6 A PPI
HP2020 uos ° = =
T U011 U010
uo7
O | P1
Figure 1.3 Physical layout of the i 386-Drive

Chapter 1: Introduction i386-Drive

1.4i1386-Drive Programming Overview

Development of application software for the i386-Drive consists of three easy steps, as shown in the block
diagram below.

STEP 1 Serial link PC and i386-Drive, program in C/C++
Debug C/C++ program on the i386-Drive with Remote Debugger

U

STEP 2 Testi386-Drive in the field, away from PC
Application program resides in the battery-backed SRAM

!

STEP 3 Make application ROM or Download to Flash
Replace DEBUG ROM, project is complete

You can program the i386-Drive from your PC via serial link with an RS232 interface. Your C/C++
program can be remotely debugged over the serial link at a rate of 115,000 baud. The C/C++ Evaluation
Kit (EV) or Development Kit (DV) from TERN provides a Borland C/C++ compiler, TASM, LOC31,
Turbo Remote Debugger, 1/O driver libraries, sample programs, and batch files. These kits also include a
DEBUG ROM (TDREM_i386EX}o communicate with Turbo Debugger, a PC-V25 cable to the connect
the controller to the PC, and a 9-volt wall transforn@e your Evaluation/Development Kit Technical
Manual for more information on these kits.

After you debug your program, you can test run the i386-Drive in the field, away from the PC, by
changing a single jumper, with the application program residing in the battery-backed SRAM. When the
field test is complete, applicatiorORis can be produced to replace the DEBUG ROM. The .HEX or .BIN
file can be easily generated with the makefile provided. You may also use the DV Kit or ACTF Kit to
download your application code to on-board Flash.

The three steps in the development of a C/C++ application program are explained in detail below.

i386-Drive Chapter 1: Introduction

1.4.1Step 1

STEP 1 Debugging
* Write your C/C++ application program in C/C++.
« Connect your controller to your PC via the PC-V25 serial link cable.

 Use the batch filen.bat to compile, link, and locate, or uddat to compile, link locate,
download, and debug your C/C++ application program.

RED edge of cable IDE10

connects to pin 1

of SERO H2) 71O Eimeiiiiiiiii] O
:: B
001 119
- <
@ scea692 PPI ., o
H2 U0l
e

DC

1
9%‘ power
16-bit |z jaCk

f‘: h
5 Al a U L]
U2 u2 |
HHT com1 | e
°

I
[nl
2 =
or COM2 FPEGE0 o
= Lo
eco (O H o

Wall transformer
+9V 500 mA
center negative

Figure 1.4 Step 1 connections for thei 386-Drive

1-5

Chapter 1: Introduction i386-Drive

1.4.2Step 2

STEP 2 Standalone Field Test.
* Set the jumper on J2 pins 38-40 on the i386-Drive (Figure 1.5).

* At power-on or reset, if J2 pin 38 (RI1) is low, the CPU will run the code that resides in the bjttery-
backed SRAM.

* Ifajumper is on J2 pins 38-40 at power-on or reset, the i386-Drive will operate in Step Two mpde. If
the jumper is off J2 pins 38-40 at power-on or reset, the i386-Drive will operate in Step One|mode.
The status of J2 pin 38 (signal RI1) of the Intel386EX is only checked at power-on or at reset.

3 O |‘| P2 | O
::
U014 u19 >
9 232/ 2
ﬁ SCC2693 U PPl uoe
H2 vo12 .
oo 232/ uo4 U2 _
. .
. [
Step 2 Jumper: _— monwm |, x
RTC 8-bit SRAM Tk
J2: pins 38=40 v 100 SRAV [
. pInS = as
u17 °
i i el 16-bit SRAM
(Note: Step2 jumper 3866 j Y g
should beoff for — —
H H J2 2
debugging in step 1) C'§ _ S |
o
u7
U0l S
uo7
O ke Lo

Figure 1.5 Location of Step 2 jumper on thei 386-Drive

1.4.3Step 3

STEP 3 Generate the application .BIN or .HEX file, make producti@M? or download your progranl
to FLASH via ACTF.

« If you are happy with your Step 2 test, you can go back to your PC to generate your applicatioh ROM
to replace the DEBUG ROMIDREM _i386EX. You need to changeEBUG=1to DEBUG=0in the
makefile.

You need to have the DV Kit to complete Step 3.

Please refer to the Tutorial of the Technical Manual of the EV/DV Kit for further details on programming
the i386-Drive.

i386-Drive Chapter 1: Introduction

1.5Minimum Requirements for i386-Drive System Development

1.5.1Minimum Hardware Requirements

* PC or PC-compatible computer with serial COMx port that supports 115,200 baud

» i386-Drive controller with DEBUG ROMDREM_i386EX

» PC-V25 serial cable (RS-232; DB9 connector for PC COM port and IDE 2x5 connector for controller)
* center negative wall transformer (+9V 500 mA)

1.5.2Minimum Software Requirements

« TERN EV/DV Kit installation diskettes
 PC software environment: DOS, Windows 3.1, Windows95, or Windows98

The C/C++ Evaluation Kit (EV) and C/C++ Development Kit (DV) are available from TERN. The EV
Kit is a limited-functionality version of the DV Kit. With the EV Kit, you can program and debug the
i386-Drive in Step Three and Step Two, but you cannot run Step Three. In order to generate an
application ROM/Flash file, make production versio®N&s, and complete a project, youllweed the
Development Kit (DV).

i386-Drive Chapter 2: Installation

Chapter 2: Installation

2.1 Software Installation

Please refer to the Technical manual for the “C/C++ Development Kit and Evaluation Kit for TERN
Embedded Microcontrollers” for information on installing software.

The README.TXT file on the TERN EV/DV disk ctains important information about the installation
and evaluation of TERN controllers.

2.2 Hardware Installation

Hardware installation for the i386-Drive consists primarily of connecting the microcontroller to your PC.

Overview

» Connect PC-V25 cable:
For debugging (STEP 1), place the 5x2 pin header on SERO (H2)
with red edge of cable at pin 1 of H2

» Connect wall transformer:
Connect 9V wall transformer to power and plug into power jack

2-1

Chapter 2: Installation 1386-Drive

2.2.1Connecting the i386-Drive to the PC

The following diagram (Figure 2.1) illustrates the connection between the i386-Drive and the PC. The
i386-Drive is linked to the PC via a serial cable (PC-V25).

The TDREM_i386EXDEBUG ROM communicates through SERO by default. Install the 5x2 IDE
connector on the SERO header (HAMPORTANT: Note that theed side of the cable must point to pin

1 of the H2 headefThe DB9 connector should be connected to one of your PC's COM Ports (COM1 or
COM2).

RED edge of cable
corresponds to pin
of SERO headeH2) A Zsfiiiiiiiiieiiiiiiiiiin] O

111
lni .
[l
16-bit T
u17’

16-bit
B
S :

— mmper
To CcOM1 shouldNOT Ely
: ! U2 2 &
000 _ or COM2]Pfr :j’leséalljllec:n — @
gging o

Figure 2.1 Connecting the i 386-Drive to the PC

2-2

i386-Drive Chapter 2: Installation

2.2.2Powering-on the i386-Drive

Connect a wall transformer +9V DC output to the DC power jack.

The on-board LED should blink twice and remain on after the i386-Drive is powered-on or reset, as
shown in Figure 2.2.

O EZEes | O
;
: SRR Radlu2
UoL 119 u
E . o SCC2692 U PPI . U20
:
2327 uo4 Uo2 .
S -
J3_J4 J5 U3 n
va| luz RO 1ebit -] DC power jack
u17”
i 16-bit
3866 N
12 u2) S o <j
o] w |3
vy <
< 2 U2 U2 (<
< _ 44| [165)
10 7
= -
1o
g O B Z Lo.
a N\ P
Red LED
-

27 wall transformer
+9V 500 mA
center negative

Figure 2.2 The LED blinks twice after thei 386-Drive is powered-on or reset

2-3

i386-Drive Chapter 3: Hardware

Chapter 3: Hardware

3.1Intel386EX Processor

The Intel386EX is based on the Intel386SX processor. This highly integrated device retains PC functions
that are useful in embedded applications and adds peripherals that are typically needed in embedded
systems. The Intel386EX has new peripherals and an on-chip system interface logic that can minimize
total system cost. The Intel386EX has two asynchronous serial ports, one synchronous serial port, 24 1/Os,
a watchdog timer, interrupt pins, three 16-bit tim@&sJA to and from seal ports, and enhanced chip-

select functionality. The i386-Drive provides a PC-compatible development platform optimized for
embedded applications.

3.2Intel386EX I/O Lines

The Intel386EX has 24 1/O lines in three 8-bit I/O ports: P1, P2, and P3. The 24 I/O pins on the
Intel386EX are multiplexed with peripheral pin functions, such as serial ports, timer outputs, and chip-
select lines. Each of these pins can be used as a user-programmable input or output signal if the normal
shared peripheral pin function is not needed. Any /O line can be configured to operate as a high-
impedance input, open-drain output, or complementary output.

After power-on or reset, the I/O pins default to various configurations. The initialization routine provided
by TERN libraries reconfigures some of these pins as needed for specific on-board usage as well. These
configurations, as well as the processor-internal peripheral usage configurations, are listed in Table 3.1.

PIO Peripheral Power-On/Reset i386-Drive Pin No. i386-Drive Initial
P10 DCDO# weak pullup J2 pin 14 Input with pullup
P11 RTSO# weak pullup J2 pin 27 Output

P12 DTRO# weak pullup J2 pin 18 Input with pullup
P13 DSRO# weak pullup J2 pin 20 Input with pullup
P14 RIO# weak pullup J2 pin 12 Input with pullup
P15 LOCK# weak pullup EE U5.5&ADC U10.16 1/O with pullup

P16 HOLD Input with pulldown J2 pin 11 Input with pulldown
P17 HLDA Output with pulldown J2 pin 13 Input with pulldown
P20 CSO# Output with pullup LT691 U6.13 8-bit SRAM select
P21 CS1# Output with pullup J2 pin 37 U15 Flash select
P22 CS2# Output with pullup J2 pin 5 SCC & RTC I/O select
P23 CS3# Output with pullup J2 pin 10 16-bit SRAM select
P24 CS4# Output with pullup J2 pin 3 16-bit ADC/DAC select
P25 RXDO Input with pulldown J2 pin 32 RXDO

P26 TXDO Output with pulldown J2 pin 34 TXDO

P27 CTSO# Input with pullup J2 pin 36 Input with pullup
P30 TOUTO Output with pulldown J2 pin 17 Input with pulldown
P31 TOUT1 Output with pulldown J2 pin 19 Input with pulldown
P32 INTO Input with pulldown J2 pin 21 Input with pulldown
P33 INT1 Input with pulldown J2 pin 23 Input with pulldown
P34 INT2 Input with pulldown J2 pin 24 Input with pulldown
P35 INT3 Input with pulldown J2 pin 29 Input with pulldown
P36 PWDOWN Input with pulldown J2 pin 30 Input with pulldown
P37 COMCLK Input with pulldown J2 pin 35 Input with pulldown

Table 3.1 I/O pin default configuration after power-on or reset

3-1

Chapter 3: Hardware

i386-Drive

The 24 PIO lines, P10-P17, P20-P27, and P30-P37 are configurable via 8-bit registers, PnDIR and

PnLTC. The value settings are listed as follows:

Pin Configuration Desired Pin State PDIR PnLTC
High-impedance input high impedance 1 1
Open-drain output 0 1 0
Complementary Output 1 0 1
Complementary Output 0 0 0

Table 3.2 Value settings for PIO lines

TERN libraries can be used to manipulate these IO pins for you.
and found in the header file.h can be used to initialize these PIO pins at run-time. Details

ie.lib

for these can be found in the Software chapter.

Some of the I/O lines are used by the i386-Drive system for on-board components (Table 3.3). We suggest
that you do not use these lines unless you are sure that you are not interfering with the operation of such

components (i.e., if the component is not installed).

Signal Pin Function

P21 =/CS1 | J2.37 16-bit Flash U15

P22=/CS2 | J2.5 8-hit 1/0 for U4 RTC, U8 SCC, PPIs, SCC2692, /HP1, /HP2

P23 =/CS3 | J2.10 16-bit SRAM U17+U18

P24 =/CS4 | J2.3 16-bit I/0 for high speed ADC/DAC

/CS5 (N/A) U10 74HC259 chip for internal signals TO to T7

RI1 J2.38 and P2.3 STEP 2 jumper

P15 U5.5 EEPROM SDA = U010 pin 16 ADC DOUT
Shared with U010 TLC2543 ADC and U5 24C04 EE data input
The ADC and EE data output can be tri-state, while disabled.

P20 =/CS0 | (N/A) U6.13 for SRAM chip select, base memory address 0x0000

P26 = TxD0O | J2.34 SERQO transmit for default debug ROM

P25 =RxD0O | J2.32 SERQO receive for default debug ROM

DSR1 J2.4 U011 TLC2543 ADC DOUT or U08 HCTL2020 U/D to i386EX
They cannot be used at the same time.

DCD1 J2.1 U06 HCTL2020 U/D to i386EX

P30 J2.17 Timer0 out as HCTL2020 clock

/INT4 J2.33 U14 16-bit ADC LTC1605 Busy

/INT5 J2.8 U8 SCC2691 UART interrupt

/INT6 J2.6 U04 SCC2692 DUAL UART interrupt

Table 3.3 Functions of

reserved /O lines on the i 386-Drive

At reset, the internal PC/AT-compatible peripherals are mappedD@®® 1/0O space, of which only

1 Kbyte is used. The DEBUG ROM arid_init()

associated with the integrated peripherals are mapped in the address range of 0f000 to Of8ffh.

There are four additional external interrupt lines (/INT4, /INT5, /INT6, /INT7) which are not shared with
PIO pins. These active-low-only lines are all buffered by Schmitt-triggers. For further details regarding

these external interrupt pins, refer to the External Interrupt section below (3.3).

3-2

C functions provided in the library

enables Expanded I/O space. The registers

i386-Drive Chapter 3: Hardware

The specifications for these 1/O pins state that they can sink up to 8 mA.

If you need further details regarding the Input/Output Ports, please refer to Chapter 16 of the Intel386EX
Embedded Microprocessor User’s Manual.

3.3External Interrupts and Schmitt-Trigger Input Buffer

There are 10 external interrupt inputs that the user can adapt for his/her own use.

The master interrupt controller 82C59A supports six ACTIVE HIGH pins on the hé2ader

INTO = P32 = J2.21, vector=0x41

INT1 = P33 = J2.23, vector=0x45

INT2 = P34 = J2.24, vector=0x46

INT3 = P35 = J2.29, vector=0x47, IR7 share with Spurious Interrupts
INT8 = P31 = J2.19, vector=0x43 share with SIO1

INT9 = P30 = J2.17, vector=0x44 share with SIO0

The slave interrupt controller 82C59A has six pins, ACTIVE LOW at J2 header:

/INT4 = J2.33, vector=0x48
/INT5 = J2.8, vector=0x49
/INT6 = J2.6, vector=0x4c
/INT7 = J2.15, vector=0x4e

The WDTOUT (Watchdog Timer) interrupt uses vector=0x4f, and the NMI (Non-Maskable Interrupt) at
pin J2.7 uses vector=0x2. The NMI interrupt can not be disabled by software, and is raised on a rising
edge. /INT5, J2 pin 8, is used by the on-board optional SCC2691 UART if installed. /INT6, J2 pin 6, is
used by the on-board optional SCC2692 Dual UART if installed.

You must provide a low-to-high (rising) edge to generate an interrupt for the ACTIVE HIGH interrupt
inputs and a high-to-low (falling) edge to generate an interrupt for the ACTIVE LOW interrupt inputs.

A spurious interrupt is defined as an interrupt that is "Not Valid." A spurious interrupt on any IR line
generates the same vector number as an IR7 request. The spurious interrupt, however, does not set the in-
service bit for IR7. Therefore, an IR7 interrupt service routine must check the interrupt service routine
register to determine if the interrupt source is either a valid IR7 (the in-service bit is set) or a spurious
interrupt (the in-service bit is cleared).

Four external interrupt inputs, /INT4-7, are buffered by Schmitt-trigger inverters (U7) in order to increase
noise immunity and transform slowly-changing input signals to fast-changing and jitter-free signals.

3-3

Chapter 3: Hardware i386-Drive

/INT4=J2.33 INT4 =U2.93
u7D O

/INT5=J2.8 INT5 =U2.94
u7C O

/INT6=J2.6 INT6 =U2.95
ur7 O

- INT7 =U2.96

/INT7=J2.1

U7A o—5

Figure 3.1 External int errupt inputs

The i386-Drive uses vector interrupt functions to response to external interrupts. Please refer to the
Intel386EX User’'s Manual for detailed information about interrupt vectors, and to the Software chapter of
this manual (Chapter 4) on how to associate these interrupt vectors with your own interrupt service
routine.

3.4 Timer Control Unit

The timer/counter unit has three 16-bit programmable counters: timer0, timerl, and timer2. They can be
driven by a pre-scaled value of the processor clock or by external timers. The counters support six
different operating modes. Only mode2 and mode3 are periodic modes, in which the counters are reloaded
with the user-selected count value when they reach terminal count. For details regarding the modes in
which the timers operate, please refer to Chapter 10 of the Intel386EX manual.

The timers provided can be used in several applications. They can be used to act as counters, generate
interrupts, and to output repeating pulses with user-specified widths.

Timers can generate pulse outputs at the J1/J2 headers:

Timer 0 output=TOUT0=P30=J2 pin 17 (Use for U06/U08 HCTL2020(s), if installed)
Timer 1 output=TOUT1=P31=J2 pin 19
Timer 2 output=TOUT2=J1 pin 4

Timers can use internal or external clock as clock inputs.

To count external events, the timer clock inputs are routed to the J2 headers:

Timer O clock in=/INT4=J2 pin 33
Timer 1 clock in=/INT6=J2 pin 6
Timer 2 clock in=TCLK2=J2 pin 9

These timers can be used to count or time external events.
To use the timers to generate interrupts, a few different options are available. Timer 1 has its output

signal,OUT1, connected to IR2 of the slave 82C59. The Timer 2 oufpui 2, is connected to IR3 of
the slave 82C59. The Timer 0 outpOtJTO, is connected to IR0 of the master 82C59.

The maximum external pulses input rate is 8.25 MHz. Please see the sample phograen and
counterO.c in c:\tern\386\samples\ie for details regarding the timers, counters, and their
applications.

3-4

i386-Drive Chapter 3: Hardware

3.5Clock

With an on-board 66 MHz oscillator, the i386-Drive operates at 33 MHz system processor clock speed.
The 66 MHz clock signal is routed to a 4-pin header H1 pin 1, next to the oscillator. The processor clock
is used by serial ports and timers. The default SERCLK for serial ports is 16.5 MHz, and the default pre-
scaled PSCLK for the timers is 16.5 MHz. The maximum timer output is 8.25 MHz. For details regarding
how to change the PSCLK pre-scale register, see the sample pragn@ms andcounterO.c in
c:\tern\386\samples\ie

3.6 Serial Ports

The i386-Drive can provide up to five asynchronous serial channels. Two are Intel386EX-internal: SERQO,
SER1. One external UART SCC2691 can be installed underneath the ROM. One optional dual UART
SCC2692 can be installed. All of the UARTSs can operate in full-duplex communication mode. SERO and
SER1 use DMA for receiving and for interrupt-driven traits The UART SCC2691 and Dual UART
SCC2692 are interrupt-driven for both transmitting ardeiving. For more infonation about the
external SCC2691/2 UARTS, refer to Appendix C and the datasheets from the IC manufacturer (Philips
Semiconductor, Sunnyvale, California, tel. 408-991-3737).

With the DEBUG ROM TDREM_i386EX installed, the internal serial port SERO is used by the
i386-Drive for DEBUG programming with the PC. It uses 115,000 Baud rate, as default, for
programming. SERO and SER1 can both be used in applications: the user can use SERO to debug an
application program for SER1, and then convert the SER1 code to SERO, since they are identical. The
application programs can be combined and downloaded via SERO in STEP1, and then run in STEP2.
Application programs can use both SERO and SER1 at the same time, but it cannot be debugged over
SERO at the same time.

Complete interrupt/DMA-driven software serial port drivers are included in the EV/DV Kit. Please refer
to Chapter 4 (Software) for more details regarding the implementation of the serial port drivers, as well as
their application.

3.7Power-Save-Mode

The i386-Drive can serve as a high-performance processor module for applications that require low power
consumption. The power-save mode of the Intel386EX processor reduces power consumption and heat
dissipation, thereby extending battery life in portable systems. In power-save mode, operation of the CPU
and internal peripherals continues at a slower clock rate. When an interrupt occurs, it automatically

returns to its normal operating rate.

The RTC72423 on the i386-Drive has a VOFF signal routed to J1 pin 9 and HO. The VOFF is controlled
by the battery-backed RTC72423. It will be in tri-state for the external power-off and become active-low at
the programmed time interrupt. The user may use/tbEF line to control an external switching power
supply that turns the power supply on/off.

See the sample progrgmweroff.c in thec:\tern\386\samples\ie directory.

3.8Memory Map for RAM/ROM

The Intel386EX supports a memory space of up to 64 MB with 26 address lines (A0-A25).

At power-on, the i386EX operates in Real-mode, which offers only 1 MB of memory space using
segmentation. The DEBUG ROM operates in Real-mode as well, and does not use A20-A25.

3-5

Chapter 3: Hardware i386-Drive

The lower memory chip select /CS0 is mapped into memory space of 0x00000fffo GXids is used for
up to 512K of 8-bit SRAM, Ul. The default wait state on the RAM is set to 3 cycles, but can be shortened
if desired.

The upper memory chip select /UCS is mapped into memory space of 0x800€ftarikis used for up

to 512K of 8-bit ROM, U3. The U3 ROM socket supports both 8-bit ROM and 8-bit Flash chips. The
default wait state for this component is two cycles, to allow use with ROM components with speeds of up
to 120 ns. The preferred ROM speed is 70 ns, and if your environment is relatively noise free you can
reduce the wait state to one cycle using this component.

For details regarding how these components are initializeid _iimit() with these specifications,
please refer to the chapter on Software in the i386-Engine technical manual.

In certain applications, you might also choose to re-map the memory address space differently to other
chip select lines. An optional 16-bit FLASH (29F400, U15) can be installed. The default setting uses
P21=/CS1 as chip select. See the sample progtaie in thec:\tern\386\samples\id directory.

Two optional 8-bit SRAM chips can be installed in U17 and U18 to form up to 1MB 16-bit SRAM for the
i386EX, using P23=/CS3 as chip select.

See the sample fiid_ram.cin thec:\tern\386\samples\id directory.

During development, your code and data segments will be mapped to specific locations within this
memory space. Details regarding how this is done during product development can be found in the
Technical Manual of the C/C++ EV/DV Software Kit.

3.91/0 Mapped Devices

3.9.11/0 Space

External 1/0O devices can use 1/O mapping for access. You can access such I/O devicgsotitfport)
or outportb(port,dat). These functions will transfer one byte of data to the specified 1/0 address.

The external 1/0 space size is 64KB, ranging from 0x0000 ff.0x

The default 1/0O access time is 15 wait states. You may modify the wait states by re-programming the
Chip-select Low Address register from 0-15 cycles. The system clock speed is 33 MHz. Details regarding
this can be found in the Software chapter, and in the Intel386EX Embedded Microprocessor User’'s
Manual. Slower components, such as most LCD interfaces, might find the maximum programmable wait
state of 15 cycles still insufficient.

For details regarding the chip select unit, please see Chapter 14 of the Intel386EX Embedded
Microprocessor User’'s Manual.

The table below shows more information about I/O mapping:

I/O space Select Signal Location Usage

0x8000-0x80ff /CS6 J1 pin 19 = /CS6 User or MemCard-A
0xa000-0xa001 /CS2 J2 pin 5 = P22 Select U0O6 HP2020-1
0xa002-0xa003 /CS2 J2 pin 5 = P22 Select U0O8 HP2020-2
0xa004-0xa005 /CS2 J2 pin 5 = P22 RST1 for U06 HP2020-1
0xa006-0xa007 /CS2 J2 pin 5 = P22 RST2 for U06 HP2020-2
0xa080-0xa08f /CS2 J2 pin 5 = P22 /LD for DAC UQ9 LTC1450
0xa090-0xa09f /CS2 J2 pin 5 = P22 UART, SCC2691
Oxa0a0-0xaOaf /CS2 J2 pin 5 = P22 RTC 72423
0xa0b0-0xa0bf /CS2 J2 pin 5 = P22 /S1 for PPI1

3-6

i386-Drive Chapter 3: Hardware

I/O space Select Signal Location Usage

0xa0c0-0xaOcf /CS2 J2 pin 5 = P22 /S2 for PPI2
0xa0e0-0xaOef /CS2 J2 pin 5 = P22 /1S4 for SCC2692
0xa0f0-0xaO0ff /CS2 J2 pin 5 = P22 /CLR for DAC U09 LTC1450
0xb000-0xbOff /CS5 None (J9-74HC259) Internal Usage (TO-T7)

Not mapped /CSO N/A SRAM

0x???7? /CS1 J2 pin 37 = P21 16-hit Flash U15

0x???7? /CS3 J2 pin 10 = P23 16-bit SRAM, U17 and U18
0xc000 /CS4 J2 pin 3=P24 Read/write 16-bit ADC/DAC

A total of eight pre-decoded chip-select lines are available on the ID. These include the UCS (upper chip
select), and signals CS0-6. The upper chip select is dedicatambfap ROM use.

The pre-decoded chip select lines listed in the table above can be used fatiapplit the on-board
optional corresponding device is not installed.

To use one of the chip select lines, you must map the appropriate line to a free base I/O address. After
configuring the PIO pin appropriately for this peripheral function (normal-mode operation), you can
directly outport to that address with appropriate data. The address bus and data bus should then be
connected to your 1/0O component if needed.

To illustrate how to interface the i386-Drive with external /O boards, a simple decoding circuit for
interfacing to an external 82C55 I/O chip is shown in Figure 3.2.

74HC138 82C55
RST
A4 1 vo| 15 SEL8080 P00-P0O7
A5 2 g Y1| 14 /SEL8090 AO/BLE |
A6 3. v2| 13 /SEL80AD Al
Y3| 12 [SELBOBO| /sEL8090] /cs P10-P17
- G2A Y5| 10 /SEL80ODO MWR | WR
54 G2B Y6| 9 /SELBOEO RD
A7 6| Gl Y77z /SEL8OFO RD 020.p27
DO-D7 |

Figure 3.2 Interf ace i386-Drive to external 1/O devices

The functionie_init() by default initializes the /CS6 line at base 1/0 address starting at 0x8000. You
can read from the 82C55 withportb(0x8090)or write to the 82C55 witloutportb(0x8090,dat). The

call to inportb will activate /CS6, as well as putting the address 0x8090 over the address bus. The
decoder will select the 82C55 based on address lines A4-6, and the data bus will be used to read the
appropriate data from the off-board component.

3.9.2Programmable Peripheral Interface (82C55A)

U02 and UO1 PPIs (82C55, or uPD81055L) are low-power CMOS aumogable parallel interface units
for use in microcomputer systems. They each provide 24 1/O pins that may be individually programmed
in two groups of 12 and used in three major modes of operation.

In MODE 0, the two groups of 12 pins can be pamgmed in sets of 4 and 8 pins to be inputs or outputs.
In MODE 1, each of the two groups of 12 pins can be progred to have 8 lines of input or output. Of
the 4 remaining pins, 3 are used for handshaking and interrupt control siff@IBE 2 is a strobed bi-
directional bus configuration.

3-7

Chapter 3: Hardware i386-Drive

C T [[T T T T 1
I—J GROUP 1

Port 2 0 Output
(Lower)

1 Input

Port 1 0 Output

1 Input

Mode 0 Mode O

1 Mode 1

GROUP 2

Port 2 0 Output
(Upper)

1 Input

Port O 0 Output

1 Input

Mode 00 Mode O

01 Mode 1

1X Mode 2

Command 0 Bit

Select manipulation

1 Mode

Select

Figure 3.3 Mode Select Co mmand Word

The i386-Drive maps UO1, the PPI1 82C55/uPD71055, at base I/0O address PP11=0xa0b0.
The i386-Drive maps U02, the PPI2 82C55/uPD71055, at base I/O address PP12=0xa0c0.
Use PPI1 as example, all ports/registers are offsets of this I/O base address.

The Command Register = PPI1+3; Port 0 = PPI1; Port 1 = PPI1+1; and Port 2 = PPI1+2.

The following code example will set all ports to output mode:

outportb(PPI1+3,0x80);/* Mode 0 all output selection. */

outportb(PPI1+0,0x55);/* Sets port 0 to alternating high/low 1/O pins. */
outportb(PPI1+1,0x55);/* Sets port 1 to alternating high/low 1/O pins. */
outportb(PPI1+2,0x55);/* Sets port 2 to alternating high/low 1/O pins. */

To set all ports to input mode:
outportb(PPI11+3,0x9f); /* Mode 0 all input selection. */

You can read the ports with:

inportb(PPI11+0); /* Port O */
inportb(PPI11+1); /* Port 1 */
inportb(PPI11+2); /* Port 2 */

This returns an 8-bit value for each port, with each bit corresponding to the appropriate line on the port.

There are a total of 48 TTL level 1/O pins are free to use for your applications. These I/O lines are
specified as 4 mA driving current capability.

See schematics for PPI connection headers of P1 and P2.

3-8

i386-Drive Chapter 3: Hardware

3.9.3Real-time Clock RTC72423

If installed, a real-time clock RTC72423KREON, U4) is mapped in the I/O address space 0xa0a0. It must
be backed up with a lithium coin battery. The RTC maydmessed via software driver_init() or
rtc_rd(); (see Chapter 4, Software, for details).

3.9.4UART SCC2691

The UART SCC2691 (Signetics, U8) is mapped into the 1/O address spfa@®860 The SCC2691 has a
full-duplex asynchronouseceiver/transiitter, a quadruple bufferedceaeiver @ta register, an interrupt
control mechanism, programmable data format, selectable baud rate facéner and tramsitter, a
multi-functional and programmable 16-bit counter/timer, an on-chip crystal oscillator, and a multi-
purpose input/output including RTS and CTS mechanism. The MPO is routed to J1 pin 3.

For more detailed information, refer to the Appendix B. The SCC2691 on the i386-Drive may be used as a
network 9-bit UART (for the TERNT-Kit).

The RxD (J1 pin 5), TxD (J1 pin 7), and MPO (J1 pin 3) are TTL-level signals. You may choose to have
RS-232 (U19) or RS-485 (U20) drivers installed on thédard. The RS-232/485 signal is routed to H4.

3.9.5UART SCC2692

The UART SCC2692 (Signetics, U04) is a 44-pin PLCC chip mapped into the I/O address space at
0Oxa0e0 The SCC2692 includes two independent full-duplex asynchronecsiver/transitters, a
quadruple buffered receiveath register, an interrupt control mechanism, programmable data format,
selectable baud rate for the receiver and trabsr, a multi-functional and programmable 16-bit
counter/timer, an on-chip crystal oscillator, and a multi-purpose input/output including RTS and CTS
mechanism.

A 3.6864 MHz external crystal can be installed on the ID, as the default crystal for the dual UART.

For more detailed information, refer to the SCC2692 data sheets (Signetics, tel. 408-991-3737).

Either RS-232 (default) or RS-485 drivers are supported for the Dual UART. The RS-232/485 signals for
channel A are routed to the H1 header. The RS-232/485 signals for channel B are routed to the H5 header.

3.100ther Devices

A number of other devices are also available on the i386-Drive. Some of these are optional, and might not
be installed on the particular controller you are using. For a discussion regarding the software interface
for these components, please see the Software chapter.

3.10.10n-board Supervisor with Watchdog Timer

The MAX691/LTC691 (U6) is a supervisor chip. With it installed, the i386-Drive has several functions:
watchdog timer, battery backup, power-on-reset delay, power-supply monitoring, and power-failure
warning. These will significantly improve the system reliability.

3-9

Chapter 3: Hardware i386-Drive

Watchdog Timer
J9 = Watchdog

timer enable
1 O Rriiee Wi O

(2
U014 “Ulg 3

g scc26ed U PPI Z! o

H2 vo12)

E uo4 uo2
u16 uo13 37 ul4

o
J3 J4 J5
RTC
ua

Intel386EX

u1g
16-bit SRAM_ [T
u17 *
16-bit SRAM =
Ho 2

2l e
>

X5

J2 u2

O
b

U7

HP2020 U6

HP2020 o8 - 3 3
I N
Uo7

O hm o]

Figure 3.4 Location of watchdog ti mer enable jumper

The watchdog timer is activated by setting a jumper on J9 of the i386-Drive. The watchdog timer provides
a means of verifying proper software execution. In the user's application program, calls to the function
hitwd () (a routine that toggles the T6=HWD pin of the 691) should be arranged so that the HWD pin is
accessed at least once every 1.6 seconds. If the J9 jumper is on and the HWD pin is not accessed within
this time-out period, the watchdog timer pulls the WDO pin low, which asserts /RESET. This automatic
assertion of /RESET may recover the application program if something is wrong. After the i386-Drive is
reset, the WDO remains low until a transition occurs at the WDI pin of 691. When controllers are shipped
from the factory the J9 jumper is off, which disables the watchdog timer.

The Intel386EX has an internal watchdog timer. This is disabled by defaulewittit().

Power-failure Warning and Battery Backup

When the on-board supervisor chip 691 senses power failure, it will reset the board if the VCC is less than
4.5V. The battery-switchover circuit compares VCC to VBAT (+3 V lithium battery positive pin), and
connects whichever is higher to the VRAM (power for SRAM and RTC). Thus, the SRAM and the real-
time clock RTC72423 are backed up. In normal use, the lithium battery should last about 3-5 years
without the external power being supplied. When the external power is on, the battery-switch-over circuit
will select the VCC to connect to the VRAM.

3.10.2EEPROM

A serial EEPROM of 128 bytes (24C01), 512 bytes (24C04), or 2 Kbytes (24C16) can be installed in U5

(512-byte 24C04 is default). The i386-Drive uses the T7=SCL (serial clock) an&PASseial data)

to interface with the EEPROM. The EEPROM can be used to store important data, such as a node
address, calibration coefficients, and configuration codes. It has typically 1,000,000 erase/write cycles.
The data retention is more than 40 years. The EEPROM can be read and written to by simply calling
functionsee_rd) andee_wi).

A range of lower addresses in the EEPROM is reserved for TERN use. Details regarding which addresses
are reserved, and for what purpose, can be found in Appendix D of this manual.

3-10

i386-Drive Chapter 3: Hardware

3.10.312-bit ADC, TLC2543

Up to two 12-bit ADC surface-mount chips (TLC2543, TI) can be installed (U101, U011). The TLC2543
is a 12-bit, switched-capacitor, caessive-approximation, 11-channel, serial interface, analog-to-digital
converter. Four TTL I/O lines are required to handle the ADC: /CS (chip select=T2 or T5); SCK (clock to
the chip=TO0); DIN (serial command data to the chip=T1); and D12 (12-bit serial data output from the
chip=P15 for U010, and DSR1 for U011). If the chip select line is low, the TLC2543 will have output on
D12. If the chip select line is high, the TLC2543 is disabled and D12 is in high-impedance state. The
serial &cess allows a conversion rate of up to approximately 10 KHz for a 33 MHz i386-Drive.

A reference voltage of VCC (+5V) can be provided to the 12-bit AKE+ via P1 pin 59=pin 60. An
external precision 2.5V-5.0V reference can be connected ®ERe pin via P1 pin 59.

The CLK signal to the ADC is toggled through an I/O pin, and the sexiaka allows a conversion rate
of up to approximately 10 KHz.

Analog signal inputs are routed at the P1 37-58. A total of 22 channels of 12-bit ADC inputs are all
routed to P1.

See the sample prograch ad12.c in the c:\tern\386\samples\id directory.

3.10.424-bit ADC, LTC2400

A single-channel 24-bit ADC surface-mount chip (LTC2400, Linear Technology) can be installed on the
ID U21. The LTC2400 is a 24-bit analog-to-digital converter with an integrated oscillator. It uses delta-
sigma technology, providing a typical conversion time of 160 ms. Based on the LTC2400 data sheets, it
can provide 24-bit ADC data, with 4 ppm full-scale error with no missing codes.

A FO signal is at P2 pin 57 to configure the LTC2400 for better than 110 dB noise rejection at 50 Hz
(FO=GND, P2.57=P2.59) or at 60 Hz (FO=VCC, P2.57-P2.58). The 24-bit ADC REFA pin, U21 pin 2, is
not connected. User may connect REFA=U21 pin 2 to the 5V at U21 pinl. The 24-bit ADC can also use
an on-board external reference of 2.5V from DAC LT1450 UQ9 pin 19, or the 16-bit ADC LTC1605,
Ul4.4. The 24-bit ADC communicates with i386EX via a 3-wire digital interface. Three TTL lines are
required to drive a LTC2400: SCK=T6 (clock to the chip), /CS (chip select=T1), and D24=P35 (24-bit
serial data output from the chip). If the chip select line (T1) is high, the TLC2400 is disabled, and
D24=P35 line is in high-impedance state.

See sample programitern\386\samples\id\id_ad24.c

3.10.5100 KHz 16-bit ADC, LTC1605

The LTC1605 (U14) is a 100 ksps, sampling 16-bit A/D converter that draws only 55 mW from a single
5V supply. This device includes sample-and-hold, precision reference, switched capaciéssise
approximation A/D and trimmed internal clock.

The LTC1605 has an industry standad0V input range. Maximum DC specs inclut#2.0 LSB INL
and 16-bit no missing codes over temperature. An external reference can be used if greater accuracy is
needed.

The ADC has a microprocessor compatible, 16-bit or two-byte parallel output port. The ID uses T6 to
control the ADC’s R/C pin and directly interface the full 16-bit data bus for maximum data transfer rate.

The LTC1605 requires 8 pus AD conversion time. The busy signal has an 8 us low period indicating the
conversion in process.

In order to get the 100 KHz sample rate, The ID can not use interrupt operation to acquire data. A polling
method is demonstrated in the sample progichrad16.clocated in thee:\tern\386\samples\id
directory.

3-11

Chapter 3: Hardware i386-Drive

3.10.6Dual 12-bit DAC, LTC1446

The LTC1446 is a dual 12-bit digital-to-analog converter (DAC) in an SO-8 package. It is complete with
a rail-to-rail voltage output amplifier, an internal reference and a 3-wire serial interface. The LTC1446
outputs a full-scale of 4.096V, making 1 LSB equal to 1 mV.

The buffered outputs can source or sink 5 mA. The outputs swing to within a few millivolts of supply rail
when unloaded. They have an equivalent output resistancefwden driving a load to the rails. The
buffer amplifiers can drive 1000 pf without going into oscillation.

The DAC is installed in U23 on the i386-Drive. The outputs are routed to heagens 61 and 62 for
channels A and B. The DAC uses TO as CLK, T1 as DI, and T4 as LD/CS. Please contact Linear
Technology (tel. 408-432-1900) for LT1446 technical data sheets.

See the sample program da.cin thec:\tern\386\samples\ie directory.

3.10.7Parallel 12-bit DAC, LTC1450

The LTC1450 (UQ9) is a 12-bit parallel DAC with an internal reference. It has a voltage output of
0-4.095V at 12-bit resolution. The ID can write a full 12-bit data into the LTC1450 in a single 1/O
instruction. The typical voltage output slew rate is usy/and the typical voltage output settling time is

14 us. Please contact Linear Technology (tel. 408-432-1900) for LT1450 technical data sheets.

See the sample prograth dal2.cin thec:\tern\386\samples\id directory.

3.10.816-bit DAC, LTC1655

The LTC1655 is a single 16-bit digital-to-analog converter (DAC) in an SO-8 package. It is complete
with a rail-to-rail voltage output amplifier, an 2.048V internal reference and a 3-wire serial interface. The
LTC1655 outputs a full-scale of 4.096V, making 1 LSB equal to 1/16 mV.

The buffered outputs can source or sink 5 mA. The outputs swing to within a few millivolts of supply rail
when unloaded. They have an equivalent output resistanceQowii@n driving a load to the rails. The
buffer amplifiers can drive 1000 pf without going into oscillation.

The 16-bit DAC is installed in U24 on the i386-Drive. The outputs are routed to Hehgars 63=V3.
The DAC uses TO as CLK, T1 as DI, and T3 as LD/CS. Please contact Linear Technology (tel. 408-432-
1900) for LT1655 technical data sheets.

See the sample prograth dal6.cin thec:\tern\386\samples\id directory.

3.10.9HCTL2020

Two quadrature decoder/counter interface chips, (HCTL2020, Hewlett Packard, U0O8 and U06) can be
installed on the ID. The quadrature decoder is used to interface incremental motion encoders with the
microprocessor system or to improve system performance for digital closed-loop motion control systems.
The HCTL2020 includes a quadrature decoder, a 16-bit counter, and an 8-bit bus interface. It features full
4x decoding, up to 14 MHz clock operation, high noise immunity due to the use of Schmitt-trigger inputs
and digital noise filters, quadrature decoder output signals, up/down signal, count signals, and cascade
output signal. Many types of optical incremental encoder modules, such as the HEDS-9000, HEDS-9100,
and HEDS-9200 from HP, can be directly interfaced to the HCTL2020.

Channel A and B signals buffered with Schmitt trigger inputs (U07, 74HC14, CHA1/2, CHB1/2) are
routed at pin 5, 6, 9, and 10 on headers P1. The HCTL2020 has built-in filters, which allow reliable
operation in noisy environments.

3-12

i386-Drive Chapter 3: Hardware

Two software functions (found in:\tern\386\samples\id\id_hp.c
the quadrature decoders:

unsigned inpd_hp_rdchar ch);

void pd_hp_resdthar ch);

) are available to operate

3.11Headers and Connectors

3.11.1Expansion Headers J1 and J2

Two 20x2, 0.1 spacing headers are installed on the i386-Drive for expansion. Most signals are directly
routed to the Intel386EX processor. These signals are 5V only, and any out-of-range voltages will most
likely damage the board.

FALON “H %[y O
I SCé269 UGA PP ‘ v
e 0 2 |
E al 1 an
[=
Intel386EX| | 52 |1 TE o 5
J2 o e ot
pin 1 J2 u2 . el Ui E _
"o B Lo,
Figure 3.5 Pin 1 locations for J1 and J2
J1 Signal J2 Signal
VCC 1 2 GND GND 40 39 VCC
MPO 3 4 TOUT2 RI1 38 37 P21
RxD 5 6 GND P27 36 35 P37
XD 7 8 DO TxDO 34 33 /INT4
VOFF 9 10 D1 RxDO 32 31 /IRTS1
BHE 11 12 D2 P36 30 29 P35
D15 13 14 D3 TxD1 28 27 P11
/IRST 15 16 D4 RxD1 26 25 DTR1
RST 17 18 D5 P34 24 23 P33
/CS6 19 20 D6 /CTS1 22 21 P32
D14 21 22 D7 P13 20 19 P31
D13 23 24 GND P12 18 17 P30
M/NIO 25 26 A7 RW 16 15 /INT7
D12 27 28 A6 P10 14 13 P17
/WR 29 30 A5 P14 12 11 P16
/RD 31 32 A4 P23 10 9 TCLK2
D11 33 34 A3 /INT5 8 7 NMI
D10 35 36 A2 /INT6 6 5 P22
D9 37 38 Al DSR1 4 3 P24
D8 39 40 BLE GND 2 1 DCD1

Table 3.4 J1 and J2, 20x2 expans ion ports

3-13

Chapter 3: Hardware i386-Drive

Signal definitions for J1:

VCC +5V power supply

GND Ground

TOUT2 Intel386EX pin 91, timer2 output, 8.25 MHz maximum
RxD data eceive of UART £C2691, U8

TxD data transmit of UART SCC2691, U8

MPO Multi-Purpose Output of SCC2691, U8

MPI Multi-Purpose Input of SCC2691, U8

VOFF realtime clock output of RTC72423 U4, open collector
DO-D15 Intel386EX 16-bit external data lines
Al-A7 Intel386EX lower address lines

IRST reset signal, active low

RST reset signal, active high

/CS6 /CSB6, Intel386EX pin 2, ie_init(); set it up as I/O chip select lin¢ at
address 0x8000

M/IO Intel386EX pin 27, high for memory, low for 1/0O operation

BHE Intel386EX pin 39, high byte enable

/WR Intel386EX pin 35, active low when write operation

/RD Intel386EX pin 34, active low when read operation

Signal definitions for J2:

VCC +5V power supply, < 300 mA
GND ground
Pxx Intel386EX PIO pins
R/W inverted from Intel386EX pin 30, W/R
TxDO Intel386EX pin 131, transmit data of serial channel 0
RxDO Intel386EX pin 129,aceive dta of serial channel O
TxD1 Intel386EX pin 112, transmit data of serial channel 1
RxD1 Intel386EX pin 118,aceive dta of serial channel 1
P27=/CTS0O Intel386EX pin 132, Clear-to-Send signal for SERO
/CTS1 Intel386EX pin 113, Clear-to-Send signal for SER1
P11=/RTSO Intel386EX pin 102, Request-to-Send signal for SERO
/RTS1 Intel386EX pin 110, Request-to-Send signal for SER1
/INT4-7 Schmitt-trigger buffered active low interrupt inputs
P32-35=INT0-3 active high interrupt inputs
TCLK2 timer2 clock input
NMI Non-mask interrupt
DSR1, DCD1, Serial port 1 handshake lines

RI1, DTR1
RI1 J2 pin 38 Used as Step Two jumper

3-14

i386-Drive Chapter 3: Hardware

3.11.2Expansion Headers P1 and P2

Two 32x2 pin headers, P1, and P2, provide signals for the ADCs, DACs, PPI, and quadrature decoders, as
shown in Figure 3.6.

0 ok T N © Q Q Si:) 8 c%
ZU)LO Ao+ < ©a o © < N O N © W I~ - M W N~ a a
Sy 56FIE58 Wuuu HUDUSEEEERSSSR
® e e o o o o o o o o o o o o o oo oo oo © oo oo o©o o ©o ©o oo ©o o o o o
P2 [) [] L] [] [] [] [] [] [] []
A < N < ~ MO n o N O T N M A A M d % OO NS © — O N AN
ZEZ'_ D_D_&&&D_D_ HHHHZNNNNZOOOODLLZZZ
Owo wuwuuwguwunuuwsooww s 5506
P2 ftace] [iees Fhacsl Ee
pinl |, U
33 3 35 Sl 4
[o ool [¢ ofe] [o—=]e] — & E
* u18 °
jg ;g SSR?AAMMS%/&%SKB’ E H7 1-2* 16-bit SRAM 128K x2,
J4 1-2* ROM/FLASH 256/512KB, WI H7 2-3 16-bit SRAM 512K x2
J4 2-3 32/64/128KB Intel386EX 1651 SRAM |5 default trace on-board
J5 1-2 512KB ROM, others 2-3* —r
* default trace on-board 2 ’°_
KL us| Ll
o1 e | ®
vor 2543] 2543]
pin 1 [P E
) pw — m o~ < +
@) < O m @) LL @)
Z I0I83IYS8LINSNIY=22088385328880 =2
] O >0 0o mmmMmMmMMOCddECEECECECEICE X >0
e e e o o o o o o o o oo o o o o o o e o o e e o o o o o e o o o
Pl |T| ®e e e o o o o o o o o o o o o o o e o o e e o o o o o e e o o
—mNONI\LOO')HI\LOHO')HO')LOI\QONQ‘(OUDCDONQ‘(DG)OJH(')
2310223880808 388888582%588°>°>°
20 O T I I II
Figure 3.6 Signals on head ers P1 and P2; SRAM and ROM /Flash selection headers
3.11.3Jumpers and Headers
The jumpers and connectors on the i386-Drive are listed below.
Name | Size | Function Possible Configuration
J1 20x2| main expansion port (same as the i386-Engine and i386-Engine-P)
J2 20x2| main expansion port (same as the i386-Engine and i386-Engine-P)
J3 3x1 | SRAM selection: pin 2-3 256K-512KB
pin 1-2, 32K-128KB default
J4 3x1 | ROM/Flash size selection: pin 1-2, 32K-128K, default
pin 2-3, 256K-512K
J5 3x1 | 512K ROM selection: pin 1-2, 512KB ROM
pin 2-3, all others, default

3-15

Chapter 3: Hardware i386-Drive
Name | Size | Function Possible Configuration
J7 6x1 | Address lines A20 to A25,

pin 1=A25
J8 12x1| High address lines, A8-A19
pin1=A19
J9 2x1 | Watchdog timer Enabled if jumper is on;
Disabled is jumper is off
HO 2x1 | Switching power regulator Enabled if jumper is on;
Disabled is jumper is off
VOFF = GND
H1 5x2 | SCC2692 channel A:
TXDA, RXDA, GND,
485A-, 485A+
H2 5x2 | SERO (DEBUG)
H3 5x2 | SER1
H4 5x2 | SCC2691:
TXD, RXD, GND
H5 5x2 | SCC2692 channel B:
TXDB, RXDB, GND
H7 3x1 16-bit SRAM selection: pin 1-2, 128K x2, default
pin 2-3, 512K x2
P1 32x2| HCTL2020, PPI, ADC
(TLC2543), DAC (LTC1446
and LTC1655)
P2 32x2| PPI, ADC (LTC2400 and
LTC1605), DAC (LTC1450)

3-16

i386-Drive Chapter 4: Software

Chapter 4: Software

Please refer to the Technical Manual of the “C/C++ Development Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and programming tools.

Guidelines, awareness, and problems in an interrupt driven environment

Although the C/C++ Development Kit provides a simple, low cost solution to application engineers, some
guidelines must be followed. If they are not followed, you may experience system crashes, PC hang-ups,
and other problems.

The debugging of interrupt handlers with the Remote Debugger can be a challenge. It is possible to debug
an interrupt handler, but there is a risk of experiencing problems. Most problems occur in multi-interrupt-
driven situations. Because the remote kernel running on the controller is interrupt-driven, it demands
interrupt services from the CPU. If an application program enables interrupt and occupies the interrupt
controller for longer than the remote debugger czsept, the dalmger will time-out. As a result, your

PC may hang-up. In extreme cases, a power reset may be required to restart your PC.

For your reference, be aware that our system is remote kernel interrupt-driven for debugging.

The run-time environment on TERN controllers consists of an I/O address space and a memory address
space. 1/O address space ranges fa@000to Oxffff, or 64 KB. Memory address space ranges from
0x00000to Oxfffff in real-mode, or 1 MB. These are accessed differently, and not all addresses can be
translated and handled correctly by hardware. /0O and memory mappings are done in software to define
how translations are implemented by the hardware. Impliciésses to I/O and memory address space
occur throughout your program from TERN libraries as well as simple memory accesses to either code or
global and stack data. You can, however, explicitljeas any address in I/O or memory space, and you

will probably need to do so in order tacass processor registers and on-board peripheral components
(which often reside in 1/0 space) or non-mapped memory.

This is done with four different sets of similar functions, described below.

poke/pokeb
Arguments: unsigned int segment, unsigned int offset, unsigned int/unsigned char data
Return value: none

These standard C functions are used to place specified data at any memory space locasegmertie
argument is left shifted by four and added todfiset argument to indicate the 20-bit address within
memory spacepoke is used for writing 16 bits at a time, apakeb is used for writing 8 bits.

The process of placing data into memory space means that the appropriate address and data are|placed on
the address and data-bus, and any memory-space mappings in place for this particular range of njemory
will be used to activate appropriate chip-select lines and the corresponding hardware component
responsible for handling this data.

peek/peekb
Arguments: unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

These functions retrieve the data for a specified address in memory space. Once aggimehe
address is shifted left by four bits and added toffset to find the 20-bit address. This address is theh
output over the address bus, and the hardware component mapped to that address should return ither a

4-1

Chapter 4: Software i386-Drive

8-bit or 16-hit value over the data bus. If there is no component mapped to that address, this fungtion will
return random garbage values every time you try to peek into that address.

outport/outportb
Arguments: unsigned int address, unsigned int/unsigned char data
Return value: none

This function is used to place tbata into the appropriataddressin 1/O space. It is used most often
when working with processor registers that are mapped into I/O space and must be accessed usirfg either
one of these functions. This is also the function used in most cases when dealing with user-configured

peripheral components.

inport/inport
Arguments: unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data from components in I/O space. You will find that most
hardware options added to TERN controllers are mapped into I/O space, since memory space is vpluable

and is reserved for uses related to the code and data. Using I/O mappings, the address is output pver the
address bus, and the returned 16 or 8-bit value is the return value.

For a further discussion of I/O and memory mappings, please refer to the Hardware chapter of thig
technical manual.

4.11E.LIB

IE.LIB is a C library for basic i386-Drive operations. It includes the following modules: IE.OBJ,
SER0.0OBJ, SER1.0BJ, SCC.OBJ, and IEEE.OBJ. You need to link IE.LIB in your applications and
include the corresponding header files. The following is a list of the header files:

Include-file name | Description

IE.H PIO, timer/counter, ADC, DAC, RTC, Watchdoy,
ID.H PPI, ADC, DAC, HCTL2020

SERO.H internal serial port O

SER1.H internal serial port 1

SCC.H external UART SCC2691

IEEE.H on-board EEPROM

4.2 Functions in IE.OBJ

4.2.1i386-Drive Initialization

ie_init

This function should be called at the beginning of every program running on i386-Drive core controllers.

It provides default initialization and configuration of the various I/O pins, interrupt vectors, sets up
expanded DOS I/0, and provides other processor-specific updates needed at the beginning of every
program.

4-2

i386-Drive Chapter 4: Software

There are certain default pin modes and interrupt settings you might wish to change. With that in mind,
the basic effects dé_init are described below. For details regarding register use, you will want to refer to
the Intel386EX Embedded Processor User’'s manual.

Initialize the upper chip select to support the default ROM. The CPU registers are configured such
that:

Address space for the ROM is from 0x8000@F€ix

512K ROM operation (this works for the 32K ROM provided, also)

Two wait state operation (allowing it to support up to 120 @8R). With 70 ns ROMs, this can
actually be set to zero wait state.

outport(0xf43a, 0x0008); // UCSADH, 0x80000-0xfffff, 512K ROM
outport(0xf438, 0x0102); // UCSADL, bs8, 2 wait states
outport(0xf43e, 0x0007); // UCSMSKH

outport(0xf43c, 0xfc01); // UCSMSKL, enable UCS

Initialize CSO for use with the SRAM. It is configured so that:

Address space starts 0x00000, with a maximum of 512K RAM.
8 bit operation with 3 wait states. Once again, you can set the same register to a lower wait state if
you desire faster operation.
outport(0xf402, 0x0000); // CSOADH, base Mem address 0x0000
outport(0xf400, 0x0103); // CSOADL, bs8, 3 wait states
outport(0xf406, 0x0007); // CSOMSKH
outport(0xf404, Oxfc01); // CSOMSKL, 512K, enable CSO for RAM

Initialize the chip select used for RTC and SCC (UART).

The I/O Address for the RTC is at 0xa0a0. (See samples\ielrtc_init.c and rtc.c for RTC usage.
The 1/0O Address for the SCC is at 0xa090. (See samples\ie\ie_scc.c).
These are initialized to 16 wait states.

outport(0xf412, 0x0280); // CS2ADH, RTC/SCC I/0 addr=0xa0a0/0xa090

outport(0xf410, 0x000f); // CS2ADL, 0x000f=16 wait

outport(0xf416, 0x0003); // CS2MSKH

outport(0xf414, Oxfc01); // CS2MSKL, 32 enable CS2=RTC/SCC

Initialize chip select U9, which is used for internal signals TO-T7.
I/O address is 0xb000.

outport(0xf42A, 0x02c0); // CS5ADH, 259 base I/O address 0xb000

outport(0xf428, 0x0001); // CS5ADL, 0x0001=1 wait

outport(0xf42E, 0x0003); // CS5MSKH

outport(0xf42C, 0xfc01); // CS5MSKL, 256 enable CS5=259

This chip select line, CS6, is provided for the user’s use. Many users choose to attach peripheral
boards to the headers provided on the controllers. It is possible to attach a 74HC259 decoder, for
example, which could then be used to select a number of off-board user components. This line is
at pin 19 of header J1. For details regarding this and the other chip select line, refer to the
Hardware chapter of this manual.

I/O address for this is 0x8000. A wait-state of 32 has been set initially for easier interface with
slower devices. This value can be decreased as well by changing the value of the register.
outport(0xf432, 0x0200); // CS6ADH, base I/O address 0x8000
outport(0xf430, 0x001f); // CS6ADL, 0x001f=32 wait
outport(0xf436, 0x0003); // CS6MSKH
outport(0xf434, Oxfc01); // CS6MSKL, 256 enable CS6

Configure the three PIO ports for default operation.

outportb(0xf820, 0x00); // PLCFG
outportb(0xf822, 0x65); // P2CFG,TXD0,RXD0,CS2=P22=RTC/SCC, 0=RAM
outportb(0xf824, 0x00); // P3CFG

4-3

Chapter 4: Software i386-Drive

Configure serial port IDMA, interrupts,timers.

outportb(0xf826, 0x1f); // PINCFG,CS5,CTS1,TXD1,DTR1,RTS1
outportb(0xf830, 0x00); // DMACFG

outportb(0xf832, 0x00); // INTCFG

outportb(0xf834, 0x00); // TMRCFG

outportb(0xf836, 0x01); // SIOCFG,SIO0 use SERCLK

Configure PIO ports as input
outportb(0xf862, 0xff); // PLLTC
outportb(0xf864, 0xff); // P1DIR
outportb(0xf86a, 0xff); // P2LTC
outportb(0xf86¢, 0xff); // P2DIR
outportb(0xf872, 0xff); // P3LTC
outportb(0xf874, 0xff); // P3DIR

4.2.2External Interrupt Initialization

The i386-Drive offers two cascaded interrupt controllers to handle internal and external interrupts. Each
interrupt controller is functionally identical to a 82C59A. Combined, the cascaded interrupt controllers
can handle up to 10 external interrupts, and eight internal interrupts. For a detailed discussion involving
the ICUs, the user should refer to Chapter 9 of the Intel386EX Embedded Microprocessor User’'s Manual.
Figure 9-1, in particular, shows interrupts that share the same IR and thus cannot be used at the same
time.

You should note that if an IR on the slave 82C59 is activated, IR2 on the master must also be activated
before the interrupt handler is called.

TERN provides functions to enable/disable all of the 10 external interrupts. The user can call any of the
interrupt init functions listed below for this purpose. The first argument indicates whether the particular
interrupt should be enabled, and the second is a function pointer to an appropriate interrupt service
routine that should be used to handle the interrupt. The TERN libraries will set up the interrupt vectors
correctly for the specified external interrupt line.

If you are dealing with external interrupts, you might need to disable the particular interrupt being
handled while processing within the interrupt service routine. The interrupt control unit is sensitive to
certain non-qualified external interrupts that come from sources such as mechanical switches. In such a
situation, repeated interrupts (in the thousands) might be generated, crashing the system. Disabling such
an interrupt for a length of time will make sure that you isolate such interrupts.

At the end of interrupt handlers, the appropriate in-service bit for the IR signal currently being handled
must be cleared. This can be done usind\ibrespecific EOl command At initialization time, interrupt

priority was placed inFully Nested mode. This means the current highest priority interrupt will be
handled first, and a higher priority interrupt will interrupt any current interrupt handlers. Thus, if the
user chooses to clear the in-service bit for the interrupt currently being handled, the interrupt service
routine just needs to issue the nonspecific EOl command to clear the current highest priority IR.

On the i386-Drive, the overhead of executing the interrupt service routine is approximgisly§fg a
33 MHz controller.

To send the nonspecific EOl command, you need to writ©@W2 word with 0x20 (se€igure 9-14in
the Intel386EX manual for details regarding this command word).

To clear the master 82C59, you will need to do:
outportb(0xf020, 0x20);

If the IR that has just been handled is on the slave 82C59, you must clear its in-service bit first. After this,
you must also send another Nonspecific EOI command to the master 82C59, since the slave interrupt was

4-4

i386-Drive Chapter 4: Software

only transmitted to the core after IR2 on the master 82C59 was raised. So, you will need to have code
similar to:

outportb(0xf0a0, 0x20) ;
outportb(0xf020, 0x20) ;

void intx_init
Arguments: unsigned char i, void interrupt far(* intx_isr) ())
Return value: none

These functions can be used to initialize any one of the external interrupt channels (for pin locatiofs and
other physical hardware details, see the Hardware chapter). The first argumdésgtes whether this
particular interrupt should be enabled or disabled. The second argument is a function pointer, whjch will
act as the interrupt service routine.
By default, the interrupts are all disabled after initialization. To disable them again, you can repeat the
call but pass in 0 as the first argument.

The NMI (Non-Maskable Interrupt) is special in that it can not be masked (disabled). The default SR
will return on interrupt.

void intO_init(unsigned char i, void interrupt far(* int0_isr)());
void int1_init(unsigned char i, void interrupt far(* int1_isr)());
void int2_init(unsigned char i, void interrupt far(* int2_isr)());
void int3_init(unsigned char i, void interrupt far(* int3_isr)());
void int4_init(unsigned char i, void interrupt far(* int4_isr)());
void int5_init(unsigned char i, void interrupt far(* int5_isr)());
void int6_init(unsigned char i, void interrupt far(* int6_isr)());
void int7_init(unsigned char i, void interrupt far(* int7_isr)());
void int8_init(unsigned char i, void interrupt far(* int8_isr)());
void int9_init(unsigned char i, void interrupt far(* int9_isr)());
void nmi_init(void interrupt far (* nmi_isr)());

4.2.31/0 Initialization

There are three ports of 8 I/O pins available on the i386-Drive. Hardware details regarding these PIO lines
can be found in the Hardware chapter.

There are several functions provided for access to the PIO lines. At the beginning of any application

where you choose to use the PIO pins as input/output, you will probably need to initialize these pins in one
of the four available modes. Before selecting pins for this purpose, make sure that the peripheral mode
operation of the pin is not needed for a different use within the same application.

You should also confirm the PIO usage that is described above wéthimit(). During initialization,

several lines are reserved for TERN usage and you should understand that these are not available for your
application. There are several PIO lines that are used for other on-board purposes. These are all described
in some detail in the Hardware chapter of this technical manual. For a detailed discussion toward the 1/0
ports, please refer to Chapter 16 of the Intel386EX Embedded Processor User’'s Manual.

Please see the sample programpio.c in tern\386\samples\ie . You will also find that these
functions are used throughout TERN sample files, as most applications do feddgsary to re-configure
the PIO lines.

The functionpio_wr andpio_rd can be slower when accessing the PIO pins. The maximum efficiency
you can get from the PIO pins occur if you instead modify the PIO registers directly wibtzont
instruction Performance in this case will be around 1-2 us to toggle any pin.

4-5

Chapter 4: Software i386-Drive

void pio_init
Arguments: char port, char bit, char mode
Return value: none

Port and bit refer to the specific PIO line you are dealing with. P10-P17 are in port 1, P20-P27 arq in port
2, and P30-P37 are in port 3. Bit O refers to Pn0 in each port, while bit 7 is used for Pn7.
Mode refers to one of four modes of operation.

* 0, High-impedance Input operation
* 1, Open-drain output operation

e 2, output

» 3, peripheral mode

unsigned char pio_rd:
Arguments: char port
Return value: byte indicating PIO status

Each bit of the returned byte value indicates the current I/O value for the PIO pins in the selected port.
void pio_wr:

Arguments: char port, char bit, char dat
Return value: none

Writes the passed in dat value (either 1/0) to the selected PIO.

4.2.4Analog-to-Digital Conversion

The two 12-bit ADC units (TLC2543, U010 and U011) each provide 11 channels of analog inputs based
on the reference voltage suppliedR&F+. For details regarding the hardware configuration, see the
Hardware chapter.

The U010 ADC shares a common data liR&5) with the EEPROM. As a result, before using the ADC

for this purpose, the EEPROM is placed in stop mode. This is done within the function interface to the
ADC. This means that if you are developing an interrupt-driven application, you must be careful of
situations where the ADC is in use and the EEPROM is used simultaneously through an interrupt service
routine. If this occurs, the calls will block and the application will deadlock. You should also make sure
that you do not re-prografl5for any other use if you are using the ADC.

For a sample files demonstrating the use of these ADC, please iesel2.c in
c:\tern\386\samples\ie (for U010), andid_adl2.c in c:\tern\386\samples\id (for
u011).

intie_ad12
Arguments: char ¢
Return values: int ad_value

The argument selects the channel from which to do the next Analog to Digital conversion. A valug¢ of O
corresponds to chann&DO, 1 corresponds to chanr&D1, and so on.

4-6

i386-Drive Chapter 4: Software

The return valuad_valueis the latched-in conversion value from the previous call to this function. Jrhis
means each call to this function actually returns the value latched-in from the previous analog-to-digital
conversion.

For example, this means the first analog-to-digital conversion done in an application will be similaf to the
following:

ie_ad12(0); // Read from channel O
chn_0_data = ie_ad12(0); // Start the next conversion, retrieve value.

4.2.5Digital-to-Analog Conversion

One dual 12-bit DAC (LTC1446) mad be installed on the i386-Drive in positit#8s It offers two
channels, A and B, for digital-to-analog conversion. Details regarding hardware, such as pin-outs and
performance specifications, can be found in the Hardware chapter.

A sample program demonstrating the U23 DAC can be foundeimal2.c in the directory
tern\386\samplesiie

void ie_da
Arguments: int datl, int dat2
Return value: none

le_da() is used for the DAC chip installed in position U23.

Argumentdatl is the current value to drive to channel A, while argurdeff is the value to drive
channel B.

These argument values should range from 0-4095, with units of millivolts. This makes it possible fo drive
a maximum of 4.906 volts to each channel.

4.2.60ther library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by thdAX691 or LTC691 offers an excellent way to monitor improper
program execution. If the watchdog timé®)is connected, the functidnitwd() must be called every 1.6
seconds of program execution. If this is not executed because of a run-time error, such as an infinite loop
or stalled interrupt service routine, a hardware reset will occur.

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds.
void led

Arguments: int ledd
Return value: none

Turns the on-board LED on or off according to the valdead.

4-7

Chapter 4: Software i386-Drive

Real-Time Clock

The real-time clock can be used to keep track of real time. Backed up by a lithium-coin battery, the real
time clock can beaessed and programmed using two interface functions.

The real time clock only allows storage of two digits of the year code, as reflected below. As a result,
application developers should be careful to account for a rollover in digits in the year 2000. One solution
might be to store an offset value in non-volatile storage such as the EEPROM.

There is a common data structure usecttess and use both interfaces.

typedef struct{
unsigned char sec1,;
unsigned char sec10;
unsigned char minl;
unsigned char minl10;
unsigned char hourl;
unsigned char hourl0;
unsigned char day1;
unsigned char day10;
unsigned char mon1;
unsigned char mon10;
unsigned char year1,;
unsigned char year10;
unsigned char wk;

One second digit.
Ten second digit.
One minute digit.
Ten minute digit.
One hour digit.
Ten hour digit.
One day digit.
Ten day digit.
One month digit.
Ten month digit.
One year digit.
Ten year digit.
Day of the week.

}TIM:;

int rtc_rd
Arguments: TIM *r
Return value: int error_code

This function places the current value of the real time clock within the argursentture. The
structure should be allocated by the user. This function returns @eesswand returns 1 in case of errpr,
such as the clock failing to respond.

Void rtc_init
Arguments: char* t
Return value: none

This function is used to initialize and set a value into the real-time clock. The argwhentd be a
null-terminated byte array that contains the new time value to be used.

The byte array should correspond tad¢ekday, yearl0, yearl, month10, monthl, day10, dayl, hour}o,
hourl, minute10, minutel, second10, secon@Z,

If, for example, the time to be initialized into the real time clock is June 5, 1998, Friday, 13:55:30, fhe
byte array would be initialized to:

unsigned char t[14] ={5,9,8,0,6,0,5,1, 3,5,5,3,0 };

Delay

In many applications it becomes useful to pause before executing any further code. There are functions
provided to make this process easy. For applications that require precision timing, you should use
hardware timers provided on-board for this purpose.

4-8

i386-Drive Chapter 4: Software

void delay0
Arguments: unsigned int t
Return value: none

This function is just a simple software loop. The actual time that it waits depends on processor spged as
well as interrupt latency. The code is functionally identical to:

While(t) { t--; }

Passing in & value of 600 causes a delay of approximately 1 ms.
void delay_ms

Arguments: unsigned int

Return value: none

This function is similar to delay0, but the passed in argument is in units of milliseconds instead of joop
iterations. Again, this function is highly dependent upon the processor speed.

unsigned int crc16
Arguments: unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a byte-arrapoht size pointed to bwptr.

void ie_reset
Arguments: none
Return value: none

for any reason. Depending on the current hardware configuration, this might either start executing code

This function is similar to a hardware reset, and can be used if your program needs to re-start the|board
from the DEBUG ROM or from some other address. IJ

4.3 Functions in SER0.OBJ/SER1.0BJ

The functions described in this section are prototyped in the headserfildrandserl.hin the directory
tern\include

The internal asynchronous serial ports are functionally identical. SERO is used by the DEBUG ROM
provided as part of the TERN EV/DV software kits for communication with the PC. As a result, you will
not be able to debug code directly written for serial port O.

Two asynchronous serial ports are integrated in the i386EX CPU: SERO and SER1. Both ports by default
use the signaBERCLK to drive communicationwhich is based on the 66 MHz system clock signal
CLK2. By default, SERO is used by the DEBUG ROM for application download/debugging in STEP 1
and STEP 2. We will use SER1 as the example in the following discussion; any of the interface functions
that are specific to SER1 can be easily changed into function calls for SER0O. While selecting a serial port
for use, please realize that some pins might be shared with other peripheral functions. This means that in
certain limited cases, it might not be possible to use a certain serial port with other on-board controller
functions. For details, you should see both chapter 11 of the Intel 386EX Embedded Microprocessor
User’s Manual and the schematic of the i386-Drive provided at the end of this manual.

4-9

Chapter 4: Software i386-Drive

TERN interface functions make it possible to use one of a number of predetermined baud rates. These
baud rates are achieved by specifying a divisoSERCLK (1,031,250 hg

The following table shows the function arguments that express each baud rate, to be used in TERN
functions. These are based on a 33 MHz system clock.

Function Argument| Divisor Value | Baud Rate
1 6875 150
2 3438 300
3 1719 600
4 859 1200
5 430 2400
6 215 4800
7 107 9600
8 72 14,400
9 54 19,200 (default)
10 27 38,400
11 18 57,600
12 9 115,200
13 4 275,812
14 2 515,625
15 1 1,031,250
Table 4.1 Baud rate values
After initialization by callings1_init() , SERL1 is configured as a full-duplex serial port and is ready to

transmit/eceive saal data at one of the specified 15 baud rates.

An input buffer, serl_in_buf (whose size is specified by the user), will automatically store the
receiving seml data stream into the memory BMAL opemation. In terms of eceiving, there is no
software overhead or interrupt latency for user application programs even at the highest baud rate. DMA
transfer allows efficient handling of incoming data. The user only has to check the buffer status with
serhitl() and take out the data from the buffer wgdtserl() , if any. The input buffer is used as a
circular ring buffer, as shown in Figure 4.1. However, the transmit operation is interrupt-driven.

ibuf in_tail in_head ibuf+isiz

vy 2
[[T 1]

1 |

Figure 4.1 Circular ring input buffer

4-10

i386-Drive Chapter 4: Software

The input bufferipuf), buffer sizeigiz), and baud ratébéud) are specified by the user wis_init()

with a default mode of 8-bit, 1 stop bit, no parity. Af&dr_init() you can set up a new mode with
different numbers for data-bit, stop bit, or parity by directigemsing the Serial Line Control Register
(LCR1) if necessary, as described in the Intel386EX manual for asynchronous serial ports.

Due to the nature of high-speed baud rates and possible effects from the external environment, serial input
data will automatically fill in the buffer circularly without stopping, regardless of overwrite. If the user
does not take out the data from the ring buffer wightserl() before the ring buffer is full, new data

will overwrite the old data without warning or control. Thus it is important to provide a sufficiently large
buffer if large amounts of data are transferred. For example, if yoe@eiwing éta at 9600 baud, a 4-

KB buffer will be able to store data for approximately four seconds.

However, it is always important to take out data early from the input buffer, before the ring buffer rolls
over. You may designate a higher baud rate for transmitting data out and a slower baud eeéévingr

data. This will give you more time to do other things, without overrunning the input buffer. You can use
serhitl() to check the status of the input buffer and return the offset of the in_head pointer from the
in_tail pointer. A return value of O indicates no data is available in the buffer.

You can usgetserl() to get the serial input data byte by byte using FIFO from the buffer. The in_tail
pointer will automatically increment after evaygtserl() call. It is not mcessary to suspend external
devices from sending in serial data with /RTS. Only a hardware resdt olose() can stop this
receiving opeation.

For transmission, you can ugeitserl() to send out a byte, or ugmitsersi() to transmit a
character string. You can put data into the transmit ring budferput_buf , at any time using this
method. The transmit ring buffer addresbuf) and buffer lengthdsiz) are also specified at the time of
initialization. The transmit interrupt service will check the availability of data in the transmit buffer. If
there is no more data (the head and tail pointers are equal), it will disable the transmit interrupt.
Otherwise, it will continue to take out the data from the out buffer, and transmit. After you call
putserl() and transmit functions, you are free to do other tasks with no additional software overhead
on the transmitting operation. It will automatically send out all the data you specify. After all data has
been sent, it will clear the busy flag and be ready for the next transmission.

The sample prograrserl_0.c demonstrates how a protocol translator works. It woedgive an input
HEX file from SER1 and translate every ‘' character to ‘?." The translated HEX file is then transmitted
out of SERO. This sample program can be fountéim386\samples\ie

Software Interface
Before using the serial ports, they must be initialized.

There is a data structure containing important serial port state information that is passed as argument to
the TERN library interface functions. TH&OM structure should normally be manipulated only by
TERN libraries. It is provided to make debugging of the serial communication ports more practical.
Since it allows you to monitor the current value of the buffer and associated pointer values, you can watch
the transmission process.

The two serial ports have similar software interfaces. Any interface that makes reference sDeither
serOcan be replaced witsil or serl, for example. Each serial port should use its @@M structure, as
defined inie.h.

typedef struct {
unsigned char ready; /* TRUE when ready */
unsigned char baud,;
unsigned char mode;
unsigned char iflag; /* interrupt status */
unsigned char *in_buf; /* Input buffer */
int in_tail; /* Input buffer TAIL ptr */

4-11

Chapter 4: Software i386-Drive

int in_head; /* Input buffer HEAD ptr */

int in_size; /* Input buffer size */

int in_crent; /* Input <CR> count */

unsigned char in_mt; * Input buffer FLAG */

unsigned char in_full; /* input buffer full */

unsigned char *out_buf; /* Output buffer */

int out_tail; /* Output buffer TAIL ptr */

int out_head,; /* Output buffer HEAD ptr */

int out_size; /* Output buffer size */

unsigned char out_full; /* Output buffer FLAG */

unsigned char out_mt; /* Output buffer MT */

unsigned char tmso; // transmit macro service operation

unsigned char rts;

unsigned char dtr;

unsigned char en485;

unsigned char err;

unsigned char node;

unsigned char cr; /* scc CR register */

unsigned char slave;

unsigned int in_segm; /* input buffer segment */

unsigned int in_offs; /* input buffer offset */

unsigned int out_segm; /* output buffer segment */

unsigned int out_offs; /* output buffer offset */

unsigned char byte_delay; /* V25 macro service byte delay */
} COM

sn_init
Arguments: unsigned char b, unsigned char* ibuf, int isiz, unsigned char* obuf, int osiz, COM* ¢
Return value: none

This function initializes either SERO or SER1 with the specified paramdigsshe baud rate value
shown in Table 4.1. Argumenitsuf andisiz specify the input-data buffer, atuf andosiz specify the
location and size of the transmit ring buffer.

The serial ports are initialized for 8-bit, 1 stop bit, no parity communication.

There are a couple different functions used for transmission of data. You can actually place data within

the output buffer manually, incrementing the head and tail buffer pointers appropriately. If you

do not

call one of the following functions, however, the driver interrupt for the appropriate serial-port will be
disabled, which means that no values will be transmitted. This allows you to control when you wish the
transmission of data within the outbound buffer to begin. Once the interrupts are enabled, it is dangerous

to manipulate the values of the outbound buffer, as well as the values of the buffer pointer.

putsern
Arguments: unsigned char outch, COM *c
Return value: int return_value

This function places one bytmitch into the transmit buffer for the appropriate serial port. The reg
value returns one in case of success, and zero in any other case.

putsersn
Arguments: char* str, COM *c

furn

Return value: int return_value

4-12

i386-Drive Chapter 4: Software

This function places a null-terminated character string into the transmit buffer. The return value[returns

one in case of success, and zero in any other case.

DMA transfer autmatically places incoming data into the inbound buféathitn() should be called
before trying to retrieve data.

serhitn
Arguments: COM *c
Return value: int value

This function returns 1 aslue if there is anything present in the in-bound buffer for this serial port.

getsen
Arguments: COM *c
Return value: unsigned char value

This function returns the current byte frem in_buf, and increments tha_tail pointer. Once again,
this function assumes thsérhitn has been called, and that there is a character present in the buffer

getsers
Arguments: COM c, int len, char* str
Return value: int value

This function fills the character buffetr with at mostien bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage return (ASGXOd) is retrieved.

This function makes repeated callgy&iser, and will block untillen bytes are retrieved. The return
value indicates the number of bytes that were placed into the buffer.

Be careful when you are using this function. The returned character string is actually a byte array|
terminated by a null character. This means that there might actually be multiple null characters i
byte array, and the returnedlue is the only definite indicator of the number of bytes read. Normally
suggest that thgetsersandputsersfunctions only be used with ASCII character strings. If you are

working with byte arrays, the single-byte versions of these functions are probably more appropriatq.

Miscellaneous Serial Communication Functions

the
we

One thing to be aware of in both transmission and receivingtaefttirough the serial port is that TERN

drivers only use the basic serial-port communication lines for transmittingeaeing éta. Hardware

flow control in the form ofCTS (Clear-To-Send) an®TS (Ready-To-Send) is not implemented. There

are, however, functions available that allow you to check and set the value of these 1/O pins appropriate
for whatever form of flow control you wish to implement. Before using these functions, you should once
again be aware that the peripheral pin function you are using might not be selected as needed. For details,

please refer to chapter 11 of the Intel386EX Embedded Microprocessor User’'s Manual.

For an example on implementing your own flow control, pleaseGeats.cin tern\samples\ie

char sn_cts(void)
Retrieves value o€'TS pin.

void sn_rts(char b)
Sets the value ®RTS tob.

4-13

Chapter 4: Software i386-Drive

void sn_dtr(char b)
Sets the value @TR tob.

Completing Serial Communications

After completing your serial communications, there are a few functions that can be used to reset default
system resources.

sn_close
Arguments: COM *c
Return value: none

This closes down the serial port, by shutting down the hardware as well as disabling the interrupt.

clean_sen
Arguments: COM *c

Return value: none

This flushes the input buffer by resetting the tail and header buffer pointers.

The asynchronous serial I/O ports available on the Intel386EX Embedded Processor have many other
features that might be useful for your application. If you are truly interested in having more control,
please read Chapter 11 of the manual for a detailed discussion of other features available to you.

4.4 Functions in SCC.OBJ

The functions found in this object file are prototypeddn.hin thetern/include directory.

The SCC is a component that is used to provide a third asynchronous port. It uses a 8 MHz crystal,
different from the system clock speed, for driving serial communications. This means the divisors and
function arguments for setting up the baud rate for this third port are different than for SERO and SER1.

Function Argument| Baud Rate
110

150
300

600

1200

2400

4800

9600 (default)
19,200
31,250

© 00 N o o b~ W N PP

[Ey
o

4-14

i386-Drive Chapter 4: Software

Function Argument | Baud Rate

11 62,500
12 125,000
13 250,000

Unlike the other serial portYMA transfer is not used tdlif the input buffer for SCC. Instead, an
interrupt-service-routine is used to place characters into the input buffer. If the processor does not respond
to the interrupt—because it is masked, for example—the interrupt service routine might never be able to
complete this process. Over time, this means data might be lost in the SCC as bytes overflow.

Special control registers are used to define how the SCC operates. For a detailed description of registers
MR1 andMR2, please see Appendix C of this manual. In most TERN applications, MR1 isO0s&i7to

and MR2 is set tOx07. This configures the SCC for no flow control (RTS, CTS not used/checked), no
parity, 8-bit, normal operation. Other configurations are also possible, providing self-echo, even-odd
parity, up to 2 stop bits, 5 bit operation, as well as automatic hardware flow control.

Initialization occurs in a manner otherwise similar to SERO and SERCOM structure is once again
used to hold state information for the serial port. The in-bound and out-bound buffers operate as before,
and must be provided upon initialization.

scc_init

Arguments: unsigned char m1, unsigned char m2, unsigned char b, unsigned char* ibuf, int isiz,
unsigned char* obuf, int osiz, COM *c

Return value: none

This initializes the SCC2691 serial port to baud batas defined in the table above. The valugnin
andm?2 specify the values to be stored inM&1 andMR2. As discussed above, these values are
normallyOx57 and0Ox07, as shown in TERN sample programs.

ibuf andisiz define the input buffer characteristics, afmif andosiz define the output buffer.

After initializing the serial port, you must also set up the interrupt service routine. The SCC2691 UART
takes up external interrupfNT5 on the CPU, and you must set up the appropriate interrupt vector to
handle this. An interrupt service routinggc_isr() has been written to handle the interrupt, and it
enables/disables the interrupt as needed to transmitemet/e @ta with the data buffers. So, after
initialization, you will need to make a call to do this:

int5_init(1, scc_isr);
By default, the SCC is disabled for batansmitandreceive Before using the port, you will need to
enable these functionalities.

When using RS232 in full-duplex modgansmit and receivefunctions should both be enabled. Once
this is done, you can transmit areteive @ta as needed. If you do need to do limited flow control, the
MPO pin on the J1 header can be used for RTS. For a sample file showing RS232 full duplex
communications, please seescc.an the directorytern\samples\ie

RS485 is slightly more complex to use than RS232. RS485 operation is half-duplex only, which means
transmission does not occur concurrently with reception. TH&R8river will echo back bytes sent to

the SCC. As a result, assuming you are using the RS485 driver installed on another TERN peripheral
board, you will need to disabkeceivewhile transmitting. ~ While transmitting, you will also need to
place the RS485 driver in transmission mode as well. This is done byarsiB8§(1) This uses pin

MPO (muti-purpose output) found on the J1 header. While youeneiving cta, the RS485 driver will

need to be placed in receive mode usimg85(0) For a sample file showing RS485 communication,
please se&_rs485.cin the directorytern\samplesiie

4-15

Chapter 4: Software i386-Drive

en485
Arguments: int i
Return value: none

This function sets the pin MPO either high (i = 1) or low (i = 0). The function scc_rtséjlgdtas a
similar function, by pulling the same pin high or low, but is intended for use in flow control.

scc_send_e/scc_recv_e
Arguments: none
Return value: none

This function enables transmission or reception on @€2691 UART. After initialization, both of
these functions are disabled by default. If you are using RS485, only one of these two functions stould be
enabled at any one time.

scc_send reset/scc_recv_reset
Arguments: none
Return value: none

This function resets the state of the send acdive function of the@C2691. One major use of these
functions is to disable send and receive. If you are usid@®RSou will need to use this feature when
transitioning from transmission teaeption, or from reception to transmission.

Transmission and reception aitd using the SCC is in most ways identical to SERO and SER1. The
functions used to transmit aneceive @ta are similar. For details regarding these functions, please refer
to the previous section.

putser_scc
See: putser n

putsers_scc
See: putsers n

getser_scc
See: getser n

getsers_scc
See: getsers n

Flow control is also handled in a mostly similar fashion. The CTS pin corresponds to the MPI pin, which
is not connected to either one of the headers. The RTS pin corresponds to the MPO pin found on the J1
header.

scc_cts
See: sn_cts

scc_rts
See: sn_rts

Other SCC functions are similar to those for SERO and SER1.
ser_close

4-16

i386-Drive Chapter 4: Software

See: sn_close

ser_hit
See: sn_hit

clean_ser_scc
See: clean_s n

Occasionally, it might also beepessary to check the state of the SCC for information regarding errors
that might have occurred. By callisgc_err, you can check for framing errors, parity errors (if parity is
enabled), and overrun errors.

scc_err
Arguments: none

Return value: unsigned char val
The returned valueal will be in the form of 0OABC000O in binary. Bit A is 1 to indicate a framing erjor.
Bit B is 1 to indicate a parity error, and bit C indicates an over-run error.

4.5Functions in IEEE.OBJ

The 512-byte serial EEPRON24C04 provided on-board provides easy storage of non-volatile program
parameters. This is usually an ideal location to store important configuration values that do not need to be
changed often. Access to the EEPROM is quite slow, compared to memory access on the rest of the
controller.

Part of the EEPROM is reserved for TERN use specifically for this purpose.

Addresse®x00to 0x1f on the EEPROM is reserved for system use, including configuration information
about the controller itself, jump address for Step 2, and other data that is of a more permanent nature.

The rest of the EEPROM memory spa@e?0to Ox1ff, is available for your application use.

The EEPROM also shares lifd5 with the U010 ADC on the i386-Drive, if installed. As described
above, when the ADC is in use, the EEPROM is placed in stop mode. When using the EEPROM, be
careful when trying to use the ADC concurrently.

ee_wr
Arguments: int addr, unsigned char dat
Return value: int status

This function is used to write the passediat to the specifieéhddr. The return value is 0 in success.

ee rd
Arguments: int addr
Return value: int data

This function returns one byte of data from the specified address.

4-17

1386-Drive

Appendix A: i386-Drive Layout

Appendix A: 1386-Drive L ayout

The i386-Drive measures 4.7 x 4.5 inches. Its layout is shown below.

All dimensions arein inches.

(0.70, 4.50)
(0.35,4.55) | s (4.15, 4.55)
(0.39, 4.24) AT 104, 424 (3.22, 4.24)
.39, 4. 04, 4. . . hd : .
SCC2692-A RST (SCC2692-B) ey watchdog (4.50, 4.70)
(0.09, 4.58)—__| :
ser1 [2°] d) e 5o s |
H3
ool BTASe Briese
(0.09,3.86) | o e og
SERO Tyofe] SCC2692 PPl “~luoe | (3,20, 3.25)
DEBUG| |2 ot
(0.35,3.25) _|joal 0 e [Lrcie0s 2
Step2 U16 U013 J7 U14
(default)\FQ %8 —
B> __lus I [(3.39, 3.21)
RTC gbitSRAM (4 Ui ° '
BUS UART | a
U4 ui Fle:gg]/ 16-bit SRAM [
u17 °
i3geex | | & I6bLSRAM || Spoae
Ho & ON
66 MHz © al s
(0.19, 1.31) —_|| 72 u2 >
Ba K1
L] :
(0.13, 1.16) o7 (4.4, 1.5)
HCTL2020 yog " PPI
uo1
Ij HCTL2020 yos °
uo7
Q I_\TPl
(0.00, 0.00) \ (0.70, 0.10) (4.15, 0.16)

(0.35, 0.15)

A-1

Appendix B: UART SCC2691 1386-Drive
1. Pin Description
D0-D7 Data bus, active high, bi-directional, and having 3-State
/CEN Chip enable, active-low input
/WRN Write strobe, active-low input
/RDN Read strobe, active-low input
AQ-A2 Address input, active-high addressinput to select the UART registers
RESET Reset, active-high input
INTRN Interrupt request, active-low output
XUCLK Crystal 1, crystal or external clock input
X2 Crystd 2, the other side of crystal
RxD Receive seria datainput
TxD Transmit serial data output
MPO Multi-purpose output
MPI Multi-purpose input
Vce Power supply, +5V input
GND Ground
2. Register Addressing
A2 Al A0 READ (RDN=0) WRITE (WRN=0)
0 0 0 MRLMR2 MR1, MR2
0 0 1 SR CSR
0 1 0 BRG Test CR
0 1 1 RHR THR
1 0 0 1x/16x Test ACR
1 0 1 ISR IMR
1 1 0 CTU CTUR
1 1 1 CTL CTLR
Note:
ACR = Auxiliary control register
BRG = Baud rate generator
CR = Command register
CSR = Clock select register
CTL = Counter/timer lower
CTLR = Counter/timer lower register
CTU = Counter/timer upper
CTUR = Counter/timer upper register
MR = Mode register
SR = Status register
RHR = Rx holding register
THR = Tx holding register
3. Register Bit Formats
MR1 (Mode Register 1):
Bit 7 | Bité [Bits | Bit4 [Bit3 [Bit2 [Bit1 [Bito
RXRTS RxXINT Error __ Parity Mode___ Parity Type Bits per Character
0=no 0=RxRDY 0= char 00 = with parity 0=Even 00=5
1=yes 1=FFULL 1= block 01 = Force parity 1=0dd 01=6
10 = No parity 10=7
11 = Specia mode In Specia 11=8
mode:
0=Data
1=Addr

B-1

1386-Drive

Appendix B: UART SCC2691

MR2 (Mode Register 2):
[Bit7 [Bit6 [Bit5 [Bit4 [Bit3 [Bit2 | Bit1 [Bito |
Channel Mode TXRTS CTS Enable Stop Bit Length
TX (add 0.5 to cases 0-7 if channdl is 5 bits/character)
00 = Normal 0=no 0=no 0=0563 4=0813 8=1563 C=1.813
01 = Auto echo 1=yes 1=yes 1=0625 5=0.875 9=1.625 D=1.875
10 = Local loop 2=0688 6=0.938 A=1.688 E=1938
11 = Remote loop 3=0.750 7=1.000 B=1.750 F=2.000
CSR (Clock Select Register):
[Bit7 [Bit6 [Bit5 [Bit4 [Bit3 [Bit2 | Bit1 [Bito |
Receiver Clock Select Transmitter Clock Select
when ACR[7] =0: when ACR[7] = 0:
0= 50 1=110 2=1345 3= 200 0= 50 1=110 2=1345 3= 200
4=300 5=600 6=1200 7 =1050 4=300 5=600 6=1200 7 =1050
8=2400 9=4800 A =7200 B = 9600 8=2400 9=4800 A =7200 B = 9600
C=384k D=Timer E=MPI-16x F=MPI-1x C=384k D=Timer E=MPI-16x F=MPI-1x
when ACR[7] = 1: when ACR[7] = 1:
0= 75 1=110 2=1345 3= 150 0= 75 1=110 2=1345 3=150
4=300 5=600 6=1200 7 =2000 4=300 5=600 6=1200 7 =2000
8=2400 9=4800 A =7200 B =1800 8=2400 9=4800 A =7200 B =1800
C=19.2k D=Timer E=MPI-16x F=MPI-1x C=19.2k D=Timer E=MPI-16x F=MPI-1x
CR (Command Register):
[Bit7 | Bit6 [Bit5 [Bit4 [Bit3 [Bit2 [Bit1 [Bito |
Miscellaneous Commands Disable Enable Disable Enable
TX TX Rx Rx
0= no command 8=gtart C/T 0=no 0=no 0=no 0=no
1 =reset MR pointer 9 = stop counter 1=yes 1=yes 1=yes 1=yes
2 = reset receiver A = assert RTSN
3 = reset transmitter B = negate RTSN
4 = reset error status C =reset MPI
5 = reset break change change INT
INT D = reserved
6 = start break E = reserved
7 = stop bresk F = reserved
SR (Channel Status Register):
[Bit7 | Bit6 [Bit5 [Bit4 [Bit3 [Bit2 [Bit1 [Bito |
Received Framing Parity Overrun TXEMT TXRDY FFULL RxRDY
Break Error Error Error
0=no 0=no 0=no 0=no 0=no 0=no 0=no 0=no
1=yes 1=yes 1=yes 1=yes 1=yes 1=yes 1=yes 1=yes
* * *
Note:

* These status bits are appended to the corresponding data character in the receive FIFO. A read of the status register provides these bits [7:5]
from the top of the FIFO together with bits[4:0]. These bits are cleared by areset error status command. In character mode they are reset when

the corresponding data character is read from the FIFO.

B-2

Appendix B: UART SCC2691 i1386-Drive
ACR (Auxiliary Control Register):
[Bit7 Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito |
BRG Set Counter/Timer Mode and Source Power- MPO Pin Function Select
Select Down
Mode

0=Baud 0 = counter, MPI pin 0=on, 0=RTSN
rate set 1, 1 = counter, MPI pin divided by power 1=CITO
e CSR 16 down 2=TxC (1x)
bit format 2 = counter, TxC-1x clock of the active 3=TxC (16x)

transmitter 1=off 4=RxC (1x)
1= Baud 3 = counter, crystal or external normal 5=RxC (16x)
rate set 2, clock (xX/CLK) 6 =TxRDY
e CSR 4 =timer, MPI pin 7 =RxRDY/FFULL
bit format 5 =timer, MPI pin divided by

16

6 = timer, crystal or external
clock (xX/CLK)
7 =timer, crystal or external

clock (x1/CLK) divided by 16
ISR (Interrupt Status Register):

[Bit7 Bit 6 [Bit5 [Bit4 [Bit3 [Bit2 [Bit1 [Bito |
MPI Pin MPI Pin Not Used Counter Delta RxRDY/ TXEMT TXRDY
Change Current Ready Break FFULL

State
0=no 0=low 0=no 0=no 0=no 0=no 0=no
1=yes 1=high 1=yes 1=yes 1=yes 1=yes 1=yes
IMR (Interrupt Mask Register):
[Bit7 [Bit6 [Bit5 [Bit4 [Bit3 [Bit2 [Bit1 [Bito |
MPI MPI Counter Delta RxRDY/ TXEMT TXRDY
Change Leve Not Used Ready Break FFULL Interrupt Interrupt
Interrupt Interrupt Interrupt Interrupt Interrupt
0= off 0= off 0= off 0= off 0= off 0= off 0= off
1=0n 1=0n 1=0n 1=0n 1=0n 1=0n 1=0n
CTUR (Counter/Timer Upper Register):
[Bit7 Bit 6 [Bit5 [Bit4 [Bit3 [Bit2 [Bit1 [Bito |
[cmag [crra4 | crqal | otz | oty | CTlag [cTl9 [crig |
CTLR (Counter/Timer Lower Register):
[Bit7 [Bit6 [Bit5 [Bit4 [Bit3 [Bit2 [Bit1 [Bito |
[c1m | ciTig | cTr9 | cT[4 | cT[3 | cT[2 | o[y | cmo |

B-3

1386-Drive

Appendix C: RTC72421 / 72423

Appendix C: RTC72421 / 72423

Function Table

Address Data
Az | A, | A | Ay | Register | Dg D, D, Dy Count Remarks
Value
0O [0 |0 |0 [§ Sg S S, S, 0-9 1-second digit register
0 [0 |0 |1 [S S10 So | Sio 0-5 10-second digit register
0O (0 |1 |0 |Ml mig | miy mi, | mi; 0-9 1-minute digit register
0 [0 |1 |1 |Mly Mi 40 Miyy | Migy | 0~5 10-minute digit register
0O (1 |0 |0 [H hg h, h, h; 0-9 1-hour digit register
0 [1 [0 |1 |Hyp PM/AM | hyy | hyg 0~2 | PM/AM, 10-hour digit
or register
0-1
0O (1 |1 |0 |[Dg dg d, d, d; 0-9 1-day digit register
0 (1 |1 |1 |Dy dyg | dig 0-3 10-day digit register
110 |0 |0 [MO mog | Mo, mo, | mo; | 0-9 1-month digit register
1 10 |0 |1 [MOyy mo;, | 0~1 10-month digit register
1 0 1 0 Y, Yg Y4 Yo V21 0~9 1-year digit register
1 10 (1 [1 |Yy Yso | Yao Yoo | Y10 0-9 10-year digit register
1|1 |0 |0 W W, Wy | Wy 0~6 | Week register
1 1 0 1 Reg D 30s | IRQ Busy | Hold Control register D
Adj | Flag
1 |1 |1 |0 |RegE ty ty INT/ | Mask Control register E
STD
1 1 1 1 Reg F Test | 24/ 12 Stop | Rest Control register F
Note: 1) INT/STD = Interrupt/Standard, Rest = Reset;
2) Mask AM/PM bit with 10's of hours operations;
3) Busy isread only, IRQ can only be set low ("0");
4)
Databit | PM/AM INT/STD 24/12
1 PM INT 24
0 AM STD 12

5) Test bit should be "0".

Appendix D: Serial EEPROM Map i1386-Drive

Appendix D: Serial EEPROM Map

Part of the on-board serial EEPROM locations are used by system software. Application programs must not
use these |ocations.

0x00 Node Address, for networking

0x01 Board Type 00 VE
10 CE
01 BB
02 PD
03 SW
04 TD
05 MC

0x02

0x03

0x04 SERO _receive, used by ser0.c

0x05 SEROQ_transmit, used by ser0.c

0x06 SER1 receive, used by serl.c

0x07 SER1 transmit, used by serl.c

0x10 CS high byte, used by ACTR™

0x11 CSlow byte, used by ACTR™

0x12 IP high byte, used by ACTR™

0x13 IP low byte, used by ACTR™

0x18 MM page register 0

0x19 MM page register 1

Oxla MM page register 2

Ox1b MM page register 3

D-1

1386-Drive Appendix E: 16-bit Flash/RAM Programming

Appendix E: 16-bit Flash/RAM
Programming

1. Overview

The TERN i386-Engine-P (IE-P) and i386-Drive (ID) support 16-bit Flash and 16-bit RAM. The TERN
ACTF Fash Kit now supports on-board programming/execution of the 16-bit Flash.

2. Minimum Requirements

TERN Development Kit (DV-Kit)

ACTF Flash Kit

i386-Engine-P or i386-Drive with 256K Flash and 256K RAM
TD_IE_16 Debug ROM

TD_IE_16 | OxFFFFF
— 0xF8000
16-bit Ox81FFF
Flash
256K
0x80000
OxX7FFFF
16-bit
SRAM
512K
0x00000

Figure 1 TD_IE_16 memory mapping configuration

3. Memory Mapping

Memory for the 16-bit Flash configuration is shown in 2. Figure 1. The TD_IE 16 Debug ROM is located at
the top of the memory map and is the first block to execute after power-on/reset. At power-on/reset,
TD_IE_16 selects the dual chip 16-bit SRAM as memory.

3.1 Generating a HEX File

Y ou must modify the MAKEFILE to generate aHEX for the 16-bit Flash. Modify the
BOARD flag to IEP16 or D16 respectively. Use the flash512.rm configuration file when

Appendix E: 16-bit Flash/RAM Programming i1386-Drive

generating HEX files. Seethe ACTF Flash Kit manual for the rest of the details about
generating a HEX file.

3.2 Downloading a HEX file into the 16-bit Flash

Be sure that the step 2 addressis set up correctly. If you are not sure, run step2.c in the
debugger.

The downloading process requires an intermediate loading program, |_f16.c, to prepare the
16-bit flash and receive the fina HEX file. | fl16.cislocated in C: \ TERN\ ACTF386. Copy
|_f16.cinto the C: \ TERN\ 386 directory.

E-2

Install TD_IE_16 Debug ROM in ROM socket..

Use t.bat to download |_f16.c via Turbo Debugger. Do not run the code in the
debugger.

Exit the debugger and set the Step 2 jumper.

Exit DOS and open aterminal window. Set baud rate for 19200.

Reset the board by shorting J1 pinl5 = /RST and J1 pin 13 GND. The 16-bit SRAM is
not battery-backed. Do not power off the board to reset the board.

Thel_f16 program will request your hex file. Use Send Text File to transfer your
HEX file to the board.

The program will modify your step 2 address to 0x80000.

Power off and on the board to reset. With the Step 2 jumper on, your code should be
executing from the 16-bit flash.

1386-Drive Appendix E: 16-bit Flash/RAM Programming

Figure 2 shows a sample session with |_f16.

&% Terminal - TERN_TRM

File Edit Settings Phone Transfers Help
ERASIHNG AM29F488 SECTOR B8-7 08:800808 to B8:F7FFF * -
SECTOR

SECTOR
SECTOR
SECTOR
SECTOR
SECTOR
SECTOR
SECTOR
USE TERH ACTF-Kit to MAKE DOWHLOADABLE HEX file for your APPLICATION
Ready to recieve Intel Extend HEX file at 19288 baud

(ULIRLIDLLIDLTERUIE IR ULIR LR LLERUIR LR UL UL LR LRI LR LA UL IR LR LLERLLELLIEL AU CR L LR LL LR LR LU R LRI LA
(ULUTUIDLLIDLLEEUIELLAEL U ELIR LD LLERUIRR LR LU LR LRI LR LU LRI R LI LIEL LA UL IR LR LLERLIR LR EL R LLI R LLEELIE LRT AU
(LULLIDLLIDLTEEUIELLAELUAULUR LR LLERLIRE LR UL UL LR LRI LR LU IR LR LRI LR AU LR LR LR LT LI LR LA DL LRI EL LT AU
(ULLTLIDLLIDLTEEUIEL LR ELUR LR LLERUIRL LR UL EL R LR LLER IR LR LU IR LR LLER LI LR LAUL LR LR LI DT LIR LR LA UL UL DL EE LT LA
(LUTULIDLLIDLIEEUIEL IR UL LR LR LLERLIRT LR UL UL LR LRI LR LR IR LR LRI IR LA UL LR LRI ER IR LRL LA EL LR EL LI AU
UVUUUUUUUUUUUUUUUUUUUUUEND of File Record

AM29F4B0BT FLASH PROGRAMMIHWG IS DOME *

YOU HMAY SETUP HEW JUMP ADDRESS in EE with ‘step2.c’

Setup STEPZ jumper, puweroff or reset, to run your code

APPLICATION CODE in FLASH STARTING ADDRESS=0x8000:00080

b B = BN Y - B L R -]

Al M 4

Figure 2 Sample session

Appendix F: DCD1 and Multi-function Pins i1386-Drive

Appendix F:

Special TDREM _IE DCD1 and Multi-function Pins

A special debug ROM TDREM _IE DCD1 isdesigned to use J2 pin 1=DCD1 as STEP2
jumper.

There are several pins are sharing functions on i386-Drive design. Please check and modify
your hardware and software to suit your application.

DCD1=J2.1=U06.5 (HP2020 U/D)=STEP2
DSR1=J2.4=U08.5 (HP2020 U/D) = U011.16 (ADC data out)
T5=LED = U011.15 (ADC chip enable)

The DCD1 must be pull up to VCC viaa 10K resistor, so it is high at power-on.
The U06.5 HP2020 pin 5 must be cut, in order to alow DCD1 STEP2 work.

DSR1 is shared with U08 HP2020 pin 5, U011 ADC pin 16, and STXCLK.
If you want to use DSR1 as STXCLK, you must cut HP2020 U08 pin 5, and
Use software to disable U011 ADC with T5 high, or LED off.

Some of your problem may be related to the above conflict. Please remember, the
DCD1 ROM isonly special developed, and is not used or tested by many users.

In order to use SSIO, use DCD1 DEBUG ROM, and run STEP2,

1) Y ou may have to cut off HP2020 pin 5.

2) Try to run c:\tern\386\samples\ie\step2.c once to setup a correct jump
address.

3) Download led.c program, power off.

4) Setup STEP2 jumper at J2 pin 1=2 for DCD1=GND, then power on.

5) Led should running in STEP2. If you can not make STEP2 work and tested in
Standalone, there is no chance or reason that you can make ACTF work.

6) Make sure you can make the "led.c" worksin STEP2.

7) You must turn the LED off, or T5 high, in order to disable the U011 ADC (if installed).
8) If the ADC isinstalled, and if you are turn ON the LED, which means
T5=low, the ADC will be enabled and hold ADC data out pin = DSR1 low, then
The SSIO transmit will not work.

Please refer to 1386-Drive schematics for details.

0 1 155US[6661 2T 1110V 5 7ea
HOS NWA -TA | g
JaqunN juaunsog|az IS
o 110 938 1 6SZOHY /. Svoovez
2111l ZISHaH 7L 7T R uDP BST IS0 7 §id 5 |YIS SSA g
o1 1 % O Py1es5 7 e e & le 0Ed 0T
J1S Ne3L ¢ v SL 01|18 25 ao 2|55, ov |2 Ted 6
L oV vle | SS[E_ 0N 8§ T YTOHY. 9 s Ztd
oV e, 1% Bl n & o 0N §_| 43d SO 5 £6d /.
ASE4NOT JTBNT TV A VERE] INT 8 | 47,2 B G4d /01939 159 [L ed 0
o) FARE s X 169200S VNI 6] Y0 8E SINT g 11| 20 V1S Sed §
S00-6d oc ETV oL v AeT oa | 158 0T | A% VEIGGINI/ W/ ¢ 9 s DL v
ATTH A € _|_ v otn SINT/ € n_mv\ mwm z SH/ 1 Mw Ow 9INT 050/ € o_wos wwn\u/ T a® AN £ V]
N._A_E Zo3 A STV, Sesyman b M Iy ma er] sy Yéleomwi oan v 9 99N e oon AQH ¢
T oY g st 43 Kot _ex am_er] N $F [T Sy o] 287 9 [Awen ao Tyt 2w
TH1g IV 8ETOHYL ot 9 ! bX &v TZINI/ 1sd 9 T 1VaA
8TV sa 2 8 d1d 20N N TEIXWN
A DTN =T-o) - com— ra v
6V ¥D7 7 J4 22 Psorm s A v a— n
vS 763 Y _zed e 9 ov
ord i Plo v 20 02159 N [E_ian T 0T A
A A 0 12] 53 SY) [o " 4T 0 STd 6 N
IS/ etd o) 5 0d _ze ;| ax lEaxl A PN 020 0T ISH/ s W
S/ € m> g [E TN %> e 9T ¢z) Ced 1 V]
DS/ N Sve T ad/ s 6C EEY o SD vINIJ
ai’ s T v 20N an 5 o SINT/ G
son ao 2 =N 9IN1/
o oH LINT/ €
4NT 0 &W Jot a2
1o VZEZXWN S559TO17 610 AT STyt T
E5%) pS— S9TO11 paareYh 20N 20N
N D 6_1"7)1 ozl [B—d/ aNo od — VA 0Q = SOA
ax1 ot ¢ O [L_axi/ aps | TN s | A
Free) O TT| 5 -zo 2 N 9 158 g E—EL o 17, g E—EL NV S8t011
@\3) ETAN AN K e Q% Sl oA 4 M p a
SO et 0 B = N8 T oL A8 T 0L AS€4NOT s |9 Sy _ax1
2 sy v |9 Pre ven g2n P SIH o |3 a0 e
+A\ aNo Gt DA +TD 2 +A\ S1D 0N o 2 ano
en &9t T+ Qﬂl_ 581 T ax
20N 51N S09TOLT 20N 02N
T e S5 —aw
o - 8 Oo 00 L 0 a7 5 a5t B9 ae 8A9TVd
1V oz vz oV SId 9 s ol VZEZXWN W € 2T oo €T 8a
=¥ 3ixn, v SH 9 5 o5 S/ ea ad/ «a e 61/0/ A
Ted o¢ £ &V SD_ v € axL/ 250 0 v TTad 7 7 Z v 1 0T
e 9¢ i ev £ € ozd Izd za ev = a o1a AR bW gl
ae | Bl z S 0 X 6| 9% J2 5 oax za st 4 & ot &v w1 99T o HAYS [B 86
a7/ 8220 v [t _sv © X1 0T |51 O%k [L0axL/ ta_or] X3 e _ev ea_61] o0 0T 1 Wi/ €1 D01 sife 7
> — 1 7 (=Y
0d__6¢ 02_ov 1axL T AN A i 8 202 6 __21d zisd/ v L ad]/
o 80 ov & 5Y X XL Il oni -2 o—2A —£{ N Wit o G241 e L Loy Sl &
T 5e] D Y rer gy O Ns) Vs G er] ™ 20 7o) o 61 N Fg— Z510a via 5 ST YO /1 vl Ty
ze |89 LIV ety o o—9— D TAXL/ OIL O re——5 =Ty A RN b _ec | A8 STd g T/ J1] 211 el zed
<€ za ON o A R LN 3w oM @®v (2 H O/l z1
Qe WNsrew 93 Ssoaxil aB_ST| D g A A Y [oon 9l vz 2 Y a ova/er] B ¢le = m
07d_ve 5 v g0axL/ $15 59 T +10 ze 3 >av / Sz v__ood V7 6 Z_ ved
V€ | eq oN L £ 5 o-t& L2lzx D/ 3o Asa 43 (L LI 5OA MDD /0I
selSa on z 1 ¥ 20N 5N A BN K e WA | E WA-TAx Koyl ! 02 T €ed
Trooe| 19 N I WA 2 [T 308 GOoAL | BN [awe 20N gin
A ze | 2N e e €evel M 00N 82 T+
o e ga N W v Y o%|7@_|
ov]ata oy |6 T €3] Mee o0zz n
caemsa B & [02z 10 <Nu||_| T Y AW IVA Y TV 710 oo
via ey | 719 0LV TON 7 TV
vy mmo MW S oo
S1d G¥
ao etV [HZ WW %
o J— ___ JE— l — —
CoNwEa A v |99 MO et |8 MO et %8 M [e AT A B I
1V 8t T 8T oo @It i @ Ist 8T oo Qs FATC:IA o & 51 o
008462 &N 6T o s 6T o bt 5q 6T | o ot €10 61 | oq o
0z €T 0z €T 0z € 02 €T 8
12| 49 o 2T T2 | 4 v 2T a1z o 2Ty sta 1z | 2d o TV
OYQHaH | R g =R g W/ ze| o/ ity wavda/zz| ! ¥ [T1iev
cr QrCaH &V T LA T e |9V &¥loT Tv 2| 9V ¥ [oTev Tiv 2 |9V ¥ [oTev
~ _ £c13p; v 2L Lclxp) ey O 0/ &V EYEE-Y
S8 0F o g 66 B0 a1 o o ¢ OB ve | P Ere ve |2 Eoe @ ve| X B e vy @/ ve| R B e vy
V__sc 76 60 bed &] 7] 8 A 8 AN AT &V AR AR-TA 8 oV
v o 2 Sge ot d s 2 SooiNy oz | & vy 9z & AW oy oz &Y VI ov oLy 92| &% SV) ov
v ve o See T 72 Sag 12 8Y NIg— 12 8Y A ov 12 &Y N ISV ov 12| 8 N9y
re o ofe i Lo o-BalN) EV IV |2 €V IV 2 -5 ey v A Y el v A
e O O Gl o & Bemm v E— Beiyy v H— LIV 82 0y 2Ty SV 8¢ iy ZTv
SV 0% 62 WM/ 91d 1T 2T_b1d 62 v 62 v M /62 v €TV MW\ / 62 v ETV
vV 8z o Sz ¢l Ild € 0Td T0e |80 rvie— Toe | N SV — On 06| 0 YWIE_ S Dono0e]8R YWiE S
L& 1qv ov Fe— 0& ljod /1 otV Fo— £l dtv 9TV € ey 9Tv
N o¢ SZO N LINI1/ G M e |5 Wiz Te |NDd7 StV owv 1e| &Y SVIZ U o te| A SN Ie v
ab e 3 Sez e otd /. 2T z€ n T z€ en T 30N € T 6TV OOA c¢ T 61V
4 e¢ T2 T Ted 6 Z €1
8—5c0 o558 19010 o2 4d ¥Z0TLaNvd YZOTAONd ¥Z0TLaNvd o vZ0TLanvd
/T 1S9 €ed €¢ Z_ved Qce 8N ¥ 71N
ST isd/ Tdla s¢ 2 Taxd sD %Y s Fo)
€T o0 1Id /¢ 3 2 TaxL o Y Y 0
g1 Q SIT A _Ged 62 O o 06 9ed ivan 20N Y] ¥ ¥ szoohv
o1 3 ST6 JHon B/ e 3 S ee oox | | [Wen Ty | [[PRuRy | [FV T 0 © © D B
N O Ot—gr eae0 O—btreg 8 o T Yy IPE ¢
o O £ O o _H__||_| Yz AS+ ON [g—
ZIo1 S e S T i O er ve o X X WVaA 1Sa 7 G 34 T
ad ¢ e © O ov awo ZWVIX o) 20N I

-
o
™M
Set,
SiE
=l
i
o~

z 199US[666T ‘2T 1110V 5 1eq

aa] (v} (aa]

HOS NV -2a | g
JagqunN juaunoog|az IS €vsed
3A A -98€ | eled e MV
6av aND =
8111 Tisd 5TV T T
olav sav
aD aD T VIQY 2 8IavY
Ne3L LS s ao et | 33 LAY e gy
-z K w3 oav B4
mNU_Ho|> mmo_Ho|> s SLs1$0,, Mo s
Torsiod BINe e gy
a1/~ olst 2L &VIe ciav
0z02dH MV 0202dH MV 6T | SoA oay [e—E
JE— G son - YTIOHYL OA 02 T 0Tav
70 1T 0T 70 1 T | TTon
o wo (8 —sx lliog wo =5 AV O s
sa et 9 OB 7 a@er|Hd IOrg—e Zxai 6 |Vr AElo £v52d
va 1sd/ L8 va 1S/ AS VE |2
v ALY 2 , TIsa7 Fize) XA T £v5zd
=5 oﬁ 9 =15 n_ozB 9 @R 1TY3 oF 180 6av ao
9 S Tgsq 9 S Taod D 2 £ 19D VT 0T
gaa o/ 8a o/ V9 AT olav sav
E<l v 2dH/ €4 2 v TdH / 2O €T | T v 21| © 6 N
za T3S za 13s A VI ¢l 3y sav
2d 8 SEERE 2d 8 SEERE] 7 T o ao e 8 /v
& D =T = a Mo e Sh o = +43d eav
L1oon “oa ob.l oA oa fe—2 H ¥lys5 sav
0¢ T 0od 0Z T oa zL Shoa v N
20N 80N 20N Elp) STd S 2
ASTY Tl N &V
£av.
MO v L
00z ~OL_8 £ 2av
00¥20L1 107 Ve
2a8aH 0r2011 o OR 02 T oav
2a8aH do ae 20N oton
o < o zp L S5 Joa N
ot 5 _ao ot) ¢ AT Sed 9 |9 N SO0SYTLT
g 2 S g S (@3] oL, |70 3 0S¥TOLT
+4587 9 Scaaxds +vSEr o S vaxd 0TH 04 8 o =
S8y 88 EEXLT VS8V E 8 g £ VOXL/ TZn SEL 0l ga [
SH ™ T oa
tiger | LIS 39 [or o
PO Sz a8
L33y ea
NI Pr=viocl WA <)
Gz e 9 Qe e
VZEZXUN S81011 SON 0z | 3 o e
“0 ozd 12 Feem— ane a s 50 X WAA_Te Ty weo [
vaxd 6| 9% 1% [Evax s 9 7 eax1 92 sa aw _zz| X NS [E
2106 VaXL 0T ST ©% [LWaxXL] +g58y 0 | ¥ a0 E_1D el CeWiA FAS BN ¥ w<n:
O 8aXL T Ji A A 858y _2 | 90 M E_aw 9250 a1/ ve T W/
d Z G -9 El T &d a 60N
= = ITd +20 5 <d T
=) T s +90 20N vTon zd
x1/ v |9 e L eq— 308 0T €z8 o1
LIS A : g >ed— 2 _
S 10S) aw st | N A=A S8¥011 g 109 6 0189 6 Zza 8
+%0 59 T +9 ao a g z0a_8 119 _8 Ted L
20N Zion s |y 2 [T ¥axL aaa— €09 7 FAL-) 029 5
+y58Y o | ¥ 9 [E_oo L27a— $09 o) vea g
vesr_2 |9, M [aw =n S08 G vT9 G 28 v
&8 T vaxd o[908 ¢ S18 v 928 €
20N £ToNn A TSON log € 918 € /28 2
YoaMaH Y9aMaH ez i) kaoN)a ”oN T
+ T T 20N
vi2aY %9 €9 ao v €9 €A oon 0T TONY oop 10T BN
2avA 292 S0 Z To IA
DVAA_69 00 S and =09 O 65 oA
Ongs 2 S El v 85 3 s = Z3) I3 za] [IzE
oL 95 & 3°S qQv_ 05 o 386 oav (=] FYE] ERE] S2a ERE]
03 75 3 €SO0 60V ¥S 3 < 5 1AV oW/ vea v ved v
S03 25 3 o 15 p0d AV 25 3 S 15 _edv od | 0Z3 anD 0z anD
03 [& 03 'a| G
b b e o2 5 tholsksl[*Y YFlokbiekltiolskl| <’ Tqokllelelrlolelele| ™=
e Ly 09 S By L oIy i3 TRREf[E[E|E 84141 141414 14 1
L3 ¥Y g7 9¢d LIV v¥ £y 910V /GE£1929080¢ I0¥592.01TAS 10v592.01dS
Scd ¢y 1y vcd SIAY_¢c¥ 1y v1AV 1a ddddaNgamdy gy 22d ¢¢CZCNEVVIND qu 22d ¢¢CZINZVVYND qy
0¢3 or o S 6e Ted €1av_ov_o 6 21av g 8T| 19 6606X% x7/1 (X[2w 223 81| (o ddddd d o7 P [9 aa7 Zza 8r| ¢S ddddd 4 o7)
Tiagg 3 Sje Eod T e 3 &0 1] & 14 4l [gTd1 €3 61 5% 90d ['s 003 Ee8 er 54 90d
e & o—t d aD _9¢ 5 oS 9€ OO 9¢ ! g ed | 1Y 013 02171 zod 103 018 0¢) ypg zod
ol3 re o o-£8 113 old re o o-£8 419 A 1 g ov [e—£d! 113 Ig 714 god (e—¢d 118 1c opy €0d
213 2 3 Q1 Els via g8 o o e Glo o _zz | N Neawm FA= I 9 [e_eo3 Zra_zz|5) 54 [e—€o0
[AENS 62_G1d Z19_0¢ 6c__c1d ec| N, @69z0s IN[T ec| 2, vou [ec| N, oo
913 82 g gl LT3 01d 8¢ /¢ 11d OINT7 vz | o »on rordll K720 L) BT ve | 15 S Idd oos voT ETE v pig S Idd dod
4 Sc 22d_9¢ G¢ _ted s¢liq oq | ez E ¥I3 G¢ | gpgq 99¢8ldd o0g [EZSO0T T8 Selgrg S5¢8ldd 904
90 v2 S ecvd 28 b2 €2 Ted 5z ™o vy odl [ers S13_o¢] gd 99d v 903 8 o¢| aid oo
2do ez T za ¢ec TZ Ged 12 9v¢zod d__ 13 T O 913 /¢ a d Ty 2,03 919 /¢ a &
o O d o d 00 d4dddXoX125D ed | 2 LTd A29S¥OEZTOS WA/ : 1Td AL9SYDEZTOS WA/
a1 0c blee ol e 5L 428 od 8¢ OO0OLNHX X4/ ov ed 413 8¢ AdadaNddaas Ovan/ /18 8¢ Adaaanddaas
T STe Zog ST e0g .
10 ETED 708 ET 508 Nrose ‘e con SRLEREIERIERR T SREERIEERERIR
SO_2L g S TLiD 908 ¢t O S Tr/0d 4dot
01 o6 80 0T & 6 cdHo 6T00 G0N _ —1sd 0N _ —1sd
Ged 8 o A VINT/ A > ,__OOA deoo _H_ 0N ZQ I Zza | I
S o 2 & s —awe VO 9 S WD WX OX 50 T T
ae v LS TN S & aveav PIVIX a
z = —aw ao ¢ T IA+ ¥a & ¥a €0

g
oN
o
b
o

	i386-Drive Technical Manual
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Installation
	Chapter 3: Hardware
	Chapter 4: Software
	Appendix A: i386-Drive Layout

