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1 INTRODUCTION AND OVERVIEW

1.1 The tool and the targets

The Bound-T WCET tool from Tidorum Ltd was entered in the WCET Challenge
2006 for the following target processors:

- Renesas H8/300, using the GCC and IAR compilers. However, we ran out of time
and have full results only for the GCC compiler.

- SPARC V7/V8, using a GCC-derived compiler called BCC, from Gaisler Research.

To introduce the report on this work, we briefly describe Bound-T and these target
processors. Further information on Bound-T is given in the User Manual
(reference [1]) and the Application Notes that describe how Bound-T works with
these target processor (references [2] and [3]).

The Bound-T WCET tool

Bound-T applies static analysis to a machine-code executable file, extracting call-
graphs and control-flow graphs. It analyses the integer arithmetic computations to
find loop counter variables (loop induction variables) and thus bounds on the
number of iterations of the loops. Bound-T then uses the loop bounds as constraints
in the Implicit Path Enumeration Technique (IPET) to find an upper bound on the
execution time of the program.

When Bound-T cannot find (good) bounds on loops the user writes assertions in a
specific form in a text file that Bound-T takes as input in addition to the executable
program to be analysed. Assertions can also state other facts about the program, for
example bounds on the values of significant varibles. This report will show the
assertions that were used to assist the analysis of each benchmark program. We will
also try to explain why they are needed.

The functionality and user interface of Bound-T is divided into a general part,
independent of the target processor and described in the Bound-T User Manual [1],
and a part specific to each target processor and described in the corresponding
Application Note [2][3].

The Renesas H8/300 processor

The Renesas H8/300 is an 8-bit microcontroller with a 16-bit address space.
Programs for such small machines are often written with special consideration for
the limitations of the machine, for example the lack of 32-bit registers and the lack
of floating-point hardware. More about this target in section 2.1.

The SPARC processor

The SPARC is a 32-bit RISC processor that is much more powerful than the H8/300.
SPARC processors often include a hardware floating-point unit. The SPARC is better
able to run programs that are written in the same high-level style as for mainframes
or workstations. More about this target in section 2.2.
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1.2 Analysis procedure

The teams

The WCET Challenge benchmarks were analysed separately and more or less
independently by Tidorum itself and by Ms. Lili Tan from the University of Duisburg-
Essen. Ms. Tan also analysed the benchmarks with the other tools entered in the
Challenge.

This report describes Tidorum's analysis of the benchmarks.

The rounds

Following the suggestion from the WCET Challenge Steering Group, we made from
one to four “rounds” of analysis of each program, with increasingly ambitious goals
and different levels of annotation:

- Round 0: An initial quick analysis of the program structure, without trying to
compute a WCET. This round is an addition by Tidorum and not in the Steering
Group's suggestion. The main difference with respect to Round 1 is the use of the
option -no_arithmetic to skip Bound-'T's “arithmetic analysis” for loop bounds. The
typical result of this round is the call-graph and a list of all the loops in the
program. While these results are useful for planning the WCET analysis we do
not report them here because they are redundant with the results from the later
rounds. This round finds a WCET bound only if the program contains no loops or
dynamic jumps.

— Round 1: Analysis for WCET with the minimal (standard) set of options and
annotations for this target processor. For Bound-T this means the inclusion of the
arithmetic analysis. This round finds a WCET bound if all loops are automatically
bounded.

- Round 2: Analysis for WCET adding assertions to handle those parts of the
program (eg. loops) that could not be analysed in Round 1. This round should
always find a WCET. This round is omitted if Round 1 found a WCET.

— Round 3: Analysis for WCET with improved or additional assertions to sharpen
the WCET bound (reduce over-estimation) compared to the possibly rough result
from earlier rounds. This round is omitted if the result from earlier rounds
cannot be improved with Bound-T.

The analysis computer

The host computer on which we used Bound-T is a Compaq Presario X1000 laptop
with an Intel Centrino processor running at 1.4 GHz and 512 MB RAM. The cache
size is not known. The operating system was Debian Linux.

Bound-T was compiled for this machine with the GNAT 3.15p compiler in the
normal way with Ada run-time checks enabled including integer-overflow checks
and stack-overflow checks. The GNAT compilation options were -g -O2 -gnato -fstack-
check. For long analyses most of the computation time is spent in the Omega
Calculator (program oc) which was compiled using g++ with the options -g -O2.
Although the Omega Calculator often uses between 0.5 and 1 GB of RAM, thus using
virtual memory, we observed no thrashing in these runs, not even when the analysis
was aborted for taking too long. Please note that the long execution time of the
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Omega Calculator may be the fault of Bound-T which may make an inefficient
translation of the target program into input for the Omega Calculator.

1.3 Overview

After this introductory section this report is structured as follows:

Section 2 describes the chosen target processors, the chosen cross-compilers and
the compilation options.

Section 3 describes each benchmark program and its Bound-T analysis, including
particular problems and their solutions or work-arounds. The analyses of the
mathematical library routines for the three compilers are explained in dedicated
subsections at the end of this section, in so far as the analysis is independent of
the particular benchmark application.

Section 4 presents a summary table of the benchmarks and the analysis results.

Section 5 draws some conclusions for the future development of Bound-T.

The table in section 4 reports the resulting WCET bounds for the benchmark
programs for the chosen target processors and cross-compilers. Please note very
carefully that readers should not, from these WCET bounds, draw any conclusions
regarding the code-generation performance of the compilers, firstly because the
numbers are only upper bounds and may be more precise (less overestimated) for
one compiler than another, and secondly because we used the same source-code for
all compilers, while embedded software developers usually adapt the source-code to
use the good features of their chosen compiler.

1.4 References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Bound-T User Manual.
Tidorum Ltd., Doc. ref. TR-UM-001.

Bound-T Application Note: Renesas H8/300.
Tidorum Ltd., Doc. ref. TR-AN-H8300-001.

Bound-T Application Note: SPARC V7, V8, V8E.
Tidorum Ltd., Doc. ref. TR-AN-SPARC-001.

H8/300 Programming Manual.
Renesas Technology Corporation, http://www.renesas.com.
Originally published by Hitachi Ltd. First edition, December 1989.

H8/3297 Series Hardware Manual.
Renesas Technology Corporation, http://www.renesas.com.
Originally published by Hitachi Ltd. 3rd edition, September 1997.

The SPARC Architecture Manual, Version 8.
Revision SAV080SI9308. SPARC International Inc. 535 Middlefield Road, Suite
210, Menlo Park, CA 94025.

SPARC-V8 Embedded (V8E) Architecture Specification.
Version 1.0, October 23, 1996. SPARC International, 3333 Bowers Avenue, Suite
280, Santa Clara, CA 95054-2913, USA.
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2 TARGET PROCESSORS AND COMPILATION

2.1 Renesas H8/300

The processor

The Renesas (formerly Hitachi) H8/300 is an 8/16-bit processor with a von
Neumann architecture. For a full description see references [4][5]. The H8/300 has
16 general 8-bit registers which can also be used as eight 16-bit registers (pairs of 8-
bit registers). Most instructions operate on 8-bit data; only a few addition and
subtraction instructions work on 16-bit data.

In addition to the general (data) registers, there is a dedicated 16-bit Program
Counter (PC) and a dedicated 16-bit Stack Pointer (SP). The PC is controlled with a
conventional set of branch, jump and call instructions. The call and return
instructions automatically push and pop the return address (PC after call) onto and
from the stack (SP). Specific push and pop instructions can push and pop the
general registers.

The timing of the H8/300 is very deterministic. Dynamically variable timing occurs
mainly for memory access instructions depending on the accessed memory area: on-
chip or off-chip.

The H8/300 is an obsolete processor; it has been succeeded by more powerful
descendants with expanded architectures such as the H8/300H. Tidorum chose the
H8/300 for the WCET Challenge because this processor is used in the Lego
Mindstorms™ robotic construction kit that is often used to teach embedded and real-
time programming. Tidorum has worked with Méalardalen University to implement a
version of Bound-T for the H8/300 and this tool is used in real-time courses at
Mélardalen.

The cross-compilers and the compilation options

Tidorum used two compilers: the GNU gcc compiler, version TBA, and the IAR
H8/300 compiler, version TBA.

The longest “native” data type in the H8/300 is 16 bits and so we used compilation
options that define the 'C' type int to be 16 bits. The 'C' type Iong is 32 bits, while
char is 8 bits and short is 16 bits TBC. These choices were made without looking
at the benchmark programs. During the analysis of some programs, we discovered
that the programmers had assumed 32-bit int types, which means that overflows
will (would) occur in the executables that we generated. These benchmarks should
be corrected to use Iong variables where necessary.

TBA verbatim compiler options

Specific analysis problems on the H8/300 target

TBA prose text, the following are memos.

Switching between 8- and 16-bit parts of a variable.
Shifting loops for C expressions of the form i >>j, i<<j.

Floating point and other math routines in software.
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2.2 SPARC V7/V8

The processor

The SPARC is a well-known architecture originally introduced by Sun Microsystems.
For a full description see references [6][7]. The SPARC is a fairly typical 32-bit RISC
machine with a von Neumann architecture. The instruction pipeline has two
architecturally visible stages, decode and execute, and control-transfer instructions
like jumps and calls are usually delayed by one instruction (the delay slot).

An unusual and distinctive SPARC feature is the register file and register window
concept. The 32 general working registers, each 32 bits wide, are divided into 8
global registers, 8 in registers, 8 local registers and 8 out registers. There is one set of
global registers, while the register file contains several (usually 8) sets of in, local
and out registers. Each set is called a register window and provides access to 8 in, 8
local and 8 out registers. Only one such 24-register set is accessible at one time and
is called the current register window. Typically, a subprogram gets its parameters
from the in registers in the current window, uses the local registers in the current
window for its own purposes, and passes parameters to other subprograms via the
out registers in the current window.

The Call instruction is usually combined with the Save instruction which shifts the
current window pointer by 16 registers in the register file so that those registers that
were out registers before the shift (in the old window) are now in registers (in the
new, current window). Thus, the caller-assigned parameter values in these registers,
which the caller assigned as out registers, are now magically seen as in registers in
the callee, while the callee can use 8 new local registers without any effect on the
local registers in the old window (the caller's local registers). Conversely, returning
from a subprogram usually executes a Restore instruction that shifts the current
window pointer by 16 registers in the other direction. Thus, the callee can pass its
results via its in registers, which the caller sees as out registers.

Several consecutive Save instructions can of course exceed the capacity of the
register file, and then a trap occurs and the trap handler spills (stores) one or more
register windows into main memory (usually into the stack) to create a new window
for the callee. This is called the register file (or register window) overflow. Likewise,
several consecutive Restore instructions can empty the register file — that is, the
Restore should make the current window pointer point at a window that was spilled
and is no longer present in the file. In this case a register file (or register window)
underflow trap occurs and the trap handler loads one or more register windows from
main memory (usually from the stack) to bring the required register window back
into the register file.

Instruction timing in the SPARC is usually very deterministic. As in the H8/300,
variation occurs mainly for memory accesses. Some SPARC models have floating-
foint units and the execution times of the FP instructions are usually variable (data-
dependent).

The first version of Bound-T for the SPARC was created specifically for the ERC32, a
radiation-tolerant implemenation of the SPARC V7 architecture used in European
space applications. The version of Bound-T used in the WCET Challenge is a further
development that covers the SPARC V8 instruction set as used in the newer LEON2
implementation. However, the timing model is still that of the ERC32.
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The later SPARC processors are normally used with on-chip caches (separate I and D
caches). However, Bound-T does not include a cache analysis because caches were
not used with the ERC32.

The cross-compiler and compilation options

To generate the SPARC binaries we chose the Bare C Compiler, BCC, from Gaisler
Research. This is GCC adapted for the ERC32/LEON processor family. Version TBA.

In this compiler, the 'C' types int and long are 32 bits wide, char is 8 bits and
short is 16 bits TBC.

The compiler options are conventional: -g -O2 TBA. We used the default target
SPARC version which is V7, as on the ERC32. Note that SPARC V7 does not have
instructions for integer division and multiplication; library routines are used instead.

Specific analysis problems for the SPARC target
TBA prose text, the following are memos.

Irreducible integer math routines: .div, .rem et al. These are considered “standard”
assertions for this target and are thus allowed in Round 1 when the program uses
such routines. Alternatively use SPARC V8 which has MUL/DIV instructions.

The execution time of SPARC floating-point unit (FPU) instructions is usually
variable, depending on the values of the floating-point operands and on the kind of
FPU implemented. Bound-T currently models the FPU of the ERC32 processor where
the worst-case times are quite large, but on the other hand the worst-case times
occur only for “denormalized” operands which are rare. For the analyses here
reported we let Bound-T use the worst-case FPU execution times. As an experiment
we also analysed the most FPU-intensive benchmark, the papa_ap program, with the
Bound-T option -fou_typical which assumes “typical” FPU execution time. This
reduced the WCET bound from 62 753 cycles to 39 328 cycles (63% of the worst-
case-FPU value).
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3 BENCHMARKS

3.1 Introduction

This section dedicates one subsection to each benchmark program in the WCET
Challenge 2006 and three subsections at the end to the mathematical libraries in
each of our three targets.

For each benchmark program we give a short description of the program's nature
and discuss the analysis problems and solutions for each of our three targets. We
summarise the inputs to Bound-T in a table. The inputs are command-line options
and assertions, the Bound-T term for “annotations” that support the analysis, most
often by declaring the maximum number of repetitions of loops when Bound-T could
not discover this on its own. The input tables have the following form, with the
number of Rounds varying across the benchmarks. Note that the Comp column
identifies both the target processor and the cross-compiler. In the Options/assertions
column we include only those command-line options and assertions that influence
the analysis, and omit those that only control the form and amount of results and
supporting information that Bound-T emits.

Comp | Round Options / assertions
gcc 1 Command-line options in Round 1 on the H8/300 / gcc target.
Assertions in Round 1 for the H8/300 / gcc target, if any.
2 Command-line options in Round 2 on the H8/300 / gcc target.
Assertions in Round 2 for the H8/300 / gcc target.
iar 1 Command-line options in Round 1 on the H8/300 / IAR target.
Assertions in Round 1 for the H8/300 / gcc target, if any.
2 Command-line options in Round 2 on the H8/300 / IAR target.
Assertions in Round 2 for the H8/300 / IAR target.
bce 1 Command-line options in Round 1 on the SPARC / BCC target.

Assertions in Round 1 for the SPARC / BCC target, if any.

2 Command-line options Round 2 on the SPARC / BCC target.
Assertions in Round 2 for the SPARC / BCC target.

3.2 Program adpcm

Nature of the program

This program is some kind of signal-processing application; the comments call it an
implementation of the Adaptive Differential Pulse Code Modulation algorithm.

The program was originally written with floating-point computation. For the WCET
benchmark, this was changed (by the WCET Challenge Steering Group) into
(nonsensical) integer computation. However, the changes seem to assume a 32-bit
int type, while our H8/300 compilers have a 16-bit int (with the compiler options
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that we used). This means that some computations will overflow, which contradicts
Bound-T's assumptions.

Analysis problems for the H8/300 GCC target

The overflow problem mentioned above makes it difficult to predict the number of
iterations of some loops, in particular the argument-reduction loops in my sin and
the iterative approximation loop in the same function.

Analysis problems for the SPARC BCC target

In Round 1 we assert the time for the .div routine because it is irreducible and
otherwise would not be analysable. Bound-T found bounds on all loops except the
two argument-reduction loops in my sin and the series-addition loop in the same
function. On the SPARC, with 32-bit int, the computation of the argument for
my sin does not overflow. Still, Bound-T cannot compute the range using its
arithmetic analysis because the expression for the argument to my cos, f*PI*i,
involves multiplication by the variable i and Presburger Arithmetic only allows
multiplication by a constant. Although i is a loop counter and thus bounded (0 .. 2),
Bound-T does not yet apply such bounds to expressions within the loop (this would
require interval arithmetic analysis, not yet done in Bound-T).

Computing manually, we find that the argument f*PI*i to my cos is in the range
0..2000*3141*2 = 0 .. 12 564 000, which means that the argument to my sin is
in the range 1 570 - 12564 000 .. 0 = -12 562 430 .. 0. This means that the first
argument-reduction loop, while (rad > 2*PI), does not execute at all, and the
second argument-reduction loop, while (rad < -2*PI), executes at most 1 1999
times. We can assert the range of the argument (rad) for my sin, and Bound-T
should the in principle be able to deduce these bounds on the loops. However, this
does not work here, because Bound-T assumes the wrong signs for the literal
(immediate operands) that are used in the loops. Thefore we must assert the loop-
repetition bounds directly.

The number of iterations in these argument-reduction loops is context-dependent;
using the value 1 999 for all calls to my_sin (through my cos) is an overestimation
by a factor of 2 in this program.

There is no simple reasoning for the number of iterations of the series-addition loop.
In the real program, with floating-point computation, the bound could be based on
numerical analysis. Here we assert the number 1000 which is found as a comment in
the code at this point.

Options and assertions: adpcm

Comp | Round Options / assertions
gce 1 -lego
2 -lego
subprogram " mulsi3"
loop repeats 32 times; end loop;
end " mulsi3";
subprogram "_my_sin"
-- The argument reduction loops. Because of overflow in the
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-- computation of "rad" with 16-bit integers, we assume that
-— "rad" can have any value in the 16-bit range.
all 2 loops that not call " _my fabs" repeat 5 times; end loop;

-- The series-addition loop; we use the comment that suggests
-- a MAX of 1000. Again because of overflow, we don't know
-— if the loop even terminates with 16-bit integers.
loop that calls " _my fabs" repeats 1000 times; end loop;
end " _my sin";
subprogram "_scalel"
-- The shifting loop. Some manual analysis of the code
-- gives the following limit:

loop repeats 11 times; end loop;

end "_scalel";

iar

bee

-leon2 -via_positive

subprogram ".div"
time 149 cycles;
end subprogram ".div";

-leon2 -via_positive

subprogram "my sin" (variable "my_ sin|rad" -12_564_430 .. 0)

-- The first (decreasing) argument-reduction loop is
-- unrepeatable based on the argument bounds above.

-- The second (increasing) argument-reduction loop:
loop that executes +"50" repeats 1999 times; end loop;

-- The series-addition loop:
loop that calls "my fabs" repeats 1000 times; end loop;

end "my_sin";
subprogram ".div"

time 149 cycles;
end subprogram ".div";

3.3 Program cnt

Nature of the program

The program initializes a two-dimensional integer array to random numbers and
then traverses the array to count and sum separately the negative and non-negative
array elements. There are a total of four loops, grouped into two loop-nests with an
outer and inner loop. The counter bounds are 0 .. 9 in each loop.

The Test function contains a float variable TotalTime that is assigned (to
dummy values) but never used. It seems that gcc optimized out this variable because
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it does not appear in the symbol-table and the code contains no floating-point
computation. Still, this variable should be removed from the source.

Analysis problems for the H8/300 GCC target

None. We ran only Round 1 for this simple program.

Analysis problems for the SPARC/BCC target

The program uses the irreducible library function .rem, for which we asserted a
measured time.

Options and assertions: cnt

Comp | Round Options / assertions
gce 1 -lego
iar
bce 1 -leon2 -via_positive

subprogram ".rem"
time 156 cycles;
end subprogram ".rem";

3.4 Program compress

Nature of the program

This is a data compression program from the SPEC95 suite.

General analysis problems

The subprogram compress has an inner loop using the label probe. This seems to be
some kind of hash-table probing; without a deeper understanding of the algorithm
we do not know how many times this loop can repeat, so we assume one execution
of the loop body.

Analysis problems for the H8/300 GCC target

The arithmetic analysis in Round 1 was taking too long, so Round 1 was aborted and
gave no result.

When we tried to assert loop bounds for Round 2 we found that several loops were
difficult to “identify” in the assertion language, and we had to use the last-chance
method of giving the machine-code address of the loop (which means that the
assertions have to be updated when the program is relinked so that the loop
addresses change).

Analysis problems for the SPARC/BCC target

The program uses the irreducible library functions .div and .rem, for which we
asserted a measured time.
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Round 1 with default options led to an overflow error (assertion failure) in the
Omega Calculator during the arithmetic analysis of the cl block subprogram. We
used the Bound-T option -calc max to reduce the limit on the magnitude of the
literals passed to the Omega Calculator from 40 000 000 to 5 000 000. This avoids
the overflow error, but the arithmetic analysis of the compress function was taking
too long and was aborted.

The loop in the writebytes subprogram is bounded by the conjunctive condition
i < n && 1 < BITS, where n is a parameter and BITS is 16. In theory Bound-T
should discover the context-independent bound (16) and then not try for context-
dependent bounds (n). However, BCC generates code that stores the results of the
comparisons 1 < nand i < BITS as 0 or 1 in general registers and then computes
the conjunction with a logical AND instruction. Bound-T's arithmetic analysis does
not model AND instructions, so Bound-T does not discover this loop bound. We
assert the fixed bound 16.

In the output subprogram Bound-T fails to bound the loop that calls putbyte,
perhaps because the loop again has a conjunctive termination condition. We asserted
the range of values of the local variable bits to help.

In the cl1_hash subprogram Bound-T fails to bound the first loop because the
(constant) initial value of the counter i is passed from the global variable hsize
(through the parameter hsize) and Bound-T does not detect the static initialization
of the global variable. We asserted the value of the hsize parameter.

Options and assertions: compress

Comp | Round Options / assertions
gce 1 -lego
2 -lego

subprogram "_cl_hash"
—-- Computed for HSIZE = 257.

-- The loop with step -16:
loop that executes "05FC" repeats 16 times; end loop;

-- The loop with step -1:
loop that executes "06A2" repeats 1 times; end loop;

end subprogram;
subprogram "_output”

-- The loop for "code << r_off":
loop that executes "0782" repeats 0 .. 7 times; end loop;

-- The loop for "code >>= 8 -r off:
loop that executes "07B4" repeats 1 .. 8 times; end loop;

-- The "putbyte" loop:
loop that calls " putbyte" repeats 1 .. 16 times; end loop;

-- The loop for "maxcode = MAXCODE (n_bits)":
loop that executes "08FA" repeats 9 .. 16 times; end loop;

end subprogram;
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subprogram "_compress"
—-- The loop that sets "hshift" = local-word-10:
loop that executes "0260" repeats 8 times; end loop;

-- alternative: that defines address "1lwl0", TBC.

-—- The loop "while (InCnt >0)...":
loop that calls "_getbyte" repeats 50 times; end loop;

-— The loop "c << maxbits":

loop that executes "02EC"

-- The loop "c << hshift":

loop that executes "0314"

—-- The "probe" loop:
loop that executes "0392"

repeats 16 times; end loop;

repeats 0 times; end loop;

repeats 1 time; end loop;

end subprogram;

iar

bce

-leon2 -via_positive -calc_max 5_000_000

subprogram ".div"
time 149 cycles;
end subprogram ".div";

subprogram ".rem"
time 156 cycles;
end subprogram ".rem";

-leon2 -via_positive -calc_max 5_000_000

subprogram "compress"

-—- The loop that sets "hshift":
loop that defines "hshift" repeats 8 times; end loop;

-—- The loop "while (InCnt >0)...":
loop that calls "getbyte" repeats 50 times; end loop;

-- The "probe" loop:
loop that is in loop repeats 1 time; end loop;

end "compress";

subprogram "cl_hash" (variable address "p0" <= 257)
end "cl _hash";

subprogram "writebytes"
loop repeats 16 times; end loop;
end "writebytes";

subprogram "output"
variable "bits" 1 .. 16;
end "output";

subprogram ".div"
time 149 cycles;
end subprogram ".div";

subprogram ".rem"
time 156 cycles;
end subprogram ".rem";
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3.5 Program cover

Nature of the program

This program is evidently a benchmark for switch/case structures. It has three
subprograms, each containing a single for-loop which contains a switch-case
structure using the for-loop counter with a dense case numbering (0, 1, 2 ... limit),
plus a default case. The non-default cases all contain the same statement while the
default case has a different statement.

The number of non-default cases is 10, 60 and 120 respectively in the subprograms
swil0O, swi50 and swil20. The number of for-loop iterations is 10, 50 and 120
respectively. We do not know if the inclusion of 10 superfluous (infeasible) non-
default cases in swi50 is intentional.

The compilers usually translate such dense switch/case structures into jumps
through address tables, a form of register-indirect dynamic jump. In swil0 and
swi50 the H8/300 gcc compiler seems to recognize that the non-default cases are
identical and combines their code, reducing the switch/case to a simple decision
between the default and non-default code. For swil20 this does not happen,
perhaps because gcc has a static limit on the number of cases that it can compare
and combine. Thus, swi120 is translated into a jump through an adress table.

This benchmark would be improved by placing different statements in the different
case branches to prevent such unrealistic optimisation.

Analysis for the H8/300 GCC target

In Round 0, without arithmetic analysis, Bound-T is unable to resolve the dynamic
jump in the switch/case statement in swil20, so the flow-graph for this
subprogram is incomplete. This is quite expected. However, Bound-T finds the path
to the default case, so the incomplete flow-graph does contain a loop. The
arithmetic analysis in Round 1 resolves the dynamic jump (creating the 120
branches of the switch/case statement) and finds bounds on the loops.

Analysis for the SPARC/BCC target

The BCC compiler for the SPARC does not combine code from the identical cases of
the switch/case statements, at least not in this program. Using the arithmetic
analysis Bound-T finds bounds on the switch/case indices and accesses the
address tables accordingly to build the control-flow graphs. In swi50 the bounds
0 .. 49 on the loop-index lets Bound-T omit the ten infeasible cases 50 .. 59.

Options and assertions: cover

No assertions were used.

Comp | Round Options / assertions
gce 1 -lego
iar
bee 1 -leon2 -via_positive
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3.6 Program crc

Nature of the program

As the name hints this benchmark demonstrates Cyclic Redundancy Check
computation for octet strings. As is usual for SW CRC, a 256-element look-up table is
precomputed to show the effect of a given octet on the accumulating CRC. This
avoids looping over the bits of each octet.

General analysis problems

The look-up table is a static local variable (icrctb) in the icrc function. The table
is initialized dynamically on the first call of icrc. This means that the first icrc call
can take considerably longer than later calls.

The main function calls icrc twice. Thus, the initialization should be included in
the first call but not in the second call. Bound-T's analysis does not discover this fact
(because the exact effect of calls is not propagated into the caller's environment).
Moreover, the Bound-T assertion language does not, at present, let us assert this
fact. We can, however, compute a WCET bound that omits all initialization by
asserting that the initialization code in icrc is never executed. This is our Round 3.
We then manually compute the correct WCET bound, including only one
initialization, as the average of the result of Round 1 (two initializations) and the
raw result from Round 3 (no initializations). This is the WCET* reported in the
summary table in section 4.

In our opinion this sort of dynamic initialization on first call should be avoided in
real-time programs. The initialization of the look-up array should be in a separate
subprogram.

Analysis for the H8/300 GCC target

Round 1 succeeds for this target without any assertions.

Analysis for the SPARC/BCC target

Round 1 fails to bound the loop in the function icrc; for some reason (under
investigation) Bound-T does not find the loop-counter j. For Round 2 we asserted
the loop using the maximum value of the parameter 1en which is 42. This maximum
value can be found in the source-code or using the Bound-T option -trace params to
display the computed bounds on parameter values. For Round 3 we excluded the
initialization code as explained above and computed the better WCET bound
manually from the results of Round 2 and Round 3.

Options and assertions: crc

Comp

Round Options / assertions

gcc

1 -lego

3 -lego
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subprogram "_icrc"
all calls to " _icrcl" repeat 0 times;
end calls;

end " _icrc";

iar

bce

1 -leon2 -via_positive

2 -leon2 -via_positive

subprogram "icrc"
loop that not calls "icrcl" repeats 42 times; end loop;
end "icrc";

3 -leon2 -via_positive

subprogram "icrc"

—-- Exclude the table initialization:
all calls to "icrcl" repeat 0 times; end calls;

-- Use maximum value of "len":
loop that not calls "icrcl" repeats 42 times; end loop;

end "icrc";

3.7 Program duff

Nature of the program

This program demonstrates “Duff's device”, a coding trick that unrolls a loop
(duplicates the body a certain number of times and divides the iteration count by the
same number) but still accomodates a number of iterations that is not a multiple of
the unrolling factor. In this program, the loop is a copying loop and is unrolled by
the factor 8. The drawback of this device is that it involves jumps into the loop body
from outside the loop, which in 'C' can be done by goto statements or, as in this
example, by mingling a switch-case structure with a do-while loop in an
unstructured manner.

This device creates a control-flow graph that is not reducible, because the loop has
multiple entry points (multiple loop heads).

Analysis problems

Bound-T can currently analyse only reducible flow-graphs, so cannot analyse the
function duffcopy in this benchmark.

Options and assertions: duff

Comp | Round Options / assertions
gce 1 -lego
iar
bee 1 -leon2 -via_positive
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Results

Error message highlighting the irreducible flow-graph in duffcopy. Loop-bound
and WCET for the initialize function which has a reducible flow-graph.

3.8 Program edn

Nature of the program

The main part of this benchmark seems to be some form of JPEG compression
algorithm (Discrete Cosine Transform) .

Analysis problems for the H8/300 GCC target

The original benchmark used counters of type long int for all loops. However, all
such loops in the benchmark are short enough for type int. Since Bound-T on the
H8/300 analyses only 8-bit and 16-bit computations, we changed the loops to use
counters of type int (through a typedef count_t).

The main function defines and initializes two local arrays, of 200 short integers
each, for which the compiler generates two calls of memcpy to copy the initial data
into the stack-allocated arrays. The memcpy function contains two loops, one for
copying word-by-word and the other for copying octet-by-octet. The word-by-word
loop is used when the source and destination addresses and the number of octets to
be copied are all even numbers. Bound-T is unable to find bounds on these loops
because they are terminated by a comparison of the initial and final destination
pointers which does not fit Bound-T's concept of a loop counter. Bound-T is also
unable to decide which of the two loops is used because the decision is based on the
values of the pointers, which are computed from the stack pointer SP and Bound-T
does not track the (absolute) value of SP

The 1atsynth function contains a for-loop that Bound-T fails to bound because the
counter's final value is negative. The model that Bound-T currently uses for H8/300
arithmetic (specifically the condition flags) assumes that loop counters are non-
negative.

The jpegdct function contains several right-shift operations, which gcc translates
into loops, where the amount of shift is given by a variable (m or n) that is modified
in the outermost of the three for-loops that contains these shift operations. Bound-T
fails to bound these shift-loops because it currently does not compute bounds on
these loop-variant variables. Such bounds could be computed with Bound-T's
arithmetic analysis because these variables are induction variables (constant initial
value, constant increment on each loop iteration). However, because the amount of
shift varies, the resulting WCET would be overestimated. We assert ranges on these
variables and let Bound-T infer bounds on the shift-loops. Unfortunately we cannot
use the C identifiers in these assertions, for two reasons: firstly, Bound-T for the
H8/300 and gcc currently does not recognize symbols of local (automatic, stack-
allocated) variables; secondly, although these variables are of type short (16 bit
word) the gcc compiler is smart enough to use only the low octet of these words. We
therefore write the assertions with the machine-level identifiers for these octets.
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Analysis for the SPARC/BCC target

Round 1 is aborted in the arithmetic analysis of jpegdct by an assertion failure in
the Omega Calculator. In Round 2 we disabled arithmetic analysis for this
subprogram; Bound-T found bounds on all loops in other subprograms. The three
nested loops in jpegdct have constant bounds and are thus easy to bound with

assertions.

Options and assertions: edn

Comp | Round Options / assertions
gce 1 -lego
2 -lego
subprogram "_memcpy"
-- The word-by-word loop is the one chosen.
loop that executes "0F80" repeats 200 times; end loop;
-- The octet-by-octet loop is not chosen.
loop that executes "OF8C" repeats 0 times; end loop;
end "_memcpy";
subprogram "_latsynth"
loop repeats 99 times; end loop;
end "_latsynth";
subprogram "_jpegdct"
variable address "1lb57" 0 .. 3; --m
variable address "1lb59" 13 .. 16; --n
end "_jpegdct";
subprogram " mulsi3"
loop repeats 32 times; end loop;
end " mulsi3";
3 TBA to improve the context-dependent “>>" loops.
iar
bee 1 -leon2 -via_positive
2 -leon2 -via_positive

subprogram "jpegdct"
no arithmetic;

-— Outermost loop (for k in 1 .. 8)

loop that contains (loop that contains loop)
repeats 8 times;

end loop;

-- Middle loop (for i in 0 .. 7)

loop that is in loop and contains loop
repeats 8 times;

end loop;

-— Innermost loop (for j in 0 .. 3)

loop that is in (loop that is in loop)
repeats 4 times;

end loop;
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end "jpegdct";

3.9 Program insertsort

Nature of the program

The main function applies an insertion sort algorithm to an 11-element int array.
The first element at index zero is a sentinel, not data. Thus, there is an inner loop
and an outer loop. The outer loop is written as a while-loop but is really a simple
counted loop. The inner loop is a while-loop with a logical termination condition
based on the order of array elements.

Analysis problems

The inner loop is not a counted loop. It has an induction variable (j), and this
variable could be bounded by the fact that it is used as an array index, but Bound-T
does not do such analysis automatically. The number of iterations in the inner loop
depends on the order of array elements, but the maximum number of iterations
depends also on the counter (i) of the outer loop (“triangular loop” problem). For
Round 2 we asserted bounds on j which leads to an overestimated WCET
(“rectangular” approximation). For Round 3 we asserted an average number of
iterations of the inner loop to get a “triangular” WCET bound.

Options and assertions: insertsort

Comp | Round Options / assertions
gcc 1 -lego
2 -lego
subprogram "_main"
loop that is in (loop)
variable " main|_j" 1 .. 10;
end loop;
end " _main";
3 -lego
subprogram "_main"
loop that is in (loop)
repeats 4 times;
end loop;
end " main";
iar
bec 1 -leon2 -via_positive
2 -leon2 -via_positive

subprogram "main"
loop that is in loop
variable "main|j" 1 .. 10;
end loop;
end "main";

3 -leon2 -via_positive
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subprogram "main"
loop that is in loop
repeats 4 times;
end loop;
end "main";

3.10 Program janne_complex

Nature of the program

This program seems to be a synthetic test case for complex loop computations and
termination conditions.

Analysis problems

The program contains a loop-nest with complicated and irregular dependencies
between the variables modified in the inner and outer loops and used in the
termination conditions. Neither loop is a simple counted loop of the type that
Bound-T can analyse, thus the only solution would be to assert iteration bounds for
the loops. However, the loop logic is so complex that no simple reasoning can give
the loop bounds; the program must be executed or simulated. Therefore, we have no
results for this benchmark.

Options and assertions: janne_complex

Comp | Round Options / assertions
gce 1 -lego
iar
bece 1 -leon2 -via_positive
Results

Error messages for unbounded loops and unbounded WCET.

3.11 Program matmult

Nature of the program

The program multiplies two square matrices in the straight-forward way by a 3-deep
loop-nest. The loops are simple, rectangular (actually square) for-loops with static
limits and steps. An initialization function contains a 2-deep loop-nest, also of this
simple type.

Analysis problems

None, except the irreducible . rem library routine for the SPARC.

Options and assertions: matmult

Comp

Round Options / assertions
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gce 1 -lego
iar
bee 1 -leon2 -via_positive
subprogram ".rem"
time 156 cycles;
end subprogram ".rem";
3.12 Program ndes

Nature of the program

The program seems to do some encryption or decryption, perhaps with the DES
method (to judge from the name of the program). It defines two types immense and
great that seem to represent very large integers, respectively 64 and 96 bits.

The C program contains a great number of loops, but all are simple counted loops of
the kind that Bound-T can handle.

Analysis problems for the H8/300 GCC target

When compiled with gcc the program makes 14 calls to the memcpy function which
contains two loops, and Bound-T cannot find the bounds of these loops, so it reports
a total of 28 unbounded loops. The loops in gcc's memcpy were described above in
section 3.8. To bound the loops with assertions we must find the number of octets to
be copied; this parameter is passed to memcpy in register r2. Examination of the
machine code (with Bound-T's option -trace decode) suggests that the memcpy calls
are used to copy immense and great values, meaning 8 or 12 octets per call. To
verify this we executed Round 1 with the additional Bound-T option -trace params
which makes Bound-T display the derived bounds on parameters for calls to
subprograms where the parameters may help to find context-dependent loop
bounds. The result is as follows:

Param Bounds:tp wc06 ndes.exe:exit.c: ks@119-=> memcpy:81:r2:r2=8
Param Bounds:tp wc06_ndes.exe:exit.c:_ks@121-=> memcpy:81l:r2:r2=8
Param Bounds:tp wc06_ndes.exe:exit.c:_ks@123-=> memcpy:81l:r2:r2=8
Param Bounds:tp wc06 ndes.exe:exit.c: des@71-=> memcpy:81:r2:r2=8
Param Bounds:tp wc06_ndes.exe:exit.c:_des@72-=> memcpy:81l:r2:r2=8
Param Bounds:tp wc06 ndes.exe:exit.c: des@75-=> memcpy:81l:r2:r2=12
Param Bounds:tp wc06_ndes.exe:exit.c:_des@75-=> memcpy:81:r2:r2=12
Param Bounds:tp wc06 ndes.exe:exit.c: des@79-=> memcpy:81:r2:r2=8
Param Bounds:tp wc06_ndes.exe:exit.c:_des@80-=> memcpy:81:r2:r2=8
Param Bounds:tp wc06_ndes.exe:exit.c:_des@84-=> memcpy:81l:r2:r2=12
Param Bounds:tp wc06_ndes.exe:exit.c:_des@94-=> memcpy:81:r2:r2=8
Param Bounds:tp wc06_ndes.exe:exit.c:_des@95-=> memcpy:81:r2:r2=8
Param Bounds:tp wc06_ndes.exe:exit.c: main@227-=> memcpy:81:r2:r2=8
Param Bounds:tp wc06_ndes.exe:exit.c: main@227-=> memcpy:81l:r2:r2=8

This shows that r2 is indeed 8 or 12 at each call of memcpy. The H8/300 requires
int data to be word-aligned and so we assume that all immense and great
variables are also word-aligned which means that memcpy uses its word-by-word
loop. For Round 2 we asserted the worst-case bound of 6 iterations for this loop,
giving an overestimated WCET. The WCET bound could be sharpened in Round 3
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TBA by analysing the execution time of memcpy for 8 octets and asserting this
execution time separately for each such call of memcpy when the call can be
identified with the assertion language. Identifying these calls is easy for calls from
main or ks, because all memcpy calls from these functions copy 8 octets. The des
function makes both kinds of memcpy calls so the 8-octet calls should be identified
based on their position in loops, which is more difficult. TBA.

Analysis for the SPARC/BCC target

The compiler and library routines add no loops to those in the source program. All
loops are bounded automatically in Round 1.

Options and assertions: ndes

Comp | Round Options / assertions
gce 1 -lego
2 -lego
subprogram "_memcpy"
-- The word-by-word loop is used.
loop that executes "0EIC" repeats 6 times; end loop;
-- The octet-by-octet loop is not used.
loop that executes "0E28" repeats 0 times; end loop;
end "_memcpy";
iar
bec 1 -leon2 -via_positive

3.13 Program ns

Nature of the program

Searching for a given value in a 4-dimensional array by a straight-forward traversal
of the array using a 4-deep nested loop. All loops are simple for-loops with static
counter ranges.

Analysis problems

None. Round 1 succeeds without any assertions.

Options and assertions: ns

Comp | Round Options / assertions
gcc 1 -lego
iar 1 -lego
bcc 1 -leon2 -via_positive
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3.14 Program nsichneu

Nature of the program

The program simulates a Pr/T net and was generated by a code-generation tool at
C-LAB, Paderborn, Germany. It contains just one function, main, with 126 if-
statements, each of which introduces a local block and one local i f-statement, for a
total of 252 if-statements. For the H8/300 with gcc the main function contains
12 103 instructions. This would be grotesque in a hand-written program but is not
unlikely for code generated from a transition-system model.

Analysis problems

The main function contains one loop which is a simple counted loop that Bound-T
normally could handle. However, Bound-T's data-dependency analysis is not strong
enough to eliminate the huge amount of other computation in the main function, so
the arithmetic analysis bogs down and was aborted for the SPARC target. For the
H8/300 and GCC target the auxiliary program (the Omega Calculator or “oc”) that
Bound-T uses for the arithmetic analysis detects a false assertion (possibly an
internal error) and so Round 1 self-aborts for this target, but it would no doubt have
been aborted for taking too long also.

Note also that the if statements in main have complex conditions which are
translated into several conditional branches in the machine code - typically each of
the 126 if nests generates nine conditional branch instructions.

For Round 2 we asserted the number of iterations of this (only) loop.

It is quite possible, perhaps very likely, that there are correlations between the if
conditions, which means that there may be a large number of infeasible paths in the
main function. Bound-T has at present no way to find those paths, so the computed
WCET bound may be correspondingly pessimistic.

Options and assertions: nsichneu

This program is too large for the -lego H8/300 device so we use the largest H8/300
model, the H8/3297.

Comp | Round Options / assertions
gcc 1 -3297
2 -3297
subprogram "_main"
loop repeats 2 times; end loop;
end " _main";
iar
bcc 1
2 -leon2 -via_positive

subprogram "main"
loop repeats 2 times; end loop;
end "main";
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3.15 Program recursion

Nature of the program

The program computes Fibonacci numbers using a recursive function.

Analysis problems

Bound-T cannot analyse recursive programs and thus fails on this benchmark.

Options and assertions: recursion

Comp | Round Options / assertions
gce 1 -lego
iar
bec 1 -leon2 -via_positive
Results

Bound-T reports that the program is recursive, shows the recursion cycle (function
£ib calling function £ib) and stops without computing a WCET bound.

3.16 Program statemate

Nature of the program

This code was automatically generated by the STAtechart Real-time-Code generator
STARC which was developed at C-LAB, Paderborn, Germany. The original StateChart
specifies an experimental car window lift control. Thus, this program is in some
ways similar to the nsichneu program. However, here the state-transition system is
encoded as switch/case statements and the code is divided into 8 subprograms,
including main.

General analysis problems

The program contains one loop, in subprogram FH DuU. This loop is not a counted
loop; it repeats state transitions until the state is “stable”. Thus, Bound-T would not
have found any bounds for the loop, and a simulation or execution of the program
seems necessary for finding the number of iterations.

Analysis for the H8/300 GCC target

For this target the subprogram FH DU is so complex that the arithmetic analysis (in
the Omega Calculator) for Round 1 was aborted after one hour without result.
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Analysis for the SPARC/BCC target

For this target the code of the subprogram FH DU is not so complex and Round 1
finishes quickly, but it fails to bound the loop, as expected.

Options and assertions: statemate

Comp | Round Options / assertions
gce 1 -lego
iar
bcc 1 -leon2 -via_positive
Results

As we cannot find bounds on the loop in FH DU we have no WCET bound to report.
We report the results for Round O or Round 1 just to show the number of
subprograms and loops and the analysis time (for the incomplete analysis).

3.17 Program papa_ap

Nature of the program

This is the “autopilot” part of the PapaBench program for an autonomous aircraft. It
executes a flight plan and communicates with the “fly-by-wire” part (program
papa_fbw, section 3.18)which runs the servo controls.

General analysis problems

Round 1 was taking too long in arithmetic analysis and was aborted. We made a
Round O to get the call-graph and started analysing the subprograms from the
bottom up, creating assertions as necessary.

The subprogram nav_home has two loops (in the invocation of the Circle macro)
and Bound-T can bound neither loop. The loops actually result from the macro
NormCourse and are while loops that normalize an angle (in degrees) by adding or
subtracting 360 degrees until the variable is in [0, 360). We assume and assert one
repetition of each loop.

The subprogram auto nav (unusually stored in the “header” file flight_plan.h) has
eight loops that Bound-T cannot bound. Six of them arise from three invocations of
the macro Circle and two from an invocation of the macro Goto3D; in the end,
both macros use the macro NormCourse, the same as in nav_home, above. We
assume and assert one repetition of each loop.

The subprogram course pid run has two loops that Bound-T cannot bound; they
arise from an invocation of the NORM RAD ANGLE macro and are while loops that
normalize an angle by adding or subtracting 2m. We assume and assert one
repetition of each loop. The same happens in the subprogram estimator -
update_ir_ estim which uses NORM_RAD ANGLE twice and thus has four such
loops.
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The main subprogram has two loops that Bound-T cannot bound: an initial loop that
waits for 30 ticks of the timer period function, and an eternal loop that runs the
tasks. The execution time of the first loop is irrelevant (initialization) and for the
eternal loop we are happy to measure one repetition, so we assert one repetition for
both loops.

Analysis of the H8/300 GCC mathematical libraries

Most of the problems in the analysis for the H8/300 come from the mathematical
library routines. The analysis of these routines for the H8/300 and the gcc compiler
is described in section 3.19 below, because it is independent of the application and
thus the same for the papa_ap and papa_fbw benchmarks. The major part of the
rather long analysis time (see section4) is spent on the library routine
____kernel rem pio2f.

The memcpy function is used only from the mathematical libraries as described in
section 3.19. We used the Bound-T option -trace calls to check that there are no other
calls to memcpy.

Analysis for the SPARC/BCC target

We first compiled the executable with BCC using -O2 optimization for all modules.
Surprisingly, this made BCC unroll the eternal loop in the main function, duplicating
the calls to the tasks and also making the control-flow graph irreducible. To avoid
this, we reduced the optimization to -O7 for the file mainloop.c, keeping -O2 for the
other source-code files. The loop in main is then not unrolled and more importantly
the control-flow graph is reducible and thus analysable with Bound-T.

The subprogram nav_update consists of a call to compute dist2 to home
followed by a call to auto_nav. The BCC compiler in-lined the call to auto_nav
which means that assertions on loops in auto nav must be written as if the loops
were in nav_update. Moreover this is the only call to auto nav, so auto nav
does not appear at all in the analysis as a separate subprogram and is not shown in
the call-graph.

The loop in the subprogram adc_init was not automatically bounded because the
loop-counter is of type uint8_ t and the compiler masks the value with 255 after
incrementing it. An assertion that constrains the value to 0 .. 255 helped Bound-T
analyse the loop.

Analysis of the SPARC/BCC mathematical libraries

The mathematical libraries again posed some analysis problems. The analysis of
these routines for the SPARC/BCC target is described in section 3.21 below, because
it is independent of the application and thus the same for the papa ap and
papa_fbw benchmarks.

Options and assertions: papa_ap

Comp

Round Options / assertions

gce

1 -3297

2 -3297
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subprogram "_main"
-— The initalization wait and the eternal loop.
all 2 loops repeat 1 time; end loops;
end " _main";
subprogram "_nav_home"
-- From NormCourse.
all 2 loops repeat 1 time; end loops;
end "_nav_home";
subprogram "_auto_nav"
-- From NormCourse.
all 6 loops repeat 1 time; end loops;
end "_auto_nav";
subprogram "_course pid run"
-— From NORM_RAD_ ANGLE.
all 2 loops repeat 1 time; end loops;
end " course_pid run";
subprogram "_estimator_update_ir estim"
-- From NORM RAD ANGLE.
all 4 loops repeat 1 time; end loops;
end "_estimator update_ir_ estim";
(See section 3.19 for assertions on math library routines.)
iar
bee -leon2 -via_positive -max_par_depth 0

subprogram ".div"
time 149 cycles;
hide;

end subprogram ".div";

subprogram ".urem"
time 154 cycles;
hide;

end subprogram ".urem";

-leon2 -via_positive

subprogram "main"
-- The initalization wait and the eternal loop.
all 2 loops repeat 1 time; end loops;

end "main";

subprogram "nav_home"

-- From NormCourse.

all 2 loops repeat 1 time; end loops;
end "nav_home";

subprogram "nav_update"

-- Inlined subprogram "auto_nav":

-- From NormCourse.

all 6 loops repeat 1 time; end loops;
end "nav_update";

subprogram "course_pid_run"

-- From NORM RAD ANGLE.

all 2 loops repeat 1 time; end loops;
end "course pid run";

subprogram "estimator_ update_ir_ estim"
-- From NORM RAD ANGLE.
all 4 loops repeat 1 time; end loops;
end "estimator update ir estim";
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subprogram "adc_init"
—- Local variable "i" is an octet.
variable address "p4" 0 .. 255;
end "adc_init";

3.18 Program papa_fbw

Nature of the program

This is the “fly by wire” part of the PapaBench program for an autonomous aircraft.
It communicates with the “autopilot” part (program papa_ap, section 3.17) and runs
servo loops to control the aircraft.

General analysis problems

Round 1 was taking too long in arithmetic analysis and was aborted. We made a
Round O to get the call-graph and started analysing the subprograms from the
bottom up, creating assertions as necessary.

The subprogram uart print string has a loop over the string parameter that is
terminated by the null octet at the end of the string. The number of iterations
depends on the string length in a way that Bound-T does not detect. However, this
subprogram is called at only one place, with a constant string of length 65, so the
loop is easy to bound with an assertion.

The main subprogram has an eternal loop that invokes the cyclic and sporadic tasks.
We assert one execution.

Analysis problems in the H8/300 GCC mathematical libraries

The same problems occurred as for the papa_ap program described earlier (however,
some library routines were used in one program but not in the other). We used the
same assertions as for papa_ap. See section 3.19.

Analysis for the SPARC/BCC target

We first compiled the executable with BCC using -O2 optimization for all modules
but met the same problem with an irreducible main loop as in the papa_ap program.
As for papa_ap, we reduced the optimization to -Of for the file main.c, keeping -0O2
for the other source-code files.

Bound-T could not bound the loop in the subprogram adc_init because the loop-
counter i is declared as an unsigned octet variable but is held in a 32-bit register.
BCC then uses a logical AND instruction to mask i to 8 bits after incrementing it,
and so Bound-T does not detect the increment of 1. We asserted that i is in 0 .. 255
which lets Bound-T deduce that the AND with 255 has no effect on the value of i
and reveals that the loop increments i by one, after which Bound-T finds the loop-
bound. The same problem arose in the subprograms servo init, servo -
transmit and to_autopilot_ from last_radio, and we used the same solution
for all.
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Options and assertions: papa_fbw

Comp | Round Options / assertions
gce 1 -3297
2 -3297

subprogram "_uart_ print string"
-- The loop over the string, up to the null octet.
loop repeats 65 times; end loop;

end " _uart_print string";

subprogram " _main"
loop repeats 1 times; end loop;

end " _main";

(See section 3.19 for assertions on math library routines.)

iar

bcc 1 -leon2 -via_positive

2 -leon2 -via_positive

subprogram "main"

-- The eternal loop.

loop repeats 1 times; end loop;
end "main";

subprogram "uart print_ string"
-- The loop over the string, up to the null octet.
loop repeats 65 times; end loop;

end "uart_print_string";

subprogram "adc_init"
-— Variable "i" is an unsigned octet:
variable address "p3" 0 .. 255;

end "adc_init";

subprogram "servo_init"
-- Variable "i" is an unsigned octet:
variable address "p3" 0 .. 255;

end "servo_init";

subprogram "servo_transmit"
-- Variable "servo" is an unsigned octet:
variable "servo_transmit|servo" 0 .. 255;
end "servo_transmit";

subprogram "to_autopilot_ from last radio"
-- Variable "i" is an unsigned octet:
variable address "p4" 0 .. 255;

end "to_autopilot from last radio";

3.19 Math library on H8/300 - GCC

Introduction

The papa ap and papa fbw programs make extensive use of floating-point
computation and mathematical library routines, in particular trigonometric
functions. The H8/300 has no hardware floating-point unit and so the programs
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must use software routines both for the basic floating-point operations (addition,
multiplication and so on) and for the trigonometric functions. The gcc compiler for
the H8/300 uses the GNU newlib library (version 1.11.0). Most of the work in the
analysis of papa ap and papa fbw was spent on analysing these library routines.

We studied the source-code of the newlib library to understand the structure and
termination conditions of the loops. We describe the details below for the record, but
they are rather repetitive. Note that many of the loops could be bounded
automatically, or by much simpler or fewer assertions, if we would implement a few
extensions to Bound-T, chiefly the analysis of local variable references via a frame
pointer. Note also that most of the assertions for these library routines are
independent of the application program, and in fact we used the same assertions for
the papa_ap and papa_fbw programs. Most of the assertions should even be valid for
newlib on other target processors with similar floating-point precision requirements.

Analysis of newlib routines on H8/300 with gcc

The routine _ unpack_f has one loop that Bound-T could not bound, in addition
to the three which Bound-T did bound. The difficult loop seems to be some form of
normalization where a 32-bit mantissa (in r0:r1) is iteratively doubled and a binary
exponent correspondingly decremented until the most significant 1-bits in the
mantissa are placed suitably. The logic is not easy to follow, but we assume that the
loop will not iterate for more than the number of bits in a single-precision mantissa,
which is 22 and which we assert as the bound.

The routine __ pack_f has two loops that Bound-T could not bound, in addition to
the two which Bound-T did bound. Again, these loops are normalization loops, but
here they are counted loops. The problem for Bound-T is that the counter limit is
taken from a local variable that is addressed via register ré that is used as a frame
pointer, something Bound-T for the H8/300 does not support at present. As for
__unpack_f we assume and assert a limit of 22 repetitions.

The routine fixunssfsi has a loop that Bound-T could not bound. This is
again a counted normalization loop, but here a bound of 30 iterations seems to be
necessary.

The math library routine floatsisf has a loop that Bound-T could not bound,
which is very similar to the difficult loop in unpack_f and for which we also
assert 22 as the iteration bound.

The routine mulsf3 has three loops that Bound-T could not bound. One is a
simple counter loop (for counter in O .. 31) but the problem is the use of a frame
pointer, as in pack_f. The other loops are shifting and adding loops, so we

assume a limit of 22 iterations.

The routine _ fpadd _parts has two loops that Bound-T could not bound, similar
to the loops described above. We asserted a bound of 22 iterations. This function
also calls memcpy to copy 8 octets, so we assert the loop-bounds in memcpy
accordingly (assuming word-aligned data).

The routine fixsfsi has a loop that Bound-T could not bound, very similar to
the counter loop in mulsf3 . We assert 32 as the bound on iterations.

The routine divs£3 has a loop that Bound-T could not bound. Every iteration of
the loop shifts a 32-bit (possibly only a 22-bit) number one position, so we assume
and assert that there are at most 32 iterations.
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The routine _ kernel rem pio2 has 20 loops that Bound-T could not bound, in
addition to the single loop for which Bound-T found bounds without assertions.
Most of these loops could be bounded with some bounds on the local variables (m,
jx, jk, jz) but this routine uses a frame pointer (r6) so we cannot assert values of
local variables and must assert the repetition bounds of each loop.

The routine floorf has one loop that Bound-T could not bound from a shift
operation where the shift-count is bounded to 0 .. 22 by controlling conditions.
However, the shifting loop probably uses only the low octet of this variable, and
Bound-T does not propagate the 0 .. 22 bounds on the whole variable to the low
octet.

The routine _ ieee754 rem pio2 has two loops and Bound-T can bound neither
loop. The first loop is a simple counter loop, for (i=0; i<2; i++), but the local
variable i is probably accessed via a frame pointer, which Bound-T sees as an
unresolved dynamic memory access (pointer) giving an unknown value. The second
loop is a while loop that scans an array and stops when a nonzero value is found.
The array contents are unknown to Bound-T.

The routine _ ieee754_ sqrtf has two loops in the source code (ef sqrt.c).
Bound-T with default options (in particular -bcc=unsigned) considers one of these
loops (the one that handles a “subnormal” value) to be unreachable. This is probably
an error and so we used the safer option -bcc=signed for this routine. Bound-T
cannot bound these loops because they have no counters. The first loop normalises a
number by shifting it left until it has the bit 2?* set. Thus the loop repeats at most 23
times. The second loop “generates sqrt(x) bit by bit”. The loop “counter” is
initialized to 22* and shifted right one bit on each iteration until it is zero. Thus the
loop repeats 25 times. The routine also has two shift operations that create loops in
the machine code; Bound-T did find bounds for these loops.

We initially analysed these routines using default Bound-T option -bcc=unsigned
which makes some approximations in the modelling of arithmetic with signed
variables that help Bound-T find loop-bounds. These approximation may be unsafe,
and indeed Bound-T wrongly classified some parts of some routines as infeasible
(not reachable) and gave an underestimated WCET bound. For these routines we
used the safe option -bce=signed (through a “property” assertion). The routines are
____kernel _rem pio2f and ___ ieee 754 sqrt. The safe model was also used
for some other routines but there it had no effect.

Options and assertions

The library routines were analysed together with the application (papa _ap or
papa_fbw) thus using the same Bound-T options as for the analysis of the
application.

The following table shows the assertions that we used for the newlib routines that
are called in the papa_ap and papa fbw programs. Most of them identify the loops
by their offset from the start of the containing subprogram, using the phrase “loop
that executes +offset”.

Assertions

subprogram " unpack f"
loop that executes +"00A4" repeats 22 times; end loop;
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end "___ unpack f";
subprogram "__ pack f"

loop that executes +"00B4" repeats 22 times; end loop;
loop that executes +"00F2" repeats 22 times; end loop;
end " pack_f";

subprogram " floatsisf"
loop repeats 22 times; end loop;
end " floatsisf";

subprogram "___ mulsf3"
loop that executes +"0132" repeats 32 times; end loop;
loop that executes +"0232" repeats 22 times; end loop;
loop that executes +"0278" repeats 22 times; end loop;
end "__ mulsf3";

subprogram " divs£f3"
loop repeats 32 times; end loop;
end " divsf3";

subprogram "__ fpadd parts"
all 2 loops repeats 22 times; end loops;
end "__ fpadd parts";

subprogram " fixsfsi"

loop repeats 32 times; end loop;
end " fixsfsi";
subprogram " kernel rem pio2f"

-- Fact re parameters, looking at the call of this function from
-- __ieee754_rem pio2f:

-- prec = 2. Consequently jk = init_jk[2] = 9 and Jp = Jjk = 9.
-- nx <= 3. Consequently jx <= 2 and m = jx + jk <= 11.

-- A condition that needs bcc=signed for correct analysis.
property “bcc_signed” 1;

—-- for(i=0;i<=m;i++,j++)
-- See bound on m, above.
loop that executes +"0114" repeats 12 times; end loop;

-- for (i=0;i<=jk;i++) (outer loop)
-- See bound on jk, above.
loop that executes +"01B0" repeats 10 times; end loop;

-- for(j=0,fw=0.0;j<=jx;j++) (inner loop)
-- See bound on jx, above.
loop that executes +"01lE4" and is in loop repeats 3 times; end loop;

—- In the following we assume that no "recomputation" is needed. TBC.
-- This means that jz = jk <= 9 on exit from the recomputation loop.

-- The "recompute" loop.
-- We assume that no recomputations are needed.
loop that executes +"02C6" repeats 1 time; end loop;

-- The following loops are all inside the recomputation loop so
-- we must qualify them with "is in loop".

-- for(i=0,3=jz,2z=q[Jz];3>0;i++,j--)
-- Here jz is 9 .. 1.

loop that executes +"031A" and is in loop repeats 9 times; end loop;

-- In the following, we use the comment that g0 < 3 and
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-- the controlling condition that g0 > 0.

-- iq[jz-11>>(8-g0)
loop that executes +"04EC" and is in loop repeats 7 times; end loop;

—— i<<(8-90)
loop that executes +"0516" and is in loop repeats 7 times; end loop;

-- iq[jz-11>>(7-90)
loop that executes +"0552" and is in loop repeats 6 times; end loop;

-- for(i=0;i<jz ;i++), where jz <= 9.
loop that executes +"061C" and is in loop repeats 8 times; end loop;

-- The following loops are on the path that "recomputes", so they
-- are never executed by our assumption of no recomputation, above.
-- However, we put bounds on them anyway, if we decide to include
-- recomputation in the future.

-- for (i=jz-1;i>=jk;i--)

-- Here i is used to index iq[20], so the range is at most 19 .. 9
—-- considering the value of jk = 9.

loop that executes +"0812" and is in loop repeats 11 times; end loop;

-- In the following, we use the facts that jk = 9 and
—-- jk-k is used to index ig[] so it must be >= 0, thus
-- k <= 9.

-- for(k=1l;iq[jk-k]==0;k++)
-- See bound k <= 9, above.
loop that executes +"08A6" repeats 9 times; end loop;

-- for(i=jz+1l;i<=jz+k;i++) (outer loop)
-- See bound k <= 9, above.
loop that executes +"091C" and is in loop repeats 9 times; end loop;

-- for(j=0,fw=0.0;j<=jx;j++) (inner loop)

-- See bound on jx, above.

loop that executes +"097C" and is in (loop that is in loop)
repeats 3 times;

end loop;

-- Here endeth the "recompute" loop.

-- We now come to a section of code where jz can be decreased
-- by some (unknown) amount or increased by at most 1, thus
-- we will have jz <= 10 after this section.

-- while(iq[jz]==0) { jz--; q0-=8;}

-- Here jz was decremented before the loop, so jz <= 8 on
-- entry to the loop.

loop that executes +"0AD6" repeats 8 times; end loop;

-- So, as we said above, from now on jz <= 10.

-- for(i=jz;i>=0;i--)
loop that executes +"0C6C" repeats 11 times; end loop;

-- for(i=jz;i>=0;i--) (outer loop)
loop that executes +"OCFA" repeats 11 times; end loop;

-- for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) (inner loop)

-- Here k is in 0 .. min (jp, jz-i) = 9. However, the

-- upper bound on k depends on the counter i of the outer

-- loop, so this is a triangular loop.

loop that executes +"0D60" and is in loop repeats 10 times; end loop;




Page 36/47

2006-11-06 TR-RP-2006-009

Issue 1

Tidorum Ltd

-- for (i=jz;i>=0;i--)

loop that executes +"0E30" repeats 11 times;

-- for (i=jz;i>=0;i--)

loop that executes +"OECA" repeats 11 times;

—-- for (i=l;i<=jz;i++)

loop that executes +"0F8A" repeats 10 times;

-- for (i=jz;i>0;i--)

loop that executes +"103A" repeats 10 times;

-- for (i=jz;i>1;i--)

loop that executes +"1112" repeats

-- for (fw=0.0,i=jz;i>=2;i--)

loop that executes +"11F8" repeats

end " kernel rem pio2f";
subprogram " ieee754_rem pio2f"

-- for(i=0;i<2;i++)

end loop;

end loop;

end loop;

end loop;

9 times; end loop;

9 times; end loop;

loop that executes +"067C" repeats 2 times; end loop;

-- while(tx[nx-1]==zero) nx--;

—-- Here nx is initialized to 3 before the loop.
loop that executes +"071C" repeats 3 times; end loop;

end " ieee754_rem pio2f";

subprogram " ieee754_ sqrtf"

-- A condition that needs bcc=signed for correct analysis.

property “bcc_signed” 1;

-- for(i=0; (ix&0x00800000L)==0;i++) ix<<=1;
loop that executes +"00DC" repeats 23 times; end loop;

-— r = 0x01000000L; while(r!=0) {...

;5 r>>=1;

}

loop that executes +"01lA4" repeats 25 times; end loop;

end " ieee754 sqrtf";

subprogram "_ floorf"
-- 0x007ff£ff£>>70

-- Use the controlling conditions jO0 < 23 and jO0 >= 0.

loop repeats 22 times; end loop;
end "_floorf";

subprogram "_memcpy"

-- Assertions for calls from fpadd parts.

-- The word-by-word loop is used.

loop that executes +"0014" repeats 4 times; end loop;

-- The octet-by-octet loop is not used.
loop that executes +"0020" repeats 0 times; end loop;

end "_memcpy";

-- Some routines that may be sensitive to -bcc=unsigned
-- and should be analysed with the safer -bcc=signed.

subprogram "__ divsf3" property
subprogram "__ floatsisf" property
subprogram " mulsf3" property
subprogram "__ pack f" property

"bcc_signed"
"bcc_signed"
"bcc_signed"
"bcc_signed"

1; end;
1; end;
1; end;
1; end;
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3.20 Math library on H8/300 - IAR
TBA

3.21 Math library on SPARC - BCC

The analysis of the math library on this target is made easier by the assumed
presence of a Floating-Point Unit which means that the basic floating-point
operations are implemented by machine instructions instead of software routines.

The Gaisler Research BCC compiler that we used for this work comes with the
newlib library version 1.13.0. Unfortunately, but following tradition, the library is
provided without debugging information, which means that Bound-T cannot identify
loops by source-line numbers and we cannot assert variable-values using the
symbolic (C) variable identifiers. It should be possible to recompile the library with
debugging information, but we did not do so for this work; instead we compared the
source-code of the relevant library routines from newlib 1.13.0 with the source-code
of version 1.11.0 as used in the H8/300 GCC compiler, and then assumed that the
compiler makes minimal modifications to the loops, in particular that it does not
reorder loops.

Bound-T finds 20 loops in the code of the subprogram _ kernel rem pio2. The
number and nesting of the code loops agrees with the number and nesting of loops
in the source-code of this subprogram. The source-code of this function (in
k _rem pio2.c) is very similar to the source-code of the corresponding function
____kernel_rem pio2f in the H8/300 GCC target; the difference is mainly that
the SPARC routine uses double-precision floating-point numbers where the H8/300
routine uses single precision. Moreover, the prec parameter has the same value (2).
Most of the reasoning we used for this subprogram's loop-bounds on the H8/300
GCC target is valid on the SPARC/BCC target, assuming that the compiler does not
unpeel or unroll any loops, and the same bounds on the loops result. The SPARC
code has no loops for the shift operations so those assertions from the H8/300 GCC
target are omitted for the SPARC.

A similar comparison between the H8/300 and SPARC versions was used to
understand the loop-bounds in the subprogram _ ieee754_ sqrt. But it is a
mystery why the BCC compiler does not use the SPARC FPU square-root instruction
instead of this routine (perhaps another compilation option is needed).

Options and assertions

The library routines were analysed together with the application (papa _ap or
papa_fbw) thus using the same Bound-T options as for the analysis of the
application.

The following table shows the assertions that we used for the newlib routines that
are called in the papa_ap and papa_fbw programs. Most of them identify the loops
by their offset from the start of the containing subprogram, using the phrase “loop
that executes +offset”.
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Assertions

subprogram "__kernel rem pio2"

-- Fact re parameters, looking at the call of this function from
-- __ieee754_rem pio2f:

-- prec = 2. Consequently jk = init_ jk[2] = 9 and jp = jk = 9.
-- nx <= 3. Consequently jx <= 2 and m = jx + jk <= 11.

-- for(i=0;i<=m;i++, j++)
-- See bound on m, above.
loop that executes +"0088" repeats 12 times; end loop;

-- for (i=0;i<=jk;i++) (outer loop)
-- See bound on jk, above.
loop that executes +"00CC" repeats 10 times; end loop;

-- for(j=0,£fw=0.0; j<=jx;j++) (inner loop)
-- See bound on jx, above.
loop that executes +"00E4" and is in loop repeats 3 times; end loop;

-- In the following we assume that no "recomputation" is needed. TBC.
-- This means that jz = jk <= 9 on exit from the recomputation loop.

—-- The "recompute" loop.
-- We assume that no recomputations are needed.
loop that executes +"0128" repeats 1 time; end loop;

-- The following loops are all inside the recomputation loop so
-- we must qualify them with "is in loop".

-- for(i=0,3=3jz,2z=q[jz];3>0;i++,j--)
-- Here jz is 9 .. 1.
loop that executes +"0158" and is in loop repeats 9 times; end loop;

—-- for(i=0;i<jz ;i++), where jz <= 9.
loop that executes +"027C" and is in loop repeats 8 times; end loop;

-- The following loops are on the path that "recomputes", so they
-- are never executed by our assumption of no recomputation, above.
-- However, we put bounds on them anyway, if we decide to allow

-- recomputation in the future.

-- for (i=jz-1;i>=jk;i--)

-- Here i is used to index iq[20], so the range is at most 19 .. 9
-- considering the value of jk = 9.

loop that executes +"0320" and is in loop repeats 11 times; end loop;

—-- In the following, we use the facts that jk = 9 and
-- jk-k is used to index iq[] so it must be >= 0, thus
-- k <= 9.

-- for(k=1;iq[jk-k]==0;k++)
-- See bound k <= 9, above.
loop that executes +"036C" repeats 9 times; end loop;

—-- for(i=jz+l;i<=jz+k;it++) (outer loop)
-- See bound k <= 9, above.
loop that executes +"03C8" and is in loop repeats 9 times; end loop;

-- for(j=0,£fw=0.0; j<=jx;j++) (inner loop)

-- See bound on jx, above.

loop that executes +"03EC" and is in (loop that is in loop)
repeats 3 times;

end loop;

-- Here endeth the "recompute" loop.
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-- We now come to a section of code where jz can be decreased

-- by some (unknown) amount or increased by at most 1, thus
-- we will have jz <= 10 after this section.

-- while(iq[jz]==0) { jz--; g0-=24;}

-- Here jz was decremented before the loop, so jz <= 8 on
-- entry to the loop.

loop that executes +"04D4" repeats 8 times; end loop;

-- So, as we said above, from now on jz <= 10.

-- for(i=jz;i>=0;i--)
loop that executes +"0524" repeats 11 times; end loop;

-- for(i=jz;i>=0;i--) (outer loop)
loop that executes +"0560" repeats 11 times; end loop;

-- for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) (inner loop)

-- Here k is in 0 .. min (jp, jz-i) = 9. However, the

-- upper bound on k depends on the counter i of the outer
—-- loop, so this is a triangular loop.

loop that executes +"058C" and is in loop repeats 10 times; end loop;

-- for (i=jz;i>=0;i--)
loop that executes +"0600" repeats 11 times; end loop;

-- for (i=jz;i>=0;i--)
loop that executes +"0648" repeats 11 times; end loop;

—-- for (i=l;i<=jz;i++)
loop that executes +"0698" repeats 10 times; end loop;

-- for (i=jz;i>0;i--)
loop that executes +"06D8" repeats 10 times; end loop;

-- for (i=jz;i>1;i--)
loop that executes +"0720" repeats 9 times; end loop;

-- for (fw=0.0,i=jz;i>=2;i--)
loop that executes +"0810" repeats 9 times; end loop;

end "_kernel rem pio2";
subprogram "__ieee754_rem pio2"
-- while(tx[nx-1]==zero) nx--;

—-- Here nx is initialized to 3 before the loop.
loop that executes +"02A0" repeats 3 times; end loop;

end "__ ieee754_rem pio2";

subprogram "__ieee754_sqrt"

-- while (ix0)==0)

-- The loop shifts ixl left by 21 bits. This can be

-— done at most twice before the 32-bit variable ixl is
-- zero, which would prevent termination of the loop.

loop that executes +"00B4" repeats 0 .. 2 times; end loop;

-- for(i=0; (ix0&0x00100000)==0;i++) ix0<<=1;

-- The are 20 bits to the right of the 'l' in the mask.

-- So at most 20 left-shifts of "ix0" before this bit is
-- hit and terminates the loop.

loop that executes +"0124" repeats 0 .. 20 times; end loop;

-- r = 0x00200000L; while(r!=0) {...; r>>=1; }
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—- There are 21 bits to the right of the 'l' in the initial "r".
-- So 22 right-shifts make "r" zero.
loop that executes +"01AQ0" repeats 22 times; end loop;
-- r = sign = 0x80000000; while(r!=0) {...; r>>=1; }
-- There are 31 bits to the right of the 'l' in the initial "r".
-- So 32 right-shifts make "r" zero.
loop that executes +"017C" repeats 32 times; end loop;
end "_ieee754_sqrt";

subprogram ".div"
time 149 cycles;
hide;

end subprogram ".div";

subprogram ".urem"
time 154 cycles;
hide;

end subprogram ".urem";
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4 SUMMARY OF THE RESULTS

4.1 Full results

This section tabulates the results of all the analysis rounds (except the preliminary
Round 0) of all benchmark programs. In the table below the columns have the
following meanings:

Program: The name of the benchmark program.

Stmts: The number of statements in the source code, computed as the number of
source-code lines that contain a semicolon (';').

Comp: The name of the compiler. The remaining columns in the row report
results from the executable generated with this compiler. If this column is blank,
the two following columns (Subs and Loops) in the row report properties of the
source code and the remaining columns are unused. The compiler also identifies
the target processor as follows:

gcc The GNU compiler for the H8/300.
iar The IAR compiler for the H8/300.
bce The Gaisler Research Bare C Compiler (based on GCC) for the SPARC.

Subs: The number of subprograms (functions, procedures) in the program,
including the main subprogram. For the SPARC target the register-window trap
handlers are omitted.

Loops: The number of loops in the program. The number of loops in the
executable is often larger than in the source code because the compiler may
generate loops (eg. for C expressions like n << k) and there may be loops in
library routines. For the SPARC/BCC target the loops in the irreducible library
routines are not included.

Round: The number of the Round. The remaining columns in this row report the
results from this Round. Blank for the source-code row.

Bound: The number of loops for which Bound-T found an iteration bound. Note
that some loops may be counted twice, if Bound-T finds both context-
independent and context-dependent bounds for the same loop.

Ass: The number of loops for which we asserted iteration bounds, perhaps for
each Round as in the preceding column, or for which we gave other assertions
(such as variable-value bounds) that let Bound-T find iteration bounds. Blank for
the source-code row.

AT: Analysis time, in seconds of real (wall-clock) time, on the computer
described in section 1.2. The time is measured with one used logged in but no
other heavy activity. From run to run the time varies about 5-10%.

WCET*: This is the WCET bound that Bound-T reports, if any, in cycles.

Note: Refers to the list of notes after the table.

We again remind the reader not to use the WCET bounds to draw any conclusions
regarding the efficiency of the compilers, for reasons explained in section 1.
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Table 1: Benchmark analysis results

Program Stmts| Comp | Subs| Loops| Round | Bound| Ass| AT WCET* Note
adpcm 344 17 20
gce 22 31 1 26 18.4
2 25 5 9.5| 2002692
iar
bce 19 18 1 15 2.3
2 15 3 2.3 803 089
cnt 57 6 4
gec 10 5 1 5 0.5 45 806
iar
bee 7 4 1 4 0.4 19 628
compress 184 9
gce 16 15 1 2 1
2 4] 11 2.6 586 093
iar
bce 11 8 1 1,9
2 4 4 31.5 122 249
cover 208 4 3
gce 4 3 1 3 6.6 7 742
iar
bce 4 3 1 3 0 1.0 3173
crc 36 3 3
gee 3 3 1 3 1.3 164 118
3 2 0.7 85510 2
iar
bee 3 3 1 2 1.1
1 0.5 57 663
1 1 0.2 30000 2
duff 17 3 2
gcc 3 2 1 1 0.3 3
iar
bee 3 2 1 1 0.1
edn 127 9 13 4
gee 12 23 1 11 409.3
2 19 4 1514112
iar
bece 11 15 1 1 1.3 6
2 12 3 1.3 426 779
insertsort 19 1 2
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Program Stmts| Comp | Subs| Loops| Round | Bound| Ass| AT WCET* Note
gce 1 2 1 1 0.3
2 1 1 0.3 7 760
3 1 1 0.3 3440
iar 1
2
3
bece 1 2 1 1 0.2
2 1 1 0.2 2078
3 1 1 0.2 1133
janne_complex 12 2 2
gcc 2 2 1 0 0.4 5
iar 5
bce 2 2 1 0 0.8 5
matmult 42 6
gce 10 6 1 6 0.8| 1506520
iar
bce 8 5 1 5 0.4 615 345
ndes 107 5 12
gce 8 21 1 19 41.0
2 19 2 39.0 823 416
iar 1
2
bce 5 12 1 12 1.3 82 676
ns 15 2 4
gce 2 4 1 4 38.1 20 976
iar 3 4 1 0.3 256 960
bce 2 4 1 4 3.0 7 097
nsichneu 1471 1 1
gcc 1 1 208.0 6
2 0 1| 215.6 104 522
iar
bece 1 1 1 0 1
2 0 1 6.8 20 756
recursion 11 2 0
gcc <0.1 10
iar 10
bce 2 0 1 <0.1 10
statemate 630
gce 8 1 0 0 3.6 11
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Program Stmts| Comp | Subs| Loops| Round | Bound| Ass| AT WCET* Note
iar
bece 8 1 1 0 2.5
papa_ap 1442 47 8
gce 93 85 1 1
2 23| 54|1224.5| 20 266 762 7
3
iar 1
2
3
bcc 66 45 1 1
2 2] 43 12.0 62 753 7
3
papa_fbw 429 20 8
gce 29 25 1 1
2 9] 15 6.5| 1150867 7
3
iar 1
2
3
bece 20 6 1 0 1.1
2 3 1 1.0 9008| 7,12
3
Notes:

1. Analysis taking too long; aborted.

2. Round 3 computes an underestimated WCET bound that omits all initiali-
sation of the CRC look-up table. The reported WCET bound is the average of
this value and the WCET bound from Round 1 and thus includes one initiali-
sation, which is the right number. The number of bounded loops is one less
than for Round 2 because the initialization loop is now infeasible and is not
analysed.

3. The program contains an irreducible flow-graph.

4. Loop-counters originally of type 1ong int were changed to type int.

5. The loop termination logic is too complex for Bound-T and too complex for

manual reasoning. The program should be executed or simulated.
Analysis aborted by assertion-error message from Omega Calculator.

The WCET™ is given for the main function, but the important WCET bounds
are those for each task, listed below in section 4.2.
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8. It is difficult to find the number of loops in the source-code because C macros
are used extensively to create syntactical structures including loops. The
preprocessed C source should be examined.

9. Arithmetic analysis with default options led to an assertion-error message
(overflow) in the Omega Calculator.

10. The program is recursive.

11. Analysis in Round 1 taking too long and aborted. Results for Round O are
included to show the number of subprogram and loops and the analysis time
(for the incomplete analysis).

12. The loops that are counted as “Bounded” were not bounded automatically
but by the help of assertions on variable values (stating that variables of type
uin8_t have values in the range 0 .. 255).

4.2 PapaBench task WCETs

The following table shows the WCET bounds for the individual tasks in the
PapaBench programs papa_ap and papa_fbw.

Table 2: PapaBench task WCET bounds

Benchmark Task WCET
H8/300 gcc | H8/300 IAR | SPARC BCC
papa_ap altitude control task 60 493 158
climb_control task 227 871 577
navigation_task 18 944 563 46 713
radio_control_task 330926 3152
receive_gps_data_task 405 942 4612
reporting_task 7 876 6 444
stabilisation_task 248 146 762
papa_fbw check failsafe task 248 312 809
check megal28 values task 248 367 841
send_data_to_autopilot_task 106 364 451
servo_transmit 2427 1049
test ppm_task 536 395 1958

4.3 Summary results

The table below describes very briefly the overall result for each benchmark program
and each target processor/compiler. The programs are ordered according to the
result: successful automatic analysis (Auto); automatic analysis works but was
improved by assertions (Imp); analysis requires assertions (Ass); failure (Fail).
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Table 3: Summary results
Benchmark Overall result Comments
H8/300 H8/300 SPARC

GCC IAR BCC
cnt Auto Auto
cover Auto Auto
matmult Auto Auto
ns Auto Auto Auto
cre Imp Imp |Non-rectangular loop nest.
ndes Ass Auto
adpcm Ass Ass Most loops automatically analysed.
compress Ass Ass
edn Ass Ass Most loops automatically analysed.
insertsort Ass Ass
nsichneu Ass Ass
papa_ap Ass Ass Application simple; math library complex.
papa_fbw Ass Ass
duff Fail Fail Fail Irreducible control-flow graph.
janne complex Fail Fail Fail |Loop-logic too complex; loops are not counted.
recursion Fail Fail Fail |Recursive program.
statemate Fail Fail fail Loop-logic too complex; loops are not counted.
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5 CONCLUSIONS FOR BOUND-T

In this section we try to understand the results in terms of the current features and
failings of Bound-T and to list the most important ways in which Bound-T could be
improved to analyse these benchmarks better.

TBA prose text, the following is rough memos.

Should include assertions on congruence of variable (eg. even/odd, mod n = k)
(program edn, memcpy loops).

Should let assertions identify loops (and calls) by the ordinal number of the loop
(first, second, third, ...) in code-address order. This would make assertions more
portable and stable.

Should extend loop analysis to use proxy counters, thus allowing analysis of loops
terminated by pointer equality even if the absolute pointer values are not known
(program edn, memcpy loops).

Should use bounds on loop counter to bound expressions involving the loop counter,
within the loop and after the loop (program adpcm, loop that calls my_cos).

Should use bounds of outer loop to place bounds on induction variables for inner
loops and after the outer loop.

Should deduce bounds on variables from their use as array indices (program
insertsort, inner loop).

Should improve arithmetic model to handle signed variables better (program edn,
latsynth loop, also the problems with option -bcc=unsigned for the H8/300).

When an assertion or analysis bounds the value of a multi-octet variable to a value
that fits in a smaller number of octets, should automatically derive bounds on these
“shorter” parts of the variable and on the “extra” octets (program edn, “>>" loops,
where the compiler uses only the low octet of the 16-bit variable that defines the
shift count).

Should support the use of frame pointers in gcc for the H8/300.

Should support simple forms of compiler/linker name “mangling”, for example the
underscore that some versions of gcc add to an identifier, changing main to _main.
This would make assertions and command-lines more portable between targets.

Should perhaps try to find iteration bounds on loops that shift a value left or right
until it satisfies a certain condition (eg. is zero). Such loops are rather frequent in
the floating-point libraries and occasionally occur in other parts of embedded
programs.
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