
Multicube Explorer User Manual
Release 1.0

Politecnico di Milano (Italy) and Università della Svizzera italiana (Switzerland)

December 23, 2009

1

Multicube Explorer User Manual Release 1.0

Contents
1 Overview of Multicube Explorer 3

1.1 Goals of Multicube Explorer . 3
1.1.1 Automatic design space exploration . 3
1.1.2 Portability . 3
1.1.3 Modular composition . 4

1.2 Architecture of the tool . 4
1.3 Nature of the tool . 4
1.4 Interaction with the simulator . 5

2 License 6

3 Installation Requirements and Procedure 7
3.1 Installation Requirements . 7
3.2 Installation Procedure . 7
3.3 Testing the installation . 8
3.4 Uninstall procedure . 8
3.5 Documentation . 9

4 The Shell of Multicube Explorer 10

5 Available Plugins 12
5.1 DoEs . 12

5.1.1 Full Search . 12
5.1.2 Random . 12
5.1.3 Two levels Full Factorial . 12
5.1.4 Two Levels Full Factorial Extended . 13
5.1.5 Scrambled . 13

5.2 Optimizers . 13
5.2.1 Pareto DoE . 14
5.2.2 APRS . 14
5.2.3 MOSA . 14
5.2.4 MOPSO . 15
5.2.5 NSGA-II . 15
5.2.6 SEMO . 16
5.2.7 FEMO . 16
5.2.8 GEMO . 16
5.2.9 Linear Scan . 17

5.3 RSMs . 17
5.3.1 Linear Regression . 18
5.3.2 Spline . 18
5.3.3 Radial Basis Functions . 19
5.3.4 Shepard . 20
5.3.5 Neural Network . 20

6 Interfaces for the integration of new simulators 22
6.1 Design Space Definition . 22

6.1.1 Simulator Invocation . 22
6.1.2 Parameters Definition . 22
6.1.3 System Metrics Definition . 24
6.1.4 Feasibility rules . 24

2

Multicube Explorer User Manual Release 1.0

6.2 Multicube Explorer/Simulator Interface . 26
6.2.1 Simulator input file . 26
6.2.2 Simulator Output File . 27
6.2.3 Simulator Error Management . 27

7 Example of exploration with a simple simulator 29

8 Shell Command List 32
8.1 Basic Commands . 32

exit . 32
quit . 32
read_script . 32
set . 32
show_vars . 33
help . 33

8.2 Plugins Commands . 33
doe_define_doe . 33
doe_show_info . 33
drv_define_driver . 33
drv_show_info . 34
opt_define_optimizer . 34
opt_show_info . 34
opt_tune . 34
rsm_train . 35
rsm_validate . 35

8.3 Database Commands . 36
db_read . 37
db_write . 37
db_change_current . 37
db_export . 37
db_export_xml . 37
db_report . 37
db_filter_pareto . 37
db_plot_objectives . 38
db_plot_2D . 38
db_compute_ADRS . 39
db_report_html . 40

9 Authors 41

10 Acknowledgments 41

3

Multicube Explorer User Manual Release 1.0

1 Overview of Multicube Explorer
Multicube Explorer is an interactive program that lets the designer explore a design space of configurations for a param-
eterized architecture for which an executable model (use case simulator) exists. Multicube Explorer is an advanced multi-
objective optimization framework which is entirely command-line/script driven and can be retargeted to any configurable
platform by writing a suitable XML design space definition file and providing a configurable simulator. Multicube Explorer is
supported by the EC under grant FP7-216693 MULTICUBE (http://www.multicube.eu). The tool and the documentation can
be currently found at the following address: http://home.dei.polimi.it/zaccaria/multicube_explorer.

!"#$%&'

()'

*+,"-$."&/#'

0,/$.$12/$(&'

34%(-$/5.'

6#"'72#"'

8$.942/(-'

:"#,(&#"'

89-)2;"'

<(="4$&%'

3-;5$/";/9-"'

=2/2>2#"'
3-;5$/";/9-"'

=2/2>2#"'
3-;5$/";/9-"'

=2/2>2#"'

?<@'

!"#$%&'8,2;"'

!")$&$/$(&'A$4"'

?<@'

<
B
'*
+,
4(
-"
-'
C
"
-&
"
4'<B*+,4(-"-'85"44''

DE'

Figure 1: Structure of Multicube Explorer

1.1 Goals of Multicube Explorer
The overall goal of the open source design space exploration framework aims at providing a retargetable tool to drive the
designer towards near-optimal solutions to the architectural exploration problem, with the given multiple constraints. The
final product of the framework is a Pareto curve of configurations within the design evaluation space of the given architec-
ture.

1.1.1 Automatic design space exploration

One of the goals of the open source tool is to provide a command line interface to the exploration kernel that allows the con-
struction of automated exploration strategies. Those strategies are implemented by means of command scripts interpreted
by the tool without the need of manual intervention. This structure can easily support the batch execution of complex
strategies that are less prone to human intervention, due to their execution time.

1.1.2 Portability

Another goal of the open source tool is to be portable across a wide range of systems. This goal has been achieved by not
sacrificing the efficiency of the overall exploration engine. The standard ANSI C++ programming language has been used for
developing the open source framework. The Standard Template Library as well as other open source libraries has been used
during the development process.

4

http://www.multicube.eu/
http://home.dei.polimi.it/zaccaria/multicube_explorer

Multicube Explorer User Manual Release 1.0

1.1.3 Modular composition

Oneof the strength of the open-source tool is themodularity of its components. Simulator, optimization algorithms andother
design space exploration components are dynamically linked at run-time, without the need of recompiling the entire code
base. This will be supported by well-defined interfaces between the drivers supporting the simulation and the optimization
algorithm. This will strongly enable the introduction of new modules for both academic and industrial purposes. Given the
modular decomposition, a single optimization algorithm can used for every use case simulator. Moreover, a single use case
architecture can be optimized with a wide range of optimization algorithms.

1.2 Architecture of the tool
The tool (Figure 2) is basically composed by an exploration kernel which orchestrates the functional behavior of the design
of experiments and optimization algorithms.

!"#$

%&"#$

'()*+&,-.$

/01$

2.(3#.$

%-.#$

2#"(45$

'6&7#$

8#6.#"#5,&,(-5$

/01$

2#"(45$

'6&7#$

2#9(5(,(-5$

/01$

:,#.&,(-5$

;3&+*&,(-5$

<&+(=&,(-5$

2-;$

>+*4?(5$

@6,()(A#.$

>+*4?(5$

0B#C6+-.#.$

Figure 2: Architecture of the tool

The kernel module is responsible for reading in the design space definition file (in XML format) and accepting commands
from the shell interface (or the corresponding script). It then exposes the parameters of the design space to all the modules
involved in the optimization process (DoE, Optimization Algorithms) by means of a core design space representation.
The core design space representation provides a set of abstract operations that are mapped on the specific use case under
analysis. The abstract operations are represented by iterators over the feasible design space, among which we can find:

• Full search iterators.

• Random search iterators, (global and neighborhood).

• Factorial iterators (two-level, two-level + center point).

The core design space representation provides also services for validating architectural choices at the optimizer level and
evaluating the associated objective functions. The objective functions are defined as a subset of the use case system level
metrics and can be manipulated by the user by interacting with Multicube Explorer.

1.3 Nature of the tool
The Multicube Explorer tool isminimization tool that works by minimizing a set of objectives which are analytical expres-
sion of the metrics. In case of objectives to be maximized, they should be re-casted to a minimization expression:

max
x
f(x)→ min

x
−f(x) (1)

5

Multicube Explorer User Manual Release 1.0

1.4 Interaction with the simulator
The design space exploration is performed by using the simulation abstraction layer exported by the XML driver to the
optimizer plug-ins. In principle, the optimizer instantiates a set of architectural configurations bymeans of the design space
iterators, and passes the corresponding representation to the XML driver which will execute the simulator (see Figure 3).
Information about simulator runs will be displayed directly on the Multicube Explorer shell.

!"#$%&"'()

*+,#-.(.)

/0()

120()

3%4"#2$-.)
5!6)

370$(4)

1-89%:".2$%-8)

5!6)370$(4))

!($.%&0)

Figure 3: Interaction of Multicube Explorer with the Use Case Simulator

Multicube Explorer creates a specific directory to execute each instance of the simulator. In this directory, a valid system
parameters file is created before starting the simulator. A system metrics file is expected to be obtained as the output of the
simulator execution.

6

Multicube Explorer User Manual Release 1.0

2 License
Multicube explorer is open-source and it is released under the BSD license:

Authors: Vittorio Zaccaria, Gianluca Palermo, Giovanni Mariani, Fabrizio Castro
Copyright (c) 2008-2009, Politecnico di Milano and Università della Svizzera italiana
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the follow-
ing conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following dis-
claimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

Neither the name of the Politecnico di Milano and Università della Svizzera italiana nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANYDIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUTNOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUD-
ING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

7

Multicube Explorer User Manual Release 1.0

3 Installation Requirements and Procedure
3.1 Installation Requirements
Multicube Explorer has been designed to be compatible with LINUX and BSD (MAC-OSX) platforms. Multicube Explorer is
written in C++ and can be compiled with a standard GNU C++ compiler (version 4.1.2). Multicube Explorer can be compiled in
two forms:

• without response surface models (RSM) support (basic version).

• with RSM support (enhanced version).

The following libraries and programs are needed for correctly compiling the basic version of the software:

• The Bison/YACC parser generator (http://www.gnu.org/software/bison/bison.html, tested with version 2.3)

• The Flex/Lex lexical analyzer (http://flex.sourceforge.net/, tested with version 2.5.34)

• The libxml2 library and libxml2-devel (The latest versions of libxml2 can be found on the xmlsoft.org server, tested
with version 2.6.31)

• The Gnuplot software (tested with version 4.2).

To compile Multicube Explorer with RSM modules (enhanced version) you will need to follow the instructions in Section 5.3;
besides you will need the following libraries:

• The GNU Scientific Library (http://www.gnu.org/software/gsl/, version 1.10)

• The language and environment for statistical computing and graphics R (http://www.r-project.org/, version 2.6.2)

• The BOOST library (http://www.boost.org/, version 1.35.0)

• The Fast Artificial Neural Network library (http://leenissen.dk/fann/, version 2.1).

Multicube Explorer can be configured to compile each RSM individually or all at the same time. Please read Section 5.3 for
the options that should be specified to the configure command for enabling each RSMs.

3.2 Installation Procedure
Multicube Explorer is distributed in source form. In order to be executed, it must be compiled and installed into a standard
directory.

• Download the compressed file containing the release of Multicube Explorer (.tar.gz). The current release of the tool is
1.

• Uncompress the downloaded archive:

> tar -zxvf m3explorer_release_1_0.tgz

This will create a directory m3explorer; the complete path-name to this directory will be referred to as sourcedir.

• Create a build dir, and run the configure command into it:

> mkdir build
> cd build
> <sourcedir>/configure --image=<installdir>

8

Multicube Explorer User Manual Release 1.0

where installdir is the final installation directory of the software. If installdir is not specified, the software
will be installed in ./image. In order to plug specific RSM modules into Multicube Explorer installation it is
necessary specify, in this step, the associated options as presented in Section 5.3.

• Run make and make install to finish the installation.

> make
> make install

• (Optional) To delete all the temporary files generated during the compilation, use the following command:

> make dist-clean

This command deletes everything that has been built with configure and make.

3.3 Testing the installation
To test that the installation has been performed correctly, first run the application executable m3explorerwhich is present
in the installation dir:

> <installdir>/bin/m3explorer

____ _
_ __ |__ / _____ ___ __| |___ _ _ ___ _ _
| ’ \ |_ \/ -_) \ / ’_ \ / _ \ ’_/ -_) ’_|
|_|_|_|___/___/__\ .__/____/_| ___|_|

|_|

Multicube Explorer - Version release_1_0
Send bug reports to zaccaria@elet.polimi.it, gpalermo@elet.polimi.it
--

m3_shell>

To exit the program, just type exit followed by a return.
A more comprehensive test can be run with the do_tests script which is present in the test directory of the installation
image (<installdir>). A succesfull execution produces the following output:

$ <installdir>/tests/do_tests
1) Tested XML design space construction: PASSED
2) Tested XML rules : PASSED
3) Tested XML error reporting : PASSED
4) Tested XML input/output interface : PASSED
5) Tested full factorial features : PASSED
6) Tested database and math functions : PASSED
7) Tested database XML export : PASSED
8) Tested XML design space R1.4 extn. : PASSED

3.4 Uninstall procedure
If you have installed Multicube Explorer into a dedicated directory, it can be removed by simply deleting the directory.
Otherwise, the specific executable and the associated installation files should be removed manually.

9

Multicube Explorer User Manual Release 1.0

3.5 Documentation
The documentation of Multicube Explorer is mainly composed by two documents:

• The present User Guide.

• The Developer Guide. This guide can be browsed either on the Multicube Explorer website or generated by means of the
doxygen document production system (use make doc to generate the guide in the installation image (<installdir>).

10

Multicube Explorer User Manual Release 1.0

4 The Shell of Multicube Explorer
To run Multicube Explorer you need to launch the following command:

> <installdir>/bin/m3explorer

____ _
_ __ |__ / _____ ___ __| |___ _ _ ___ _ _
| ’ \ |_ \/ -_) \ / ’_ \ / _ \ ’_/ -_) ’_|
|_|_|_|___/___/__\ .__/____/_| ___|_|

|_|

Multicube Explorer - Version release_1_0
Send bug reports to zaccaria@elet.polimi.it, gpalermo@elet.polimi.it
--

m3_shell>

and the Multicube Explorer Shell for the user interaction starts. To exit the program, just type exit followed by a return.

Typing the help command all the available Multicube Explorer commands with short descriptions are shown.

m3_shell> help
db_change_current change the current database
db_compute_ADRS computes ADRS w.r.t. a specified reference database
db_export exports the db into a csv file
db_export_xml exports the db into a xml file.
db_filter_pareto filters the current database for pareto points
db_insert_point insert a point in the current database
db_plot_2D plot objectives for given databases
db_plot_objectives plot objectives for given databases
db_read reads a database from disk
db_report reports the contents of a database
db_report_html generates a html report of the database
db_write writes a database on disk
doe_define_doe define the doe module
doe_show_info shows information about current doe
drv_define_driver define the driver module
drv_show_info shows information about current driver
exit quit the current m3explorer session
help general help on m3explorer commands
opt_define_optimizer define the optimizer module
opt_show_info shows information about current optimizer
opt_tune start the exploration process
quit quit the current m3explorer session
read_script read script from file
rsm_train trains an RSM and makes predictions
rsm_validate validates an RSM on the current db
set set a variable to a specific value
show_vars shows the variables in the current shell
m3_shell>

11

Multicube Explorer User Manual Release 1.0

The design space exploration problem within Multicube Explorer, is defined by a driver. An XML driver, m3_xml_driver, is
provided inMulticube Explorer. Such driver allows the integration ofMulticube Explorerwith other performance estimation
tools by exploiting well defined XML interfaces that will be described later in section 6.
The other two drivers, m3_dtlz_driver and m3_test_driver are distributed in the purpose of methodological test of new
design space exploration techniques.
To load the description of the design space for the following exploration process, Multicube Explorer should be lauched with
the -x <design_space_file>.xml flag.

E.g. $ <installdir>/bin/m3explorer -x simple_sim_ds.xml

The use of Multicube Explorer can be both in interaction mode through the shell or in a script mode.
This second mode can be enabled by writing all the Multicube Explorer commands into a script file and then launching Mul-
ticube Explorer with the -f <M3Explorer_commands_file>.scr flag.

$ <installdir>/bin/m3explorer -x simple_sim_ds.xml -f simple_sim_scr.scr

12

Multicube Explorer User Manual Release 1.0

5 Available Plugins
5.1 DoEs
The term Design of Experiments (DoE) is used to identify the planning of an information-gathering experimentation cam-
paign where a set of variable parameters can be tuned. The reason for DoEs is that very often the designer is interested in the
effects of some parameter’s tuning on the system response. Design of experiments is a discipline that has very broad appli-
cation across natural and social sciences and encompasses a set of techniques whose main goal is the screening and analysis
of the system behavior with a small number of simulations. Each DoE plan differs in terms of the layout of the selected design
points in the design space.
The available DoEs in the Multicube Explorer framework are:

• Full Search

• Random

• Two Levels Full Factorial

• Two Levels Full Factorial Extended

• Scrambled

5.1.1 Full Search

It is the simplest DoE in the discrete world. It consider all the possible configuration of the design space.

m3_shell> doe_define_doe ”m3_full_doe”

5.1.2 Random

The design space configurations are picked up randomly by following a Probability Density Function (PDF). The implemented
plugin uses a uniformly distributed PDF.

m3_shell> doe_define_doe ”m3_random_doe”

The variable solutions_number can be used to define the number of points of the random DoE. e.g. for a random doe
with 15 points

m3_shell> set solutions_number = 15

5.1.3 Two levels Full Factorial

In statistics, a factorial experiment is an experiment whose design consists of two or more parameters, each with discrete
possible values or ”levels”, and whose experimental units take on all possible combinations of these levels across all such pa-
rameters. Such an experiment allows studying the effects of each parameter on the response variable, as well as the effects
of interactions between parameters on the response variable. In this plugin, we consider a 2-level full factorial DoE, where
the only levels considered are the minimum and maximum for each parameter.

m3_shell> doe_define_doe ”m3_two_level_ff”

13

Multicube Explorer User Manual Release 1.0

5.1.4 Two Levels Full Factorial Extended

When using non scalar parameters (permutations andmasks, Section 6.1.2) theminimum level (”low” configuration) and the
correspondingmaximum level (”high” configuration) arenot defined. TheTwoLevels Full Factorial Extended is the extension
of the previous discussed DoEwhere for each non scalar parameter in the design space the ”low” configuration is chosen ran-
domly among the feasible for themasks or permutations in analysis, while its corresponding ”high” configuration is obtained
from the ”low” one by mean of a scramble function (Xhigh = SCRAMBLE(Xlow)). If the design space consider ks scalars,
km masks and kp permutations parameters the two level full factorial extended DoE defines a number of configurations to
evaluate equal to 2ks∗2km∗2kp = 2(ks+km+kp). With the implementation of this DoEdone inMulticube Explorer it is also pos-
sible to set the number of instances to generate for each DoE line through the variable num_generation_for_each_point
that can be set in the M3Explore shell. If the variable num_generation_for_each_point is set than the DoE dimension
become:

np ∗ 2(ks+km+kp)

where np = num_generation_for_each_point.

m3_shell> doe_define_doe ”m3_two_level_ff_extended”
m3_shell> set num_generation_for_each_point = 10

5.1.5 Scrambled

Using this approach the objective is to generate a subset of the design space points which are scrambled, with respect to some
well defined mathematic principles, for both scalar and non scalar data types (Section 6.1.2). This is possible because all the
scramble functions used are circular, i.e., it means that after a limited number (at most equal to the vector dimension) of
recursive call they provide as output a configuration which was previously already generated.

m3_shell> doe_define_doe ”m3_scrambled_doe”

5.2 Optimizers
The available optimizer plugins in Multicube Explorer are:

• Pareto DoE

• APRS: Adaptive windows Pareto Random Search

• MOSA: Multi-Objective Simulated Annealing

• MOPSO: Multi-Objective Particle Swarm Optimizer

• NSGA-II: Non-dominated Sorting Genetic Algorithm

• SEMO: Simple Evolutionary Multi-objective Optimizer

• FEMO: Fair Evolutionary Multi-objective Optimizer

• GEMO: Greedy Evolutionary Multi-objective Optimizer

• Linear scan

14

Multicube Explorer User Manual Release 1.0

5.2.1 Pareto DoE

This is not a real optimizer but it is only a simple method used to evaluate the point selected by the DoE.

The name for this optimizer in Multicube Explorer is “m3_pareto_doe” and the related parameters are:

• doe_temp_database, a string variable that defines a filename, if specified allows to save partial computation results into
a file with the selected name;

• doe_tempdb_granularity, an integer variable that, if “doe_temp_database” variable is specified, allows to save partial
computation results into a file every “doe_tempdb_granularity” points added to the working database;

Example usage:

m3_shell> opt_define_optimizer ”m3_pareto_doe”

5.2.2 APRS

Adaptive windows Pareto Random Search is an optimization algorithm based on a dynamic window size which is reduced
with the time spent in the exploration and with the goodness of the point found in the current window. The window is cen-
tered on the current optimal solution and the new configuration is randomly selected within the window.

The name for this optimizer in Multicube Explorer is “m3_aprs” and the related parameters are:

• m3_aprs_initial_window, an integer variable, used to define the initial window size;

• m3_aprs_alpha, a double variable ∈ (0, 1), used to reduce the window size;

• m3_aprs_number_of_points, an integer variable, used to specify the desired number of points in the resulting database;

Example usage:
m3_shell> opt_define_optimizer ”m3_aprs”

5.2.3 MOSA

Simulated annealing is aMonte Carlo approach forminimizingmultivariate functions. The term simulated annealing derives
from the analogy with the physical process of heating and then slowly cooling a substance to obtain a strong crystalline
structure. In the Simulated Annealing algorithm a new configuration is constructed by imposing a random displacement.
If the cost function of this new state is less than the previous one, the change is accepted unconditionally and the system
is updated. If the cost function is greater, the new configuration is accepted probabilistically; the acceptance possibility
decreases with the temperature (optimization time). This procedure allows the system to move consistently towards lower
cost function states, thus ’jumping’ out of local minima due to the probabilistic acceptance of some upward moves.
This optimizers implemented in Multicube Explorer is called Multi-Objective Simulated Annealing (MOSA) and it is derived
by: Smith, K. I.; Everson, R. M.; Fieldsend, J. E.; Murphy, C.; Misra, R., ”Dominance-Based Multiobjective Simulated Annealing”,IEEE Trans-
action on Evolutionary Computation, 12(3): 323-342 - 2008

The name for this optimizer in Multicube Explorer is “m3_mosa” and the related parameters are:

• m3_mosa_epochs, an integer variable identifying the number of iterations of the main MOSA loop;

• m3_mosa_epochs_lenght, an integer variable identifying the number of configurations generated for each iteration;

• m3_mosa_temperature_decrease_coefficient, a double variable ∈ (0, 1), defines the coefficient for decreasing the temper-
ature at the end of each epoch;

15

Multicube Explorer User Manual Release 1.0

• m3_mosa_perturbation_window, an integer variable specifying the neighborhood w.r.t. the current point within which
the new configuration should be extracted randomly;

Example usage:
m3_shell> opt_define_optimizer ”m3_mosa”

5.2.4 MOPSO

Particle Swarm Optimization (PSO) is a heuristic search methodology that tries to mimic the movements of a flock of birds
aiming at finding food. PSO is based on a population of particles flying through an hyper-dimensional search space. Each
particle possesses a position and a velocity; both variables are changed to emulate the social-psychological tendency tomimic
the success of other individuals in the population (also called swarm). The Multicube Explorer implementation divides the
swarm into sub-swarms (as specified by the user) where each sub-swarm optimizes a linear combination of the objective
functions.
This optimizers implemented in Multicube Explorer is called Multi-Objective Particle Swarm Optimization (MOPSO) and it is
derived by: G. Palermo, C. Silvano, V. Zaccaria. ”Discrete Particle Swarm Optimization for Multi-objective Design Space Exploration”, In
Euromicro Proceedings of DSD’08 - Conference on Digital System Design. September 2008

The name for this optimizer in Multicube Explorer is “m3_mopso” and the related parameters are:

• iterations, an integer variable specifying the number of iterations of the main loop of the MOPSO algorithm;

• sub_swarm_size, an integer variable specifying the number of particles associated with each sub-swarm;

• sub_swarm_number, an integer variable specifying the number of sub-swarms;

Example usage:
m3_shell> opt_define_optimizer ”m3_mopso”

5.2.5 NSGA-II

In a Genetic Algorithm, many design alternatives belonging to design space are seen like individuals in a stored population.
The exploration procedure consists of the simulation of the evolution process of generation of individuals and the improve-
ment of solutions belonging to next generations is explained by Darwinian theory. The evolutionary operators describe
how individuals are selected to reproduce, how a new generation of individuals is generated from parents by crossover and
mutation and how new generation of individuals is inserted into population replacing or not the parents.
The implemented approach for Multiobjective optimization is the non-dominated sorting genetic algorithm (NSGA-II) de-
scribed in: Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, T. Meyarivan, ”A fast and elitist multiobjective genetic algorithm: NSGA-II”,
IEEE Transactions on Evolutionary Computation, 2002

The name for this optimizer in Multicube Explorer is “m3_nsga_II” and the related parameters are:

• temp_database, a string variable that, if defined, allows to save the results (at every generation) in a temporary database
with the name specied with the string;

• generations, an integer variable that defines the number of generations to consider;

Example usage:
m3_shell> opt_define_optimizer ”m3_nsga_II”

16

Multicube Explorer User Manual Release 1.0

5.2.6 SEMO

The Simple Evolutionary Multi-objective Optimizer (SEMO) is a simple population-based multi-objective Evolution Algo-
rithm. It contains a population of variable size that stores all non-dominated individuals. At the beginning of the execution
of the algorithm, the population is initialized with a single element, which is drawn at random from the decision space. From
this population, a parent F is drawn according to some probability distribution and mutated by the classical genetic muta-
tion. The child x is added to the population, if it is not dominated by any population member and if its objective vector is
not already contained in the population. For this algorithm, a uniform distribution is considered for selecting the parent.
An appropriate archiving strategy is assumed to prevent population from growing exponentially, by ensuring that each new
accepted solution has different objective function values.
This optimizer is derived by: Marco Laumanns, Lothar Thiele, Eckart Zitzler, Kalyanmoy Deb, Running time analysis of multi-objective
evolutionary algorithms on a simple discrete optimization problem, 2002, in Parallel Problem Solving From Nature — PPSN VII.

The name for this optimizer in Multicube Explorer is “m3_semo” and the related parameter is:

• generations, an integer variable that defines the number of generations to consider;

Example usage:
m3_shell> opt_define_optimizer ”m3_semo”

5.2.7 FEMO

The Fair Evolutionary Multi-objective Optimizer (FEMO) is an improvement of SEMO. FEMO tries to improve the main weak-
ness of the SEMO appearingwhen a large number ofmutations is allocated to parents whose neighbourhood has already been
explored sufficiently.
The FEMO algorithm implements a fair selection strategy by counting the number of times each individual has beenmutated.
This strategy guarantees that at the end all individuals receive about the same number of samples. The sampling procedure
deterministically chooses the individual which has produced the least number of offspring so far, ties are broken randomly.
The optimizer here described and implemented in Multicube Explorer is derived by: Marco Laumanns, Lothar Thiele, Eckart
Zitzler, Kalyanmoy Deb, Running time analysis of multi-objective evolutionary algorithms on a simple discrete optimization problem, 2002,
in Parallel Problem Solving From Nature — PPSN VII.

The name for this optimizer in Multicube Explorer is “m3_femo” and the related parameter is:

• generations, an integer variable that defines the number of generations to consider;

Example usage:
m3_shell> opt_define_optimizer ”m3_femo”

5.2.8 GEMO

The Greedy EvolutionaryMultiobjective Optimizer (GEMO) is an extension of the FEMO. Goal of GEMO is to achievemaximum
progress towards the Pareto front. Themain idea behind the algorithm is to allocate all search effort to offspring of the most
recently successful mutant. As long as only mutually non-dominating individuals are found, the algorithm acts like FEMO
in spreading out the population and the search effort fairly and equally. When further progress towards the Pareto front is
achieved (realized by the fact that a new individual is found that dominates elements of the current population), all other
remaining population members are disabled by setting their weight to infinity, not allowing them to produce any offspring.
When GEMO finally reaches the Pareto front and no further progress is possible, it will again behave like FEMO. It is therefore
necessary to enable again any individual re-discovered, in order not to create with those individuals barriers in the objective
space that are difficult to cross.

17

Multicube Explorer User Manual Release 1.0

The optimizer here described and implemented inMulticube Explorer is derived by: Marco Laumanns, Analysis and Applications
of Evolutionary Multiobjective Optimization Algorithms, PhD thesis, Swiss Federal Institute of Technology, Zürich, Switzerland, 2003.

The name for this optimizer in Multicube Explorer is “m3_gemo” and the related parameter is:

• generations, an integer variable that defines the number of generations to consider;

Example usage:
m3_shell> opt_define_optimizer ”m3_gemo”

5.2.9 Linear Scan

Linear Scan is a very simple optimizer that checks for each point of the root database if it design parameters are inside the
specified ones, add the point to the current database and recompute the Pareto front.

The name for optimizer in Multicube Explorer is “m3_linear_scan”.

Example usage:
m3_shell> opt_define_optimizer ”m3_linear_scan”

5.3 RSMs
Response Surface Modeling techniques allow determining an analytical dependence between several design parameters and
one or more response variables. The working principle of RSM is to use a set of simulations in order to obtain a response
model. A typical RSM flow involves a training phase, in which known data (or training set) is used to identify the RSM con-
figuration, and a prediction phase in which the RSM is used to forecast unknown system response. RSMs are an effective tool
for analytically predicting the behavior of the system platform without resorting to a system simulation; they represent the
core of the presented methodology.
The available RSM plugins models in Multicube Explorer are:

• Linear Regression

• Spline

• Radial Basis Functions

• Shepard

• Neural Network

Each RSM model can be customized setting the corresponding parameters as shell variables. One of the parameters of each
RSM is related to the Box-Cox transform1: a useful data (pre)processing technique used to reduce data variation, make the
data more normal distribution-like and improve the correlation between variables.

1The transformation is defined as a continuously varying function, with respect to the power parameter λ:

y(λ) =

{
(yλ − 1)/λ if λ 6= 0
log y if λ = 0

where y is the response value.

18

Multicube Explorer User Manual Release 1.0

5.3.1 Linear Regression

Linear regression is a method that models a linear relationship between a dependent response function and some indepen-
dent variables. In the general class of regressionmodels, the response ismodeled as a weighted sum of independent variables
plus random noise. Since the basic linear estimates may not adequately capture nuances in the response-independent vari-
able relationship, the implemented plugin takes into account also the interactions between the independent variables (the
design parameters) as well as quadratic behaviour with respect to a single parameter.

The name for this RSM in Multicube Explorer is ”LINEAR” and the related parameters are:

• order, an integer variable with value ∈ {1,2}, defines if the model has to take into account also the quadratic behaviour
(value 2) or only the linear (value 1);

• interaction, a string variable with value ∈ {”true”,”false”}, defines if the interactions between design parameters
have to be considered (value ”true”) or not (value ”false”);

• normax, a string variable with value ∈ {”true”,”false”}, defines if the metrics have to be normalized respect the
absolute maximum value (value ”true”) or statistically (value ”false”);

• exclude, a vector of string elements each reporting the name of a design parameter to exclude frommetrics estimation;

• preprocess, a variable with floating point value or ”log” value, specifies to use the logarithmic transformation (value
”log”) otherwise defines the value of λ.

Example usage:

> db_change_current ”training”
> db_read ”training.db”
> set order = 1
> set exclude = []
> set normax = ”false”
> set interaction = ”true”
> set preprocess = -1.0
> doe_define_doe ”m3_random_doe”
> set solutions_number = 500
> rsm_train ”predictions” ”LINEAR”

Linear Regression plugin requires the GNU Scientific Library2. To compile Multicube Explorer to support the plugin specify
the additional --regression option of configure command like in the following example:

> mkdir build
> cd build
> <sourcedir>/configure --regression
> make
> make install

5.3.2 Spline

Interpolation is the process of assigning values to unknown points by using a small set of known points and does not produce
any error on the knowndata. Spline is a formof interpolationwhere the interpolant function is divided into intervals defining
multiple different continuous polynomials with endpoints called knots.
The implemented approach is based on: Benjamin C. Lee, David M. Brooks, ”Regression Modeling Stategies for Microarchitectural
Performance and Power Prediction”, Report No. TR-08-06, Division of Engineering and Applied Sciences Harvard University, March 2006.

2http://www.gnu.org/software/gsl/

19

Multicube Explorer User Manual Release 1.0

The name for this RSM in Multicube Explorer is ”SPLINE” and the related parameter is preprocess, a variable with floating
point value or ”log” value. The parameter specifies to use the logarithmic transformation (value ”log”) otherwise defines
the value of λ.

Example usage:

> db_change_current ”training”
> db_read ”training.db”
> set preprocess = ”log”
> doe_define_doe ”m3_full_doe”
> rsm_train ”predictions” ”SPLINE”

Spline plugin requires the language and environment for statistical computing and graphics R3. To compile Multicube Ex-
plorer to support the plugin specify the --spline option of configure command like in the following example:

> mkdir build
> cd build
> <sourcedir>/configure --spline
> make
> make install

5.3.3 Radial Basis Functions

Radial Basis Functions (RBF) represent a widely used interpolation/approximation model whose values depend only on the
distance from the origin or alternatively on the distance from some other point called center. Any radial function is suitable
as distance function. Interesting radial functions definitions are: linear, thin plate spline, multiquadric, inversemultiquadric
and gaussian. The approximating function is represented as a sum of radial basis functions, each associated with a center
and weighted by an appropriate coefficient.
The implemented approach is based on: M.J.D. Powell. The theory of radial basis functions approximation in 1990, W.A. Light (Ed.),
”Advances in Numerical Analysis II: Wavelets, Subdivision, Algorithms, and Radial Basis Functions”, Oxford University Press, Oxford. pp.
105-210, 1992.

The name for this RSM in Multicube Explorer is ”RBF” and the related parameters are:

• type, a string variable with value ∈ {”power”,”power_log”,”sqrt”,”inv_sqrt”,”exp”}, defines the radial function
to use;

• parameter, an integer variable, defines the parameter value for the choosen radial function;

• preprocess, a variable with floating point value or ”log” value, specifies to use the logarithmic transformation (value
”log”) otherwise defines the value of λ.

Example usage:

> db_change_current ”training”
> db_read ”training.db”
> set type = ”power_log”
> set parameter = 2
> set preprocess = 0.5
> doe_define_doe ”m3_full_doe”
> rsm_train ”predictions” ”RBF”

3http://www.r-project.org/

20

Multicube Explorer User Manual Release 1.0

Radial Basis Functions plugin requires the BOOST library4 and the GNU Scientific Library5. To compile Multicube Explorer to
support the plugin specify the --rbf=<boost_path> option of configure command like in the following example:

> mkdir build
> cd build
> <sourcedir>/configure --rbf=/usr/local/
> make
> make install

5.3.4 Shepard

The Shepard’s technique is awell knownmethod formultivariate interpolation. This technique is also called Inverse Distance
Weighting (IDW) method because the value of the response function in unknown points is the the sum of the value of the
response function in known points weighted with the inverse of the distance.

The name for this RSM in Multicube Explorer is ”SHEPARD” and the related parameters are:

• power, an integer variable, specifies the power of the model;

• preprocess, a variable with floating point value or ”log” value, specifies to use the logarithmic transformation (value
”log”) otherwise defines the value of λ.

Example usage:

> db_change_current ”training”
> db_read ”training.db”
> set power = 5
> set preprocess = 1
> doe_define_doe ”m3_random_doe”
> rsm_train ”predictions” ”SHEPARD”

Shepard plugin requires the GNU Scientific Library6. To compile Multicube Explorer to support the plugin specify the
--shepard option of configure command like in the following example:

> mkdir build
> cd build
> <sourcedir>/configure --shepard
> make
> make install

5.3.5 Neural Network

An Artificial Neural Network (ANN) is a mathematical model or computational model that tries to simulate the structure
and/or functional aspects of biological neural networks. It consists of an interconnected group of artificial neurons. An
artificial neuron is a mathematical function that models a biological neuron. The artificial neuron receives one or more
inputs (dendrites) and sums them to produce an output (synapse). Usually the sums of each node are weighted, and the sum
is passed through a non-linear function known as an activation function or transfer function. In most cases an ANN is an
adaptive system that changes its structure based on external or internal information that flows through the network during
the learning phase.

4http://www.boost.org/
5http://www.gnu.org/software/gsl/
6http://www.gnu.org/software/gsl/

21

Multicube Explorer User Manual Release 1.0

The implemented approach is cascade 2 and it is derived by: S. E. Fahlman, D. Baker, J. Boyan, ”The cascade 2 learning architecture”,
Technical Report, CMU-CS-TR-96-184, Carnegie Mellon University, 1996.

The name for this RSM in Multicube Explorer is ”NN” and the related parameters are:

• effort, a string variable with value ∈ {”fast”,”low”,”medium”,”high”}, defines which constraint to use;

• preprocess, a variable with floating point value or ”log” value, specifies to use the logarithmic transformation (value
”log”) otherwise defines the value of λ.

Example usage:

> db_change_current ”training”
> db_read ”training.db”
> set effort = ”fast”
> set preprocess = ”log”
> doe_define_doe ”m3_random_doe”
> set solutions_number = 1000
> rsm_train ”predictions” ”NN”

Neural Network plugin requires the Fast Artificial Neural Network library7. To compile Multicube Explorer to support the
plugin specify the --neural=<fann_path> option of configure command like in the following example:

> mkdir build
> cd build
> <sourcedir>/configure --neural=/usr/local
> make
> make install

7http://leenissen.dk/fann/

22

Multicube Explorer User Manual Release 1.0

6 Interfaces for the integration of new simulators
This section describe how it is possible to integrate Multicube Explorer with a system simulator and how to define to Multi-
cube Explorer the design space to explore.

6.1 Design Space Definition
The definition of the design space is done by using an XML file that is composed of a preamble, which defines the namespace
and supported version. Multicube Explorer currently supports both R1.3 and R1.4 XML spec.
<?xml version=”1.0” encoding=”UTF-8”?>
<design_space xmlns=”http://www.multicube.eu/” version=”1.4”>

<simulator > ... </simulator >
<parameters > ... </parameters >
<system_metrics > ... </system_metrics >
<rules> ... </rules>

</design_space >

The remaining part of the file describes the simulator invocation method (<simulator> ... </simulator>), the set of pa-
rameters of the simulator which can be configured (<parameters> ... </parameters>), the system metrics which can be
estimated by the simulator (<system_metrics> ... </system_metrics>) and the rules which have to be taken into account
by Multicube Explorer in order to generate feasible configurations.

6.1.1 Simulator Invocation

The <simulator_executable>marker is used for specifying the complete path name of the executable:

<simulator >
<simulator_executable path=”/path/my_simulator_executable” />

</simulator >

The path is specified by using Unix conventions. The simulator executable is invoked with three arguments:

my_simulator_executable \
--xml_system_configuration=sc_path_name \
--xml_system_metrics=sm_path_name \
--reference_xsd=xsd_file_name

where sc_path_name is the path name of XML file describing the system configuration to be passed to the simulator. The
sm_path_name is the path name of the output XML file which should be used by the simulator for producing the systemmet-
rics output. The argument –reference_xsd=xsd_file_name is used for specifying the position of the reference Multicube
Explorer/simulator interface XSD file in the file system. This argument can be used by the simulator for validating the input
and output files exchanged with Multicube Explorer.

6.1.2 Parameters Definition

The <parameters> ... </parameters> is used by the use case and simulator provider to specify the names, the types and
the ranges of the parameters that can be explored by the DSE tool. The section contains a list of <parameter> markers:

<parameter >
<parameter name=”seed” description=”RNG seed” type=”integer” min=”0” max=”10”/>
<parameter name=”fetch_queue_size”

description=”instruction fetch queue size”
type=”integer” min=”1” max=”8” step=”2”/>

23

Multicube Explorer User Manual Release 1.0

...
</parameters >

For each parameter a unique name must be provided. This name will be used for generating configurations at the input of
the simulator. Feasible parameter names are identified by the following regular expression:

[A-Za-z_] [A-Za-z0-9_]*

The parameters types can be divided into two categories:

• Scalar types

• Variable vector types

Scalar parameter types. The scalar parameter type can be:

• integer and boolean. The integer type specifies a simple sequential integer progression associated that specific
parameter. The min and max attributes (which are mandatory) specify the boundaries of the progression. The step
attribute can be used to produce non-unitary progressions. The Boolean type is an integer progression withmin=0 and
max=1.

• exp2The values associatedwith an ”exp2” parameter type should be computed byMulticube Explorer by using a power
of two progression. For example:
<parameter name=”il1_cache_block_size_bytes”

description=”...” type=”exp2” min=”8” max=”64”/>

should be interpreted by Multicube Explorer as a parameter with range values:

{ ”8”, ”16”, ”32”, ”64” }

• string In the case of stringparameters, a list of possible string values should beused instead of themin/max attributes:
<parameter name=”bpred” description=”branch predictor type” type=”string”>

<item value=”nottaken”/>
<item value=”taken”/>
<item value=”perfect”/>
<item value=”bimod”/>
<item value=”2lev”/>
<item value=”comb”/>

</parameter >

In the case the design space is composed of a subset of scalar parameters each one with the same type and range, the design
space definition can be represented in a more compact way by adding an integer attribute instances, instead of declaring
one line for each scalar parameter. If the attribute is not declared it is considered equal to 1.

Variable vector types. The following types are introduced for producing variable vector types with specific constraints
on the possible combinations of the components:

• on-off mask. The on-off mask is essentially a vector combination of boolean values with a specific dimension. We
use the on_set_size attribute to specify the amount of elements which should be ”on” in the resulting vector:
<parameter type=”on_off_mask”

name=”active_processors”
dimension=”7”
on_set_size=”@number_of_threads” />

24

Multicube Explorer User Manual Release 1.0

The on_set_size can be a fixed value or a reference to a variable value. In the case of reference to variable values, the
notation@parameter should be used. For example the notation@number_of_threads indicates that the ”on_set_size”
should be equal to the ”number_of_threads” parameter of the configuration under evaluation. In this example we
assume that the ”number_of_threads” parameter type is an integer progression without explicit steps; as a matter of
fact the notation @_parameter_ can refer only to integer parameters with a step=1. When the on_set_size attribute is
not specified, all the possible combinations of the Boolean vector are considered in the generation of the associated
progression. The dimension of the on_off_mask can be variable as well:
<parameter type=”on_off_mask” name=”QoS_priorities” dimension=”@number_of_threads” />

The previous parameter specification contains, as an example, the Boolean QoS priorities for each of the active nodes
of a target multi-processor system.

• Permutation. Variable size permutations are used, for example, in the case of thread-to-processormapping problems.
In this case a task identifier should be generated for each active processor:
<parameter type=”permutation” name=”thread_assignment” dimension=”@number_of_threads” />

A permutation contains a non-repeatable sequence of values from 1 to the actual dimension of the vector. For example,
the variable vector parameter:
<parameter type=”permutation” name=”example” dimension=”2” />

can assume the following values [1,2] or [2,1].

6.1.3 System Metrics Definition

The <system_metrics> section is used by the use case and simulator provider to specify the names, the types and the units
of the system metrics that can be estimated by the simulator:
<system_metrics >

<system_metric name=”cycles” type=”integer” unit=”cycles” desired=”small”/>
<system_metric name=”instructions” type=”integer” unit=”insts” description=”...”/>
<system_metric name=”powerconsumption” type=”float” unit=”W” description=”...” />
<system_metric name=”area” type=”float” unit=”mm2” desired=”small” />

</system_metrics >

Feasible system metric ”name” attributes are identified by the following regular expression:

[A-Za-z_] [A-Za-z0-9_]*

The optional ”description” attribute is a generic string describing the nature of the system metric.
Multicube Explorer expects to find the system metrics defined in this section in the output file of the simulator. The output
file name of the simulator is the second argument passed to the simulator executable file.

Desired attributes andmeasurement units. The ”desired” attribute indicateswhether it is desirable tohave a ”small”/”big”
value of a specific system metric. In the current version of the Multicube Explorer tool, this attribute is not propagated to
the actual problem objectives (which are an analytical function of the systemmetrics). The measurement unit of the metrics
are also not propagated to the problem objectives. To set the objectives expression and the objective units, please use the
objectives and objectives_units variabiles.

6.1.4 Feasibility rules

The <rules> section is used by Multicube Explorer in order to not generate invalid or not feasible solutions during the auto-
mated exploration process. The behavior of the simulator when these rules are not met is undefined. Each rule is a boolean
expression which should evaluate to true for a feasible configuration of the design space. It is up to Multicube Explorer tool

25

Multicube Explorer User Manual Release 1.0

to check for the rules and generate feasible configurations. Each boolean expression can be an operator acting on either a
<parameter> or <constant> leafs or other boolean expressions. This allows creating complex expression trees of rules. Rules
are ”AND”ed by default by Multicube Explorer. Each rule is identified by a <rule> marker and it has an optional ”name”
attribute. As an example:
<rules>

<rule>
<greater-equal>

<parameter name=”l2_cache_block_size”/>
<parameter name=”l1_dcache_block_size”/>

</greater-equal>
</rule>
<rule name=”application -derived minimal size” >

<greater-equal>
<parameter name=”l2_cache_size”/>
<constant value=”2048”/>

</greater-equal>
</rule>

</rules>

Describes the rule:
(l2_cache_block_size >= l1_dcache_block_size) AND (l2_cache_size >= 2048)

Available operators. The following operators/markers can be used:

<greater>, <greater-equal>, <less>, <less-equal>, <equal>, <not-equal>, <expr>

The <expr>marker can be used for introducing generic expressions e.g.:
<rule>

<greater-equal>
<parameter name=”l2_cache_size”/>
<expr operator=”*”>

<constant value=”2”/>
<parameter name=”l1_cache_size”/>

</expr>
</greater-equal>

</rule>

The previous set of rules is represents (l2_cache_size >= 2*l1_cache_size). The operators supported by Multicube Explorer
are {+ - * / }.

Combining rules. For combining complex expressions the following markers/operators can be used:

<and>, <or>, <not>

For example, the following rules are AND’ed together:
<rules>

<rule name=”overall memory subsystem integrity”>
<and>

<greater-equal>
<parameter name=”l2_cache_block_size”/>
<parameter name=”l1_dcache_block_size”/>

</greater-equal>
<greater-equal>

<parameter name=”l2_cache_size”/>

26

Multicube Explorer User Manual Release 1.0

<constant value=”2048”/>
</greater-equal>

</and>
</rule>

</rules>

This corresponds to the following expression:

(l2_cache_block_size >= l1_dcache_block_size) AND (l2_cache_size >= 2048)

If-then-else rule. An ”if(E) then A” predicate is introduced and it is evaluated as:

• TRUE if E is FALSE

• A if E is TRUE

An example for this rule is the following:
<rule name=”branch prediction design space reduction”>

<if>
<not-equal>

<parameter name=”bpred”/>
<constant value=”bimod”/>

</not-equal>
<then>

<equal>
<parameter name=”bpred_bmod_size”/>
<constant value=”0”/>

</equal>
</then>

</if>
</rule>

This associated predicate expression is:

if(bpred!=bmod) then bpred_bmod_size=0

This rule forces to generate configurations where if bpred!=bmod then bpred_bmod_size=0. These rules can effectively re-
duce the overall design space. An ”if(E) then A else B” predicate is introduced and it is evaluated as:

• B if E is FALSE

• A if E is TRUE

6.2 Multicube Explorer/Simulator Interface
The Multicube Explorer/Simulator interface is composed by 2 files one in output from Multicube Explorer to the simulator
the other one in the opposite direction.

6.2.1 Simulator input file

The simulator input file should contain a preamble and a sequence of <parameter> sections where, for each parameter, the
name and the value is specified:
<?xml version=”1.0” encoding=”UTF-8”?>
<simulator_input_interface xmlns=”http://www.multicube.eu/” version=”1.4”>

<parameter name=”seed” value=”1” />
...

</simulator_input_interface >

27

Multicube Explorer User Manual Release 1.0

The number of <parameter> sections and the name of the parameters should be the same as defined in the XML Design Space
description file. The value of the each parameter section should correspond to one of the possible values as defined in the
XML Design Space description file. Concerning variable vector parameters, the actual parameter instances are specified with
an itemized list. For example, an on_off_mask instance value for the ”active_processors” parameter is described in the sim-
ulator input file as the following list:

<parameter name=”active_processors” >
<item index=”1” value=”0” />
<item index=”2” value=”1” />
<item index=”3” value=”0” />
<item index=”4” value=”1” />

</parameter >

In the case of a permutation vector, the index attribute is substituted with the position attribute:
<parameter name=”thread_assignment” >

<item position=”1” value=”2” />
<item position=”2” value=”3” />
<item position=”3” value=”1” />

</parameter >

Index and position attributes start from 1 up to the dimension associated to the variable vector.

6.2.2 Simulator Output File

The simulator output file contains a preamble and a sequence of <system_metric> sections where, for each metric, the name
and the value is specified:
<?xml version=”1.0” encoding=”UTF-8”?>
<simulator_output_interface xmlns=”http://www.multicube.eu/” version=”1.4”>

<system_metric name=”cycles” value=”3000” />
<system_metric name=”instructions” value=”1500” />
<system_metric name=”power_consumption” value=”2.5” />
<system_metric name=”area” value=”25” />

</simulator_output_interface >

The number of <system_metric> sections and the name of the system metrics should be the same as defined in the XML
Design Space description file.

6.2.3 Simulator Error Management

In the case of errors during the simulator execution, the simulator output file should contain a single <error> marker indi-
cating the error reason:
<?xml version=”1.0” encoding=”UTF-8”?>
<simulator_output_interface xmlns=”http://www.multicube.eu/” version=”1.4”>

<error reason=”memory-full” kind=”fatal”/>
</simulator_output_interface >

The attribute reason is a generic string that can contain a report about the error cause. Overall, the error strings of the
simulator are meant to be related to:

• memory-full or disk-full problems

• file system permissions problems.

• license problems.

28

Multicube Explorer User Manual Release 1.0

• internal exceptions.

• other.

• consistency or feasibility violation (if checked by the simulator)

The kind can be ”fatal”/”non-fatal”. Fatal errors should block the overall exploration process while non-fatal errors force
Multicube Explorer to skip to the next configuration. If an <error> marker is present in the output file, <system_metric>
markers are ignored by Multicube Explorer.

29

Multicube Explorer User Manual Release 1.0

7 Example of exploration with a simple simulator
In this sectionwe report a simple example usage ofMulticube Explorer. The example consists of the exploration of the param-
eter space of a simple simulator. The files associatedwith this example canbe located in<installdir>/examples/simple_sim
directory; namely, they correspond to:

• simple_sim.py: Python script representing the simulator of the target architecture to be explored.

• simple_sim_ds.xml: Design space to be explored (see Figure 4)

• simple_sim_scr.scr: Multicube Explorer script file which automates the steps of the exploration.

<?xml version=”1.0” encoding=”UTF-8”?>
<design_space xmlns=”http://www.multicube.eu/” version=”1.4”>

<simulator >
<simulator_executable
path=”/usr/bin/python @image@/examples/simple_sim/simple_sim.py” />

</simulator >
<parameters >

<parameter name=”par1_exp2” type=”exp2” min=”1024” max=”4096” />
<parameter name=”par2_step1” type=”integer” min=”1” max=”2” step=”1”/>
<parameter name=”par3_step2” type=”integer” min=”1” max=”5” step=”2”/>

</parameters >
<system_metrics >

<system_metric name=”sum” type=”integer” unit=”cycles” desired=”small” />
<system_metric name=”difference” type=”integer” unit=”mm2” desired=”small” />
<system_metric name=”product” type=”integer” unit=”mW” desired=”small” />

</system_metrics >
<rules>

<rule>
<greater-equal>

<parameter name=”par3_step2”/>
<parameter name=”par2_step1”/>

</greater-equal>
</rule>

</rules>
</design_space >

Figure 4: simple_sim_ds.xml

In this example, we perform a full-search exploration of the design space shown in Figure 4 by filtering the final results for
the pareto set. To start with the exploration, we invoke Multicube Explorer with its target design space.

> <installdir>/bin/m3explorer -x simple_sim_ds.xml

The target design space is now loaded. Now, Multicube Explorer knows where the simulator is and which are the parameters
associated with it. Once in the Multicube Explorer shell, we perform the following steps:

• Configure the optimizer to clean the directory at the end of the exploration.

m3_shell> set clean_directory_on_exit = ”true”

• Change the current database to a new database called full_db (it will be filled by optimizer module with the explo-
ration results).

30

Multicube Explorer User Manual Release 1.0

m3_shell> db_change_current ”full_db”

• Load the m3_full_doe DoE. Full-search considers all the possible combination of the parameters.

m3_shell> doe_define_doe ”m3_full_doe”

• Load m3_pareto_doe optimizer (it visits only the solutions defined by the DoE).

m3_shell> opt_define_optimizer ”m3_pareto_doe”

• Start the exploration.

m3_shell> opt_tune

• Write the results of the exploration in an internal Multicube Explorer .db format and in a standard csv format.

m3_shell> db_write ”my_full.db”
m3_shell> db_export ”my_full.csv”

• Set up the objective functions of the problem (to enable Pareto filtering of visited points), perform Pareto filtering
of the current database (by eliminating dominated points) and report the results. Objectives can be any analytical
expression of the metrics of the system.

m3_shell> set objectives = { ”sum” ”difference” ”product” }
m3_shell> db_filter_pareto
m3_shell> db_report

• Write the Pareto points in internal and csv format.

m3_shell> db_write ”my_full.db”
m3_shell> db_export ”my_full.csv”

• Exit from the shell.

m3_shell> exit

The example can be automated by using an Multicube Explorer script (simple_sim_scr.scr):

> <installdir>/bin/m3explorer -x simple_sim_ds.xml -f simple_sim_scr.scr

Figure 5 shows the output of such script.

31

Multicube Explorer User Manual Release 1.0

$../../bin/m3explorer -x simple_sim_ds.xml -f simple_sim_scr.scr

Information: Creating the xml_driver
Information: Loading the xml_driver
Information: Assigned value "true" to clean_directory_on_exit
Information: Changing current DB to: full_db
Information: Database not existing. Creating a new one.
Information: Loading the full search doe
Information: Current doe has been set to 'Full search doe'
Information: Current optimizer has been set to 'Pareto doe optimizer'
Information: Starting with the pareto doe optimization process
Information: Evaluating point: [par1_exp2=1024 par2_step1=1 par3_step2=1]
Information: Evaluating point: [par1_exp2=2048 par2_step1=1 par3_step2=1]
Information: Evaluating point: [par1_exp2=4096 par2_step1=1 par3_step2=1]
Information: Skipping point: [par1_exp2=1024 par2_step1=2 par3_step2=1]
Information: Skipping point: [par1_exp2=2048 par2_step1=2 par3_step2=1]
Information: Skipping point: [par1_exp2=4096 par2_step1=2 par3_step2=1]
Information: Evaluating point: [par1_exp2=1024 par2_step1=1 par3_step2=3]
Information: Evaluating point: [par1_exp2=2048 par2_step1=1 par3_step2=3]
Information: Evaluating point: [par1_exp2=4096 par2_step1=1 par3_step2=3]
Information: Evaluating point: [par1_exp2=1024 par2_step1=2 par3_step2=3]
Information: Evaluating point: [par1_exp2=2048 par2_step1=2 par3_step2=3]
Information: Evaluating point: [par1_exp2=4096 par2_step1=2 par3_step2=3]
Information: Evaluating point: [par1_exp2=1024 par2_step1=1 par3_step2=5]
Information: Evaluating point: [par1_exp2=2048 par2_step1=1 par3_step2=5]
Information: Evaluating point: [par1_exp2=4096 par2_step1=1 par3_step2=5]
Information: Evaluating point: [par1_exp2=1024 par2_step1=2 par3_step2=5]
Information: Evaluating point: [par1_exp2=2048 par2_step1=2 par3_step2=5]
Information: Evaluating point: [par1_exp2=4096 par2_step1=2 par3_step2=5]
Information: Writing the database to disk
Information: Database correctly written
Information: Saving the database in CSV format..
Information: Assigned value { "sum" "difference" "product" } to objectives
Information: Filtering the database for pareto points..
full_db: Current database contents
[par1_exp2=1024 par2_step1=1 par3_step2=1] : 1026 1022 1024
[par1_exp2=1024 par2_step1=1 par3_step2=3] : 1028 1020 3072
[par1_exp2=1024 par2_step1=2 par3_step2=3] : 1029 1019 6144
[par1_exp2=1024 par2_step1=1 par3_step2=5] : 1030 1018 5120
[par1_exp2=1024 par2_step1=2 par3_step2=5] : 1031 1017 10240
Number of points in the DB: 5
Information: Writing the database to disk
Information: Database correctly written
Information: Saving the database in CSV format..
Information: Removing xml_driver
Information: Exiting from Multicube Explorer shell!

!

Figure 5: Multicube Explorer output while it is running simple_sim_scr.scr

32

Multicube Explorer User Manual Release 1.0

8 Shell Command List
This section reports a brief survey of commands available in the Multicube Explorer optimization tool.
The commands are organized in three main classes:

• Basic commands, adopted to control theMulticube Explorer environment in terms of defined variables and other basic
functionalities

• Plugins commands, which give powerful flexibility to the user on handling the modular structure of Multicube Ex-
plorer.

• Database commands, used to handle one or more database where visited design points are stored.

8.1 Basic Commands
These commands support the user on performing simple operations as load scripts, display help messages and set variables
value and close Multicube Explorer.

Shell Command name: exit
Arguments: -
Options: -
Description: Exits from the Multicube Explorer shell.
Example usage: > exit

Shell Command name: quit
Arguments: -
Options: -
Description: Same as exit command.
Example usage: > quit

Shell Command name: read_script
Arguments: Name of the script to be read - string
Options: -
Description: All commands within the given script are sequentially executed in the m3explorer

environment.
Example usage: > read_script ”my_script.scr”

Shell Command name: set
Arguments: Name of the variable to be set - identifier.

Value to be inserted into the variable - object
Options: -
Description: Set an environment variable. Set command cares about definition of the variable,

if this was never used before, or modification of variable content if variable was
existing.
The following variable names: objectives, architecture_info,
objectives_units and objectives_names are reserved to specify objectives and
architecture properties.

Example usage: > set my_string = ”I’m a string”
> set my_number = 13
> set my_list = {$my_string $my_number 0.9233 }

33

Multicube Explorer User Manual Release 1.0

Shell Command name: show_vars
Arguments: -
Options: -
Description: Shows the variable in the currentMulticube Explorer environment and reports basic

information about available Databases.
Example usage: > show_vars

Shell Command name: help
Arguments: -
Options: - -long request a list of the available options and arguments for each command.
Description: Reports general help on Multicube Explorer commands.
Example usage: > help - -long

8.2 Plugins Commands
Multicube Explorer is organized in modular structure and enables the user to dynamically load precompiled plugins within
the environment.
These plugins are DoE modules adopted for initial experimental design and optimization modules for the definition of opti-
mization algorithm to be adopted.
Shell variables can be used for passing additional parameters to the modules.

Shell Command name: doe_define_doe
Arguments: Name of the Design Of Experiments to be loaded - string
Options: -
Description: Instantiates the Design of Experiments module to be used during the optimization.
Example usage: > doe_define_doe ”m3_random_doe”

Shell Command name: doe_show_info
Arguments: -
Options: -
Description: Displays info message from the DoE module currently loaded in the Multicube Ex-

plorer environment, if any. If no doe module is defined, then an error message is
shown.

Example usage: > doe_show_info

34

Multicube Explorer User Manual Release 1.0

Shell Command name: drv_define_driver
Arguments: Name of the driver to be loaded - string
Options: -
Description: Load a driver module into the Multicube Explorer environment. On doing so, de-

sign space is defined and parameters representing design parameter boundaries are
organized into the Multicube Explorer environment as shell variables.

Example usage: > set xml_design_space_file=”m3_mpeg_use_case.xml”
> drv_define_driver m3_xml_driver
> show_vars
Shell variables:
Name Value
———- ————————
cbs [”16” ”128”]
dcs [”2048” ”65536”]
dcw [”1” ”16”]
ds_parameters [”ics” ... ”pn”]
ics [”2048” ”65536”]
icw [”1” ”16”]
iwidth [”1” ”8”]
l2cs [”32768” ”1048576”]
l2cw [”1” ”16”]
pn [”1” ”16”]

Databases in memory
Name size
—————————–
root (available) 0

Shell Command name: drv_show_info
Arguments: -
Options: -
Description: Shows information about the current driver loaded.
Example usage: > drv_show_info

Shell Command name: opt_define_optimizer
Arguments: Name of the optimizer to be loaded - string
Options: -
Description: Loads the optimizer plug-in.
Example usage: > opt_define_optimizer ”m3_aprs”

Shell Command name: opt_show_info
Arguments: -
Options: -
Description: Shows information about the current optimizer.
Example usage: > opt_show_info

35

Multicube Explorer User Manual Release 1.0

Shell Command name: opt_tune
Arguments: -
Options: -
Description: Launch the exploration process defined in the optimizer (also called optimization or

tuning operation). During optimization, all modules (optimizer, driver, doe) inter-
acts, thus they should be all loaded into the environment when opt_tune is called.
With commands in the following example, the aprs optimization process is launched
over the mpeg usecase, available in the example subdirectory of the installation di-
rectory. The DoE adopted as initial experimental design is a random one. Results of
optimization process are placed into the current database (root database when the
shell is just opened).

Example usage: > set xml_design_space_file=”m3_mpeg_use_case.xml”
> drv_define_driver ”m3_xml_driver”
> doe_define_doe ”m3_random_doe”
> opt_define_optimizer ”m3_aprs”
> opt_tune

Shell Command name: rsm_train
Arguments: Shell database name where to write the predictions - string.

Name of the RSM to train - string
Options: -
Description: Executes the training phase of the selected RSM on the current database and pro-

duces predictions into the specified database. Before launching this command the
user have to specify a DoE, used to define the predictors, and can specify the param-
eters for the choosen RSM. In case of missing or wrong parameters settings, will be
used the default values. The variables preprocess and power in the example are the
parameters of Shepard RSM.

Example usage: > db_change_current ”trainers”
> db_read ”training_set.db”
> doe_define_doe ”m3_full_doe”
> set preprocess = -1
> set power = 5
> rsm_train ”predictions_db” ”SHEPARD”

36

Multicube Explorer User Manual Release 1.0

Shell Command name: rsm_validate
Arguments: Name of the RSM to validate - string
Options: -
Description: rsm_validate is used to analyze the behavior of the accuracy of the implemented

RSM on the target architecture. As amatter of fact, it runs the command rsm_train
(for the selected RSM) several times with several (user defined) training sets, and
with several (user defined) RSM parameters values. The predictions are compared
with the real values contained in the current database to produce a graph of the re-
sulting average normalized error versus the number of simulations, where the num-
ber of simulations corresponds to the number of points used for training the RSM.
The number of points to use as training samples is specified by the user into the shell
vector “trainers”, rsm_validate chooses that points randomly from the current
database. It is possible to validate the RSM in respect to training sets with various
dimensions specifying more than one value into the shell vector “trainers”.
The predictors are selected from the current DoE defined by the user.
The RSM parameters values are specified into shell vectors. For each of the chosen
RSM parameters the user has to specify a corresponding shell vector with a name
composed of the parameter name followed by “_list”. It is possible to validate the
RSM in respect to various parameters values specifying more than one value for the
parameters into the corresponding vectors. If no or wrong value is specified for a
parameter the default one is chosen.
Since the trainers are selected randomly from a reference database, results can vary
fromone run of the command to another. For this reason, rsm_validate can repeat
the entiremechanism for a number of times specified by the user with the shell vari-
able “num_samples”, and finally the average value for each training is considered.
If the user doesn’t specify the variable “num_samples” a default value is considered.
The validation of the example consists in the parameters selection of power = 5 and
preprocess = -1, the training of Shepardwith a training set composed of 200 points se-
lected randomly from “reference”, the average normalized error computation, the
training of Shepard with a training set composed of 400 points selected randomly
from “reference”, the average normalized error computation, and so on till the set
with 1800 points. After that, power = 5 and preprocess = “log” are selected, the train-
ing and error computing are performed again on training sets with the specified
dimensions. Once all parameters configurations has been experimented the entire
mechanism is repeated (because “num_samples” = 2), the graph with average values
is generated and saved into the working directory.

Example usage: > db_change_current ”reference”
> db_read ”full.db”
> doe_define_doe ”m3_full_doe”
> set preprocess_list = [-1 ”log” 0.5 1]
> set power_list = [5 5 5 5]
> set num_samples = 2
> set trainers = [200 400 600 800 1000 1200 1400 1600 1800]
> rsm_validate ”SHEPARD”

8.3 Database Commands
Simulation results are stored into database (db) in memory. Databases can be loaded/stored from/to the file system, in such
a way that is easy to handle simulation data obtained in different working sessions.
Operations that can be performed on databases are various and allow to extrapolate and visualize some fundamental high
level information needed to investigate solution quality of multi-objective optimization. Following are Multicube Explorer

37

Multicube Explorer User Manual Release 1.0

commands for database handling.

Shell Command name: db_read
Arguments: Name of the db to read - string
Options: -
Description: Reads a database from disk.
Example usage: > db_read ”MY_EXPLORATION_DB.db”

Shell Command name: db_write
Arguments: File name into which the current database should be written - string
Options: -
Description: Writes the current db on the disk to a specified file in a format readable fromMulti-

cube Explorer.
Example usage: > db_write ”MY_EXPLORATION_DB.db”

Shell Command name: db_change_current
Arguments: Name of the db to be set as current - string
Options: -
Description: The current db is the one actually used for storing exploration results and it is the

target of the commands of the shell. All operations performed inMulticube Explorer
which act on database has the current db as target. db_change_current allow to
define which database have to be used as current, taking its name as parameter. In
the case no database with the specified name exists in the m3eplorer environment,
such database is automatically generated and set as current.

Example usage: > db_change_current ”MY_EXPLORATION_DB”

Shell Command name: db_export
Arguments: File name into which the current database should be exported - string
Options: -
Description: This command can be used to export the current database in CSV format to the file

specified as parameter.
Example usage: > db_export ”MY_EXPLORATION_DB.csv”

Shell Command name: db_export_xml
Arguments: File name into which the current database should be exported - string
Options: -
Description: This command can be used to export the current database in XML format to the file

specified as parameter.
Example usage: > db_export_xml ”MY_EXPLORATION_DB.xml”

Shell Command name: db_report
Arguments: -
Options: -
Description: Reports all the architectural configurations stored into the current db.
Example usage: > db_report

38

Multicube Explorer User Manual Release 1.0

Shell Command name: db_filter_pareto
Arguments: -
Options: -
Description: Filter the current database keeping only the Pareto points. The Pareto concept is

defined once a special variable with the name objectives is declared in the environ-
ment as a list of objective metrics.
Commands in the example filter the database my_exploration keeping only design
points such as no other point is better in terms of energy and delay.

Example usage: > db_change_current ”my_exploration”
> set objectives={”energy” ”delay”}
> db_filter_pareto

Shell Command name: db_plot_objectives
Arguments: Databases to be plotted
Options: -
Description: Graphical investigation of solutions quality. Plotting functionalities are available

only in 2D, thus to use db_plot_objectives a special variable with the name ob-
jectives must be declared as a list of two objective metrics.
If no parameters are passed, the current database only is investigated and objective
metrics of stored points are plotted. If one database name parameter is passed, the
graphical investigation is performed over such db. In the case two database name
parameters are passed, graphical investigation is performed on the same plot for the
two databases allowing graphical comparison of solution qualities.

Example usage: > set objectives={”energy” ”delay”}
> db_change_current ”first_exploration”
> db_read ”first_exploration.db”
> db_change_current ”second_exploration”
> db_read ”second_exploration.db”

> ## plot objectives in the second database loaded (the current
db)
> db_plot_objectives

> ## plot objectives in the first database loaded
> db_plot_objectives ”first_exploration”

> ## plot objectives of both databases loaded on the same
plot
> db_plot_objectives ”first_exploration” ”second_exploration”

39

Multicube Explorer User Manual Release 1.0

Shell Command name: db_plot_2D
Arguments: Database to be plotted
Options: -
Description: Graphical investigation of the design space. Plotting functionalities are available

only in 2D, thus to use db_plot_2D two special variables (X_axis, Y_axis) with
the name of the metric/parameter to be plotted must be declared.
If no parameters are passed, the current database is investigated. If one database
name parameter is passed, the graphical investigation is performed over such db.

Example usage: > set X_axis= ”iwidth”
> set Y_axis= ”energy”
> db_change_current ”first_exploration”
> db_read ”first_exploration.db”
> db_change_current ”second_exploration”
> db_read ”second_exploration.db”

> ## iwidth/energy 2D plot of the second database loaded
(the current db)
> db_plot_2D

> ## iwidth/energy 2D plot of the first database loaded
> db_plot_2D ”first_exploration”

Shell Command name: db_compute_ADRS
Arguments: -
Options: -
Description: Computes the Average Distance from Reference Set (ADRS).

Such distance is a quantitative measure of solution qualities of a multiobjective ex-
ploration that is available for whatever dimension of the objective space, thus it can
be used even when graphical investigation towards db_plot_objectives cannot
be performed.
ADRS computation needs a reference set that is provided to the command by passing
a db name parameters where the reference set is stored. ADRS result is stored in a
variable called last_ADRS.

Example usage: > set objectives={”energy” ”cycles”}

> ## performing a full search exploration
> doe_define_doe ”m3_full_doe”
> db_change_current ”full_DB”
> opt_define_optimizer ”m3_pareto_doe”
> opt_tune

> ## performing a APRS exploration
> db_change_current ”aprs_DB”
> doe_define_doe ”m3_random_doe”
> opt_define_optimizer ”m3_aprs”
> opt_tune

> ## computing aprs quality
> db_compute_adrs ”full_DB”

40

Multicube Explorer User Manual Release 1.0

Shell Command name: db_report_html
Arguments: The folder name where to save the report.
Options: -
Description: Generates a html report of the current database into the specified folder.
Example usage: > dbi_read ”full_mpeg4.db”

> set objectives = { ”energy” ”cycles” }
> set objectives_units = { ”J” ”cycles” }
> set dcw = [”2” ”8”]
> set l2cw = [”2” ”8”]
> set architecture_info = { ”MPEG 2 Decoder - SESC simulator” }
> db_report_html ”report”

41

Multicube Explorer User Manual Release 1.0

9 Authors
• Vittorio Zaccaria, Politecnico di Milano

• Gianluca Palermo, Politecnico di Milano

• Giovanni Mariani, ALaRI - Università della Svizzera italiana

• Fabrizio Castro, Politecnico di Milano

10 Acknowledgments
Much of what Multicube Explorer is today was also defined by the users of the tool. We would like to acknowledge the
contributions of the following people, for their early adoption of the tool, their feedback on the tool and on the interfaces,
their contributions to the tool and their comments on the manual.

• Cristina Silvano, Politecnico di Milano

• William Fornaciari, Politecnico di Milano

• Alessandro Sivieri, Politecnico di Milano

• Al-Hissi Mohammad, ALaRI - Università della Svizzera italiana

• Carlos Kavka, ESTECO

• Sara Bocchio, STMicroelectonics

• Hector Posadas, University of Cantabria

This work is supported by the EC under grant FP7-216693 MULTICUBE (http://www.multicube.eu). The Multicube Explorer
tool and the documentation can be found at the following address: http://home.dei.polimi.it/zaccaria/multicube_explorer.

42

http://www.multicube.eu/
http://home.dei.polimi.it/zaccaria/multicube_explorer

	Overview of Multicube Explorer
	Goals of Multicube Explorer
	Automatic design space exploration
	Portability
	Modular composition

	Architecture of the tool
	Nature of the tool
	Interaction with the simulator

	License
	Installation Requirements and Procedure
	Installation Requirements
	Installation Procedure
	Testing the installation
	Uninstall procedure
	Documentation

	The Shell of Multicube Explorer
	Available Plugins
	DoEs
	Full Search
	Random
	Two levels Full Factorial
	Two Levels Full Factorial Extended
	Scrambled

	Optimizers
	Pareto DoE
	APRS
	MOSA
	MOPSO
	NSGA-II
	SEMO
	FEMO
	GEMO
	Linear Scan

	RSMs
	Linear Regression
	Spline
	Radial Basis Functions
	Shepard
	Neural Network

	Interfaces for the integration of new simulators
	Design Space Definition
	Simulator Invocation
	Parameters Definition
	System Metrics Definition
	Feasibility rules

	Multicube Explorer/Simulator Interface
	Simulator input file
	Simulator Output File
	Simulator Error Management

	Example of exploration with a simple simulator
	Shell Command List
	Basic Commands
	exit
	quit
	read_script
	set
	show_vars
	help

	Plugins Commands
	doe_define_doe
	doe_show_info
	drv_define_driver
	drv_show_info
	opt_define_optimizer
	opt_show_info
	opt_tune
	rsm_train
	rsm_validate

	Database Commands
	db_read
	db_write
	db_change_current
	db_export
	db_export_xml
	db_report
	db_filter_pareto
	db_plot_objectives
	db_plot_2D
	db_compute_ADRS
	db_report_html

	Authors
	Acknowledgments

