
SPACE TUTORIAL

N.P. van der Meijs, A.J. van Genderen

Circuits and Systems Group

Department of Electrical Engineering

Delft University of Technology

The Netherlands

Report ET-NT 92.22

Copyright © 1992-2003 by the authors.

All rights reserved.

Last revision: May, 2003.

Space Tutorial 1

1. Introduction

This tutorial describes how to use the space layout-to-circuit extractor. Space is used to

extract a netlist from a given mask-level layout. Depending on the options specified

when invoking space, the netlist

• can be flat, hierarchical (the same hierarchical structure as present in the layout) or

mixed flat/hierarchical.

• can contain interconnect capacitances (e.g. capacitances to the substrate, fringe

capacitances, cross-over coupling capacitances and capacitances between parallel

wires)

• can contain interconnect and substrate resistances.

The extracted network (including its parasitic information) can be used to verify the

functionality and the performance of the circuit, e.g. by means of post-layout simulation

or timing analysis.

This document is structured as follows. Section 2 giv es an introduction to some basic

concepts that are used in connection with the extraction program. It gives some

definitions, it describes how the database that stores the design data is arranged, and it

shows the relation of the extraction tools with the Unix file system and the Unix

command shell. Section 3 gives an example of a layout-to-circuit extraction for a

particular circuit. This section discusses each of the different tools that are used in

conjunction with the extraction program and it shows the relation between these tools by

calling them for the given extraction example. Finally, the last sections describe some

extraction strategies for particular applications such as special device extraction and sea-

of-gates circuit extraction.

NOTE:

The Space System, the space extractor and its tools, is based on the Release 3 of

the Nelsis IC Design System.

NOTE:

Throughout this document, we assume that all installation-related space files and

directories are stored under the /usr/cacd directory. If this ICDPATH directory is

different at your site, please read these phrases with the correct pathname

substituted for /usr/cacd. Consult your system administrator if you don’t know the

correct pathname.

If you are going to use space, make sure that there is an entry /usr/cacd/share/bin

in the command search path of your Unix shell. Note that the environment variable

ICDPATH does not need to be set manually, it is set by a shell script before each

tool invocation.

The Nelsis IC Design System

Space Tutorial 2

2. Basic Concepts

2.1 Projects

Space operates in a database that is called a project . In this project, it finds the layout

data and stores the extracted circuit data. Under Unix, a project is a directory with two

subdirectories (called view directories , layout and circuit) where the actual data is stored,

and a projlist file. The projlist file contains a list of related projects (e.g. library

projects), as is discussed in section 2.2. All design data that belong to a project are stored

in the file structure underneath the project directory. If necessary, project directories can

be moved, copied or archived like ordinary Unix directories. Note that if a project is

referenced, it is a library project. Because other projects are using it and know where it is

located, it is not wise to move this projects to another location.

Each layout is designed in a particular process (e.g. ES2 ECPD07 or MOSIS scalable

CMOS) and using a particular value of λ (lambda)). The process and λ value are set for a

particular project; all cells in the project share the same process and λ value. This

information has to be specified when the project is created, and is, among other

information, stored in file named .dmrc in the project directory.

Lambda is a specification of the elementary distance unit of the layout data. All physical

dimensions of the design descriptions are expressed in (integer) values of this λ unit.

Lambda should be specified small enough in order to represent all valid layout positions.

Also, it should be specified not too small in order to prevent integer overflows for large

layouts.

The technology files for space contain capacitance values per meter or per meter2. Space

uses the value of λ to convert a layout in the project database into its (would be) physical

dimensions, to produce its (would be) capacitances and/or resistances. For example, with

λ = 0.5 microns a layout feature of 4 λ units becomes 2 microns when the design is

actually extracted. Lambda is constant for all cells in a project, but different projects can

have a different λ. For current processes, typical values of λ are around 0.01-0.1 micron

or 10−8 − 10−7 m.

2.2 Library Projects

Projects form local databases. There is no direct interference, such as name clashes,

between data in different projects. However, projects are not completely isolated from

each other. An import mechanism permits remote cells (cells in other projects) to be used

locally, without actually copying them. A cell from another project may be imported into

the local project to make it available for instantation (hierarchical inclusion), while an

alias (local name) may be assigned to it.

This concept is particularly useful if remote projects contain large collections of reusable

predefined cells. These projects can then operate as library projects. The cells in a

library project can be accessed from other projects (with the same technology and λ),

without copying of design data.

The Nelsis IC Design System

Space Tutorial 3

Such a facility is virtually mandatory for certain design styles such as standard-cell or

gate-array design, but is also very useful for full-custom design.

An example of multiple projects with imported cells is depicted in the figure below.

ProjectProject

ProjectProject

Y

X

As one can see, some of the cells in projects X and Y are defined hierarchically,

instantiating local cells. Project X however also contains cells which instantiate cells

from project Y. These remote cells have been imported previously into project X, before

instantiating (= referring) them within this project.

2.3 Technology Independence

Space, and its auxiliary programs, are technology independent. Information about the

masks present, elements to be recognized, values of parasitics etc., is stored in certain

files in a process directory. For each process supported, there is a directory that in turn

contains the tool-specific data files. These directories together are called the technology

base , and reside in a special place, known by all tools, in the Unix directory tree.

Introducing a new process merely implies that a new directory with the corresponding

data files has to be created. More information on how to enter a new process, the format

of the datafiles etc., is given elsewhere.

2.4 Tools

Space is accompanied by a number of auxiliary tools that perform tasks like creating and

removing projects, listing the contents of a projects, extracting a SPICE netlist from a

project and so on.

The tools are normally invoked by the user through the Unix command interpreter, or

shell. That is, the user works from a Unix shell and all corresponding mechanisms apply

to the process of tool invocation. For instance, the user may go through the file system

and position himself in a (project) directory with such commands as ls and cd, use ps to

see which tools are running, and store the output of a tool in a particular file with the

The Nelsis IC Design System

Space Tutorial 4

usual IO-redirect mechanisms. Also, the selection of the executable that will be run is

done using the usual search path mechanisms.

As an example, we show how one may move to a project ‘‘alu_proj’’ and invoke a tool to

inspect the contents of that project. With the typical Unix phrase

% cd projects/alu_proj

one moves to the particular project directory, where one may invoke the Nelsis tool dblist

by typing

% dblist

This will list the contents of the project database just as one could type

% ls

to list the contents of a Unix directory. The output of the dblist command will appear on

the screen, for example:

% dblist

layout:

feedback mod2_fb sel_reg8

latch rand_cnt select

circuit:

floorplan:

%

The tools are all separate executables. As a result, several tools can be run in parallel and

a pipeline of different programs can be set up.

A number of tools have already been mentioned. A flow-diagram for the most important

tools is given below. After that one finds a list of all tools that are relevant for extraction,

including a short description of each of these tools.

The Nelsis IC Design System

Space Tutorial 5

space putdevmodxcontrol

helios
model

file

layout circuit

database

cgi

dali

ccif

other layout-

generating programs

GDS II

file

CIF

file

xspice

xsls

xedif

different types of

simulators and verifiers

SLS

file

SPICE

file

EDIF

file

• mkpr

This program is used to create and initialize a project directory. A project directory

is the working directory for the extractor and contains subdirectories in which the

design data is stored.

• rmpr

This program removes a project directory when it is not needed anymore.

• addproj

This program adds other project directories to the library list of the current project,

allowing cells in the library projects to be used in the current project. See also

impcell.

• impcell

This program makes a cell from a library project available for use in the current

project. Only a reference is made, the data is not copied.

• rmdb

This program deletes a cell from a project directory.

• dblist

This program lists the contents of a project directory, i.e. which cells are in it.

• dbclean

This program removes intermediate data, which is generated by some tools and

The Nelsis IC Design System

Space Tutorial 6

saved in the project because it can be used more then once, from a project.

• makeboxl, makegln, makemesh, makesize

These programs prepare a layout for extraction, e.g. they expand a layout before

flat extraction. For efficiency reasons, their result data are stored into the project.

For example, a layout now needs to be expanded only once if it is extracted twice,

with different options. These tools are normally not invoked by the designer, but

they are automatically invoked by space.

• space

This program is the actual layout-to-circuit extractor.

• tecc

This program compiles a user defined technology file for space into a format

suitable as input for space.

• dali

An interactive layout editing program.

• cgi

This program writes a GDS II layout into the project.

• ccif

This program writes a CIF layout into the project.

• macro

This program lists the macro status for layout cells. An instance of a ‘macro’ cell

is always flattened during extraction (not always for all masks). The program can

also change the macro status for local cells in old projects. Use the xcontrol

program for new projects.

• xcontrol

This program is used to set the extraction status for a cell. It supersedes the

programs macro and device. The xcontrol data is stored differently in the project

database. This makes it possible to set locally the status of an imported cell.

• xspice

This program retrieves a SPICE netlist from a project.

• xedif

This program retrieves an EDIF netlist from a project.

• xsls

This program retrieves an SLS netlist from a project.

• xpstar

This program retrieves a Pstar netlist from a project.

The Nelsis IC Design System

Space Tutorial 7

• xnle

This program retrieves a NLE netlist from a project.

• xspef

This program retrieves a detailed SPEF (IEEE Standard Parasitic Exchange

Format) netlist from a project.

• xspf

This program retrieves a detailed SPF (Cadence Standard Parasitic Format) netlist

from a project.

• xvhdl

This program retrieves a VHDL (VHSIC Hardware Description Language) netlist

from a project.

• icdman

This program is to consult the on-line Nelsis designers manual.

• putdevmod

This program stores information about devices into a project circuit view. It does

not set the device status for new projects.

• device

This program lists the devmod status for circuit cells. This devmod status is the

device status for old project cells. The program can also change the device status

for local cells in old projects. Use the xcontrol program for new projects.

• match

This program compares two circuits (e.g. a reference circuit and an extracted

circuit) and tells whether or not they are equivalent.

• highlay

This program is used to high-light the layout of one or more conductors and/or

devices.

• helios

This program is a Graphical User Interface for the Space Extraction System. See

the "Space Tutorial Helios Version" for more details.

Apart from the above tools, also other tools are available in the Nelsis System that closely

co-operate with space, such as different kinds of layout generating programs and

simulation programs, such as simeye and sls (see the manual pages and/or user’s manuals

of these programs).

2.5 File Structure

In this section we will explain where the different parts of the system are located in the

Unix directory hierarchy. In this section (in fact, throughout this document) we assume

that these parts are subdirectories of the directory /usr/cacd, but this can be different at

The Nelsis IC Design System

Space Tutorial 8

your site.

/usr/cacd/share/bin This directory contains the executables. So, if you are going to

use space, make sure that there is an entry /usr/cacd/share/bin

in the command search path of your Unix shell.

/usr/cacd/share/man This directory tree contains all on-line manual pages. There is a

subdirectory for each of the sections.

/usr/cacd/share/lib This directory tree contains all shared data files such as

technology data.

/usr/cacd/share/demo This directory tree contains projects with actual design

examples, among which designs presented in this document.

/usr/cacd/share/doc This directory contains the documents (in PostScript form)

related to the Space System.

2.6 Hierarchy and Terminals

An electrical network or circuit as extracted by space, is built up from primitive elements

(transistors, capacitors and resistors), subcircuits (when the input layout is hierarchical)

and terminals. Terminals (sometimes also called ports or pins) are connectors to the

outside world and are used for building up the hierarchical structure of the circuit. The

netlist specifies the connectivity among all these elements.

For space to be able to produce terminals in the extracted circuit, the input layout must

also have terminals. Layout terminals are named rectangular areas or points in an

interconnect layer of the layout. Space uses the terminals in the layout to create, name

and connect the terminals in the circuit according to a one-to-one correspondence

between layout terminals and circuit terminals. Terminal names must be unique within a

cell.

For flat extraction, only the topmost cell must have terminals. For hierarchical extraction,

the topmost cell and all the other cells in the hierarchy must have terminals, unless the

cell has a macro status. When a cell has a macro status, the instances of the cell are

always flattened, even in case of hierarchical extraction; the macro status is set for a

particular cell by using the program xcontrol. You can see the macro status also with the

program macro. Space identifies a connection from a cell being extracted (the parent

cell) to a subcell (or child cell) when a layout feature of the parent cell touches or

overlaps a terminal of the child cell. Space identifies a connection between two subcells

when a terminal of one subcell touches or overlaps a terminal of the other subcell.

The Nelsis IC Design System

Space Tutorial 9

NOTE:

If there are connections between cells that take place not via terminals, use flat

extraction only, or set the macro status for all subcells that have this type of

connections.

In case of hierarchical extraction without setting the macro status, space would not detect

such connections. In fact, space would be unable to represent those non-hierarchical

connections in a hierarchical circuit description. The program will not give a warning in

case of such non-hierarchical connections.

Hierarchical extraction is also impossible (in the sense that it results in an incorrect

circuit) if the functionality of the child cells is modified by layout features in the parent

cells. For example, for hierarchical extraction, when a polysilicon feature in a parent cell

overlaps an active area feature in a child cell, this will modify the actual circuit that is

defined (by creating a transistor element), while this will have no influence on the circuit

that is extracted.

The Nelsis IC Design System

Space Tutorial 10

3. Basic Extraction

In this chapter, we will make a tour past most tools and explain the basics of using the

space layout-to-circuit extractor.

For the examples we will use a hypothetical (but realistic) N-well CMOS process. In the

directory /usr/cacd/share/demo there are example designs that we will use.

3.1 Online Manual Pages

The first thing to remember in case one needs some help or information about the tools in

the system, is the availability of on-line manual pages of all commands, data-files, etc..

They can be shown on the screen with the command icdman. This command works the

same as the Unix man command, i.e. after showing a screen full of text (24 lines on most

ascii terminals) it waits for the user to enter a space and then gives another screen.

For example, information about the command dblist can be obtained by typing:

% icdman dblist

and information about icdman itself can be obtained by typing

% icdman icdman

3.2 Project Creation

To start working with space, first a project directory has to be created with the command

mkpr. A project is a Unix directory that contains an IC database. Mkpr will generate

such a project directory with the name that is given as an argument, after it has asked for

the process to be used (e.g. scmos_n, ecpd07 or any other process available in the

technology base) and for the value of lambda. It will do all initializations that are

necessary at the start of a project. In particular, mkpr creates the file and the view

directories as was discussed in section 2.1.

Now, make a project with the name ‘‘tutorial’’ and select the scmos_n process and enter a

λ value of 1 micron. After the project has been created, enter the project directory with

the Unix cd command.

% mkpr -l 1.0 tutorial

available processes:

process id process name

1 nmos

3 scmos_n

.

.

select process id (1 - 60): 3

mkpr: -- project created --

% cd tutorial

%

When the environment variable ICDPROCESS is set, mkpr will not ask for a process

name, but it will default attach the new project to the process that is specified by that

The Nelsis IC Design System

Space Tutorial 11

variable. ICDPROCESS can specify a process name as well as a path to a process

directory. Also, when the process directory contains a file called "default_lambda", mkpr

will not ask for a lambda value, but it will use the default lambda as specified in that file

(therefor we give the option -l).

3.3 Entering a Layout

A layout to be extracted using space can be supplied in different formats, like CIF and

GDS II. For each layout language, there is a specific tool for entering the layout into the

project. For CIF, this is the ccif program and for GDS II, this is the cgi program. These

two programs take a Unix file containing the layout, and store the design data into the

layout view of the project.

In the following example we will show how to enter a layout into the tutorial project. In

the directory /usr/cacd/share/demo/switchbox there is a GDS II file named

switchbox4.gds. Copy this file into the project and invoke the cgi command. Assuming

your working directory is already the tutorial directory, type

% cp /usr/cacd/share/demo/switchbox/switchbox4.gds .

% cgi switchbox4.gds

%

Normally, most tools are relatively silent about their operation. They usually only give

messages when something goes wrong. You can supply the -v option to most of the tools

(here: cgi -v switchbox4.gds) to obtain a little more feedback on the operation of the

tools.

When terminals (pins) are defined as TEXT structures in the GDS file, use the option -t

with cgi.

3.4 Listing the Contents of a Project

Now, you can see what cells are in the project by using the dblist command.

% dblist

layout:

dec1of4 nan3 switchbox4

dubinv nan4rout

circuit:

floorplan:

%

Clearly, there are 5 layout cells in the project, and no circuit cells. We say that the circuit

view is empty.

In order to get more information about the hierarchical structure of the design, you can

use the -h option of dblist.

The Nelsis IC Design System

Space Tutorial 12

% dblist -h

layout:

1 - switchbox4 (4)

2 - dec1of4 4 (6)

3 - dubinv 1 (0)

3 - nan3 4 (0)

3 - nan4rout 1 (0)

circuit:

floorplan:

%

The first number on a line is the level of the corresponding cell in the cell tree. The

second number (if present) is the total number of times (incl. copies) the cell is used, and

the third or last number (between parentheses) is the number of instances of sub cells.

3.5 Extracting a Layout

To extract the cell named nan3, type

% space nan3

%

Now, the circuit of nan3 has been placed in the circuit view:

% dblist -c

nan3

%

The -c option restricts the output of dblist to only the circuit view.

The option -v can be used to obtain more feedback on what space is actually doing. To

hierarchically extract the complete tree of switchbox4 just type the following:

% space -v switchbox4

parameter file: $ICDPATH/share/lib/process/scmos_n/space.def.p

technology file: $ICDPATH/share/lib/process/scmos_n/space.def.t

extract hierarchy of switchbox4

preprocessing dubinv

extracting dubinv

nan3 already extracted

preprocessing nan4rout

extracting nan4rout

preprocessing dec1of4

extracting dec1of4

preprocessing switchbox4

extracting switchbox4

space: --- Finished ---

%

The circuit now has the same hierarchical structure as the layout:

The Nelsis IC Design System

Space Tutorial 13

% dblist -h

layout:

1 - switchbox4 (4)

2 - dec1of4 4 (6)

3 - dubinv 1 (0)

3 - nan3 4 (0)

3 - nan4rout 1 (0)

circuit:

1 - switchbox4 (4)

2 - dec1of4 4 (6)

3 - dubinv 1 (4)

3 - nan3 4 (6)

3 - nan4rout 1 (8)

floorplan:

%

The messages produced by space demonstrate the following:

• Space reports which technology file it is using. This can be changed with the -e,

-E, -p, or the -P options.

• Space hierarchically extracts the cell named switchbox4, its children and their

children. For flat extraction, the -F option can be used. With hierarchical

extraction, only the top cell is extracted when using the option -T .

• Space employs a preprocessing step before actually extracting a cell. This step

involves converting a polygon description into an edge description. The edge files

(called gln files) are retained in the database since they can be used in other

extraction passes, e.g. with other options.

• Space detects when a cell has already been extracted, and skips those cells. (Here,

space skips nan3.) To re-extract a layout for which a circuit already exists, the -I

option can be used.

By default space produces a circuit without any parasitics information. This can be

changed by supplying options to the program indicating which type of parasitics must be

extracted. The following table lists some common choices, for a more comprehensive

description, see the space user’s manual or the space manual pages.

-c extract capacitances to substrate

-C also extract coupling capacitances, implies -c

-l also extract lateral coupling caps, implies -C

-r extract resistances for non-metal interconnect

-z apply mesh refinement for resistance extraction, implies -r

-k resistances are only extracted for specified interconnects.

-j resistances are extracted for all but specified interconnects.

Now, extract switchbox4 again, but use the -c option. Also use the -I option since the

The Nelsis IC Design System

Space Tutorial 14

cells were already extracted. Finally, also use the -v option. The usage of this last option

demonstrates that space does not need to preprocess the cells again.

% space -c -I -v switchbox4

parameter file: $ICDPATH/share/lib/process/scmos_n/space.def.p

technology file: $ICDPATH/share/lib/process/scmos_n/space.def.t

extract hierarchy of switchbox4

extracting dubinv

extracting nan3

extracting nan4rout

extracting dec1of4

extracting switchbox4

space: --- Finished ---

%

A flat netlist can be produced using the -F option:

% space -F switchbox4

% dblist -h

layout:

1 - switchbox4 (4)

2 - dec1of4 4 (6)

3 - dubinv 1 (0)

3 - nan3 4 (0)

3 - nan4rout 1 (0)

circuit:

1 - dec1of4 (37)

2 - dubinv 1 (10)

2 - nan3 4 (14)

2 - nan4rout 1 (18)

1 - switchbox4 (144)

floorplan:

%

The dblist command reveals that the switchbox4 circuit now has no subcells. Instead, it

contains a flat description of the complete circuit. The circuit dec1of4 has become a top-

level (root) cell, since it is not instantiated anymore by the switchbox4 circuit.

For flat extraction, space needs a flattened gln description, and thus it re-preprocesses the

switchbox4 layout. This would have been revealed if the -v option was used.

3.6 Retrieving a Circuit

The program xspice can be used to retrieve a SPICE netlist from the circuit view of the

project. If SPICE transistor models are present in the technology base, they are

automatically appended to the SPICE network (the -o option can be used to inhibit this).

The output of xspice can be redirected to a file. Alternatively, the output is stored in a file

named name.spc, where name is the name of the circuit, when the -f option is used.

(Thus, xspice -f name and xspice name > name.spc are equivalent.)

The Nelsis IC Design System

Space Tutorial 15

To obtain a SPICE netlist of nan3, use

% xspice nan3 > nan3.spc

%

Use the appropriate Unix commands (e.g. more or cat) to inspect the contents of the file.

For simulation, only the input stimuli and spice option settings must be added to this file.

3.7 Removing Projects and Data from Projects

When a cell has been extracted, the gln files (or redundant files in general) can be

removed with the dbclean command. Just typing

% dbclean

%

will remove all redundant data of all cells in the current project. However, the program

also allows less drastic modes of operation, see the manual page of dbclean.

All cells in both the layout and the circuit view are removed using

% rmdb -a -f

%

Without the -f option, the program will ask for confirmation in order not to accidentally

remove more than actually wanted. Again, less drastic modes of operation are also

possible, see the manual page of rmdb.

Finally, a project can be removed with the rmpr command. Assuming you are in the

project directory named tutorial, you can remove that project as follows:

% cd ..

% rmpr tutorial

%

If the project directory only contains project files and subdirectories (layout and circuit),

it is removed entirely. Otherwise it just becomes an ordinary Unix directory.

A project can only be removed if it does not contain any cells. That is, it must be empty

like it was just created. Note that a project with the ‘‘force’’ option is always removed.

3.8 Simulation Model Support

The simulation models of the devices that occur in the network are normally specified

using the control file of xspice. The model parameters may be specified as a function of

some layout parameters like the transistor emitter area and perimeter and the transistor

base width. The latter is especially useful for the extraction of bipolar circuits (see

section 6). Below, we giv e a simple example that specifies the SPICE model of an nmos

transistor.

The default name of the control file for xspice is xspicerc. First, xspice tries to read this

file from the current working directory. Otherwise, it tries to open it in the process

The Nelsis IC Design System

Space Tutorial 16

directory. The control file may look like:

% cat xspicerc

include_library spice3f3.lib

model nenh_0 nenh nmos ()

bulk nmos 0.0

%

The above file specifies that the model nenh_0 should be used for the extracted device

nenh and that its type is nmos. Note that this only works with known SPICE model

types. The bulk voltage of the devices of type nmos is specified to be 0.0 volt. The

simulation model itself is included in the library file "spice3f3.lib":

% cat spice3f3.lib

model nenh_0 nmos (level=2

ld=0.0u tox=250e-10 nsub=2e16

vto=0.7 uo=600 uexp=0.1

ucrit=10k delta=0.2 xj=0.5u

vmax=50k neff=1.0 rsh=0

nfs=0e11 js=2u cj=100u

cjsw=300p mj=0.5 mjsw=0.3

pb=0.8 cgdo=300p cgso=300p)

%

When using the program xspice to retrieve a circuit description, the following result may

be obtained:

% xspice mulplex

mulplex

* circuit mulplex 1 2 3 4 5 6

*

* 1 nbulk 2 a 3 b 4 s_a 5 s_b

* 6 out

*

m1 4 2 6 1 nenh_0 w=4u l=1.8u

m2 5 3 6 1 nenh_0 w=4u l=1.8u

* end mulplex

.model nenh_0 nmos (level=2 ld=0 tox=25n nsub=20e15

+ vto=700m uo=600 uexp=100m ucrit=10k

+ delta=200m xj=500n vmax=50k neff=1 rsh=0

+ nfs=0 js=2u cj=100u cjsw=300p mj=500m

+ mjsw=300m pb=800m cgdo=300p cgso=300p)

vnbulk nbulk 0 0.000000V

rnbulk nbulk 0 100meg

%

Alternatively, the program putdevmod can be used to store a device model description

into the circuit database. It uses the ".dev" file (process file for SPICE models) format.

The Nelsis IC Design System

Space Tutorial 17

This method does not allow to specify model parameters as a function of layout

parameters. However, this method is useful if a device is extracted that can not be

recognized from the mask layout combinations and/or if the model for the device consists

of more than just a standard transistor model (i.e. if it is described by one or more

subcircuits, see section 7).

As an example we consider the following description that is present in a file "nenh.dev":

% cat nenh.dev

device nenh

begin spicemod

* terminals d g s

* bulk 0

* prefix m

* parameters for n_enhancement NMOS w/l = 4/4

.model nenh nmos (level=2

+ ld=0.0u tox=250e-10 nsub=2e16

+ vto=0.7 uo=600 uexp=0.1

+ ucrit=10k delta=0.2 xj=0.5u

+ vmax=50k neff=1.0 rsh=0

+ nfs=0e11 js=2u cj=100u

+ cjsw=300p mj=0.5 mjsw=0.3

+ pb=0.8 cgdo=300p cgso=300p)

end

On the first line, this description specifies that a description for the device "nenh" is

given. Between the keywords "begin spicemod" on the second line and "end" on the last

line of the file, the SPICE information is given. SPICE information that is not meant as

direct input for spice is given as comment. The description specifies (1) that cell "nenh"

is a device that has terminals "d", "g" and "s" (which are used in that order) (these names

are also used by space to denote the drain, gate and source of a MOS transistor and

should therefore be used), (2) that the device requires a bulk voltage of 0 volt (as a result,

xspice will add a bulk terminal to the device that is connected to a potential of 0 volt), (3)

that "m" should be used as a prefix for instance names of the device in a SPICE

description (this condition is required by SPICE) and (4) that the device has a SPICE

level 2 model description as indicated.

The description is stored in the circuit view of the database using putdevmod:

% putdevmod nenh.dev

After that, a circuit description, in which the simulation model is included, may be

retrieved using xspice. Note that this only works by a new project if the device status is

set with the xcontrol program. This can be done as follows:

% xcontrol -device nenh

The Nelsis IC Design System

Space Tutorial 18

4. Extraction of Junction Capacitances

To extract non-linear junction capacitances, these elements have to be specified as

junction capacitances in the element definition file of space. This is done by including

them in a capacitance list where the keyword "junction" is used before the keyword

"capacitance" and where a capacitance type is specified after the keyword "capacitance".

The following gives an example of the specification of junction capacitances for

respectively n diffusion and p diffusion areas.

junction capacitances ndif :

acap_na: caa !cpg csn !cwn : caa @gnd: 100e-6

ecap_na: !caa -caa !-cpg -csn !-cwn :-caa @gnd: 300e-12

junction capacitances pdif :

acap_pa: caa !cpg !csn cwn : caa cwn: 500e-6

ecap_pa: !caa -caa !-cpg !-csn cwn -cwn:-caa cwn: 600e-12

For junction capacitances, the first terminal mask of the element always specifies the

positive node of the extracted element and the second terminal mask always specifies the

negative node of the extracted element.

There are several possibilities to represent the junction capacitances in the output circuit,

depending on what type of element model is used for the verification (simulation) of the

junction capacitance. This is controlled by the parameter jun_caps of space.

If the parameter jun_caps is set to "non-linear" the only difference with the appearance of

normal, linear, capacitances in the output circuit is that the extracted capacitance will be

of the specified type.

If the parameter jun_caps is set to "area" the extracted capacitance will be of the specified

type and, moreover, the value of the extracted capacitance will specify the area of the

element (if only an area capacitivity is specified for that capacitance type) or the edge

length of the element (if only edge capacitivity is specified for that capacitance type). If

jun_caps is set to "area", and both area capacitivity and edge capacitivity are specified for

one junction type, the value of the extracted capacitance will be equal to the extracted

capacitance value divided by the area capacitivity (so in this case, effectively, the total

vertical and horizontal junction area is extracted).

If the parameter jun_caps is set to "area-perimeter" the extracted capacitance will be of

the specified type and the area and perimeter of the element will be represented by the

instance parameters area and perim in the database.

If the parameter jun_caps is set to "separate" the extracted capacitance will be of the

specified type and the area and perimeter of each capacitance that is specified in the

capacitance list for that type will separatedly be represented with parameters area<nr>

and perim<nr> where <nr> denotes that it is the <nr>-th. area or the <nr>-th. perimeter

element in the list.

The Nelsis IC Design System

Space Tutorial 19

For each junction capacitance type that is extracted, a device model must be defined using

either the control file of xspice or the program putdevmod. Below, we will ilustrate how

this is done using a control file for xspice since this method offers more flexibility than

the method using putdevmod.

The control file for the junction capacitances ’ndif’ and ’pdif’ that are described above

may look as follows:

include_library spice3f3.lib

model ndif ndif d ()

model pdif pdif d ()

where the file spice3f3.lib has the following contents

model ndif d (is=2u cjo=100u vj=0.8 m=0.5)

model pdif d (is=10u cjo=500u vj=0.8 m=0.5)

The above may be sufficient when only the total junction area need to be specified as an

element parameter. The parameter jun_caps is then set to "area".

When the horizontal junction area and the vertical junction area need to be specified as

separate parameters (e.g. because they hav e a different grading coefficient), the parameter

jun_caps should be set to "area-perimeter". Then, the area and the perimeter of the

junction region will be extracted as separate parameters. When for the simulation model

that will be used these parameters are respectively called "area" and "pj", the control file

should then additionally contain:

params ndif { area=$area pj=$perim }

params pdif { area=$area pj=$perim }

When it is required that for junction capacitance elements the perimeter adjacent to the

gate oxide and the perimeter adjacent to the field oxide are specified as separate

parameters, the parameter jun_caps should be set to "separate", the specification in the

element definition file may be as follows:

junction capacitances ndif :

acap_na: caa !cpg csn !cwn : caa @gnd: 100e-6

ecap_na: !caa !-cpg -csn !-cwn -caa : -caa @gnd: 300e-12

gcap_na: cpg !-cpg -csn !-cwn -caa : -caa @gnd: 200e-12

and the control file may contain:

params ndif { diffarea=$area1 locosedge=$perim1 gateedge=$perim2 }

The Nelsis IC Design System

Space Tutorial 20

5. Extraction of Drain/Source Area and Perimeter Information

Besides that junction capacitances can be part of the output netlist as diodes, as described

in Section 4, they can also be part of the output netlist in the form of drain/source area

and perimeter information that is attached to the MOS transistors. Although this method

is less accurate to model the distributed RC effects in the drain/source regions, many

simulators require this method instead of the previous one.

Area and perimeter information of drain/source regions of transistors is represented by

the parameters ad, as, pd, ps, nrs and nrd (see SPICE User’s Manual). To extract these

parameters, a condition list should be specified in parentheses behind the drain/source

mask of the transistor definition, and capacitance extraction should be enabled. The

following gives an example of the specification of a drain/source region for a "nenh"

transistor and a "penh" transistor.

fets :

nenh : cpg caa csn : cpg caa (caa !cpg csn) # nenh MOS

penh : cpg caa !csn : cpg caa (caa !cpg !csn) # penh MOS

When an option for capacitance extraction is used with space, the SPICE circuit

description may contain the following the transistor statements:

m1 t_out b_in l_vss nbulk nenh_0 w=6.8u l=1.2u ad=12p as=26.76p

+ pd=11.2u ps=19.7u nrs=0.57872 nrd=0.259516

m2 t_out b_in l_vdd pbulk penh_0 w=12.4u l=1.2u ad=20.5p as=23.36p

+ pd=14.8u ps=10.8u nrs=0.151925 nrd=0.133195

The extractor uses heuristics to appropriately subdivide drain/source information over

different transistors when all these transistors are connected to the same drain/source

region.

The Nelsis IC Design System

Space Tutorial 21

6. Bipolar Device Extraction

In this section, we present an example for a control file and a library file for xspice (see

also section 3.8) for the extraction of bipolar circuits.

Let "npnBW" be the name of a bipolar transistor type that is defined in the element

definition file of space. Then the following control file may be used for xspice to retrieve

a SPICE description of a circuit that contains transistors of type "npnBW".

% cat xspicerc

include_library specifies which file(s) contain

the appropriate model definitions.

include_library spice3f3.lib

model indicates which predefined models can be

used for which group of devices and it includes

the ranges for area (ae), perimeter (pe) and

width (wb).

scaleable model:

ae -> min. typ. max.

model bw101a npnBW npn (

ae 4e-12 8e-12 4e-11

wb 0.25e-06

pe (2*$ae / 2.00e-06 + 4.00e-06)

)

substitution model:

ae/pe -> min. max.

model bw10x npnBW npn (

ae 4e-12 2e-10

wb 0.25e-06

pe 8e-06 6e-05

)

Tw o types of models are used for the "npnBW" transistor: "bw101a" and "bw10x".

Which model is chosen for a particular transistor in the circuit depends on the actual

value of some transistor parameters that are extracted for it: its emitter area (ae), its

emitter perimeter (pe) and its base width (wb). For both transistor models, the base width

must be equal to 0.25e-06. Model "bw101a" is selected if ae is between 4e-12 and 4e-11

and pe is equal to 2*$ae / 2.00e-06 + 4.00e-06. Model "bw10x" is selected if ae is

between 4e-12 and 2e-10 and pe is between 8e-06 and 6e-05.

Note that the above bipolar model choices only works for some known model types and

known extracted parameter names.

The SPICE models are specified in the file "spice3f3.lib":

The Nelsis IC Design System

Space Tutorial 22

% cat spice3f3.lib

unity Q_electron 1.602e-19

unity N_intrinsic 1.045e+20

unity Gummel_base 7.500e+06

unity C0s_wn_bw 1.900e-03

unity C0e_wn_bw 2.800e-09

unity C0s_bw_epi 0.290e-03

unity C0s_bn_sub 0.151e-03

model bw101a npn (Is=0.018f Bf=117 Nf=1 Vaf=55 Ikf=4.1m Br=4

Nr=1 Var=4 Ikr=45u Rb=600 Irb=0.15m Rbm=30 Re=14

Rc=200 Xtb=1.5 Eg=1.17 Xti=2.5 Cje=50f Vje=0.78

Mje=0.28 Tf=20p Cjc=75f Vjc=0.67 Mjc=0.32 Xcjc=1

Tr=100p Cjs=0.24p Vjs=0.45 Mjs=0.26)

model bw10x npn (Is=($Q_electron*$N_intrinsic/$Gummel_base)*$ae

Nf=1 Ikf=3.00e+07*$ae+6.00e+01*$pe Bf=117 Br=4

Vaf=55 Var=4 Ikr=5.00e+07*$ae+1.00e+02*$pe Xtb=1.5

Eg=1.17 Xti=2.5 Cje=$C0s_wn_bw*$ae+$C0e_wn_bw*$pe

Vje=0.78 Mje=0.28 Tf=20p

Xtf=(4.70e-02*$ae+1.90e-02*$pe)ˆ2 Tr=100p Mjc=0.32

Vjc=0.67 Cjc=$C0s_bw_epi*$ae Cjs=$C0s_bn_sub*$ae

Vjs=0.45 Mjs=0.26)

For model "bw101a", the model parameters have a fixed value and are chosen optimal for

ae = 8e-12, wb = 0.25e-06 and pe = (2 * 8e-12 / 2.00e-06 + 4.00e-06) (see the

specification in the control file). For transistors that have different parameter values - but

that are within the range specification that is given in the control file - model "bw101a"

will be used in combination with a scale factor.

For model "bw10x", the model parameters are a function of the transistor parameters ae

and pe. In this case, xspice will generate a different model for each different set of

parameter values that occur in the circuit.

The Nelsis IC Design System

Space Tutorial 23

7. Special Device Extraction

By using putdevmod (see section 3.8) it is possible to extract special devices that can not

directly be recognized from the mask combinations in the layout. The basic idea is to

define a layout cell for each type of special device, including its terminals, and then store

a corresponding model description in the circuit view of the database by using

putdevmod.

Suppose we have a layout cell of a special device "lpnp" that has 6 collector, 2 base and 2

emitter connections. The terminals are called c1, c2, c3, c4, c5, c6, b1, b2, e1 and e1.

Then, a corresponding device model description may be created for this device as shown

below.

% cat lpnp.dev

device lpnp

begin spicemod

* terminals c1 c2 c3 c4 c5 c6 b1 b2 e1 e2

* bulk 0

* prefix x

.subckt lpnp 1 2 3 4 5 6 7 8 9 10 11

rn1 7 8 20

c7 7 0 0.001f

c8 8 0 0.001f

q1a 1 8 9 b_spnp 0.5

q1b 2 8 9 b_spnp 0.5

q1c 3 8 9 b_spnp

q1d 4 8 10 b_spnp 0.5

q1e 5 8 10 b_spnp 0.5

q1f 6 8 10 b_spnp

c1 1 0 0.001f

c2 2 0 0.001f

c3 3 0 0.001f

c4 4 0 0.001f

c5 5 0 0.001f

c6 6 0 0.001f

dq1 11 8 c_diojcs1a 2

.ends

.model b_spnp pnp(is=1.2e-15,bf=60,vaf=100,ikf=3e-4,

+ise=24e-12,ne=3.6,br=6,var=18,ikr=1e-4,isc=1e-15,

+nc=1.15,rb=100,rbm=50,rc=80,re=10,cje=0.2e-12,

+mje=0.33,vje=0.55,cjc=0.96e-12,mjc=0.33,vjc=0.55,

+tf=4e-8,xti=3.3,eg=1.16,xcjc=0.8)

.model c_diojcs1a d(is=1.26e-14 rs=200 cjo=3.1e-12 vj=0.50 m=0.35)

end

%

This description specifies that cell "lpnp" is a device that has the same terminals as the

layout cell and that it should be included in a SPICE network description with an instance

The Nelsis IC Design System

Space Tutorial 24

name that starts with the prefix "x". A bulk potential of 0V is specified, which is the

appropriate potential for the (extra) terminal 11 that is also specified for the device model.

Program xspice will correctly connect this bulk terminal when the device is retrieved

from the database. The interior of the device model is described by 6 transistors, 1 diode,

1 resistor and 8 capacitors.

After storing the above description in the circuit view by using the program putdevmod,

the description can be used to extract circuits that contain transistors of type "lpnp".

% putdevmod lpnp.dev

%

During extraction, the extractor will then recognize that cell "lpnp" is a device, that it is

not necessary to extract the contents of this device, and that it should be included in the

network description as a network primitive. For a new project, you must also define the

device status with the xcontrol program. Note that by new projects the devmod data is

only used by the program xspice after that the device status is set.

When a cell that is a device is also defined as a macro, the cell will be included in the

extracted network as a primitive (just as in the normal case), but the layout of the cell will

additionally be flattened in a father cell prior the extraction. This allows the layout of the

device to be used as feed-throughs for other connections and to make connections to the

device not only at the terminal positions.

The Nelsis IC Design System

Space Tutorial 25

8. Layout versus Schematic

The program match is used to compare an extracted circuit (the actual_network) against a

reference circuit (the nominal_network). As a reference circuit, take the SPICE

description swbox_ref.spc that is present in the directory /usr/cacd/share/demo/switchbox

and add it to the ‘‘tutorial’’ database using the program cspice:

% cp /usr/cacd/share/demo/switchbox/swbox_ref.spc .

% cspice swbox_ref.spc

%

As an actual circuit, take the flat layout description switchbox4_f (the hierarchical

description switchbox4 could also be used but it is easier to modify the flat layout

description), put it into the database and extract it.

% cp /usr/cacd/share/demo/switchbox/switchbox4_f.gds .

% cgi switchbox4_f.gds

% space switchbox4_f

%

Then, use the program match to compare the extracted circuit against the reference

circuit:

% match swbox_ref switchbox4_f

match: Succeeded.

%

The result of match shows that the reference circuit and the extracted circuit are identical.

Next, make an error in the layout of switchbox4_f (e.g. remove some metal) with a layout

editor and run the programs space and match again.

% space switchbox4_f

% match swbox_ref switchbox4_f

match: Failed.

%

This result indeed shows that the circuits are not identical. The network parts that have

been matched and the network parts that have not been matched can be inspected by

using the option -fullbindings with match.

The Nelsis IC Design System

Space Tutorial 26

9. Layout Back-Annotation

Layout back-annotation is supported in three different ways. First, the names of the

terminals (and the instances) in the extracted circuit are equal to the names of the

corresponding terminals (instances) in the layout. Second, the option -t can be used to

add positions of devices and sub-cells to the extracted circuit. Third, the program highlay

may be used to high-light the layout of one or more conductors and/or devices. The latter

program may also be used in combination with the circuit comparison program match to

for example high-light all matched or unmatched conductors.

To demonstrate the use of highlay in combination with the circuit comparison program

match, consider the example from the previous section. Assume that the reference circuit

swbox_ref has been added to the database and assume that an error is present in the

layout of switchbox4_f. Now, run the program space with the option -x and run the

program match with the options -edif and -fullbindings . The last two options cause

match to write a binding table into the database that can be used as input for highlay.

% space -x switchbox4_f

% match -edif -fullbindings swbox_ref switchbox4_f

match: Failed.

%

Then, the nets that have not been matched (the deficient nets) are selected for high-

lighting by running the program highlay as follows:

% highlay -d -n -v switchbox4_f

Selected nets:

38

%

Next, use a layout editor to read in the cell HIGH_OUT that has been generated by

highlay and inspect the unmatched conductors.

% dali HIGH_OUT

The Nelsis IC Design System

Space Tutorial 27

10. Sea-of-Gates Circuit Extraction

For semi-custom circuits like sea-of-gates circuits, often an image is defined that contains

a regular pattern of MOS transistors and/or bipolar transistors. On top of this image, a

metal pattern is placed that connects all relevant devices. A design of such a circuit may

for example be represented by the following hierarchical tree.

% dblist -l -h

1 - reg4 (8)

2 - latch 4 (2)

3 - image_c 2 (0)

2 - select 4 (1)

3 - image_c 1 (0)

%

The image cell "image_c" is the smallest tile in the image that can be repeated to give the

complete image. In order to extract accurate capacitances, the image cell should be

flattened in the cells "latch" and "select", that only contain metal wires. For flat

extractions, the layout of the image cell will always automatically be flattened. For

hierarchical extraction, the flattening of the image cell can be achieved by setting the

macro status for the cell "image_c".

The macro status is set for a particular cell by using the program xcontrol.

% xcontrol -macro image_c

%

Then, when the circuit is extracted in hierarchical mode, a circuit is produced in which

"image_c" has been flattened but in which the rest of the hierarchy has been preserved.

% space -c reg4

% dblist -c -h

1 - reg4 (8)

2 - latch 4 (18)

2 - select 4 (8)

%

This, however, only works when all connections to and through the sub-cells latch and

select are made via the terminals of these cells. When this is not true, flat extraction has

to be used.

The program ghoti can be used to remove unused (i.e. unconnected or partly connected)

components from the extracted network.

If a gate-level circuit description has to be obtained from the sea-of-gates layout, all cells

that represent gates should be set to the library status (celltype). This is done as follows:

% xcontrol -library latch select

%

Note: For old projects you must set the device status using the device program.

The Nelsis IC Design System

Space Tutorial 28

Now, no matter whether a hierachical of flat extraction is performed, the cells "latch" and

"select" will always be primitives in the extracted network. If the layout that is inside

these cells also needs to be flattened - because of connections to or through the cells not

only via the terminals - also set the macro status for these cells. This can be done by

setting the interfacetype free (or freemasks) as follows:

% xcontrol -free latch select

%

Note: For old projects you cannot set an interfacetype, but must set the macro status using

the macro program.

The Nelsis IC Design System

CONTENTS

1. Introduction... 1

2. Basic Concepts .. 2

2.1 Projects... 2

2.2 Library Projects .. 2

2.3 Technology Independence ... 3

2.4 Tools ... 3

2.5 File Structure .. 7

2.6 Hierarchy and Terminals .. 8

3. Basic Extraction .. 10

3.1 Online Manual Pages ... 10

3.2 Project Creation ... 10

3.3 Entering a Layout ... 11

3.4 Listing the Contents of a Project.. 11

3.5 Extracting a Layout .. 12

3.6 Retrieving a Circuit.. 14

3.7 Removing Projects and Data from Projects ... 15

3.8 Simulation Model Support... 15

4. Extraction of Junction Capacitances... 18

5. Extraction of Drain/Source Area and Perimeter Information 20

6. Bipolar Device Extraction... 21

7. Special Device Extraction... 23

8. Layout versus Schematic .. 25

9. Layout Back-Annotation ... 26

10. Sea-of-Gates Circuit Extraction.. 27

- i -

