
Santa Clara University
DEPARTMENT of COMPUTER ENGINEERING

Date: June 9, 2006

I HEREBY RECOMMEND THAT THE THESIS
PREPARED UNDER MY SUPERVISION BY

Kristen Moss & Caroline Ratajski

ENTITLED

Palm Meeting Scheduler

BE ACCEPTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF SCIENCE IN COMPUTER ENGINEERING

THESIS ADVISOR

DEPARTMENTCHAIR

Palm Meeting Scheduler

Written By:

Kristen Moss
Caroline Ratajski

June 11, 2006
Version 3.1

 2

Table of Contents

Introduction... 5
Terminology.. 5
Overview... 5

The Problem.. 5
The Solution .. 5
Benefits of the Solution ... 6

Stakeholders.. 6
iambic, Inc... 6
Kristen Moss and Caroline Ratajski ... 6
Dr. John Noll .. 6

Scenario... 7
User Manual.. 8

Installation... 8
Create a Meeting and Add Attendees ... 9
Inviting Attendees... 13
Attendee Management .. 15
How to Respond to a Meeting Message ... 17

Use Case.. 19
Success Requirements... 21

General Requirements... 21
Required .. 21
For Future Consideration... 22

Technical Details .. 24
Programming Language.. 24
Programming/Debugging Environment.. 24
Code Repository.. 24
Bug Tracking System.. 24
Operating System.. 24
Testing... 24

Release Plans and Statistics .. 25
Release Plans .. 25
Statistics .. 25

Test Plan.. 26
Features of the Palm Operating System.. 39
Diagrams ... 40

Flowchart .. 41
System Sequence Diagram ... 42

Technical Challenges .. 43
Inter-application Communication ... 43
Meeting UID Generation .. 45
Repeating Meetings .. 45
Storage of Attendee Status.. 45
Parsing... 46
Interfacing and working with a very large and dynamic codebase... 46

 3

Localization... 47
Risks.. 48

Critical... 48
Serious... 48
Concerning.. 49

What We Learned (from a Software Engineering Perspective).. 50

 4

Introduction

This document is in intended to describe the problem we are trying to solve and our solution to
it. It will also describe the basic requirements for success of our project.

Terminology

Term Definition
AAM Agendus Attendees Module (the add-on being created within this project)

AGM Agendus Mail

AGP Agendus Palm
Attendee User interacting with project from the reference point of one who is being

invited to and will potentially accept/decline the invitation for a meeting (as
opposed to Organizer)

Organizer User interacting with project from the reference point of one who is organizing
and inviting others to the meeting. Controls date, time, location, and purpose of
the meeting. Also will determine whether meeting is to be cancelled or to
proceed as scheduled. (as opposed to Attendee)

PDA Personal Data Assistant

SMS Short Message Service (also known as “text messaging”)

Overview

The Problem
The process of scheduling a meeting between two or more people can become very

tedious. Between the use of email, cell phones, PDA’s, and possible schedule conflicts - simple
to work around when organizing very few people - organization becomes nearly unmanageable
on a large scale. Solutions for this problem exist in such applications as Microsoft Exchange, but
this is costly and difficult to maintain, and an impractical tool for smaller companies and
startups. Also, many people do not wish to share their entire schedules. It would be nice to be
able to share only the time that people have free. And what of those not in the server? To put
people into a server requires a great deal of setup that usually must be done by the system
administrator. There should be a simpler way to solve such an issue.

The Solution
 iambic, Inc. has a program called Agendus for PalmOS, which makes scheduling and
organizing information in Palm Handhelds simpler and easier. Our plan is to add functionality to
this program in order to allow a dialogue of sorts between meeting coordinators and attendees.
This dialogue would be conducted without letting the coordinator see the schedule of each of the
attendees. Instead, the attendee would see the request for a meeting and also whether or not

 5

he/she already has an appointment scheduled for that time. From there, the attendee could
choose to either accept or decline, without having to look up that time and date in his schedule.

Benefits of the Solution
Meeting organizers are able to quickly and easily invite attendees and are notified of their

attendance status. The meeting attendees are able to accept or decline meetings while away from
their computers, without having the privacy of their schedules compromised. Also, those without
Agendus are still able to receive notifications about the meeting, regardless of their own lack of
PDA. If they decide to convert to PDA/Agendus, the setup of our system is simpler and cheaper
than creating and maintaining a server to hold everyone’s schedules. Overall, organization
among businesses and people is made much easier by the use of this tool.

Stakeholders

iambic, Inc.
iambic has agreed to give us access to the source code of Agendus and Agendus Mail,

and to allow us to enhance and manipulate these products. iambic will be able to use whatever
we produce in order to better their existing product. iambic has reviewed this document and
agreed with everything written. For more information on iambic, visit http://www.iambic.com
(valid as of June 3, 2006).

Kristen Moss and Caroline Ratajski
The above students have taken this project as their senior design project and will see it to

its completion as outlined within this document. Failure to do so will place their graduation
status in severe jeapordy.

Dr. John Noll
Despite not having any financial or career-oriented investment in this project, Dr. Noll

has agreed to oversee it and requires a fully completed project by the end. He is devoting a great
deal of time and energy into the success of this project, in the form of advising and meeting with
the students (Kristen Moss and Caroline Ratajski). Failure on the part of the students to deliver
the project will result in his failing them.

 6

http://www.iambic.com/

Scenario

 Professor Hill wants to call in three of his students for a meeting concerning a project
they have been working on. He has been told that the date for their final presentation has been
postponed a week due to a problem in the university’s scheduling, and he has to let his students
know and discuss with them the potential impact this has on their project. He opens up his
Personal Data Assistant (PDA) which runs using the Palm Operating System, looks up their
information, types an email explaining the meeting, and the date and time he would like to meet
them, and sends the email, hoping for the best. These three students, Christina, Brad, and Justin,
check their email, open their own schedules, look up their free time, email in response whether
or not they can attend, and wait on Professor Hill’s confirmation.

 Let us try this scenario. When Professor Hill opens his PDA, he accesses Agendus, and
with a few taps of the pen he has created a meeting in his schedule. He has selected from his
contacts the three students he wishes to have attend, and sends the meeting message. Instead of
this message going to their email boxes, it is transferred via SMS and arrives at their PDAs or
cellular phones. Agendus will intercept the SMS message and display it in a user-friendly format.

Christina happens to have a PDA with Agendus. The message arrives and she is notified
of the potential meeting. Agendus looks at the schedule she keeps in her device and notifies her
that she has that time free. She accepts the meeting with the click of a button, and a message is
sent to Professor Hill, automatically updating his meeting attendees.

Brad also has a PDA with Agendus as well, but his time isn’t free. Agendus will let him

know and allow him to either decline the meeting invitation or reschedule his currently
scheduled task. Agendus will do this without ever letting Professor Hill know that the reason
Brad isn’t free is because he has a date with his girlfriend.

Justin does not have a PDA, but he does have a cell phone with SMS functionality,

exceedingly common today. He will see this message and be able to contact Professor Hill by
other means to either accept or decline the meeting invitation.

Once Professor Hill has coordinated fully with his students, he confirms the meeting. All

this has been done without the hassle and delay that the process took in the first scenario.

 7

User Manual
Installation
Requires: SMS-capable handheld device with PalmOS 5.0 or greater installed and functional;
PC with Windows operating system installed and functional, 2000 or greater.

1. Connect your handheld device to your PC using cables provided with the device.

2. Open the “PalmOne Quick Install” application on your PC.

3. Right-click on the white section underneath “Handheld” on the PalmOne Quick Install

application and select “Add Files to Handheld”. Locate on the CD and add the following
PRCs:

- AgendusAttendeesModule.prc
- AgendusMailSSL_EN.prc
- AgendusPre_EN.prc

4. Push the Hard Button on the connector to your handheld device.

 8

5. Wait for the HotSync to complete. Once installation is complete, you should see the
following two icons:

 Note that you should not see any icon for the AgendusAttendeesModule.

6. In order to get the application fully ready to run, you must set up AGM so that it accepts

SMS messages. Open AGM and make certain that the checkbox for “Send and receive
SMS messages” is selected, as below (if you wish to select the other two, you may; it will
not affect this application):

Click “Finish” and you’re ready to go!

Create a Meeting and Add Attendees
1. To create a new meeting, click the date dialogue at the top and select “New Meeting”

(you may also select “New Annual Event” or “New Weekly Meeting”).

 9

2. Once you have opened a new meeting, fill it with pertinent information, such as the time,

date, location, and who will be organizing the event.

3. Now that you have created your meeting, if you wish to add attendees, select the

attendees tab as shown below, and click “Edit Attendees.”

 10

4. Select which contacts you wish to attend this meeting by checking the checkbox next to

their name. Once you are satisfied with your attendee list, click “Done.”

5. You should now see your selected attendees in your new meeting’s attendee list, as

pictured below:

 11

6. To send an invite, make certain that you have selected all of the attendees you wish to
invite, either by clicking on a singular dot to check them, or by using the “select all”
function, which is the checkmark button beneath the attendee list.

At any time, you can add new attendees by clicking “Edit Attendees” – your previously
selected attendees will remain on the list.

 12

Inviting Attendees

1. Once you have selected which attendees you wish to send a message to, click the little

envelope icon to bring up the “send message” dialogue.

2. In the following dialogue, select “Invite,” “Confirm,” or “Cancel,” depending on the type
of message you wish to send, and then click “Send SMS.” This will send an SMS
message from your mobile device to the mobile phone numbers associated with each
Attendee you have selected.

If you are satisfied with your Attendee List and wish to invite these Attendees, click the
“Invite” button.

Invite: Sends an invitation message to the Attendee(s), alerting them to a new meeting.

Confirm: Sends a confirmation message to the Attendee(s), letting them know that the
meeting has been confirmed. Also updates the status of your own meeting as confirmed.

Cancel: Sends a cancellation message to the Attendee(s), letting them know that the
meeting has been cancelled. Also updates the status of your own meeting as cancelled.

And don’t worry if you send off the message and realize later that you wish to add more
attendees. You can always go back and add more attendees after the message has been
sent and select to send a message to them specifically, using the method described
previously.

 13

3. And now all you will do is wait for messages to come, alerting you as to who is attending
or not. You will periodically receive dialogues such as the one below:

OK: Merely accepts the attendee, updates their status in the Attendee Tab, and returns
you to what you were doing before.

Go To: Goes to the meeting, where you will see that the Attendee’s status has been
updated to reflect whether or not they are attending.

Once you know whether or not you wish to confirm or cancel this meeting, merely return
to the dialogue outlined in step three, and select either the “Confirm” or “Cancel”
message to be sent.

 14

Attendee Management

As mentioned in the previous section, you will periodically receive messages alerting you
as to whether or not your attendees are able to come. Once you start receiving a few
responses, your attendee list should start to look like this:

If you ever wish to modify an attendee’s status, merely click on the status icon just to the
left of their name and modify it, like in the image below.

Unknown: The Attendee has not responded yet, but was able to be contacted.

 15

Attending: The Attendee has responded that they will be at the meeting.

Declined: The Attendee has responded that they will not be at the meeting.

Could Not Contact: There is no valid Mobile number for the attendee.

 16

How to Respond to a Meeting Message

If you receive a message as an attendee, inviting you to a meeting, one of the two
following dialogues will come up:

Attend: This will add the meeting to your schedule, as well as send a message to the
Organizer, alerting them that you are going to attend.

 17

Decline: This will merely send a message back to the Organizer, alerting them that you
are not going to attend the meeting.

Reschedule Current: This will open the currently conflicting meeting within your own
calendar. Upon rescheduling this meeting, a message will be sent to the organizer,
alerting them that you are going to attend.

 18

Use Case

The use case defines the method by which the user (Organizer and Attendee) will utilize the
project. It explains the process, not in terms of how each user sees it, but in how the entire
operation works. This is due to the fact that separating Organizer process from Attendee process
would make the entire operation harder to understand.

Pre-process requirements: Organizer has both AGP and AGM installed on palm device, as well
as the AAM, and has SMS service.

1. Organizer opens AGP on palm device and generates a meeting, complete with date, time,
location, title/reason for meeting, and list of Attendees.

2. Organizer selects to send invite to all Attendees on attendee list.

3. If the Organizer does not have the Attendee's phone number, the inability to contact the
Attendee is reflected in the attendee list, by italicizing the Attendee's name.

4. If the Organizer does have the Attendee's phone number, but that phone number is not

linked to a SMS-capable device (for instance, a home phone number) the SMS service
will send back a failed message to the Organizer, which will not be handled by AAM but
rather by the pre-existing SMS service.

5. If the Organizer does have the Attendee's phone number, and said phone number is linked

to a SMS-capable device, but the Attendee lacks AGM and AGP on their device, the
Attendee will merely receive the text message as-is. The text message will be in a
readable format so that the Attendee can contact the Organizer through alternate means
(non-AAM SMS message, email, phone call, etc) and let them know whether they wish
to accept or decline the invitation.

6. If the Organizer does have the Attendee's phone number, and said phone number is linked
to a SMS-capable device, and the Attendee has AGM and AGP on their device, the
program will alert the Attendee as to whether or not they are free during that time period.

7. If the Attendee is free and wishes to attend, the Attendee will click "Accept"

8. If the Attendee is free, but does not wish to attend, the Attendee will click "Decline"

9. If the Attendee is not free, the AAM will ask the Attendee if they would like to
reschedule their current obligation.

10. If the Attendee does wish to reschedule their current obligation, they will be taken to the
current obligation and be allowed to do so. Then it will ask them to click "Accept" for the
meeting.

 19

11. If the Attendee does not wish to reschedule their current obligation, they will click
"Decline"

12. The Organizer will receive messages as to whether or not Attendees with AGM and AGP
wish to attend the meeting or not. The list will update itself without the Organizer
needing to do anything (names will be bolded if the Attendee is planning on attending,
strikeout if the Attendee is not going to attend).

13. The Organizer will look over the attendee list, and if they are not satisfied with the list of
attendees (not enough people are able to attend, or a critical person for the meeting is
missing) they will click "Reschedule Meeting." A dialogue will open, allowing them to
reschedule the time and date of the meeting. Upon rescheduling, they will click "Resend
Invite" and the process will begin once more from step 3.

14. The Organizer will look over the attendee list, and if they are satisfied with the list of
attendees, they will click "Confirm Meeting." The Attendees will see that the meeting
has been confirmed.

 20

Success Requirements

This is a brief section of the document outlining the specific functional requirements
which define the success of the project. In order for this project to be considered a success, the
program must be verified by Adriano Chiaretta (representing iambic) and both team members
(Kristen Moss and Caroline Ratajski).

General Requirements
Here is a short list of functionality and features that, if completed, would define the

success of the project.

Required
 Title Deadline

1. Message Creation December 23, 2006
The SMS messages must be readable by those who do not have Agendus, and only have
normal SMS capability.

2. Message Creation December 23, 2006

The person scheduling the meeting (coordinator) must be able to send an invitation to all
of the Attendees in the form of an SMS (text message) using the existing Agendus and
Agendus Mail programs.

3. Message Creation December 23, 2006

The SMS messages must be readable by those who do not have Agendus, and only have
normal SMS capability.

4. Recognizing/Intercepting SMS January 13, 2006

Pre-existing AGM will be modified to recognize and redirect AAM-generated messages
that they may be handled correctly, while passing all non-AGM messages

5. Parsing Messages into Useful Information February 3, 2006

Messages directed to AAM by AGM will be parsed into useful information, such as
organizer, date, time, and location.

6. Check Attendee for Availability February 17, 2005

AAM must interface with AGP to utilize pre-existing ‘free time checker’ to see if
Attendee is available for the incoming meeting message.

7. Alert for Attendee: Accept/Decline/Reschedule March 10, 2005

If AGP and AGM are present on the Attendee’s SMS-receiving device, the program must
intercept the SMS and display it using the pre-existing AGP user interface; this interface
must allow the user to accept the meeting, decline it, or reschedule any conflicting
appointments.

 21

8. Auto-Add New Appointment March 10, 2005
If accepted by the Attendee, the meeting must be automatically inserted into the
Attendee’s schedule.

9. Message Creation & Alert for Attendee March 10, 2005

Once the response to the meeting (accepted or declined) has been recorded, an SMS
message must be generated and sent to the coordinator.

10. Updating Organizer Attendee List March 17, 2006

The SMS received by the coordinator must be interpreted by Agendus and alter the
Attendee’s confirmation status accordingly, to reflect whether they have accepted or
declined the invitation.

11. Creating Messages April 7, 2005

Upon the responses of the Attendees, the coordinator should be able to either confirm that
meeting or reschedule it to allow more people to come.

12. Overall Acceptance April 30, 2006

Any and all implemented features must be correct as defined by the specification and
must be documented well enough to make the project reproducible and expandable.

13. Overall Acceptance April 30, 2006

The program must install and run on Palm devices with SMS capability and Palm OS 5.0
or better.

14. Overall Acceptance April 30, 2005

The project must be stitched into the existing program.

For Future Consideration

15. Auto Confirm/Cancel Completed
After the meeting has been scheduled and confirmed, the Attendees should receive a
confirmation message that either flags the meeting as confirmed or automatically
reschedules the meeting on their own PDA. Also, upon sending a confirm/cancel
message, the organizer’s own meeting information should reflect that the meeting has
been confirmed or cancelled

16. Manual Changing of Attendee Status Completed

The organizer can manually change the status of any attendee at any time. This allows
for people who do not have Agendus to respond by other means, as well as permit those
who have already responded to change their plans.

17. Automatic Contact Verification/Addition Completed

When a message comes in, the phone number of the sender gets looked up in your
contact database. If the number is found, the display name gets changed to what is in

 22

your database, allowing you to be familiar with the name of the organizer no matter what.
If the number is not found, a new record will be added to your contact database with the
name and phone number of the organizer.

18. Seamless Stitching Into Existing Applications Completed
Since the design presentation we have reworked the UI slightly to conform to exactly
what iambic desires from one of its own applications.

19. Select Specific Attendees to Send Message To Completed
Since the design presentation we have reworked the UI slightly to conform to exactly
what iambic desires from one of its own applications.

20. Quick-Deletion of Attendees Completed

Ability to quick-delete attendees from attendee list, as opposed to having to go into
directory view, which causes the Organizer to leave the attendee list dialogue and enter a
completely different dialogue.

21. Version/License Checking Completed

At any time, the organizer can choose to send a message to any group of attendees that
he/she wishes. This allows the organizer to add attendees later without having to send the
message to everyone again, and it also permits the resending of messages to specific
people (such as people who haven’t responded).

22. Backwards-Compatibility

Application should run on older versions of the Palm OS and on older handheld devices.

23. Key Attendees
Organizer should be able to deem specific Attendees as ‘key attendees’ (if they decline
the meeting invitation, the coordinator will be prompted to reschedule the meeting).

24. Priority Matrix

Organizer should be able to determine the importance of the meeting utilizing a
priority/urgency matrix.

25. Email Messages

Allow the user to choose between sending messages via email or SMS. This would
provide more flexibility to the system and allow us to send more information about the
meeting that we are allowed to do in 160 characters of text message.

 23

Technical Details

Programming Language
 The bulk of the programming was done in C, with some sections done in C++.

Programming/Debugging Environment
Metrowerks Codewarrior was used for the programming and debugging environment.

For more information on Metrowerks Codewarrior, visit http://www.metrowerks.com (valid as
of June 3, 2006).

Code Repository
Source Off-Site (SOS) was the code repository used, the central server for which was

hosted by iambic. SOS is a free download available at http://www.sourcegear.com/sos/ (valid as
of June 3, 2006).

Bug Tracking System
Bugtrack is a web-based system for tracking bugs in a software program. As soon as a

developer or tester finds a bug in the program, he/she goes to the website, logs in, and reports it.
From there, the project manager can assign a bug to a certain developer. Once the developer
fixes that particular bug, he/she sets it as resolved. Then the QA department goes through and
double checks the resolutions, and reopens any bugs that did not get fixed.

Operating System
 We programmed for the Palm OS, due to the fact that the application we were building
and applications we were working within were all designed for Palm OS capable devices.
Working with this operating system will be detailed later in the document, in the section labeled
“Features of the Palm Operating System.”

Testing
 The testing that was done by Caroline Ratajski and Kristen Moss was performed on the
Treo650 Device, and a Treo650 Simulator which operated on a PC running WindowsXP
Professional. iambic’s own in-house testing is done on a variety of other handhelds, but for the
purpose of the project, only these two testing mechanisms were used.

 24

http://www.metrowerks.com/
http://www.sourcegear.com/sos/

Release Plans and Statistics

Release Plans

Our Own Testing Ongoing, through Release

iambic QA May 7th, 2006

Private Beta May 14th, 2006

Public Beta May 21st, 2006

Release Date June 13th, 2006

Statistics

Lines of Code 4692

Files 20

Combined Work Hours ~600

Bugs/Features Reported and Solved 67

Tests Passed 124

 25

Test Plan

This section of the document describes testing which was performed at each stage of the
project’s development. These sections work in conjunction with the success requirements.

 SDP Test Plan
Test Platform: Version 3.5
Test Date: 4/24/06

Note: All tests must be performed on the sim AND on the device

Section 1: Creating Messages

Setup/Description Input Expected Output Output Pass/Fail

Create a Meeting Empty Meeting on 6/14/06 from
1:00-2:00

#$AgendusMeeting$#
<blankline>
6/14/2006
13:00-14:00
#061410213#

Create a Meeting

Full Meeting on 6/14/06 from
1:00-2:00, with description =
Description, organizer =
Organizer, location = Location

#$AgendusMeeting$#
Organizer
6/14/2006
13:00-14:00
Desc:Description
Loc:Location
#061410213#

Create a Meeting No Description No description field

Create a Meeting No Organizer Blank line where organizer
should be

Create a Meeting No Location No location field

Create a Meeting No Time Time field shown as: ??-??

Create a Meeting Specified Time Time field shown in 24hr time

 26

Create a Meeting No Attendees Button should not even
appear

Create a Meeting No Attendees have Phone #'s
Warning should pop-up, not
allowing the message to be
sent

Create a Meeting Some Attendees have Phone #'s
Send only to these
attendees, others denoted as
Could Not Contact

Create a Meeting All Attendees have Phone #'s Send to all attendees

Create a repeating
meeting Send invite

A meeting UID will be
generated and added to the
notes of the meeting. This
should only be done on the
current instance of the
repeating meeting, and an
exception for this meeting will
be generated.

Create a Meeting,
send invite.

Assign repeat details to this
meeting

The meeting UID should only
be kept in the current
instance. To do this, the
meeting will be assigned the
repeat details without the
UID, then an exception will
be generated that has the
UID.

Create a Meeting Confirm Message

#$AgendusConfirm$#
Organizer
6/14/2006
13:00-14:00
Desc:Description
Loc:Location
#061410213#

Create a Meeting,
send invite, attendee
then sets repeat
details for that meeting

Confirm Message
Only confirm the specific
instance for which the
message refers to.

Create a Meeting Cancel Message

#$AgendusCancel$#
Organizer
6/14/2006
13:00-14:00
Desc:Description
Loc:Location
#061410213#

Create a Meeting,
send invite, attendee
then sets repeat
details for that meeting

Cancel Message
Only cancel/delete the
specific instance for which
the message refers to.

Create a Meeting,
send invite, attendee
presses accept

Response Message
#$AgendusResponse$#
YES
#061410213#

Create a Meeting,
send invite, attendee
presses decline

Response Message
#$AgendusResponse$#
NO
#061410213#

 27

Create a repeating
meeting, send invite Response Message

Only change the attendee's
status in the specific instance
for which the message refers
to.

Section 2: Recognizing/Intercepting Messages

Setup/Description Input Expected Output Output Pass/Fail

Send Text Message Invite Intercept

Send Text Message Response Intercept

Send Text Message Cancel Intercept

Send Text Message Confirm Intercept

Send Text Message Meeting Tag Only Intercept

Send Text Message Partial Meeting Tag Do not intercept

Send Text Message Normal SMS message Do not intercept

Section 3: Parsing Messages Into Useful Information

Setup/Description Input Expected Output Output Pass/Fail

 28

Send Text Message Invite - all fields filled All fields parsed correctly

Send Text Message Invite - no organizer Organizer = NULL

Send Text Message Invite - no description Description = NULL

Send Text Message Invite - no location Location = NULL

Send Text Message Invite - no time Time struct filled in with a
value of -1

Send Text Message Invite - with time Time struct filled in with
appropriate time in 24 hr time

Send Text Message Invite - bare bones (min fields) see above 5, all in
conjunction

Send Text Message Confirm

Meeting UID parsed
correctly, CancelConfirm field
is 1 (denotes confirm
message)

Send Text Message Cancel

Meeting UID parsed
correctly, CancelConfirm field
is 0 (denotes cancel
message)

Send Text Message Response - yes
Meeting UID is parsed
correctly, Response field is 1
(positive)

Send Text Message Response - no
Meeting UID is parsed
correctly, Response field is 0
(negative)

Send Text Message Tag Only Message is discarded

 29

Use Parse Simulator No Tag present
Shouldn't even be able to get
this, but if so, message is
discarded

Section 4: Schedule Checking

Setup/Description Input Expected Output Output Pass/Fail

Create Meeting:
Today, 8:00-9:00 Same Day, 8:00-9:00 Conflict

Create Repeating
Meeting: Today, 8:00-
9:00

Same Day, 8:00-9:00 Conflict

Create Repeating
Meeting: Start
Yesterday, Repeats on
Today, 8:00-9:00

Same Day, 8:00-9:00 Conflict

Create Meeting:
Today, 7:30-8:30 Same Day, 8:00-9:00 Conflict

Create Meeting:
Today, 8:30-9:30 Same Day, 8:00-9:00 Conflict

Create Meeting:
Today, 8:15-8:45 Same Day, 8:00-9:00 Conflict

Create Meeting:
Today, 7:30-9:30 Same Day, 8:00-9:00 Conflict

Create Meeting:
Today, 10:00-11:00 Same Day, 8:00-9:00 Free

Create Meeting:
Today, no time Same Day, 8:00-9:00 Free

Create Meeting:
Today, no time Same Day, no time Free

 30

Create Meeting:
Today, any time Same Day, no time Free

Use AAM to Create a
Meeting Invite, send Send the same invite again Display as a meeting update

Create Meeting: in
a different timezone
such that the adjusted
time overlaps with
8:00-9:00

Same Day, 8:00-9:00 Conflict

Create Meeting: in
a different timezone
such that the NOT
ADJUSTED time
overlaps with 8:00-
9:00

Same Day, 8:00-9:00 Free

Section 5: Attendee Alert

Setup/Description Input Expected Output Output Pass/Fail

Display Incoming meeting, attendee is
free Your schedule is clear.

Display Incoming meeting, attendee is
not free

You have a time conflict.
(Display conflicting meeting,
tested below)

Display Incoming meeting, all fields full

Organizer
Description (Location)
Date
Times

Display Incoming meeting, no time Write "No Time"

Display Incoming meeting, no
description Omit the description

 31

Display Incoming meeting, no location Omit the location

Display Incoming meeting, no organizer Omit the organizer

Display
Incoming meeting, attendee is
not free: Other Meeting has no
time

Write "No Time" (should
never happen though)

Display Incoming meeting, description
really long

Description is truncated after
certain amount and catted
with a "…"

Display
Incoming meeting, attendee is
not free: Other meeting has
really long description

Description is truncated after
certain amount and catted
with a "…"

Display
Incoming meeting, attendee is
not free: Other Meeting has a
time

Write the times

Display
Incoming meeting, attendee is
not free: Other Meeting has no
description

Where the description goes,
write the organizer/contact

Display Incoming Cancel Message
This meeting has been
cancelled: (meeting
description as above)

Display Incoming Confirm Message

This meeting has been
confirmed: (meeting
description as above), the
string " - Confirmed" should
be catted on the end of the
description

Display
Incoming Confirm Message - for
something that has already been
confirmed

Only one " - Confirmed"
should be catted on the end
of the description

Display
Incoming Confirm/Cancel
Message - for something that
has been deleted

Disregard message, disable
alert, go to last Agendus view

Setup Invite from someone already in
your contact database

Update name of the
organizer to what you have
stored

 32

Setup Invite from someone not in your
contact database

Add the organizer to the
database (name and phone
#) only if you accept the
invitation

Handle Event Invite (free): Accept Button

Generate and send accept
message, add meeting to
schedule, bring up edit
dialogue for that meeting

Handle Event Invite (free): Decline Button Generate and send decline
message, go to last view

Handle Event Invite (not free): Reschedule
Button

Generate and send accept
message, add meeting to
schedule, bring up edit
dialogue for the conflicting
meeting

Handle Event Invite (not free): Decline Button Generate and send decline
message, go to last view

Handle Event Confirm: OK button Go to last view

Handle Event Confirm: Go To button Go to the meeting that has
been confirmed

Handle Event Cancel: Set as Cancelled Button
Set the meeting as cancelled,
go to that meeting's edit
dialogue

Handle Event Cancel: Delete Button Delete the meeting, go to last
view

Section 6: Adding to Schedule

Setup/Description Input Expected Output Output Pass/Fail

Adding a Meeting Normal Meeting Meeting added to calendar

Adding a Meeting Meeting already exists
(duplicate or update message) Meeting updated if necessary

 33

Check Defaults Category Meeting Defaults Persist

Check Defaults Icon (if selected) Meeting Defaults Persist

Check Defaults Alarm Meeting Defaults Persist

Section 7: Manual Changing of Attendee Status

Setup/Description Input Expected Output Output Pass/Fail

none Open New Meeting, add
attendees Status is unknown by default

none Close and reopen meeting Status is the same as before

none Change attendee status Icons next to the attendee
change to what you selected

none Close and reopen meeting Status is the same, changes
have been saved

none Tap on attendee Goes to card view (pre-
existing feature)

none Return, add more attendees Former statuses should be
preserved

none Close and reopen meeting Status is the same, changes
have been saved

 34

Create a meeting with
attendees in a
previous version of
Agendus (doesn't have
storage for the status),
install over

Open this meeting Status is unknown by default

Create a meeting (with
attendees) in latest
version of Agendus,
install previous version
(doesn't have storage
for the status)

Open this meeting

Display of attendees should
work. Statuses should not
cause parse problems in
previous versions.

Add a bunch of
attendees to a meeting
so that the scroll bar
appears on the side

Change the top attendee's
status, then scroll down so it is
out of view, then scroll up again

This attendee's status should
be what you changed it to

Checking to make
sure new status
storage doesn't affect
other features using
the same functions

Open a contact that has a few
other contacts linked to him/her

Should still parse/display
information about linked
contacts as before

Section 8: Auto-Update Attendee Status

Setup/Description Input Expected Output Output Pass/Fail

Create a meeting,
send an invite

Receive repsonse from
someone on your attendee list,
positive

Attendee's status is updated
to "Attending"

Create a meeting,
send an invite

Receive repsonse from
someone on your attendee list,
negative

Attendee's status is updated
to "Declined"

Create a meeting,
send an invite, delete
the meeting

Receive repsonse from
someone

Disregard the message and
disable the alert, go to last
Agendus view

Create a meeting,
send an invite

Receive response from
someone not on your list of
attendees, but in your contact
database

Disregard the message and
disable the alert, go to last
Agendus view

Create a meeting,
send an invite

Receive response from
someone not on your list of
attendees or in your contact
database

Disregard the message and
disable the alert, go to last
Agendus view

Section 9: Organizer Alert

Setup/Description Input Expected Output Output Pass/Fail

 35

Display Positive Response "Name is attending this
meeting:"

Display Negative Response "Name is NOT attending this
meeting:"

Display Meeting Display (see Attendee Alert, same
code so only test it once)

Handle Event Ok Button Go to most recent view

Handle Event Go To Button Go to meeting edit view with
attendee tab showing

Section 10: Selecting Which Attendees to Send To

Setup/Description Input Expected Output Output Pass/Fail

Create a Meeting with
four attendees None. All attendees should be

deselected (dot).

Create a Meeting with
four attendees

Press the "Select All" Button
(check mark)

All attendees should be
selected (check mark)

Create a Meeting with
four attendees

Press the "Deselect All" Button
(dot)

All attendees should be
deselected (dot).

Create a Meeting with
four attendees

Click on one of the dots next to
an attendee

This attendee should now be
selected.

Create a Meeting with
eight attendees

Click on one of the dots next to
an attendee, then scroll the table
so that attendee is not shown,
then scroll back

The correct attendee should
still be selected.

 36

Create a Meeting with
four attendees

All attendees should be selected
(check mark), Send an invitation

The invitation should be sent
to all of the attendees with
valid mobile phone numbers.

Create a Meeting with
four attendees

All attendees should be
deselected (dot), send and
invitation

A warning message should
appear alerting the user that
no attendees have been
selected.

Create a Meeting with
four attendees

Check off some attendees, while
leaving others delselected, then
send an invitation

The invitation should be sent
to only the selected
attendees with valid mobile
phone numbers.

Section 11: Quick Deleting an Attendee

Setup/Description Input Expected Output Output Pass/Fail

Create a Meeting with
four attendees

In the status drop down, select
remove attendee.

This attendee should be
removed from the list.

Create a Meeting with
four attendees

In the status drop down, select
remove attendee. Send an
invite

That particular attendee
should not receive an
invitation

Create a Meeting with
four attendees

In the status drop down, select
remove attendee. Exit and
return to the meeting.

This attendee should still be
removed from the list.

Section 12: Backwards Compatibility and Existence Testing

Setup/Description Input Expected Output Output Pass/Fail

AAM: not installed
AGP: latest version
AGM: latest version

Try to do as many AAM
functions as possible No functionality available

AAM: installed
AGP: not installed
AGM: not installed

Try to do as many AAM
functions as possible

Should not affect anything, it
should be as if nothing has
been installed

AAM: installed
AGP: latest version
AGM: not installed

Try to do as many AAM
functions as possible

Only AAM feature available:
Manual Changing of
Attendee's Status

AAM: installed
AGP: not installed
AGM: latest version

Try to do as many AAM
functions as possible No functionality available

AAM: installed
AGP: older version
AGM: older version

Try to do as many AAM
functions as possible No functionality available

 37

AAM: installed
AGP: older version
AGM: latest version

Try to do as many AAM
functions as possible No functionality available

AAM: installed
AGP: latest version
AGM: older version

Try to do as many AAM
functions as possible No functionality available

AAM: installed
AGP: full mode
AGM: limited mode

Try to send an invitation.
Agendus Mail should pop up
and tell you that it is in limited
mode.

AAM: installed
AGP: limited mode
AGM: full mode

Send a text messag to this
system, and click accept (to add
an appt to your schedule)

Agendus Palm should pop up
and tell you that it is in limited
mode.

Overall (not an automatic field)

Passed:

Failed:

Not Implemented:

Relevant Failed:

 38

Features of the Palm Operating System

The Palm Operating System is an event based operating system. This means that the
structure of each program basically consists of an event loop.

static void AppEventLoop(void)
{
 UInt16 error;
 EventType event;

 do
 {
 /* change timeout if you need periodic nilEvents */
 EvtGetEvent(&event, evtWaitForever);

 if (! SysHandleEvent(&event))
 if (! MenuHandleEvent(0, &event, &error))
 if (! AppHandleEvent(&event))
 FrmDispatchEvent(&event);

 } while (event.eType != appStopEvent);
}

Each view, or form, has its own event handler. These event handlers are essentially giant
switch statements for each control (button, textbox, scrollbar, etc) depicting what the behavior of
each should be. If the event handler has fully taken care of the event, then it must return true.
However, if it has not (such as in the case of directional pad movement), it returns false and gets
handled by the basic form controls.

Another feature of Palm is that there is no multitasking, meaning one application runs at a
time. This makes communication between applications a little messier, as there is no application
stack. This will be discussed further in a later section.

In addition to allowing only one program to run at a time, Palm OS allows only one
application to designate itself as the handler for SMS messages. This was a particular trouble for
our project because we needed to intercept particular messages and let others be handled
normally. It was either hack into the native messaging application (impossible), or create our
own SMS application (very difficult and tedious). Luckily, iambic’s program Agendus Mail also
has SMS capability, and we were able to put our hook inside that program without adding any
extra work.

 39

Diagrams

The following diagrams describe the greater overall architecture of the project, as well as
a more detailed look at the system level.

The Flowchart on the following page gives the reader a look at how the overall system
operates, with a mapping of all the junctures and decisions that both the Organizer and the
Attendee will face when utilizing this project.

Directly after the Flowchart is the System Sequence Diagram. This diagram shows the
project’s processes on a more technical level, and makes clearer exactly what functionality is
provided by this project. Instead of explaining how the user would interact with the project, this
diagram explains how the varying layers of the pre-existing program and the addition this project
brings to it would interact.

 40

Flowchart
Organizer
creates

meeting and
selects
“Invite”

Organizer AGM
sends SMS
message to
attendee(s)

Attendee AGM
intercepts SMS
and redirects to

AAM

Does attendee
have AGM/AGP?

Attendee AGP
checks schedule

for availability

Does attendee have
phone number?

Does attendee’s
device have SMS

service?

Organizer’s SMS
service will alert to

failed message
(not generated by
this application)

Attendee will
receive text

message and
need to respond to

Organizer by
alternate means

Is attendee
available?

Yes

Yes

No

No

Does attendee wish to
reschedule currently

scheduled event?

No

Does attendee
wish to attend?

Yes

Attendee AGP
generates

“Decline” message

No

No

Attendee AGP
generates “Accept”

message

Yes

Attendee AGP
opens event to be

rescheduled

Yes

Attendee
reschedules

current
event

Attendee AGM
sends SMS
message to

Organizer AGM

Organizer AGM
intercepts SMS
and redirects to

AAM

Organizer AGP
updates attendee
list (coming/not

coming)

Is the organizer
happy with attendee

statuses?

Organizer will click
“Send

Confirmation”

Organizer
reschedules

meeting

No

Organizer AAM
generates “New
Meeting” SMS

message

Yes

Reflect inability to
contact in UINo

Organizer AAM
generates

“Cancel” and “New
Meeting” SMS

Messages

Attendee AAM
parses message
as meeting invite

Organizer AAM
parses message
as accept/decline

Does Organizer
wish to reschedule

meeting?

Organizer will click
“Cancel Meeting” No

Yes

Yes

 41

System Sequence Diagram

Organizer

Organizer Attendee

AttendeeAGP AAM AGM AGM AAM AGPOrganizer Attendee

create meeting

send invite: new meeting created
generate SMS: invite

send SMS: invite send msg: SMS
identify message type

forward: new meeting

alert: new meeting

respond: accept/decline invitation

generate SMS: accept/decline
send SMS: accept/declinesend msg: SMS

identify message type
forward: accept/decline

alert: generate(new attendee status)

alert: new attendee status

respond: acknowledge attendee status

confirm meeting

generate SMS: confirm

send SMS: send confirmation

send msg: SMS
identify message type

forward: confirmation

alert: meeting confirmed

meeting status: confirmed

parse msg

parse msg

update: attendee status

parse msg

send info

check schedule

 42

Technical Challenges

Inter-application Communication

Our application has a whole consists of three applications working together, where no

two applications can be running at the same time. AAM acts as a middleman between AGP and
AGM. When switching from one application to another, a launch command along with a
specific parameter structure is sent to the other application.

AGP

AAM

AGM

The first thing to do when switching between applications is to find out if the other
program actually exists on this device. To do this, we search for the program (called a database
on this platform) based on its creator ID, which is given to the developer by Palm itself. What
made things a little more interesting was that AGP and AAM shared the same creator ID, so
when we tried to switch to one of them, we had to add extra checks to ensure that we found the
correct one.

Next, the version must be checked. If an older version of any program is installed on the
device, then the necessary launch code definitions will not exist in the program, and the
application will not know what to do upon receiving them.

After this, the license must be checked. In order for the whole package to work together,
a special license must exist inside iambic’s license database on this particular device. Not only
that, but the license must not be expired. When a user downloads the program for free, he/she is
given a short trial period. After that, the program is put into “limited mode,” where things like
creating new meetings and records are not allowed. If the program is in this limited mode, then
our functions would fail.

The next step is to set the memory allocated to the parameter struct to be owned by the
operating system. If this is not done, the memory will be released upon exit of the program,
leading to strange data on the receiving end. One problem we ran into here was that we had
character pointers in our parameter structs. Of course, when we gave the memory to the
operating systems, we were only giving the pointers themselves, not what they pointed to. This

 43

was giving us very strange and inconsistent results until we found out what the problem was.
Once we changed our pointers to character arrays of specific length, these problems disappeared.

Last but not least, simply call the function that switches applications, passing it the
specific launch command, the struct, and the necessary information to identify the other program.
The operating system will take care of making sure the launch code and struct go where they
need to go.

Here is an example of application-switching code:

err = DmGetNextDatabaseByTypeCreator(true, &searchState, sysFileTApplication,
 iambicMailAppFileCreator, true,
 &cardNo, &dbID);

if (!err)
{
 // Find out if the version of AGM is compatible
 err = DmDatabaseInfo(cardNo, dbID, NULL, NULL, &version, NULL,
 NULL, NULL, NULL, NULL, NULL, NULL, NULL);

 if (!err)
 {
 // Version 5 contains AAM launch code information
 if (version >= 5)
 {
 // Check product license
 if (!isLicenseExpired(k_license_mail))
 {
 // Everything is OK, send to AGM!
 if (MemPtrSetOwner(cmdPBP, 0) == errNone)
 {
 //switch to AGM to send SMS
 SysUIAppSwitch(cardNo, dbID,
 sysAppLaunchCmd_AAM_AddSMS,
 cmdPBP);
 }
 else
 MemPtrFree (cmdPBP);
 }
 else
 {
 // AGM is in limited mode.
 // Return to AGP, with a message that you need AGM
 goto GoBack;
 }
 }
 else
 {
 // AGM does not have the latest version.
 // Return to AGP, with a message that you need AGM
 goto GoBack;

 }
 }
}

 44

else
{
 // AGM is not installed, but we know AGP is, because that called us.
 // Return to AGP, maybe with a message that you need AGM
GoBack:
 if (DmGetNextDatabaseByTypeCreator(true, &searchState,
 sysFileTApplication,
 AgendusAppType, true,
 &cardNo, &dbID) != dmErrCantFind)
 {
 SysUIAppSwitch(cardNo, dbID, sysAppLaunchCmd_AAM_NeedAGM, NULL);

 }
}

Meeting UID Generation

Within each device, every meeting record is given a unique identification number, or

UID. Unfortunately for our purposes, we could not afford to use this number to identify an
AAM meeting. A meeting UID was guaranteed to be unique on one particular device only.
Since we are spreading the same meeting across multiple devices, we needed to create our own
UID.

At first, we created a nine digit UID based off of the date and time of the meeting. We
quickly realized that a user may receive or send multiple meetings for the same date and time, so
we changed the UID to include a randomly generated element as well.

Repeating Meetings

What happens when an organizer wants to send an invitation to a weekly repeating

meeting? Repeating meetings are stored as only one meeting record with details set to show how
it repeats. Obviously, the responses from the attendees would be significant only for the current
instance of this meeting. So, in order to prevent confusion on both the user’s and the
application’s part, a new meeting is created with the same exact details minus the repeating. In
other words, an exact duplicate meeting is created of only that single instance. Then, the original
repeating meeting is set to have an exception on that day, meaning that it will not have a
repetition where the new single meeting takes place.

Storage of Attendee Status

Both Agendus and the native calendar application already had the ability to add attendees

to meetings, but neither of them had ways of tracking an attendee’s status. It was very confusing
at first because both the native fields *and* the fields within the note were being filled with
attendees. Naturally, we decided to modify both. Unfortunately, we did not realize at the time
that we weren’t allowed to mess with the native database structures.

 45

typedef struct
{
 ApptDateTimeType *when;
 AlarmInfoType *alarm;
 RepeatInfoType *repeat;
 ExceptionsListType *exceptions;

 char *description;
 char *note;
 char *location;

 ApptTimeZoneType timeZone;
 ApptMeetingInfo meetingInfo;
 UInt16 numBlobs;
 BlobType blobs[apptMaxBlobs];

} ApptDBRecordType;

Fortunately, Agendus has a much more flexible method of storing extraneous
information. It creates a string “header” for the note field of the meeting. Note fields have an
exceptionally long length allotment. This allows us to store almost boundless information. For
the attendee list, it is stored like this:

Note: “…CONLIST:<Contact1>(0), <Contact2>(2), Contact3>(0)\n#AN\nNormal Note
Text!”

Notice that the numbers in parentheses next to each contact are integers corresponding to
specific statuses.

This information was only written once the user gave the final OK to commit changes to
the meeting. The process of temporarily storing and manipulating the data was another headache
altogether.

Parsing

A good parser is absolutely necessary for an application to be both strong and stable. The

parser needed to be able to interpret data from a string into specific data structures. It also
needed to recognize invalid data. For instance, if the meeting is set for 45:00, then the message
is rejected as being invalid. Another essential ingredient is security. If not properly formatted, a
malicious or unknowing user may send data that is not in exactly the form that the parse expects.
Because we are dealing with strings and character pointers, this will often cause the system to
crash. We tried our best to make our parser as reliable, stable, and secure as possible.

Interfacing and working with a very large and dynamic codebase

 46

Even as we were developing our product, a new version of Agendus Palm was in
development as well. Because of this, the codebase we were working with was both large and
dynamic. Sometimes, problems with the code would stem from us and affect normal
development, and sometimes it was the reverse. We had to learn to work together to solve some
problems and ensure a good product.

Localization

Because our product is being released in eight different languages, we had to make sure

that every part of the user interface was completely localizable. AGP and AGM already had the
necessary mechanisms to implement this, so we kept all UI in these two programs alone. AAM
became a merely a messenger between the two.

 47

Risks

This section delineates certain problems which our project may encounter and have a fair to high
probability of impeding the progress of our project.

Critical

Risk: If our relationship with iambic is somehow damaged or retracted, it would
prevent us from accessing their code. Our entire project is defined on the
assumption that this code will be available to us, and so this problem would cause
our project to fail utterly.
Resolution: We worked diligently, making certain to produce code that was not
only error-free, but was also consistent with the internal coding style of iambic.

Serious

Risk: If it turns out that the scope of our project is unrealistic, then we may not be
able to satisfy all of the success requirements listed in the document, and our
project might fail.
Resolution: We managed to avoid this problem entirely, as can be seen in the
section entitled “Success Requirements.” Not only were our core requirements
satisfied, but we managed a good portion of the requirements deemed “For Future
Consideration” (which, at the time of dividing which requirements were
mandatory and which were not, it was anticipated that this section would never be
reached).

Risk: One of us is currently suffering from an injury that requires surgery in
December; if complications arise and she is unable to work, the completion of the
project may be seriously impacted.
Resolution: Surgery went well, and she was diligent with both her work and
recovery. Risk was not a factor.

Risk: We went a very long period without looking at the risk document, which
allowed us to become lax in our productivity.
Resolution: Print and tape the list of risks to our machines, so we could see them
as we worked, alongside with the list of requirements and deadlines.

Risk: Unforeseen technological failures, such as email unable to be sent and
received, could seriously hamper our ability to communicate and stall the project
and perhaps put it at a critical status.
Resolution: Several different methods of communication, such as various email
addresses and phone numbers, were exchanged in order to ensure a potential for
constant communication from the side of the programmers to the side of the
advisor. Regardless of this, communication was still an issue.

 48

Risk: Unforseen problems can occur due to interfacing with a large, pre-existing
codebase.
Resolution: A willingness to ask questions of those who know the codebase very
intimately, as well as the ability to revert to a previous version of said code if
considerable changes were made that did not coincide with how the codebase
should work alleviated this problem.

Concerning

Risk: If we have issues with obtaining and installing tools, iambic has offered to
allow us the use of the environments they have already set up in the office. It
would mean, however, that every time we want to work on the project, we would
have to go to iambic’s office, which may have certain schedule constraints
associated with it. This may require us to work harder to guarantee the success
of the project.
Resolution: This turned out to be less of a risk and more of a boon to the
project’s success. By going to iambic every day to work, we were ensured a work
environment with no distractions, as well as ready access to those more
knowledgeable about iambic’s codebase, such as Adriano.

Risk: Because one of us has never worked with the Palm Operating System
before, there may be a significant learning curve to overcome in order to get her
up to speed. This will cause extra work for both team members. However, this is
in no way an excuse for the failure of the project.
Resolution: Said team member worked very hard to understand the codebase, and

asked questions constantly, to ensure the success of the project.

 49

What We Learned (from a Software Engineering
Perspective)

Do Not Consider Mediocrity an Option

Because we knew from the beginning that our product was going to be released to the
public, we never had the option to program anything less than near perfection. When tens of
thousands of users get a hold of the product, what seems like a small problem to the developer is
multiplied exponentially over the user-base. In addition, users like to complain about problems
they encounter, which deters other users from purchasing the product. If you do not allow
yourself to program anything that isn’t extremely stable, then you will never find yourself in
these situations.

Never Back Down From a Challenge

There is always a solution to your problem. Have faith in that, and commit yourself to
the task of finding out what it is. Force yourself to think about what would be good for the users,
and not what would be easy for the developers.

Keep the Repository Gold

Without this, you can go absolutely nowhere. It is especially important when working
on a project with people in different locations or even time zones. We were working with
developers in the Ukraine and in New York. If we had done something to break the code and
then left for the day, the people in the Ukraine would not be able to work until we came back.
For the sake of moving forward *at all*, the repository must always be kept golden.

Testing is Incredibly Important

Testing in small increments is incredibly helpful because you are able to pinpoint
problems quickly and efficiently *before* it comes time for the debug phase (integration testing)
of the project. Unfortunately, we were not able to use an automated test framework, and so we
had to do all the testing by hand at every iteration. On one hand, it was nice because we could
perform one test at any time. However, you have to be very careful with that. A fix for one bug
may have caused something else to go wrong. After you fix one thing, you should always go
back and test everything to ensure the proper function of the application as a whole.

Find a Workplace with no Distractions

For us, this was one of the most important ingredients to our success. Because we were
working with iambic, we had to go to the office in order to do our work. There, we had
programming environments set up for us. Since we were in an office environment, every time
we went to work, we really worked. There was no TV, video games, or conversations to distract
us.

 50

Set Aside Weekly Times to Work

This was the other major factor in our achievement. We set aside a specific schedule of
9-10 hours a week where we would work on our project. We never broke this schedule. We
solidified it in our heads and made sure to tell our boss when to expect us. This way, if we didn’t
show up it wouldn’t just be our loss, but his as well.

 51

	 Introduction
	Terminology
	Overview
	The Problem
	The Solution
	Benefits of the Solution

	Stakeholders
	iambic, Inc.
	Kristen Moss and Caroline Ratajski
	Dr. John Noll

	 Scenario
	 User Manual
	Installation
	Create a Meeting and Add Attendees
	Inviting Attendees
	Attendee Management
	 How to Respond to a Meeting Message

	 Use Case
	 Success Requirements
	General Requirements
	Required
	For Future Consideration

	 Technical Details
	Programming Language
	Programming/Debugging Environment
	Code Repository
	Bug Tracking System
	Operating System
	Testing
	Release Plans
	Statistics

	 Test Plan
	

	 Features of the Palm Operating System
	 Diagrams
	 Technical Challenges
	Inter-application Communication
	Meeting UID Generation
	Repeating Meetings
	Storage of Attendee Status
	Parsing
	Interfacing and working with a very large and dynamic codebase
	Localization

	 Risks
	Critical
	Serious
	Concerning

