
MathSoft

S-PLUS
Documentation Supplement

Version 4.5

April 1998

Data Analysis Products Division

MathSoft, Inc.

Seattle, Washington
1

CHAPTER
Proprietary
Notice

MathSoft, Inc. owns both this software program and its documentation.
Both the program and documentation are copyrighted with all rights
reserved by MathSoft.

The correct bibliographical reference for this document is as follows:

S-PLUS User’s Guide, Data Analysis Products Division, MathSoft, Seattle,
WA.

Copyright
Notice

Copyright ©1996-1998 MathSoft, Inc. All Rights Reserved.

Printed in the United States.

Acknowledgments

S-PLUS would not exist without the pioneering research of the Bell Labs S
team at AT&T (now Lucent Technologies): Richard A. Becker, John M.
Chambers, Allan R. Wilks, William S. Cleveland, and colleagues.

This release of S-PLUS includes specific work from a number of scientists:

The cluster library was written by Mia Hubert, Peter Rousseeuw and Anja
Struyf (University of Antwerp).

Updates to functions provided to this and earlier releases of S-PLUS were
provided by Brian Ripley (Oxford University) and Terry Therneau (Mayo
Clinic, Rochester).
2

CONTENTS

Chapter 1 Welcome to S-PLUS 9
Introduction 9
Installation 10
System Requirements 11

Help, Support, and Learning Resources 12
Getting Help 12

What’s New in S-PLUS 4.5 16
New Features 16

Chapter 2 New Interactive Graphics Capabilities for S-PLUS 4.5 19
Using the Graph Tools Palette 20
Highlighting selected data points 24
Excluding or Including Only Selected Points in Your Plot 25
Color Scale Legends 26

Usage 26
Properties 27

Chapter 3 S-PLUS Excel Add-In 33
Installing the S-PLUS Excel Add-In 34

Installation during S-PLUS setup 34
Manual installation 34

Removing the S-PLUS Excel Add-in 37
Using the S-PLUS Excel Add-In 38
Selecting data for S-PLUS graphs 40

Chapter 4 S-PLUS SPSS Add-In 43
Installing the S-PLUS SPSS Add-In 44

Installation during S-PLUS setup 44
Manual installation 44

Removing the S-PLUS SPSS Add-in 45
Using the S-PLUS SPSS Add-In 46

Selecting data for S-PLUS graphs 47
Selecting data for conditioning S-PLUS graphs 49
Handling errors during graph creation 50
iii

CONTENTS
Chapter 5 File Improvements 51
New Input/Output Features 52
Loading Libraries 53
Loading Modules 54

Chapter 6 Manipulating Data 57
Select Data 58
Factorial Design 60
Orthogonal Array Design 62
Recode 64
Split Data By Group 65
Stack Columns 67
Subset 69
Transform 71
Transpose 73
Set Dimensions 74

Chapter 7 Resampling Methods 75
Bootstrap Inference 76

Model Page 76
Options Page 78
Results Page 79
Plot Page 80
Jackknife-After-Bootstrap (Jack After Boot) Page 81

Jackknife Inference 83
Model Page 83
Options Page 84
Results Page 85
Plot Page 86

Chapter 8 Clustering In S-PLUS 87
K-Means Clustering 88

Model Page 88
Results Page 89

Partitioning Around Medoids 90
Model Page 90
Results Page 92
Plot Page 93
iv

CONTENTS
Fuzzy Partitioning 94
Model Page 94
Results Page 96
Plot Page 97

Agglomerative Hierarchical Clustering 98
Model Page 98
Results Page 100
Plot Page 101

Divisive Hierarchical Clustering 102
Model Page 102
Results Page 104
Plot Page 105

Monothetic Clustering 106
Model Page 106
Results Page 107
Plot Page 107

Compute Dissimilarities 109

Chapter 9 Creating HTML Output 111
Tables 112
Text 113
Graphs 114

Chapter 10 Type III Sum of Squares and Adjusted Means 115
ANOVA Tables 116
Adjusted Means 117
Multiple Comparisons 118
Estimable Functions 120
Sigma Constrained Parameterization 122
References 126

Chapter 11 Power and Sample Size 127
Normal Power And Sample Size 128

Model Page 129
Options Page 130

Binomial Power And Sample Size 134
Model Page 135
Options Page 135
Printout Page 137
v

CONTENTS
Power and Sample Size Theory 139
Normally Distributed Data 140

One-Sample Test of Gaussian Mean 140
Comparing Means From Two Samples 143

Binomial Data 146
References 152

Chapter 12 Robust Linear Regression 153
OVERVIEW OF THE ROBUST REGRESSION METHOD 155

Key Robustness Features of the Method 155
The Essence of the Method: a Special M-Estimate 155
Using the lmRobMM Function to Obtain a Robust Fit 156
Comparison of Least Squares and Robust Fits 157
Robust Model Selection 157

COMPUTING LEAST SQUARES AND ROBUST FITS 158
Computing a Least Squares Fit 158
Computing a Robust Fit 159
Least Squares vs. Robust Fitted Model Objects 160

VISUALIZING AND SUMMARIZING THE ROBUST FIT 161
Visualizing the Fit with the plot Function 161
Statistical Inference with the summary Function 163

COMPARING LEAST SQUARES AND ROBUST FITS 166
Creating a Comparison Object for LS and Robust Fits 166
Visualizing LS vs. Robust Fits 166
Statistical Inference for LS vs. Robust Fits 168

ROBUST MODEL SELECTION 170
Robust F and Wald Tests 170
Robust FPE Criterion 171

CONTROLLING OPTIONS FOR ROBUST REGRESSION 173
Efficiency at Gaussian Model 173
Alternative Loss Function 173
Confidence Level of Bias Test 175
Resampling Algorithms 177
Random Resampling Parameters 177
Genetic Algorithm Parameters 178

THEORETICAL DETAILS 179
Initial Estimate Details 179
Optimal and Bisquare Rho and Psi-Functions 180
vi

CONTENTS
The Efficient Bias Robust Estimate 181
Efficiency Control 181
Robust R-Squared 181
Robust Deviance 183
Robust F Test 183
Robust Wald Test 183
Robust FPE (RFPE) 183
Appendix 184

ROBUST MM REGRESSION 186
BIBLIOGRAPHY 198

Chapter 13 Parametric Regression For Censored Data 199
Introduction 200
The Generalized Kaplan-Meier Estimate 202

Specifying Interval Censored Data 202
Computing Kaplan-Meier Estimates 204

censorReg 207
An Example Model 207
Specifying the Parametric Family 208
Accounting for Covariates 210
Truncation Distributions 212
Threshold Parameter 214
Offsets 215
Fixing parameters 216

Fitting Models: ANOVA 218
Fitting Models: The plot method for CensorReg 220
Computing Probabilities and Quantiles 225
Parametric Survival 227

Model Page 228
Options Page 230
Results Page 231
Plots Page 233
Predict Page 235

Chapter 14 New GUI Toolkit Functions 237
guiSetOption 237
guiGetOption 237
guiPrintClass 239
guiPlot 240
vii

CONTENTS
Chapter 15 Automation Improvements in S-PLUS 4.5 245
Passing Data to Functions via Automation 246

Method to get and set parameter classes of functions 247
New Automation Methods in S-PLUS 4.5 250
Automating Embedded S-PLUS Graphs 258
Examples Of Automation Provided With S-plus 259
Examples Of Using S-plus As An Automation Client Included With S-plus 261
Examples of ActiveX controls included with S-PLUS 262

Chapter 16 Dialog Controls In
S-PLUS 4.5 263

ActiveX Controls in S-PLUS dialogs 264
Adding an ActiveX control to a dialog 264
Where can the PROGID for the control be found? 265
Registering an ActiveX control 267
Why only “OCX String”? 268
Common error conditions when using ActiveX controls in S-PLUS 268
Designing ActiveX controls that support S-PLUS 269

New Dialog Controls In S-PLUS 4.5 283

Chapter 17 New Script Window Features 289
Automatic Matching of Delimiters 289
Automatic Generation Of Right Braces 289
Automatic Indentation 290
Modifying Script Window Settings 290

Index 293
viii

Introduction 9
Installation 10
System Requirements 11

Help, Support, and Learning Resources 12
Getting Help 12

What’s New in S-PLUS 4.5 16
New Features 16

Introduction Welcome to S-PLUS Version 4.5. With many improvements to the graphical
user interface introduced in S-PLUS 4.0, and many new statistical features,
S-PLUS Version 4.5 offers you unparalleled power and flexibility to create
innovative, cutting edge analyses.
In S-PLUS, data can be imported from virtually any source and can be viewed
and edited in the Data window. Point-and-click control over the details of
your graphics makes it easy to produce stunning publication quality output.
Whether your task is simple or complex, S-PLUS can lead you to more
insightful analysis and new discoveries.
S-PLUS is the premier solution for exploratory data analysis and statistical
data mining. At the core of S-PLUS is the "S" language developed at Lucent
Technologies. It is the only language created specifically for data visualization
and exploration, statistical modeling, and programming with data. S provides
a rich, object oriented environment designed for interactive data discovery.
As the exclusive licensee of the S language, MathSoft has molded the S
technology into the most powerful data analysis product available today. The
S-PLUS object-oriented environment delivers benefits that traditional
language analysis programs simply can’t match. With S-PLUS every data set,
function, or analysis model is treated as an object, which makes it easy to
examine and visually explore data, run functions one step at a time, and
visually compare models for fit.
S-PLUS gives you immediate feedback because it runs functions one at a time.
With S-PLUS, you’ve got control over every step of your analysis. Visually

WELCOME TO S-PLUS 1
9

CHAPTER 1 WELCOME TO S-PLUS
compare different models for fit, re-explore your data for outliers or other
factors that might influence a result, and document every analysis function.
Because S-PLUS puts you in control, you’ll have complete confidence in the
quality of your results.
Now, even more standard analysis functions are conveniently available
through menus, toolbars and dialogs, putting powerful S-PLUS techniques at
your fingertips. With point-and-click ease, you can import your data, select
your statistical functions and display your results. As always, when your
analysis requires a new method or approach, you can modify existing
methods or develop new ones with the programming language. By tapping
into the power, flexibility and extensibility of S-PLUS, you can take your
analysis to a new level.

Installation To install the software:

 1. Insert the CD-ROM into your CD-ROM drive.

 2. If your operating system supports AutoPlay (e.g., Windows 95 or
NT 4.0), installation will proceed automatically. If not run
setup.exe in the root directory of the CD-ROM. Use the default
settings for installation.

It is a good idea to turn off other applications, in particular virus checkers,
while installing S-PLUS, because of known problems with the installation
software InstallShield.

If you are running a 16-bit operating system such as Windows 3.1 or
Windows for Workgroups 3.11 you will need to have version 1.30.172 or
higher of the Win32s subsystem on your machine, before you can install
S-PLUS.

Win32s is included in the Win32s directory on the CD-ROM and may be
installed by running setup.exe in the Win32s\disk1 directory. Be sure to
install Win32s before installing S-PLUS.

Note

Installing and running S-PLUS under Win32s will require approximately 50MB of combined RAM and
swap file space. If you encounter the message “S_apiSyncConnect Failure” several times during start-
up, try increasing the swap file size to 40MB in the virtual memory settings accessed through the 386
Enhanced icon in the control panel.
10

SYSTEM REQUIREMENTS
Network
Installation

This version of S-PLUS may not be installed on a network server. If you want
to run S-PLUS on a network server, contact your sales representative for a
network license.

System
Requirements

• Minimum platform configuration: Pentium processor with 32MB of
memory.

• Hard disk space required: 61MB (Typical installation), 128MB (Full
installation). Add 5MB for Adobe Acrobat Reader and 6MB for
ODBC (8MB for ODBC for Win32s).

• Microsoft Windows 95, Windows NT, or Windows 3.1x

• VGA, Super VGA, or most other Windows compatible graphics
cards and monitors

• One CD-ROM drive, local or networked

• Microsoft Mouse, or other Windows compatible pointing device

• Windows compatible printers are supported
11

CHAPTER 1 WELCOME TO S-PLUS
HELP, SUPPORT, AND LEARNING RESOURCES

Getting Help There are a variety of ways to accelerate your progress with S-PLUS, and to
build upon the work of others. This section describes the learning and
support resources available to S-PLUS users.

Online Help S-PLUS offers an online help system to make learning and using S-PLUS

easier. Under the Help menu, you will find options for Using S-PLUS (how to
use the graphical user interface), Language Reference (details on each
function in the S-PLUS language), Questions and Answers (some common
difficulties, and proposed solutions), Online Manuals (see below), and Visual
Demonstrations.
There is also context-sensitive help, accessed by clicking on the Help buttons
in the various dialogs, or by clicking on the context-sensitive Help button on
the toolbars.
There is also Language Reference help available through the S-PLUS

Commands window by typing help() at the S-PLUS prompt, or by pressing
the F1 key while S-PLUS is active.

Printed and
Online Manuals

The S-PLUS Programmer’s Guide, the Guide to Statistics, and the S-PLUS User’s
Guide are all available online as well as in print. To view a manual online,
select Online Manuals from the S-PLUS Help menu and choose the desired
title.

Online Demo The S-PLUS Online Demos help users of all levels familiarize themselves with
the new features of S-PLUS. Take a look at the user interface, learn more
about common S-PLUS tasks, or show a colleague the various capabilities of
S-PLUS.

Guided Tours of
S-PLUS

The S-PLUS User’s Guide contains a tutorial, and many chapters have
examples of using S-PLUS. These examples extend the techniques illustrated
in the online demos.

Notes on Online versions of the Guides

The Online manuals are viewed using Acrobat Reader, which can be installed as an option during the
installation process. While using Acrobat Reader, it is generally useful to turn on bookmarks (under the
View entry of the menu bar), rather than rely on the contents at the start of the guides. Bookmarks are
always visible and can be expanded to include section headings, or collapsed to show just chapter titles.
12

HELP, SUPPORT, AND LEARNING RESOURCES
Add-On Modules Add-on modules that offer analytical functionality beyond that of the base
S-PLUS product include:
S+DOX: helps in designing and analyzing industrial experiments, especially
fractional factorial experiments, response surface experiments, and robust
design experiments.
S+GARCH: provides an essential suite of tools designed for univariate and
multivariate GARCH modeling of financial time series data.
S+SPATIALSTATS: provides a comprehensive set of tools for statistical
analysis of spatial data, including tools for hexagonal binning, variogram
estimation and kriging, autoregressive and moving average modeling, and
testing for spatial randomness.
S+WAVELETS: offers a visual data analysis approach to a whole range of
signal-processing techniques, such as wavelet packets, local cosine analysis,
and matching pursuits.

StatLib StatLib is a system for distributing statistical software, data sets, and
information by electronic mail, FTP and the World Wide Web. It contains a
wealth of user-contributed S-PLUS functions.

• To access StatLib by FTP, open a connection to: lib.stat.cmu.edu.
Login as anonymous and send your e-mail address as your password.
The FAQ (frequently asked questions) is in /S/FAQ, or in HTML
format at http://www.stat.math.ethz.ch/S-FAQ.

• To access StatLib with a web browser, visit http://lib.stat.cmu.edu/.

• To access StatLib by e-mail, send the message: send index from S to
statlib@lib.stat.cmu.edu. You can then request any item in StatLib
with the request send item from S where item is the name of the
item.

S-News S-news is an electronic mailing list by which S-PLUS users can ask questions
and share information with other users. To get on this list, send a message
with message body subscribe to s-news-request@wubios.wustl.edu. To get
off this list, send a message with body unsubscribe to the same address.

Once enrolled on the list, you will begin to receive e-mail. To send a message
to the S-news mailing list, send it to: s-news@wubios.wustl.edu. Do not send
subscription requests to the full list; use the s-news-request address shown
above.

Training Courses MathSoft Educational Services offers a variety of courses designed to quickly
make you efficient and effective at analyzing data with S-PLUS. The courses
13

CHAPTER 1 WELCOME TO S-PLUS
are taught by professional statisticians and leaders in statistical fields. Courses
feature a hands-on approach to learning, dividing class time between lecture
and online exercises. All participants receive the educational materials used in
the course, including lecture notes, supplementary materials, and exercise
data on diskette.

S-Press S-Press is a free quarterly newsletter about S-PLUS mailed to primary users of
S-PLUS. S-Press features stories by S-PLUS users in industry and academia, a
technical support column and provides new product announcements and
other information from MathSoft.

Technical
Support

In North America, to contact technical support, call
(206) 283-8802 ext. 235

or fax to

(206) 283-6310

or send e-mail to

support@statsci.com.

In Europe, Asia, Australia, Africa and South America, call

+44 1276 452299

or fax to

+44 1276 451224

or email to

shelp@mathsoft.co.uk

Books on Data
Analysis Using
S-PLUS

General

Becker, R. A., Chambers, J. M., and Wilks, A. R. (1988). The New S
Language. Wadsworth & Brooks/Cole, Pacific Grove, CA.
Spector, P. (1994). An Introduction to S and S-PLUS. Duxbury Press, Belmont,
CA.

Data Analysis

Bruce, A. and Gao, H.-Y. (1996). Applied Wavelet Analysis with S-PLUS.
Springer-Verlag, New York.

Chambers, J. M., and Hastie, T. J. (1992). Statistical Models in S. Wadsworth
& Brooks/Cole, Pacific Grove, CA.

Everitt, B. (1994). A Handbook of Statistical Analyses Using S-PLUS.
Chapman & Hall, London.
14

HELP, SUPPORT, AND LEARNING RESOURCES
Härdle, W. (1991). Smoothing Techniques with Implementation in S. Springer-
Verlag, New York.

Kaluzny, S. P., Vega, S. C., Cardoso, T. P., and Shelly, A. A. (1997).
S+SPATIALSTATS User’s Manual. Springer-Verlag, New York.

Marazzi, A. (1992). Algorithms, Routines and S Functions for Robust Statistics.
Wadsworth & Brooks/Cole, Pacific Grove, CA.

Venables, W. N., and Ripley, B. D. (1994). Modern Applied Statistics with
S-PLUS. Springer-Verlag, New York.

Graphical Techniques

Chambers, J. M., Cleveland, W. S., Kleiner, B., and Tukey, P. A. (1983).
Graphical Techniques for Data Analysis. Duxbury Press, Belmont, CA.

Cleveland, W. S. (1993). Visualizing Data. Hobart Press, Summit, NJ.

Cleveland, W. S. (1985). The Elements of Graphing Data. Hobart Press,
Summit, NJ.
15

CHAPTER 1 WELCOME TO S-PLUS
WHAT’S NEW IN S-PLUS 4.5

The following is a summary of new features in S-PLUS 4.5. Users of
S-PLUS 3.3 for Windows can browse the rest of this User’s Guide to further
acquaint themselves with the graphical user interface.

New Features New features and techniques include:

Efficiency Improvements

• Faster start-up. The Object Browser is no longer started by default
(although you can still obtain this behavior by modifying the settings
in the Startup page of the General Settings dialog).

• Faster data entry. A new option, Buffer Data Entry, on the General
page of the General Settings dialog under the Options menu, allows
S-PLUS to buffer changes in a Data Sheet, so that they are sent to the
data engine in chunks, rather than as they are made, as in S-PLUS

4.0. Set this option to Off to restore the old behavior.

• Menu item and function to refresh memory.

Statistics

• New robust regression method available via menu system and
through the lmRobMM function.

• Power and sample size calculations.

• Enhanced parametric survival (accelerated failure time) estimation.

• Type III sums of squares for ANOVA.

• Bootstrap and jackknife estimation now available through the menu
system.

• Clustering methods are now available through the menu system.
16

WHAT’S NEW IN S-PLUS 4.5
Graphics

• Interactively select and highlight points.

• Redraw excluding selected points.

• Linked highlighting in scatter plots.

• Interactively rescale axes (pan,crop).

• Trellis drill-down: select one panel of a Trellis graph and create a full-
size copy.

• Color scale legends.

User Interface

• Select Data dialog at startup for easy data selection.

• More data manipulation dialogs:

• Recode

• Split

• Stack

• Subset

• Transform

• Transpose

• Factorial Design

• Orthogonal Array Design

• Set Dimensions

• Improved Insert Graph dialog with enhanced thumbnails.

• Excel add-in for S-PLUS graphics.

Import and Export

• New Excel add-in to create S-PLUS graphics from Excel.
17

CHAPTER 1 WELCOME TO S-PLUS
• Function to generate HTML tables.

Programming

• Dialogs now support ActiveX controls.

• Enhanced automation support, including many new included
examples.

• Enhanced editing features in script windows include automatic
delimiter matching and auto-indent feature.

License Management

• License manager for network version.
18

Using the Graph Tools Palette 20
Highlighting selected data points 24
Excluding or Including Only Selected Points in Your Plot 25
Color Scale Legends 26

Usage 26
Properties 27

NEW INTERACTIVE GRAPHICS
CAPABILITIES FOR S-PLUS 4.5 2
19

CHAPTER 2 NEW INTERACTIVE GRAPHICS CAPABILITIES FOR S-PLUS 4.5
USING THE GRAPH TOOLS PALETTE

A new Graph Tools Palette has been introduced in S-PLUS 4.5. It provides
tools for selecting data, refocusing the graph on a subregion or specific panel,
and for creating and modifying interactive Trellis graphs. Some of these tools
were also available on the Annotations or the Plot2D palettes in S-PLUS 4.0.

To bring up the graph tools palette, click on the Graph Tools button on
the graph sheet toolbar (shown when a graph sheet is in focus).

To enable any of the tools, click on the appropriate button on the Graph
Tools Palette.

 Select Tool Standard selection mode, where clicking on a graphical
object selects that object.

 Label Point Click on any point in a 2D scatter plot to label it with
its row name.

 Select Data Click on any point or drag a rectangle around a group
of points in a scatter plot to select them. They will
appear selected in the scatter plot, in any other scatter
plots using the same data set, and in any grid views of
the data set. Points can be added to the selection by
pressing the CTRL key when releasing the mouse
button. This tool can also be accessed from the
annotation tools palette. The way in which the data
points are highlighted in the scatter plot can be defined
on the Interactive page of the Graphs dialog. To open
this dialog, choose Graph Options from the Options
menu.

 Crop Graph to Selected Rectangle
Drag a rectangle around the area of a 2D graph on
which you would like to refocus. The X and Y axes will
be rescaled to show only this area of the graph. This
tool can also be accessed from the Rescale Axes menu
option in the graph sheet Format menu.
20

USING THE GRAPH TOOLS PALETTE
 Auto Scale AxesClicking on this button will reset the axes scaling for
both the X and the Y axes to include all points (i.e.,
Auto minimums and maximums are used). This can
also be done by selecting Reset Auto Scaling menu from
the graph sheet Format menu.

 Pan Up If you have cropped your graph to show only a
subsample, use this button to show the region directly
above the current region. The amount of overlap
between regions can be specified on the Interactive page
of the Graphs dialog. To open this dialog, choose Graph
Options from the Options menu.

 Pan Right If you have cropped your graph to show only a
subsample, use this button to show the region directly
to the right of the current region.

 Pan Left If you have cropped your graph to show only a
subsample, use this button to show the region directly
to the left of the current region.

 Pan Down If you have cropped your graph to show only a
subsample, use this button to show the region directly
below the current region.

 Extract Panel Use this button if you would like to extract a single
panel from a conditioned graph. After clicking on the
tool button, click anywhere within the panel that you
would like to extract. Conditioning for the graph will
be turned off, and the “Subset Rows with” expression
for the plots will be set to the conditioning expression
for that panel. This can also be done by choosing
Extract Panel/Redraw Graph from the graph sheet
Format menu. To have the panel placed in a separate
graph sheet, select Extract Panel/New Graph Sheet from
the graph sheet Format menu.

 Return To All Panels
21

CHAPTER 2 NEW INTERACTIVE GRAPHICS CAPABILITIES FOR S-PLUS 4.5
Use this button if you have extracted a panel and would
like to return to the full conditioned graph. The Panel
Type for the graph will be set to Conditioned, and the
Subset Rows expressions for all plots will be set to ALL.
Alternatively, choose Show All Panels from the graph
sheet Format menu.

 No Conditioning
Use this button to set the Panel Type for a graph to
None. All plots will be within a single plot area.

 4 Panel Conditioning
Use this button to set the Panel Type for a graph to
Conditioned, and to set the number of panels used for
continuous data to 4. If no conditioning data has been
specified, no panels will be drawn.

 9 Panel Conditioning
Use this button to set the Panel Type for a graph to
Conditioned, and to set the number of panels used for
continuous data to 9. If no conditioning data has been
specified, no panels will be drawn.

 Plots in Separate Panels
If you are plotting more than one set of data series on a
graph, use this button to have each plot drawn in a
separate panel. The Panel Type for the graph will be set
to By Plot. The axes scaling for the X and Y axes will be
the same for each panel.

 Separate Panels with Varying Y Axes
If you are plotting more than one set of data series on a
graph, use this button to have each plot drawn in a
separate panel. The Panel Type for the graph will be set
to By Plot. The axes scaling for the X axis will be the
same for each panel, but the Y axis ranges will vary
according to the data in each panel. The Number of
Columns for the panels is set to Auto, which defaults to
1 so that the panels will appear one above the other.
22

USING THE GRAPH TOOLS PALETTE
 Separate Panels with Varying X Axes
If you are plotting more than one set of data series on a
graph, use this button to have each plot drawn in a
separate panel. The Panel Type for the graph will be set
to By Plot. The axes scaling for the Y axis will be the
same for each panel, but the X axis ranges will vary
according to the data in each panel. The Number of
Rows for the panels is set to Auto, which defaults to 1
so that the panels will appear side by side.

 Panels with Varying X and Y Axes
If you are plotting more than one set of data series on a
graph, use this button to have each plot drawn in a
separate panel. The Panel Type for the graph will be set
to By Plot. The axes scaling for the X and Y axes will
vary according to the data in each panel.
23

CHAPTER 2 NEW INTERACTIVE GRAPHICS CAPABILITIES FOR S-PLUS 4.5
HIGHLIGHTING SELECTED DATA POINTS

You can modify the way in which points are highlighted in the Interactive
page of the Graphs dialog. To open this dialog, choose Graph Options from
the Options menu. The options are:

Display Selected Points
If this box is not checked, scatter plot points will not be
highlighted. The remainder of the fields in this dialog
will not be used.

The options for specifying the selected symbols are:

Style Choose a symbol style for the selected symbols. If
None is chosen, the selected symbols will be the same
style as is specified for the plot.

Color Choose a color for the selected symbols. If Transparent
is chosen, the same symbol color will be used as is
specified for the plot.

Height Multiplier Choose a multiple for increasing the size of the symbol.
If 1.0 is specified, the selected symbols will be the same
size as is specified for the plot.

Line Weight Increment
Choose the amount to increase the line weight used in
drawing the symbol above what is specified for the plot.
If Hairline is chosen, the line weight of the selected
symbols will be the same as the plot.
24

EXCLUDING OR INCLUDING ONLY SELECTED POINTS IN YOUR PLOT
EXCLUDING OR INCLUDING ONLY SELECTED POINTS IN
YOUR PLOT

Three new menu options are available under the Format menu when a graph
sheet is in focus.

Exclude Selected Points
Selecting this menu option will remove any currently
selected points from your plots. If your plots require
calculations, such as for smoothing, the calculations will
be redone excluding the selected points. An expression
defining the currently selected rows is put into the
Subset Rows with field of the Data to Plot page of the
plot dialog. Because the plot is excluding the selected
points, the expression begins with a minus sign. Any
previous subsetting specifications will be replaced.
Further changes in data point selections will not alter
the plot.

Use Only Selected Points
Selecting this menu option will remove all points from
your plot except those that are selected. If your plots
require calculations, such as for smoothing, the
calculations will be redone with only the selected
points. An expression defining the currently selected
rows is put into the Subset Rows with field on the Data
to Plot page of the plot dialog. Any previous subsetting
specifications will be replaced. Further changes in data
point selections will not alter the plot.

Include All Points Selecting this menu options will turn off subsetting for
the plots on the graph sheet. The Subset Rows field on
the Data to Plot page of the plot dialog will be set to
“ALL”. Any previous subsetting specifications will be
replaced.
25

CHAPTER 2 NEW INTERACTIVE GRAPHICS CAPABILITIES FOR S-PLUS 4.5
COLOR SCALE LEGENDS

Usage The Color Scale Legend may be used with any of the following GUI plot
types:

• Line Plot

• Area Plot

• Bar Plot

• Contour Plot

• Surface Plot

• QQ Plot

• 3D Line Plot

• Pie Plot

• Scatter Plot Matrix

The Color Scale Legend button located on Graph toolbar activates when a
plot of an appropriate plot type is selected. Selection is implicit if the
required plot is the only plot in a GraphSheet and nothing is selected.
Otherwise the plot must be selected specifically.
26

COLOR SCALE LEGENDS

P
, use

color
Properties When you choose the Color Scale Legend button from the Graph toolbar, S-LUS

automatically creates a color scale legend. To control the color scale legend
the Scale Legend dialog, which you can access by double-clicking on the
scale legend.

Labels Page The Labels page allows the users to specify the output format and font for the
labels on the scale bar. Rotation and offset of the labels from the bar are
specified here as well. All of these options work the same as the labels for 2D
axes.
27

CHAPTER 2 NEW INTERACTIVE GRAPHICS CAPABILITIES FOR S-PLUS 4.5
Ticks Page The Ticks page allows users to specify the properties of the ticks on the scale
bar. The options work the same as with a 2D axis.
28

COLOR SCALE LEGENDS
Box Page The Box page gives control over the format of the outer border of the scale
legend as well as the scale bar.
29

CHAPTER 2 NEW INTERACTIVE GRAPHICS CAPABILITIES FOR S-PLUS 4.5
Position/Size
Page

The Position/Size page allows users to specify the position and size of the
scale legend as well as the orientation. The default is to position the legend
on the right side of the corresponding graph when using a vertical
orientation. For a horizontal orientation the default is to position the legend
across the top of the graph.

One option on the Position/Size page deserves special mention. The Hide
checkbox allows you to format and store a color scale legend without
rendering it to the screen or in print. You may, for example, be creating a
graph that will be used in different situations, in some of which you want a
legend, and in some of which you don’t.

To hide a legend

 1. Check the Hide checkbox and click OK.

To show a hidden legend

 1. Use the Object Browser to find the plot containing the hidden
legend.

 2. Click on the plot in the left pane to view the objects within the plot
30

COLOR SCALE LEGENDS
listed in the right pane.

 3. Click on Scale Legend in the right pane to bring up the Color Scale
Legend properties dialog.

 4. Click the Position/Size tab.

 5. Uncheck the Hide checkbox and click OK.
31

CHAPTER 2 NEW INTERACTIVE GRAPHICS CAPABILITIES FOR S-PLUS 4.5
Title Page The Title page allows you to specify and format a title for the legend. The
default is to not display a title.
32

Installing the S-PLUS Excel Add-In 34
Installation during S-PLUS setup 34
Manual installation 34

Removing the S-PLUS Excel Add-in 37
Using the S-PLUS Excel Add-In 38
Selecting data for S-PLUS graphs 40

New to S-PLUS 4.5 is a Microsoft Excel add-in application that makes it
easier to create and modify S-PLUS graphs from within Microsoft Excel.
This add-in includes the ability to create S-PLUS graphs from selected data,
to modify the layout of an S-PLUS graph embedded in Excel, and to modify
the properties of a plot in an embedded S-PLUS graph in Excel. A helpful
wizard guides you through the process of selecting data, choosing an S-PLUS
graph and plot type and creating the graph in Excel, much like Excel’s
ChartWizard.

S-PLUS EXCEL ADD-IN 3
33

CHAPTER 3 S-PLUS EXCEL ADD-IN
INSTALLING THE S-PLUS EXCEL ADD-IN

Installation
during S-PLUS
setup

During a typical, custom, or server installation of S-PLUS 4.5, S-PLUS setup
will examine your system for an appropriate version of Microsoft Excel. The
S-PLUS Excel Add-in requires Microsoft Excel version 7.0 or higher. Once
detected, setup will automatically enable the option to install this add-in.
You can disable installation of the add-in by choosing the custom install and
un-checking this option from the list of options. At the end of setup, you
will be prompted to install the S-PLUS Add-in. Setup will then start Excel
and load a special add-in installation program in Excel to continue with
installation. You will see a dialog asking you to confirm some paths:

You can use the browse buttons to change the paths detected. Click the
“Install” button to install the S-PLUS Add-in in Excel. When completed,
you will see a successful completion dialog. Close Excel to continue with the
rest of S-PLUS setup.

Manual
installation

If you choose not to install the S-PLUS Excel Add-in during S-PLUS setup,
you can install this option at any later time using S-PLUS setup and choosing
the custom setup mode. Then, select the S-PLUS Add-in from the list of
custom setup options.

If you installed the S-PLUS Excel Add-in on a server, you can install the add-
in on a workstation without using S-PLUS setup. Open the file called
INSTALL.XLA from the ExcelWiz subdirectory of the S-PLUS program
34

INSTALLING THE S-PLUS EXCEL ADD-IN
directory on the server system. This will start an automatic installation of the
add-in from the server to the workstation.

You can also manually install the add-in using Excel. To do this follow these
steps:

 1. Start Microsoft Excel 7.0 or higher on your workstation.

 2. Create a new worksheet if one does not already exist.

 3. From the Tools menu select “Add Ins…”

 4. From the Add Ins dialog click the browse button:

 5. For Excel 7.0, select “SPLUS95.XLA” on the server in the
“ExcelWiz” subdirectory of the S-PLUS program directory. For
Excel 8.0 or higher, select “SPLUS97.XLA”.

 6. You may be prompted to copy the S-PLUS Add-in application from
its location on your server system to the Excel library directory on
your workstation. You may choose to copy or not.

 7. A check box next to the name of the S-PLUS Add-in will now
appear in the Add Ins dialog list of add-ins. You may now click the
OK button to dismiss this dialog.
35

CHAPTER 3 S-PLUS EXCEL ADD-IN
36

REMOVING THE S-PLUS EXCEL ADD-IN
REMOVING THE S-PLUS EXCEL ADD-IN

If you installed the S-PLUS Excel Add-in during S-PLUS setup, when you
choose to remove S-PLUS, this add-in will automatically be removed from
Excel by S-PLUS setup.

If you manually installed the add-in, such as in the case of a workstation as
detailed above, you will need to manually remove this add-in from Excel.
Open the file called REMOVE.XLA from the ExcelWiz subdirectory of the
S-PLUS program directory on the server system. This will start an automatic
removal of the add-in from your workstation.

You can also remove the add-in using Excel. To do this follow these steps:

 1. Start Microsoft Excel 7.0 or higher.

 2. Create a new worksheet if one does not already exist.

 3. From the Tools menu select “Add Ins…”

 4. From the Add Ins dialog select the “S-PLUS Add-in” option in the
list of add-ins and un-check this option:

 5. The add-in will be unloaded from Excel. The add-in file may still
remain in your Excel library directory on disk. You may have to
manually delete this file.
37

CHAPTER 3 S-PLUS EXCEL ADD-IN

ing
USING THE S-PLUS EXCEL ADD-IN

When installed in Excel, whenever you have a worksheet in focus, the follow
menu and toolbar will be available:

There are several options on the toolbar and in the menu:

Table 1:

To create a new S-PLUS graph with the currently selected data in the current
worksheet:

 1. Select blocks of data in the current worksheet you want to graph with S-PLUS.

 2. Click on this button or select the “Create Graph” option from the S-PLUS
menu.

 3. Follow the wizard to create the graph.
38

USING THE S-PLUS EXCEL ADD-IN
To modify the layout properties of the currently selected S-PLUS graph:

 1. Select an S-PLUS graph in your worksheet by clicking once on it. (If you
double-click on an S-PLUS graph you will activate it and start editing in place)

 2. Click on this button or select the “Modify Graph Layout” option in the S-
PLUS menu.

 3. An S-PLUS graph sheet layout dialog will appear in Excel allowing you to
modify any of the layout properties of this graph.

To modify the properties of a plot in the currently selected S-PLUS graph:

 1. Select an S-PLUS graph in your worksheet by clicking once on it.

 2. Click on this button or select the “Modify Plots” option in the S-PLUS menu.

 3. A dialog will appear showing you a list of the graph areas in this graph (you can
have multiple graph areas in a graph, i.e. one graph area might be 2D and
another might be 3D in the same graph) and for each graph area, a list showing
all the plots in this graph area.

 4. Select the graph area and the plot in this area you want to edit. Click next.

 5. An S-PLUS plot properties dialog will appear in Excel allowing you to modify
properties of this plot.

Table 1:
39

CHAPTER 3 S-PLUS EXCEL ADD-IN

and
 For
 had
SELECTING DATA FOR S-PLUS GRAPHS

Before you can create a graph, you must first select data in your current
worksheet. You must select a block of data that is greater than one cell in
width or length before you can continue with the Create Graph wizard. S-
PLUS plots accept data in a variety of formats. Some S-PLUS plots require at
least three columns of data and the data are interpreted as X, Y, and Z data
values. Other plots require at least four columns of data and interpret the
data selected as X, Y, Z, and W data values. The list of plot types in the last
page of the Create Graph wizard indicates what kind of data specification is
required. If no X, Y, Z, or W specification is shown for a plot type in the list,
that means it accepts X single or multiple columns or X and Y data with
single or multiple columns. For an explanation of the data specifications for
various S-PLUS plot types, please see the S-PLUS User’s Guide, Chapter 8
Creating a Graph, Preparing Data for Graphing.

The S-PLUS Excel Add-in fully supports multiple column and row selections
discontiguous block selections in Excel to specify data for an S-PLUS graph.
example, if you wanted to create two line plots in an S-PLUS graph and you
the following data in Excel:

you could select the data:

Warning

You should typically not select an entire column in Excel as part of a data spec for an S-PLUS graph,
because Excel will send all rows of this column to S-PLUS for graphing, whether the rows are empty or not.
This may cause errors in S-PLUS or a failure to create the graph.
40

SELECTING DATA FOR S-PLUS GRAPHS

ata,
 first
 with

ction:

held
 the

 data
 first
ple,
The Create Graph wizard will treat the A column in this selection as the X d
and the B and C columns as the Y data. This will create two line plots, the
one with X data as the A column and Y data as the B column, next second plot
X data as the A column and Y data as the C column.
You could also have selected the same data using discontiguous column sele

In this case rows 1 to 6 in column A were first selected, the control key was
down, then the block from B1 to C6 was selected. This selection will produce
same graph with two plots as the above example.

If a plot expects only one column of data for a given dimension, such as the X
for a line plot, and more than one column is included in the selection, only the
column in the selection will be sent to S-PLUS to make the graph. For exam
using the above data, you select the blocks A1:B6 and C1:D6:
41

CHAPTER 3 S-PLUS EXCEL ADD-IN

ta to

error
ight
 an-
raph
The Create Graph wizard will send A1:A6 as the X data, C1:D6 as the Y da
create two line plots.

Selecting data for conditioning S-PLUS graphs

When you are using the Create Graph wizard, in step 2 you can specify an
Excel worksheet and data range to use for conditioning the graph you are
creating. A conditioned graph allows you to view your data in a series of
panels, where each panel contains a subset of the original data. The subset in
each panel is determined by the levels of the conditioning data range you
select. You can skip conditioning by leaving the “Conditioning range” edit
field in this dialog blank.

When specifying a data range for conditioning, you may specify any valid
data range in normal Excel range syntax. For example, say you specified the
data range A1:B6 from the Sheet1 worksheet for the data to plot in a S-PLUS
graph. You could also specify the data range C1:C6 from Sheet1 for the
conditioning data. If a 2D line plot is created, the plot will be conditioned
on the data in C1:C6.

Handling errors during graph creation

If S-PLUS encounters problems during the creation of a graph in Excel, any
messages will appear in a modeless dialog box in Excel. If errors occur, it m
mean that invalid data was specified for the plot created. It might also indicate
other problem related to the range or data type of the data specified. The g
may not be created if errors occur. Please see the S-PLUS User’s Guide for expla-
nations of error messages.
42

Installing the S-PLUS SPSS Add-In 44
Installation during S-PLUS setup 44
Manual installation 44

Removing the S-PLUS SPSS Add-in 45
Using the S-PLUS SPSS Add-In 46

Selecting data for S-PLUS graphs 47
Selecting data for conditioning S-PLUS graphs 49
Handling errors during graph creation 50

New to S-PLUS 4.5 is an add-in application that works with SPSS to make it
easier to create and modify S-PLUS graphs from within SPSS. This add-in
includes the ability to create S-PLUS graphs from selected variables in the
SPSS data editor, to modify the layout of an S-PLUS graph embedded in a
SPSS output document, and to modify the properties of a plot in an
embedded S-PLUS graph in SPSS. A helpful wizard guides you through the
process of selecting variables, choosing an S-PLUS graph and plot type and
creating the graph in SPSS.

S-PLUS SPSS ADD-IN 4
43

CHAPTER 4 S-PLUS SPSS ADD-IN
INSTALLING THE S-PLUS SPSS ADD-IN

Installation
during S-PLUS
setup

During typical, custom, or server installation of S-PLUS 4.5, S-PLUS setup
will examine your system for an appropriate version of SPSS. The S-PLUS
SPSS Add-in requires SPSS version 8.0 or higher. Once detected, setup will
automatically enable the option to install this add-in. You can disable
installation of the add-in by choosing the custom install and un-checking this
option from the list of options. At the end of setup, you will be prompted to
install the S-PLUS Add-in. Setup will then start a special installation
program for this add-in. Just follow the steps in the installation program.
When completed, you will see a successful completion dialog.

Manual
installation

If you choose not to install the S-PLUS SPSS Add-in during S-PLUS setup,
you can install this option at any later time using S-PLUS setup and choosing
the custom setup mode. Then, select the S-PLUS Add-in for SPSS from the
list of custom setup options.

If you installed the S-PLUS SPSS Add-in on a server, you can install the add-
in on a workstation without using S-PLUS setup. Run the file called
“Setup.exe” from the “SPSSWiz” subdirectory of the S-PLUS program
directory on the server system and follow the steps to install the add-in.
44

REMOVING THE S-PLUS SPSS ADD-IN
REMOVING THE S-PLUS SPSS ADD-IN

If you installed the S-PLUS SPSS Add-in during S-PLUS setup, when you
choose to remove S-PLUS, this add-in will automatically be removed from
SPSS by S-PLUS setup.

If you manually installed the add-in, such as in the case of a workstation as
detailed above, you will need to manually remove this add-in from SPSS.
Run the file called “Setup.exe” from the “SPSSWiz” subdirectory of the S-
PLUS program directory on the server system and follow the steps to remove
the add-in.
45

CHAPTER 4 S-PLUS SPSS ADD-IN
USING THE S-PLUS SPSS ADD-IN

When installed in SPSS, whenever you have the data editor open, the
following menu and toolbar will be available:

The same menu and toolbar are also available whenever you have an output
document open. S-PLUS graphs created with this add-in are placed in an
output document. You have a choice to create a new output document or to
use an existing one.

There are several options on the toolbar and in the menu:

CCCCrrrreeeeaaaatttte e e e a a a a nnnneeeew w w w SSSS----PPPPLLLLUUUUS S S S ggggrrrraaaapppph h h h wwwwiiiitttth h h h tttthhhhe e e e ccccuuuurrrrrrrreeeennnnttttlllly y y y sssseeeelllleeeecccctttteeeed d d d vvvvaaaarrrriiiiaaaabbbblllleeees s s s iiiin n n n tttthhhhe e e e ddddaaaatttta a a a eeeeddddiiiittttoooorrrr....

To use this option follow these steps:

 1. Select variables in the data editor you want to graph with S-PLUS.

 2. Click on this button or select the “Create Graph” option from the S-PLUS
menu.

 3. Follow the wizard to create the graph.
46

USING THE S-PLUS SPSS ADD-IN
Selecting data
for S-PLUS
graphs

Before you can create a graph, you must first select data in the data editor.
You can select variables in the SPSS data editor by clicking on the column
header where the variable name appears for each variable you want to include
in the graph. S-PLUS plots accept data in a variety of formats. Some S-
PLUS plots require at least three columns of data and the data are interpreted
as X, Y, and Z data values. Other plots require at least four columns of data
and interpret the data selected as X, Y, Z, and W data values. For an
explanation of the data specifications for various S-PLUS plot types, please
see the S-PLUS User’s Guide, Chapter 8 Creating a Graph, Preparing Data for
Graphing.

For example, if you wanted to create two line plots in an S-PLUS graph and
you had the following variables in SPSS:

MMMMooooddddiiiiffffy y y y tttthhhhe e e e llllaaaayyyyoooouuuut t t t pppprrrrooooppppeeeerrrrttttiiiieeees s s s oooof f f f tttthhhhe e e e ccccuuuurrrrrrrreeeennnnttttlllly y y y sssseeeelllleeeecccctttteeeed d d d SSSS----PPPPLLLLUUUUS S S S ggggrrrraaaapppphhhh....

To use this option follow these steps:

 1. Select an S-PLUS graph in an output document by clicking once on it. (If you
double-click on an S-PLUS graph, you will activate it and start editing in
place.)

 2. Click on this button or select the “Modify Graph Layout” option in the S-
PLUS menu.

 3. An S-PLUS graph sheet layout dialog will appear in SPSS allowing you to
modify any of the layout properties of this graph.

MMMMooooddddiiiiffffy y y y tttthhhhe e e e pppprrrrooooppppeeeerrrrttttiiiieeees s s s oooof f f f a a a a pppplllloooot t t t iiiin n n n tttthhhhe e e e ccccuuuurrrrrrrreeeennnnttttlllly y y y sssseeeelllleeeecccctttteeeed d d d SSSS----PPPPLLLLUUUUS S S S ggggrrrraaaapppphhhh....

To use this option follow these steps:

 1. Select an S-PLUS graph in an output document by clicking once on it.

 2. Click on this button or select the “Modify Plots” option in the S-PLUS menu.

 3. A dialog will appear showing you a list of the graph areas in this graph (you can
have multiple graph areas in a graph, i.e., one graph area might be 2D and
another might be 3D in the same graph) and for each graph area, a list showing
all the plots in this graph area.

 4. Select the graph area and the plot in this area you want to edit. Click next.

 5. An S-PLUS plot properties dialog will appear in SPSS allowing you to modify
properties of this plot.
47

CHAPTER 4 S-PLUS SPSS ADD-IN
you could select the variables ‘xdata’, ‘ydata1’, and ‘ydata2’ for graphing:

The Create Graph wizard will treat the ‘xdata’ variable in this selection as the
X data and the ‘ydata1’ and ‘ydata2’ variables as the Y data. This will create
two line plots, the first one with X data as the ‘xdata’ variable and Y data as
the ‘ydata1’, the second plot with X data as the ‘xdata’ variable and Y data as
the ‘ydata2’ variable.

Steps 1 and 2 of the Create Graph wizard allow you to add to, remove from,
48

USING THE S-PLUS SPSS ADD-IN
and re-order the list of selected variables to use to create an S-PLUS graph:

The list called ‘Variables’ on the right is the list of all available variables in the
data editor. The list called ‘Selected variables’ is a list of variables from the
available variables you’ve choosen to include in the S-PLUS graph. When a
variable name is selected in either list, you can use the Move buttons to move
it between the lists. When a variable name is selected in the ‘Selected
variables’ list, you can use the Up and Dn buttons to change the order of the
variables. The order of the selected variables is important because the order
will determine how S-PLUS graphs the data. A similar dialog allows you to
select variables for conditioning the graph you create.

Selecting data
for
conditioning
S-PLUS graphs

When you are using the Create Graph wizard, in step 2 you can specify
variables to use for conditioning the graph you are creating:
49

CHAPTER 4 S-PLUS SPSS ADD-IN
A conditioned graph allows you to view your data in a series of panels, where
each panel contains a subset of the original data. The subset in each panel is
determined by the levels of the conditioning data range you select. You can
skip conditioning by leaving the ‘Selected variables’ list in this dialog empty.

Handling
errors during
graph creation

If S-PLUS encounters problems during the creation of a graph in SPSS, any
error messages will appear in a modeless dialog box in SPSS. If errors occur,
it might mean that invalid data were specified for the plot created. It might
also indicate another problem related to the range or data type of the data
specified. The graph may not be created if errors occur. Please see the S-
PLUS User’s Guide for explanations of error messages.
50

New Input/Output Features 52
Loading Libraries 53
Loading Modules 54

S-PLUS Version 4.5 includes several small improvements to make file
operations smoother and easier. These include improved support for
spreadsheet and database import, and menu options for loading modules and
libraries.

FILE IMPROVEMENTS 5
51

CHAPTER 5 FILE IMPROVEMENTS
NEW INPUT/OUTPUT FEATURES

Importing data using the Import Data dialog has been enhanced for
S-PLUS 4.5 by the following new features:

• A separate entry for Foxpro files has been added to the Files of type
field. Some users experienced difficulty using the Dbase/Foxpro
option on S-PLUS 4.0.

• A Page field has been added to the Options page for file types that
support paged data (e.g., Excel). This allows you to specify from
which page of a multi-page spreadsheet you wish to read. Previously,
S-PLUS always read from the first page.

• A Name Col field has been added to the Options page. This field
allows you to designate one column of the imported data to be used
as rownames in the same way that the Name Row field allows you to
designate a row for use as column names.

• An Import Text as Factors field has been added to the Options page.
By default, text columns shorter than 250 rows are read as factors;
longer columns are read as character data. If you set this field to
“Never”, all text columns are imported as character data. If you set
this field to “Always”, all text columns are imported as factor data.

Editing data in the Data Window has been speeded up by the use of a special
buffer; changes in the Data Window are not transmitted to the S-PLUS

engine immediately, but rather are recorded in the buffer and transmitted to
the engine in chunks of approximately 50 edits. An option in the Options
menu’s General Settings dialog, Buffer Data Entry, controls whether this
special buffer is used. If you turn off Buffer Data Entry, editing commands
are transmitted immediately as in S-PLUS 4.0.
52

LOADING LIBRARIES
LOADING LIBRARIES

S-PLUS includes a number of function libraries that extend basic functionality
or provide instructive examples of S-PLUS programming. Some of these
libraries, such as the cluster library and the GUI library, are loaded (or
attached) automatically when you start S-PLUS. You can attach other libraries
as needed using the Load Library dialog.

To load an S-PLUS library

 1. From the File menu, select Load Library. The Load Library dialog
appears as shown below:

 2. From the Library Name scrolled list, select the library you want to
load.

 3. If you want the library functions to appear before other system files
in the search list, select the checkbox labeled “Attach at top of search
list.”

 4. Select the Load Library radio button.

 5. Click OK.

To view a brief description of a library’s contents

 1. From the File menu, select Load Library. The Load Library dialog
appears.

 2. From the Library Name scrolled list, select the library you want to
load.

 3. Select the Show Description radio button.

 4. Click OK. Notepad will appear with the library’s description.
53

CHAPTER 5 FILE IMPROVEMENTS
LOADING MODULES

MathSoft offers a number of add-on modules for S-PLUS that provide
comprehensive solutions in specific subject areas. Currently, the following
modules are available:

• S+SPATIALSTATS for the exploration and modeling of spatially
correlated data.

• S+WAVELETS for wavelet analysis of signals, time series, images, and
other data.

• S+GARCH for modeling financial and econometric data.

• S+DOX for design and analysis of experiments.

To load an S-PLUS module

 1. From the File menu, select Load Module. The Load Module dialog
appears as shown below:

 2. From the Module scrolled list, select the module you want to load.

 3. If you want the module functions to appear before other system files
in the search list, select the checkbox labeled “Attach at top of search
list.” For modules, this is the recommended (and default) behavior
because some modules redefine system functions to ensure correct
behavior.

 4. Select the Load Module radio button.

 5. Click OK.
54

LOADING MODULES
To view a brief description of a module ’s contents

 1. From the File menu, select Load Module. The Load Module dialog
appears.

 2. From the Module scrolled list, select the module you want to load.

 3. Select the Show Description radio button.

 4. Click OK. Notepad will appear with the module’s description.
55

CHAPTER 5 FILE IMPROVEMENTS
56

Select Data 58
Factorial Design 60
Orthogonal Array Design 62
Recode 64
Split Data By Group 65
Stack Columns 67
Subset 69
Transform 71
Transpose 73
Set Dimensions 74

MANIPULATING DATA 6
57

CHAPTER 6 MANIPULATING DATA
SELECT DATA

This dialog provides a convenient mechanism for selecting data for use in
analyses.

To select data:

Choose DDDDaaaattttaaaa::::SSSSeeeelllleeeecccct t t t DDDDaaaattttaaaa from the main menu. The dialog shown below
appears.

Source Select “Existing Data” to view an existing data frame in a Data Window.
Select “New Data” to create a new data frame and display it in a Data
Window. Select “Import File” to launch the Import Data dialog.

Existing Data Name

Specify the name of the existing data frame to display. Note that the drop-
down list will contain all user-created data sets which are in the S-PLUS
working database. Built-in example data such as ffffuuuueeeellll....ffffrrrraaaammmmeeee and
eeeennnnvvvviiiirrrroooonnnnmmmmeeeennnnttttaaaallll do not appear in the list, but may be specified by typing in the
name.

New Data New Name

Name for new data frame. If the name of an existing data frame is specified,
the existing data frame will be displayed.

Figure 6.1: The Select Data dialog.
58

SELECT DATA
Show Dialog on Startup

Check box indicating whether to display this dialog whenever S-PLUS is
started. This option may also be specified on the SSSSttttaaaarrrrttttuuuupppp page of the GGGGeeeennnneeeerrrraaaallll
SSSSeeeettttttttiiiinnnnggggssss options dialog. You can also use the SSSSttttaaaarrrrttttuuuupppp page to specify whether
you want an Object Browser and/or Commands window to display on
startup.
59

CHAPTER 6 MANIPULATING DATA
FACTORIAL DESIGN

This dialog creates a factorial or fractional factorial design.

To create a factorial design:

Choose DDDDaaaattttaaaa::::DDDDeeeessssiiiiggggnnnn::::FFFFaaaaccccttttoooorrrriiiiaaaallll from the main menu. The dialog shown
below appears.

Design Structure Levels

Enter a vector of the number of levels for the factors in the design. For
example, to generate a design with three levels of one variable and two levels
of another, specify c(3,2).

Number of Replications

Specify the number of times the complete design should be replicated.

Fraction

Optionally, specify the definition for the fraction desired in a fractional

Figure 6.2: The Factorial Design dialog.
60

FACTORIAL DESIGN
factorial design. This may either be a numerical fraction (e.g, 1/4 for a
quarter replicate), or a model formula giving one or more defining contrasts
(e.g., A:B:D + B:C:E). Fractional factorials are provided only for 2-level
factors. By default, a full factorial design is created.

Names Factor Names

Optionally, specify names for the factors. This may be a vector of character
strings which are the names of the factors. It may also be a list, in which case
the names attribute of the list is the names of the factors, and the
components of the list (which need not be of mode character) label the levels
of the corresponding factor. If factor names are not given, they default to A,
B, etc. If levels are not given, they default to the factor name (possibly
abbreviated) followed by level numbers.

Row Names

Optionally, specify names to use for the rows of the design. The default is
1:nrows, where nrows is the number of observations in the design.

Randomization Randomize Row Order

Check here to randomize the order of the rows in the design.

Restricted Factors

Optionally, specify a vector (either numeric or character) naming some
factors (columns) in the design which shouldn't be scrambled.

Results Save As

Enter the name for the object in which to save the results of the analysis. If an
object with this name already exists, its contents will be overwritten.

Show in Data Window

Check this box to display the new design in a Data Window.

Related programming language functions:

fac.design, randomize
61

CHAPTER 6 MANIPULATING DATA
ORTHOGONAL ARRAY DESIGN

This dialog generates an orthogonal array design.

To generate an orthogonal array design:

Choose DDDDaaaattttaaaa::::DDDDeeeessssiiiiggggnnnn::::OOOOrrrrtttthhhhooooggggoooonnnnaaaal l l l AAAArrrrrrrraaaay y y y from the main menu. The dialog
shown below appears.

Design Structure Levels

Enter a vector of the number of levels for the factors in the design. For
example, to generate a design with three levels of one variable and two levels
of another specify c(3,2).

Minimal Residual DF

Optionally, specify the minimum residual degrees of freedom requested for a
main-effects-only model. The default value is 0, unless the number of levels
in the factors are all equal in which case the default is 3.

Randomization Randomize Row Order

Check here to randomize the order of the rows in the design.

Figure 6.3: The Orthogonal Array Design dialog.
62

ORTHOGONAL ARRAY DESIGN
Restricted Factors

Optionally, specify a vector (either numeric or character) naming some
factors (columns) in the design which shouldn't be scrambled.

Results Save As

Enter the name for the object in which to save the results of the analysis. If an
object with this name already exists, its contents will be overwritten.

Show in Data Window

Check this box to display the new design in a Data Window.

Related programming language functions:

oa.design, randomize
63

CHAPTER 6 MANIPULATING DATA
RECODE

This dialog recodes all occurrences of a specific value in specified columns to
a specified new value.

To recode a value:

Choose DDDDaaaattttaaaa::::RRRReeeeccccooooddddeeee from the main menu. The dialog shown below
appears.

Data Data Frame

Select or enter the name of the data frame containing the columns to be
recoded.

Columns

Select the columns to recode.

Values Current Value

Value to be changed. If the column being recoded is a factor, then this will be
coerced to a character string.

New Value

New value used to replace all occurrences of the CCCCuuuurrrrrrrreeeennnnt t t t VVVVaaaalllluuuueeee in the
specified columns.

Figure 6.4: The Recode dialog.
64

SPLIT DATA BY GROUP
SPLIT DATA BY GROUP

This dialog splits a data frame into multiple new data frames based on the
values of a splitting variable.

To split a data frame:

Choose DDDDaaaattttaaaa::::SSSSpppplllliiiitttt from the main menu. The dialog shown below appears.

Data Data Frame

Specify the data frame to split into separate data frames.

Columns to Split

Specify the columns to include in the new data frames. By default, all
columns are included.

Splitting Variable Group Column

Specify the column to use as the splitting column. If this column is a factor, a

Figure 6.5: The Split Data by Group dialog.
65

CHAPTER 6 MANIPULATING DATA
new data frame will be created for each level of the factor. If this column is
numeric, the number of new data frames is determined by “Maximum
Unique Numeric Values” and “Number of Bins for Numeric Values”.

Maximum Unique Numeric Values

If the GGGGrrrroooouuuup p p p CCCCoooolllluuuummmmnnnn is numeric with at most MMMMaaaaxxxxiiiimmmmuuuum m m m UUUUnnnniiiiqqqquuuueeee
NNNNuuuummmmeeeerrrriiiic c c c VVVVaaaalllluuuueeeessss unique values, then a new data frame will be created for
each unique value of the column. If there are more than MMMMaaaaxxxxiiiimmmmuuuum m m m UUUUnnnniiiiqqqquuuueeee
NNNNuuuummmmeeeerrrriiiic c c c VVVVaaaalllluuuueeees s s s unique values, then the data will be split into NNNNuuuummmmbbbbeeeer r r r ooooffff
BBBBiiiinnnns s s s ffffoooor r r r NNNNuuuummmmeeeerrrriiiic c c c VVVVaaaalllluuuueeeessss new data frames by classifying the grouping
variable into the specified number of bins of equal width.

Number of Bins for Numeric Values

Number of new data frames to create when the GGGGrrrroooouuuup p p p CCCCoooolllluuuummmmnnnn is numeric
and contains more than MMMMaaaaxxxxiiiimmmmuuuum m m m UUUUnnnniiiiqqqquuuue e e e NNNNuuuummmmeeeerrrriiiic c c c VVVVaaaalllluuuueeeessss unique values.

Results Result Type

Select “List” to return a list containing the new data frames as components.
Select “Separate D.F.’s” to return separate data frames. When “Separate
D.F.’s” is selected, a warning message will be issued giving the names of the
new data frames.

Save As

Specify the name for the results. If the RRRReeeessssuuuullllt t t t TTTTyyyyppppeeee is specified to be “List”,
this is the name of the list. If the RRRReeeessssuuuullllt t t t TTTTyyyyppppeeee is “Separate D.F.’s”, names are
constructed for the new data frames by concatenating this name with the
name of the appropriate level in the grouping variable.

Show in Data Window

Check this box to display the new data frames in Data Windows. This is only
available when the RRRReeeessssuuuullllt t t t TTTTyyyyppppeeee is “Separate D.F.’s”

Related programming language functions:

split
66

STACK COLUMNS
STACK COLUMNS

This dialog stacks separate columns of a data frame into a single column,
with the values of other columns replicated appropriately.

To stack data frame columns:

Choose DDDDaaaattttaaaa::::SSSSttttaaaacccckkkk from the main menu. The dialog shown below appears.

Data Data Frame

Specify the data frame.

Columns to Stack

Specify the column giving the variables to be stacked. A new column will be
created by stacking the selected columns.

Columns to Replicate

Specify the columns to include in the new data frames. By default, no
columns are replicated.

Figure 6.6: The Stack Columns dialog.
67

CHAPTER 6 MANIPULATING DATA
Create Group Column

Check this to add a factor column giving group membership for each stacked
value. The column names of the stacked columns are used as the factor levels.

Names Stack Column Name

Specify the name for the new column containing the stacked data.

Group Column Name

Specify the name for the group membership column. This is only relevant if
CCCCrrrreeeeaaaatttte e e e GGGGrrrroooouuuup p p p CCCCoooolllluuuummmmn n n n is checked.

Results Save As

Enter the name for the data frame to contain the stacked data.

Show in Data Window

Check this box to display the new data frame in a Data Window.
68

SUBSET
SUBSET

This dialog creates a subset of a data frame based on a subsetting expression.
The subset may be indicated by a logical column or a new data frame
containing the subset of the data may be created.

To subset a data frame:

Choose DDDDaaaattttaaaa::::SSSSuuuubbbbsssseeeetttt from the main menu. The dialog shown below
appears.

Data Data Frame

Specify the data frame.

Subset Rows with

Enter an S-PLUS expression that identifies the rows to include in the subset.
The expression must evaluate to a vector of logical values (TRUE values are
used, FALSE values are dropped) or a vector of indices identifying the
numbers of the rows to use.

Figure 6.7: The Subset dialog.
69

CHAPTER 6 MANIPULATING DATA
Columns in Subset

Select the columns to be included in the new data frame. By default, all
columns are included.

Results Result Type

Select “Data Frame” to return a new data frame containing only the specified
subset of rows. Select “Add Column” to return all rows with a new logical
column indicating subset membership.

Save As

Enter the name for the new data frame. If an object with this name already
exists, its contents will be overwritten.

Column Name

Specify the name for the new column indicating subset membership. This is
only relevant if RRRReeeessssuuuullllt t t t TTTTyyyyppppeeee is “Add Column”.

Show in Data Window

Check this box to display the new data frame in a Data Window.
70

TRANSFORM
TRANSFORM

This dialog creates a new variable based on a transformation of other
variables.

To transform variables:

Choose DDDDaaaattttaaaa::::TTTTrrrraaaannnnssssffffoooorrrrmmmm from the main menu. The dialog shown below
appears.

Data Data Frame

Specify the data frame.

New Column Name

Specify a name for the new column containing the transformed data.

Expression

Specify an expression describing the transform. This expression may refer to
other columns in the data frame. The expression may be typed in or built
using the AAAAddddd d d d tttto o o o EEEExxxxpppprrrreeeessssssssiiiioooonnnn controls.

Figure 6.8: The Transform dialog.
71

CHAPTER 6 MANIPULATING DATA
Add to
Expression

Variable

Select a variable to use in the expression.

Function

Select a function to apply to the specified VVVVaaaarrrriiiiaaaabbbblllleeee in the expression.
Generally this will be a function that takes a single vector as input and
returns a vector or scalar. If the result is a scalar, the value will be replicated to
match the length of the result vector, as is standard in S-PLUS. If the
function takes more than one argument, the other arguments will be written
in the expression with their default values. These values may be edited in the
EEEExxxxpppprrrreeeessssssssiiiioooonnnn field.

Operator

Select the operator to use when placing the new term in the expression.

Add

Press this to append the new term to the expression.
72

TRANSPOSE
TRANSPOSE

This dialog transposes a data frame.

To transpose a data frame:

Choose DDDDaaaattttaaaa::::TTTTrrrraaaannnnssssppppoooosssseeee from the main menu. The dialog shown below
appears.

Data Data Frame

Specify the data frame to transpose. Generally this will be a completely
numeric data frame. Transposing a data frame containing factors will produce
a data frame in which all columns are factors, with each unique value in each
new column being a factor level.

Results Save As

Enter the name for the new data frame. If an object with this name already
exists, its contents will be overwritten.

Show in Data Window

Check this box to display the new data frame in a Data Window.

Related programming language functions:

t

Figure 6.9: The Transpose dialog.
73

CHAPTER 6 MANIPULATING DATA
SET DIMENSIONS

This dialog sets the number of rows or columns in a data frame, matrix, or
vector. Empty cells will be filled with missing values (NA’s). Specifying the
extent of the data object before entering data will speed data entry in a Data
Window.

To set the dimensions of a data object:

Choose DDDDaaaattttaaaa::::SSSSeeeet t t t DDDDiiiimmmmeeeennnnssssiiiioooonnnnssss from the main menu. The dialog shown
below appears.

Data Data Frame

Specify the data frame. The dimensions of this data frame will be extended to
the specified extents.

Dimensions Rows

Specify the desired number of rows. If this value is less than the current
number of rows in the data frame, it will be ignored.

Columns

Specify the desired number of columns. If this value is less than the current
number of columns in the data frame, it will be ignored.

Related programming language functions:

dim

Figure 6.10: The Set Dimensions dialog.
74

SET DIMENSIONS
Bootstrap Inference 76
Model Page 76
Options Page 78
Results Page 79
Plot Page 80
Jackknife-After-Bootstrap (Jack After Boot) Page 81

Jackknife Inference 83
Model Page 83
Options Page 84
Results Page 85
Plot Page 86

RESAMPLING METHODS 7
75

CHAPTER 7 RESAMPLING METHODS
BOOTSTRAP INFERENCE

This dialog performs bootstrap inference for a specified statistic and data
frame. See chapter 30 in the Guide to Statistics for details.

To perform bootstrap inference:

Choose SSSSttttaaaattttiiiissssttttiiiiccccssss::::RRRReeeessssaaaammmmpppplllleeee::::BBBBoooooooottttssssttttrrrraaaapppp from the main menu. The dialog
shown below will appear.

Model Page

Data Data Frame

Specify the data to bootstrap. This may be a vector, matrix, or data frame.

Figure 7.1: The Bootstrap Inference dialog, Model page.
76

BOOTSTRAP INFERENCE
Statistic to
Estimate

Expression

Specify the expression describing the statistic to be bootstrapped. It may be a
function that accepts data as the first argument and returns a vector or
matrix, or a call referring to the data that evaluates to a vector or matrix.

For example, to bootstrap the regression coefficients for regressing Mileage
on Weight in the fuel.frame data, use the expression
coef(lm(Mileage~Weight, fuel.frame)) and specify
fuel.frame as the DDDDaaaatttta a a a FFFFrrrraaaammmmeeee. To bootstrap the mean of Mileage, use
the expression mean(Mileage).

Save Model
Object

Save As

Enter the name for the object in which to save the results of the analysis. If an
object with this name already exists, its contents will be overwritten.

Save Resampling Indices

Check this to save the matrix of resampling indices describing which
observations appear in each resample.

Figure 7.2: The Bootstrap Inference dialog, Options page.
77

CHAPTER 7 RESAMPLING METHODS
Options Page

Resampling
Options

Number of Resamples

Specify the number of replicates to draw. The default is 1000 replicates as this
is a minimal number recommended for estimating percentiles.

Grouping Variable

Specify a grouping variable to use when resampling observations. If this is
specified, sampling will be done within each group so that subgroup
proportions in the resamples match those of the original sample. This
provides inference condition upon subgroup size.

Random Number Seed

Specify an integer between 0 and 1000 to set the random number seed to a
desired value. Specifying the seed allows a way to obtain identical results from
multiple bootstrap runs.

Block Size

Specify the block size to use when calling the sampling function. See the
language help for bootstrap for details.

Print Iteration Numbers

Check this to display iteration progress by printing iteration number ranges.
Due to the timing of output display, this is not as useful from the dialog as
from the command line function call.

Assign Resampled Data to Frame 1

Check this to assign the resampled data to frame 1 as each sample is
generated. See the language help for bootstrap for details.
78

BOOTSTRAP INFERENCE
.

Results Page

Printed Results Summary Statistics

Check this to print basic summaries such as the bootstrap estimates of bias,
mean, and standard error.

Empirical Percentiles

Check this to print empirical percentiles for the statistic under consideration.

BCa Percentiles

Check this to print BCa percentiles for the statistic under consideration.
Note that BCa percentiles are generally more accurate than empirical
percentiles.

Figure 7.3: The Bootstrap Inference dialog, Results page.
79

CHAPTER 7 RESAMPLING METHODS
Correlation Matrix of Estimates

Check this to print the correlation matrix for the estimates. Note that this is
only relevant if the statistic under consideration is a vector, such as a vector of
regression coefficients.

Percentile
Options

Percentile Levels

Specify a vector of percentile levels at which to evaluate the empirical or BCa
percentiles..

Plot Page

Plots Distribution of Replicates

Check this to plot the distribution of the replicates for each statistic of
interest.

Figure 7.4: The Bootstrap Inference dialog, Plot page.
80

BOOTSTRAP INFERENCE
Normal Quantile-Quantile

Check this to plot a Normal quantile-quantile plot for each statistic of
interest.

Jackknife-
After-
Bootstrap
(Jack After
Boot) Page

Jackknife-after-bootstrap is a technique applied to the results of a bootstrap
analysis which is used to get estimates of variability and influence for some
functional of the distribution of bootstrap replicates. It is useful for
determining which observations most influence the bootstrap results, and for
getting estimates of standard error for bootstrap statistics.

Jackknife After
Bootstrap

Functional

Specify the functional to apply to the distribution of replicates. This may be
“Mean”, “Bias”, “SE”, or the name of a function such as max.

Figure 7.5: The Bootstrap Inference dialog, Jack After Boot page.
81

Results Print Results

Check this to print the jackknife-after-bootstrap summaries.

Save In

Enter the name for the object in which to save the jackknife-after-bootstrap
results. If an object with this name already exists, its contents will be
overwritten.

Plots Influence Plot

Check this to plot a jackknife-after-bootstrap influence plot indicating the
degree of influence of each observation on the bootstrap results.

Related programming language functions:

bootstrap, jack.after.bootstrap
82

JACKKNIFE INFERENCE

This dialog performs jackknife inference for a specified statistic and data
frame. See chapter 30 in the Guide to Statistics for details.

To perform jackknife inference:

Choose SSSSttttaaaattttiiiissssttttiiiiccccssss::::RRRReeeessssaaaammmmpppplllleeee::::JJJJaaaacccckkkkkkkknnnniiiiffffeeee from the main menu. The dialog
shown below appears.

Model Page

Data Data Frame

Specify the data to jackknife. This may be a vector, matrix, or data frame.

Statistic to
Estimate

Expression

Specify the expression describing the statistic to be jackknifed. It may be a
function that accepts data as the first argument and returns a vector or
matrix, or a call referring to the data that evaluates to a vector or matrix.

For example, to jackknife the regression coefficients for regressing Mileage

Figure 7.6: The Jackknife Inference dialog, Model page.
83

CHAPTER 7 RESAMPLING METHODS
on Weight in the fuel.frame data, use the expression
coef(lm(Mileage~Weight, fuel.frame)) and specify
fuel.frame as the DDDDaaaatttta a a a FFFFrrrraaaammmmeeee. To jackknife the mean of Mileage, use
the expression mean(Mileage).

Save Model
Object

Save As

Enter the name for the object in which to save the results of the analysis. If an
object with this name already exists, its contents will be overwritten.

Options Page

Resampling
Options

Assign Resampled Data to Frame 1

Check this to assign the resampled data to frame 1 as each sample is
generated. See the language help for jackknife for details.

Figure 7.7: The Jackknife Inference dialog, Options page.
84

JACKKNIFE INFERENCE
Results Page

Printed Results Summary Statistics

Check this to print basic summaries such as the jackknife estimates of bias,
mean, and standard error.

Empirical Percentiles

Check this to print empirical percentiles for the statistic under consideration.

Correlation Matrix of Estimates

Check this to print the correlation matrix for the estimates. Note that this is
only relevant if the statistic under consideration is a vector, such as a vector of
regression coefficients.

Percentile
Options

Percentile Levels

Specify a vector of percentile levels at which to evaluate the empirical
percentiles.

Figure 7.8: The Jackknife Inference dialog, Results page.
85

CHAPTER 7 RESAMPLING METHODS
Plot Page

Plots Distribution of Replicates

Check this to plot the distribution of the replicates for each statistic of
interest.

Normal Quantile-Quantile

Check this to plot a Normal quantile-quantile plot for each statistic of
interest.

Related programming language functions:

jackknife

Figure 7.9: The Jackknife Inference dialog, Plot page.
86

JACKKNIFE INFERENCE
K-Means Clustering 88
Model Page 88
Results Page 89

Partitioning Around Medoids 90
Model Page 90
Results Page 92
Plot Page 93

Fuzzy Partitioning 94
Model Page 94
Results Page 96
Plot Page 97

Agglomerative Hierarchical Clustering 98
Model Page 98
Results Page 100
Plot Page 101

Divisive Hierarchical Clustering 102
Model Page 102
Results Page 104
Plot Page 105

Monothetic Clustering 106
Model Page 106
Results Page 107
Plot Page 107

Compute Dissimilarities 109

CLUSTERING IN S-PLUS 8
87

CHAPTER 8 CLUSTERING IN S-PLUS
K-MEANS CLUSTERING

This dialog performs k-means clustering. See chapter 18 in the Guide to
Statistics for details.

To perform k-means clustering:

Choose SSSSttttaaaattttiiiissssttttiiiiccccssss::::CCCClllluuuusssstttteeeer r r r AAAAnnnnaaaallllyyyyssssiiiissss::::KKKK----MMMMeeeeaaaannnnssss from the main menu. The
dialog shown below appears.

Model Page

Data Data Frame

Specify the data frame. To use a subset of rows or columns, use standard S-
PLUS subscripting of the data frame.

Options Number of Clusters

Specify the number of clusters to form, or a matrix of initial values for cluster
centers.

Maximum Iteration

Specify the maximum number of reallocation iterations to perform.
88

K-MEANS CLUSTERING
Save Model
Object

Save As

Enter the name for the object in which to save the results of the analysis. If an
object with this name already exists, its contents will be overwritten.

Results Page

Printed Results Output Type

Select “None” for no printed output, “Short” for a short printed summary, or
“Long” for a more detailed printed summary.

Saved Results Save In

Specify the name of a data frame in which to save cluster membership if
CCCClllluuuusssstttteeeer r r r MMMMeeeemmmmbbbbeeeerrrrsssshhhhiiiipppp is checked.

Cluster Membership

Check this to save a vector of indices giving cluster memberships in the
specified data frame.

Related programming language functions:

kmeans
89

CHAPTER 8 CLUSTERING IN S-PLUS
PARTITIONING AROUND MEDOIDS

This dialog performs partitioning around medoids. See chapter 18 in the
Guide to Statistics for details.

To perform partitioning around medoids:

Choose SSSSttttaaaattttiiiissssttttiiiiccccssss::::CCCClllluuuusssstttteeeer r r r AAAAnnnnaaaallllyyyyssssiiiissss::::PPPPaaaarrrrttttiiiittttiiiioooonnnniiiinnnng g g g AAAArrrroooouuuunnnnd d d d MMMMeeeeddddooooiiiiddddssss
from the main menu. The dialog shown below appears.

Model Page

Data Data Frame

Specify a data frame or a dissimilarity object. To use a subset of rows
or columns, use standard S-PLUS subscripting of the data frame.

Note that all columns of the data frame must be numeric. If non-numeric
columns (e.g. factors) are present, use the DDDDiiiissssssssiiiimmmmiiiillllaaaarrrriiiittttiiiieeeessss dialog to produce a
dissimilarity object, and then use this object in clustering. The
DDDDiiiissssssssiiiimmmmiiiillllaaaarrrriiiittttiiiieeeessss dialog provides special options for handling factors.
90

PARTITIONING AROUND MEDOIDS
Data is Dissimilarities

Check this if DDDDaaaatttta a a a FFFFrrrraaaammmmeeee names a dissimilarity object.

Dissimilarity
Measure

Metric

Select the metric to be used for calculating dissimilarities between objects.
The available options are "euclidean" and "manhattan". Euclidean
distances are root sum-of-squares of differences, and manhattan distances are
the sum of absolute differences. If DDDDaaaatttta a a a FFFFrrrraaaammmmeeee is already a dissimilarity
matrix, then this argument will be ignored.

Standardize Variables

Check this to standardize each data column by subtracting the variable's
mean value and dividing by the variable's mean absolute deviation. If DDDDaaaattttaaaa
FFFFrrrraaaammmmeeee is already a dissimilarity matrix, then this argument will be ignored.

Options Number of Clusters

Specify the number of clusters to form.

Use Large Data Algorithm

Check this box to use the “Clustering Large Applications” algorithm. This
algorithm considers data subsets of fixed size, so that the overall time and
storage requirements become linear in the total number of objects, rather
than quadratic. Note that this algorithm is not available for ddddiiiissssssssiiiimmmmiiiillllaaaarrrriiiittttyyyy
objects.

Number of Samples

Number of subsets to draw from the data when using the large data
algorithm. See the help file for ccccllllaaaarrrraaaa for details.

Sample Size

Size of each subset when using the large data algorithm. See the help file for
ccccllllaaaarrrraaaa for details.

Save Model
Object

Save As

Enter the name for the object in which to save the results of the analysis. If an
object with this name already exists, its contents will be overwritten.
91

Save Data

Check this box to store a copy of the data in the model object. This is
necessary if you wish to produce a clusplot for the model.

Save Dissimilarities

Check this box to store a copy of the dissimilarities in the model object. This
is necessary if you wish to produce a clusplot for the model.

Results Page

Printed Results Output Type

Select “None” for no printed output, “Short” for a short printed summary, or
“Long” for a more detailed printed summary.

Save Results Save In

Specify the name of a data frame in which to save cluster membership if
CCCClllluuuusssstttteeeer r r r MMMMeeeemmmmbbbbeeeerrrrsssshhhhiiiipppp is checked.
92

PARTITIONING AROUND MEDOIDS
Cluster Membership

Check this to save a vector of indices giving cluster memberships in the
specified data frame.

Plot Page

Plots Clusplot

Check this to create a clusplot for the clustering.

Silhouette Plot

Check this to create a silhouette plot for the clustering.

Related programming language functions:

pam, clara
93

CHAPTER 8 CLUSTERING IN S-PLUS
FUZZY PARTITIONING

This dialog performs fuzzy partitioning. See chapter 18 in the Guide to
Statistics for details.

To perform fuzzy partitioning:

Choose SSSSttttaaaattttiiiissssttttiiiiccccssss::::CCCClllluuuusssstttteeeer r r r AAAAnnnnaaaallllyyyyssssiiiissss::::FFFFuuuuzzzzzzzzy y y y PPPPaaaarrrrttttiiiittttiiiioooonnnniiiinnnngggg from the main
menu. The dialog shown below appears.

Model Page

Data Data Frame

Specify a data frame or a dissimilarity object. To use a subset of rows
or columns, use standard S-PLUS subscripting of the data frame.

Note that all columns of the data frame must be numeric. If non-numeric
columns (e.g. factors) are present, use the DDDDiiiissssssssiiiimmmmiiiillllaaaarrrriiiittttiiiieeeessss dialog to produce
a dissimilarity object, and then use this object in clustering. The
DDDDiiiissssssssiiiimmmmiiiillllaaaarrrriiiittttiiiieeeessss dialog provides special options for handling factors.

Figure 8.1: The Fuzzy Partitioning dialog, Model page.
94

FUZZY PARTITIONING
Data is Dissimilarities

Check this if DDDDaaaatttta a a a FFFFrrrraaaammmmeeee names a dissimilarity object.

Dissimilarity
Measure

Metric

Select the metric to be used for calculating dissimilarities between objects.
The available options are "euclidean" and "manhattan". Euclidean
distances are root sum-of-squares of differences, and manhattan distances are
the sum of absolute differences. If DDDDaaaatttta a a a FFFFrrrraaaammmmeeee is already a dissimilarity
matrix, then this argument will be ignored.

Standardize Variables

Check this to standardize each data column by subtracting the variable's
mean value and dividing by the variable's mean absolute deviation. If DDDDaaaattttaaaa
FFFFrrrraaaammmmeeee is already a dissimilarity matrix, then this argument will be ignored.

Options Number of Clusters

Specify the number of clusters to form.

Result Save As

Enter the name for the object in which to save the results of the analysis. If an
object with this name already exists, its contents will be overwritten.

Save Data

Check this box to store a copy of the data in the model object. This is
necessary if you wish to produce a clusplot for the model.

Save Dissimilarities

Check this box to store a copy of the dissimilarities in the model object. This
is necessary if you wish to produce a clusplot for the model.
95

CHAPTER 8 CLUSTERING IN S-PLUS
Results Page

Printed Results Output Type

Select “None” for no printed output, “Short” for a short printed summary, or
“Long” for a more detailed printed summary.

Saved Results Save In

Specify the name of a data frame in which to save cluster membership if
CCCClllluuuusssstttteeeer r r r MMMMeeeemmmmbbbbeeeerrrrsssshhhhiiiipppp is checked.

Cluster Membership

Check this to save a vector of indices giving cluster memberships in the
specified data frame.

Figure 8.2: The Fuzzy Partitioning dialog, Results page.
96

FUZZY PARTITIONING
Plot Page

Plots Clusplot

Check this to create a clusplot for the clustering.

Silhouette Plot

Check this to create a silhouette plot for the clustering.

Related programming language functions:

fanny

Figure 8.3: The Fuzzy Partitioning dialog, Plot page.
97

CHAPTER 8 CLUSTERING IN S-PLUS
AGGLOMERATIVE HIERARCHICAL CLUSTERING

This dialog performs agglomerative hierarchical clustering. See chapter 18 in
the Guide to Statistics for details.

To perform agglomerative hierarchical clustering:

Choose SSSSttttaaaattttiiiissssttttiiiiccccssss::::CCCClllluuuusssstttteeeer r r r AAAAnnnnaaaallllyyyyssssiiiissss::::AAAAgggggggglllloooommmmeeeerrrraaaattttiiiivvvve e e e HHHHiiiieeeerrrraaaarrrrcccchhhhiiiiccccaaaallll from
the main menu. The dialog shown below appears.

Model Page

Data Data Frame

Specify a data frame or a dissimilarity object. To use a subset of rows
or columns, use standard S-PLUS subscripting of the data frame.

Note that all columns of the data frame must be numeric. If non-numeric
columns (e.g. factors) are present, use the DDDDiiiissssssssiiiimmmmiiiillllaaaarrrriiiittttiiiieeeessss dialog to produce
a dissimilarity object, and then use this object in clustering. The
DDDDiiiissssssssiiiimmmmiiiillllaaaarrrriiiittttiiiieeeessss dialog provides special options for handling factors.

Figure 8.4: The Agglomerative Hierarchical Clustering dialog, Model
page.
98

AGGLOMERATIVE HIERARCHICAL CLUSTERING
Data is Dissimilarities

Check this if DDDDaaaatttta a a a FFFFrrrraaaammmmeeee names a dissimilarity object.

Dissimilarity
Measure

Metric

Select the metric to be used for calculating dissimilarities between objects.
The available options are "euclidean" and "manhattan". Euclidean
distances are root sum-of-squares of differences, and manhattan distances are
the sum of absolute differences. If DDDDaaaatttta a a a FFFFrrrraaaammmmeeee is already a dissimilarity
matrix, then this argument will be ignored.

Standardize Variables

Check this to standardize each data column by subtracting the variable's
mean value and dividing by the variable's mean absolute deviation. If DDDDaaaattttaaaa
FFFFrrrraaaammmmeeee is already a dissimilarity matrix, then this argument will be ignored.

Options Linkage Type

Specify the linkage type. The three methods implemented are "average",
"complete", "single", “ward”, and “weighted” linkage.

Result Save As

Enter the name for the object in which to save the results of the analysis. If an
object with this name already exists, its contents will be overwritten.

Save Data

Check this box to store a copy of the data in the model object.

Save Dissimilarities

Check this box to store a copy of the dissimilarities in the model object.
99

CHAPTER 8 CLUSTERING IN S-PLUS
Results Page

Printed Results Output Type

Select “None” for no printed output or “Short” for a short printed summary.

Saved Results Save In

Specify the name of a data frame in which to save cluster membership if
CCCClllluuuusssstttteeeer r r r MMMMeeeemmmmbbbbeeeerrrrsssshhhhiiiipppp is checked.

Cluster Membership

Check this to save a vector of indices giving cluster memberships in the
specified data frame.

Number of Clusters

Specify the number of clusters to form when generating cluster membership
indices.

Figure 8.5: The Agglomerative Hierarchical Clustering dialog, Results
page.
100

AGGLOMERATIVE HIERARCHICAL CLUSTERING
Plot Page

Plots Clustering Tree

Check this to create a clustering tree plot.

Banner Plot

Check this to create a banner plot.

Related programming language functions:

agnes

Figure 8.6: The Agglomerative Hierarchical Clustering dialog, Plot
page.
101

CHAPTER 8 CLUSTERING IN S-PLUS
DIVISIVE HIERARCHICAL CLUSTERING

This dialog performs divisive hierarchical clustering. See chapter 18 in the
Guide to Statistics for details.

To perform divisive hierarchical clustering:

Choose SSSSttttaaaattttiiiissssttttiiiiccccssss::::CCCClllluuuusssstttteeeer r r r AAAAnnnnaaaallllyyyyssssiiiissss::::DDDDiiiivvvviiiissssiiiivvvve e e e HHHHiiiieeeerrrraaaarrrrcccchhhhiiiiccccaaaallll from the main
menu. The dialog shown below appears.

Model Page

Data Data Frame

Specify a data frame or a dissimilarity object. To use a subset of rows
or columns, use standard S-PLUS subscripting of the data frame.

Note that all columns of the data frame must be numeric. If non-numeric
columns (e.g. factors) are present, use the DDDDiiiissssssssiiiimmmmiiiillllaaaarrrriiiittttiiiieeeessss dialog to produce
a dissimilarity object, and then use this object in clustering. The
DDDDiiiissssssssiiiimmmmiiiillllaaaarrrriiiittttiiiieeeessss dialog provides special options for handling factors.

Figure 8.7: The Divisive Hierarchical Clustering dialog, Model page.
102

DIVISIVE HIERARCHICAL CLUSTERING
Data is Dissimilarities

Check this if DDDDaaaatttta a a a FFFFrrrraaaammmmeeee names a dissimilarity object.

Dissimilarity
Measure

Metric

Select the metric to be used for calculating dissimilarities between objects.
The available options are "euclidean" and "manhattan". Euclidean
distances are root sum-of-squares of differences, and manhattan distances are
the sum of absolute differences. If DDDDaaaatttta a a a FFFFrrrraaaammmmeeee is already a dissimilarity
matrix, then this argument will be ignored.

Standardize Variables

Check this to standardize each data column by subtracting the variable's
mean value and dividing by the variable's mean absolute deviation. If DDDDaaaattttaaaa
FFFFrrrraaaammmmeeee is already a dissimilarity matrix, then this argument will be ignored.

Result Save As

Enter the name for the object in which to save the results of the analysis. If an
object with this name already exists, its contents will be overwritten.

Save Data

Check this box to store a copy of the data in the model object.

Save Dissimilarities

Check this box to store a copy of the dissimilarities in the model object.
103

CHAPTER 8 CLUSTERING IN S-PLUS
Results Page

Printed Results Output Type

Select “None” for no printed output or “Short” for a short printed summary.

Saved Results Save In

Specify the name of a data frame in which to save cluster membership if
CCCClllluuuusssstttteeeer r r r MMMMeeeemmmmbbbbeeeerrrrsssshhhhiiiipppp is checked.

Cluster Membership

Check this to save a vector of indices giving cluster memberships in the
specified data frame.

Number of Clusters

Specify the number of clusters to form when generating cluster membership
indices.

Figure 8.8: The Divisive Hierarchical Clustering dialog, Results page.
104

DIVISIVE HIERARCHICAL CLUSTERING
Plot Page

Plots Clustering Tree

Check this to create a clustering tree plot.

Banner Plot

Check this to create a banner plot.

Related programming language functions:

diana

Figure 8.9: The Divisive Hierarchical Clustering dialog, Plot page.
105

CHAPTER 8 CLUSTERING IN S-PLUS
MONOTHETIC CLUSTERING

This dialog performs monothetic clustering. This clustering technique may
be used to partition data when all variables are binary. See chapter 18 in the
Guide to Statistics for details.

To perform monothetic clustering:

Choose SSSSttttaaaattttiiiissssttttiiiiccccssss::::CCCClllluuuusssstttteeeer r r r AAAAnnnnaaaallllyyyyssssiiiissss::::MMMMoooonnnnooootttthhhheeeettttiiiic c c c ((((BBBBiiiinnnnaaaarrrry y y y VVVVaaaarrrriiiiaaaabbbblllleeeessss))))
from the main menu. The dialog shown below appears.

Model Page

Data Data Frame

Specify the data frame. For monothetic analysis, all variables must be binary.
A limited number of missing values (NAs) is allowed. Every observation must
have at least one value different from NA. No variable should have half of its
values missing. There must be at least one variable which has no missing
values. A variable with all its non-missing values identical, is not allowed.

Save Model
Object

Save As

Enter the name for the object in which to save the results of the analysis. If an
object with this name already exists, its contents will be overwritten.

Figure 8.10: The Monothetic Clustering dialog, Model page.
106

MONOTHETIC CLUSTERING
Results Page

Printed Results Output Type

Select “None” for no printed output or “Short” for a short printed summary.

Plot Page

Plots Banner Plot

Check this to create a banner plot.

Figure 8.11: The Monothetic Clustering dialog, Results page.

Figure 8.12: Monothetic Clustering dialog, Plot page.
107

CHAPTER 8 CLUSTERING IN S-PLUS
Related programming language functions:

mona
108

COMPUTE DISSIMILARITIES
COMPUTE DISSIMILARITIES

This dialog calculates dissimilarities for a data frame. Different types of
variables (e.g. numeric and factor) are handled in appropriate manners. See
chapter 18 in the Guide to Statistics for details.

To calculate dissimilarities:

Choose SSSSttttaaaattttiiiissssttttiiiiccccssss::::MMMMuuuullllttttiiiivvvvaaaarrrriiiiaaaatttteeee::::CCCClllluuuusssstttteeeerrrr::::DDDDiiiissssssssiiiimmmmiiiillllaaaarrrriiiittttiiiieeeessss from the main
menu. The dialog shown below appears.

Data Data Frame

Specify the data frame.

Dissimilarity
Measure

Metric

Select the metric to be used for calculating dissimilarities between objects.
The available options are "euclidean" and "manhattan". Euclidean
distances are root sum-of-squares of differences, and manhattan distances are
the sum of absolute differences.

Standardize Variables

Check this to standardize each data column by subtracting the variable's
mean value and dividing by the variable's mean absolute deviation.

Figure 8.13: The Compute Dissimilarities dialog.
109

CHAPTER 8 CLUSTERING IN S-PLUS
Special Variable
Types

Ordinal Ratio

Select variables to be treated as ordinal ratio variables.

Log Ratio

Select variables to be treated as log ratio variables.

Asymmetric Binary

Select variables to be treated as asymmetric binary variables.

Save Model
Object

Save As

Enter the name for the object in which to save the results of the analysis. If an
object with this name already exists, its contents will be overwritten.

Related programming language functions:

daisy
110

COMPUTE DISSIMILARITIES
Tables 112
Text 113
Graphs 114

S-PLUS provides a variety of tools for generating HTML output. This
chapter discusses how to generate HTML tables, save preformatted text
output, and save graphs with HTML references.

CREATING HTML OUTPUT 9
111

CHAPTER 9 CREATING HTML OUTPUT
TABLES

The html.table function may be used to generate a vector of character
strings representing a vector, matrix, or data frame as an HTML table. The
vector will contain one string for each line of HTML. This may be written to
a file by specifying the file argument, or may be manipulated and later
written to a file using the write function.

For example, we can create a file catalyst.htm containing the catalyst
data frame using:

> html.table(catalyst, file=”catalyst.htm”)

In addition to accepting a vector, matrix, or data frame, the html.table
function will accept a simple list with such structures as components of the
list. It will then produce a sequence of tables with the list component names
encoded as table captions. For example:

> my.results<-list("Regression Coefficients" =
+ coef(lm(Mileage~Weight,
+ fuel.frame)), "Correlations"=cor(fuel.frame[,1:3]))

> html.table(my.results, file="my.htm")

The html.table function accepts any of the arguments to format, allowing
specification of formatting details such as the number of digits displayed. In
addition, append controls whether output is appended to the specified
file or the file is overwritten. The append argument is also available in the
write function, which is useful for interspersing html.table output and
descriptive text:

> write("<H3> S-PLUS Code for the above </H3>
Continue string: <P> Put code here </P>",
+ file="my.htm", append=T)

Additional arguments to html.table are described in the function’s help
file.

Note that html.table is designed to work with the previously mentioned
data structures. For other structures such as functions, calls, and objects with
specific print methods, the results of html.table may not be satisfactory.
Instead, the object may be printed as preformatted text and embedded in the
HTML page.
112

TEXT
TEXT

The sink function may be used to direct S-PLUS text output to an HTML
file. The preformatted output may be interspersed with the HTML markup
tag <PRE> to denote that it is preformatted output. Additional textual
description and HTML markup tags may be interspersed with the S-PLUS
output using cat.

> sink("my.htm")

> cat("<H3> Linear Model Results </H3> \n")

> cat("<PRE>")

> summary(lm(Mileage~Weight, fuel.frame))

> cat("</PRE>")

> sink()

The paste and deparse functions are useful for constructing strings to
display with cat. See their help files for details.
113

CHAPTER 9 CREATING HTML OUTPUT
GRAPHS

The two steps involved in embedding an S-PLUS graph in an HTML page
are exporting the graph in a format such as GIF or JPG which is viewable
with a web browser, and placing an tag in the HTML file describing
the location of the image.

Use the export.graph command to export a graph to a specific file:

> graphsheet(Name="MyGraph")

> xyplot(Mileage~Weight,fuel.frame)

> export.graph(Name="MyGraph", FileName="my.gif")

Use sink and cat to place an tag in an HTML file. Note the use of
\” to include quotation marks in the text:

> sink("my.htm",append=T)

> cat("")

> sink()
114

Researchers implementing an experimental design frequently lose
experimental units and find themselves with unbalanced, but complete, data.
The data is unbalanced in that the number of replications is not constant for
each treatment combination; the data is complete in that at least one
experimental unit exists for each treatment combination. In this type of
circumstance, an experimenter may find the hypotheses tested by Type III
sum of squares are of more interest than those tested by Type I (sequential)
sum of squares, and the adjusted means of more interest than unadjusted
means. New options to the lm and aov object methods, anova.lm,
summary.aov, and model.tables.aov will give the Type III sum of
squares and the adjusted (marginal) means. For anova and summary, the
new argument ssType can be 1 or 3, with ssType=1 as the default;
model.tables has the new option “adj.means”, for the existing
argument type. An example is given to demonstrate the new capabilities of
these in an analysis of a designed experiment.

The fat-surfactant example is taken from Milliken and Johnson (1984, p.
166), where they analyze an unbalanced randomized block factorial design.
Here, the specific volume of bread loaves baked from dough mixed from each
of nine Fat and Surfactant treatment combinations is measured. The
experimenters blocked on four flour types. Ten loaves had to be removed
from the experiment, but at least one loaf existed for each Fat ✕ Surfactant
combination and all marginal means are estimable so the Type III hypotheses
are testable.

The over-parameterized model is:

TYPE III SUM OF SQUARES
AND ADJUSTED MEANS 10

µ µijk i j k jkb f s fs==== ++++ ++++ ++++ ++++ () ,
115

CHAPTER 10 TYPE III SUM OF SQUARES AND ADJUSTED MEANS
for i=1,...,4, j=1,2,3, and k=1,2,3. Because the data are unbalanced the Type
III sum of squares for Flour, Fat and Surfactant test a more useful hypothesis
than the Type I. Specifically, the Type III hypotheses are that the marginal
means are equal:

where

The hypotheses tested by the Type I sum of squares are not easily interpreted
since they are dependent on the order each term is specified the formula and
involve the cell replications (which can be viewed as random variables when
there are random drop-outs). Moreover, the hypothesis tested by the blocking
term, Flour, involves parameters of the Fat, Flour and Fat ✕ Flour terms.

ANOVA Tables The ANOVA tables for both Type I and Type III sum of squares are given
below for comparison. Using the Type III sum of squares we see that the
block effect, Flour, is significant as is Fat, but Surfactant is not at, say, a test
size of a = 0.05. However, in the presence of a significant interaction, the test
of the marginal means probably has little meaning for Fat and Surfactant.

H

H

H ,

Flour

Fat

Surfactant

:

:

:

..

.

..

µ µ µ µ
µ µ µ

µ µ µ

1 2 3 4

1 2 3

1 2 3

==== ==== ====
==== ====

==== ====

µ
µ

µ
µ

µ
µ

i

ikjj k

j

ijki k

k

ijkij

..
,

. .
,

..

====
⋅⋅⋅⋅

====
⋅⋅⋅⋅

====
⋅⋅⋅⋅

∑∑∑∑

∑∑∑∑

∑∑∑∑

3 3

4 3

4 3
 .
116

> Baking.aov<-aov(Specific.Vol ~ Flour + Fat * Surfactant,
+ data = Baking, contrasts=list(Flour=contr.sum(4),
+ Fat=contr.sum(3),Surfactant=contr.sum(3)))

> anova(Baking.aov)

Analysis of Variance Table

Response: Specific.Vol
Terms added sequentially (first to last)
 Df Sum of Sq Mean Sq F Value Pr(F)
 Flour 3 6.39310 2.131033 12.88269 0.0002587
 Fat 2 10.33042 5.165208 31.22514 0.0000069
 Surfactant 2 0.15725 0.078625 0.47531 0.6313678
Fat:Surfactant 4 5.63876 1.409691 8.52198 0.0010569
 Residuals 14 2.31586 0.165418

> anova(Baking.aov,ssType=3)

Analysis of Variance Table

Response: Specific.Vol

Type III Sum of Squares
 Df Sum.of.Sq Mean.Sq F.Value Pr.F.
 Flour 3 8.69081 2.896937 17.51280 0.00005181
 Fat 2 10.11785 5.058925 30.58263 0.00000778
 Surfactant 2 0.99721 0.498605 3.01421 0.08153989
Fat:Surfactant 4 5.63876 1.409691 8.52198 0.00105692
 Residuals 14 2.31586 0.165418

Adjusted
Means

The adjusted (marginal) means given below estimate the means given in the
Type III hypotheses for Flour, Fat and Surfactant. The means for Flour ✕

Surfactant for the over-parameterized model are

Interestingly, these means are still estimable even though not all Flour ✕

Surfactant ✕ Flour combinations were observed.

µ
µ

⋅⋅⋅⋅ ====
∑∑∑∑

jk

ijki

4

117

CHAPTER 10 TYPE III SUM OF SQUARES AND ADJUSTED MEANS
> model.tables(Baking.aov,type="adj.means")

Tables of adjusted means
Grand mean

 6.633281
se 0.084599
 N 26.000000

 Flour
 1 2 3 4
 7.3020 5.7073 6.9815 6.5423
 se 0.1995 0.1467 0.1621 0.1785
rep 5.0000 8.0000 7.0000 6.0000
 Fat
 1 2 3
 5.8502 6.5771 7.4725
 se 0.1365 0.1477 0.1565
rep 9.0000 9.0000 8.0000

 Surfactant
 1 2 3
 6.3960 6.5999 6.9039
 se 0.1502 0.1432 0.1473
rep 8.0000 9.0000 9.0000

Fat:Surfactant
Dim 1 : Fat
Dim 2 : Surfactant
 1 2 3
 1 5.5364 5.8913 6.1229
 se 0.2404 0.2392 0.2414
rep 3.0000 3.0000 3.0000
 2 7.0229 6.7085 6.0000
 se 0.2414 0.3006 0.2034
rep 3.0000 2.0000 4.0000
 3 6.6286 7.2000 8.5889
 se 0.3007 0.2034 0.3001
rep 2.0000 4.0000 2.0000

Multiple
Comparisons

The F-statistic for the Fat ✕ Surfactant interaction in the Type III ANOVA
table is significant so the tests for the marginal means for Fat and Surfactant
have little meaning. We can, however, use multicomp to find all pairwise
comparisons of the mean Fat levels for each level of Surfactant, and those for
Surfactant for each level of Fat.
118

> multicomp(Baking.aov,focus="Fat",
+ adjust=list(Surfactant=seq(3)))

95 % simultaneous confidence intervals for specified
linear combinations, by the Sidak method

critical point: 3.2117
response variable: Flour

intervals excluding 0 are flagged by '****'
 Estimate Std.Error Lower Bound Upper Bound
1.adj1-2.adj1 -1.490 0.344 -2.590 -0.381 ****
1.adj1-3.adj1 -1.090 0.377 -2.300 0.120
2.adj1-3.adj1 0.394 0.394 -0.872 1.660
1.adj2-2.adj2 -0.817 0.390 -2.070 0.434
1.adj2-3.adj2 -1.310 0.314 -2.320 -0.300 ****
2.adj2-3.adj2 -0.492 0.363 -1.660 0.674
1.adj3-2.adj3 0.123 0.316 -0.891 1.140
1.adj3-3.adj3 -2.470 0.378 -3.680 -1.250 ****
2.adj3-3.adj3 -2.590 0.363 -3.750 -1.420 ****

> multicomp(Baking.aov,focus="Surfactant",
+ adjust=list(Fat=seq(3)))

95 % simultaneous confidence intervals for specified
linear combinations, by the Sidak method

critical point: 3.2117
response variable: Flour

intervals excluding 0 are flagged by '****'

 Estimate Std.Error Lower Bound Upper Bound
1.adj1-2.adj1 -0.355 0.341 -1.45000 0.740
1.adj1-3.adj1 -0.587 0.344 -1.69000 0.519
2.adj1-3.adj1 -0.232 0.342 -1.33000 0.868
1.adj2-2.adj2 0.314 0.377 -0.89700 1.530
1.adj2-3.adj2 1.020 0.316 0.00922 2.040 ****
2.adj2-3.adj2 0.708 0.363 -0.45700 1.870
1.adj3-2.adj3 -0.571 0.363 -1.74000 0.594
1.adj3-3.adj3 -1.960 0.427 -3.33000 -0.590 ****
2.adj3-3.adj3 -1.390 0.363 -2.55000 -0.225 ****

The levels for Fat and Surfactant factors are both labeled 1, 2, and 3 so the
row labels in the multicomp tables require explanation. For the first table,
the label 1.adj1-2.adj1 refers to the difference between levels 1 and 2 of
Fat (the focus variable) at level 1of Surfactant (the adjust variable),
whereas for the second table it is the difference between levels 1 and 2 of
Surfactant at level 1 of Fat. The reader can verify that the table of differences
reported by multicomp are the differences in the adjusted means for
Fat:Surfactant reported by model.tables. Significant differences are
flagged with ‘****’. As a result of the of Surfactant and Fat interaction, the
119

CHAPTER 10 TYPE III SUM OF SQUARES AND ADJUSTED MEANS
F test for the equivalence of the Surfactant marginal means is not significant,
but there exists significant differences between the mean of Surfactant levels
1-3 at a Fat level of 2 and between the means Surfactant levels 1-3 and 2-3 at
a Fat level of 3.

Estimable
Functions

The Type I and Type III estimable functions for the over-parameterized
model show the linear combinations of the over-parameterized model
parameters tested by each sum of squares. The Type I estimable functions can
be obtained by performing row reductions on the cross products of the model

matrix, XtX, that reduce it to upper triangular with each nonzero row divided
by its diagonal (SAS Technical Report R-101, 1978).

> round(L,4)
 L2 L3 L4 L6 L7 L9 L10 L12 L13 L15 L16
 (Intercept) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 0
 Flour.1 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 0
 Flour.2 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 0
 Flour.3 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 0
 Flour.4 -1.0000 -1.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 0
 Fat.1 0.0667 -0.0833 0.0952 1.0000 0.0000 0.0000 0.0000 0 0 0 0
 Fat.2 -0.3000 -0.1250 -0.2143 0.0000 1.0000 0.0000 0.0000 0 0 0 0
 Fat.3 0.2333 0.2083 0.1190 -1.0000 -1.0000 0.0000 0.0000 0 0 0 0
 Surfactant.1 0.2333 0.2083 0.1190 0.1152 0.1338 1.0000 0.0000 0 0 0 0
 Surfactant.2 -0.1000 -0.2500 -0.2143 -0.1966 -0.3235 0.0000 1.0000 0 0 0 0
 Surfactant.3 -0.1333 0.0417 0.0952 0.0814 0.1896 -1.0000 -1.0000 0 0 0 0
Fat.1:Surfactant.1 0.2000 0.1250 0.1429 0.3531 0.0359 0.3507 0.0037 1 0 0 0
Fat.2:Surfactant.1 -0.1667 -0.0417 -0.0238 -0.0060 0.3250 0.4242 0.0760 0 1 0 0
Fat.3:Surfactant.1 0.2000 0.1250 0.0000 -0.2319 -0.2271 0.2251 -0.0797 -1 -1 0 0
Fat.1:Surfactant.2 0.0333 -0.1667 -0.0238 0.3167 -0.0060 -0.0149 0.3499 0 0 1 0
Fat.2:Surfactant.2 -0.1667 -0.0417 -0.1667 0.0049 0.2034 0.0190 0.2971 0 0 0 1
Fat.3:Surfactant.2 0.0333 -0.0417 -0.0238 -0.5182 -0.5209 -0.0041 0.3530 0 0 -1 -1
Fat.1:Surfactant.3 -0.1667 -0.0417 -0.0238 0.3302 -0.0299 -0.3358 -0.3536 -1 0 -1 0
Fat.2:Surfactant.3 0.0333 -0.0417 -0.0238 0.0011 0.4716 -0.4432 -0.3731 0 -1 0 -1
Fat.3:Surfactant.3 0.0000 0.1250 0.1429 -0.2499 -0.2520 -0.2210 -0.2733 1 1 1

The columns labeled L2, L3, and L4 are for the Flour hypothesis; L6 and L7
are for the Fat hypothesis; L9 and L10 are for the Surfactant hypothesis; and
L12, L13, L15, and L16 are for the Fat ✕ Surfactant hypothesis. In contrast,
the Type III estimable functions can be obtained from the generating set

(XtX)*(XtX), where (XtX)* is the g-2 inverse of the cross product matrix,
(Kennedy and Gentle, 1980, p. 396) and perform the steps outlined in the
SAS/STAT User’s Guide (1990, pp. 120-121).
120

> round(L3,4)

 L2 L3 L4 L6 L7 L9 L10 L12 L13 L15 L16

 (Intercept) 0 0 0 0.0000 0.0000 0.0000 0.0000 0 0 0 0

 Flour.1 1 0 0 0.0000 0.0000 0.0000 0.0000 0 0 0 0

 Flour.2 0 1 0 0.0000 0.0000 0.0000 0.0000 0 0 0 0

 Flour.3 0 0 1 0.0000 0.0000 0.0000 0.0000 0 0 0 0

 Flour.4 -1 -1 -1 0.0000 0.0000 0.0000 0.0000 0 0 0 0

 Fat.1 0 0 0 1.0000 0.0000 0.0000 0.0000 0 0 0 0

 Fat.2 0 0 0 0.0000 1.0000 0.0000 0.0000 0 0 0 0

 Fat.3 0 0 0 -1.0000 -1.0000 0.0000 0.0000 0 0 0 0

 Surfactant.1 0 0 0 0.0000 0.0000 1.0000 0.0000 0 0 0 0

 Surfactant.2 0 0 0 0.0000 0.0000 0.0000 1.0000 0 0 0 0

 Surfactant.3 0 0 0 0.0000 0.0000 -1.0000 -1.0000 0 0 0 0

Fat.1:Surfactant.1 0 0 0 0.3333 0.0000 0.3333 0.0000 1 0 0 0

Fat.2:Surfactant.1 0 0 0 0.0000 0.3333 0.3333 0.0000 0 1 0 0

Fat.3:Surfactant.1 0 0 0 -0.3333 -0.3333 0.3333 0.0000 -1 -1 0 0

Fat.1:Surfactant.2 0 0 0 0.3333 0.0000 0.0000 0.3333 0 0 1 0
Fat.2:Surfactant.2 0 0 0 0.0000 0.3333 0.0000 0.3333 0 0 0 1

Fat.3:Surfactant.2 0 0 0 -0.3333 -0.3333 0.0000 0.3333 0 0 -1 -1

Fat.1:Surfactant.3 0 0 0 0.3333 0.0000 -0.3333 -0.3333 -1 0 -1 0

Fat.2:Surfactant.3 0 0 0 0.0000 0.3333 -0.3333 -0.3333 0 -1 0 -1

Fat.3:Surfactant.3 0 0 0 -0.3333 -0.3333 -0.3333 -0.3333 1 1 1 1

Here we see one of the appealing properties of Type III sum of squares: the
hypothesis tested by the Type III sum of squares for Flour only involves
parameters of the Flour term, whereas the hypothesis tested by the Type I
sum of squares for Flour involves the parameters of Fat, Surfactant and Fat ✕
Surfactant.

The marginal means can also be obtained from multicomp using
comparisons=”none”. Doing so, we obtain the estimable functions for the
marginal means for the over-parameterized model. For example, the
estimable functions for the Fat marginal means are:

> Fat.mcomp<-multicomp(Baking.aov,focus="Fat",comp="none")
121

CHAPTER 10 TYPE III SUM OF SQUARES AND ADJUSTED MEANS
> round(Fat.mcomp$lmat,4)

 1 2 3
 (Intercept) 1.0000 1.0000 1.0000
 Flour.1 0.2500 0.2500 0.2500
 Flour.2 0.2500 0.2500 0.2500
 Flour.3 0.2500 0.2500 0.2500
 Flour.4 0.2500 0.2500 0.2500
 Fat.1 1.0000 0.0000 0.0000
 Fat.2 0.0000 1.0000 0.0000
 Fat.3 0.0000 0.0000 1.0000
 Surfactant.1 0.3333 0.3333 0.3333
 Surfactant.2 0.3333 0.3333 0.3333
 Surfactant.3 0.3333 0.3333 0.3333
Fat.1:Surfactant.1 0.3333 0.0000 0.0000
Fat.2:Surfactant.1 0.0000 0.3333 0.0000
Fat.3:Surfactant.1 0.0000 0.0000 0.3333
Fat.1:Surfactant.2 0.3333 0.0000 0.0000
Fat.2:Surfactant.2 0.0000 0.3333 0.0000
Fat.3:Surfactant.2 0.0000 0.0000 0.3333
Fat.1:Surfactant.3 0.3333 0.0000 0.0000
Fat.2:Surfactant.3 0.0000 0.3333 0.0000
Fat.3:Surfactant.3 0.0000 0.0000 0.3333

The reader can verify that the Type III estimable functions for Fat are the
differences between columns 1 and 3, and between columns 2 and 3.

Sigma
Constrained
Parameterization

The function lm reparameterizes the linear model in an attempt to make the
model matrix full column rank. We will next explore the computation of the
adjusted means and the Type III sum of squares for Fat using the sigma
constrained linear model. The sigma constraints were used in the aov fit
above (aov calls lm with singular.ok=T). This was done by specifying
contr.sum in the contrasts argument. In this setting the adjusted means
can be computed with the following estimable functions:
122

> L

 Fat.1 Fat.2 Fat.3
 (Intercept) 1 1 1
 Flour1 0 0 0
 Flour2 0 0 0
 Flour3 0 0 0
 Fat1 1 0 -1
 Fat2 0 1 -1
 Surfactant1 0 0 0
 Surfactant2 0 0 0
Fat1Surfactant1 0 0 0
Fat2Surfactant1 0 0 0
Fat1Surfactant2 0 0 0
Fat2Surfactant2 0 0 0

Some justification to these functions may be in order: The parameterization
chosen constrains the sum of the level estimates of each effect to zero. That is,

Therefore, any effect that we are summing over in the mean estimate
vanishes. The intercept in the least squares fit estimates m and the two
coefficients for the Fat effect (labeled in L as Fat1 and Fat2) estimate f1 and
f2, respectively and f3 = -f1 - f2.

We can check that each function is, in fact, estimable by ensuring that they
are in the row space of X, then compute the adjusted means.

> X<-model.matrix(Baking.aov)

> ls.fit<-lsfit(t(X)%*%X,L,intercept=F)

> apply(abs(ls.fit$residuals),2,max)<0.0001

 Fat.1 Fat.2 Fat.3
 T T T

> m<-t(L)%*%Baking.aov$coefficients

b f s fs fsi

i

j kk jkj jkkj∑∑∑∑ ∑∑∑∑ ∑∑∑∑ ∑∑∑∑∑∑∑∑==== ==== ==== ==== ====() () 0 .
123

CHAPTER 10 TYPE III SUM OF SQUARES AND ADJUSTED MEANS
> m

 [,1]
Fat.1 5.850197
Fat.2 6.577131
Fat.3 7.472514

Now use the summary method for the lm object to obtain (XtX)-1 and
and compute the standard errors of the least squares means.

> Baking.sum<-summary.lm(Baking.aov)

> Baking.sum$sigma*sqrt(diag(t(L)%*%
+ Baking.sum$cov.unscaled%*%L))

[1] 0.1364894 0.1477127 0.1564843

A set of Type III estimable functions for Fat can be obtained using the
contrasts generated by contr.helmert.

> contr.helmert(3)

 [,1] [,2]
1 -1 -1
2 1 -1
3 0 2

We will use this set of orthogonal contrasts to test and

 which is equivalent to HFat.

> L.typeIII<-L%*%contr.helmert(3)

> L.typeIII

 [,1] [,2]
 (Intercept) 0 0
 Flour1 0 0
 Flour2 0 0
 Flour3 0 0
 Fat1 -1 -3
 Fat2 1 -3
 Surfactant1 0 0
 Surfactant2 0 0
Fat1Surfactant1 0 0
Fat2Surfactant1 0 0
Fat1Surfactant2 0 0
Fat2Surfactant2 0 0

σ̂

µ µ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅====1 2

µ µ µ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅ ⋅⋅⋅⋅++++ ====1 2 32
124

Finally, the Type III sum of squares is computed for Fat.

> h.m<-t(contr.helmert(3))%*%m

> t(h.m)%*%solve(t(L.typeIII)%*%Baking.sum$cov.unscaled%*%
+ L.typeIII)%*%h.m

 [,1]
[1,] 10.11785

Since we used the sigma-constrained model and the data is complete, we can
also use drop1 to obtain the Type III sum of squares.

> drop1(Baking.aov,~.)

Single term deletions

Model:
Specific.Vol ~ Flour + Fat * Surfactant
 Df Sum of Sq RSS F Value Pr(F)
 <none> 2.31586
 Flour 3 8.69081 11.00667 17.51280 0.00005181
 Fat 2 10.11785 12.43371 30.58263 0.00000778
 Surfactant 2 0.99721 3.31307 3.01421 0.08153989
Fat:Surfactant 4 5.63876 7.95462 8.52198 0.00105692

For the sigma-constrained model, the hypotheses HFat and Hsurfactant can
also be expressed as

The row for Fat in the drop1 ANOVA table is the reduction in sum of
squares due to Fat given all other terms are in the model. This
simultaneously tests that the least squares coefficients bFat1 = f1 and bFat2 =
f2 are zero (and, hence f3 = -(f1 + f2) is zero) (Searle, 1987). The same
argument applies to Surfactant. It follows that the following Type III
estimable functions for Fat can be used to test H*Fat (or equivalently HFat).

H

H = s = s = 0 .

*
Fat

*
Surfactant 2 3

:

:

f f

s

1 2

1

0==== ====
125

CHAPTER 10 TYPE III SUM OF SQUARES AND ADJUSTED MEANS
> L.typeIII

 [,1] [,2]
 (Intercept) 0 0
 Flour1 0 0
 Flour2 0 0
 Flour3 0 0
 Fat1 1 0
 Fat2 0 1
 Surfactant1 0 0
 Surfactant2 0 0
Fat1Surfactant1 0 0
Fat2Surfactant1 0 0
Fat1Surfactant2 0 0
Fat2Surfactant2 0 0

> h.c<-t(L.typeIII)%*%Baking.aov$coef

> t(h.c)%*%solve(t(L.typeIII)%*%Baking.sum$cov.unscaled%*%
+ L.typeIII)%*%h.c

 [,1]
[1,] 10.11785

References Milliken, G. A., Johnson, D. E., Analysis of Messy Data Volume I: Designed
Experiments, Van Nostrand Reinhold Co., 473 pp.

SAS Institute, Inc. (1990) SAS/Stat User's Guide, Fourth Edition. SAS
Institute, Inc., pp 120-121
126

Normal Power And Sample Size 124
Model Page 125
Options Page 126

Binomial Power And Sample Size 130
Model Page 131
Options Page 131
Printout Page 133

Power and Sample Size Theory 135
Normally Distributed Data 136

One-Sample Test of Gaussian Mean 136
Comparing Means From Two Samples 139

Binomial Data 142
References 148

When contemplating a study, one of the first statistical questions that arises is
‘How big does my sample need to be?’ The required sample size is a function
of the alternative hypothesis, the probabilities of Type I and Type II errors,
and the variability of the population(s) under study. Two new functions are
available for computing power and sample size requirements,
normal.sample.size and binomial.sample.size. Depending on the
input, these functions will provide:

• For given power and alternative hypothesis, the required sample size

• For given sample size and power, the detectable difference

• For given sample size and alternative hypothesis, the power to
distinguish between the hypotheses

These functions can be applied in one and two-sample studies, and will
produce a table from vectorized input suitable for passing to Trellis graphics.

POWER AND SAMPLE SIZE 11
127

CHAPTER 11 POWER AND SAMPLE SIZE
NORMAL POWER AND SAMPLE SIZE

The Normal Power and Sample Size dialog assists in computing power,
sample size or minimum detectable difference. Choose SSSSttttaaaattttiiiissssttttiiiiccccssss::::PPPPoooowwwweeeer r r r aaaannnndddd
SSSSaaaammmmpppplllle e e e SSSSiiiizzzzeeee::::NNNNoooorrrrmmmmaaaal l l l MMMMeeeeaaaannnn from the main menu. The dialog shown below
appears.

Figure 11.1: The Normal Power and Sample Size dialog, Model page.
128

NORMAL POWER AND SAMPLE SIZE
Model Page

Select Group Compute

Choose one of ‘Sample Size’ (default), ‘Power’ or ‘Min. Difference’.

Sample Type

The choices are ‘One Sample’, ‘Two Sample’ or ‘Paired’.

Probabilities
Group

This group is where alpha and power are specified, defined as

alpha = Pr(reject Null hypothesis if true)

power = Pr(reject Null hypothesis if false)

You can select multiple values using the CTRL key, or you can type in values
separated by commas.

Sample Sizes
Group

If computing power or minimum difference, samples sizes are input here. For
two-sample tests, any two of N1, N2, N2/N1 will designate the third. In
most cases it is natural to think in terms of N1 and N2/N1.

Standard
Deviations Group

For a one-sample test, ‘Sigma1’ is required. For a paired test, the standard
deviation of the difference between samples is required, so the ‘Sigma(X2 -
X1)’ field becomes active in place of ‘Sigma1’. For a two-sample test,
‘Sigma2’ defaults to ‘Sigma1’. Multiple values for the standard deviations can
be input, separated by commas.

Null Hypothesis
Group

For a one-sample test, the mean is required, with a default value of 0. For a
two-sample test, ‘Mean1’ is asked for.

Alternative
Hypothesis Group

For a one-sample test, the alternative mean is needed; for a two-sample test,
‘Mean2’ is requested.

Test Type

If the alternative hypothesis is one of inequality, the test type is ‘two.sided’.
Other choices are ‘greater’ and ‘less’.

Results Group Save As

To save the resulting table as an S-PLUS object, type the name for the object
here.
129

CHAPTER 11 POWER AND SAMPLE SIZE
Print Results

If this box is checked, the output will be printed to the Report window.

Options Page The Options page is shown below.

Figure 11.2: The Normal Power and Sample Size dialog, Options page.
130

NORMAL POWER AND SAMPLE SIZE
Recompute
Power

By default, sample sizes are rounded up to the next integer value. Checking
this option causes the power to be recomputed for the rounded sample size
value.

Exact N Checking this results in the exact value of N being returned, with no
rounding.

Interactive With this option checked, the results of the computations are written back to
the dialog.

Expand Input This causes the input to be expanded into a table where all combinations of
input are used. For example, if you input two different powers and three
alternative means, the resulting table will have six rows. If this option is
unchecked, the above example will produce a table with three rows.

Printout Page The ‘Printout’ page looks like this:
131

CHAPTER 11 POWER AND SAMPLE SIZE
Columns Group This group allows you to control which columns are printed and in what
order. To drop a column, choose ‘omit’. When a column number is changed,
the others are adjusted accordingly. For example, in the above dialog if you
were to change ‘Alpha’ to 7, ‘Power’ and ‘N1’ would each be reduced by 1.
Pressing the ‘Reset’ button will restore the values to their defaults.

Digits Group The number of digits can be controlled for each column individually.
Pressing the ‘Fill Down’ button will copy the last selected digit down the list.

Figure 11.3: The Normal Power and Sample Size dialog, Printout page.
132

NORMAL POWER AND SAMPLE SIZE
Save Object
Group

Object Name

If you enter a name here, the printed table will be saved as a data.frame in the
working directory.

Export Object
Group

Text File

Entering a file name (or full path) will produce a tab-delimited text file. For
more complete exporting capabilities, save the table as a data.frame (see
above) and then choose FFFFiiiilllleeee::::EEEExxxxppppoooorrrrt t t t DDDDaaaattttaaaa from the menu.
133

CHAPTER 11 POWER AND SAMPLE SIZE
BINOMIAL POWER AND SAMPLE SIZE

The Binomial Power and Sample dialog assists in computing power, sample
size or minimum detectable difference. Choose SSSSttttaaaattttiiiissssttttiiiiccccssss::::PPPPoooowwwweeeer r r r aaaannnnd d d d SSSSaaaammmmpppplllleeee
SSSSiiiizzzzeeee::::BBBBiiiinnnnoooommmmiiiiaaaal l l l PPPPrrrrooooppppoooorrrrttttiiiioooonnnn from the main menu. The dialog shown below
appears.

Figure 11.4: The Binomial Power and Sample Size dialog, Model page.
134

BINOMIAL POWER AND SAMPLE SIZE
Model Page

Select Group Compute

Choose one of ‘Sample Size’ (default), ‘Power’ or ‘Min. Difference’.

Sample Type

The choices are ‘One Sample’ or ‘Two Sample’.

Probabilities
Group

This group is where alpha and power are specified, defined as

alpha = Pr(reject Null hypothesis if true)

power = Pr(reject Null hypothesis if false)

You can select multiple values using the CTRL key, or you can type in values
separated by commas.

Sample Sizes
Group

If computing power or minimum difference, samples sizes are input here. For
two-sample tests, any two of N1, N2, N2/N1 will designate the third. In
most cases it is natural to think in terms of N1 and N2/N1.

Null Hypothesis
Group

For a one-sample test, the proportion is required, with a default value of
0.50. For a two-sample test, ‘Group1 Proportion’ is asked for.

Alternative
Hypothesis Group

For a one-sample test, the alternative proportion is needed; for a two-sample
test, ‘Group2 Proportion’ is requested.

Test Type

If the alternative hypothesis is one of inequality, the test type is ‘two.sided’.
Other choices are ‘greater’ and ‘less’.

Results Group Save As

To save the resulting table as an S-PLUS object, type the name for the object
here.

Print Results

If this box is checked, the output will be printed to the Report window.

Options Page The Options page is shown below.
135

CHAPTER 11 POWER AND SAMPLE SIZE
Recompute
Power

By default, sample sizes are rounded up to the next integer value. Checking
this option causes the power to be recomputed for the rounded sample size
value.

Exact N Checking this results in the exact value of N being returned, with no
rounding.

Interactive With this option checked, the results of the computations are written back to
the dialog.

Expand Input This causes the input to be expanded into a table where all combinations of
input are used. For example, if you input two different powers and three

Figure 11.5: The Binomial Power and Sample Size dialog, Options page.
136

BINOMIAL POWER AND SAMPLE SIZE
alternative means, the resulting table will have six rows. If this option is
unchecked, the above example will produce a table with three rows.

Continuity
Correction

With this option checked, a continuity correction is used in the
computations.

Printout Page The ‘Printout’ page looks like this:

Columns Group This group allows you to control which columns are printed and in what
order. To drop a column, choose ‘omit’. When a column number is changed,

Figure 11.6: The Binomial Power and Sample Size dialog, Printout page.
137

CHAPTER 11 POWER AND SAMPLE SIZE
the others are adjusted accordingly. For example, in the above dialog if you
were to change ‘Alpha’ to 7, ‘Power’ and ‘N1’ would each be reduced by 1.
Pressing the ‘Reset’ button will restore the values to their defaults.

Digits Group The number of digits can be controlled for each column individually.
Pressing the ‘Fill Down’ button will copy the last selected digit down the list.

Save Object
Group

Object Name

If you enter a name here, the printed table will be saved as a data.frame in the
working directory.

Export Object
Group

Text File

Entering a file name (or full path) will produce a tab-delimited text file. For
more complete exporting capabilities, save the table as a data.frame (see
above) and then choose FFFFiiiilllleeee::::EEEExxxxppppoooorrrrt t t t DDDDaaaattttaaaa from the menu.
138

POWER AND SAMPLE SIZE THEORY
POWER AND SAMPLE SIZE THEORY

When designing a study, one of the first questions to arise is “How large does
my sample size need to be?” Intuitively, we have a sense that this depends on
how small a difference we're trying to detect, how much variability is
inherent in our data, and how certain we want to be of our results. In a
classical hypothesis test of (null hypothesis) versus (alternative

hypothesis), there are four possible outcomes, two of which are erroneous:

• Don't reject when is true.

• Reject when is false.

• Reject when is true (type I error).

• Don’t reject when is false (type II error).

To construct a test, the distribution of the test statistic under is used to

find a critical region which will ensure the probability of committing a type I
error does not exceed some predetermined level. This probability is typically
denoted α. The power of the test is its ability to correctly reject the null
hypothesis, or 1 - Pr(type II error), which is based on the distribution of the
test statistic under . The required sample size then will be a function of

 1. The null and alternative hypotheses.

 2. The target α.

 3. The desired power to detect .

 4. The variability within the population(s) under study.

Our objective is, for a given test, to find a relationship between the above
factors and the sample size that will enable us to select a sample size
consistent with the desired α and power.

Ho Ha

Ho Ho

Ho Ho

Ho Ho

Ho Ho

Ho

Ha

Ha
139

CHAPTER 11 POWER AND SAMPLE SIZE
NORMALLY DISTRIBUTED DATA

One-Sample
Test of
Gaussian Mean

When conducting a one-sample test of a normal mean, we start by writing
our assumptions and hypotheses:

where , and is known. To perform a two-sided test of
equality the hypotheses would be as follows:

Our best estimate of µ is the sample mean, which is normally distributed:

and the test statistic is

Reject if |Z| > , which guarantees a level α test. The power

of the test to detect is

Xi N µ σ2,()∼

i 1 … n, ,= σ2

Ho: µ µo=

Ha: µ µa=

X N µ σ2

n
------,

 ∼

Z n X µo–() σ⁄=

Z N µ µo– 1,()∼

Z N 0 1,()∼ for Ho

Ho Z 1 α– 2⁄()

µ µa=

Power Φ
n µo µa–()

σ------------------------------ Z1 α– 2⁄–

Φ
n µa µo–()

σ------------------------------ Z1 α 2⁄––
 +

=

140

NORMALLY DISTRIBUTED DATA
We can think of the left side of the sum as the lower power, or the power to
detect , and the right side as the upper power, or the power to detect

. Solving for n using both upper and lower power would be

difficult, but we note that when , the upper power is negligible

(< α/2) and similarly the lower power is small when . So the

equation can be simplified by using the absolute value of the difference
between and and considering only one side of the sum. This results

in the following sample size formula:

Comments

• While only one of upper power and lower power is used in deriving
the sample size formula, the S-PLUS functions for computing power
and sample size uses both the upper and lower power when
computing the power of a two-tailed test for a given sample size.

• In practice, the variance of the population is seldom known and the
test statistic is based on the t-distribution. Using the t-distribution to
derive sample size requires an iterative approach, since the sample
size is needed to specify the degrees of freedom. The difference
between the quantile value for the t-distribution versus the standard
normal is only significant when small sample sizes are required, so
the standard formula based on the normal distribution was chosen.
Keep in mind that for samples sizes less than 10, the power of a t-test
could be significantly less than the target power.

• The formula for a one-tailed test is derived along similar lines, and is
exactly the same as the two-tailed formula with the exception that

 is replaced by .

Examples The function for computing sample size for normally distributed data is
normal.sample.size. This function can be used to compute sample size,

µa µo<
µa µo>

µa µo– 0<
µa µo– 0>

µa µo

n σ Z1 α 2⁄– ZPower+()() µa µo–⁄[]2
=

Z 1 α– 2⁄() Z 1 α–()
141

CHAPTER 11 POWER AND SAMPLE SIZE
power, or minimum detectable difference and will automatically chose what
to compute based on what information is input. Here are some simple
examples:

#
one-sample case, using all the defaults
#
> normal.sample.size(mean.alt = 0.3)
 mean.null sd1 mean.alt delta alpha power n1
1 0 1 0.3 0.3 0.05 0.8 88

#
reduce output with summary
#
> summary(normal.sample.size(mean.alt = 0.3))
 delta power n1
1 0.3 0.8 88

#
upper-tail test recomputing power
#
> normal.sample.size(mean = 100, mean.alt = 105, sd1 = 10,

power = c(.8, .9, .95, .99), alt = "greater",
recompute.power = T)
 mean.null sd1 mean.alt delta alpha power n1
1 100 10 105 5 0.05 0.8037649 25
2 100 10 105 5 0.05 0.9054399 35
3 100 10 105 5 0.05 0.9527153 44
4 100 10 105 5 0.05 0.9907423 64

#
calculate power
#
> normal.sample.size(mean = 100, mean.alt = 105, sd1 = 10,
n1 = (1:5)*20)
 mean.null sd1 mean.alt delta alpha power n1
1 100 10 105 5 0.05 0.6087795 20
2 100 10 105 5 0.05 0.8853791 40
3 100 10 105 5 0.05 0.9721272 60
4 100 10 105 5 0.05 0.9940005 80
5 100 10 105 5 0.05 0.9988173 100
142

NORMALLY DISTRIBUTED DATA
#
lower-tail test, minimum detectable difference
#
> summary(normal.sample.size(mean = 100, sd1 = 10, n1 =
(1:5)*20,

power = .9, alt = "l"))
 mean.alt delta power n1
1 93.45636 -6.543641 0.9 20
2 95.37295 -4.627053 0.9 40
3 96.22203 -3.777973 0.9 60
4 96.72818 -3.271821 0.9 80
5 97.07359 -2.926405 0.9 100

See the online help files for normal.sample.size and
summary.power.table for more details.

Comparing
Means From
Two Samples

Extending this formula to two-sampled tests, is relatively easy. Given two
independent samples from normal distributions

where , we'll construct a two-sided test of equality of means

which is more conveniently written

X1 i, N µ1 σ1
2,()∼ i 1 … n1, ,=

X2 j, N µ2 σ2
2,() j∼ 1 … n2, ,=

n2 kn1=

Ho: µ1 µ2=

Ha: µ1 µ2≠

Ho: µ2 µ1– 0=

Ha: µ2 µ1– 0≠
143

CHAPTER 11 POWER AND SAMPLE SIZE
The difference of the sample means is normally distributed

which leads to the test statistic

Derivation of the two-sample formulas proceed along the same lines as the
one-sample case, producing the following formulas:

Examples:} For two-sample cases, use normal.sample.size with mean2 instead of
mean.alt:

#
Don't round sample size
#
> summary(normal.sample.size(mean2 = 0.3, exact.n = T))
 delta power n1 n2
1 0.3 0.8 174.4195 174.4195

#
round sample size, then recompute power
#
> summary(normal.sample.size(mean2 = 0.3, recompute = T))
 delta power n1 n2

X2 X1–() N µ2 µ1–
σ1

2

n1

σ2
2

n2
------+,

N µ2 µ1–
1
n1
----- σ1

2
σ2

2

k
------+

 ,

∼

∼

Z
X2 X1–

σ1
2

n1

σ2
2

n2
------+

-----------------------=

n1 σ1

σ2
2

k
------+

 Z 1 α 2⁄–() ZPower+()
µ2 µ1–

2

n2 kn1

=

=

144

NORMALLY DISTRIBUTED DATA
1 0.3 0.8013024 175 175

#
Unequal sample sizes, lower tail test
#
> normal.sample.size(mean = 100, mean2 = 94, sd1 = 15,
prop.n2 = 2,

power = 0.9, alt = "less")
 mean1 sd1 mean2 sd2 delta alpha power n1 n2 prop.n2
1 100 15 94 15 -6 0.05 0.9 81 162 2
145

CHAPTER 11 POWER AND SAMPLE SIZE
BINOMIAL DATA

One-Sample Test
of Binomial
Proportion

Another very common test is for a binomial proportion. Say we have data
sampled from a binomial distribution,

Each represents the number of `successes' observed in n Bernoulli trials,

where Pr(success) . The mean and variance of the random variable is

We wish to test the value of the parameter π, using a two-sided test.

We could use an exact binomial test, but for sufficiently large n, and if the
distribution is not too skewed, (π is not too close to 0 or 1), a normal
approximation can be used. A good rule of thumb is that the normal
distribution will be a good approximation to the binomial distribution if

When using a continuous distribution to approximate a discrete one, a
continuity correction is usually recommended; typically, a value of 1/2 is used

Xi B π n,()∼ i, 1 … n, ,=

Xi

π= X

E X() nπ=
Var X() nπ 1 π–()=

Ho: π πo=

Ha: π πa=

nπ 1 π–() 5≥
146

BINOMIAL DATA
to extend the range in either direction, so

using a binomial distribution, becomes

when using a normal approximation. If the continuity correction is
temporarily suppressed, the sample size formula is derived very much as in
the normal case:

There have been several suggestions concerning how to best incorporate a
continuity correction into the sample-size formula. The one adopted in the
S-PLUS function binomial.sample.size for a one-sample test is

Examples #
one-sample case, using all the defaults
#
> binomial.sample.size(p.alt = 0.3)
 p.null p.alt delta alpha power n1
1 0.5 0.3 -0.2 0.05 0.8 37

Pr Xl X Xu≤ ≤()

Pr Xl
1
2
---– X Xu

1
2
---+≤ ≤

n*
πo 1 πo–()Z 1 α 2⁄–() πo 1 πo–()ZPower+

πa πo–

2

=

n n
* 2

πa πo–
--------------------+=
147

CHAPTER 11 POWER AND SAMPLE SIZE
#
minimal output
#
> summary(binomial.sample.size(p.alt = 0.3))
 delta power n1
1 -0.2 0.8 37

#
compute power
#
binomial.sample.size(p = .2, p.alt = .12, n1 = 250)
 p.null p.alt delta alpha power n1
1 0.2 0.12 -0.08 0.05 0.8997619 250

Comparing
Proportions From
Two Samples

The two-sample test for proportions is a bit more involved than the others
we've looked at. Say we have data sampled from two binomial distributions

where , we'll construct a two-sided test of equality of means

which is more conveniently written

Using our best estimator of the parameter π, we can begin constructing a test

X1 i, B π1 n1,()∼ i, 1 … n1, ,=
X2 j, B π2 n2,() j,∼ 1 … n2, ,=

n2 kn1=

Ho: π1 π2=

Ha: π1 π2≠

Ho: π1 π2– 0=

Ha: π1 π2– 0≠
148

BINOMIAL DATA
statistic:

In the case where the null hypothesis is true, so , this can be

written as

Immediately a problem arises, namely, the variance needed to construct the
test statistic depends on the parameters being tested. It seems reasonable to
use all of the data available to estimate the variances, and that is exactly what
is done. A weighted average of the two estimates for the proportions is used

π1
ˆ 1

n1
----- X1 i,

i 1=

n1

∑=

π2
ˆ 1

n2
----- X2 j,

j 1=

n2

∑=

π2
ˆ π1

ˆ– N π2 π1–
π1 1 π1–()

n1

π2 1 π2–()
n2

-------------------------+,
 ∼

π2
ˆ π1

ˆ– N π2 π1–
1
n1
----- π1 1 π1–()

π2 1 π2–()
k

-------------------------+
 ,

 ∼

π2 π1 π= =

π2
ˆ π1

ˆ– N 0
π 1 π–()

n1
-------------------- 1

1
k
---+

 ,
 ∼
149

CHAPTER 11 POWER AND SAMPLE SIZE
to estimate the variance under The test statistic then is

If the null hypothesis is true, this gives . We use this to derive
the formula without continuity correction:

Applying the two-sample adjustment for a continuity correction produces the
final results

Examples #
for two-sample, use p2 instead of p.alt
#
> summary(binomial.sample.size(p2 = 0.3))
 delta power n1 n2
1 -0.2 0.8 103 103

#
Don't round sample size and don't use continuity
correction
#

Ho

π
n1π̂1 n2π̂2+

n1 n2+

π̂1 kπ̂2+
1 k+

--------------------= =

Z
π̂2 π̂1–

π 1 π–() 1
n1

1
n2
-----+

--=

Z N 0 1,()∼

n1
*

π1 1 π1–()
π2 1 π2–()

k
-------------------------+ ZPower π 1 π–() 1

1
k
---+

 Z1 α 2⁄–+

π2 π1–

2

=

n1 n1
* k 1+

k π2 π1–

n2

+

kn1

=

=

150

BINOMIAL DATA
> summary(binomial.sample.size(p2 = 0.3, exact.n = T,
correct = F))
 delta power n1 n2
1 -0.2 0.8 92.99884 92.99884

#
round sample size, then recompute power
#
> summary(binomial.sample.size(p2 = 0.3, recompute = T))
 delta power n1 n2
1 -0.2 0.8000056 103 103

#
Unequal sample sizes, lower tail test
#
> binomial.sample.size(p = .1, p2 = .25, prop.n2 = 2, power
= 0.9, alt = "less")
 p1 p2 delta alpha power n1 n2 prop.n2
1 0.1 0.25 0.15 0.05 0.9 92 184 2

#
Compute minimum detectable difference (delta) given
sample size
and power.
#
> binomial.sample.size(p = .6, n1 = 500, prop.n2 = .5, power
= c(.8, .9, .95))
 p1 p2 delta alpha power n1 n2 prop.n2
1 0.6 0.7063127 0.1063127 0.05 0.80 500 250 0.5
2 0.6 0.7230069 0.1230069 0.05 0.90 500 250 0.5
3 0.6 0.7367932 0.1367932 0.05 0.95 500 250 0.5

#
compute power
#
> binomial.sample.size(p = 0.3, p2 = seq(0.31, 0.35,
by=0.01),
 n1 = 1000, prop.n2 = 0.5)
 p1 p2 delta alpha power n1 n2 prop.n2
1 0.3 0.31 0.01 0.05 0.06346465 1000 500 0.5
2 0.3 0.32 0.02 0.05 0.11442940 1000 500 0.5
151

CHAPTER 11 POWER AND SAMPLE SIZE
3 0.3 0.33 0.03 0.05 0.20446778 1000 500 0.5
4 0.3 0.34 0.04 0.05 0.32982868 1000 500 0.5
5 0.3 0.35 0.05 0.05 0.47748335 1000 500 0.5

References Rosner, Bernard (1990). Fundamentals of Biostatistics (Third Edition).
PWS-Kent, Boston.

Fisher, Lloyd D. and Van Belle, Gerald (1993). Biostatistics. Wiley,
New York.

Fleiss, Joseph L. (1981). Statistical Methods for Rates and Proportions. Wiley,
New York.
152

1

3

6

2

OVERVIEW OF THE ROBUST REGRESSION METHOD 151
Key Robustness Features of the Method 151
The Essence of the Method: a Special M-Estimate 15
Using the lmRobMM Function to Obtain a Robust Fit 152
Comparison of Least Squares and Robust Fits 15
Robust Model Selection 153

COMPUTING LEAST SQUARES AND ROBUST FITS 154
Computing a Least Squares Fit 154
Computing a Robust Fit 155
Least Squares vs. Robust Fitted Model Objects 15

VISUALIZING AND SUMMARIZING THE ROBUST FIT 157
Visualizing the Fit with the plot Function 157
Statistical Inference with the summary Function 159

COMPARING LEAST SQUARES AND ROBUST FITS 162
Creating a Comparison Object for LS and Robust Fits 16
Visualizing LS vs. Robust Fits 162
Statistical Inference for LS vs. Robust Fits 164

ROBUST MODEL SELECTION 166
Robust F and Wald Tests 166
Robust FPE Criterion 167

CONTROLLING OPTIONS FOR ROBUST REGRESSION 169
Efficiency at Gaussian Model 169
Alternative Loss Function 169
Confidence Level of Bias Test 171
Resampling Algorithms 173
Random Resampling Parameters 173
Genetic Algorithm Parameters 174

THEORETICAL DETAILS 175
Initial Estimate Details 175
Optimal and Bisquare Rho and Psi-Functions 176
The Efficient Bias Robust Estimate 177
Efficiency Control 177

ROBUST LINEAR REGRESSION 12
153

CHAPTER 12 ROBUST LINEAR REGRESSION
Robust R-Squared 177
Robust Deviance 179
Robust F Test 179
Robust Wald Test 179
Robust FPE (RFPE) 179
Appendix 180

ROBUST MM REGRESSION 182
BIBLIOGRAPHY 194
154

OVERVIEW OF THE ROBUST REGRESSION METHOD
OVERVIEW OF THE ROBUST REGRESSION METHOD

This section provides you with an overview of the tools at your disposal for
computing a modern robust linear regression model in S-PLUS, including
robust inference for coefficients and robust model selection. You find out
how to use the robust regression tools in detail in the sections that follow.

Key
Robustness
Features of the
Method

You will learn how to fit a linear model using a modern robust method that
has the following general features:

• In data-oriented terms, the robust fit is minimally influenced by
outliers in the independent variables space, in the response
(dependent variable) space, or in both.

• In probability-oriented terms, the robust fit minimizes the
maximum possible (large sample size) coefficients estimate bias due
to a non-Gaussian contamination distribution model which
generates outliers, subject to achieving a desired (large sample size)
coefficient estimates efficiency when the data has a Gaussian
distribution.

• The statistical inference produced by the fit is based on large sample
size approximations for such quantities as standard errors and “t-
statistics” of coefficients, R-squared values, etc.

For further information read the section Theoretical Details below.

The Essence of
the Method: a
Special M-
Estimate

You are fitting a general linear model of the form

with p-dimensional independent predictor (independent) variables xi and

coefficients , and scalar response (dependent) variable yi. S-PLUS

computes a robust M-estimate which minimizes the objective function

y x i ni i
T

i= + =β ε , 1, ,L

β

β̂

ρ
βy x

s
i i

T

i

n −

=

∑ $1
155

CHAPTER 12 ROBUST LINEAR REGRESSION

hai
).

d
where is a robust scale estimate for the residuals and is a particular
optimal symmetric bounded loss function, described in the Theoretical Details
section. The shape of this optimal function is shown in Figure 4 below.

Alternatively is a solution of the estimating equation

Alternatively is a solution

where is a redescending (non-monotonic) function.

A key issue is that since is bounded, it is non-convex, and the minimization
above can have many local minima. Correspondingly, the estimating
equation above can have multiple solutions. S-PLUS deals with this by

computing highly robust inital estimates and with breakdown point
0.5, using the S-estimate approach described in the Theoretical Details

section, and computes the final estimate as the local minimum of the M-
estimate objective function nearest to the initial estimate. We refer to an M-
estimate of this type and computed in this special way as an MM-estimate, a
term introduced by Yohai (1987).1

S-PLUS also provides for an automatic choice between the initial and final
estimates based on evaluating the potential bias of the final estimate.

Using the
lmRobMM
Function to
Obtain a
Robust Fit

You will compute a robust regression fit using the lmRobMM function. The
resulting robustly fitted model object is almost identical in structure to a least
squares fitted model object returned by lm, i.e., you will get most of the same
fitted model components, such as coefficient standard errors and t-statistics,
etc.

1. The theory for this new robust method is based on Rousseeuw and Yo
(1984), Yohai, Stahel, and Zamar (1991), and Yohai and Zamar (1998
The code is based on the ROBETH library of Alfio Marazzi, with addi-
tional work by R. Douglas Martin, Douglas B. Clarkson, and Jeffrey
Wang of MathSoft, partially supported by an SBIR Phase I grant entitle
"Usable Robust Methods" funded by the National Institutes of Health.

ŝ ρ

β̂

β̂x
y x

si
i i

T

i

n

ψ
β−

 =

=
∑

$

$1

0

ψ ρ′=

ρ

β̂ ŝ

β̂

156

OVERVIEW OF THE ROBUST REGRESSION METHOD
Comparison of
Least Squares
and Robust
Fits

In order to facilitate comparison of least squares and robust fits of a linear
regression model, you use a special function to create an object with the
relevant information from the least squares and robust fits, e.g.,
t-statistics, residuals, etc. You then use this object as arguments to the
usual S-PLUS printing, summarizing and plotting functions to get tabular
and graphical displays in a form that makes it easy for you to compare the
results of the least squares and robust fits.

Robust Model
Selection

It is not enough for you to use a robust linear model fitting method when
you are trying to decide which of several alternative models to use, based on
alternative sets of predictor variables. You also need a robust model selection
criterion. To this end, you may use one of the following three robust model
selection criteria: robust F-test, robust Wald test, and robust FPE (RFPE)
criterion.
157

CHAPTER 12 ROBUST LINEAR REGRESSION
COMPUTING LEAST SQUARES AND ROBUST FITS

Computing a
Least Squares
Fit

The S-PLUS data frame oil.df contains monthly excess returns on the
stocks of Oil City Petroleum, Inc. from April 1979 to December 1989 and
the monthly excess returns of the market of the same period. “Returns” are
defined as the relative change in the price of the stock over a one-month
interval, and “excess” means relative to the monthly return at the risk-free
rate of a 90-day U.S. Treasury bill.

The scatter plot of the data is shown in Figure 1. Obviously there is one big
outlier in the data.

Financial economists usually use LS to fit a straight line to a particular stock

Figure 12.1: LS Fit and Robust Fit of oil.df

Market Returns

O
il

C
ity

 R
et

ur
ns

-0.2 -0.1 0.0

0
1

2
3

4
5

oil.robust
oil.ls
158

COMPUTING LEAST SQUARES AND ROBUST FITS
return and the market return, and the estimated coefficient of the market
return is called the “beta”, which measures the riskiness of the stock in terms
of standard deviation and the expected returns. The larger the beta, the more
risky the stock is compared with the market, but the larger the expected
returns.

For comparison purposes, first fit an LS model to the data as follows:

> oil.ls <- lm(Oil~Market,data=oil.ls)

and print a short summary of the fitted model:

> oil.ls
Call:
lm(formula = Oil ~ Market, data = oil.df)

Coefficients:
 (Intercept) Market
 0.1474486 2.85674

Degrees of freedom: 129 total; 127 residual
Residual standard error: 0.4866656

Computing a
Robust Fit

To obtain a robust fit, you use the lmRobMM function just like the lm
function:

> oil.robust <- lmRobMM(Oil~Market,data=oil.df)

> oil.robust
Final M-estimates.

Call:
lmRobMM(formula = Oil ~ Market, data = oil.df)

Coefficients:
 (Intercept) Market
 -0.08395777 0.8288791

Degrees of freedom: 129 total; 127 residual
Residual scale estimate: 0.1446283

Obviously, the robust estimate of beta is dramatically different from the LS
estimate. According to the LS method, the beta of this stock is 2.857, which
159

CHAPTER 12 ROBUST LINEAR REGRESSION
implies that the stock is 2.857 times as volatile as the market, and has about
2.857 times the expected return. The robust estimate of beta is 0.829, which
implies that the stock has somewhat less volatility and expected return than
the market.

Also note that the robust scale estimate is 0.14, whereas the scale estimate
from LS is 0.49. The LS scale estimate is based on the sum of squared
residuals and thus considerably inflated by the presence of outliers in the
data.

Least Squares
vs. Robust
Fitted Model
Objects

The object returned by the lm function for LS fit is of class "lm":

> class(oil.ls)
[1] "lm"

On the other hand, the object returned by lmRobMM is of class "lmRobMM":

> class(oil.robust)

[1] "lmRobMM"

Just as with an object of class “lm”, you can easily visualize, print and
summarize robust fit objects of class “lmRobMM” using the generic functions
plot, print and summary.
160

VISUALIZING AND SUMMARIZING THE ROBUST FIT
VISUALIZING AND SUMMARIZING THE ROBUST FIT

Visualizing the
Fit with the
plot Function

For a simple linear regression, you can easily see outliers in the scatter plot, as
in the above example. However, in multiple regression it is not so easy to tell
if there are some outliers in the data, and what the outliers are. Nonetheless,
S-PLUS makes it easy for you to visualize the outliers in a multiple
regression. To illustrate this point, let us use the well known “stack loss” data
set.

The S-PLUS product includes the stack loss data set which has been analyzed
by a large number of statisticians. The stack loss in this data set is the percent
loss (times 10) of ammonia during 21 days of operation. The ammonia is lost
during the process of producing nitric acid by dissolving the ammonia in
water. Three variables—air flow, water temperature, and acid
concentration—may influence the loss of ammonia. The stack loss response
data is contained in the vector stack.loss, and the three independent
variables are contained in the matrix stack.x.

First, you combine the response and independent variables into a data frame
stack.df:

> stack.df <- data.frame(Loss=stack.loss,stack.x)

Then you compute an LS fit object stack.ls:

> stack.ls <- lm(Loss ~ Air.Flow + Water.Temp + Acid.Conc.,
+ data =stack.df)

and finally compute a robust fit object stack.robust:

> stack.robust <- lmRobMM(Loss ~ Air.Flow + Water.Temp +
+ Acid.Conc., data =stack.df)

Now you use the plot function to visualize the fit:

> plot(stack.robust)
Make a plot selection (or 0 to exit):

1: plot: All
2: plot: Residuals vs Fitted Values
3: plot: Sqrt of abs(Residuals) vs Fitted Values
4: plot: Response vs Fitted Values
5: plot: Normal QQplot of Residuals
6: plot: r-f spread plot
161

CHAPTER 12 ROBUST LINEAR REGRESSION
Selection:

Note that Cook's distance is not currently available when a robust method is
used.

Now you can compare the plot of residuals versus fitted values for both the
LS fit and the robust fit using the following commands:

> par(mfrow=c(2,1))

> plot(stack.ls,which.plots=1)

> plot(stack.robust,which.plots=1)

Figure 2 shows those two plots. As you can see, the robust fit pushes the
outliers further away from the majority of the data, so that you can more
easily identify the outliers.
162

VISUALIZING AND SUMMARIZING THE ROBUST FIT
Statistical
Inference with
the summary
Function

The generic summary function provides you with the usual kinds of inference
output, e.g., t-values and p-values along with some additive and useful
information, including tests for bias. For example, to obtain more
information about the robust fit oil.robust, use summary on this object:

> summary(oil.robust)

Final M-estimates.

Figure 12.2: Residuals vs. Fitted Values: Stack Loss Data

Fitted : Air.Flow + Water.Temp + Acid.Conc.

R
es

id
ua

ls

10 20 30 40

-6
-4

-2
0

2
4

6

3

4

21

LS Fit

Fitted : Air.Flow + Water.Temp + Acid.Conc.

R
es

id
ua

ls

10 15 20 25 30 35

-5
0

5

3

4

21

Robust Fit
163

CHAPTER 12 ROBUST LINEAR REGRESSION
Call: lmRobMM(formula = Oil ~ Market, data = oil.df)

Residuals:
 Min 1Q Median 3Q Max
 -0.4566 -0.08875 0.03082 0.1031 5.218

Coefficients:
 Value Std. Error t value Pr(>|t|)
(Intercept) -0.0840 0.0281 -2.9929 0.0033
 Market 0.8289 0.2834 2.9245 0.0041

Residual scale estimate: 0.1446 on 127 degrees of freedom
Proportion of variation in response explained by model:
0.05261

Test for Bias
 Statistics P-value
 M-estimate 2.16 0.3398475
LS-estimate 22.39 0.0000138

Correlation of Coefficients:
 (Intercept)
Market 0.8169

The seed parameter is : 1313

First note the standard errors, the t-values, and the p-values of the
coefficients. The standard errors are computed from the robust covariance
matrix of the estimates. For technical details about the computation of robust
covariance matrix, refer to Yohai, Stahel and Zamar (1991).

Second, the summary method provides another piece of useful information:
the “Proportion of variation in response explained by model”, usually known
as R2. S-PLUS calculates a robust version of R2. The details of how the
robust R2 is calculated can be found in the section Theoretical Details of the
Robust Regression Method.

Finally, there is a “Test for Bias” section in the summary. This section
provides the test statistics of the bias of the final M-estimates and the LS
estimates against the initial S-estimates. In this case, the test for bias of the
final M-estimates yields a p-value of 0.33, which suggests that the bias of the
final M-estimates relative to the initial S-estimates is not significant at the
usual level. That is why the “Final M-estimates” is reported in the first line of
its summary output instead of the initial S-estimates. The test for bias of the
164

VISUALIZING AND SUMMARIZING THE ROBUST FIT
LS estimates relative to the S-estimates yields a p-value of 0, which indicates
that the LS estimate is highly biased, so you strongly prefer to use the robust
MM-estimator.

For technical details about how the tests for bias are calculated, see Yohai,
Zamar and Stahel (1991).
165

CHAPTER 12 ROBUST LINEAR REGRESSION
COMPARING LEAST SQUARES AND ROBUST FITS

Creating a
Comparison
Object for LS
and Robust
Fits

In the section Visualizing the Fit with the plot Function, we compared the
residuals vs. fitted values plot for both the LS and robust fits. You might have
noted that the two plots do not have the same vertical scale. It would be nice
to have the capability of plotting different fits on the same scale for easy
visual comparison and also making tabular displays of LS and robust fits
which are conveniently aligned for ease of comparing inference results. To
this end S-PLUS provides a function compare.fits, for creating a models
comparison object, along with appropriate print, plot and summary
methods for this class of object.

For example, to compare the results from the two fits oil.ls and
oil.robust, first create the comparison object oil.cmpr with the following
command:

> oil.cmpr <- compare.fits(oil.ls,oil.robust)

The object returned by compare.fits is of class “compare.fits”. Now
you can print a short summary of the comparison:

> oil.cmpr

Calls:
 oil.ls lm(formula = Oil ~ Market, data = oil.df)
oil.robust lmRobMM(formula = Oil ~ Market, data = oil.df)

Coefficients:
 oil.ls oil.robust
(Intercept) 0.1474 -0.08396
 Market 2.8567 0.82888

Residual Scale Estimates:
 oil.ls : 0.4867 on 127 degrees of freedom
oil.robust : 0.1446 on 127 degrees of freedom

Visualizing LS
vs. Robust Fits

You can easily plot a compare.fits object to obtain a visual comparison of
the LS and robust fits:

> plot(oil.cmpr)
166

COMPARING LEAST SQUARES AND ROBUST FITS
Make a plot selection (or 0 to exit):

1: Normal QQ-Plots of Residuals
2: Estimated Densities of Residuals
3: Residuals vs Fitted Values
4: Response vs Fitted Values
Selection:

For example, the normal QQ-plot and estimated densities for oil.cmpr are
shown in Figure 3. The densities of residuals are estimated using a kernel type
density estimate. For a good model fit, the probability density estimates for
the residuals will be centered at zero and nearly as narrow as possible. Figure
3 shows that the density of residuals from the LS estimate is shifted to the left
of the origin, whereas that of the robust fit is well centered. Furthermore, the
outlier bumps in the residual density estimates for the MM-estimator are
pushed further from the mode of the density, and thus are a little more
pronounced than those for the LS estimates (because there is one big outlier
in the data).
167

CHAPTER 12 ROBUST LINEAR REGRESSION
.

Statistical
Inference for
LS vs. Robust
Fits

A more detailed comparison, particularly comparison of t-values and p-
values, can be obtained using the generic summary function on a
“compare.fits” object. For example:

> summary(oil.cmpr)

Calls:
 oil.ls lm(formula = Oil ~ Market, data = oil.df)

Figure 12.3: Sample Plots of oil.cmpr

-2 -1 0 1 2

0
1

2
3

4
5

oil.ls oil.robust

-1 0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

oil.ls oil.robust
168

COMPARING LEAST SQUARES AND ROBUST FITS
oil.robust lmRobMM(formula = Oil ~ Market, data = oil.df)

Residual Statistics:
 Min 1Q Median 3Q Max
 oil.ls -0.6952 -0.17323 -0.05444 0.08407 4.842
oil.robust -0.4566 -0.08875 0.03082 0.10314 5.218

Coefficients:
 oil.ls
 Value Std. Error t value Pr(>|t|)
(Intercept) 0.1474 0.07072 2.085 0.0390860
 Market 2.8567 0.73175 3.904 0.0001528

oil.robust
 Value Std. Error t value Pr(>|t|)
(Intercept) -0.08396 0.02805 -2.993 0.003321
 Market 0.82888 0.28342 2.925 0.004087

Residual Scale Estimates:
 oil.ls : 0.4867 on 127 degrees of freedom
oil.robust : 0.1446 on 127 degrees of freedom

Proportion of variation in response(s) explained by
model(s):
 oil.ls : 0.1071
oil.robust : 0.05261

Correlations:
 oil.ls
 Market
(Intercept) 0.7955736

oil.robust
 Market
(Intercept) 0.8168693

CCCCaaaavvvveeeeaaaatttt: When the final M-estimate is not used, i.e., p-values of test for bias
indicates that the final M-estimate is highly biased relative to the initial S-
estimates, the asymptotic approximations for the inference may not be very
good and you should not trust them very much.
169

CHAPTER 12 ROBUST LINEAR REGRESSION
ROBUST MODEL SELECTION

Robust F and
Wald Tests

Another important part of statistical inference is hypothesis testing. S-PLUS
provides two robust tests for testing whether or not some of the regression
coefficients are zero: the robust Wald test and the robust F test. For technical
details on how these tests are computed, see the “Theoretical Details of the
Robust Regression Method” below. Before proceeding, you will first create the
data frame simu.dat:

> simu.dat <- gen.data(1:3)

where the function gen.data is provided in the appendix. This function
generates a data frame with five columns: y, x1, x2, x3 and x4. The variable y
is generated according to the following equation:

where is given by 1:3 in the above S-PLUS command, and u is

sampled from a N(0,3) family with 10% contamination. The term x4 is
independent of y, x1, x2 and x3. First, you fit a model with x1, x2, x3 and x4
as the predictor variables:

> simu.mm4 <- lmRobMM(y~x1+x2+x3+x4-1, data=simu.dat)

To test the hypothesis that the coefficient of x4 is actually zero, you can fit
another model with only x1, x2 and x3 as the predictor variables, then use
anova to test the significance of the coefficient of x4:

> simu.mm3 <- update(simu.mm4,.~.-x4)

> anova(simu.mm4,simu.mm3)

Response: y
 Terms Df Wald P(>Wald)
1 x1 + x2 + x3 + x4 - 1
2 x1 + x2 + x3 - 1 1 0.04436687 0.8331725

The p-value in this case is greater than 0.8, which leads you to accept the null
hypothesis that the fourth coefficient value is zero.

The default test used by anova is the Wald test based on robust estimates of
the coefficients and covariance matrix (a robust Wald test). To use the robust
F test instead, specify the optional argument test to anova:

y b1x1 b2x2 b3x3 u+ + +=

b1 b2 b3, ,
170

ROBUST MODEL SELECTION
> anova(simu.mm4,simu.mm3,test="RF")

Response: y
 Terms Df RobustF P(>RobustF)
1 x1 + x2 + x3 + x4 - 1
2 x1 + x2 + x3 - 1 1 0.03374514 0.8507404

which gives a quite similar result to that of the robust Wald test.

Robust FPE
Criterion

Although many robust estimators have been constructed in the past, the issue
of robust model selection has not received its due attention. For robust model
selection, S-PLUS provides Robust Final Prediction Errors (RFPE) as a
criterion, which is a robust analogue to the classical Final Prediction Errors
(FPE) criterion. RFPE is defined as:

where is the final M-estimate of , ’s are the values you are trying

to predict using , and the expectation is taken with respect to both

and ’s. When considering a variety of model choices with respect to

different choices of predictor variables, you choose the model with the
smallest value of RFPE.

Note that when , RFPE reduces to the classical FPE. RFPE can
also be shown to be asymptotically equivalent to the robust version of AIC
proposed by Ronchetti (1985). The section Theoretical Details of the Robust
Regression Method provides a sketch of technical details supporting the use of
RFPE.

The RFPE criterion is used as the robust method, invoked by use of the
generic functions, of drop1 and add1. For example, use of drop1 on the
robustly fitted model simu.mm4 in the previous section gives:

> drop1(simu.mm4)
Significant test at level 10 %.

for x3

RFPE E
y xi i

T

i

n

=
−

=
∑ ρ

β
σ

 (),
* ()1

1

β 1() β yi
∗

β 1() β 1()

yi
∗

ρ u() u
2=
171

CHAPTER 12 ROBUST LINEAR REGRESSION
Single term deletions

Model:
y ~ x1 + x2 + x3 + x4 - 1
 Df RFPE
<none> 24.24174
 x1 1 24.46596
 x2 1 52.19800
 x3 1 64.32633
 x4 1 23.95825

The output indicates that dropping x4 gives a better model.

You can also use add1 to explore the relevance of other variables. For
example, if you fit simu.mm3 first, you can use the following command to
investigate if x4 helps predict y:

> add1(simu.mm3,"x4")
Single term additions

Model:
y ~ x1 + x2 + x3 - 1
 Df RFPE
<none> 24.10184
 x4 1 24.38769

Since addition of x4 causes RFPE to increase, addition of x4 results in a poor
model.

CCCCaaaavvvveeeeaaaatttt: If the test for bias of final M-estimates is significant for any of the
models considered by drop1 and add1, you should not trust the
corresponding RFPE very much.
172

CONTROLLING OPTIONS FOR ROBUST REGRESSION
CONTROLLING OPTIONS FOR ROBUST REGRESSION

In this subsection, you will learn how to change the default settings of some
control parameters for the MM-estimator so as to obtain particular estimates
that fit your purpose. Most of the default settings can be changed through
the functions lm.robust.control and lm.genetic.control. Only the
commonly used control parameters are introduced in this section. For the
default settings of other parameters and how to change them, see the online
help file for lm.robust.control and lm.genetic.control.

Efficiency at
Gaussian
Model

If the final M-estimates are accepted, they have a default asymptotic
efficiency of 85% compared with the LS estimates, when the errors are
normally distributed.

Sometimes an asymptotic efficiency of 85% may not be what you exactly
want. To change the efficiency of the final M-estimates, the lmRobMM
optional argument robust.control should be generated from
lmRobMM.robust.control with desired efficiency:

> oil.tmp <- lmRobMM(Oil~Market,data=oil.df,
+ robust.control=lmRobMM.robust.control(efficiency=0.95))

> coef(oil.tmp)
 (Intercept) Market
 -0.07398806 0.8491126

Alternative
Loss Function

As mentioned in the introduction, the final M-estimates are based on the
initial S-estimates of regression coefficients and scale parameter. For both the
initial S-estimate and the final M-estimate, S-PLUS uses a loss function for
the estimation. Two different loss functions are available in S-PLUS: Tukey's
bisquare function and the optimal loss function recently discovered by Yohai
and Zamar (1998). Figure 4 shows the Tukey bisquare function on the left
173

CHAPTER 12 ROBUST LINEAR REGRESSION
and the optimal loss function on the right.

The exact forms of these functions can be found in the Theoretical Details
section.

Since the optimal loss function above has better combined Gaussian
efficiency and non-Gaussian bias control properties, it is used as the default
for robust regression. However, you can choose to use the Tukey bisquare
function or a combination of those two functions by controlling the weight
argument to lmRobMM.robust.control as follows:

> control <- lmRobMM.robust.control(weight=c(“Bisquare”,
+ “Optimal”))

Figure 12.4: Available Loss Functions

Bisquare (Rho)

-4 -2 0 2 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Optimal (Rho)

-4 -2 0 2 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Bisquare (Psi)

-4 -2 0 2 4

-2
-1

0
1

2

Optimal (Psi)

-4 -2 0 2 4

-2
-1

0
1

2

174

CONTROLLING OPTIONS FOR ROBUST REGRESSION
> oil.tmp <- lmRobMM(Oil~Market,data=oil.df,
+ robust.control=control)

> coef(oil.tmp)
 (Intercept) Market
 -0.08371818 0.8291069

In the above commands, the rescaled bisquare function is used for the initial
S-estimates, and the optimal loss function is used for the final M-estimates.

Confidence
Level of Bias
Test

In the oil.robust example shown above, the final M-estimates are accepted
over the initial S-estimates because the p-value of the test for bias is 0.33. The
default level of this test is set at 10%, so whenever the p-value of the test is
greater than 10%, the final M-estimates are returned; otherwise, the initial S-
estimates are returned.

To change the level of the test for bias of the final M-estimates to a different
value, you should specify the argument level for the
lmRobMM.robust.control function. A higher value of level will reject the
final M-estimates more often, and a lower value of level will reject the final
M-estimates less often. For example, you can force the procedure to return
the initial S-estimates by using the following commands:

> control.s <- lmRobMM.robust.control(level=1)

> oil.s <- lmRobMM(Oil~Market,data=oil.df,
+ robust.control=control.s)
Significant test at level 100 %
> oil.s
Initial S-estimates.

Call:
lmRobMM(formula = Oil ~ Market, data = oil.df,

robust.control = control.s)

Coefficients:
 (Intercept) market
 -0.06244374 0.8273216

Degrees of freedom: 129 total; 127 residual
Residual scale estimate: 0.1446283
175

CHAPTER 12 ROBUST LINEAR REGRESSION
WWWWaaaarrrrnnnniiiinnnngggg: The bias is high; inference based on final estimates is not
recommended; use initial estimates as exploratory tools.

CCCCaaaavvvveeeeaaaatttt:::: The above warning is only relevant when you use levels in the range
of 1% to 10%, and the choice of level in this range is a rather subjective
choice of the user.

Similarly, using level=0 forces lmRobmm to return the final M-estimates:

> control.mm <- lmRobMM.robust.control(level=0)

> oil.mm <- lmRobMM(Oil ~ Market, data = oil.df,
+ robust.control = control.mm)

Sometimes you may want to change the level of the test after fitting a robust
regression model. For this purpose, you can use the generic function update,
which has a method for "lmRobMM" objects. For example, to change the level
of test for bias for oil.s, use the following command:

> oil.tmp <- update(oil.s,level=0.2)

> oil.tmp
Final M-estimates.

Call:
lmRobMM(formula = Oil ~ Market, data = oil.df,
 robust.control = control.s)

Coefficients:
 (Intercept) Market
 -0.08395777 0.8288791

Degrees of freedom: 129 total; 127 residual
Residual scale estimate: 0.1478398

Now the final M-estimates are returned. Also, if both the formula and the
level arguments are missing for update, the function alternates between the
initial S-estimates and final M-estimates.

Note: If you only want to compute the S-estimates and do not care about the
final M-estimates, you can do so by specifying the estim argument to
lmRobMM.robust.control as follows:

> control.s <- lmRobMM.robust.control(estim="S")

> oil.s <- lmRobMM(Oil ~ Market, data = oil.df,
+ robust.control = control.s)
176

CONTROLLING OPTIONS FOR ROBUST REGRESSION
> oil.s
Initial S-estimates.

Call:
lmRobMM(formula = Oil ~ Market, data = oil.df,
 robust.control = control.s)

Coefficients:
 (Intercept) Market
 -0.06244374 0.8273216

Degrees of freedom: 129 total; 127 residual
Residual scale estimate: 0.1446283

Similarly, you can get the final M-estimates if you use estim=“MM”.

Resampling
Algorithms

When computing the initial S-estimates, a resampling scheme is used. S-
PLUS provides three resampling algorithms for the initial S-estimates:
random resampling, exhaustive resampling and genetic algorithm. These
algorithms can be selected by using the sampling argument to the function
lmRobMM.robust.control, for which the valid choices are "Random",
"Exhaustive" and "Genetic". Note that exhaustive resampling is only
used/recommended when the sample size is small and there are less than 10
predictor variables.

Random
Resampling
Parameters

Random resampling is controlled by two paramemters: a random seed and
the number of subsamples to draw. By default, the number of subsamples is

set at , where p is the number of explanatory variables, and []
denotes the operation of rounding a number to its closest integer. Note that
this number will work fine if you have less than 13 predictor variables.
However, if you have more than 13 predictor variables, the default number
may be too big for computing in a reasonable time. To choose a different
value for the number of subsamples to draw, use the optional argument nrep
as follows:

> oil.tmp <- lmRobMM(Oil~Market,data=oil.df,nrep=10)

The seed of the random resampling can be controlled by specifying the
argument seed to lmRobMM.robust.control.

4.6 2
p⋅[]
177

CHAPTER 12 ROBUST LINEAR REGRESSION
Genetic
Algorithm
Parameters

If you choose to use the genetic algorithm, the parameters for genetic
algorithm can be changed through the lmRobMM optional argument
genetic.control, the default of which is NULL. The optional argument
genetic.control should be a list, usually returned by a call to the function
lmRobMM.genetic.control. To look at the arguments of the function
lmRobMM.genetic.control, use the following command:

> args(lmRobMM.genetic.control)
function(popsize = NULL, mutate.prob = NULL, random.n =
NULL, births.n = NULL, stock = list(), maxslen = NULL,
stockprob = NULL, nkeep = 1)

For an explanation of the various arguments above, you should read the help
file for the function ltsreg.default.
178

THEORETICAL DETAILS
THEORETICAL DETAILS

Initial
Estimate
Details

The key to obtaining a good local minimum of the M-estimation objective
function when using a bounded, non-convex loss function is to compute a

highly robust initial estimate . S-PLUS does this by using the S-estimate
method introduced by Rousseeuw and Yohai (1984), as part of an overall
MM-estimate computational strategy proposed by Yohai, Stahel and Zamar
(1991), and supported by a number of robustness experts who participated in
the 1989 IMA summer conference on “Directions in Robust Statistics and
Diagnostics”.

The S-estimate approach has as its foundation an M-estimate of an
unknown scale parameter for observations , assumed to be
robustly centered (i.e., by subtracting a robust location estimate). The
M-estimate is obtained by solving the equation

where is a symmetric, bounded function. It is known that such a scale
estimate has a breakdown point of one-half (Huber, 1981), and that one can
find min-max bias robust M-estimates of scale (Martin and Zamar, 1989,
1993).

The following regression S-estimate method was introduced by Rousseeuw
and Yohai (1984). Consider the linear regression model modification of
(3.7):

For each value of we have a corresponding robust scale estimate .
The regression S-estimate (which stands for “minimizing a robust scale

(12.1)

(12.2)

β0

$s
y y yn1 2, ,...,

$s

1
5

1n

y

s
i

i

n

ρ
$

 =

=
∑ .

ρ

1
5

1n p

y x

s
i i

T

i

n

−
−

 =

=
∑ ρ

β
β$()

 .

β $()s β
179

CHAPTER 12 ROBUST LINEAR REGRESSION
estimate”) is the value that minimizes :

This presents another non-linear optimization, one for which the solution is
traditionally found by a random resampling algorithm, followed by a local
search, as described in Yohai, Stahel and Zamar (1991). S-PLUS allows you
to use a genetic algorithm in place of the resampling algorithm, and also to
use an exhaustive form of sampling algorithm for small problems. Once the

initial S-estimate is computed, the final M-estimate is obtained as the
nearest local minimum of the M-estimate objective function.

For details on the numerical algorithms used, see Marazzi (1993), whose
algorithms, routines and code were used in creating lmRobMM.

Optimal and
Bisquare Rho
and Psi-
Functions

A robust M-estimate of regression coefficient is obtained by minimizing

where is a convex weight function of the residuals with tuning

constant c. The derivative of is usually denoted by . For
both the initial S-estimate and the final M-estimate in S-PLUS, two different
weight functions can be used: Tukey's bisquare function and an optimal
weight function introduced in Yohai and Zamar (1998).

Tukey's bisquare functions and are as follows:,

.

The Yohai and Zamar optimal functions and are as follows:

(12.3)

$β 0 $()s β

$ arg m in $ ()β ββ
0 = s

$β 0

β

ρ
β

σ(;),
y x

ci i
T

i

n −

=
∑

1

ρ(;)⋅ c
ρ(;)⋅ c ψ(;)⋅ c

ρ(;)⋅ c ψ(;)⋅ c

ρ(;)
() () ()

r c
r

c

r

c

r

c
r c

r c

 if

 if
= − + ≤

>

6 4 23 3

1

ψ (;)
() () ()

r c c

r

c c

r

c c

r

c
r c

r c

 if

 i f
= − + ≤

>

6 12 6

1

3 5

ρ(;)⋅ c ψ(;)⋅ c
180

THEORETICAL DETAILS
where , , , , and

, , , .

The Efficient
Bias Robust
Estimate

Yohai and Zamar (1998) showed that the and functions given above are
optimal in the following highly desirable sense: the final M-estimate has a
breakdown point of one-half, and minimizes the maximum bias under
contamination distributions (locally for small fractions of contamination),
subject to achieving a desired efficiency when the data is Gaussian.

Efficiency
Control

The Gaussian efficiency of the final M-estimate is controlled by the choice of
the tuning constant c. As discussed in the earlier sections, you can specify a
desired Gaussian efficiency and S-PLUS will automatically use the correct c
for achieving that efficiency.

Robust R-
Squared

The robust R2 is calculated as follows:

ρ(;)

.

[. () () () ()]r

 if

 if

 if

c

c
r

c

c h
r

c
h

r

c
h

r

c
h

r

c

r

c
r r

c

=

>

+ + + + < ≤

≤

325 3

1792 2 3

2
2

2

2
1

2
2

4
3

6
4

8

2

ψ(;) [() () ()]r

 if

 if

 if

c

r

c

c g
r

c
g

r

c
g

r

c
g

r

c

r

c

r
r

c

=

>

+ + + < ≤

≤

0 3

2 3

2

1 2
3

3
5

4
7

g1 1944= − . g2 1728= . g3 0 312= − . g4 0 016= .

h
g

1
1

2
= h

g
2

2

4
= h

g
3

3

6
= h

g
4

4

8
=

ρ ψ
181

CHAPTER 12 ROBUST LINEAR REGRESSION
Initial S-Estimator

If an intercept term is included in the model, then

where and is the minimized , for a regression model with

only an intercept term with parameter . If there is no intercept term,

replace in the above formula with .

Final M-Estimator

If an intercept term is included in the model, then

where is the location M-estimate corresponding to the local minimum of

such that

where is the sample median estimate. If there is no intercept, replace
with zero in the formula.

β̂
0

R
2 n 1–()sy

2
n p–()se

2–

n 1–()sy
2

--=

se ŝ
0

= sy ŝ µ()
µ

n 1–()sy
2

nŝ 0()2

β̂
1

µ

R
2

ρ
yi µ̂–

ŝ
0

ρ
yi xi

Tβ̂–

ŝ
0

∑–∑

ρ
yi µ̂–

ŝ
0

∑
---=

µ̂

Qy µ() ρ
yi µ–

ŝ
0

∑=

Qy µ̂() Qy µ*()≤

µ* µ̂
182

THEORETICAL DETAILS
Robust
Deviance

For an M-estimate, the deviance is defined as the optimal value of the
objective function on the σ2-scale, that is:

Initial S-Estimator :

Final M-Estimator :

Robust F Test See chapter 7 of Hampel, Ronchetti, Rousseeuw and Stahel (1986), where
this test is referred to as the “tau” test.

Robust Wald
Test

See chapter 7 of Hampel, Ronchetti, Rousseeuw and Stahel (1986).

Robust FPE
(RFPE)

Ronchetti (1985) proposed to generalize the Akaike Information Criterion
(AIC) to robust model selection. However, the results therein are subject to
certain restrictions, such as they only apply to M-estimates with zero
breakdown point and the density of the errors has to be in a certain form.
Yohai (1997) proposed the following RFPE criterion which is not subject to
the restrictions that apply to Ronchetti's robust version of AIC.

where

.

Since the first term in equation (12.4) can be approximated by

β̂
0

D ŝ
2 β̂

0
() ŝ

0()
2

= =

β̂
1

D 2 ŝ
0()

2
ρ

yi xi
Tβ̂

1
–

ŝ
0

∑⋅ ⋅=

(12.4)RFPE nEρ ε
σ---

 p
A

2B
-------+=

A Eψ2 ε
σ---

 = B Eψ′ ε
σ---

 =
183

CHAPTER 12 ROBUST LINEAR REGRESSION
where , the expression (12.4) can be estimated by

with

The approximation on the right hand side of (12.5) is used as our RFPE.

Appendix The function gen.data used in the section Robust Model Selection is as
follows:
> gen.data <- function(coeff, n = 100, eps = 0.1, sig = 3,
+ snr = 1/20, seed = 837)
+ {
+ # coeff : 3 x 1 vector of coefficients
+ # eps : the contamination ratio, between 0 and 0.5
+ # sig : standard deviation of most observations
+ # snr : signal-to-noise ratio, well, not really
+ # Note : the regressors are generated as: rnorm(n,1),
+ # rnorm(n,1)^3, exp(rnorm(n,1)). It also generates
+ # an unused vector x4.
+ set.seed(seed)
+ x <- cbind(rnorm(n, 1), rnorm(n, 1)^3,
+ exp(rnorm(n, 1)))
+ ru <- runif(n)
+ n1 <- sum(ru < eps)
+ u <- numeric(n)
+ u[ru < eps] <- rnorm(n1, sd = sig/snr)
+ u[ru > eps] <- rnorm(n - n1, sd = sig)
+ data.frame(y = x %*% matrix(coeff, ncol = 1) + u,

(12.5)

nEρ ε
σ

 ρ
r i

σ

 p
A

2B
-------+

i 1=

n

∑≈

r i yi xi
Tβ̂

1
–=

RFPE ρ
yi xi

Tβ̂
1

–

ŝ
0()

i 1=

n

∑ p
Â

B̂
---+≈

Â
1
n
--- ψ2

r i

ŝ
0()

i 1=

n

∑= B̂
1
n
--- ψ′

r i

ŝ
0()

i 1=

n

∑=
184

THEORETICAL DETAILS
+ x1 = x[,1], x2 = x[,2], x3 = x[,3],
+ x4 = rnorm(n, 1))
+ }
185

CHAPTER 12 ROBUST LINEAR REGRESSION
ROBUST MM REGRESSION

This dialog fits linear regression models using a robust method based on the
collective work of Rousseeuw and Yohai (1984), Yohai, Stahel, and Zamar
(1991), Marazzi (1993), and Yohai and Zamar (1998). It calls the lmRobMM
function and its print, summary, plot and predict methods.

To perform linear regression:

Choose Statistics:Regression:RobustMM from the main menu. The dialog
shown below appears.
186

ROBUST MM REGRESSION
Model Page

Data Data Frame
Select a data frame.

 {bmc robmm1.bmp}

� Tip…

 You can type into the Data Frame edit box any expression which evaluates to a data frame.
187

CHAPTER 12 ROBUST LINEAR REGRESSION
Weights
Enter the column that specifies weights to be applied to all observations used
in the linear regression. To weigh all rows equally, leave this blank.
Subset Rows with
Enter an S-PLUS expression which identifies the rows to use in the analysis.
To use all the rows in the data frame, leave this field blank. The expression
must evaluate to a vector of logical values (TRUE values are used, FALSE
values are dropped), or a vector of indices identifying the numbers of the
rows to use.

Examples:

Species == 'bear' only bears are used.

1:20 only the first 20 rows of the data are used.

Age >= 13 & Age < 20 only teenagers are used.
For more information on constructing logical expressions see the S-PLUS
Programmer’s Guide.
Omit Rows with Missing Values
Check this box to omit from the analysis any rows in the data frame that
contain missing values for any of the variables in the model.
If this box is not checked, S-PLUS will report an error and halt the routine if
any row is found to have a missing value in any of the terms in the model.

Formula Formula
Enter a formula specifying the desired model. The formula specifies which
regression model is to be fit. In its simplest form a formula consists of the
response variable, a tilde (~), and a list of predictor variables separated by
“+”s. An intercept is automatically included by default. For example: Fuel ~
Weight + Disp. fits a regression model with Fuel as the response and
Weight and Disp. as predictors.
For more information on formulas see the chapter on Building Formulas.

Create Formula
Click this to open a formula builder dialog used to construct a formula
specifying the desired model. See the chapter Building Formulas for more
information.

Save Model Object Save As
Enter the name for the object in which to save the results of the analysis. If an
object with this name already exists, its contents will be overwritten.

This must be a valid S-PLUS object name—any combination of
alphanumeric characters that starts with an alpha character is allowed. The
only non-alphanumeric character allowed is the period “.”. Names are case-
sensitive, so X and x are different names. The default is “last.robust”.
188

ROBUST MM REGRESSION
The saved object will have class “lmRobMM”. See the on-line help for
lmRobMM.object for more information about the saved object.

Options Page The Options page of the Robust Linear Regression dialog contains the
controls specific to the robust MM estimate regression method.

Estimation Method Test Based
Select this option to have S-PLUS calculate both initial S-estimates and final
M-estimates, and report results for one of these estimates, based on a test for
bias.

 {bmc robmm2.bmp}
189

CHAPTER 12 ROBUST LINEAR REGRESSION
Initial Robust
Select this option to have S-PLUS calculate only initial S-estimates.
Final Robust
Select this option to have S-PLUS calculate only final M-estimates.

Loss Functions Initial Robust
Select the desired loss function, “Optimal” or “Bisquare”, for the initial
S-estimates.
Final Robust
Select the desired loss function, “Optimal” or “Bisquare”, for the final
M-estimates.

Inference Efficiency
Enter the asymptotic efficiency of the final M-estimates.
Confidence Level
Enter the desired level of significance of the test for bias of the final
M-estimates.

Optimization Max. Iterations
Enter the name of a list with components “mxf”, “mxr”, and “mxs”,
representing the maximum number of iterations, respectively, for final
coefficient estimates, the refinement step, and the final scale estimate. The
default value, Auto, sets all three to 50.
Tolerance
Enter the name of a list with components “tlo”, “tua”, and “tl”,
representing, respectively, the relative tolerance in the iterative algorithms,
the tolerance used for the determination of pseudo-rank, and the tolerance
for scale denominators. The default value, Auto, sets the tolerances as
follows:

tlo = 0.0001, tua = 1.5e-006, tl = 1e-006

Resampling Random
Select this option to use the random resampling algorithm.
Exhaustive
Select this option to use the exhaustive resampling algorithm only if the
sample size is less than 300 and the number of predictor variables is less than
10.
Genetic
Select this option to use the genetic resampling algorithm.

Random
Resampling

Subsamples
Enter the number of random subsamples to be drawn. The default value,
Auto, draws 4.6*2^ncol(x) samples.
190

ROBUST MM REGRESSION
Random Seed
Enter the seed parameter used in the random sampling algorithm.

Genetic Algorithm Population Size
Enter the population size of the genetic stock. The default is 10 times the
number of parameters being fit.
Random Samples
Enter the number of random samples taken after the stock is filled. The
default is 50 times the number of parameters being fit.
Max Observations
Enter the maximum number of observations (including duplicates) in a
member of the stock. The default is p if (n-p)/2 is less than p, where n is the
number of observations; otherwise it is the minimum of trunc((n-p)/2)
and 5*p.
Genetic Births
Enter the number of genetic births. The default is (50*p)+(15*p^2).
Mutation Prob.
Enter a length 4 vector of mutation probabilities for offspring.
Stocks
Enter a list of vector of observation numbers to be included in the stock. This
is typically the stock component of the output of a previous run.
Stock Prob.
Enter a vector of cumulative probabilities that a member of the stock will be
chosen as a parent. The ith element corresponds to the individual with the
ith lowest objective. The default is

cumsum((2*(popsize:1))/popsize/(popsize+1)
191

CHAPTER 12 ROBUST LINEAR REGRESSION
Results Page

Printed Results Short Output
Check here to display a short summary of the model fit. This includes the
model formula, the robust estimates of regression coefficients and residual
scale, and the degrees of freedom.
Long Output
Check here to display a detailed summary of the model fit. This includes the
model formula; a five number summary of the residuals; the robust estimates
of coefficients; robust standard errors, robust t-statistics and robust p-values;
the robust residual scale estimate and the degrees of freedom; the robust
multiple R-Squared value; a test for bias; and the seed parameter.
192

ROBUST MM REGRESSION
Correlation Matrix of Estimates
Check here to display the robust correlation matrix of the regression
coefficients. This is only available if the Long Output is selected.
ANOVA Table
Check here to display an analysis of variance table. The sums-of-squares in
the table are for the terms added sequentially (Type I sums-of-squares).
Comparison wwwwiiiitttth h h h LLLLS S S S FFFFiiiitttt
Check here to display the output of the robust MM-estimate fit together
with the results for a standard least squares linear model fit of the same
formula.

Saved Results Save In
Enter the name of an S-PLUS data frame in which fitted values and residuals
of the analysis are to be saved. If an object with the name you enter does not
already exist (in database 1), then it will be created. If you enter the name of a
data frame that already exists (in database 1) and this data frame has the same
number of rows as the number of observations used in the model fit, then the
saved values are appended to this data frame. This allows you to keep fitted
values from a model with the original data or to keep the residuals from a
number of different models for the same data in one data frame. If you give
the name of an existing S-PLUS object that is not a data frame or is not the
appropriate size, then a warning is issued and a modified name is used.

Fitted Values
Check this to save the fitted values from the model in the object specified in
Save In.
Residuals
Check this to save the residuals from the model in the object specified in Save

� Tip…

You may want to specify the same data frame as on the Model page. This allows easy plotting of the
fitted values or residuals with the original data.
193

CHAPTER 12 ROBUST LINEAR REGRESSION
In. These are the ordinary residuals; the response minus the fitted value.

Plot Page

Plots Residuals vs Fit
Check this to display a plot of the residuals versus the fitted values.
Sqrt Abs Residuals vs Fit
Check this to display a plot of the square root of the absolute values of the
residuals versus the fitted values. This plot is useful for checking for the
constant variance assumption of the model.

{bmc linreg3.bmp}
194

ROBUST MM REGRESSION
Response vs Fit
Check this to display a plot of the response variable versus the fitted values.
The line y = x is also drawn on the graph.
Residuals Normal QQ
Check this to display a Normal quantile-quantile plot of the residuals.
Residual-Fit Spread
Check this to display a residual-fit spread plot. This is a visual analog of the
multiple R-squared statistic. It compares the spread of the fitted values to the
spread of the residuals.
Cook’s Distance
This plot is not available for the robust MM model.

Options Include Smooth
Check this to display a smooth curve, computed with loess.smooth, on
the Residuals vs Fit, Sqrt Abs Residuals vs Fit, and Response vs Fit plots. See
the on-line help for loess.smooth for details.
Include Rugplot
Check this to display a rugplot on the Residuals vs Fit, Sqrt Abs Residuals vs
Fit, and Response vs Fit plots. A rugplot is a sequence of vertical bars along
the x-axis that mark the “observed” x values.
Number of Extreme Points to Identify
Enter the number of extreme points that will be identified on the Residuals
vs Fit, Sqrt Abs Residuals vs Fit, and Residuals Normal QQ. The row names
from the data frame specified on the model page will be used to identify the
points.

Comparison Plots
with LS Fit

Residuals Normal QQ
Check this to include a graph showing the qqnorm plot of the residuals of
the robust fit together with the qqnorm plot of the residuals of the standard
least squares fit.
Estimated Residual Densities
Check this to include a graph showing the density estimate for the residuals
of the robust fit together with the density estimate for the residuals of the
standard least squares fit.
Residuals vs Fit
Check this to include a graph showing the residuals vs fit plots for both the
robust model and the standard least squares fit.
Response vs Fit
Check this to include a graph showing the response vs fit plots for both the
195

CHAPTER 12 ROBUST LINEAR REGRESSION
robust model and the standard least squares fit.

Predict Page New Data
Enter the name of a data frame to use for computing predictions. It must
contain the same names as the terms in the right side of the formula for the
model. If omitted, the original data are used for computing predictions.

Save Save In
Enter the name of an S-PLUS data frame in which predictions, confidence
intervals and standard errors are to be saved. If an object with the name you
enter does not already exist (in database 1), then it will be created. If you

 {bmc linreg4.bmp}
196

ROBUST MM REGRESSION
enter the name of a data frame that already exists (in database 1) and this data
frame has the same number of rows as the number of observations used in the
model fit, then the saved values are appended to this data frame. This allows
you to keep predicted values from a model with the original data or to keep
the residuals from a number of different models for the same data in one data
frame. If you give the name of an existing S-PLUS object that is not a data
frame or is not the appropriate size, then a warning is issued and a modified
name is used.
Predictions
Check this to save the predictions in the data frame specified in Save In.
Confidence Intervals
Check this to store lower and upper confidence limits in the object specified
in Save In. The column names will be “N% L.C.L.” and “N% U.C.L.” where
N is 100 times the value specified in Confidence Level. These confidence
limits for the mean response are computed as the prediction plus or minus t-
value times standard error.
Standard Errors
Check this to store the pointwise standard errors for the predictions in the
object specified in Save In.

Options Confidence Level
Enter the confidence level to use when computing confidence intervals. This
value should be less than 1 and greater than 0.

S-PLUS language functions related to Linear Models:

lmRobMM, plot.lmRobMM, predict.lm, print.lmRobMM,
summary.lmRobMM, lmRobMM.robust.control,
lmRobMM.genetic.control

Other related S-PLUS language functions:

aov, gam, glm, lm, loess, nls
197

CHAPTER 12 ROBUST LINEAR REGRESSION
BIBLIOGRAPHY

Hampel, F., Ronchetti, E. M., Rousseeuw, P. J. and Stahel, W. A. (1986):
Robust Statistics: the Approach Based on Influence Functions, John Wiley &
Sons.

Huber, P.J. (1981). Robust Statistics. John Wiley & Sons.

Marazzi, A. (1993): Algorithms, Routines, and S Functions for Robust Statistics,
Wadsworth & Brooks/Cole, Pacific Grove, CA.

Martin, R. D. and Zamar, R. H. (1989). Asymptotically Min-Max Robust
M-estimates of Scale for Positive Random Variables. J. Amer. Statist. Assoc.,
84, 494-501.

Martin, R. D. and Zamar, R. H. (1993). Bias Robust Estimates of Scale.
Annals of Statistics.

Ronchetti, E. (1985): Robust Model Selection in Regression, S-PLUS
Statistics & Probability Letters, 3, 21--23.

Rousseeuw, P. J. and Yohai, V. (1984): Robust Regression by Means of S-
estimators. In Robust and Nonlinear Time Series Analysis, J. Franke, W.
Hardle, and R. D. Martin (eds.), Lecture Notes in Statistics, 26, 256-272,
Springer-Verlag.

Yohai, V. J. (1987): High Breakdown-Point and High Efficiency Estimates
for Regression, Annals of Statistics, 15, 642-665.

Yohai, V. J. (1997): A New Robust Model Selection Criterion for Linear
Models: RFPE, unpublished note.

Yohai, V., Stahel, W. A. and Zamar, R. H. (1991): A Procedure for Robust
Estimation and Inference in Linear Regression, in Stahel, W. A. and
Weisberg, S. W., Eds., Directions in Robust Statistics and Diagnostics, Part II,
Springer-Verlag, New York.

Yohai, V. J. and Zamar (1998). “Optimal locally robust M-estimates of
regression”, Jour. of Statist. Inf. and Planning.
198

Introduction 196
The Generalized Kaplan-Meier Estimate 198

Specifying Interval Censored Data 198
Computing Kaplan-Meier Estimates 200

censorReg 203
An Example Model 203
Specifying the Parametric Family 204
Accounting for Covariates 206
Truncation Distributions 208
Threshold Parameter 210
Offsets 211
Fixing parameters 212

Fitting Models: ANOVA 214
Fitting Models: The plot method for CensorReg 216
Computing Probabilities and Quantiles 221
Parametric Survival 223

Model Page 224
Options Page 226
Results Page 227
Plots Page 229
Predict Page 231

PARAMETRIC REGRESSION
FOR CENSORED DATA 13
199

CHAPTER 13 PARAMETRIC REGRESSION FOR CENSORED DATA
INTRODUCTION

Parametric regression models for censored data are used in a variety of
contexts ranging from manufacturing to studies of environmental
contaminants. Because of their frequent use for modeling failure time or
survival data they are often referred to as parametric survival models. In this
context they are used throughout engineering to discover reasons why
engineered products fail. They are called accelerated failure time models or
accelerated testing models when the product is tested under more extreme
conditions than normal to accelerate its failure time. Most product
engineering can’t wait long enough to observe ample failures for fitting
models under normal operating conditions. The results obtained under
extreme conditions are related to the results that would be obtained when the
product is subject to normal wear. Thus, for example, capacitors may be
operated under higher temperatures and voltages than normal to increase
their likelihood of failure. The resulting fitted model is used to extrapolate
failure rates back to normal operating conditions. Similar use is made of these
failure time distributions in the context of survival analysis where living
organisms rather than engineered products are the primary interest.

In the context of environmental studies, the measures of interest may be
chemical contaminant levels rather than failure times but these data are
frequently censored or obtained from truncated distributions. Censored and/
or truncated data regression methodology applies equally well in these cases
but, of course, the values of interest have nothing to do with survival.

Model selection is a major concern when using censored regression models.
As in other model fitting activities, the distributional assumptions that are
made must be appropriate for the data collected, and the model must also
reasonably account for variation in the independent variables. Consequently,
visual comparisons of the predicted (from the model) distribution of the
response with nonparametric estimates of the distribution is an important
activity when fitting models. To obtain the most appropriate model, usually a
number of models with different failure distributions and/or dependence
relationships with the independent variables will be fitted and compared.
Visual comparison and statistical tests are then used to determine the most
appropriate model.

Given that a model has been obtained, the results may be extrapolated to new
values for the independent variables, and inference procedures may be used
to obtain interval estimates for failure probabilities or quantiles of the
response. In doing this, the usual precautions apply: one should not try to
extrapolate model information to far beyond the values collected in the data.
Moreover, because the interval estimate procedures are asymptotic, the
confidence levels should be treated as approximate, especially in small
200

INTRODUCTION
samples.

In this chapter we discuss a set of functions for the analysis of censored and/
or truncated data or, more specifically, for the analysis of accelerated failure
time and survival data. These functions are based upon estimation code
originally developed by Meeker and Duke (1981) and refined subsequently
by W. Q. Meeker (personal communication). This estimation code has been
modified slightly for inclusion in the S-PLUS product. The S-PLUS code
which calls the underlying estimation routines borrows from work done by
both W. Q. Meeker and Terry Therneau. Taken as a whole, these functions
allow you to easily specify and fit censored data models and to graph and
compare the fitted models with appropriate non-parametric estimates of
these models. You can also easily make inferences regarding the model
parameters, predicted failure probabilities, and quantiles. We begin by briefly
discussing the non-parametric estimates and how they may be computed.
This brief introduction is followed by the meat of the software - a complete
discussion of the model fitting software for censored data with emphasis on
accelerated failure time models. We then discuss the “ANOVA” function,
which can be used to compare one or more fitted models, and we describe
the various visualizations that can be performed once a model has been fit.
In the final sections of this Chapter, we discuss the estimation of quantiles
and failure probabilities at various points for selected values of the
independent variables.

For further reading on analyzing accelerated test data see Nelson (1990) or
Meeker and Escobar (1998).
201

CHAPTER 13 PARAMETRIC REGRESSION FOR CENSORED DATA
THE GENERALIZED KAPLAN-MEIER ESTIMATE

The Kaplan-Meier estimator produces nonparametric estimates of failure
probability distributions for a single sample of data that contains the exact
time of failure, or contains data that is right censored. A right censored
observation is one in which the failure time is only known to be greater than
the time it was, for some reason, removed (censored) from the study or
experiment. Because we consider data that may be left censored or observed
in a interval and/or grouped as well, we use a generalization of the Kaplan-
Meier estimate originally developed by Turnbull (1974, 1976).

Specifying
Interval
Censored Data

Consider the following (artificial) table of failure times:

First we define what we mean by the censoring types. Let C = (L, U) be a
random censoring interval, and let T be the failure time, and suppose that C
and T are independent (less strict assumptions are possible, see, e.g.,
Andersen, et al., 1993). Then an observation is an exact failure if the failure
time T is observed so that . The observation is right censored if the
censoring time L is observed so that T > L. The observation is interval
censored if all that is known is that . Finally, the observation is left

censored if all that is known is that , i.e., that the observation is

Table 2:

unit failure upper Censor censor codes

1 7 ² right 0

2 4 ² exact 1

3 5 ² exact 1

4 9 ² right 0

5 3 ² left 2

6 2 9 interval 3

7 7 12 interval 3

8 4 ² exact 1

9 11 ² right 0

T L<

L T≤ U<
0 T U<≤
202

THE GENERALIZED KAPLAN-MEIER ESTIMATE

g
lues
ation
ored

cify a

 the

l the
interval censored with a lower censoring time of zero.

In S-PLUS, a censoring code indicates the type of censoring. Censorin
codes are handled quite generally allowing you to specify a set of va
for each type of censoring. The default codes are: 0 means the observ
is right-censored, 1 means an exact failure, 2 means a left cens
observation, and 3 means an interval censored observation. To spe
censored distribution dependent variable, you must give both the time of
failure (or censoring), and, except in exact failure (or complete) data,
censoring code. The S-PLUS function, censor, is used to specify the
dependent variable. For the data in the Table above, you must tel
censor function the data type. Here the correct specification is:

> censor(failure, upper, censor.codes)
[1] 7+ 4 5 9+ 3- [2, 9] [7, 12]
[8] 4 11+

When three arguments are specified to censor, the default censoring type is
“interval”. To show the generality of the censor function, an alternate way of
specifying the censor codes is by using the Censor column and stating
explicitly what the codes are for each of right, left, event, and interval.

> cens <- censor(failure, upper, Censor, event = “exact”,
right = "right", left = "left", interval = "interval")
[1] 7+ 4 5 9+ 3- [2, 9] [7, 12]
[8] 4 11+

While this is more lengthy in this case, it is far more general allowing the user
to specify a vector of codes for each of the four censoring types, event, right,
left, and interval.

It is always a good idea to display the output from the censor function to
verify that you are correctly specifying the censoring information. This is
especially important because it is common practice to reverse the censoring
codes for failure and right censoring, and these values must be correctly
specified if the analysis results are to be meaningful. An additional check you
can do is to examine the censor codes map as follows:

> censorCodesMap(cens)
 event: exact ==> 1
 right: right ==> 2
 left: left ==> 3
interval: interval ==> 4
203

CHAPTER 13 PARAMETRIC REGRESSION FOR CENSORED DATA

nd
the
The internal codes 1, 2, 3 and 4 are used by the estimation routine.
One other specification to censor allows you to use it with other routines that
require internal codes of 1 (event), 0 (right), 2 (left) and 3 (interval), i.e.,
coxph, survreg and survfit. Setting the outCodes argument to "0-
3", results in the internal codes those routines require:

> cens <- censor(failure, upper, Censor, right = "right",
left = "left", event = "exact", interval = "interval",
outCodes = "0-3")
> censorCodesMap(cens)

 event: exact ==> 1
 right: right ==> 0
 left: left ==> 2
interval: interval ==> 3

Computing
Kaplan-Meier
Estimates

The kaplanMeier function is used to compute Kaplan-Meier estimates a
Turnbull’s generalization of the Kaplan-Meier estimates. For the data in
Table above, the S-PLUS statements are:

> kaplanMeier(censor(failure, upper, censor.codes) ~ 1,
data = int.data)

This results in output

Number Observed: 9
Number Censored: 6
Confidence Type: identity
 Survival Std.Err 95% LCL 95% UCL
(-Inf, 2] 1.000 0.000 1.000 1.000
(3, 4] 0.861 0.127 0.646 1.000
(4, 5] 0.583 0.173 0.386 0.781
(5, 7] 0.444 0.166 0.300 0.589
(9, 11] 0.444 0.166 0.300 0.589
(12, Inf) 0.000 0.000 0.000 0.000

In the output, each row begins with a label indicating the observation
interval. The time interval is followed by the survival estimate, the standard
error for the estimate and approximate confidence intervals for the estimate.
204

THE GENERALIZED KAPLAN-MEIER ESTIMATE

rve
ple,

sults
 is
able
 the
The kaplanMeier model computed above estimates the survival cu
for a single sample. If independent variables were available in the sam
the values of all the independent variables must be identical if the re
from kaplanMeier are to be meaningful. If an independent variable
used on the right side of the formula it is treated as a stratification vari
and separate survival curves are estimated for each value of
independent variable(s).

Consider the capacitor2 data set distributed with S-PLUS. This data set
contains four variables: 1) days gives the time of failure or censoring, 2) event
gives the censoring code (1 is a failure at time days, while 0 is right censoring
at time days), 3) weights gives the number of observations represented by that
row, and 4) voltage gives the voltage at which the capacitor was tested (there
are four distinct voltages in the data set). To analyze the failure date without
regard to the test voltage, the statement

> kaplanMeier(censor(days, event)~1, weights = weights,
data=capacitor2)

would be used. However, this would ignore the different test voltages. A
better analysis would compute a nonparametric estimate of the failure time
for each voltage. This is done with the statement

> km.cap <- kaplanMeier(censor(days, event) ~ voltage
,weights = weights, data=capacitor2)

with result

voltage=20
Number Observed: 25
Number Censored: 25
[1] Not enough failures available to fit a nonparametric
censored data model

voltage=26
Number Observed: 50
Number Censored: 39
Confidence Type: identity
 Survival Std.Err 95% LCL 95% UCL
(-Inf, 12.95] 1.00 0.000 1.000 1.000
(12.95, 28.41] 0.98 0.020 0.942 1.000
(28.41, 63.10] 0.96 0.028 0.908 1.000
(63.10, 136.33] 0.94 0.034 0.878 1.000
(136.33, 139.37] 0.92 0.038 0.851 0.989
(139.37, 179.02] 0.90 0.042 0.825 0.975
205

CHAPTER 13 PARAMETRIC REGRESSION FOR CENSORED DATA

 esti-
d and

pute

 days,
tile
able
(179.02, 187.80] 0.88 0.046 0.801 0.959
(187.80, 201.28] 0.86 0.049 0.777 0.943
(201.28, 214.28] 0.84 0.052 0.755 0.925

.

.

.

For voltage=20 there are not enough observations in the sample to compute
mates. For voltage=26, voltage=29, and voltage=32, estimates are compute
displayed in a separate tables.

The Kaplan-Meier estimates of failure probabilities can also be used to com
nonparametric estimates of the quantiles. For example, the statements

> qkaplanMeier(km.cap, p = seq(.1, to = .9, by = .1))

produce the result

$"voltage=20":
[1] NA

$"voltage=26":
 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
 139.37 271.73 Inf Inf Inf Inf Inf Inf Inf

$"voltage=29":
 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
 45.85 55.73 91.81 108.62 164.2 257.88 Inf Inf Inf

$"voltage=32":
 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
 2.81 5.45 6.26 11.51 15.16 20.86 65.9 94.08 149.2

for the quantiles. Notice that because no failures were observed beyond 300
survival drops to 0.0 in the final intervals for 26 and 29 volts, resulting in quan
estimates that are infinite. The true value is, of course, finite, but is not estim
from this data.
206

CENSORREG

 can

r-
f
ts, a

odel
mily

t of
CENSORREG

Parametric, rather than nonparametric, estimates of the failure distributions
also be easily computed. All estimates are computed by the censorReg func-
tion. Like kaplanMeier, censorReg can handle interval and other censo
ing. In addition, the censorReg function can handle three general families o
failure distributions with logged and unlogged versions, truncated data, offse
“threshold” parameter, fixed coefficients, and much more.

An Example
Model

As the simplest possible example, use the defaults for most arguments in a
censorReg model with no covariates. Possible S-PLUS statements for the
capacitor data are:

> censorReg(censor(days,event) ~ 1, weights = weights,
data=capacitor2)

with resulting display

Call:
censorReg(formula = censor(days, event) ~ 1, data =
capacitor2, weights = weights)

Distribution: Weibull

Coefficients:
 (Intercept)
 6.704817

Dispersion (scale) = 1.821207
Log-likelihood: -372.7664

Observations: 125 Total; 71 Censored
Parameters Estimated: 2

As with the kaplanMeier function, the response is specified by the censor
function. Because the model formula contains no covariates, a parametric m
is fit for a single sample of observations. In this case, the parametric fa
defaults to the Weibull distribution.

In the output that the location parameter for the Weibull distribution is
estimated as 6.704, and the scale parameter is estimated as 1.82

As with other S-PLUS model fitting functions, the summary function can be
used to obtain a more detailed summary of the fit. Following is the resul
207

CHAPTER 13 PARAMETRIC REGRESSION FOR CENSORED DATA
calling summary on the fit object:

Call:
censorReg(formula = censor(days, event) ~ 1, data =
capacitor2, weights = weights)

Distribution: Weibull

Standardized Residuals:
 Min Max
Uncensored 0.020 0.553
 Censored 0.577 0.577

Coefficients:
 Est. Std.Err. 95% LCL 95% UCL z-value p-value
(Intercept) 6.7 0.296 6.12 7.29 22.6 3.01e-113

Extreme value distribution: Dispersion (scale) = 1.821207
Observations: 125 Total; 71 Censored
-2*Log-Likelihood: 746

Specifying the
Parametric
Family

The parametric distribution family is specified by inputting one of the 10
distributions that are supported by censorReg. These are displayed in the
following table 3. The distribution argument to censorReg is the
quoted string in the first column along with the character string that is
supplied to censorReg as the distribution argument.

censorReg argument Distribution
"weibull” Weibull
"extreme” smallest extreme value
"lognormal” log-normal or log-gaussian
"normal” normal or gaussian
"loglogistic” log-logistic
"logistic” logistic
"logexponential” log-exponential
"exponential” exponential, same as extreme with sigma = 1
"lograyleigh” log-Rayleigh
"rayleigh” Rayleigh, same as extreme with sigma = 0.5

Table 3: Distributions supported by censorReg.
208

CENSORREG

-

The following discussion describes the internal specification of the
parametric distribution families as they are viewed by the estimation
routines. The general user need not be concerned with this aspect of the
family specification. It is included here for the user who wants or needs access
to the internal routines.
Internally the distributions are defined by two quantities (following the
development of standard textbooks on parametric survival analysis), the
distribution of the random variable, and the link function. Let g (•) denote
the link function, and let

be the random variable for failure time y. Here σ is the scale factor, x is a vector of
covariates (in the simplest model , the intercept term), and β is a vector of
coefficients. The term xβ specifies the “location” of the estimates. Two link func
tions g (•) are possible:

the “identity” link, and

the “log” link. Three distributions for z are available. These are the “logistic”

the “normal” or “gaussian” distribution

and the “smallest extreme value” distribution

When the log link is used with a fixed value of , the smallest extreme
value distribution becomes an exponential distribution. If , this
becomes the Rayleigh distribution. As indicated above, when the smallest
extreme value distribution is used with the log-link, the distribution can be

z
g y x

=
−() β

σ

x 1=

g x x() =

g x x() log=

f z
z

z
()

exp()

(exp())
=

−
+ −1 2

f z z() exp= −
1

2

1

2
2

π

f z z z() exp(exp())= −
σ 1=

σ 0.5=
209

CHAPTER 13 PARAMETRIC REGRESSION FOR CENSORED DATA

 not
is

imply
nt
uch
that
 this

te-
made equivalent to the (two-parameter) Weibull distribution in which

Here is the “shape” parameter.

In general the failure times are positive since failure at a negative time is
usually meaningful. However, when the identity link function is used, it
possible to input negative values for the survival times into censorReg. For
example, a gaussian distribution takes values over the entire real line.

To fit a “gaussian” model to the capacitor2 data, you type

> censorReg(censor(days,event) ~ 1, data=capacitor2,
distribution=”gaussian”)

The hazard rate is the instantaneous rate of failure. This can be computed s
as the first derivative of the failure density with respect to time. Differe
distributions result in different hazard rates, and thus in different models. M
time in model building can be spent in deciding upon the correct model
should be used. The plotting functions discussed below can help in making
decision.

Accounting for
Covariates

In the censorReg models above we considered only a single sample of
observations from the same distribution. Typically, a survival model also
includes covariate(s) to describe the distribution. Accelerated failure time
models, for example, include of covariates occurring in designed experiments
in which the covariate is held fixed at a specified value for some observations,
and the time to failure for these observations is observed. For example, in the
capacitor data, four values of the covariate “voltage” were used, “voltage=20”,
“voltage=26”, “voltage=29”, and “voltage=32”. Suppose that we assume
that the location parameter variables linearly with the covariate, e.g., that

for intercept . Here x is voltage. This model may be fitted using S-PLUS sta
ments

> censorReg(censor(days, event) ~ voltage, weights =
weights, data=capacitor2)

with resulting output:

f z
x

z

x

x

x
()

exp() exp()
exp(

exp()
=

 −

−
1

1
1

1

σ β β β
σ σ

θ 1
σ
---=

z
g y x

=
− −() α α

σ
0 1

αo
210

CENSORREG

of
s

Call:
censorReg(formula = censor(days, event) ~ voltage, data =
capacitor2, weights = weights)

Distribution: Weibull

Coefficients:
 (Intercept) voltage
 24.14083 -0.6403586

Dispersion (scale) = 1.203945
Log-likelihood: -316.4589

Observations: 125 Total; 71 Censored
Parameters Estimated: 3

In the above model the location parameter is obtained by “regression” on the
voltage. This requires a linear relationship of the hazard rate on voltage.
Assuming that the relationship is not linear, a more general model fits

In this model, i indexes the different voltages, and the location parameter is
allowed to vary in an arbitrary manner with voltage. Fitting this model is
accomplished simply as

> censorReg(censor(days, event) ~ factor(voltage), weights
= weights, data=capacitor2)

Alternatively, supposing that the scale parameters are different for different
values of the covariate, a model

can be fit using S-PLUS statements

> censorReg(censor(days, event) ~ strata(voltage), weights
= weights, data=capacitor2)

In all but the last case, an object of class “censorReg” is produced. In the last
example when the strata function is used to create a stratified fit, an object
class "censorRegList" is produced. This object contains a list of clas
"censorReg" objects.

z
g y i=

− −() α α
σ

0

z
g y i

i

=
− −() α α
σ

0

211

CHAPTER 13 PARAMETRIC REGRESSION FOR CENSORED DATA

is is
The anova function is used to compare the models described above. Th
discussed in more detail below.

Truncation
Distributions

Aside from the distributions above, it is also possible to specify a different
truncation distribution for each observation. Consider the following table of
failure times.

In truncated data the item being tested is not observed over the entire
positive axis. Instead, observation of the item is made over a known interval
that is a subset of the time period in which the observation could fail. Thus,
if there is left truncation, the items under test may be manufactured, used for
a time, and then placed on test. Although the time to failure is scored as the
time since manufacture, items that fail prior to being placed on test are not
scored. Let be the time of manufacture, and suppose that testing is

not begun until . Then if is the cumulative distribution of the
failure time when observation starts at time zero, then the cumulative
distribution of the truncated failure times is given by

Similarly, in right truncation, observation of failure or censoring is only made

Table 4:

Unit failure upper censor censor.code tlower tupper trunc
codes

1 7 ² right 0 3 ² 2

2 4 ² exact 1 0 ² 1

3 5 ² exact 1 0 ² 1

4 9 ² right 0 3 ² 2

5 4 ² left 2 9 ² 0

6 5 9 interval 3 3 20 3

7 7 12 interval 3 3 20 3

8 4 ² exact 1 0 ² 1

9 11 ² right 0 3 ² 2

t 0=
t θ= F θ()

F t
F t

F
(|)

()

()
θ

θ
=

−1
212

CENSORREG
until so that observations that fail or are censored after time
cannot be observed (or are thrown out). Finally, in interval truncation,
observation is made over a fixed interval , and observations that fail

or are censored outside of the interval are not considered.

Truncation distributions can easily be fit using the censorReg function.
For example, to obtain a “gaussian” fit to the data above, one would use:

> tmp <- censorReg(censor(failure, upper, cens) ~ 1,
data=table4, truncation = censor(tlower, tupper, tcode),
distribution = "lognormal")

which results in output:

Call:
censorReg(censor(failure, upper, cens) ~ 1, data = table4,
truncation = censor(tlower, tupper, trunc.codes),
distribution = "lognormal")

Distribution: Lognormal

Coefficients:
 (Intercept)
 1.920974

Dispersion (scale) = 0.9211897
Log-likelihood: -12.49965

Observations: 9 Total; 6 Censored
Parameters Estimated: 2

Because the log-likelihood is more complex (numerically) when truncation
distributions are used, it is important to verify convergence. Here
convergence is verified by the near zero values of the first derivatives of the
log-likelihood. The above model was temporarily save in tmp, so we can
extract the derivatives as follows:

> tmp$first.deriv
 (Intercept) scale
 -6.594777e-010 -4.993228e-009

t θ= θ

θ1 θ2,()
213

CHAPTER 13 PARAMETRIC REGRESSION FOR CENSORED DATA

g
 a
htly
ot
gins

e
o

e
ither

y for

 By
Threshold
Parameter

Truncation distributions modify the fitted distribution by considerin
failure in a smaller region of the positive real line. A distribution with
threshold parameter also modifies the failure distribution, but in a slig
different way. The idea of the threshold parameter is that test items cann
fail for a period of time after testing begins. Thus, although testing be
at time zero, no tested item will fail for some fixed period γ after time
zero. Thus, the failure distribution is given by . Th
net effect of the threshold parameter is to shift the failure distribution t
the right by a fixed amount.

Maximum likelihood estimation of γ is not easily accomplished. There is som
discussion of this in Meeker and Escobar (1998, pp. 224 - 231). You can e
compute the value of γ yourself and enter it as input to the censorReg
function, or censorReg can be asked to estimate γ in two different ways. The
first is to simply decrease the smallest value by 10%. The second works onl
log distributions and computes a value for γ which optimally linearizes a qqplot
of the Kaplan-Meier estimate of survival and the (censored) observations.
default, . Once computed, γ is carried along with the censorReg
object.

For the example in the table above we can set the threshold parameter to equal
two as follows:

> censorReg(censor(failure, upper, cens) ~ 1, data =
table4, truncation = censor(tlower, tupper, tcode),
distribution = "lognormal", threshold = 2)

This yields output:
Call:
censorReg(formula = censor(failure, upper, censor.codes) ~
1, data = table4, truncation = censor(tlower, tupper,
trunc.codes), distribution = "lognormal", threshold = 2)

Distribution: Lognormal

Coefficients:
 (Intercept)
 1.664897

Dispersion (scale) = 1.38711
Log-likelihood: -12.23809

Observations: 9 Total; 6 Censored
Parameters Estimated: 2
Threshold Parameter: 2

F t γ() F t γ–()=

γ 0=
214

CENSORREG
Notice that the coefficient estimates have dramatically changed.

Offsets Offsets are also used to change the distribution of the failure time variable.
Let ω denote the offset and let y denote the failure time. When offsets are
used, the transformed failure time becomes

where the offset ω is a known and fixed value.

A typical use of offsets is in likelihood ratio tests. Suppose that

optimizes the likelihood when covariates and are included in the

model. Then a likelihood ratio test of : is obtained by setting

 and comparing the optimized value of the likelihood of a model

 with the optimized likelihood for model .

We illustrate using the capacitor2 failure data discussed above. When
“voltage” is included in the model the output is:

Call:
censorReg(formula = censor(days, event) ~ voltage, data =
capacitor2, weights = weights)

Distribution: Weibull

Coefficients:
 (Intercept) voltage
 24.14083 -0.6403586

Dispersion (scale) = 1.203945
Log-likelihood: -316.4589

Observations: 125 Total; 71 Censored
Parameters Estimated: 3

A likelihood ratio test that the voltage coefficient is fixed at -0.5 is obtained
by fitting a second model with offset specified to fix the parameter estimate
of voltage.

z
g y x

=
− −() ω β
σ

x1β̂1 x2β̂2+

x1 x2

H0 β̂1 κ=

ω x1κ=

ω x2β̂2+ x1β̂1 x2β̂2+
215

CHAPTER 13 PARAMETRIC REGRESSION FOR CENSORED DATA

get
> censorReg(censor(days, event) ~ offset(-0.5*voltage),
weights = weights, data=capacitor2)

which yields output
Call:
censorReg(formula = censor(days, event) ~ offset(-0.5 *
voltage), data = capacitor2, weights = weights)

Distribution: Weibull

Coefficients:
 (Intercept)
 19.94567

Dispersion (scale) = 1.090527
Log-likelihood: -1129.826

Observations: 125 Total; 71 Censored
Parameters Estimated: 2
Offset has been specified

Computing the likelihood ratio test from the above two fits by hand we

LRT = -2 * (-1129.8 + 316.5) = 1626.6

which is compared with a chi-squared distribution with one degree of
freedom. Clearly, this is a significant result.

Fixing
parameters

It is also possible to simply fix parameters in the model. Most often this will
be the scale parameter, but it is possible to fix any parameter. For example, in
the capacitor example we may fix the voltage coefficient to be -0.5 using

> censorReg(censor(days, event) ~ voltage, data=capacitor2,
weights = weights, fixed=list(voltage=-0.5))

which gives result:
Distribution: Weibull

Coefficients:
 (Intercept)
 19.94567

Dispersion (scale) = 1.090527
Log-likelihood: -1129.826
216

CENSORREG
Observations: 125 Total; 71 Censored
Parameters Estimated: 2

Comparing this with the results in which offset is set, we see that the effect of
fixing voltage to be -0.5 is the same as specifying the offset as -0.5*voltage.
217

CHAPTER 13 PARAMETRIC REGRESSION FOR CENSORED DATA

 to
llest
 the

tion
rify

io
acitor
FITTING MODELS: ANOVA

The anova function is used to compare models. If a single object is input
anova, then one term at a time is added to the model starting from the sma
possible model (usually the intercept-only model) until the model contained in
object is obtained. As an example, consider the following model:

> fit <- censorReg(censor(days, event) ~ voltage +
voltage^2, weights = weights, data = capacitor2)

Applying the anova function to fit as follows
> anova(fit, test = "Chi")
produces
Likelihood Ratio Test Table

Weibull model

Response: censor(days, event)

Terms added sequentially (first to last)
 N.Params -2*LogLik Df LRT Pr(Chi)
 NULL 2 745.5327
 voltage 3 632.9178 1 112.6149 0.0000000
I(voltage^2) 4 632.8494 1 0.0684 0.7937407

It is suggested by the display that the location parameter of the distribu
depends on voltage only linearly. The quadratic term is unimportant. We’ll ve
this with other models and graphically below.

When two or more class "censorReg" or class "censorRegList" objects
are input into the anova function, the models are compared with likelihood rat
tests. Suppose we are interested in testing whether the model for the cap
data should be

where x is voltage. More general models (in the sense of having more
parameters) are

z
g y x

=
−() β

σ

z
g y i=

−() α
σ

218

FITTING MODELS: ANOVA
for voltage i, or

These three models plus an intercept-only model can be generated in S-Plus
using the following statements:

> fit0 <- censorReg(censor(days,event) ~ 1, weights =
weights, data=capacitor2)

> fit1 <- censorReg(censor(days,event) ~ voltage, weights =
weights, data=capacitor2)

> fit2 <- censorReg(censor(days, event) ~ factor(voltage),
weights = weights, data=capacitor2)

> fit3 <- censorReg(censor(days, event) ~ strata(voltage),
weights = weights, data=capacitor2)

The models are then compared using the anova function as follows:

>anova(fit0, fit1, fit2, fit3,test=”Chisq”)

which yields the display:

Likelihood Ratio Test(s)

Response: censor(days, event)

 Terms N.Params -2*LogLik Test Df LRT Pr(Chi)
1 1 2 745.53
2 voltage 3 632.92 + voltage 1 112.615 0.0000
3 factor(voltage) 5 632.37 2 vs. 3 2 0.547 0.7605
4 strata(voltage) 6 630.40 3 vs. 4 1 1.973 0.1601

The evidence is now quite strong that we can’t do any better than the model
which relates the location parameter of the distribution to a linear regression
(single parameter) model in voltage. We can verify this by looking at graphics

z
g y i

i

=
−() α

σ

219

CHAPTER 13 PARAMETRIC REGRESSION FOR CENSORED DATA
FITTING MODELS: THE PLOT METHOD FOR CENSORREG

The plot method for objects of class “censorReg” generates 4 to 6 plots
depending on the type of fit. You can generate all possible plots for a
“censorReg” fit object by simply using the plot function as follows:

> plot(fit1)

The first three plots resulting from the above call are equivalent to those
produced for fit objects of class “lm” or “glm” so they won’t be discussed
further here.

The last four are different and are presented in figure 13.1 through figure
12.4.
Figure 13.1 displays a probability plot of the standardized residuals. The

Figure 13.1: Probability plot of standardized residuals with maximum likelihood estimate.

0.01 0.05 0.10 0.50 1.00

.005

.01

.02

.03

.05

.1

.2

.3

.5

.7

.9

.98

.999

Weibull Probability Plot
with MLE

Point plotting method = km
Residuals

W
ei

bu
ll

P
ro

ba
bi

lit
ie

s

220

FITTING MODELS: THE PLOT METHOD FOR CENSORREG
standardization of the residuals are described in Meeker and Escobar (1998)
and are referred to by them as “censored Cox-Snell” residuals. A maximum
likelihood estimate of a null model (intercept only) is displayed in the plot
along with the residuals for diagnostic purposes.

Figure 13.2 displays a probability plot of the fitted model along with the
non-censored observations. Each line and each set of points corresponds to
the fit and non-censored observations for a different value of the covariate.
This plot gives a good assessment of the fit. However, it is currently only
available for single covariate models. The censorReg function is not
constrained to single covariates, but this plotting function is. You can access
this function directly by calling probplot. See the help file for
probplot.censorReg for more details.

Figure 13.3 displays what engineers refer to as a stress plot. It plots the non-
censored observations and equi-probability lines for the predictor variable
(the stressor) verus failure times. It is quite clear from the graph that as
voltage (stress) decreases, failure times increase. This plot is also constrained

Figure 13.2: Probability plot of the fit with maximum likelihood estimates.

1 5 10 50 100

.00005

.0001

.0002

.0005

.001

.003

.005

.01

.02

.05

.1

.2

.5

.7

.9
.98

.999

Weibull Probability Plot with MLE's
Grouped by voltage, method = regression(km)

Time to Failure

W
ei

bu
ll

P
ro

ba
bi

lit
y

20
26
29
32
221

CHAPTER 13 PARAMETRIC REGRESSION FOR CENSORED DATA
to single covariate regression models. For more details see the help file for
stressplot.censorReg.

The final diagnostic plot, also for a fit with a single covariate, is displayed in
figure 13.4. This is the same plot as figure 13.2 but repeated for six
distributions. The distributions are the weibull, the lognormal and loglogistic
coupled with their non-logged counterparts. This plot is provided primarily
for distribution assessment. It’s quite clear from figure 13.4 that a non-logged
distribution does not fit the data well. Exactly which logged distribution fits
best is not so clear. For more information on this plot function see the help
file for probplot6.censorReg.

As mentioned above the three plotting functions probplot.censorReg,
stressplot.censorReg, and probplot6.censorReg are called by
the plot method for a "censorReg" object. These functions, however, were
designed to be called directly and provide more capabilities than are available
through the general plot method. One primary example of this is the
method argument to each of these plotting functions which allows the

Figure 13.3: Stress plot of the fit.

0.1 1.0 10.0 100.0 1000.0 10000.0

20
22

24
26

28
30

32

Stress Plot
method = regression(KM), extreme(log)

Time to Failure

vo
lta

ge

p = 0.01
p = 0.05
p = 0.1
p = 0.5
222

FITTING MODELS: THE PLOT METHOD FOR CENSORREG

he
le
te for
plotted points to be computed based upon some alternative model. This

argument defaults to the "KM", or Kaplan-Meier estimates, but four other
sets of estimates are possible. These are 1) "one", or null (intercept only)
model in which case

for location parameter µ, 2) "regression" model which allows

for covariate x, 3) "factor" models which uses

for covariate values i to compute separate locations for each value of t
covariate, and finally, 4) "separate" model is the most general single variab
parametric model which allows separate location and scale parameter estima

Figure 13.4: Six-distribution plot of the fit.

1 5 10 50 100
.00005

.0002

.0005

.003

.01

.03

.1

.3

.7

.98

P
ro

ba
bi

lit
y

weibull

Failure Time
0 50 100 150 200 250 300

extreme

Failure Time

1 5 10 50 100
.00005

.0005

.005
.02

.1

.3

.5

.7

.9

.98
.995
.999

P
ro

ba
bi

lit
y

lognormal

Failure Time
0 50 100 150 200 250 300

normal

Failure Time

1 5 10 50 100
.00005

.0005
.002

.01

.05
.2
.5
.8

.95

.99
.998

.9995

P
ro

ba
bi

lit
y

loglogistic

Failure Time
0 50 100 150 200 250 300

logistic

Failure Time

z
g y

=
−() µ

σ

z
g y x

=
−() β

σ

z
g y i=

−() α
σ

223

CHAPTER 13 PARAMETRIC REGRESSION FOR CENSORED DATA

eral
each value of the covariate:

For our example, comparing the regression fit with the more gen
"separate" fit in the probability plot is accomplished using the statement

> probplot(fit1, method=”separate”, add.legend=T,
legend.loc = “auto”)

which results in the following plot.

The plotted points in figure 13.5 are obtained from the “separate” model
and show some deviation from the “regression” model. However this is
not statistically significant as we saw previously when we compared the
models using a likelihood ratio test. You can also add confidence intervals to
the plot for each maximum likelihood estimate to get a feel for the variability
of the estimated distribution(s).

z
g y i

i

=
−() α

σ

Figure 13.5: Probability plot for comparing models.

1 5 10 50 100

.00005

.0001

.0002

.0005

.001

.003

.005

.01

.02

.05

.1

.2

.5

.7

.9
.98

.999

Weibull Probability Plot with MLE's
Grouped by voltage, method = regression(separate)

Time to Failure

W
ei

bu
ll

P
ro

ba
bi

lit
y

20
26
29
32
224

COMPUTING PROBABILITIES AND QUANTILES
COMPUTING PROBABILITIES AND QUANTILES

The predict method for “censorReg” objects computes predictions
from a fitted model on either probability or response scales at designated
quantiles or probabilities, respectively, for specified covariate values. For
example, suppose you want to estimate the time to 10%, 50% and 90%
failure from our regression model for the capacitor2 data for values of
voltage at 16, 20, and 24. The the call to the predict function is

> predict(fit1, newdata = data.frame(voltage = c(16,
20, 24)))

with resulting display:
$"voltage=16":
 Estimate Std.Err 95% LCL 95% UCL
0.1 72097.22 1.028782 9598.82 541525.8
0.5 696503.03 1.133190 75570.05 6419427.9
0.9 2955616.38 1.217862 271644.96 32158403.5

$"voltage=20":
 Estimate Std.Err 95% LCL 95% UCL
0.1 5565.468 0.7211182 1354.206 22872.76
0.5 53765.809 0.8136006 10913.602 264877.00
0.9 228155.656 0.8986737 39199.343 1327956.02

$"voltage=24":
 Estimate Std.Err 95% LCL 95% UCL
0.1 429.6203 0.4384364 181.9228 1014.571
0.5 4150.3943 0.5003670 1556.5971 11066.302
0.9 17612.2327 0.5853507 5591.9462 55470.980

Operating the capacitor at 16 volts increases its life span by about 170 times
compared to operating at 24 volts. The probability values (proportion failed)
are 0.1, 0.5, and 0.9 by default when calling the predict function. That
can be modified by specifying the p argument. For example to compute the
10%, 20% and 30% failure times you would enter
> predict(fit1, p = c(.1,.2,.3), newdata =
data.frame(voltage = c(16, 20, 24)))
225

CHAPTER 13 PARAMETRIC REGRESSION FOR CENSORED DATA
Alternatively, to predict proportion failed or failure rates for given quantiles
of the failure time distribution, you specify type = “probability” as an
argument to predict. Let’s compute the failure rates for the same set of
voltage values at 1000, 2000 and 3000 days.
> predict(fit1, q = c(1000, 2000, 3000), type = "prob",
newdata = data.frame(voltage = c(16, 20, 24)))

$"voltage=16":
 Estimate Std.Err 95% LCL 95% UCL
1000 0.003011831 0.7981976 0.0006315958 0.01423447
2000 0.005350046 0.7977207 0.0011250641 0.02504342
3000 0.007484339 0.7997419 0.0015703341 0.03489259

$"voltage=20":
 Estimate Std.Err 95% LCL 95% UCL
1000 0.02500204 0.5845648 0.008088394 0.07462304
2000 0.04403085 0.5949867 0.014147239 0.12879193
3000 0.06111373 0.6058481 0.019466567 0.17587955

$"voltage=24":
 Estimate Std.Err 95% LCL 95% UCL
1000 0.1914712 0.4138868 0.09520448 0.3476748
2000 0.3147595 0.4679518 0.15510243 0.5347458
3000 0.4110080 0.5191918 0.20142736 0.6587655

The difference is again dramatic when comparing 16 and 24 volts. After
1000 days you expect only about 3 out of 1000 capacitors to fail when
operated at 16 volts compared to 19 out of 100 when operated at 24 volts.

Additional arguments to predict allow you to specify the confidence level
(referred to as coverage by the function) of the confidence intervals and
whether or not you want to print the standard errors and confidence
intervals.
226

PARAMETRIC SURVIVAL
PARAMETRIC SURVIVAL

This dialog fits a regression model to survival or more generally censored data.
See also chapter 22, Overview of Survival Analysis, and chapter 25,
Parametric Regression in Survival Models, in the Guide to Statistics.

To perform parametric survival modeling:

Choose Statistics cSurvival cParametric Survival from the main menu. The
dialog shown below appears.

Figure 13.6: The Parametric Survival dialog, Model page.
227

CHAPTER 13 PARAMETRIC REGRESSION FOR CENSORED DATA
Model Page

Data Data Frame

Select a data frame.

Weights

Enter the column that specifies weights to be applied to all observations used
in the regression. To weight all rows equally, leave this blank.

Subset Rows with

Enter an S-PLUS expression which identifies the rows to use in the analysis.
To use all the rows in the data frame, leave this field blank. The expression
must evaluate to a vector of logical values (TRUE values are used, FALSE
values are dropped), or a vector of indices identifying the numbers of the
rows to use.

Examples:

species == “Bear” only Bears are used

voltage != 20 all voltages are used except 20

1:20 only the first 20 rows of the data are used.

Age >= 13 & Age < 20 only teenagers are used.

For more information on constructing logical expressions, see the S-PLUS
Programmer's Guide.

Omit Rows with Missing Values

Check this box to omit from the analysis any rows in the data frame that
contain missing values for any of the variables in the model.

If this box is not checked, S-PLUS will report an error and halt the routine if
any row is found to have a missing value in any of the terms in the model.

Formula Formula

Enter a formula specifying the desired model.

cTip ...

You can type into the Data Frame edit box any expression which evaluates to a data frame.
228

PARAMETRIC SURVIVAL
Examples:

censor(days,event)~voltage

Create Formula

Click this to open a formula builder dialog used to construct a formula
specifying the desired model. See the chapter on Building Formulas for more
information.

Model Distribution

Select the assumed distribution for the transformed response variable.

Type of Censoring

Specify the type of censoring: right, left, counting, interval.

Truncation Formula

Enter a formula specifying the truncation model.

Examples:

censor(days,event)

Create Formula

Click this to open a formula builder dialog used to construct a formula
specifying the truncation model. See the chapter on Building Formulas for
more information.

Save Model
Object

Save As

Enter the name for the object in which to save the results of the analysis. If an
object with this name already exists, its contents will be overwritten.

This must be a valid S-PLUS object name—any combination of
alphanumeric characters that starts with an alpha character is allowed. The
only non-alphanumeric character allowed is the period ".". Names are case-
sensitive, so X and x are different names. Where appropriate, Save As defaults
to a name that starts with "last". For example, "last.censorreg" is the most
229

CHAPTER 13 PARAMETRIC REGRESSION FOR CENSORED DATA
recent parametric survival model fit.

Options Page Use the Options page to define optimization parameters for model
computations.

Optimization
Parameters

Convergence Tolerance

Enter a number specifying the convergence tolerance. Iteration will continue
until the relative change in deviance is less than this number.

Maximum Iteration

Enter a number specifying the maximum number of iterations. If
convergence has not been reached after this number of iterations, the

Figure 13.7: The Parametric Survival dialog, Options page.
230

PARAMETRIC SURVIVAL
procedure will stop.

Results Page

Printed Results Short Output

Check this to print a summary of the model results in the designated output
window. This includes estimates of the coefficients, dispersion (scale), degrees
of freedom, and -2*loglikelihood.

Long Output

Check this to print a long summary of the model results in the designated
output window. This includes summary statistics for the deviance residuals,

Figure 13.8: The Parametric Survival dialog, Results page.
231

CHAPTER 13 PARAMETRIC REGRESSION FOR CENSORED DATA
standard errors and z-values for the coefficients, number of iterations, and
correlation of coefficients.

Saved Results Save In

Enter the name of an S-PLUS data frame in which a part, such as fitted
values and residuals, of the analysis is saved. If an object with the name you
enter does not already exist (in database 1), then it will be created. If you
enter the name of a data frame that already exists (in database 1) and this data
frame has the same number of rows as the number of observations used in the
model fit, then the saved values are appended to this data frame. This allows
you to keep fitted values from a model with the original data or to keep the
residuals from a number of different models for the same data in one data
frame. If you give the name of an existing S-PLUS object that is not a data
frame or is not the appropriate size, then a warning is issued and a modified
name is used.

Fitted Values

Check this to save the fitted values from the model in the object specified in
Save In.

Standardized Residuals

Check this to save the standardized residuals.

Deviance Residuals

Check this to save the deviance residuals. The sum of squares of these added
up to the deviance.

Pearson Residuals

Check this to save the pearson residuals. These are standardized residuals on
the scale of the response.

Response Residuals

Check this to save the response residuals
232

PARAMETRIC SURVIVAL
.

Plots Page

Fit Plot Probability Plot Of Failure Time

Check this to plot failure probability versus failure time in models with one
or fewer covariates or stratification variables.

Show Maximum likelihood estimate

Check this to plot the maximum likelihood estimate of the failure probability
on the fit plot.

Figure 13.9: The Parametric Survival dialog, Plots page.
233

CHAPTER 13 PARAMETRIC REGRESSION FOR CENSORED DATA
Show Confidence Bands

Check this to plot the confidence bands for the maximum likelihood
estimate of the failure probability.

Coverage

Type the confidence level for the maximum likelihood estimation.

Stress Plot Stress vs. Failure Time

Check this to plot stress versus failure time.

Probability for failure

A vector of probabilities for which quantiles are to be computed. The
quantiles at each covariate value are plotted and quantiles with the same
probability are connected with a line.

Other Plots Six Distributions Plot

Check this to plot six distributions of the fitted model.

Response vs. Fit

Check this to plot the response variable versus the fitted values. The line y = x
is also drawn on the graph.

Residuals Residuals vs. Fit

Check this to plot the deviance residuals versus the fitted values.

Sqrt Abs Residuals vs Fit

Check this to plot the square root of the absolute values of the deviance
residuals versus the fitted values. This plot is useful for checking for the
constant variance assumption of the model.
234

PARAMETRIC SURVIVAL
Probability Plot of Residuals

Check this to create a probability plot of the standardized residuals.

Predict Page

New Data Enter the name of a data frame to use for computing predictions. It must
contain the same names as the terms in the right side of the formula for the
model. If omitted, the original data are used for computing predictions.

Predict Probabilities

Check this to predict probability of failure.

Figure 13.10: The Parametric Survival dialog, Predict page.
235

CHAPTER 13 PARAMETRIC REGRESSION FOR CENSORED DATA
Predict Response

Check this to predict the response based upon the fitted probability
distribution.

Predict
Probabilities

At Response Values

A vector of response values used to predict probabilities. Enabled only while
‘Predict Probabilities’ is checked.

Confidence Level

Type confidence level used for confidence intervals of predicted probabilities.

Predict Response At Probabilities

A vector of probabilities used to predict the response. Enabled only while
‘Predict Response’ is checked.

Confidence Level

Type confidence level used for confidence intervals of predicted response
values.

Save Save In

Enter the name of an S-PLUS list in which predictions and standard errors
are to be saved.

Print Results

Check this to print out the result of prediction.

Related S-PLUS language functions for Parametric Survival:

censorReg, print.censorReg, plot.censorReg,
summary.censorReg, residuals.censorReg,
censorReg.control, censorReg.fit,
censorReg.distributions, anova.censorReg, pftdist,
qftdist.

Other related S-PLUS language functions:

formula, lm, solve, censor
236

The S-PLUS GUI toolkit is a set of S-PLUS functions that enables
communications between S-PLUS applications and Windows. For S-PLUS

Version 4.5, the GUI toolkit has been expanded. Chapter 11 of the S-PLUS

Programmer’s Guide, Programming the User Interface using S-Plus, includes a
thorough discussion of the GUI toolkit as it existed in S-PLUS 4.0; at least a
casual reading of that chapter is a helpful prerequisite to the present chapter.

This chapter describes how to use the new GUI toolkit functions to either
query the GUI for existing settings, or to allow S-PLUS functions to alter the
settings in the GUI.

guiSetOption Use the guiSetOption function to set options available in the GUI under
the Options menu. For example, to disable Tool Tips in dialogs, you would
use guiSetOption as follows:

> guiSetOption("ToolTipsForDialogs", "F")

guiGetOption Use the guiGetOption function to obtain the current value of any option
available in the GUI under the Options menu. For example, to get the
current Trellis background color, use guiGetOption as follows:

> guiGetOption("BackColorTrellis")
[1] "Lt Gray"

guiSetRowSelections

Use the guiSetRowSelections function to specify one or more rows of a
data set as "selected"; that is, they appear highlighted in a Data window view,
and plotted symbols appear highlighted in a Graphsheet window. This

NEW GUI TOOLKIT
FUNCTIONS 14
237

CHAPTER 14 NEW GUI TOOLKIT FUNCTIONS
selection can be done interactively in the GUI; this function permits the
same behavior programmatically. This is useful, for example, if you want to
highlight known outliers in a data set.

guiGetRowSelections

Use the guiGetRowSelections function to obtain a list of rows in the
current data set that are selected.

guiGetRowSelectionExpr

Use the guiGetRowSelectionExpr function to obtain an S-PLUS expression
for the set of rows currently selected in a GraphSheet or Data Window. For
example, consider the Data Window shown in Figure 14.1.

Figure 14.1: Data Window with two rows highlighted in fuel.frame.
238

Rows 46 and 51 of the fuel.frame data set are selected. To store this
information for future use, you can use guiGetRowSelectionExpr as
follows:

> guiGetRowSelectionExpr("fuel.frame")
[1] "46,51"

You can select those same rows in a later session using
guiSetRowSelection:

> guiSetRowSelection("fuel.frame", "46,51")

guiPrintClass Use the guiPrintClass function to obtain a list of properties for any GUI
class, and for each property, a list of acceptable values. You can use the results
of this function to help construct calls to guiCreate and guiModify. For
example, suppose you wanted to make a line plot. You could call
guiPrintClass on the class "LinePlot" and see what properties such a
plot contains, then construct a call to guiCreate to build the plot you
wanted, as follows:

> guiPrintClass("LinePlot")
CLASS: LinePlot
ARGUMENTS:
 Name
 Prompt:
 Default:
 DataSet
 Prompt: Data Set
 Default: ""
 xColumn
 Prompt: x Column(s)
 Default: ""
 yColumn
 Prompt: y Column(s)
 Default: ""
 ...
 LineStyle
 Prompt: Style
 Default: "Solid"
 Option List: [None, Solid, Dots, Dot Dash, Short Dash,
 Long Dash, Dot Dot Dash, Alt Dash, Med Dash, Tiny Dash]
 LineColor
 Prompt: Color
 Default: "Cyan"
 Option List: [Black, Blue, Green, Cyan, Red, Magenta,
 Brown, Lt Gray, Dark Gray, Lt Blue, Lt Green, Lt Cyan,
239

CHAPTER 14 NEW GUI TOOLKIT FUNCTIONS
 Lt Red, Lt Magenta, Yellow, Bright White, Transparent,
 User1, User2, User3, User4, User5, User6, User7, User8,
 User9, User10, User11, User12, User13, User14, User15,
 User16]
 LineWeight
 Prompt: Weight
 Default: "1"
 Option List: [Hairline, 1/4, 1/3, 1/2, 1, 2, 3, 4, 5,
 6, 8, 10, 12]
 ...
> guiCreate("LinePlot", DataSet="fuel.frame", xColumn="Weight",
+ yColumn="Mileage", LineStyle="Alt Dash", LineColor="Magenta")

S-PLUS provides default values for most unspecified properties; thus, the plot
produced by the above command shows cyan open circles at each data point.
The default values for plot colors, line styles, and other basic characteristics
are set in Options/Graph Styles. Other defaults can be modified by saving the
object as a default.

guiPlot Use the guiPlot function as a convenient way to create editable graphics
from S-PLUS functions. Unlike guiCreate and guiModify, which can be
used to create graphics but are also used to create other GUI objects,
guiPlot is used exclusively to create graphics. It therefore has a simpler and
more intuitive syntax.
For example, suppose you want to create two line plots on the same graph in
a new graph sheet, and store the data within the graph sheet. The following
calls do exactly that:

> x <- 1:30
> guiPlot("Line", DataSetValues=data.frame(x, cos(x),
 sin(x)))
[1] "GS2"

Suppose you want to create a Trellis graph with two conditional variables.
You can do this with guiPlot as follows:

> guiPlot("Loess", DataSetValues=environmental,
 NumConditioningVars=2)
[1] "GS3"

guiRefreshMemory

Use the guiRefreshMemory to remove unneeded objects from memory; you
240

can optionally restore the object’s summary data after clearing the entire
object from memory.

guiExecuteBuiltIn

Use the guiExecuteBuiltIn function to launch dialogs or perform other
operations that are "built-in" to the GUI. Built-in operations are stored for
each GUI property, and can be viewed for any particular object using the
guiGetPropertyValue function. For example, suppose we wanted to view
the "About S-PLUS" dialog at some point in our function. Open the Object
Browser and create a new page containing the Interface Class Menu Item.
Expand the SPlusMenuBar node and highlight the menu of interest in the
left pane. Right-click on the desired menu item in the right pane and select
Command from the right-click menu. The built-in operation is shown at the
top of the page:

> guiExecuteBuiltIn(“$$SPlusMenuBar$Object_Browser$Window$
Tile-Vertical”)

We can then use this command in a call to guiExecuteBuiltIn:

> guiExecuteBuiltIn(
 "$$SPlusMenuBar$Object_Browser$Help$About_S_PLUS")

guiGetPropertyOptions

Use the guiGetPropertyOptions function to see a list of acceptable values
for a given GUI property. For example, you can determine the available
border styles for objects of GUI class "Box" as follows:

> guiGetPropertyOptions("Box", "BorderStyle")
 [1] "None" "Solid" "Dots" "Dot Dash"
 [5] "Short Dash" "Long Dash" "Dot Dot Dash" "Alt Dash"
 [9] "Med Dash" "Tiny Dash"

guiGetPropertyPrompt

Use the guiGetPropertyPrompt to see basic information about the
property, such as its GUI prompt, its default value, and whether it is a
241

CHAPTER 14 NEW GUI TOOLKIT FUNCTIONS
required property. For example, for the GUI class "Box", the Border Style
property information is as follows:

> guiGetPropertyPrompt("Box", "BorderStyle")
$PropName:
[1] "BorderStyle"

$prompt:
[1] "Style"

$default:
[1] "Solid"

$optional:
[1] T

$data.mode:
[1] "character"

Identifying Specific Graphics Objects

To modify specific pieces of editable graphics using guiModify, you must
specify the object name, showing its path in the object hierarchy. You can use
the following functions to get the object name for a specific object type. Most
of them take a GraphSheet name and a GraphNum argument; you can use
guiGetGSName to obtain the name of the current GraphSheet:

• guiGetAxisLabelsName: returns the name of the AxisLabels for a
specified axis (axis 1 by default).

• guiGetAxisName: returns the name of the axis for a specified axis
(axis 1 by default).

• guiGetAxisTitleName: returns the name of the axis title for a
specified axis (axis 1 by default).

• guiGetGSName: returns the name of the current GraphSheet. (This
function takes no arguments.)

• guiGetGraphName: returns the GraphName of the graph with the
242

specified GraphNum in the specified GraphSheet.

guiGetPlotName: returns the Name of the plot with the specified PlotNum
in the specified GraphNum in the specified GraphSheet.

For example,

> guiPlot("Line"DataSetValues=data.frame(1:20, sin(1:20))
> guiModify(“YAxisTitle”, Name=guiGetAxisTitleName(),

Title=”sin(x)”)

guiGetPlotClass

Use the guiGetPlotClass function to do one of the following:

 1. For a specified plot type, return the GUI class to which the plot type
belongs. The class name is a required argument in guiModify.

 2. If no plot type is specified, return a list of valid plot types. These are
the valid plot types for guiPlot.

For example,

> guiGetPlotClass("Scatter")
[1] "LinePlot"
> guiGetPlotClass()
 [1] "Scatter" "Line" "LineScatter"
[4] "IsolatedPoints" "HighDensity" "Text"
[7] "Bubble" "Color" "BubbleColor"
[10] "Loess" "Spline" "Robust"
[13] "Dot" "TimeSeries" "Step"
[16] "VerticalStep" "HorizDensity" "YZeroDensity"
[19] "Super" "Kernel" "LinearCF"
[22] "PolyCF" "ExpCF" "LnCF"

...
> guiPlot("Loess”, DataSetValues=environmental[,1:2])
> guiModify(guiGetPlotClass(“Loess”), Name=

guiGetPlotName(), LineColor=”Red”)
243

CHAPTER 14 NEW GUI TOOLKIT FUNCTIONS
guiRemoveContents

Use guiRemoveContents to remove the objects contained by the specified
container.

For example,
> guiRemoveContents(“GraphSheet”, Name=guiGetGSName)

will clear the contents of the current graph sheet, leaving it blank.

guiUpdatePlots

To update the plots created by guiPlot(DataSetValues=...) with new
data set values, use guiUpdatePlots.
For example,
> gsName <- guiPlot(“Scatter”, DataSetValues=fuel.frame

[,1:2])
> guiUpdatePlots(GraphSheet=gsName, DataSetValues=

environmental[,1:2])

The number of columns in the data set used in guiUpdatePlots should be
the same as the number of columns in the original data set used in guiPlot.
244

Passing Data to Functions via Automation 242
Method to get and set parameter classes of functions exposed
 via automation 243

New Automation Methods in S-PLUS 4.5 246
Automating Embedded S-PLUS Graphs 254
Examples Of Automation Provided With S-plus 255
Examples Of Using S-plus As An Automation Client
 Included With S-plus 257
Examples of ActiveX controls included with S-PLUS 258

AUTOMATION IMPROVEMENTS
IN S-PLUS 4.5 15
245

CHAPTER 15 AUTOMATION IMPROVEMENTS IN S-PLUS 4.5

ypes
posed

pes
ction.
PASSING DATA TO FUNCTIONS VIA AUTOMATION

S-PLUS functions that are exposed via automation by calling
register.ole.object() can be used in other automation client programs to
accept data, run the function, and return the resulting data, if any, to the
client program.

As discussed earlier, the parameters of a function and the function’s return
value are properties of the function object and can be used in a client
program. You can pass data directly to a function using these properties, and
you can retrieve the result of running the function with the run method by
using the ReturnValue property.

For example, if you have a function called MyFunction(a) defined in
S-PLUS which takes in a data frame and returns a data frame, when you
expose this function via automation using register.ole.object(), you
could use the following Visual Basic 4.0 script to set the function parameter,
run the function, and get the return value:

Dim pArray(1 to 3) as double
pArray(1) = 1.0
pArray(2) = 2.0
pArray(3) = 3.0

Dim pMyFunction as Object
Set pMyFunction = CreateObject(“S-PLUS.MyFunction”)
pMyFunction.a = pArray
pMyFunction.Run

Dim pReturnArray as Variant
pReturnArray = pMyFunction.ReturnValue

In this example, after the run method is called, the function will be executed
and the ReturnValue property will contain the result of running the
function in S-PLUS. This is retrieved in the Visual Basic variable
pReturnArray.

By default, all parameter data is passed as a data frame to the function. This
means that in the above example, pArray is first converted into a data frame and
then this data frame is passed to the function MyFunction. This default
behavior could cause errors if the function you’ve exposed expects data t
other than data frames. You can control the data types used in a function ex
via automation in one of two ways. You can call the SetParameterClasses()
method of the function with a comma-delimited string specifying the data ty
(or class names) for each of the parameters and the return value of the fun
246

PASSING DATA TO FUNCTIONS VIA AUTOMATION

es
ion.

 use
Alternatively, you can set a property of the FunctionInfo object called
ArgumentClassList with a comma-delimited string specifying the data typ
(or class names) for each of the parameters and the return value of the funct

Method to get
and set
parameter
classes of
functions
exposed via
automation:

The above example in Visual Basic 4.0 can be modified to show how to
SetParameterClasses. We can use SetParameterClasses to adjust how
the data from Visual Basic is interpreted by MyFunction:

Dim pArray(1 to 3) as double
pArray(1) = 1.0
pArray(2) = 2.0
pArray(3) = 3.0

Dim pMyFunction as Object
Set pMyFunction = CreateObject(“S-PLUS.MyFunction”)

Table 5:

SetParameterClasses

[boolean] =
obj.SetParameterClasses
(
[comma delimited
string])

Returns TRUE if
successful, FALSE if
not.

Takes in a comma-de-
limited string specifying
the class names of the
return value followed
by each of the parame-
ters of the function. It is
required that the return
value class name be
specified first and that
the number of class
names specified in this
string match the total
number of parameters
of the function plus its
return value.

GetParameterClasses

[string array] =
obj.GetParameterClasses
()

Returns an array of
strings representing
the class names of
the return value fol-
lowed by each of the
parameters of the
function.

Takes no parameters.
Returns an array of
strings representing the
class names of the re-
turn value followedby
each of the parameters
of the function.
247

CHAPTER 15 AUTOMATION IMPROVEMENTS IN S-PLUS 4.5

sses

ge of
onal
if (_
 pMyFunction.SetParameterClasses(“data.frame, vector”)
= TRUE _
) then
pMyFunction.a = pArray
pMyFunction.Run

Dim pReturnArray as Variant
pReturnArray = pMyFunction.ReturnValue
end if

As an alternative to using SetParameterClasses in the automation client at
the time of running or using the function, you can define the parameter cla
using the ArgumentClassList property when you define the FunctionInfo
object to represent the function in S-PLUS. This approach has the advanta
simplifying the automation client program code but does require some additi
steps in S-PLUS when defining the function.

Consider the following S-PLUS script to define the function MyFunction and a
FunctionInfo object for this function:

MyFunction <- function(a)
{

return(a)
}

guiCreate(
"FunctionInfo", Function = “MyFunction”,
ArgumentClassList = "vector, vector");

This example script will define MyFunction and will define a FunctionInfo
object for MyFunction and set the ArgumentClassList to the string
"vector, vector" indicating that data passed into and out of MyFunction via
automation will be done using S-PLUS vectors.

If this is done, then the corresponding Visual Basic 4.0 code becomes simpler
because we no longer need to set the parameter classes for the function before
it is used:

Dim pArray(1 to 3) as double
pArray(1) = 1.0
pArray(2) = 2.0
pArray(3) = 3.0

Dim pMyFunction as Object
Set pMyFunction = CreateObject(“S-PLUS.MyFunction”)
248

PASSING DATA TO FUNCTIONS VIA AUTOMATION
pMyFunction.a = pArray
pMyFunction.Run

Dim pReturnArray as Variant
pReturnArray = pMyFunction.ReturnValue

pArray is now passed as a vector to MyFunction and pReturnArray is now
retrieved from MyFunction as a vector.
249

CHAPTER 15 AUTOMATION IMPROVEMENTS IN S-PLUS 4.5
NEW AUTOMATION METHODS IN S-PLUS 4.5

There are several new automation methods in S-PLUS 4.5:

Table 6:

Object Dialog Methods

ShowDialogInParent

[boolean] =
obj.ShowDialogInParent(
 [hwnd])

Displays a modal
property dialog for an
object in the automa-
tion client interface.
The client program is
paused while the dia-
log is displayed.

Takes in a long number
representing the win-
dow handle of the win-
dow you want the object
dialog to appear inside.
Returns TRUE if suc-
cessful and FALSE if
not.

ShowDialogInParentMod-
eless

[boolean] =
obj.ShowDialogInParentM
odeless(
 [hwnd])

Displays a modeless
property dialog for an
object in the automa-
tion client interface.
The client program
continues executing
while the dialog is
displayed.

Takes in a long number
representing the win-
dow handle of the win-
dow you want the object
dialog to appear inside.
Returns TRUE if suc-
cessful and FALSE if
not.

Object Methods

ObjectContainees

[array objects] =
obj.ObjectContainees(
 [class name string])

Returns an array of
objects that are con-
tained by this object.

This method is not
available for function
objects.

Takes in a string repre-
senting the class name
of objects to include in
this array. Returns an
array of containee ob-
jects of the class name
specified or an empty
array if none can be
found.
250

NEW AUTOMATION METHODS IN S-PLUS 4.5
ObjectContainer

[object] =
obj.ObjectContainer()

Returns an object that
is the container of this
object.

This method is not
available for function
objects.

Takes no parameters.
Returns the object that
contains this object.

ClassName

[string] =
obj.ClassName()

Returns a string repre-
senting the class name
of this object.

Takes no parameters.
Returns the object class
name as a string.

PathName

[string] =
obj.PathName()

Returns a string repre-
senting the path name
of this object in S-
PLUS.

Takes no parameters.
Returns the object path
name in S-PLUS.

Application Object Methods

ExecuteStringResult

[string] =
obj.ExecuteStringResult
(
 [S-PLUS syntax
string],
 [boolean])

Returns a string repre-
senting the output
from executing the
string passed in. The
format of the return
string depends on the
setting of the second
parameter. If TRUE,
the older S-PLUS 3.3
output formatting will
be applied. If FALSE,
the new format will be
used.

Takes in a string repre-
senting any valid S-
PLUS syntax and a
boolean parameter indi-
cating how the result
should be formatted.
Returns a string repre-
senting the result of exe-
cuting the syntax passed
in.

SetSAPIObject

[boolean] =
obj.SetSAPIObject(
 [byte array variant],
 [object name string]
)

Sets a binary SAPI
object created in an
automation client pro-
gram into S-PLUS,
making it available to
other operations in S-
PLUS.

Takes in a VARIANT
representing a byte ar-
ray of the SAPI object to
set, and a string repre-
senting the name of the
object to set. Returns
TRUE if successful,
otherwise FALSE.

Table 6:
251

CHAPTER 15 AUTOMATION IMPROVEMENTS IN S-PLUS 4.5
GetSAPIObject

[byte array variant] =
obj.GetSAPIObject(
 [object name string]
)

Returns a binary
SAPI object into a
variant byte array giv-
en the name of the ob-
ject in S-PLUS.

Takes in a string repre-
senting the name of the
SAPI object to return.
Returns a variant byte
array representing the
object found. If no ob-
ject could be found the
variant will be empty.

Function Object Methods

SetParameterClasses

[boolean] =
obj.SetParameterClasses
(
 [comma delimited
string])

Returns TRUE if suc-
cessful, FALSE if not.

Takes in a comma-de-
limited string specifying
class names of the re-
turn value followed by
each parameter of the
function. It is required
that the return value
class name be specified
first and that the number
of class names specified
in this string match the
total number of parame-
ters of the function plus
its return value.

GetParameterClasses

[string array] =
obj.GetParameterClasses
()

Returns an array of
strings representing
the class names of the
return value followed
by each of the param-
eters of the function.

Takes no parameters.
Returns an array of
strings representing the
class names of the re-
turn value followed by
each of the parameters
of the function.

GraphSheet Object Meth-
ods

Table 6:
252

NEW AUTOMATION METHODS IN S-PLUS 4.5
CreatePlots

[boolean] =
obj.CreatePlots(
 [axis type string],
 [plot type string],
 [data array variant],
 [data column names
array])

Returns TRUE if suc-
cessful, FALSE if not.

Takes in a string repre-
senting the axis type for
the plots, a string repre-
senting the plot type to
create, and the data to
use to create plots in the
graphsheet.

The axis type string may
be one of “2D”, “3D”,
“Pie”, or “Polar”.

The plot type string is
one of the choices
shown in the Insert
Graph dialog (accessed
by the menu item Insert/
Graph in S-PLUS).

The last parameter is an
array of strings repre-
senting the names of
columns in the data ar-
ray. These names will
be used as axes labels in
plots. Pass in an empty
variant to not use col-
umn names.

CreateConditionedPlots

[boolean] =
obj.CreateConditionedPl
ots(
 [axis type string],
 [plot type string],
 [number of
conditioning vars],
 [data array variant],
 [data column names
array])

Returns TRUE if suc-
cessful, FALSE if not.

Similar to Cre-
atePlots except that
this method takes in a
number specifying the
number of conditioning
columns to use from the
data array passed in.
The data columns and
conditioning columns
are specified as part of
the data array passed in.

Table 6:
253

CHAPTER 15 AUTOMATION IMPROVEMENTS IN S-PLUS 4.5
CreateConditioned-
PlotsSeparateData

[boolean] = obj.
CreateConditionedPlotsS
eparateData(
 [axis type string],
 [plot type string],
 [data array variant],
 [conditioning array
variant],
 [data column names
array],
 [conditioning col.
names array])

Returns TRUE if suc-
cessful, FALSE if not.

Similar to Create-
Conditioned-
Plots except that this
method takes in a data
array and a conditioning
array separately, instead
of combined in one ar-
ray.

The last two parameters
are arrays of strings rep-
resenting the names of
columns in the data ar-
ray and names of col-
umns in the
conditioning array.
These names will be
used as axes labels in
plots. Pass in an empty
variant for either or both
of these to not use col-
umn names.

Table 6:
254

NEW AUTOMATION METHODS IN S-PLUS 4.5
CreatePlotsGallery
[boolean] =
obj.CreatePlotsGallery(
 [hwnd],
 [data array variant],
 [data column names
array])

Returns TRUE if suc-
cessful, FALSE if not.

Displays a dialog allow-
ing selection of axis
type and plot type.
Takes in a long number
representing the win-
dow handle of the win-
dow you want the graph
gallery dialog to appear
inside, and a data array
to plot. Returns TRUE
if successful and
FALSE if not.

The last parameter is an
array of strings repre-
senting the names of
columns in the data ar-
ray. These names will
be used as axes labels in
plots. Pass in an empty
variant to not use col-
umn names.

CreateConditionedPlots-
Gallery

[boolean] =
obj.CreateConditionedPl
otsGallery(
 [number of
conditioning vars],
 [hwnd],
 [data array variant],
 [data column names
array])

Returns TRUE if suc-
cessful, FALSE if not.

Similar to Cre-
atePlotsGallery
except that this method
takes in a number speci-
fying the number of
conditioning columns to
use from the data array
passed in. The data col-
umns and conditioning
columns are specified as
part of the data array
passed in.

Table 6:
255

CHAPTER 15 AUTOMATION IMPROVEMENTS IN S-PLUS 4.5
Examples of using these new automation methods can be found in the
following sub-directories under samples/oleauto in your S-PLUS program
directory:

dialogs

This directory contains an example Visual Basic 4.0 project that
demonstrates the use of ShowDialog(), ShowDialogInParent() and
ShowDialogInParentModeless() automation methods.

objects

This directory contains an example Visual Basic 4.0 project that
demonstrates the use of ObjectContainees(), ObjectContainer(),
ClassName(), and PathName() automation methods.

ccccrrrreeeeaaaatttteeeepppplllltttt

CreateConditionedPlots –
 SeparateDataGallery

[boolean] =
obj.CreateConditionedPl
ots -
 SeparateDataGallery(
 [hwnd],
 [data array variant],
 [conditioning array
variant],
 [data column names
array],
 [conditioning col.
names array])

Returns TRUE if suc-
cessful, FALSE if not.

Similar to Create-
Conditioned-
PlotsGallery
except that this method
takes in a data array and
a conditioning array
separately, instead of
combined in one array.

The last two parameters
are arrays of strings rep-
resenting the names of
columns in the data ar-
ray and names of col-
umns in the
conditioning array.
These names will be
used as axes labels in
plots. Pass in an empty
variant for either or both
of these to not use col-
umn names.

Table 6:
256

NEW AUTOMATION METHODS IN S-PLUS 4.5
This directory contains an example Visual Basic 4.0 project that
demonstrates the use of the CreatePlots(), CreateConditionedPlots(), and
CreateConditionedPlotsSeparateData() automation methods.
257

CHAPTER 15 AUTOMATION IMPROVEMENTS IN S-PLUS 4.5
AUTOMATING EMBEDDED S-PLUS GRAPHS

With S-PLUS Automation support you can automate embedded graph sheet
documents easily in any Automation client program such as Visual Basic,
Excel, Word, and others. You can even create, modify, and save an embedded
S-PLUS graph sheet with plotted data in place without ever leaving your
Automation client program. You can use S-PLUS Automation to create a
plot, send data from your Automation client to the plot, modify properties of
the plot either through dialogs which you can display in your client program
or directly via command, execute S-PLUS built-in functions or functions
that you’ve written in the S-PLUS language and exposed via Automation to
transform the data, and save the plot with your Automation client document.
Examples written in Visual Basic 4.0 and in Visual Basic for Applications
with Excel 7.0 are distributed with S-PLUS to demonstrate automating an
embedded graph sheet.

‘VBEMBED.EXE’ and corresponding Visual Basic source files can be found
in ‘samples/oleauto/vbembed’ off your S-PLUS program directory. This
example demonstrates how to do the following:

• embed an S-PLUS graph sheet

• add objects to it

• modify those objects by displaying object property dialogs in the
client program,

• delete objects from it,

• save a document containing the embedded graph sheet. ‘P

‘PLOTDATA.XLS’ can be found in ‘samples/oleauto/vba’. This example
demonstrates how to do the following:

• embed an S-PLUS graph sheet

• add a plot to it

• send Excel data from a worksheet to S-PLUS to be graphed in the
plot

• modify plot properties using property dialogs.
258

EXAMPLES OF AUTOMATION PROVIDED WITH S-PLUS
EXAMPLES OF AUTOMATION PROVIDED WITH S-PLUS

The following directories (all paths relative to the S-PLUS installation
directory) contain examples of using S-PLUS as an automation server
included with S-PLUS:

samples/oleauto

senddata Example Visual Basic 4.0 project that shows how to
send data to S-PLUS data objects.

vbembed Example Visual Basic 4.0 project that shows how to
embed an S-PLUS graphsheet, modify it by using
automation, save it, delete objects in it, and how to
display an object dialog.

vbclient Example Visual Basic 4.0 project that demonstrates
creating a graphsheet, adding an arrow to it, changing
the properties of the arrow, showing a dialog for the
arrow, executing S-PLUS commands, modifying option
values, getting an object, and sending and receiving
data.

vba This directory contains several examples of using Visual
Basic for Applications in Excel:

aaaauuuuttttoooo____vvvvbbbbaaaa....xxxxllllssss: Demonstrates sending and receiving
data, and converting Excel ranges to arrays.

pppplllloooottttddddaaaattttaaaa....xxxxllllssss: Demonstrates embedding a graphsheet
and adding and modifying a plot in it.

xxxxffffeeeerrrrttttooooddddffff....xxxxllllssss: Demonstrates transferring Excel ranges to
S-PLUS dataframes and back to Excel.

vbrunfns This directory contains an example Visual Basic 4.0
project that shows how to register an S-PLUS function
as automatable, how to pass binary data to the function,
and how to receive the result of the function back in
VB.

dialogs This directory contains an example Visual Basic 4.0
project that demonstrates the use of the following
atuomation methods:
ShowDialog()
ShowDialogInParent()
259

CHAPTER 15 AUTOMATION IMPROVEMENTS IN S-PLUS 4.5
ShowDialogInParentModeless()

objects This directory contains an example Visual Basic 4.0
project that demonstrates the use of
ObjectContainees(), ObjectContainer(), ClassName(),
and PathName() automation methods.

ccccrrrreeeeaaaatttteeeeptptptpt This directory contains an example Visual Basic 4.0
project that demonstrates the use of the CreatePlots()
automation method.
260

EXAMPLES OF USING S-PLUS AS AN AUTOMATION CLIENT INCLUDED WITH S-PLUS
EXAMPLES OF USING S-PLUS AS AN AUTOMATION CLIENT
INCLUDED WITH S-PLUS

The following directories (all paths relative to the S-PLUS installation
directory) contain examples of using S-PLUS as an automation client:

samples/oleauto

clitesta.ssc Shows how to use S-PLUS commands to start Excel and
call method of Excel to convert inches to points and
return the result in S-PLUS.

clitestb.ssc Shows how to use S-PLUS commands to start Excel, get
a property, and set a property.

clitestc.ssc Shows how to use S-PLUS commands to set a range of
data in an Excel worksheet with data from an S-PLUS
vector and then how to get the data back from Excel
into another vector.

clitestd.ssc Shows how to get a property value from Excel

cliteste.ssc Shows how to send a vector from S-PLUS to Excel and
transpose it to a row in Excel.

clitestf.ssc Shows how to send a vector from S-PLUS to Excel and
transpose it to a row in Excel using a different set of
steps than in cccclllliiiitttteeeesssstttteeee....sssssssscccc.
261

CHAPTER 15 AUTOMATION IMPROVEMENTS IN S-PLUS 4.5

on-

 4.1
EXAMPLES OF ACTIVEX CONTROLS INCLUDED WITH
S-PLUS

Examples of ActiveX controls which implement support for S-PLUS dialog c
tainment are provided on disk in the SAMPLES/OCX directory beneath the pro-
gram directory. These examples are C++ projects in Microsoft Visual C++
using MFC (Microsoft Foundation Classes) and are intended for developers.
samples/ocx

myocx Microsoft Visual C++ 4.1 MFC project demonstrating
how to write ActiveX controls that fully support S-
PLUS dialogs.

ocx1 Microsoft Visual C++ 4.1 MFC project demonstrating
how to write ActiveX controls that fully support S-
PLUS dialogs.

support Microsoft Visual C++ 4.1 MFC headers and source files
necessary for making ActiveX controls that fully
support S-PLUS dialogs.
262

ActiveX Controls in S-PLUS dialogs 260
Adding an ActiveX control to a dialog 260
Where can the PROGID for the control be found? 261
Registering an ActiveX control 263
Why only “OCX String”? 264
Common error conditions when using ActiveX controls
 in S-PLUS 264
Designing ActiveX controls that support S-PLUS 265

New Dialog Controls In S-PLUS 4.5 279

DIALOG CONTROLS IN
S-PLUS 4.5 16
263

CHAPTER 16 DIALOG CONTROLS IN S-PLUS 4.5
ACTIVEX CONTROLS IN S-PLUS DIALOGS

S-PLUS supports the use of ActiveX controls in dialogs for user defined
functions created in the S-PLUS programming language. This feature allows
greater flexibility when designing a dialog to represent a function and its
parameters. Any ActiveX control can be added to the property list for a
dialog, however, most ActiveX controls will not automatically communicate
changed data back to the S-PLUS dialog nor will most tell S-PLUS how
much space to give the control in the dialog. To fully support S-PLUS dialog
layout and data communication to and from S-PLUS dialogs, a few special
ActiveX methods, properties, and events need to be implemented in the
control by the control designer.

Examples of ActiveX controls which implement support for S-PLUS dialog
containment are provided on disk in the SAMPLES/OCX directory beneath
the program directory. These examples are C++ projects in Microsoft Visual
C++ 4.1 using MFC (Microsoft Foundation Classes). Any MFC ActiveX
project can be modified to support S-PLUS dialogs easily, and this will be
discussed later in this section. Also in SAMPLES/OCX are example scripts
which use S-PLUS to test these ActiveX controls.

Adding an
ActiveX
control to a
dialog

To use an ActiveX control for a property in a dialog, when creating the
property, specify a “DialogControl” of type “OCX String” and specify the
program id (or PROGID) of the control using the “ControlProgId”
subcommand. Below is an example S-PLUS script which creates a property
that uses an ActiveX control:

guiCreate("Property",
name = "OCXStringField",
DialogControl = "OCX String",
ControlProgId = "TXTESTCONTROL1.TxTestControl1Ctrl.1",
ControlServerPathName = “c:\\myocx\\myocx.ocx”,
DialogPrompt = "&OCX String");

If you are editing or creating a property using the object browser, the
Property object dialog for the property you are editing allows you to set the
dialog control type to “OCX String” from the “Dialog Control” drop-down
list. When this is done, the “Control ProgId” and “ControlServerPathName”
fields become enabled allowing to you enter the PROGID of the ActiveX
control and its location on disk, respectively. The “ControlServerPathName”
value is used to autoregister the control, if necessary, before using the control.

If you are editing or creating a property using the object browser, the
264

ACTIVEX CONTROLS IN S-PLUS DIALOGS
Property object dialog for the property you are editing allows you to set the
dialog control type to “OCX String” from the “Dialog Control” drop-down
list. When this is done, the “Control ProgId” field becomes enabled allowing
to you enter the PROGID of the ActiveX control.

Where can the
PROGID for the
control be
found?

When you add an ActiveX control to an S-PLUS dialog, you need to specify
its PROGID, as mentioned above. The PROGID is a string which uniquely
identifies this control on your system. If you create controls using the
ControlWizard in Developer Studio as part of Microsoft Visual C++ 4.0 or
higher, a default value for the PROGID is created by the ControlWizard
during control creation that is based on the name of the project you use. For
example, if your ControlWizard project name is “MyOCX”, then the
PROGID that is generated is “MYOCX.MyOCXCtrl.1”. The pattern here
is [Project name].[Control class name without the leading ‘C’].1. You can
also find the PROGID used in an MFC ControlWizard project in the
implementation CPP file of the control class. Search for the
IMPLEMENT_OLECREATE_EX() macro in this file. The second
parameter in this macro is the PROGID string you are looking for.

If you are using the OLE ControlWizard as part of Microsoft Visual C++ 4.0
or higher to develop your control, you can change the PROGID string for
your control before it gets created by editing the names used for the control
project. During the ControlWizard steps, you will see a dialog with the
265

CHAPTER 16 DIALOG CONTROLS IN S-PLUS 4.5
button “Edit Names” on it:

Click on this button and you will get another dialog allowing you to change
the names used for classes in this project. Every control project in MFC has a
class for the control and a class for the property sheet for the control. In the
control class section of this dialog you will see the “Type ID” field. This is
266

ACTIVEX CONTROLS IN S-PLUS DIALOGS
the PROGID for the control:

Registering an
ActiveX
control

It is important to register an ActiveX control with the operating system at
least once before using it so that whenever the PROGID of the control is
referred to (such as in the “ControlProgId” subcommand above), the
operating system can properly locate the control on your system and run it.
Registering an ActiveX control is usually done automatically during the
creation of the control, such as in Microsoft Visual C++ 4.0 or higher. If the
subcommand “ControlServerPathName” is specified in an S-PLUS script
using the control, then this value will be used to register the control
automatically. A control can also be registered manually by using a utility
called “RegSvr32.exe”. This utility is included with development systems
that support creating ActiveX controls, such as Microsoft Visual C++ 4.0 or
higher. For your convenience, a copy of RegSvr32.exe is located in the
SAMPLES/OCX directory, along with two useful batch files,
“RegOCX.BAT” and “UnRegOCX.BAT”, which will register and unregister
a control. You can modify these batch files for use with controls you design.
267

CHAPTER 16 DIALOG CONTROLS IN S-PLUS 4.5
You typically do not ever need to unregister an ActiveX control, unless you
wish to remove the control permanently from your system and no longer
need to use it with any other container programs such as S-PLUS. If this is
the case, you can use RegSvr32.exe with the ‘/u’ command line switch (as in
UnRegOCX.BAT) to unregister the control.

Why only
“OCX String”?

In S-PLUS, several different types of properties exist. There are string,
single-select lists, multi-select lists, numeric, and others. This means that a
property in a dialog communicates data depending on the type of property
selected. A string property communicates string data to and from the dialog.
A single-select list property communicates a number representing the
selection from the list, a multi-select list communicates a string of selections
made from the list with delimiters separating the selections. For ActiveX
controls, only string communication has been provided in this version. This
means that the control should pass a string representing the “value” or state of
the control back to S-PLUS. In turn, if S-PLUS needs to change the state of
the control, it will communicate a string back to the control. Using a string
permits the most general type of communication between S-PLUS and the
ActiveX control, because so many different types of data can be represented
with a string, even for example lists. In future versions, other S-PLUS
property types may be added for ActiveX controls.

Common error
conditions
when using
ActiveX
controls in
S-PLUS

The most common problem when using an ActiveX control in an S-PLUS
dialog is that the control does not appear, instead a string edit field shows up
when the dialog is created. This is usually caused by not registering the
ActiveX control with the operating system. After a control is first created and
before it is ever used, it must be registered with the operating system. This
usually occurs automatically in the development system used to make the
control, such as Microsoft Visual C++. However, you can also manually
register the control by using a utility called “RegSvr32.exe”. This utility is
included with development systems that support creating ActiveX controls,
such as Microsoft Visual C++ 4.0 or higher. For your convenience, a copy of
RegSvr32.exe is located in the SAMPLES/OCX directory, along with two
useful batch files “RegOCX.BAT” and “UnRegOCX.BAT” which will
register and unregister controls. You can modify these batch files for use with
controls you design.
268

ACTIVEX CONTROLS IN S-PLUS DIALOGS

 for
ro-

it is
ple

 S-
eX
the
 files
earch
X

eX
LUS

LE
File
 new

 list
loca-
Designing
ActiveX
controls that
support S-PLUS

As mentioned earlier, examples of ActiveX controls which implement support
S-PLUS are provided on disk in the SAMPLES/OCX directory beneath the p
gram directory. One of the examples in this directory is called MyOCX, and
a C++ project in Microsoft Visual C++ 4.1 using MFC. There is also an exam
S-PLUS script in MyOCX which shows how to use this ActiveX control in an
PLUS dialog. This example will be used here to show how to implement Activ
controls for S-PLUS. If you would rather skip this section and simply study
changes in the source files for MyOCX, all changes are marked in the source
with the step number (as listed below) that the change corresponds to. Just s
for the string “S-PLUS Dialog change (STEP” in all the files of the MyOC
project to find these modifications.

Version 4.0 or higher of Microsoft Visual C++ is used to demonstrate Activ
control creation. Higher versions can also be used to create controls for S-P
but the dialogs and screens shown may be different.

1. Create the basic control
The first step to designing an ActiveX control in MFC should be to use the O
ControlWizard that is part of the Developer Studio. Select New from the
menu in Developer Studio and then choose “Project Workspace” to start a
project.

From the workspace dialog that appears, select “OLE ControlWizard” from the
of workspace types available. Enter a name for the project and specify the
tion, then click the “Create…” button.
269

CHAPTER 16 DIALOG CONTROLS IN S-PLUS 4.5

OLE
trol.
log.
fir-
at are

 files.

ou
trol:
After accepting this dialog, you will see a series of dialogs associated with the
ControlWizard, asking questions about how you want to implement your con
For now, you can simply accept the defaults by clicking “Next” on each dia
When you reach the last dialog, click the “Finish” button. You will see a con
mation dialog showing you the choices you selected and names of classes th
about to be created. Click the “OK” button to accept and generate the project

In the “ClassView” page of the “Project Workspace” window in Visual C++, y
will see the classes that the OLE ControlWizard created for your ActiveX con
270

ACTIVEX CONTROLS IN S-PLUS DIALOGS

fol-
to

d and
t”

alog
2. Add the S-PLUS support classes

To start adding support for S-PLUS dialogs to your ActiveX control, copy the
lowing files from the SAMPLES/OCX/SUPPORT control example directory in
the new ActiveX control project directory you just created:

OCXUtils.cpp
OCXUtils.h
SPDgCInf.cpp
SPDgCInf.h
SPlusOCX.cpp
SPlusOCX.h
SPlusOCX.idl

You also need to add these classes to your project before they will be compile
linked to your control. To do this, select “Files into Project…” from the “Inser
menu in Visual C++. You will then see a standard file open dialog. Use this di
to select the following files:

OCXUtils.cpp
SPDgCInf.cpp
SPlusOCX.cpp

To select all these files at once, hold down the CTRL key while using the mouse to
click on the filenames in the list.
271

CHAPTER 16 DIALOG CONTROLS IN S-PLUS 4.5

pear
When these files are selected, click the “Add” button and the classes will ap
as entries in your Project Workspace window.
272

ACTIVEX CONTROLS IN S-PLUS DIALOGS

veX
lu-
up-
m
p and

 the
 this
 the

top

wn.
e

3. Modify class inheritance

Next, we need to modify the inheritance of the class representing your Acti
control so that it inherits from CSPlusOCX instead of from COleControl. CSP
sOCX is a parent class from which all ActiveX controls for which you desire s
port for S-PLUS dialogs can inherit. CSPlusOCX inherits directly fro
COleControl and its complete source code can be found in the SPlusOCX.cp
SPlusOCX.h files.

To do this, first double-click on the class representing your ActiveX control in
“ClassView” page of the Project Workspace window to open the header for
class into your editor. In this example that is the CMyOCXCtrl class. Go to
top of this file in the editor.

Add the following line before the class declaration line for CMyOCXCtrl at the
of this header file:

#include "SPlusOCX.h"

Modify the class declaration line

class CMyOCXCtrl : public COleControl

to read

class CMyOCXCtrl : public CSPlusOCX

Next, expand the class listing for CMyOCXCtrl so that all the methods are sho
To do this, click on the ‘+’ next to “CMyOCXCtrl” in the “ClassView” page of th
273

CHAPTER 16 DIALOG CONTROLS IN S-PLUS 4.5

the
s of
 file:

pe

r.
Project Workspace window.

Then double-click on the constructor “CMyOCXCtrl()” to open the implemen-
tation CPP file for this class in your editor. Go to the top of this file. Using
find and replace function of the Developer Studio, replace all occurrence
“COleControl” base class with the new base class name “CSPlusOCX” in this

4. Modify your control’s type library definition file

Switch to the “FileView” page in the Project Workspace window and find the ty
library definition file (.ODL) for your ActiveX control. In this example it is “My-
OCX.odl”. Double-click on this entry in the list to open this file into your edito
Go to the top of this file.
274

ACTIVEX CONTROLS IN S-PLUS DIALOGS

in
Find the “properties” definition section for the dispatch interface “_DMyOCX”
this file. It should look like:

dispinterface _DMyOCX
{
properties:
// NOTE - ClassWizard will maintain property information here.
// Use extreme caution when editing this section.
//{{AFX_ODL_PROP(CMyOCXCtrl)
//}}AFX_ODL_PROP

Add the following lines at the end of this section:

#define SPLUSOCX_PROPERTIES
#include "SPlusOCX.idl"
#undef SPLUSOCX_PROPERTIES

The section should now appear as follows:

dispinterface _DMyOCX
{
properties:
// NOTE - ClassWizard will maintain property information here.
// Use extreme caution when editing this section.
//{{AFX_ODL_PROP(CMyOCXCtrl)
//}}AFX_ODL_PROP

#define SPLUSOCX_PROPERTIES
#include "SPlusOCX.idl"
#undef SPLUSOCX_PROPERTIES
275

CHAPTER 16 DIALOG CONTROLS IN S-PLUS 4.5

 the
methods:
// NOTE - ClassWizard will maintain method information here.
// Use extreme caution when editing this section.
//{{AFX_ODL_METHOD(CMyOCXCtrl)
//}}AFX_ODL_METHOD

[id(DISPID_ABOUTBOX)] void AboutBox();
};

Now, add the following lines at the end of the “methods” section just below
“properties” section you just modified:

#define SPLUSOCX_METHODS
#include "SPlusOCX.idl"
#undef SPLUSOCX_METHODS

This whole section should now appear as follows:

dispinterface _DMyOCX
{
properties:
// NOTE - ClassWizard will maintain property information here.
// Use extreme caution when editing this section.
//{{AFX_ODL_PROP(CMyOCXCtrl)
//}}AFX_ODL_PROP

#define SPLUSOCX_PROPERTIES
#include "SPlusOCX.idl"
#undef SPLUSOCX_PROPERTIES

methods:
// NOTE - ClassWizard will maintain method information here.
// Use extreme caution when editing this section.
//{{AFX_ODL_METHOD(CMyOCXCtrl)
//}}AFX_ODL_METHOD

[id(DISPID_ABOUTBOX)] void AboutBox();

#define SPLUSOCX_METHODS
#include "SPlusOCX.idl"
#undef SPLUSOCX_METHODS

};
276

ACTIVEX CONTROLS IN S-PLUS DIALOGS

s as:
Next, locate the event dispatch interface sections. In this example, it appear

dispinterface _DMyOCXEvents
{
properties:
// Event interface has no properties

methods:
// NOTE - ClassWizard will maintain event information here.
// Use extreme caution when editing this section.
//{{AFX_ODL_EVENT(CMyOCXCtrl)
//}}AFX_ODL_EVENT
};

Add the following lines in the “events” section:

#define SPLUSOCX_EVENTS
#include "SPlusOCX.idl"
#undef SPLUSOCX_EVENTS

The section should now appear as:

dispinterface _DMyOCXEvents
{
properties:
// Event interface has no properties

methods:
// NOTE - ClassWizard will maintain event information here.
// Use extreme caution when editing this section.
//{{AFX_ODL_EVENT(CMyOCXCtrl)
//}}AFX_ODL_EVENT

#define SPLUSOCX_EVENTS
#include "SPlusOCX.idl"
#undef SPLUSOCX_EVENTS

};

Do not modify any other parts of this file at this time.

5. Build the control
277

CHAPTER 16 DIALOG CONTROLS IN S-PLUS 4.5

ar
r
 sure

ord

ord

your
iew

om
thods
 ex-
s,

 the
Now is a good time to build this project. To do this, click on the “Build” toolb
button or select “Build MyOCX.OCX” from the “Build” menu in the Develope
Studio. If you receive any errors, go back through the above steps to make
you have completed them correctly. You may receive warnings:

OCXutils.cpp(125) : warning C4237: nonstandard extension used : 'bool' keyw
is reserved for future use
OCXutils.cpp(216) : warning C4237: nonstandard extension used : 'bool' keyw
is reserved for future use

These warnings are normal and can be ignored.

Several overrides of CSPlusOCX virtual methods still remain to be added to
ActiveX control class, but compiling and linking now gives you a chance to rev
the changes made and ensure that everything builds properly at this stage.

6. Add overrides of virtual methods to your control class

To support S-PLUS dialog layout and setting the initial value of the control fr
an S-PLUS property value, you need to override and implement several me
in your control class. To do this, edit the header for your control class. In this
ample, edit the “MyOCXCtl.h” file. In the declaration of the CMyOCXCtrl clas
add the following method declarations in the “public” section:

virtual long GetSPlusDialogVerticalSize(void);
virtual long GetSPlusDialogHorizontalSize(void);
virtual BOOL SPlusOnInitializeControl(const VARIANT FAR&
 vInitialValue);

Next, open the implementation file for your control class. In this example, edit
file “MyOCXCtl.cpp”. Add the following methods to the class:

long CMyOCXCtrl::GetSPlusDialogVerticalSize()
{
return 3; // takes up 3 lines in dialog
}

long CMyOCXCtrl::GetSPlusDialogHorizontalSize()
{
return 1; // takes up 1 column in dialog
}

BOOL CMyOCXCtrl::SPlusOnInitializeControl(const VARIANT
 FAR& vInitialValue)
278

ACTIVEX CONTROLS IN S-PLUS DIALOGS

tiveX
log

ialog.
lue

alog.
S di-
mns
hree

d
s to

rrent
uc-
X-
us

this

ile
ss:

e

{
CString sInitialValue; sInitialValue.Empty();
if (GetStringFromVariant(
sInitialValue,
vInitialValue,
"InitialValue"))
{
// Set properties here
}

return TRUE;
}

These three methods should be implemented in the control class of any Ac
control supporting S-PLUS dialogs fully. The first two methods support dia
layout, while the third supports setting values for the control from S-PLUS.

The value returned by GetSPlusDialogVerticalSize() should be a long
number representing the number of lines the control takes up in an S-PLUS d
A line is the size of an String edit field property in an S-PLUS dialog. The va
returned by GetSPlusDialogHorizontalSize() should be either 1 or 2.
Returning 1 means that this control takes up only one column in an S-PLUS di
Returning 2 means the control takes up two columns. A column in an S-PLU
alog is the width of a single String property field. There are at most two colu
in an S-PLUS dialog. In the example above, the MyOCX control takes up t
lines and only one column in an S-PLUS dialog.

SPlusOnInitializeControl() is called when the control is first enable
in the S-PLUS dialog and every time the property that this control correspond
in S-PLUS is changed. It receives a variant representing the initial value or cu
value (if any) for the control. This method should return TRUE to indicate s
cessful completion and FALSE to indicate failure. Included in the file “OC
Utils.h” (copied previously into your control project directory) are numero
helper functions such as the one used here GetStringFromVariant() which
will convert the incoming variant into a string if possible. You can then use
string to set one or more properties in your control.

To use the SPlusOnInitializeControl() in this example ActiveX con-
trol, first add a member string to the control class. Edit the “MyOCXCtl.h” f
and add a CString member variable called “m_sValue” to the CMyOCXCtrl cla

private:
CString m_sValue;

Next, initialize this value in the constructor for CMyOCXCtrl by modifying th
279

CHAPTER 16 DIALOG CONTROLS IN S-PLUS 4.5

trol

s

constructor definition in “MyOCXCtl.cpp”:

CMyOCXCtrl::CMyOCXCtrl()
{
InitializeIIDs(&IID_DMyOCX, &IID_DMyOCXEvents);

// TODO: Initialize your control's instance data here.

m_sValue.Empty();
}

Then, add lines to the definition of the override of SPlusOnInitializeCon-
trol() in your control class to set this member variable and refresh the con
by modifying “MyOCXCtl.cpp”:

BOOL CMyOCXCtrl::SPlusOnInitializeControl
const VARIANT FAR& vInitialValue)
{
CString sInitialValue; sInitialValue.Empty();
if (GetStringFromVariant(
sInitialValue,
vInitialValue,
"InitialValue"))
{
// Set properties here

m_sValue = sInitialValue;
Refresh();

}

return TRUE;
}

Finally, so we can see the effects of SPlusOnInitializeControl() , add a
line to the “OnDraw” method of CMyOCXCtrl by editing the definition of thi
method in “MyOCXCtl.h”:

void CMyOCXCtrl::OnDraw(
CDC* pdc, const CRect& rcBounds, const CRect& rcInvalid)
{
// TODO: Replace the following code with your
// own drawing code.
pdc->FillRect(rcBounds,
CBrush::FromHandle((HBRUSH)GetStockObject(WHITE_BRUSH)));
280

ACTIVEX CONTROLS IN S-PLUS DIALOGS

ript
 script
t
 and
ses

ld
veX
 the

ialog
you
op-
pdc->Ellipse(rcBounds);

// Display latest value
pdc->DrawText(
 m_sValue, (LPRECT)&rcBounds, DT_CENTER | DT_VCENTER);
}

Rebuild the project now to test these changes.

7. Test your new control in S-PLUS

To try out your new control in S-PLUS you’ll need to create an S-PLUS sc
which creates properties and displays a dialog. Open S-PLUS and open the
file from SAMPLES/OCX/MyOCX called “MyOCX.SSC”. Notice that the scrip
begins by creating three properties, one for the return value from a function
the other two for the parameters of a function. The property for “MyOCX” u
the type “OCX String” and the PROGID for the control we just created:

guiCreate("Property",
name = "MyOCX",
DialogControl = "OCX String",
ControlProgId = "MYOCX.MyOCXCtrl.1",
DialogPrompt = "My &OCX");

Run the script “MyOCX.SSC” and you will see a dialog containing an edit fie
and the MyOCX control you just created. When the dialog appears, the Acti
control contains the text “Hello” because this is set as the initial value in
S-PLUS script callback function:

callbackMyOCXExample <- function(df)
{
if(IsInitDialogMessage(df)) # Am I called to initialize
 # the properties?
{
Set the initial value of the MyOCX property
df <- cbSetCurrValue(df,"MyOCX", "\"Hello\"")
}
…

When you enter a string (use quotes around any string you enter in these d
fields) in the edit field, the ActiveX control updates to show that string. When
click the OK or Apply buttons in the dialog, you will see the values of both pr
erties printed in a report window.
281

CHAPTER 16 DIALOG CONTROLS IN S-PLUS 4.5

ary to
Summary of steps to support S-PLUS dialogs in ActiveX controls

To summarize the above steps, the list below shows you the tasks necess
adapt your MFC ActiveX control project to support S-PLUS dialogs:

 1. Add S-PLUS dialog support files to your project:

OCXUtils.cpp
OCXUtils.h
SPDgCInf.cpp
SPDgCInf.h
SPlusOCX.cpp
SPlusOCX.h
SPlusOCX.idl

 2. Change the inheritance of your control class from base class
COleControl to CSPlusOCX.

 3. Modify your control’s ODL (type library definition file) to include
SPlusOCX.idl sections.

 4. Add virtual overrides of key CSPlusOCX methods to your control
class:

virtual long GetSPlusDialogVerticalSize(void);
virtual long GetSPlusDialogHorizontalSize(void);
virtual BOOL SPlusOnInitializeControl(const VARIANT
 FAR& vInitialValue);
282

NEW DIALOG CONTROLS IN S-PLUS 4.5
NEW DIALOG CONTROLS IN S-PLUS 4.5

S-PLUS has a variety of dialog controls that can be used to represent the
properties of an object (such as a user-defined function) in a dialog. There
are now several new control types in S-PLUS 4.5 that can be used in dialogs
you create for user-defined functions.

PPPPiiiiccccttttuuuurrrreeee A small rectangle taking up one dialog column which
can contain a Windows metafile picture (either Aldus
placable or enhanced).

The picture to draw in this control is specified as a
string containing either the pathname to the WMF file
on disk, or a pathname to a Windows 32-bit DLL
followed by the resource name of the metafile picture in
this DLL.

WWWWiiiidddde e e e PPPPiiiiccccttttuuuurrrreeee Same as “PPPPiiiiccccttttuuuurrrreeee” except that this control takes up two
dialog columns.

PPPPiiiiccccttttuuuurrrre e e e LLLLiiiisssst t t t BBBBooooxxxx A scrolling list box control taking up one dialog column
which can contain several Windows metafile pictures
(either Aldus placable or enhanced).

The list of pictures to draw in this control is specified as
a string option list with each element in this option list
containing either the pathname to the WMF file on
disk, or a pathname to a Windows 32-bit DLL followed
by the resource name of the metafile picture in this
DLL.

WWWWiiiidddde e e e PPPPiiiiccccttttuuuurrrre e e e LLLLiiiisssst t t t BBBBooooxxxx
Same as “PPPPiiiiccccttttuuuurrrre e e e LLLLiiiisssst t t t BBBBooooxxxx” except that this control takes
up two dialog columns.

For both the Picture and the Picture List Box controls, you can specify either
a pathname to a Windows metafile on disk or a pathname to a Windows 32-
bit DLL and the resource name of the metafile in this DLL to use. The
syntax for each of these is specified below:
283

CHAPTER 16 DIALOG CONTROLS IN S-PLUS 4.5

d
he
-

Several example S-PLUS scripts follow which demonstrate how to use these
new controls for your own dialogs.

Example script to show how to use a Picture control in a
dialog in S-PLUS
#

Define a function for use with this dialog
PictureFn <- function (GraphToShowEdit)
{
sPictureShown <- paste(
 sep="", "The graph file: '", GraphToShowEdit,
 "' was last shown.")
}

Create properties for the function
guiCreate("Property", name = "ReturnValue", DialogControl =
 "Invisible");

guiCreate("Property", name = "GraphToShowEdit",
 DialogControl = "Wide String",
 DialogPrompt = "&Show Graph", UseQuote=T);

Create the Picture control
guiCreate("Property", name = "Picture1", DialogControl =
 "Picture", DialogPrompt = "&Picture",
 UseQuote=T);

Table 7:

Pathname to Windows
metafile

“[pathname]”

Example: “c:\\spluswin\\home\\Meta1.WMF”

DLL Pathname and re-
source name of metafile

“;[pathname to DLL],[metafile resource name]

Example: “;c:\\mydll\\mydll.dll, MyMetaFile”

Please note that the leading semicolon is require
in this case and the comma is required between t
DLL pathname and the name of the metafile re
source.
284

NEW DIALOG CONTROLS IN S-PLUS 4.5
Define group property for dialog
guiCreate("Property", name = "PictureGroup",
 type = "WideGroup",
 DialogPrompt = "Select Picture",
 PropertyList = c("GraphToShowEdit",
 "Picture1"));

Function info for the function
guiCreate("FunctionInfo", Function = "PictureFn",
 DialogHeader = "Picture Control Test",
 PropertyList = c("ReturnValue",
 "PictureGroup"),
 ArgumentList = c("#0 = ReturnValue",
 "#1 = GraphToShowEdit"),
 CallbackFunction = "callbackPictureFn",
 Display = "Yes");

Callback function for this dialog
callbackPictureFn <- function(df)
{
 if(IsInitDialogMessage(df)) # Am I called to initialize
 # the properties?
 {
 # Set the Picture control to display the Windows
 # metafile referred
 # to by the GraphToShowEdit property
 #
 sPicture1 <- cbGetCurrValue(df, "GraphToShowEdit")
 df <- cbSetCurrValue(df,"Picture1", sPicture1)
 }

 else if(cbIsOkMessage(df)) # Am I called when the Ok
 # button is pushed?
 {
 }

 else if(cbIsCancelMessage(df)) # Am I called when the
 # Cancel button is pushed?
 {
 }

 else if(cbIsApplyMessage(df)) # Am I called when the
 #Apply button is pushed?
 {
285

CHAPTER 16 DIALOG CONTROLS IN S-PLUS 4.5
 }

 else # Am I called when a property value is updated?
 {
 # If the GraphToShowEdit property has been changed,
 # then update the Picture1 picture control to
 # display this metafile.
 #
 if (cbGetActiveProp(df) =="GraphToShowEdit")
 {
 sPicture1 <- cbGetCurrValue(df,
 "GraphToShowEdit")
 df <- cbSetCurrValue(df,"Picture1", sPicture1)
 }
 }
 return(df)
}

Display the dialog
guiDisplayDialog("Function", Name="PictureFn");

Example script to show how to use a Picture List Box
control in a dialog in S-PLUS

Define a function for use with this dialog
PictureListFn <- function (PictureList, GraphSelectedEdit)
{
 sPictureSelected <- paste(
 sep="", "The graph file: '", GraphSelectedEdit,
 "' was selected.")
}

Create properties for the function
guiCreate("Property", name = "ReturnValue",
 DialogControl = "Invisible");
guiCreate("Property", name = "GraphSelectedEdit",
 DialogControl = "Wide String", DialogPrompt =
 "&Graph Selected", UseQuote=T);

Create the picture list box
guiCreate("Property", name = "PictureList",
286

NEW DIALOG CONTROLS IN S-PLUS 4.5
 DialogControl = "Picture List Box",
 OptionList = c(
 "c:\\spluswin\\home\\meta1.wmf", # List of
 "c:\\spluswin\\home\\meta2.wmf", #metafiles in
 "c:\\spluswin\\home\\meta3.wmf"), # an option list
 DialogPrompt = "&Picture List", UseQuote=T);

Define group property for dialog
guiCreate("Property", name = "WidePictureGroup",
 type = "WideGroup", DialogPrompt = "Select Picture",
 PropertyList = c("PictureList", "GraphSelectedEdit"));

Function info for the function
guiCreate("FunctionInfo", Function = "PictureListFn",
 DialogHeader = "Picture List Box Control Test",
 PropertyList = c("ReturnValue", "WidePictureGroup"),
 ArgumentList = c(
 "#0 = ReturnValue", "#1 = PictureList",
 "#2 = GraphSelectedEdit"),
 CallbackFunction = "callbackPictureListFn",
 Display = "Yes");

Callback function for this dialog
callbackPictureListFn <- function(df)
{
 if(IsInitDialogMessage(df)) # Am I called to initialize
 # the properties?
 {
 # Set the GraphSelectedEdit property to the selected
 # metafile pathname in the PictureList property
 #
 sPictureList <- cbGetCurrValue(df, "PictureList")
 df <- cbSetCurrValue(df,"GraphSelectedEdit",
 sPictureList)
 }

 else if(cbIsOkMessage(df)) # Am I called when the Ok
 # button is pushed?
 {
 }

 else if(cbIsCancelMessage(df)) # Am I called when the
 # Cancel button is pushed?
 {
287

CHAPTER 16 DIALOG CONTROLS IN S-PLUS 4.5
 }

 else if(cbIsApplyMessage(df)) # Am I called when the
 # Apply button is pushed?
 {
 }

 else # Am I called when a property value is updated?
 {
 # Set the GraphSelectedEdit property to the
 # selected metafile pathname in the PictureList
 # property
 #
 if (cbGetActiveProp(df) =="PictureList")
 {
 sPictureList <- cbGetCurrValue(df,
 "PictureList")
 df <- cbSetCurrValue(df,"GraphSelectedEdit",
 sPictureList)
 }
 }
 return(df)
}

Show the dialog
guiDisplayDialog("Function", Name="PictureListFn");
288

Automatic Matching of Delimiters 285
Automatic Generation Of Right Braces 285
Automatic Indentation 286
Modifying Script Window Settings 286

Several new features have been added to the Script Window in S-PLUS 4.5.
These features are intended to simplify typing S-PLUS functions. Each of
these features can be enabled or disabled independently of the others.

Automatic
Matching of
Delimiters

S-PLUS automatically matches parentheses ("()"), brackets ("[]"), braces
("{ }"), and quotation marks (" ") and (‘ ’). For example, whenever you type a
right parenthesis (")"), the editor automatically highlights the matching left
parenthesis ("("). The behavior is the same for brackets, braces, single quotes
(’) and double quotes ("). This helps a programmer ensure that matches
are as intended.

By default, S-PLUS searches through the entire Script Window to find an
automatic match. For large scripts, this can be very time consuming, so you
can restrict the search to a specified number of characters.

More precisely, after you type the right parenthesis, the cursor moves
automatically to the matching left parenthesis and highlights it for a
predetermined length of time (by default 0.5 seconds or 500 milliseconds).
The cursor then moves to the the space following the right parenthesis. Any
intervening keystrokes are buffered so that no keystrokes are lost if you keep
typing while the matching parenthesis is being highlighted. The length of
time for highlighting can be changed.

Automatic
Generation Of
Right Braces

When automatic generation of right braces (“}”) is enabled, pressing Enter
after typing a left brace ("{") will result in the automatic insertion of a
matching right brace two lines below, and the cursor will be placed on the
intervening line.

NEW SCRIPT WINDOW
FEATURES 17
289

CHAPTER 17 NEW SCRIPT WINDOW FEATURES
Automatic
Indentation

When automatic indentation is enabled, the editor automatically indents the
bodies of function definitions, if statements, for statements, and while
statements. The amount of the indentation is by default 4 spaces, and can be
changed. The following sample function illustrates the indentation style that
is supported:

"test1"<-
function(x)
{
 if(x > 0) {
 for(i in 1:x) {
 cat(i, "\n")
 }
 }
 else {
 i <- - x
 while(i > 0) {
 cat(i, "\n")
 i <- i - 1
 }
 }
}

Modifying
Script Window
Settings

The default settings of the Script Window can be changed by means of a
dialog box accessed by right-clicking in a Script Window and selecting
"Property" from the pop-up menu.

To disable any of the following properties, de-select the appropriate check
box:

• Auto Match {}, (), [], "" and ’’

• Auto Indent

• Auto Insert Right Brace

• Output pane word wrap

To change the Tab Size, enter the number of spaces desired in the appropriate
box.

To change the amount of time that matching parentheses etc. are
highlighted, change the value in the box labeled, "Match Time (msec)". The
value shown is in milliseconds.
290

In order to save the desired settings as defaults for future Script Window
sessions, use the "Options:Save Window Size/Properties as Default" menu
selection.

To change the number of characters through which S-PLUS will search for an
automatic match, enter a value in the Match CharLimit text field. The
default value, -1, means to search from the cursor to the top of the file.

The properties of a Script Window can also be accessed from the Object
Browser. To do this, first be sure that you are filtering on the Interface Class
"Script". (This Interface Class is not included in the filter by default.) Then
select "Script" in the left pane of the Object Browser and right-click on the
appropriate script in the right pane. Select "Properties" from the pop-up
menu.
291

CHAPTER 17 NEW SCRIPT WINDOW FEATURES
292

INDEX
INDEX

Numerics

4 Panel Conditioning 22
9 Panel Conditioning 22

A

Accelerated failure time models 200
Accelerated testing models 200
ActiveX Controls in S-Plus dialogs 264
Adding an ActiveX control to a dialog 264
add-on modules 13
Adjusted Means 115
Agglomerative Hierarchical Clustering 98
Agglomerative Hierarchical Clustering dialog

Model Page 98
Plot Page 101
Results Page 100

agnes 101
analysis of variance table 193
anova.censorReg 236
Auto Scale Axes 21
Automatic Generation Of Right Braces 289
Automatic Indentation 290
Automatic Matching of Delimiters 289
Automating Embedded S-Plus Graphs 258
Automation Improvements in S-Plus 4.5 245

B

Bootstrap Inference dialog 76
Jack After Boot page 81
Model page 76
Options page 77
Plot page 80
Results page 79

C

censor 236
censorReg 207, 236

Accounting for Covariates 210
censorReg function 207
censorReg.control 236
censorReg.distributions 236
censorReg.fit 236
clara 93
ClassName 251
Clustering In S-Plus 87
Color 24
Color Scale Legend 26

Hiding 30
Showing 30

Common error conditions when using ActiveX con-
trols in S-PLUS 268
Comparing Means From Two Samples 143
Comparing Proportions From Two Samples 148
Compute Dissimilarities 109
Computing a Robust Fit 159
Computing Probabilities and Quantiles 225
correlation matrix 193
CreateConditionedPlots 253
CreateConditionedPlots – SeparateDataGallery 256
CreateConditionedPlotsGallery 255
CreateConditionedPlotsSeparateData 254
CreatePlots 253
CreatePlotsGallery 255
Creating HTML Output 111

Graphs 114
Tables 112
Text 113

Crop Graph to Selected Rectangle 20
293

INDEX
D

daisy 110
Designing ActiveX controls that support S-Plus 269
Dialog Controls In S-Plus 4.5 263
diana 105
Display Selected Points 24
Dissimilarities 109
dissimilarity object 91, 95, 99, 103
Divisive Hierarchical Clustering 102
Divisive Hierarchical Clustering dialog

Model Page 102
Plot Page 105
Results Page 104

E

Examples of ActiveX controls included with S-Plus
262
Examples of Automation provided with S-PLUS
259
Examples Of Using S-plus As An Automation Client
Included With S-plus 261
Exclude Selected Points 25
ExecuteStringResult 251
Extract Panel 21
Extract Panel/Redraw Graph 21

F

Factorial Design dialog 60
Design Structure 60
Names 61
Randomization 61
Results 61

fanny 97
formula 236
Fuzzy Partitioning 94
Fuzzy Partitioning dialog

Model Page 94
Plot Page 97
Results Page 96

G

GetParameterClasses 252
GetSAPIObject 252
Graph Options dialog 20
Graph Tools Palette 20
Graphs dialog

Interactive page . 24
guiExecuteBuiltIn function 241
guiGetAxisLabelsName function 242
guiGetAxisName function 242
guiGetAxisTitleName function 242
guiGetGraphName function 242
guiGetGSName function 242
guiGetOption function 237
guiGetPlotClass function 243
guiGetPropertyOptions function 241
guiGetRowSelectionExpr function 238
guiGetRowSelections function 238
guiPlot function 240
guiPrintClass function 239
guiRemoveContents function 244
guiSetOption function 237
guiSetRowSelections function 237

H

Height Multiplier 24
Help system

On-line Demos 12
on-line help 12
On-Line Manuals 12
training courses 13

html.table function 112

I

Include All Points 25
Installation

Excel Add-In 34
SPSS Add-In 44

installing the software 10
294

INDEX
J

Jackknife Inference dialog 83
Model page 83
Options page 84
Plot page 86
Results page 85

K

kmeans 89
K-Means Clustering 88
K-Means Clustering dialog

Model Page 88
Results Page 89

L

Label Point 20
Least Squares vs. Robust Fitted Model Objects 160
Line Weight Increment 24
linear regression 186
lm 236
lmRobMM function 156

M

Meeker, W.Q. 201
Method to get and set parameter classes of functions
exposed via automation 247
MM-estimate 156
Modifying Script Window Settings 290
modules

add-on 13
mona 108
Monothetic Clustering 106
Monothetic Clustering dialog

Model Page 106
Plot Page 107
Results Page 107

N

New Automation Methods in S-Plus 4.5 250
New Dialog Controls In S-Plus 4.5 283
No Conditioning 22

O

ObjectContainees 250
ObjectContainer 251
oil.df data set 158
One-Sample Test of Binomial Proportion 146
One-Sample Test of Gaussian Mean 140
on-line help 12
Orthogonal Array Design dialog 62

Design Structure 62
Randomization 62
Results 63

P

pam 93
Pan Down 21
Pan Left 21
Pan Right 21
Pan Up 21
Panels with Varying X and Y Axes 23
Parametric Regression For Censored Data 199
Parametric Survival dialog 227

Model page 227
Options page 230
Plots page 233
Predict page 235
Results page 231

Partitioning Around Medoids 90
Partitioning Around Medoids dialog

Model Page 90
Plot Page 93
Results Page 92

Passing Data to Functions via Automation 246
PathName 251
pftdist 236
plot.censorReg 236
PLOTDATA.XLS 258
295

INDEX
Plots in Separate Panels 22
print.censorReg 236

Q

qftdist 236
quantile-quantile plot 195

R

Recode dialog 64
Data 64
Values 64

Registering an ActiveX control 267
Resampling Methods 75
Rescale Axes menu 20
Reset Auto Scaling 21
residual-fit spread plot 195
residuals.censorReg 236
Return To All Panels 21
Robust Linear Regression 153
rugplot 195

S

S 38
SAMPLES/OCX 264
samples/oleauto 256
samples/oleauto/vba 258
samples/oleauto/vbembed 258
Scale Legend dialog 27

Box page 29
Labels page 27
Position/Size page 30
Ticks page 28

Select Data 20
Select Data dialog 58

Existing Data 58
New Data 58
Show Dialog on Startup 59
Source 58

Select Tool 20
Separate Panels with Varying X Axes 23

Separate Panels with Varying Y Axes 22
Set Dimensions dialog 74

Data 74
Dimensions 74

SetParameterClasses 252
SetSAPIObject 251
setup.exe 10
ShowDialogInParent 250
ShowDialogInParentModeless 250
S-news mailing list 13
solve 236
Specifying Interval Censored Data 202
Specifying the Parametric Family 208
Split Data By Group dialog 65

Data 65
Results 66
Splitting Variable 65

S-PLUS Excel Add-In
Installing 34
Selecting data for S-PLUS graphs 40
Using the Add-In 38

S-PLUS Excel Add-in
Removing 37

S-Plus Excel Add-In 33
S-Press newsletter 14
SPSS Add-In 43

Installing 44
Selecting data for conditioning S-Plus graphs

49
Selecting data for S-PLUS graphs 47
Using the Add-In 46

SPSS Add-in
Removing 45

Stack Columns dialog 67
Data 67
Names 68
Results 68

standard errors 197
StatLib 13
Style 24
Subset dialog 69

Data 69
Results 70

Subset Rows with 21
summary.censorReg 236
296

INDEX
Survival analysis 200
Survival data 200
system requirements 11

T

technical support 14
The Generalized Kaplan-Meier Estimate 202
Therneau, Terry 201
training courses 13
Transform dialog 71

Add to Expression 72
Data 71

Transpose dialog 73
Data 73
Results 73

Type III Sum of Squares 115

U

Use Only Selected Points 25

V

VBEMBED.EXE 258

W

Where can the PROGID for the control be found?
265
Why only “OCX String”? 268
Win32s 10
Windows 3.1 10
Windows for Workgroups 3.11 10
297

INDEX
298

	CONTENTS
	Welcome to S�Plus
	Introduction
	Installation
	System Requirements
	Help, Support, and Learning Resources
	Getting Help

	What’s New in S�Plus 4.5
	New Features

	New Interactive Graphics Capabilities for S-PLUS 4.5
	Using the Graph Tools Palette
	Highlighting selected data points
	Excluding or Including Only Selected Points in Your Plot
	Color Scale Legends
	Usage
	Properties

	S�Plus Excel Add-In
	Installing the S-PLUS Excel Add-In
	Installation during S-PLUS setup
	Manual installation

	Removing the S-PLUS Excel Add-in
	Using the S-PLUS Excel Add-In
	Selecting data for S-PLUS graphs

	S�Plus SPSS Add-In
	Installing the S-PLUS SPSS Add-In
	Installation during S-PLUS setup
	Manual installation

	Removing the S-PLUS SPSS Add-in
	Using the S-PLUS SPSS Add-In
	Selecting data for S-PLUS graphs
	Selecting data for conditioning S�Plus graphs
	Handling errors during graph creation

	File Improvements
	New Input/Output Features
	Loading Libraries
	Loading Modules

	Manipulating Data
	Select Data
	Factorial Design
	Orthogonal Array Design
	Recode
	Split Data By Group
	Stack Columns
	Subset
	Transform
	Transpose
	Set Dimensions

	Resampling Methods
	Bootstrap Inference
	Model Page
	Options Page
	Results Page
	Plot Page
	Jackknife- After- Bootstrap (Jack After Boot) Page

	Jackknife Inference
	Model Page
	Options Page
	Results Page
	Plot Page

	Clustering In S�Plus
	K-Means Clustering
	Model Page
	Results Page

	Partitioning Around Medoids
	Model Page
	Results Page
	Plot Page

	Fuzzy Partitioning
	Model Page
	Results Page
	Plot Page

	Agglomerative Hierarchical Clustering
	Model Page
	Results Page
	Plot Page

	Divisive Hierarchical Clustering
	Model Page
	Results Page
	Plot Page

	Monothetic Clustering
	Model Page
	Results Page
	Plot Page

	Compute Dissimilarities

	Creating HTML Output
	Tables
	Text
	Graphs

	Type III Sum of Squares and Adjusted Means
	ANOVA Tables
	Adjusted Means
	Multiple Comparisons
	Estimable Functions
	Sigma Constrained Parameterization
	References

	Power and Sample Size
	Normal Power And Sample Size
	Model Page
	Options Page

	Binomial Power And Sample Size
	Model Page
	Options Page
	Printout Page

	Power and Sample Size Theory
	Normally Distributed Data
	One-Sample Test of Gaussian Mean
	Comparing Means From Two Samples

	Binomial Data
	References

	Robust Linear Regression
	OVERVIEW OF THE ROBUST REGRESSION METHOD
	Key Robustness Features of the Method
	The Essence of the Method: a Special M- Estimate
	Using the lmRobMM Function to Obtain a Robust Fit
	Comparison of Least Squares and Robust Fits
	Robust Model Selection

	COMPUTING LEAST SQUARES AND ROBUST FITS
	Computing a Least Squares Fit
	Computing a Robust Fit
	Least Squares vs. Robust Fitted Model Objects

	VISUALIZING AND SUMMARIZING THE ROBUST FIT
	Visualizing the Fit with the plot Function
	Statistical Inference with the summary Function

	COMPARING LEAST SQUARES AND ROBUST FITS
	Creating a Comparison Object for LS and Robust Fits
	Visualizing LS vs. Robust Fits
	Statistical Inference for LS vs. Robust Fits

	ROBUST MODEL SELECTION
	Robust F and Wald Tests
	Robust FPE Criterion

	CONTROLLING OPTIONS FOR ROBUST REGRESSION
	Efficiency at Gaussian Model
	Alternative Loss Function
	Confidence Level of Bias Test
	Resampling Algorithms
	Random Resampling Parameters
	Genetic Algorithm Parameters

	THEORETICAL DETAILS
	Initial Estimate Details
	Optimal and Bisquare Rho and Psi- Functions
	The Efficient Bias Robust Estimate
	Efficiency Control
	Robust R- Squared
	Robust Deviance
	Robust F Test
	Robust Wald Test
	Robust FPE (RFPE)
	Appendix

	ROBUST MM REGRESSION
	BIBLIOGRAPHY

	Parametric Regression For Censored Data
	Introduction
	The Generalized Kaplan-Meier Estimate
	Specifying Interval Censored Data
	Computing Kaplan-Meier Estimates

	censorReg
	An Example Model
	Specifying the Parametric Family
	Accounting for Covariates
	Truncation Distributions
	Threshold Parameter
	Offsets
	Fixing parameters

	Fitting Models: ANOVA
	Fitting Models: The plot method for CensorReg
	Computing Probabilities and Quantiles
	Parametric Survival
	Model Page
	Options Page
	Results Page
	Plots Page
	Predict Page

	New GUI Toolkit Functions
	guiSetOption
	guiGetOption
	guiSetRowSelections
	guiGetRowSelections
	guiGetRowSelectionExpr
	guiPrintClass
	guiPlot
	guiRefreshMemory
	guiExecuteBuiltIn
	guiGetPropertyOptions
	guiGetPropertyPrompt
	Identifying Specific Graphics Objects
	guiGetPlotClass
	guiRemoveContents
	guiUpdatePlots

	Automation Improvements in S�Plus 4.5
	Passing Data to Functions via Automation
	Method to get and set parameter classes of functions exposed via automation:

	New Automation Methods in S�Plus 4.5
	Automating Embedded S�Plus Graphs
	Examples Of Automation Provided With S-plus
	Examples Of Using S-plus As An Automation Client Included With S-plus
	Examples of ActiveX controls included with S�Plus

	Dialog Controls In S�Plus 4.5
	ActiveX Controls in S�Plus dialogs
	Adding an ActiveX control to a dialog
	Where can the PROGID for the control be found?
	Registering an ActiveX control
	Why only “OCX String”?
	Common error conditions when using ActiveX controls in S�Plus
	Designing ActiveX controls that support S�Plus

	New Dialog Controls In S�Plus 4.5

	New Script Window Features
	Automatic Matching of Delimiters
	Automatic Generation Of Right Braces
	Automatic Indentation
	Modifying Script Window Settings

	Index

