
Journey Infinita Kristian Spencer, Michael Bo Magling

2012

1

Journey Infinita

An editor with an embedded

programming language

By

Kristian Spencer

Michael Bo Magling

23rd of May - 2012

Supervisor

Joseph Roland Kiniry

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

2

Abstract

Abstract

When developing a game that allows the user to create their own content, it is necessary to

create a competent editor to work with the game. The project is based on the classic JRPG

(Japanese Role Playing Game) genre, and investigates how one would define a platform for

such a system, along with the creation of a domain specific language needed for the editor.

Based on the analysis of two existing editors, an editor with an embedded programming

language was created, and used in conjunction with a JRPG system.

A basic RPG platform was designed systematically, using BON and implemented in C#, and an

editor was created based on WPF windows, assisted by XNA framework capabilities. A

programming language was created for the editor, utilizing functional programming with F#. The

main characteristics of a domain specific language were the lexing, parsing, static checker and

compiler to create executable bytecode that a virtual machine can execute at runtime. It was

found that implementing a compiler and virtual machine for a game developed on a high-level

platform is inefficient, and should be avoided, while a well typed, statically checked

programming language is very helpful for users to avoid flaws in their code. To get user

generated content into the game, a compilation process was created, using XML, ZIP, and a

data architecture split into two parts. Using a Resource Manager was essential to allow

serialization to work, and to simplify the control of resources.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

3

Preface

This project started out with the goal of creating the baseline work for a large, commercial

product focusing on what is essentially a JRPG with game content made exclusively by users.

Waiving this goal into our Bachelor Project was a way for us to work on something interesting,

and which can actually be further developed to make an actual product.

In the semester before the bachelor project started, a number of songs and graphical assets

were developed that we think are required in a JRPG, which are all included in the example

game. Along with these, we began designing what to include in the system, and how the final

game should look. However, a large unknown factor was how to make the editor for the users to

create content with, along with how to define a programming language to be used with such a

system. Therefore, it makes sense to investigate the possibilities for our bachelor project.

The project is a collaboration between Kristian Spencer, who wrote the editor part of program,

and Michael Bo Magling, who wrote the programming language part of the program. Report,

data structure and other parts have been developed co-operatively.

We would like to thank Joseph Kiniry for supervising the project, as well as Rune Møller Jensen

and Mette Holm Smith for coordinating the bachelor project course.

On the CD

● The report, in color

● The source code for the project solution

● A compiled version of the editor and game client

● An example journey project file

● BON specifications

● Data Architecture

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

4

Table of Contents

Introduction 5

Use of Tools 6

Related Work 9
JRPG systems 9

Game Maker 10

 RPG Maker 12
 Derived Features 13

Game Maker Language 14

Academic Work 16

Overall Architecture 17

Code Metrics 18

The Editor 19
Data Architecture 19

Editor Architecture 25

The Programming Language 30
Overall Design 30

Lexing and Parsing 35

Code Checking 39

Compiling 40

Virtual Machine 43

Testing 45

Conclusion 46

Appendix

 1 - Glossary 48

 2 - Bibliography 51

 3 - Editor Images 52

 4 - Task Descriptions 57

 5 - Virtual Windows 83

 6 - JourneyScript 91

 7 - JourneyScript, Backus-Naur Form 102

8 - E/R Model Explanation 106

9 - User Manual 107

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

5

Introduction

The ability to have user created content for games has become an important part of gaming for

the last ten years. Some of the most popular games ever made, like Counter Strike or DOTA,

has started out as simple modifications of existing games, using tools provided with the game.

This gives the games an ability to evolve over time, fueled by community support and with little

to no resources required from the developers.

One genre that has not taken advantage of this is the classic JRPG (Japanese Role Playing

Game) genre. While tools exist for making such games from scratch (popular examples includes

Game Maker and RPG Maker), there is no overall system that allows for crowdsourcing of game

content within a certain framework. Such content would include game artwork, monster and

character designs, and actual gameplay with story.

For this project, we seek to create a 2D JRPG system that allows users to create their own

Journeys, while still allowing for players to create their own character to use for such a journey.

Problem Statement

For the project, we wish to answer the following questions:

● What would be the main characteristics of a domain specific language for a classic
JRPG editor?

● What are the most important factors when developing a JRPG editor?
● What is necessary in order to transfer user created content into a game?

Project Focus

For the scope of this project, we focus on the editor, programming language, and using the

editor to get data inside of a game. Creating a large online gaming platform that supports user

created content being played through caching from an online server, as well as in-game

playability, is outside the scope of this project.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

6

Use of Tools

For the project, several tools have been used.

F#

F#[1] is a .NET programming language that has functional programming properties. Functional

languages are very useful for describing programming languages due to some of the high-level

features included. Also, F#, through the F# Power Pack[2], contains lexing (FsLex) and parsing

(FsYacc - F#'s Yet Another Compiler-Compiler, a LALR parser) that are used for defining the

programming language.

To use the lexer and parser, a .fsl and .fsy files are required. To generate the automatically

generated .fs lexer and parser files, the following commands are used in the Visual Studio

command prompt, with the power pack added to the path:

fslex --unicode JSLex.fsl

fsyacc --module JourneyScript.JSPar JSPar.fsy

Which will create the lexer and parser used in the programming language.

Visual Studio

For the project, we choose to use Visual Studio[3] for the general support for multiple projects,

along with general support for project development. The tool is especially useful for its support

of C# and F# - the two programming languages used in the project. The solution on the CD

should be easily opened in a Visual Studio environment.

NUnit

For testing, NUnit[4] is used. NUnit is a simple testing module for C#. While Visual Studio can

use NUnit internally for C#, there is no support for using it along with F#. Therefore, an external

testing tool is used in order to run the tests, the testing tool being the NUnit executable included.

Also, for ease of integrating test cases in F#, FsUnit is used. FsUnit[5] is nothing but a wrapper

for the NUnit features, that instead use the F# features for constructing test cases.

XML

XML[6] is an important data format used in the project. XML is used due to the ease of import

and export through serialization, where only a few attributes are required to save and later

restore data, to and from a single file.

XNA

The Microsoft XNA framework[7] is a game framework for Windows, using C#. It is used in the

project for displaying images in the editor, and for the basic underlying engine for the game.

There are alternatives, but XNA is a well-known framework that was desired to attempted used

for this specific project.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

7

Systematic interface design

Systematic interface design[8] is a technique by Søren Lauesen used for creating user interfaces

with a high level of usability. This involves user tasks, a database, and drawn windows, also

known as virtual windows. The technique is not used fully, with areas like Usability tests and

understandability being skipped. We focus on the creation of workable windows and less on

usability tests, as testing the program with users would be a lengthy process due to the size of

the editor. Also, Function design is separated from the window design, so that actual

presentation functionality is designed more in-depth and separately from the actual window.

However, as the editor is used almost exclusively for setting the data, the function design is

included in the same phase as the virtual windows in order to save time.

WPF

The Windows Presentation Foundation[9] is a user interface system for rendering on Windows. It

is used in this project due the advantages over Windows Forms, as it is easier to create better

looking user interfaces.

BON

BON[10], Business Object Notation, is a tool for describing the framework of a program. We use

the notation to describe the data of the program. However, due to XNA, WPF, F# and XML,

there is a significant problem with using BON throughout the program. The issue is caused by

writing Code Contracts for F# and some of the frontend coding of WPF which is not clearly

visible. Another issue with the BON notation is that it overlaps with the systematic interface

design. This leads to very limited use of the notation.

FMOD

FMOD[11] is an audio library that can play music files, and is used in many video games to

provide sounds. We make use of FMOD Ex, the low level engine of the sound platform, along

with a standardized C# Wrapper system that controls the external calls to the engine.

Code Contracts

Code Contracts[12] are a set of methods that can be used to replace simple exceptions calls with

guarantees on input on output to prevent exceptions. These fit very well with BON, and the

formal part of BON is essentially classes with lists of methods with code contracts. Code

Contracts can be checked by analyzing the code for paths that could cause a contract failure,

but we do not use this, as previous experience has shown that this approach is time inefficient

due to the amount of useless errors that are raised. Code Contracts are a very useful tool,

however, to make sure that things go wrong when they should go wrong, and not at some

arbitrary point later on at run-time.

Avalon Edit

Avalon Edit[13] is an open-source WPF based text editor. Avalon Edit is used in this project in

order to make use of its internal syntax highlighting features, which are defined in the .xshd files

in the Assets part of the editor.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

8

Custom Color Picker

Custom Color Picker[14] is an open-source GUI element for selecting a color, which in the

process is used for selecting a color for zones.

Code Metrics

Code Metrics Viewer is a tool for displaying code metrics, and uses the Code Metrics Power

Tool[15] to generate the code metrics. We use code metrics as a way of displaying metadata and

overall quality of our code.

In the Code Metrics section, C# and F# is treated differently. Due to the tools inability to properly

use F#, the two F# projects are analyzed manually. Due to the language differences, the

aspects are also different between F# and C#. A "member" in C# is a method, while in F# it can

either be a type, a member or a function. A "type" in C# is a class, while in F# it is a module.

Lines of Code in C# relies on Code Metrics Viewer (which seem to count statements except

Code Contracts), and in F# are manually counted Non-Commenting Source Statements (no

empty lines, comments or headers). Analyzing maintainability, cyclomatic complexity and class

coupling is not possible manually, and are not done for the F# projects. It should be noted, that

the metrics includes code not written for the project, more specifically some WPF methods only

visible after compilation and most of the FMOD namespace. These have a significant impact on

the metrics. FMOD counts for almost half of the cyclomatic complexity in the JourneyInfinitaData

project. Lastly, due to the heavy use of manual counting due to the lack of tool support, it is

possible that some numbers are slightly incorrect, especially for types and members.

BNF

For describing the syntax of JourneyScript, we use BNF[16], or Backus-Naur Form, to describe

the terminals and non-terminals of the language. It does not display the transition to an abstract

syntax, however, but gives a simple view of the layout of the major parts of the lexer and parser

in regards to basic design. We use traditional BNF over EBNF, as the FsYacc parser is written

similar to BNF, in which case it makes sense to use that.

E/R Model

An entity relation model[17] is a way of abstractly view data for software. Entity relations involves

entities with attributes (which can be considered a class) and relations (which can be

considered object references). We use the entity relation model to describe the data used in the

game, a description of the specific use of it can be found in appendix 8.

ZIP

ZIP[18] is a file format that compresses data for archiving purposes. This is used in this project in

order to compress a number of files into a single file as an archive.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

9

Related Work

JRPG systems

When designing a JRPG, it is important to note what are special about that genre, and what the

different games in the genre have in common. For this, analysing existing, noteworthy games in

the genre is important. Three noteworthy games that are all classic examples of the genre are

the early Final Fantasy[19], Dragon Quest[20], and Breath of Fire[21] games, all originating from the

NES/SNES era. It should be noted that there are many more games that are similar in nature as

well, like Grandia, Pokemon, Chrono Trigger and the Mana series.

The games are overall very similar. In all three games, an overworld map is used, where

monsters attack the player appears randomly. What monsters appear depends on the location

on the overworld map. Also on the overworld map are towns and dungeons that can be entered,

opening a new area where monsters may also appear randomly, depending on the area.

The three series uses a leveling system, where experience is gained by slaying monsters, and

leveling up increases the player's stats, and gives access to new abilities, both of which are

necessary, as monsters grows stronger throughout the games. The specific type of stats differs

slightly between the games, but usually includes health, mana, attack, defence, speed, magic,

and a luck stat. The attack and defence stats are normally being controlled by equipment,

though equipment may alter the other stats as well. Characters has multiple equipment slots,

like weapon, armor, shield, helmet and accessories, which are special items that have effects

that goes beyond attack and defence.

Besides the simple slay monster, get experience mechanic, an economic system is also

included. Monsters drop gold besides giving experience, which can be spent in a shop to gain

better equipment or items that can be used in combat, or in an inn to get full health.

The story is a big focus point in these games, and besides the main storyline, all the games

includes a significant amount of text that can be read by talking to non player characters, with

the content of the text differing based on the current state of the game. For instance, a character

may respond depressed in a city captured by an evil empire, but later respond jubilant when the

main character has saved it. This state system is also used to prevent the player from

continuing until a certain plot-specific scenario has unfolded, like a bridge being destroyed and

only repaired later in the game, also known as the Broken Bridge[22] trope.

There is a noticeable difference in the battle system. Not so much in the technical aspects, as

all of them uses a turn-based system using an interface to select an action, like fighting, using

an item, using a spell and running. The differences are in the visual style. Breath of Fire uses a

diagonal view of the battlefield, Dragon Quest uses a frontal view of the enemy with the player's

party invisible, and Final Fantasy has a side view of the battle, with more movement in the

attack animations then the others.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

10

(Battle systems for Breath of Fire, Dragon Quest and Final Fantasy)

Another aspect that these games share, is the fact that they have have a longer play time than

most games. They achieve this through the use of the very simple design. It is easy to include a

lot of monsters, as they, like in the earlier games, are only really a set of numbers with a name

and a sprite attached to it. Multiple monsters may share the same sprite, but with different

colors. The overworld map can also be made very large, as only a very small set of images are

necessary in order to construct the entire map. This can be seen in the case of the earlier

Dragon Quest games, illustrated above, where "forest", "plains" and "mountains" are nothing

more than a simple 16x16 tile. Considering that the story is usually also linear, and most of the

story is told through text boxes, significant content can be created for relatively little

development time.

Game Maker

Description

Game Maker[23] is a software created by Mark Overmars, which was released in 1999. It is

developed in Delphi and the purpose of the program is to create simple games. Game Maker

has support for multiple platforms. Currently Windows, Mac and HTML5 are supported, with

mobile devices being developed as well.

The UI of Game Maker has two modes, a simple and an advanced mode. The simple mode

excludes some of the more advanced features like time lines and paths, and is there to help

new users ease into the program. Even in the advanced mode, the interface is very simple and

easy to approach. Game Maker also Includes an image editor for both backgrounds and sprites,

and has a wide array of features despite not supporting layers.

One of the most impressive features of Game Maker is the scripting language also known as

GML[24]. The language structure is similar to C, but the language itself has a very loosely typed

syntax. Game Maker also provides support for .dll which has resulted in many addons for Game

Maker allowing better 3D and Network support[25]. An Example of GML, along with additional

images of the editor, can be found in appendix 3. Game Maker interprets the resources and

scripts at run time, which makes it somewhat inefficient unless a .dll replaces any heavy code.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

11

(The main window of Game Maker, with a sprite properties window)

Game Maker is designed to work with a multitude of genres, and does not focus exclusively on

creating the classic JRPGs. Therefore, the program does not include pre-implemented features

necessary to have in a JRPG, which complicates the process for the user. Also, as there is no

focus on one specific genre, there are also very few premade resources that can be used in a

JRPG setting.

Pros

● Can develop games for pretty much any genre

● A wide array of standard functions to use in games

● A great tutorial section and help section for new users

● Supports 3D and network

● Very simple UI

● Has Drag & Drop for people who haven't learned GML

Cons

● Interpret on runtime which makes it slow

● Is not built specifically for JRPGs so it requires a lot of backend code

● Very limited premade resources like images and sounds.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

12

RPG Maker

Description

RPG Maker[26] is a software developed by a japanese group known as ASCII. The first version

of RPG Maker was released in 1992, and since then over 40 different versions[26] has been

released. ASCII has also released versions of RPG Maker for the PlayStation console. The first

windows version was released in 1997.

As shown in the screenshot, RPG Maker comes with premade resources and is designed

around RPGs. To play a game made in RPG Maker, a specific client is required, unlike Game

Maker.

RPG Maker also has a scripting language, based on the programming language Ruby[27]. Unlike

Game Maker, Drag & Drop is replaced by inserting code section at button clicks. This makes

creating code significantly more complicated. For instance, to change the player position when

he steps on a field, one would have to go to Event mode, create a new event at the field, move

to tab 2, choose a movement based event, and finally type in the new destination in the

variables section. The game then creates the script, which makes it possible to combine

multiple event types together. This process is a lot less direct than Game Maker's Drag & Drop,

though, and significantly less user friendly.

(The main window of RPG Maker, which shows the image resources and selected map)

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

13

An example of a RPG Maker script, along with additional images, can be found in appendix 3.

In RPG Maker, it is possible to customize the game significantly. You are not locked into one

specific type of game. However, the combat system is locked in and little customization is

possible without resorting to significant re-coding. This can be especially hard when even simple

functionality can take time to implement due to the way the coding is set up.

Pros

● Is made specifically for RPGs and by that supports a lot of features with no backend

programming

● Variety which makes it possible to make almost any kind of RPGs

● Has a big resource package with images and sounds.

● Includes a character generator which generates sprites and profile images for

customizable characters.

Cons

● The combat system is locked and leaves no room for customization

● It can be very complicated to achieve very simple functionality

Derived Features

When creating our own editor, we have taken inspiration from the editors mentioned above.

We find it very useful to have an Area Editor where you create the different areas, similar to the

way both Game Maker makes a room, and how RPG Maker makes the areas. We wanted it so

there was always a working area, while in Game Maker a new window is opened up. Game

Maker uses a very detailed system for the area, where objects, tiles and backgrounds can be

manipulated separately, which we find useful.

The folder system that contains all the project resources, is done very well using Game Maker,

giving a very simple overview of all resources in the form of a tree structure. This makes sense

to include in our editor, and can be expanded to include other RPG aspects that Game Maker

does not support.

The Game Maker scripting language seems much simpler to work with, especially for those new

to coding. Especially the use of events is useful for games, which is a feature we also want to

focus on.

The editors for manipulating JRPG resources in Game Maker are a source of inspiration,

despite not using the same system. RPG Maker did provide us with inspiration on how to set up

the windows in the Virtual Windows process. Also, a large amount of premade resources, like in

RPG Maker, are very useful to have for a JRPG. We wish to supply the user with premade

resources as well.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

14

Game Maker Language

As mentioned, the programming language in Game Maker is a very central feature in the

program, and through the wide collection of functions is a very diverse domain specific

language. Because of the importance of the programming language in our system, it makes

sense to analyse the programming language a little more in depth. The language used in RPG

Maker is not analysed in depth, however, as it builds heavily on the Ruby language, and has not

been designed specifically for the language in the same way the Game Maker language has

been.

The Game Maker Language is constructed as an imperative language, very similar to the style

of C. This is interesting, considering that Game Maker was implemented using Delphi[28], whose

style is considerably different. Another interesting design decision is to make semicolons

optional at the end of statements, as a newline can be used instead of semicolon to terminate a

statement. These decisions are likely done in order to make the programming language more

clear to people with little to no programming experience.

What also helps those new to programming is that, while the language is object oriented, it is

also a scripting language, reducing its complexity significantly. Unlike other object oriented

languages like Java or C Sharp, classes are not defined in the language itself. What is instead

the case is, that a "class" is an element defined and manipulated within the editor, with aspects

like parenting, sprite, collision masking and area depth being defined outside of the language.

This also means, that as the programming language contains no integral class structure, it

becomes nothing but a sequence of code to be executed. These sequences are then included

inside of a drag-and-drop system, where the programming language are simply a piece of code

that can be used in combination with simple command blocks defined with drag-and-drop

elements that takes variables. This makes the Game Maker language easy to get into for non-

programmers, as it is possible to code an entire game without writing a single line of code.

What really controls the language is not the code, but the use of events. Classes can choose to

implement a section of events, with code that are called at runtime, usually by the underlying

engine. Events includes keyboard and mouse click events, event called at object creation,

collision events, step events which are called once each game loop, events that are triggered by

leaving the area and view, along with quite a few more. Using events, Game Maker can couple

user created code together with the engine it is build on.

Not everything in the language is without consequences, though. In Game Maker, variables are

declared inside the code itself, or in drag-and-drop elements. This is a problem, as variables

declared in one event can be used in another. This may potentially be called first, where the

variable has not yet been declared, or variables are called that are never created. In essence,

this means that a typing system is not possible, as variables are resolved dynamically at run-

time. Another thing about the dynamic typing system is that all variables (despite arrays and

strings) are values.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

15

The lack of variable typing means, that it is also not possible to efficiently declare booleans.

While a boolean in languages like C are also not optimized, taking up the same space as a byte,

in Game Maker it takes up the same amount of space as a double would, both being real

values. The lack of optimization at such a level does mean that the language itself becomes a

lot more inefficient, especially considering that the code is interpreted at run-time.

At compile time, references to editor elements like images or sounds are all resolved to their

identifier so they, too, are values. This leads to some very bizarre implications where you can

add a sound to an image, or use a reference to an image where a sound is desired, and

everything compiles fine. This very loose look at typing has the consequence, that bugs in the

system can be hard to find. This is especially the case as there is an option where new

variables can be declared at runtime if the name it looks for doesn't exist, meaning that it won't

throw an exception, it will only result in odd behaviour. Using an image where a sound is desired

will result in the sound being played will be the sound that shared the ID of the image. This can

cause weird behaviour that can be really hard to fix, especially considering that the code is very

fragmented, being split among multiple code sequences, events, and objects. It is not even

possible to really isolate it to one object, as objects can manipulate each other, including

change and add variables to each other, breaking the object oriented design.

Lastly, an issue that Game Maker has received critique on, is decompilation. As interpretation is

done at runtime, the main code is still inside of the executable. This means that stealing the

source code from Game Maker files is possible to do, making the program as a whole less

attractive. All in all, this shows that while the Game Maker Language has its advantages, it still

has some very significant flaws.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

16

Academic Work

Tim Sweeney

In a presentation[29] about the direction of future programing languages, Tim Sweeney talks

about multiple areas where code is used in games, which includes gameplay simulation,

numeric computation and shaders. He also discusses how programming languages can help

games in the area of performance, code modularity, reliability in terms of preventing run-time

errors, and concurrency, in order to improve parallel performance.

Tim Sweeney's presentation is useful for our project, as it gives focus to what areas that are

causing problems for game programmers, including which areas that we might choose to focus

on for our programming language. While Tim Sweeney is mostly discussing it from the angle of

handling 3D, it is still useful to take into account when dealing with 2D.

A Domain-Specific Language for Computer Games

In a Master Thesis by Jeroen Dobbe from 2007[30], the use of DSL in computer games are

described, with the focus of finding the bottlenecks and paradigms when applying DSLs to

games. In the thesis, Dobbe concludes, that current domain specific languages are not used

specifically for game design, as these are implemented in general purpose languages. He

describes that DSL for a game needs to take into account objects (that make up the game world

and has properties), the interaction with the player (through user control), core mechanic rules

(that describe the specific game domain), and the game storyline (should it be present in a

game).

Jeroen Dobbes analysis of the important areas that Domain Specific Languages has to deal

with are important when we create our own Domain Specific Language.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

17

Overall Architecture

The Journey Infinita solution consists of a number of individual projects, and has a set of

dependencies, which are showed in the following layer diagram.

JourneyInfinitaData - The data for the game and editor, including saving to XML and FMOD.

JourneyInfinitaGameLogic - The logic for the game at run-time, including the virtual machine.

JourneyInfinita - The executable for the game, player of compiled game files.

JourneyInfinitaTester - The tester for virtual machine and other game logic functionality.

JourneyInfinitaEditor - The executable for the editor used for managing data.

JourneyScript - The logic for compiling strings to an array of byte code.

JourneyScriptTester - The tester for the compilation pipeline.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

18

Code Metrics

C# Journey Infinita
● Namespaces: 1
● Types: 5
● Members: 27
● Lines of Code (NCSS): 133
● Types per Namespace: 5,00
● Members per Type: 5,40
● Lines of Code per Member: 4,93
● Maintainability index: 78
● Cyclomatic Complexity: 81
● Class Coupling: 58

C# Journey Infinita Tester
● Namespaces: 1
● Types: 4
● Members: 365
● Lines of Code (NCSS): 3511
● Types per Namespace: 4
● Members per Type: 91,25
● Lines of Code per Member: 9,61
● Maintainability index: 60
● Cyclomatic Complexity: 442
● Class Coupling: 46

C# Journey Infinita Data
● Namespaces: 26
● Types: 144
● Members: 1263
● Lines of Code (NCSS): 4425
● Types per Namespace: 5,54
● Members per Types: 8,77
● Lines of Code per Member: 3,50
● Maintainability index: 92
● Cyclomatic Complexity: 2664
● Class Coupling: 257

F# Journey Script
● Namespaces: 1
● Types: 9
● Members: 421
● Lines of Code (NCSS): 2505
● Types per Namespace: 9
● Members per Type: 46,78
● Lines of Code per Member: 5,95

C# Journey Infinita Editor
● Namespaces: 4
● Types: 47
● Members: 860
● Lines of Code (NCSS): 3604
● Types per Namespace: 12
● Members per Type: 18
● Lines of Code per Member: 4
● Maintainability index: 71
● Cyclomatic Complexity: 2751
● Class Coupling: 355

F# Journey Script Tester
● Namespaces: 4
● Types: 16
● Members: 942
● Lines of Code (NCSS): 2859
● Types per Namespace: 4
● Members per Type: 58,88
● Lines of Code per Member: 3,04

C# Journey Infinita Game Logic
● Namespaces: 1
● Types: 15
● Members: 200
● Lines of Code (NCSS): 858
● Types per Namespace: 15
● Members per Type: 13,33
● Lines of Code per Member: 4,29
● Maintainability index: 87
● Cyclomatic Complexity: 506
● Class Coupling: 54

 Project Total
● Namespaces: 38
● Types: 240
● Members: 4078
● Lines of Code (NCSS): 17895
● Types per Namespace: 6,32
● Members per Type: 17,00
● Lines of Code per Member: 4,39

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

19

The Editor

Data Architecture

The data architecture of the project is used for containing the information that is set in the editor

and used in the game. There are multiple design decisions in regards to this data architecture.

An E/R model of the data architecture for the engine can be found on the CD with an

explanation in appendix 8. It is not in the report due to the size causing the text to be illegible.

The formal and informal BON generated for the data architecture can also be found on the CD.

The E/R model contains a significant amount of classes, and the design might seem a bit frantic

due to the amount of connections. However, the design can for the most part be focused into a

few areas: The profession system, the ability system, the storyline/NPC system, the area

system, the object system, the troop system and resources.

The Profession System

To make it possible for a player to customize his character, a profession is used. A profession

consists of a set of abilities that can be learned, details on what stats are used by the character,

as well as a list of equipment.

Companions also uses the profession system. Besides the profession, a companion also

contains a list of abilities learned at a specific level. This is different from how the player

incorporates profession, since the player needs to actively learn it when he reaches a given

number of accumulating points. This distinction is made in order to have significant

customizability for the main character, while simplifying the system as much as possible for

companions.

Each profession consists of a set of equipment. The quality of equipment scale by level, and as

the level increases, so does the name and description, in order to better describe the increased

quality. While it would be simpler for the system to have each equipment at a specific level, it

raises the problem that a player may set the equipment he uses to a given level that are not

sold in stores. By giving names to ranges of levels instead, this inconsistency can be avoided,

as there can be equipment for all levels instead, and the user can make as few or as many

different names for levels as desired.

Each profession has a series of sprites that they must have in order to work with the battle

system, like a sprite for when the character is dead, or moving right. This is so that combat can

be simplified by having a known array of animations to choose from at specific situations, across

professions. It also makes it easier for the journey creator, as he can animate the player, no

matter what professions he use, as long as these basic sprites are used.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

20

The Ability System

In a JRPG, abilities are a central part of the combat system. A single ability can have animation,

and a series of effects like ongoing damage. Also, it is possible that abilities may not be usable

at a specific time, like a revive ability that can only be used when a character is dead. In order to

include this, and make it possible for the user to program, the ability system uses three main

classes, the Ability, the Effect, along with activation and expiration conditions.

Balancing the abilities is important for having players create characters separate from a journey,

and still have the difficulty level be somewhat fair. Balancing is done by adding either additive or

multipliable cost to each effect, condition and value. This results in better abilities having higher

costs. The player only has a set amount of points to buy abilities from, and that increases by

level, preventing players from taking very expensive abilities at a very early point

Effects are separated by abilities, in that they apply an effect that may work over time. Using

effects, it is possible to create a wider array of abilities than without, especially as effects may

themselves apply other effects.

Animation works by having a number of animation elements for a given ability. Each animation

element consists of a start and end frame, a sprite with an animation speed, as well as a

movement pattern between coordinates that may have an origin at the player, the ability target,

or the screen. An essential part of the animations are, that they may use the player's

professions standard animations, like a simple attack animation. That should simplify animations

for the user when creating a series of abilities. Due to the complexity of animations, however,

this is currently not implemented in the editor.

The Storyline System

The storyline system is included in a way to better structure game progress. A storyline has a

certain amount of states, and each state have a series of Progress elements. A progress

element can change the state of storylines, including itself, and can be set to trigger by talking to

an NPC, and for having quest items in the inventory. Implementing this, the amount of time the

user has to keep track of storyline in code should be reduced significantly. It also fits together

with how NPCs work, and the speech system (what NPCs say when you talk to them) uses the

progress elements as well.

The NPCs have other functions than speaking. They are also useful for shops to sell items for

the player. Shops sells equipment to be used by the player, set at a given level. What specific

items are sold depends on what equipment the player and companion characters can use.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

21

The Object System

The object system controls the actual programming part of the editor, and includes classes,

zones and functions. These three classes are where the user can write their own code using the

JourneyScript language.

Classes are objects with a state, very similar to classes in Game Maker. Classes have access

to basic physics, like movement and acceleration, in order for the user not to have to program it.

Classes also contains a sprite, which is used to draw the class in an area, and animated at a

certain speed, which can be set. Classes uses events where users can write code that triggers

at a certain point in time, and variables, which are additional state for a class that a user can

add. Classes may connect to an NPC in order to allow functionality for a standardized speech

control system, where calling the speech attached to the NPC of a nearby object becomes

simpler for the user, as it is being handled internally in the code.

Zones are similar to classes, as they contain events and variables. However, they have no

visual presence in the area, and are, for programming purposes, used only as triggers. Zones

are useful as they are more efficient than classes, as they have no physics and collision is

simpler.

Functions contains code that can be called in events by classes and zones. The real advantage

of functions is that they are defined globally, so that a script can be implemented once and used

by multiple events in multiple classes and zones.

The Area System

Areas are the locations in the game outside of battle, including the overworld map, towns and

dungeons. An area consists of tiles, which are small sections of images that are used to

construct the graphics of areas. In order to contain tiles effectively so that information is not

repeated needlessly, tiles are stored inside of grid sizes which describes which sections of

images the tiles are located, including their size.

Areas also uses zones and classes as gameplay elements, where zones are used for aspects

like collision, random encounters and collision triggers. Zones are shown as colored squares,

and the color can be chosen to make it easier to differentiate different zones.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

22

The Troop System

The combat system works by having the party of player characters fight a troop of monsters.

Combat can be activated through random encounters, which uses zones. A zone can contain a

set of troops, and when the player walks through the zone, there's a chance that a random

encounter is activated.

Each monster in a troop has a set of stats, just like a player character, and they also use

abilities. On top of this, monsters has affinities to specific elements, like fire or physical damage.

This helps differentiate different monsters, and makes it possible to create a plant-like monster

that is weak to fire, but strong against water. Stronger monsters can have better affinities, and a

points system is used in the editor in order to make sure that the affinities are balanced. On top

of element affinities, monsters may also be immune or resistant to specific status effects, like

sleep.

Monsters also contains a list of item drops. Drops may be either simple consumable items,

equipments for the player or a companion character, and accessories. Monsters may also drop

specific quest-relevant items to be used in combination with the storyline system. Items are

either retrieved after battle when the monster is defeated, or when a steal ability is used on the

monster to get the items, if the item is stealable.

The Resources

The data architecture consists of three types of resources, images, sprites and sounds.

Images are a single image, and are used for tiles, along with backgrounds in areas and zones. If

an image is a tileset, it has some options regarding how the tiles are placed in the image.

Otherwise, images are just a simple image, and little else.

Sprites, on the other hand, contains a series of images, and includes information about collision

and the center of the image. Sprites are used for drawing classes, monsters, professions, and

are used for the different animations abilities have.

Sounds are either sound effects that may be played once, or looping background music used

either for areas or for combat. The only options available for sounds is if it loops, the volume of

the sound as well as the panning of the sound towards the left or right speaker.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

23

Editor Data and Game Data

The data architecture is split into two sections, the engine and the game. This is because the

engine and game needs different data stored, and are designed for two specific purposes,

working in an editor, and working in a game. For instance, an object's current speed and

movement direction is not something that is needed to be known in the editor, and what color a

zone is, and what names that have been given to different elements, doesn't matter in the

game. Because of this, the entire data architecture is duplicated, with only minor overlaps

between the two. This may seem like code duplication, and the majority of the code between an

engine class and a game class are significant. While it would be possible to use the same

classes for both purposes, it would leave some fields to be left unused in either the editor or in

the game. This solution clearly separates a game object and an editor object, and also makes

the compilation phase clear. To compile, a game object takes an editor object in its constructor.

It also simplifies XML, as what it needs to store depends on if it is used for saving an editor

project, or if it a compiled project.

Data architecture with XML

When saving and compiling, serialization to XML is used in order to save the data. This is then

packaged along with the resources in a zip package, with a custom file extension. This ensures

that the entire journey is stored as a single file, and prevents fragmentation and issues with

checking for missing or corrupted files. It also does not influence the speed of the game, except

for loading, as the data is unpacked into a temporary folder, so that images and sounds are not

all loaded into memory at the same time. The journey file isn't encrypted, however, so it is

possible to extract the data.

The project package consists of an XML file for each resource, and images, sprites and sounds

are further contained inside of subfolders. Besides the resource files, the project package also

contains a folder with the folder trees serialized. This is to maintain the specific folder layout

when saving and loading. The package also contains an indexing file, whose only purpose is to

keep track of the amount of elements. This is done to be able to quickly load all the data,

instead of doing a string comparison to identify them. This also comes with corruption issues, if

an element is deleted within the package, it can corrupt the entire package which makes all

following element unloadable or shifted.

While it has not been implemented, we did experiment with validation of XML files, using XML

schemas. This would make it possible to detect corruption, in cost of a slow down during load.

However, as corruption requires one to mess up the file outside of the editor, validation

shouldn't really be necessary.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

24

We also considered the possibility of exporting and importing data, especially the professions,

since you need a profession for the player which is separate from the journey. This was

however later decided against, due to the focus on the editor and not the game. This is definitely

something that the editor would benefit from, though, and could even be extended for other

sections of editor, allowing for content packages to be exported between different projects.

Game Maker does something similar to great effect as well, so it should definitely be

considered.

A very interesting peculiarity in the system is how references are approached. Because of how

the journey file needs to include the data of referenced objects inside of the object through

composition, references are done through an identifier. As the identifier is simply an unsigned

integer, there is no problem when saving to XML. While it is possible that the serialization in C#

is able to deal with object references without any issues, control over the order of objects being

loaded are lost. It is also important to be able to reference elements based on ID, as the IDs are

used from the programming language. This means that it is necessary to store the actual

objects in a way that makes it possible to easily search by identifier. To do this, the data is all

stored in a Resource Manager that contains a list of resources, and sorts the contents by ID.

This essentially uses the multiton design pattern, with the key to access the elements being the

ID, and they have global access as the Resource Manager itself follows the singleton design

pattern. As the lists are sorted over ID, it makes it easy to do binary search to find the ID,

reducing the search time from O(n) to O(log n), a significant improvement. In the game, this is

further improved, by loading references at the start of the game in order to reduce it to O(1).

Using the Resource Manager, however, causes problems with serialization due to contracts.

The contracts that raise problems state, that when setting an ID, the resource with that ID must

exist in the Resource Manager. However, the automatic serialization doesn't add the objects

before setting the resources, and breaks the contracts when setting the values. Because of this,

loading projects is not possible while using contracts, and the only way to fix that is to manually

deserialize the game objects, which is not performed for this project.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

25

Editor Architecture

Preliminary Design

The first decision in following with systematic design of the interface, was to find what tasks a

user of the program would require, the result of which can be found in appendix 4. This is build

upon the data architecture created, so that tasks are created in order to match the data in the

database, in a way that makes sense for the user. Afterwards, virtual windows are created. We

developed alternatives to some of the more complicated windows, but only the chosen design

was further developed.

The most interesting virtual windows can be found in appendix 5. Many of the details in the

windows are repeated in other windows. Mainly because the same functionality is needed for

more windows. Like a list of resources or a drop down menu of a resource.

A basic user manual for the editor can be found in appendix 9.

The editor opens with the main window. Due to the main window being the most used, it serves

multiple functions, and is split up in several components. The first is the resource view, which

has nine tabs, each with one to four folder systems. This is where the resources of the journey

are created, removed, renamed, and edited. Moving these important functionalities together in a

single area of the program, much like Game Maker. The second part is the area editor, where

the areas are edited. The area editor is itself split in three parts. The settings window, the main

view of the area, and the view settings. The settings window is where all the settings of the

specific area can be set, including tiles, objects, backgrounds, sounds and information about the

area itself. The main view is used for dropping the selected tiles, object and zones onto the

area, and also removing them. The view settings allows the user to disable zones, objects and

tiles that are not on the current depth, and is a useful extra tool for the user.

The editor also contains many additional windows, and most follows a similar style. The

resources that have an in-game presence all have name fields, and possibly a description field

as well. Also, all windows with the exception of the main window, contains a Save and a Cancel

button. Save will maintain any changes made to the current resource while cancel will discard

any changes made to the resource. This is the easiest way to implement undo functionality, by

having a set of data in the editor that is only saved when save is clicked, instead of having to

worry about saving changed data to a list of undo-functions. Simply pressing the cancel button

closes the window without any changes to the data before the window was opened. That does

mean that clicking cancel accidentally, removes all the recent data, which is a problem with the

current program. A way for us to solve this would be to detect if changes has been made or

compare current data to saved data, and to give a warning if there is an inconsistency.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

26

The area editor does not use the save and cancel system, however, and instead saves and

loads when the current area is changed. This was implemented as the area editor is inserted

into the main window, making it impossible to actually close an area, but does require one to

save the entire journey. Game Maker does this by having the areas opened in a sub-window in

the main window, which can be closed. This solves the problem, but complicates the interface

somewhat.

The actual resource data, when opening a resource window, are loaded on initialization of the

window. As there would be too much data in memory at the same time, we instead have all the

resources on the hard drive, and load it into main memory when it becomes necessary. This

ensures that the controls have loaded and are ready to be manipulated. Some custom controls

like the XNA controller needs to have an OnLoad method assigned, since it is not fully loaded

on initialization of the main window. The OnLoad for the XNA controller will then load the

images, if they exists.

Being able to resize the windows is important for usability, as different users have different

screen resolutions, and different scenarios may require different window sizes. However, that is

not currently possible except for the main window. While the worth of having this feature can be

discussed, it is definitely something that should be looked into in the future.

Overall, we focus on a multi-page dialogue. Due to the size of the editor, it would simple be

unfeasible to try and consolidate all of the information into a small set of windows that control a

large part of the editor. However, steps have been taken to reduce to total amount of windows,

by including lesser important windows into the main resource window, which have saved on the

amount of windows used, especially for the area and storyline.

Ideally, we should be able to manipulate multiple windows independently from each other, like

editing multiple code events simultaneously. This would cause a significant complication, as it

would be necessary to include threading in order to be able to operative multiple windows

simultaneously. It also complicates the navigation between different windows, as opening

multiple instances of the same data should not be allowed. To simplify this, threading between

different windows is avoided by locking the action to one specific window. This avoids

complications, like deleting a resource that is opened, or editing multiple copies of the same file.

It does significantly lower usability of the program, but considering that Game Maker also locks

windows in order to avoid complications like this, we consider it an acceptable decision. If one

were to attempt to include threading, the first step would be to map all navigation paths using a

state diagram, and then decide the proper cause of action for each individual jump.

WPF Controls

Custom controls have been included to make the editor windows easier to make. Most of the

controls contain custom properties, which can be set directly inside the WPF documents. This

has been done with DepencyProperties and by registering the properties.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

27

The Resource Tree View is used on the main window to contain all the folders. It also includes

functionality for creating and removing resources and folders, and how it is implemented can be

read below. The tree view uses a checker when a context menu is opened to find the element

which was clicked. This is done to access the resource type and actually open the correct

resource editor.

The Editable Text Block was made to make the folders and resources editable in the resource

tree view. It consist of a text block and a text box, which swaps when the block is being edited.

This also checks if the name is empty and in that case, it will change back to the name before

the editing in order to prevent the user from entering an empty string.

The Int / Float Text Box was made for all when number fields were needed. The spinners are

part of the control, and also checks for key presses like up and down. The control itself contains

min, max, increment and large increment properties, which can be set from WPF. It also

implements an event that allows for delegates to be triggered when the value in the field is

changed.

The Resource Drop Down was created so we could select a resource by showing it as the tree

in the resource folders. This also allows for hiding some resources if it is required, like if the

resource itself should not be used. The resource drop down implements a lazy load when it

comes to setting the selected item, to make sure that the selected item is set OnLoad and not

before.

Drawing

For the editor, it is important to be able to draw images. In order to accomplish this, we use

XNA. This is because it would be the tool used to draw in the game as well, so this prevents

errors from occurring where the different toolsets accepts different forms of graphics. However

this approach is not without problems. Due to the way the XNA project is set up, we could not

use XNA for the editor, as it would require creating new controls like text boxes and so on.

However, we found a guide[31] which allows for XNA imaging in WPF windows.

The draw method itself runs through a list of XNA Textures and draws the textures. The XNA

Texture is a class created with the purpose of filtering the textures to be drawn. It also contains

the draw rectangle and the draw partial rectangle. An XNA Texture knows which image it

belongs to, and contains a class or background if it belongs to that category. The XNA Texture

also contains a depth value which is used for sorting. Since the draw method simply runs

through the list of XNA Textures, the list needs to be sorted such that depth has an influence.

The XNA Texture filtering is used in the draw method when the area settings are set, so it is

possible to skip a certain depth, skip classes or skip backgrounds. This method can cause

problems in-game, however, if objects changes their depths frequently, as the list would have to

be re-sorted.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

28

Besides the XNA textures, other drawing functions are done directly by WPF. The grid, sprite

grid and zone drawer are all WPF drawers used by editors, and this is all acceptable as these

will not be used in-game and doesn't need to work with XNA.

The purpose of the grid control is to draw a grid or draw cells, including the spacing. The grid

contains properties allowing for customization, such as the thickness and color of the lines. It

also contains properties changing the spacing, offset and cell size. The grid can be quite

inefficient when using spacing, since it is required to draw rectangles instead of lines, but the

grid is optimized so using a spacing of 0 will change the drawing mechanics to lines instead. It

also contain a property that allows selection, making it possible to select cells, which is used by

the area editor both for the main area and the tiles. The sprite grid is a modified version of the

grid, which allows for individual sprites to be shown, as well as the use of indexing. The zone

drawer is also a modified version of the grid, but unlike the sprite control, it contains a list of

zones to be drawn. The zone control also implements the gray zone, which is drawn when

creating a zone. It also contains different filtering fields which allows for hiding different zones.

The main issue with this XNA control is efficiency. The rendering method is called when the

parent windows decides to render, even when nothing is changed and can be triggered when

the control changes size. Every time a render is called, it has to loop through all the pixels of the

XNA Texture and convert it to a writeable bitmap which can be used by WPF. This process

takes a long time, especially with larger images. This was solved by implementing an FPS

property, which can regulate how many times it should actually render. This increased the

performance, but it was still slow when having to draw large images. A ForceRender method

was made to combat this problem, which bypasses the render method, but perform the same

actions. That makes it possible to restrict the XNA control from rendering (FPS = 0), and then

force the render when needed. This increases performance tremendously.

Another issue with rendering is disposing of unused textures. One would assume that a texture

could be disposed when a window is closed, but that is not the case. While a window is closing,

it will render one or two times more, but at this point the texture would have already been

disposed. Due to the rendering being called, the XNA control tries to draw the disposed texture,

which results in an exception. What also causes an exception is disposing when the XNA

control reaches the drawing code. This causes textures to stay in memory until garbage

collected, which results in XNA textures using up a significant amount of memory, causing

memory leaks when working on bigger projects with large images.

Another problem with the textures and the writeable bitmap conversion in general, is the fact

that a texture is limited to 4000x4000 pixels, which translates to limitation in the area size,

background size and even the amount of sprites a single sprite can have due to the way it is

represented. This is actually a bigger problem than it would seem, due to the often large areas,

and overworld maps from some older RPGs exceeds this size.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

29

The problem with XNA seems to originate from the fact that the editor is not separated from the

drawings. In his presentation, Tim Sweeney focuses on the importance of performance, and in

splitting the work of the shader from the CPU. We were proved wrong in assuming that working

with a 2D game platform would limit the importance of performance, and the slowdowns have

been significant. In order to fix this, we have to represent images in an abstract fashion, and

then fetch the actual image data when drawing the screen, possibly using the GPU. As it

stands, the inefficiency of XNA when using WPF is by far the biggest limiting factor of the editor.

MVVM

The MVVM[32] (Model View ViewModel) design pattern is a pattern used, when data needs to be

shown in a modern user interface. The idea is to separate the user interface from the data by a

class specifically designed to contain the data and tell the user interface when updates in the

data happens. This is done with the observable collection which notifies when an element is

added or removed from the collection. It is important to note, that the contained element inherits

from the INotifyPropertyChanged interface, so that the user interface knows when data changed

inside the collection, as it already knows when the collection itself changed. In WPF, the

datacontext of the specific control is set to the viewmodel class. This allows for a binding

internally to the data, which further allows access to the properties of the data.

We used this design pattern in the folder system for the resource tree view. The folder elements

inherits from INotifyPropertyChanged, and call it whenever a more important property has

changed, like visibility. The folder element class contains many methods to traverse the tree

both upwards, to find the root, and downwards, looking for a specific child.

The folder view model contains an observable collection of folder elements, but also controls

everything related to saving and loading the folders. On the user interface side, the resource

tree view sets its datacontext on construction time, to a folder view model, which the WPF then

binds to, creating a dynamic list of folders.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

30

Programming Language

Overall Design

Language Basics

The first step when designing the language is to ascertain the basic structure of the language. If

the language is iterative or functional, if objects and loops exists, and so on.

There are multiple general ways to create a language interface to the user, and have it work

within the bounds of the editor and game. The simplest solution is to reuse an existing language

and embed it inside of the editor, using a specific API. The advantage of this approach is in the

reuse of code, as the language has the compilation process already implemented. However,

this comes at the cost of customizability. On the other hand, implementing a language for this

specific domain would allow for greater customizability, but would take additional time.

A major reason why a domain-specific language makes sense, is in terms of usability and type

safety. In terms of usability, it becomes a matter of how different the language needs to be from

other languages. If going simply by the fact that it should look like a simple programming

language, either solution works, however, this can lead to issues with code being overly

complicated in order to fit the existing system. For example, an event call could potentially be

reduced from "Event.Call(Class(objRef,"ClassName").Events("EventName")),Parameters)" to

"call objRef(ClassName) EventName(Parameters)" by being able to define the scope of the

language features. This is also important in terms of type safety, as the first example could be

implemented using a method, which would not be able to check the length of input at compile

time, or check if it matches the actual event, as this code is executed at runtime. On the other

hand, when defining a custom parser, it is possible to implement rigid type checking rules by

being able to check names and types in the actual editor at compile time. Such a feature is a

major plus for the system, and for this reason, a custom made domain-specific language makes

sense to use in this project.

Programming Paradigms

When dealing with game entities, they will have certain properties, like their position in the game

world. In order to affect these properties, they must be representable in some form within the

programming language, making shared variables a core connector type required in the project.

Also, as this is a game that is run in a loop, the game engine needs to select when to call the

code written by the user. This fits very well with discrete event simulation, as defined by

Simula[33], the first object oriented language. Events runs in a loop in a given sequence, where

the user implements code for the event that can be executed at runtime in the system. With

events and shared variables, it makes sense that the programming language will be object-

oriented.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

31

However, both variables and events can be created without requiring them inside of the

language. As the language is used within an editor, the language can exclude the object-

oriented aspects, resulting in it being a simple scripting language, just like GML[24]. By moving

the workload of events and variables from the programming language to the editor, it is possible

to create an object oriented scripting language. When variables are declared outside of the

events, unlike in Game Maker, typing can be more controlled, and the problems with creating

new variables at runtime, and calling variables before they are created, are solved.

The programming language has a dependency on state changes. Therefore, an imperative

language seems more useful than declarative programing, including functional programing, as

side conditions can be used to set state. While it is still possible to describe states using

functional languages via monads, this is too indirect an approach to setting values when a user

that may not be skilled at programming has to use it. Because of this, imperative programming

is the favored paradigm.

As Game Maker has demonstrated, having events has clear advantages in connecting the user

generated code and the game engine. Therefore, it makes sense to have the program be event-

driven. Each event has a code body, in which an event header is defined. Besides the event

body, multiple locally defined functions can be defined, that can only be called from inside the

event.

As Jeroen Dobbe points out[30], a couple of specific points needs to be taken into account when

creating a DSL for a game system. The specific game rules for the game are controlled through

the different kinds of available functions that can be called, which limits the access to what the

user can change. Game objects are included through the use of different kind of types, some

with accessible properties. The game storyline is included through the use of the storyline type,

which adds some structure to how the player can manage story progression. Player control is

taken into account in the same way that Game Maker does, by creating specific events for the

different UI options accessible to the player.

This means that the chosen language is an imperative, event-driven object-oriented scripting

language, just like Game Maker. A full description of the language can be found in Appendix 6.

Typing discipline

Due to the ability of having a direct access to the defined elements in the editor at compile time,

a strong type system can be implemented, even though Game Maker skips this opportunity. As

Tim Sweeney points out in his presentation[29], it is important for programming languages to

keep the code at run-time as reliable as possible, which means discarding as much faulty code

as possible at compile time. Therefore, there should be relatively few limitations in regards to

how typing is used in the language.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

32

Implicit typing is possible to use here (something that Game Maker uses by necessity), but it

would require a significantly detailed system of type analysis to guess the type to be used. It

does not seem like implicit typing would be worth developing, because of the time it takes to

develop.

Dynamic typing makes little sense for this language, despite Game Maker focusing heavily on

this. The main reason is, that a desirable feature for the language is to have as many things fail

at compile-time as opposed to run time, as this is a considerable weakness in GML. As such,

having a static type checker is more ideal.

A strong typing system makes sense in a language with a static checker and explicit typing, as

comparing an image with a sound file yields no real value for the programmer. However, in

terms of numeric types, it makes sense to assign the boolean "true" to a value, or have an

object reference return true if used as the test expression in an control structure . This opens up

for two areas useful for weak typing like Game Maker uses: all types can be checked if true, and

all numeric types can be used interchangeably through implicit conversions. These two aspects

makes a weak type system attractive as a feature in the language.

Nominative typing, contrary to structural typing, makes sense for the system. If the user tries to

compare two objects, the most natural way would be if the objects both reference the same

instance of the same class, as opposed to their position. This is what Game Maker essentially

does too, though both can be considered true as references are all resolved to identifiers. In a

similar manner, comparing two images only makes sense if they are referring to the same

image in the system, and not the actual content of the image. If nothing else, such an equality

analysis could turn out to be crippling at runtime if every pixel in two images would need to be

checked.

The programming language chosen is an explicit, nominal, weak, statically checked language.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

33

Interpreter or Compiler

A major decision in regards to the programming language is if it is interpreted at runtime, or if it

uses compiled bytecode in a virtual machine. The advantage of having an interpreter is

simplicity, which is desirable, and probably why Game Maker does it. However, using a

compilation scheme means that code should execute faster than if interpreted, which seems a

much more important factor when choosing the programming language.

Another issue with code is decompilation, where someone else is able to reconstruct written

code, and essentially get access to the source files through the compiled file. Compilation helps

avoid decompilation as code is in the form of instructions, which can't easily be converted back

into workable code. While not a specific requirement, it a definite plus when comparing the two

approaches. On top of runtime efficiency, compilation makes more sense for the project.

Compilation Pipeline

In order to execute compilation of code from a written string, the code has to go through a series

of transformations. First, it is important that the written text is interpreted as a series of tokens,

adhering to a specific set of rules through a lexer. This is in order to simplify the parsing

process, which follows. The parser converts the code into an F# readable tree structure

describing the code, which can then be checked by a static checker, compiled to a list of

instructions, and finally saved as a byte array that can be executed by the virtual machine.

The lexer and the parser can throw exceptions if the code is badly written, and the static

checker can throw exceptions if the code contains flaws not possible to check in parsing or

lexing. The virtual machine can also throw exceptions, should a problem arise at runtime.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

34

View of the compilation pipeline

The differences between the parsed and checked abstract syntaxes lies in their intended use.

While the parsed abstract syntax has to be used for conversions from the parser, the checked

abstract syntax is used for preparing for the compilation process. For instance, the names are

all resolved to identifiers in the checked abstract syntax, and type data can be used as well.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

35

Variables and functions that are statically defined are a problem in relation to the pipeline. Some

types have variables that can be called by the user, which will have a presence in the pipeline.

Throughout the pipeline starting from the checked abstract syntax, we think it ïs necessary to

track these special variables separate from user defined ones, as the virtual machine needs to

access these variables differently. This adds complexity to the code as the variables are defined

multiple places in the code, and it would have been better if the types of variables were

described at a single point in the code. This is not possible, however, as the variables are a very

core part of the programming language, and simply adding them to the list of user defined

variables is not possible, as some of them cannot be edited.

Functions like instance_create or play_sound suffer the same problem, but unlike with variables,

there is no alternative here, as the defined functions have to exist separately in order to

reference code written in the native language in the virtual machine. Also, due to the large

number of functions that would have to be defined in order to be considered a complete

language, only a small amount of these functions have been implemented in the system, to

showcase the design.

Lexing and Parsing

Lexing

Lexing and Parsing uses the respective tools in the FSharp PowerPack, as described in the

tools section. Therefore, the code written for these two areas are in the special languages used

for these, and the corresponding .fs files are automatically generated code.

Lexing, being used for splitting a string into a list of tokens, is a simple process and contains

little surprises in the design. However, there are still a couple of noteworthy aspects of the lexer.

A design decision made for numbers was not to take negative numbers into account. This was

done because of issues in the parser, where a negative constant number (like -16) would not

parse when trying to subtract two numbers (like 5-2). As a consequence, the two's complement

nature of integers results in the minimum integer value being one above what is possible on the

.NET platform, as the negative number is first lexed as a positive number, and then negated

later.

Another decision is regarding context-dependant lexing. Due to the need for having keywords, it

complicates naming in the editor, if the editor has to take the keywords into account, like

throwing an error if someone tries to name an object after a used keyword. In order to avoid

this, context dependant lexing is used in order to make sure that names defined in the editor

can have the same name as a keyword. Using the F# however to create contexts proved

difficult, howver, and a workaround was required.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

36

To make context-dependant lexing, each time a token is returned, it is passed through a method

that saves that token, making it possible to check which token was returned previously. If the

last token was "goto", "call" or a dot, it is guaranteed that the next token (if it can be lexed)

should be a name. This does not cover all instances where names can be used, however.

Functions calls does not use anything beforehand to help indicate that this is a name, and cast

names are in parenthesis which does not dictate exclusion of keywords. To make these context

dependant, we would need to change the language, like having a call keyword before function

calls as well.

Parsing

The parser breaks down the lexed tokens into a tree structure of non-terminals, with each non-

terminal describing a finite state machine. If the list of tokens does not match a possible state in

the machine, the code is discarded, and an error is thrown. Otherwise, a tree structure in an

abstract syntax is created. A full view of the parser structure in the Backus-Naur Form can be

found in Appendix 7.

The basic structure of the programming language has three basic levels: The body, the

statement and the expression.

The body

<jssection> ::= <n> <sectiontype> <n> <functionlist> EOF

<functionlist> ::= | <function> <functionlist> <n>

<function> ::= <typeempty> <name> (<parametersdec>)

 <n> { <n> <body> <n> }

<sectiontype>: <eventfunc> | <functionfunc>

<eventfunc> ::= event (<parametersdec>) <n> { <n> <body> <n> }

<functionfunc> ::= <typeempty> function

 (<parametersdec>) <n> { <n> <body> <n> }

<n> ::= | '/n' <n>

<typekind> ::= <boolean> | state | <value> | string | <object>

 | sound | speech | sprite | image | story | npc

 | item | equipment | questitem | accessory | class

<type> ::= <typekind> | <typekind> [] | <typekind> [] []

<typeempty> ::= | <type>

<parametersdec> ::= | <n> <paramdec> <nextparamdec>

<nextparamdec> ::= | , <n> <paramdec> <nextparamdec>

<paramdec> ::= <type> <name>

<body> ::= | '/n' <n> <body> | <stmt> '/n' <n> <body>

 | <stmt> ; <n> <body> | <control> '/n' <n> <body>

 | <ctrlunbalanced> '/n' <n> <body>

 | <stmt> | <control> | <ctrlunbalanced>

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

37

The body is the main overall structure of the code, with the event and function declarations,

something that Game Maker does not have. A code section contains either an event or a

function, and a list of functions. Each of these has a list of arguments, and functions can have a

return type as well.

The statement

<stmt> ::= <expr> | <vardec> | break | continue

 | call this . <name> (<params>)

 | call Zone . <name> . <name> (<params>)

 | call (<access>) . <name> (<name>) . <name> (<params>)

 | return | return <expr>

<control> ::= if (<expr>) <n> <innerbody> <n> else <n> <innerbody>

 | while (<expr>) <n> <innerbody>

 | do <n> <innerbody> <n> while (<expr>)

 | for (<n> <inst> ; <n> <ltest> ; <n> <cexpr> <n>)

 <n> <innerbody>

 | switch (<access>) <n> { <n> <cases> <n> }

<ctrlunbalanced> ::= if (<expression>) <n>

 <innerbody> <n> else <n> <ctrlunbalanced>

 | if (<expression>) <n> <innerbody>

The statements are a single line of code in a block, like a return statement or variable

declaration. Statements are divided into single lines, control structures, and unbalanced control

structures. Statements are split between simple statements and control structures, for the

simple reason that control structures should not terminate with a semicolon, and the unbalanced

control structure is split to help avoid ambiguity.

The Expression

<expr> ::= <access> | <operationNeg>

<access> ::= this | this . <accessref> | other <accessoption>

 | global . <name> <accessoption>

 | global . <name> [<expr>] <accessoption>

 | global . <name> [<expr>] [<expr>] <accessoption>

 | <name> <accessoption>

 | Zone . <name> | Zone . <name> . <accessref>

 | <name> [<expr>] <accessoption>

 | <name> [<expr>] [<expr>] <accessoption>

<accessref> ::= <name> <accessoption>

 | <name> [<expr>] <accessoption>

 | <name> [<expr>] [<expr>] <accessoption>

<accessoption> ::= | (<name>) | . <accessref>

 | (<name>) . <accessref>

<operatinNeg> ::= <operation> | - <expr>

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

38

<operation> ::= <access> <n> = <n> <expr>

 | <access> <n> is <n> <name>

 | <access> <n> = <n> <arr1assign>

 | <access> <n> = <n> <arr2assign>

 | <number> | <floatnum> | <cstring> | null

 | <resource> | <expr> <n> ? <n> <expr> <n> : <n> <expr>

 | ! <expr> | (<n> <expr> <n>)

 | <expr> + <expr> | <expr> - <expr> | <expr> * <expr>

 | <expr> / <expr> | <expr> % <expr>

 | <expr> <n> == <n> <expr>

 | <expr> <n> < <n> <expr> | <expr> <n> <= <n> <expr

 | <expr> <n> != <n> <expr> | <expr> <n> >= <n> <expr>

 | <expr> <n> && <n> <expr> | <expr> <n> || <n> <expr>

 | <name> (<n> <params> <n>)

 | ++ <access> | -- <access> | <access> ++ | <access> --

Expressions always have a return-type, making it possible to link expressions together using

different operands. Expressions are split into access and operation. The reason for this is, that

variable access are considerably different from other operations, and are used in different

circumstances. It wouldn't make sense to assign to a function call, or do a switch statement on a

constant value. Statements are also split between simple statements and control structures, for

the simple reason that control structures should not terminate with a semicolon.

Shift/reduce errors

A peculiarity with the parsing system has caused a few headaches during the cause of the

project. Due to the way the parsing system works, the implemented system doesn't attempt to

predict multiple paths throughout the tree structure, which can cause confusion due to

ambiguity, leading to the so-called shift/reduce errors. The previously mentioned example of a

negation operation contra negative number is caused by this problem.

There are two general ways to avoid shift-reduce errors. The first is to declare precedence,

which is used to remove ambiguity in expression ordering, like determining that multiplication is

stronger, and should be determined before plus or minus. The other is to make the language

more explicit to avoid ambiguity. For instance, the if-else control structure allows unbalanced

structures, where there are no corresponding else clause, and in the case of two if statements

and only one else statement, there is uncertainty to what if statement the else statement is used

with. By creating a separate control non-terminable that disallows an unbalanced statement to

be used in the if-statement and only in the else statement, this ambiguity is removed, as the

other way around, with an unbalanced if structure in the if statement, simply cannot be parsed.

However, this also causes issues in regards to the new-line significance used in the program.

While a single ambiguity like the above can be solved, it becomes a different issue when new-

lines are used in many separate cases. The major issue with this is, that if a statement is

allowed to end with a newline, then ambiguity arises for every use of new-lines. This has

resulted in a design decision to move to a terminalist style with a semi-colon at the end of each

statement, as the new-lines prevented correct parsing.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

39

Code Checking

After parsing to abstract syntax, the tree structure could be considered ready for interpretation.

However, as a design decision was to focus on static checking in order to raise as many of the

problems in the code as possible at runtime, parsing is not enough. This is because the parser

cannot catch all errors possible to write in the program.

One of the purposes of the static checking that is possible in the DSL is to check that all referred

names actually exist at compile time, and all function calls has the correct amount of arguments.

This is simple, as all elements at compile time has already been created in the editor, and the

checker has to have access to these resources. Calling other functions and events is a different

matter, however, as the list of arguments is defined in the code itself. Therefore, it is not

possible to compile a single piece of code individually, it needs to know the general structure of

other pieces of code. To accomplish this, the checking is split into two phases. The first phase

loops through all the events and functions in the program and retrieves a header, containing the

ID of the resource, the list of arguments with type, along with the possible return type if it is a

function. All headers are then passed along as arguments when checking the code.

There are many areas in which the code checker has a responsibility to fail, if the code is not

acceptable. A detailed list of issues that are dealt with in the checker:

● Event is declared in function, or visa versa,

● Using break and continue outside of a loop or switch statement,

● Using a switch statement over an array, or over the "this" keyword,

● Using a switch statement over a value (double) or a boolean,

● Checking a switch statement for multiple different enums,

● Checking a switch statement for the same thing multiple times,

● Using default or null checks multiple time in a switch statement,

● Checking a switch statement with the wrong type, or an array,

● Using a function that returns void in a situation where a return type was required,

● Using the "this" or "other" keywords in a function,

● Performing an event call on an object that has not been cast to a specific type,

● Writing a function with a return type, but never returning,

● Calling event or function with wrong amount or type of parameters,

● Attempting to put an array inside of an array,

● Assigning to "this", "other", or a globally accessed zone,

● Assigning to variables that are un-assignable, like "class" or "parent",

● Doing operations on types that do not support that operation,

● Comparing two types that cannot be compared in that context,

● Casting a variable of a type that isn't object or zone,

● Accessing a variable, event or resource that doesn't exist,

● Trying to access a local variable that does not exist or is not in scope.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

40

An additional task for the static checker is to move the declaration of variables. In a compiled

language that does not support dynamic allocation, it is important to define the size of a stack at

compile time. To do this, a block starts by defining all the variables that are in scope before any

other code is compiled. This moves only the declarations, not the assignments, in the case

where a declaration is also an assignment, the code is split into two sections (for instance, from

bool x = false; to bool x; at the start of the block, and x = false; at the previous position).

Though the static checker handles many of the problems that might later arise at runtime, it is

not exhaustive. It cannot prevent, for instance, unavoidable null checks or search for infinite

loops, and it doesn't check issues related to the editor, like defining an event callable by the

engine with arguments that it shouldn't have. It also has a very significant flaw, it cannot

determine at what position in the code a problem has occurred on, as this information

disappears after the parsing stage. The parser has the opposite problem, however, as it can

show a specific line, but it can only throw generic error messages. It should be possible to get

line count after the parsing stage, by supplying meta-information when parsing terminals to the

abstract syntax, and using that information in error messages. The only apparent solution to the

generic error message problem, would be to implement a parser from scratch and include

specific error messages for different structural checks.

Compiling

The compilation step is responsible for converting the parsed and checked code into a structure

that can later be read in a virtual machine. As the virtual machine runs on top of another virtual

machine, the Common Language Infrastructure, compilation does not need to take physical

memory locations into account, as the virtual machine, being written and compiled on the .NET

platform through C Sharp, further translates the code and handles physical memory. Therefore,

compilation only needs to translate the code into a list of instructions that use a stack frame for

calculations.

Instructions design

The instruction set consists of bytecode that describes the programming language in a way that

makes it executable by the virtual machine, unlike the interpreter which uses the abstract syntax

tree structure.

The basic aspects of the instructions is the two arrays that are maintained at runtime: the code

and the stack. A description of how the instructions affects the code and stack, as well as the

different pointers and counters, can be found in the comments for the virtual machine.

The instructions are based on the .NET instructions[34], and a shorthand versions of some input

values are used. This is a way so that, in situations where very short values are frequent, it is

possible to use a byte representation of a number, instead of an integer, which would be four

times that length. This is not the reason why the instructions are based on .NET, however.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

41

In the current design, the virtual machine is created on top of .NET, meaning that the virtual

machine runs on top of another virtual machine. This could potentially be made more efficient by

simply having the compiler compile directly to .NET compatible code, and have the .NET

platform execute the code. The instructions are designed so that transitioning to such a system

would be as easy as possible.

The variable frame

An important aspect of the instructions at runtime is the different kind of frames on the stack.

There are two types of stack frames, the variable frame and the call frame. The variable frame

consists of a reference to the previous variable frame, the amount of variables in the frame,

followed by the variables. In the above example, the current base pointer is at 22.

The call frame

In order to have multiple code executions on the same stack, a call frame is used to identify

each individual function. The call frame has a reference to the position in the bytecode to return

to after a call has finished, as well as to the base pointer (to the active variable frame at call

time) and argument pointer (to the active method at call time) when calling, followed by the

arguments for the call. In the above example, the current argument pointer is 36, and position

25 in the bytecode contains the statement after the call.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

42

In this language the arguments are separate from the variables. This is because variables are

moved to the earliest in the block when declared, meaning that each block of code has a block

of variables on the stack frame. Judging by the looks of the Java bytecode, this is different to

how Java does it, where the variables are not declared at the start of the block, but of the start

of the method, meaning that only a single stack pointer is required. As this is a more

complicated process, the variable blocks are used here as a simpler alternative that produces

the same results.

The compiler

The compiler is constructed to write code backwards, carrying the rest of the code as an input

for each function call, similar to the continuation passing style. The advantage for this is, that it

avoids the use of the expensive append operation. As lists in F Sharp are constructed similar to

a linked list, appending two lists would be an O(n) operation, due to the need of having to copy

the lists. As this operation would have to be done after every single function call, should they

return a list of instructions, this will cause the program to become significantly less efficient.

However, when passing the remainder of the code, it will be possible to creating the front of the

list in the method using the simple cons operator. This is much more efficient, with no need to

copy the lists into a new one, as the cons operator simply needs to move a single pointer.

However, there are still parts of the compiler that uses the append operand, when constructing

the blocks for the variable stack frames. This is due to how the block needs information on the

amount of variables declared in the block, and in other words need information that is gathered

in a previous method, which requires a list to be constructed. Redesign of the code could fix this

issue, and remains an area of improvement for the compiler.

The other use of the backwards compilation is for optimizations of the code through pattern

matching. Using pattern matching, it is possible to check the next few instructions in the list,

making it possible to optimize based on later instructions. For instance, when adding two

constants, the resulting instructions would be the two values followed by an add instruction. It

would then be possible, when making the constant value instruction, to check if the later two

instructions are another value and an add instruction, in which case it should just return the

added value instead, reducing the amount of instructions in the final code. While these

optimizations are possible in the code, they are not implemented as they are only optimizations.

Backwards compilation would make it possible and very simple to write optimizations for the

compiler at a later date.

Throughout the compiled instructions, the code maintains a reference to the various arguments

and variables. As the instructions works with the variables top-down, it is not possible to simply

use the ID of the variables, as the static checker uses, as it would not be very efficient to go all

the way back to the first base pointer, and then count upwards, especially considering that it

makes most sense that the last declared variables are checked first, as they are statistically

more likely to be the ones used, as most variables should be declared in the same block that

actually uses them. Instead, the references to variables are converted so that the integer used

to refer to a variable matches its position in the block of declared variables, with new variables

being declared at the top. This means that two different operands can compare to variable 0,

and actually work on different variables.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

43

Labels are heavily used in the compiler as well. Labels are a special instruction, that makes it

easier to make control structures by maintaining a list of labels, and then using these labels as

possible jump-points later in the compilation. The advantage of this is, that the position in the

code that the label represents, is not actually known, not only due to the instructions being

written backwards, but due to how one would define a "position". Only when the code is fully

assembled can the jumps be created.

Actually saving the instructions to bytecode is another issue, as many of the instructions have

parameters. While the instruction itself can be identified by a single byte, the remaining

instructions contains additional information. As the instructions will always have the same

amount of parameters, simply containing the parameter data as bytes after the instruction byte

would make it possible to identify it at runtime. Thus, it simply becomes a question of storing the

data as bytes, which can be done easily through the bit converter in the .NET framework.

The length of the individual values may not be the same, though. In the case of strings, which

has no set length, storage may vary greatly. These are stored by having an integer count the

length of the string, followed by the two bytes for each individual character. The alternative

would be to use the encoding tools supplied by the .NET framework, but it has to be possible to

know the amount of bytes in the string, as the array of bytes contains more than just the string.

This is simple for 32-bit integers and doubles, each of which use 4 and 8 byte respectfully, but

not so for strings.

Also, the length of integers may vary as well, due to the shorthand representations that reduces

them to one byte. To do this, an integer that may have a shorthand has an additional byte in

front of it, determining its shorthand status. If it is in fact a shorthand, the length of the variable is

one, and if not, the length is five (the identifying byte along with the actual byte values). While

this technique does raise the size of integers by 25%, it should still be an optimization overall

when shorthands are used in cases where low values are expected, like variable positions. The

technique should obviously not, and is not, used in situations where low values are not

expected, like resource identifiers or positions in the code.

Having parameters for instructions does mean that labels does not have to point at the position

of the instruction, but the position of the first byte of it. Therefore, the compiler has to calculate

the length of the instructions when building up the labels. When a label instruction is then

encountered, the correct byte position can then be assigned for the label identifier, with the label

instruction itself counting for zero bytes. When the instructions are then saved, the label

instructions can be removed completely, while the jumps refer to the correct byte position in the

code.

Virtual Machine

The virtual machine utilizes an infinite loop that continues to loop over the code, using a

program pointer that is continuously increased by at least one. It also uses a base pointer and

argument pointer in order to locate the start of the topmost set of variables and arguments, and

a stack pointer which points to the top of the stack used by the virtual machine.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

44

The stack consists of a struct which may contain either a byte, and integer, a double, a string or

an object. The first implementation of this system used unions, by using the explicit StructLayout

attribute, and having the contents all have a field offset of the same amount. However, this is

not actually possible, as in C# it is not actually possible to refer to numerical values like integers

in the same union as object references, despite the reference being numbers.

In order to fix this issue, it was necessary to use a wrapper class in order to include numerical

values inside of an object, meaning that all contents of a stack object is an object. This is

incredibly unoptimized, as this means that new objects are created constantly, completely

unnecessarily. The other option, to break values down into bytes and having those stored on the

stack, doesn't work either, as the amount of conversions would be just as unoptimized. This is a

problem that appears unsolvable without going into the use of unsafe code or simply moving

away from the .NET platform entirely.

An issue that arose was how to refer to variables. As they are numerical values, it is not

possible to refer to them from multiple locations, which would be necessary when loading and

saving references on the stack, away from the actual location in the Resource Manager.

Therefore, the wrapper class again becomes usable, as if all values are stored within a wrapper

object, then it will be possible to simply refer to the wrapper, and update the value through that,

as the wrapper is referred to through call by reference instead of call by value. This also creates

unoptimized code, as every instance of an object now contains a large amount of sub-objects

that only contains a value, wasting resources when the amount of instances increase

significantly.

A notable issue that can cause problems in very specific circumstances is, that if a shorthand

use of a variable is used at the very end of a code array, then it would possibly exceed that

array, causing a crash. For instance, if an integer has a shorthand value of zero, it would only

contain one byte, instead of the five bytes that needs to be checked. For these situations, the

length of the code is checked contra position. If the position is close to the end of the code, it

instead inserts zeros at the remaining positions, as the code guarantees that these won't be

used in the case of a shorthand value.

Generally, throwing exception during runtime is somewhat rare, as the static checker

guarantees that the the code itself is valid. However, that doesn't exclude the few situations that

would indeed allow for problems that cannot be checked at compile time, stack memory

exceeded, null variable accessed, division by zero, badly cast objects and attempts to access

arrays outside of their actual length. These are the only situations that can cause an exception

to be thrown, should the code be valid.

There is no dynamic checking to make sure that the code is valid at run-time, though, as all

code is assumed to origin from the compilation using the static checker. As someone would

have to essentially hack into the program in order to fault this assumption, we regard this as

being solid. However, another problem is related to how variables are set, by setting the content

of a wrapper in the virtual machine.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

45

For instance in the case of a sound, pan and volume has a range of states that can be set.

However, the constraints are set when setting the wrapper, not the actual value. Therefore, it is

possible to set a volume to a negative value, and receive a contract error when retrieving the

value at a later stage. The only solution to this, without changing the variable system, would be

to perform integrity checks, which would result in a performance drop.

Testing

Unit testing is performed for the programming language, with over one thousand two hundred

tests for the entire program, covering testing the parser, the static checker, the compiler, byte

compiler and virtual machine.

Testing the parser is an important part, despite the parsing happening in external code. This is

because of how the shift/reduce errors can easily make some written code illegal, despite what

should be possible to write. Negative tests are not tested for this part, however, and neither is

the result of the test. What is important if it can even parse at all, and not throw an unexpected

exception based on an unforeseen combination of tokens. The testing scheme for the parser

utilizes the fact that the possibilities of the language is already written beforehand, making it

possible to write a program that generates test cases that gives code coverage.

The way the code is performed is, that each token that is a non-terminal has a method, where

each option results in duplicating the content of a code section into multiple files, branching out

the example code to make a list of code files that grants code coverage to the entire language.

In order to make sure as few tests are run in order to achieve this, each time a non-terminal has

been checked, a boolean is set to true. Next time that non-terminal is checked, it doesn't split up

the code, but only returns the most minimal case of that non-terminal. This technique grants

code coverage of the parser in 158 automatically generated test cases.

For the static checker, both positive and negative checks are used. Of course, as a Resource

Manager object is required in order to check code, the Resource Manager for the editor is filled

with resources. It should be noted, however, that exceptions thrown because of bad code is not

checked. The difference between 'bad code' exceptions and regular exceptions is, that it should

not be possible to get to a 'bad code' exception through calling the starting function with an

abstract syntax retrieved from parsed code.

There are less tests for the compiler and byte compiler, as there are only positive tests for

these, as exception should not be thrown. The virtual machine tester does test for both positive

and negative tests, and utilized the in-game Resource Manager, similar to the static checker

using the editor Resource Manager. The runtime tests are only possible due to the different

instructions are split up into separate methods, calling the method initiating a for loop wouldn't

give very good test cases as it would not be possible to test the state in between each individual

instruction call.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

46

Conclusion

Domain Specific Language

In order to provide scripting capabilities for the editor, a domain specific language called

JourneyScript was created. This language uses a compilation pipeline, including lexing, parsing,

static checking, and compiling.

For Domain Specific Languages to be used in a game editor, it is important to focus on static

checking, in order to minimize the amount of errors at run-time as much as possible. It is also

necessary to pay notice to what error messages are supplied to the user, so that they can be

fixed as easily as possible. For the static checker used in this project, location information (line,

column) was neglected, which is a significant problem, on top of the lack of information found in

exceptions called by the parser. Despite locating as many problems as possible, there is still the

issue that run-time, like detecting infinite loops. This reduces the reliability of the language.

Compilation for JourneyScript is handled through the use of a continuation-styled backwards

compiler, which improves compilation time greatly, by avoiding list duplications. Backwards

compilation was however not possible for variable declarations, as the variables has to be

passed on in a forward fashion. Also, the compiler generates code that can be reduced to fewer

instructions at compile time, like adding two constants instead of simply having a single constant

with the added values. This is something that backwards compilation makes easy, but has not

been made for the project. This should, however, be taken into account when creating a

compiler.

After creating the virtual machine, it was found that creating it on top of the .NET platform incurs

some optimization issues. This is due to it being implemented on a higher level of abstraction,

with aspects like object references being used together with numeric values causing problems.

This is a significant issue for domain specific languages, if they're implemented on the .NET

platform, and lends credence to the use of a simple interpreter instead of a compilation scheme.

Editor

By far the most important factor we found for the editor is how drawing is performed. Due to the

focus of using XNA for drawing in WPF, a huge efficiency loss was found. An important aspect

is to properly dispose of loaded resources, along with keeping most of the resources on the

hard drive when it was not actually displayed. However, using XNA in WPF causes significant

problems with correctly disposing of images. This comes on top of issues with XNA, which

prevents large images from being drawn. The solution to these problems seem to be to not

contain a list of images to draw, and instead only have a list of references of what to draw.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

47

Another important aspect of the editor to take into account is how windows open each other. If

one wants to have multiple active windows that can all manipulate data at the same time,

threading becomes a significant issue to deal with. Making sure which windows are acceptable

to have active at the same time becomes a significant question that should be answered early in

the design process to avoid confusion later on. As this was not taken into account in this project,

only one window can be active at any time.

User created content

In regards to transferring user created content from the editor into the game, it is important to

take the saved and compiled project files into account. In this project, we save and compile to a

single file, where we make use of ZIP in order to create an archive. This also opens up for the

use of creating content packages, where the user can export and import specific assets

between projects. Such a feature would be useful for editors, though we have not implemented

it for this project.

In order to save data persistently, we focus on serialization to XML, and having two separate

data structures describing the data, the editor data and the game data. In order to save, the

editor data is serialized, and in order to compile, the editor data is transferred into game data

and serialized. In order to control the order at which objects are loaded, we focus on simplifying

architecture by using ID references. ID references can then be linked to the actual objects

through the Resource Manager using a binary search algorithm for efficiency. This currently

break code contracts regarding the existence of objects in the Resource Manager, as the

automatic serialization sets IDs that does not currently exist in the Resource Manager when

loading. This can be solved by forcing deserialization in a specific manner.

Reflection

This project proved to be very time-consuming, due to the sheer complexity of a JRPG system.

It was originally planned that the the game client itself should have been made, but it became

very clear that this would not be possible in the given time-frame.

A major time sink in the program was the use of systematic design, especially considering that

we have written 200 pages of design documentation for BON (available on the CD), task

descriptions and language description alone. The large focus on systematic design is likely to

have saved a lot of time early on, but further in the project redesigns became frequent, which

made updating the existing documentation a significant process that simply wasted time.

While there are still many small areas that needs to be worked on if this editor was to be used

with an actual game, overall it works about as well as other professional editors. Because of this

we consider the project a success, as we have not only created an editor for a JRPG system

with a domain specific language, but we have also found a series of design issues that can be

circumvented in future designs. Despite of our misconceptions about the size of the project, and

the fact that a large game would not be possible due to the memory limits in the editor, we

completed what we consider a solid product within the project timeframe.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

48

Appendix
1 - Glossary

Journey

The actual content of a JRPG, with the storyline, world, towns and dungeons. This term is used

to describe the user-generated content.

Game

The executable which can open and interpret individual journeys. It can be considered to be

similar to a client, except the retrieved data is not from another computer, as that is not currently

possible.

Editor

The development environment where game logic is made. This includes the area where the

user writes programming, as well as defining all aspects of a journey

Paradigm

A specific world-view, with a focus on tacit-knowledge in a group. It is the underlying model for

how theories and practices are generally understood in scientific communities.

Sprite

An image to be used in a game, which may contain animation (multiple underlying images).

Tileset

A tileset is an image divided into a series of smaller images, where the images are used

separate from each other.

Stat

A stat, or status, is the current description of a character. This includes current health and

mana, along with the current value of any attributes the character has, like strength.

Mana

Mana is an expression used in role playing games to express the life force a character has

needed to use magic spells. Each magic spell takes up a certain amount of mana, and if the

character does not have enough of this life force, he cannot cast the spell.

NPC

NPC stands for Non Player Character. As the name implies, it's a character that is not a player.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

49

Domain Specific Language

A Language that is not a general purpose language, as it can only be used in a specific domain.

It is written specifically for one domain, and multiple DSLs may exist in a program for different

sub-domains.

Abstract Syntax Tree

A programming language can be seen as a tree structure, with the first node of the three

consisting of the main execution and the end of file, and the leaf nodes representing operants,

constants, or variables.

LALR parser

Look-Ahead Left-Right Parser, scans input left-to-right in a single scan without guessing.

Terminal / Non-Terminal

In parser specifications, terminals are translated into parts of a abstract syntax tree, while non-

terminals does not, instead offering options for parsing. In BNF, a non-terminal always appears

at least once on the left side of the translation, while terminals are never on the left side.

Event-Driven Programming

A language paradigm, in where the execution flow is determined by events, like mouse clicks.

Compilation Pipeline

The process of translating a string to executable bytecode.

Virtual Windows

Virtual windows is a series of windows created in order to present data in a system, and for

designing what goes in what windows, how the data is graphically displayed, and similar.

Single & Multi-page dialogues

A single page dialogue is a system where one window is active at any given time, and

navigation is provided for activating different windows. Multi-page dialogues, on the other hand,

allows for multiple windows (though possibly independent element inside of one window) to be

active at the same time.

State Diagram

A state diagram is a way of describing any finite state machine, like the parser or window

navigation. The state diagram shows the different states of a system, as well as the different

ways of moving between the different states.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

50

Shift/Reduce Error

When navigating a state diagram in the parser, shift/reduce errors can arise when ambiguity

arises due to multiple paths being possible from a given state. More specifically, a shift/reduce

error occurs when it is both possible to reduce the stack to a terminal and to continue with the

state-diagram by shifting the active token to the next position in the list of lexer tokens. For

instance, if one has a non-terminal with "IF expr THEN stmt" and "IF expr THEN stmt ELSE

stmt", then there will be a shift/reduce error at ELSE due to both these routes in the state

diagram may be used.

Lexer Token

The job of the lexer is to consolidate string input into a series of tokens. Tokens may be just a

name that may be referred to, or it may contain data. For instance, a "NAME" token would likely

contain a string.

Continuation Passing Style

CPS is a style of functional programming, where a continuation function is supplied as a monad

to each function, and the function ends by calling the monad with the result of the function.

Therefore, calling a function using continuation passing style means not only calling a method,

but also supplying what to do with the result after completion.

Singleton / Multiton Design Pattern

The singleton design pattern focuses on making sure that only one instance of a class exists,

and that this class can be accessed globally. Multiton is similar, except that instead of

guaranteeing that only one instance exists, it guarantees that a set number of elements exists,

where access to each element can be found by using a key.

Monads

A Monad is a structure used in functional programming to represent programming logic. This

can be used, for instance, to describe continuations, or to contain a state.

Discrete Event Simulation

Discrete Event Simulation, DES, is a way of describing a system by a sequence of events in a

chronological order.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

51

2 - Bibliography

[1] - http://msdn.microsoft.com/library/dd233181(VS.100).aspx

[2] - http://fsharppowerpack.codeplex.com/

[3] - http://www.microsoft.com/visualstudio/
[4] - http://www.nunit.org/
[5] - http://fsunit.codeplex.com/
[6] - http://www.w3.org/XML/
[7] - http://en.wikipedia.org/wiki/Microsoft_XNA
[8] - User Interface Design - A Software Engineering Perspective - Soren Lauesen,
Pearson Education Limited, 2005. ISBN: 0-321-18143-3
[9] - http://msdn.microsoft.com/en-us/library/ms754130.aspx
[10] - http://www.bon-method.com/index_normal.htm
[11] - http://www.fmod.org/
[12] - http://research.microsoft.com/en-us/projects/contracts/
[13] - http://www.codeproject.com/Articles/42490/Using-AvalonEdit-WPF-Text-Editor

[14] - http://www.codeproject.com/Articles/42849/Making-a-Drop-Down-Style-Custom-Color-Picker-in-WP

[15] -
Code Metrics Power tool:
http://www.microsoft.com/en-us/download/details.aspx?id=9422
Code Metrics Viewer: http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-
6babd7a5a3b3
[16] - http://www.garshol.priv.no/download/text/bnf.html
[17] - http://en.wikipedia.org/wiki/Entity-relationship_model
[18] - http://en.wikipedia.org/wiki/Zip_(file_format)
[19] - http://www.square-enix.com/na/title/finalfantasy/
[20] - http://www.square-enix.com/na/title/dragonquest/
[21] - http://en.wikipedia.org/wiki/Breath_of_Fire
[22] - http://tvtropes.org/pmwiki/pmwiki.php/Main/BrokenBridge
[23] - http://wiki.yoyogames.com/index.php/Game_Maker
[24] - http://wiki.yoyogames.com/index.php/Documentation:The_Game_Maker_Language
[25] - http://www.gmtoolbox.com/
[26] - http://www.rpgmakerweb.com/
[27] - http://www.ruby-lang.org/en/
[28] - http://www.embarcadero.com/products/delphi
[29] - http://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt
[30] - http://swerl.tudelft.nl/twiki/pub/Main/PastAndCurrentMScProjects/JeroenDobbe.pdf
[31] - http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-
inside-of-a-wpf-application.aspx
[32] - http://en.wikipedia.org/wiki/Model_View_ViewModel
[33] - http://en.wikipedia.org/wiki/Simula
[33] - http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf

http://msdn.microsoft.com/library/dd233181(VS.100).aspx
http://msdn.microsoft.com/library/dd233181(VS.100).aspx
http://msdn.microsoft.com/library/dd233181(VS.100).aspx
http://msdn.microsoft.com/library/dd233181(VS.100).aspx
http://msdn.microsoft.com/library/dd233181(VS.100).aspx
http://msdn.microsoft.com/library/dd233181(VS.100).aspx
http://msdn.microsoft.com/library/dd233181(VS.100).aspx
http://msdn.microsoft.com/library/dd233181(VS.100).aspx
http://msdn.microsoft.com/library/dd233181(VS.100).aspx
http://msdn.microsoft.com/library/dd233181(VS.100).aspx
http://msdn.microsoft.com/library/dd233181(VS.100).aspx
http://msdn.microsoft.com/library/dd233181(VS.100).aspx
http://msdn.microsoft.com/library/dd233181(VS.100).aspx
http://msdn.microsoft.com/library/dd233181(VS.100).aspx
http://msdn.microsoft.com/library/dd233181(VS.100).aspx
http://fsharppowerpack.codeplex.com/
http://fsharppowerpack.codeplex.com/
http://fsharppowerpack.codeplex.com/
http://fsharppowerpack.codeplex.com/
http://fsharppowerpack.codeplex.com/
http://fsharppowerpack.codeplex.com/
http://fsharppowerpack.codeplex.com/
http://fsharppowerpack.codeplex.com/
http://www.microsoft.com/visualstudio/
http://www.microsoft.com/visualstudio/
http://www.microsoft.com/visualstudio/
http://www.microsoft.com/visualstudio/
http://www.microsoft.com/visualstudio/
http://www.microsoft.com/visualstudio/
http://www.microsoft.com/visualstudio/
http://www.microsoft.com/visualstudio/
http://www.microsoft.com/visualstudio/
http://www.microsoft.com/visualstudio/
http://www.nunit.org/
http://www.nunit.org/
http://www.nunit.org/
http://www.nunit.org/
http://www.nunit.org/
http://www.nunit.org/
http://www.nunit.org/
http://www.nunit.org/
http://fsunit.codeplex.com/
http://fsunit.codeplex.com/
http://fsunit.codeplex.com/
http://fsunit.codeplex.com/
http://fsunit.codeplex.com/
http://fsunit.codeplex.com/
http://fsunit.codeplex.com/
http://fsunit.codeplex.com/
http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.w3.org/XML/
http://en.wikipedia.org/wiki/Microsoft_XNA
http://en.wikipedia.org/wiki/Microsoft_XNA
http://en.wikipedia.org/wiki/Microsoft_XNA
http://en.wikipedia.org/wiki/Microsoft_XNA
http://en.wikipedia.org/wiki/Microsoft_XNA
http://en.wikipedia.org/wiki/Microsoft_XNA
http://en.wikipedia.org/wiki/Microsoft_XNA
http://en.wikipedia.org/wiki/Microsoft_XNA
http://en.wikipedia.org/wiki/Microsoft_XNA
http://en.wikipedia.org/wiki/Microsoft_XNA
http://en.wikipedia.org/wiki/Microsoft_XNA
http://en.wikipedia.org/wiki/Microsoft_XNA
http://en.wikipedia.org/wiki/Microsoft_XNA
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://msdn.microsoft.com/en-us/library/ms754130.aspx
http://www.bon-method.com/index_normal.htm
http://www.bon-method.com/index_normal.htm
http://www.bon-method.com/index_normal.htm
http://www.bon-method.com/index_normal.htm
http://www.bon-method.com/index_normal.htm
http://www.bon-method.com/index_normal.htm
http://www.bon-method.com/index_normal.htm
http://www.bon-method.com/index_normal.htm
http://www.bon-method.com/index_normal.htm
http://www.bon-method.com/index_normal.htm
http://www.bon-method.com/index_normal.htm
http://www.bon-method.com/index_normal.htm
http://www.bon-method.com/index_normal.htm
http://www.bon-method.com/index_normal.htm
http://www.bon-method.com/index_normal.htm
http://www.fmod.org/
http://www.fmod.org/
http://www.fmod.org/
http://www.fmod.org/
http://www.fmod.org/
http://www.fmod.org/
http://www.fmod.org/
http://www.fmod.org/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://research.microsoft.com/en-us/projects/contracts/
http://www.codeproject.com/Articles/42490/Using-AvalonEdit-WPF-Text-Editor
http://www.codeproject.com/Articles/42490/Using-AvalonEdit-WPF-Text-Editor
http://www.codeproject.com/Articles/42490/Using-AvalonEdit-WPF-Text-Editor
http://www.codeproject.com/Articles/42490/Using-AvalonEdit-WPF-Text-Editor
http://www.codeproject.com/Articles/42490/Using-AvalonEdit-WPF-Text-Editor
http://www.codeproject.com/Articles/42490/Using-AvalonEdit-WPF-Text-Editor
http://www.codeproject.com/Articles/42490/Using-AvalonEdit-WPF-Text-Editor
http://www.codeproject.com/Articles/42490/Using-AvalonEdit-WPF-Text-Editor
http://www.codeproject.com/Articles/42490/Using-AvalonEdit-WPF-Text-Editor
http://www.codeproject.com/Articles/42490/Using-AvalonEdit-WPF-Text-Editor
http://www.codeproject.com/Articles/42490/Using-AvalonEdit-WPF-Text-Editor
http://www.codeproject.com/Articles/42490/Using-AvalonEdit-WPF-Text-Editor
http://www.codeproject.com/Articles/42490/Using-AvalonEdit-WPF-Text-Editor
http://www.codeproject.com/Articles/42490/Using-AvalonEdit-WPF-Text-Editor
http://www.codeproject.com/Articles/42490/Using-AvalonEdit-WPF-Text-Editor
http://www.codeproject.com/Articles/42490/Using-AvalonEdit-WPF-Text-Editor
http://www.codeproject.com/Articles/42490/Using-AvalonEdit-WPF-Text-Editor
http://www.codeproject.com/Articles/42490/Using-AvalonEdit-WPF-Text-Editor
http://www.codeproject.com/Articles/42490/Using-AvalonEdit-WPF-Text-Editor
http://www.codeproject.com/Articles/42849/Making-a-Drop-Down-Style-Custom-Color-Picker-in-WP
http://www.codeproject.com/Articles/42849/Making-a-Drop-Down-Style-Custom-Color-Picker-in-WP
http://www.codeproject.com/Articles/42849/Making-a-Drop-Down-Style-Custom-Color-Picker-in-WP
http://www.codeproject.com/Articles/42849/Making-a-Drop-Down-Style-Custom-Color-Picker-in-WP
http://www.codeproject.com/Articles/42849/Making-a-Drop-Down-Style-Custom-Color-Picker-in-WP
http://www.codeproject.com/Articles/42849/Making-a-Drop-Down-Style-Custom-Color-Picker-in-WP
http://www.codeproject.com/Articles/42849/Making-a-Drop-Down-Style-Custom-Color-Picker-in-WP
http://www.codeproject.com/Articles/42849/Making-a-Drop-Down-Style-Custom-Color-Picker-in-WP
http://www.codeproject.com/Articles/42849/Making-a-Drop-Down-Style-Custom-Color-Picker-in-WP
http://www.codeproject.com/Articles/42849/Making-a-Drop-Down-Style-Custom-Color-Picker-in-WP
http://www.codeproject.com/Articles/42849/Making-a-Drop-Down-Style-Custom-Color-Picker-in-WP
http://www.codeproject.com/Articles/42849/Making-a-Drop-Down-Style-Custom-Color-Picker-in-WP
http://www.codeproject.com/Articles/42849/Making-a-Drop-Down-Style-Custom-Color-Picker-in-WP
http://www.codeproject.com/Articles/42849/Making-a-Drop-Down-Style-Custom-Color-Picker-in-WP
http://www.codeproject.com/Articles/42849/Making-a-Drop-Down-Style-Custom-Color-Picker-in-WP
http://www.codeproject.com/Articles/42849/Making-a-Drop-Down-Style-Custom-Color-Picker-in-WP
http://www.codeproject.com/Articles/42849/Making-a-Drop-Down-Style-Custom-Color-Picker-in-WP
http://www.codeproject.com/Articles/42849/Making-a-Drop-Down-Style-Custom-Color-Picker-in-WP
http://www.codeproject.com/Articles/42849/Making-a-Drop-Down-Style-Custom-Color-Picker-in-WP
http://www.codeproject.com/Articles/42849/Making-a-Drop-Down-Style-Custom-Color-Picker-in-WP
http://www.codeproject.com/Articles/42849/Making-a-Drop-Down-Style-Custom-Color-Picker-in-WP
http://www.codeproject.com/Articles/42849/Making-a-Drop-Down-Style-Custom-Color-Picker-in-WP
http://www.codeproject.com/Articles/42849/Making-a-Drop-Down-Style-Custom-Color-Picker-in-WP
http://www.codeproject.com/Articles/42849/Making-a-Drop-Down-Style-Custom-Color-Picker-in-WP
http://www.codeproject.com/Articles/42849/Making-a-Drop-Down-Style-Custom-Color-Picker-in-WP
http://www.codeproject.com/Articles/42849/Making-a-Drop-Down-Style-Custom-Color-Picker-in-WP
http://www.codeproject.com/Articles/42849/Making-a-Drop-Down-Style-Custom-Color-Picker-in-WP
http://www.codeproject.com/Articles/42849/Making-a-Drop-Down-Style-Custom-Color-Picker-in-WP
http://www.codeproject.com/Articles/42849/Making-a-Drop-Down-Style-Custom-Color-Picker-in-WP
http://www.microsoft.com/en-us/download/details.aspx?id=9422
http://www.microsoft.com/en-us/download/details.aspx?id=9422
http://www.microsoft.com/en-us/download/details.aspx?id=9422
http://www.microsoft.com/en-us/download/details.aspx?id=9422
http://www.microsoft.com/en-us/download/details.aspx?id=9422
http://www.microsoft.com/en-us/download/details.aspx?id=9422
http://www.microsoft.com/en-us/download/details.aspx?id=9422
http://www.microsoft.com/en-us/download/details.aspx?id=9422
http://www.microsoft.com/en-us/download/details.aspx?id=9422
http://www.microsoft.com/en-us/download/details.aspx?id=9422
http://www.microsoft.com/en-us/download/details.aspx?id=9422
http://www.microsoft.com/en-us/download/details.aspx?id=9422
http://www.microsoft.com/en-us/download/details.aspx?id=9422
http://www.microsoft.com/en-us/download/details.aspx?id=9422
http://www.microsoft.com/en-us/download/details.aspx?id=9422
http://www.microsoft.com/en-us/download/details.aspx?id=9422
http://www.microsoft.com/en-us/download/details.aspx?id=9422
http://www.microsoft.com/en-us/download/details.aspx?id=9422
http://www.microsoft.com/en-us/download/details.aspx?id=9422
http://www.microsoft.com/en-us/download/details.aspx?id=9422
http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-6babd7a5a3b3
http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-6babd7a5a3b3
http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-6babd7a5a3b3
http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-6babd7a5a3b3
http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-6babd7a5a3b3
http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-6babd7a5a3b3
http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-6babd7a5a3b3
http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-6babd7a5a3b3
http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-6babd7a5a3b3
http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-6babd7a5a3b3
http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-6babd7a5a3b3
http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-6babd7a5a3b3
http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-6babd7a5a3b3
http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-6babd7a5a3b3
http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-6babd7a5a3b3
http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-6babd7a5a3b3
http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-6babd7a5a3b3
http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-6babd7a5a3b3
http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-6babd7a5a3b3
http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-6babd7a5a3b3
http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-6babd7a5a3b3
http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-6babd7a5a3b3
http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-6babd7a5a3b3
http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-6babd7a5a3b3
http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-6babd7a5a3b3
http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-6babd7a5a3b3
http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-6babd7a5a3b3
http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-6babd7a5a3b3
http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-6babd7a5a3b3
http://visualstudiogallery.msdn.microsoft.com/9f35524b-a784-4dbc-bd7b-6babd7a5a3b3
http://www.garshol.priv.no/download/text/bnf.html
http://www.garshol.priv.no/download/text/bnf.html
http://www.garshol.priv.no/download/text/bnf.html
http://www.garshol.priv.no/download/text/bnf.html
http://www.garshol.priv.no/download/text/bnf.html
http://www.garshol.priv.no/download/text/bnf.html
http://www.garshol.priv.no/download/text/bnf.html
http://www.garshol.priv.no/download/text/bnf.html
http://www.garshol.priv.no/download/text/bnf.html
http://www.garshol.priv.no/download/text/bnf.html
http://www.garshol.priv.no/download/text/bnf.html
http://www.garshol.priv.no/download/text/bnf.html
http://www.garshol.priv.no/download/text/bnf.html
http://www.garshol.priv.no/download/text/bnf.html
http://www.garshol.priv.no/download/text/bnf.html
http://www.garshol.priv.no/download/text/bnf.html
http://www.garshol.priv.no/download/text/bnf.html
http://en.wikipedia.org/wiki/Entity-relationship_model
http://en.wikipedia.org/wiki/Entity-relationship_model
http://en.wikipedia.org/wiki/Entity-relationship_model
http://en.wikipedia.org/wiki/Entity-relationship_model
http://en.wikipedia.org/wiki/Entity-relationship_model
http://en.wikipedia.org/wiki/Entity-relationship_model
http://en.wikipedia.org/wiki/Entity-relationship_model
http://en.wikipedia.org/wiki/Entity-relationship_model
http://en.wikipedia.org/wiki/Entity-relationship_model
http://en.wikipedia.org/wiki/Entity-relationship_model
http://en.wikipedia.org/wiki/Entity-relationship_model
http://en.wikipedia.org/wiki/Entity-relationship_model
http://en.wikipedia.org/wiki/Entity-relationship_model
http://en.wikipedia.org/wiki/Entity-relationship_model
http://en.wikipedia.org/wiki/Entity-relationship_model
http://en.wikipedia.org/wiki/Zip_(file_format)
http://en.wikipedia.org/wiki/Zip_(file_format)
http://en.wikipedia.org/wiki/Zip_(file_format)
http://en.wikipedia.org/wiki/Zip_(file_format)
http://en.wikipedia.org/wiki/Zip_(file_format)
http://en.wikipedia.org/wiki/Zip_(file_format)
http://en.wikipedia.org/wiki/Zip_(file_format)
http://en.wikipedia.org/wiki/Zip_(file_format)
http://en.wikipedia.org/wiki/Zip_(file_format)
http://en.wikipedia.org/wiki/Zip_(file_format)
http://en.wikipedia.org/wiki/Zip_(file_format)
http://en.wikipedia.org/wiki/Zip_(file_format)
http://en.wikipedia.org/wiki/Zip_(file_format)
http://en.wikipedia.org/wiki/Zip_(file_format)
http://en.wikipedia.org/wiki/Zip_(file_format)
http://en.wikipedia.org/wiki/Zip_(file_format)
http://www.square-enix.com/na/title/finalfantasy/
http://www.square-enix.com/na/title/finalfantasy/
http://www.square-enix.com/na/title/finalfantasy/
http://www.square-enix.com/na/title/finalfantasy/
http://www.square-enix.com/na/title/finalfantasy/
http://www.square-enix.com/na/title/finalfantasy/
http://www.square-enix.com/na/title/finalfantasy/
http://www.square-enix.com/na/title/finalfantasy/
http://www.square-enix.com/na/title/finalfantasy/
http://www.square-enix.com/na/title/finalfantasy/
http://www.square-enix.com/na/title/finalfantasy/
http://www.square-enix.com/na/title/finalfantasy/
http://www.square-enix.com/na/title/finalfantasy/
http://www.square-enix.com/na/title/finalfantasy/
http://www.square-enix.com/na/title/finalfantasy/
http://www.square-enix.com/na/title/finalfantasy/
http://www.square-enix.com/na/title/dragonquest/
http://www.square-enix.com/na/title/dragonquest/
http://www.square-enix.com/na/title/dragonquest/
http://www.square-enix.com/na/title/dragonquest/
http://www.square-enix.com/na/title/dragonquest/
http://www.square-enix.com/na/title/dragonquest/
http://www.square-enix.com/na/title/dragonquest/
http://www.square-enix.com/na/title/dragonquest/
http://www.square-enix.com/na/title/dragonquest/
http://www.square-enix.com/na/title/dragonquest/
http://www.square-enix.com/na/title/dragonquest/
http://www.square-enix.com/na/title/dragonquest/
http://www.square-enix.com/na/title/dragonquest/
http://www.square-enix.com/na/title/dragonquest/
http://www.square-enix.com/na/title/dragonquest/
http://www.square-enix.com/na/title/dragonquest/
http://en.wikipedia.org/wiki/Breath_of_Fire
http://en.wikipedia.org/wiki/Breath_of_Fire
http://en.wikipedia.org/wiki/Breath_of_Fire
http://en.wikipedia.org/wiki/Breath_of_Fire
http://en.wikipedia.org/wiki/Breath_of_Fire
http://en.wikipedia.org/wiki/Breath_of_Fire
http://en.wikipedia.org/wiki/Breath_of_Fire
http://en.wikipedia.org/wiki/Breath_of_Fire
http://en.wikipedia.org/wiki/Breath_of_Fire
http://en.wikipedia.org/wiki/Breath_of_Fire
http://en.wikipedia.org/wiki/Breath_of_Fire
http://en.wikipedia.org/wiki/Breath_of_Fire
http://en.wikipedia.org/wiki/Breath_of_Fire
http://en.wikipedia.org/wiki/Breath_of_Fire
http://en.wikipedia.org/wiki/Breath_of_Fire
http://tvtropes.org/pmwiki/pmwiki.php/Main/BrokenBridge
http://tvtropes.org/pmwiki/pmwiki.php/Main/BrokenBridge
http://tvtropes.org/pmwiki/pmwiki.php/Main/BrokenBridge
http://tvtropes.org/pmwiki/pmwiki.php/Main/BrokenBridge
http://tvtropes.org/pmwiki/pmwiki.php/Main/BrokenBridge
http://tvtropes.org/pmwiki/pmwiki.php/Main/BrokenBridge
http://tvtropes.org/pmwiki/pmwiki.php/Main/BrokenBridge
http://tvtropes.org/pmwiki/pmwiki.php/Main/BrokenBridge
http://tvtropes.org/pmwiki/pmwiki.php/Main/BrokenBridge
http://tvtropes.org/pmwiki/pmwiki.php/Main/BrokenBridge
http://tvtropes.org/pmwiki/pmwiki.php/Main/BrokenBridge
http://tvtropes.org/pmwiki/pmwiki.php/Main/BrokenBridge
http://tvtropes.org/pmwiki/pmwiki.php/Main/BrokenBridge
http://tvtropes.org/pmwiki/pmwiki.php/Main/BrokenBridge
http://tvtropes.org/pmwiki/pmwiki.php/Main/BrokenBridge
http://wiki.yoyogames.com/index.php/Game_Maker
http://wiki.yoyogames.com/index.php/Game_Maker
http://wiki.yoyogames.com/index.php/Game_Maker
http://wiki.yoyogames.com/index.php/Game_Maker
http://wiki.yoyogames.com/index.php/Game_Maker
http://wiki.yoyogames.com/index.php/Game_Maker
http://wiki.yoyogames.com/index.php/Game_Maker
http://wiki.yoyogames.com/index.php/Game_Maker
http://wiki.yoyogames.com/index.php/Game_Maker
http://wiki.yoyogames.com/index.php/Game_Maker
http://wiki.yoyogames.com/index.php/Game_Maker
http://wiki.yoyogames.com/index.php/Game_Maker
http://wiki.yoyogames.com/index.php/Game_Maker
http://wiki.yoyogames.com/index.php/Game_Maker
http://wiki.yoyogames.com/index.php/Game_Maker
http://wiki.yoyogames.com/index.php/Documentation:The_Game_Maker_Language
http://wiki.yoyogames.com/index.php/Documentation:The_Game_Maker_Language
http://wiki.yoyogames.com/index.php/Documentation:The_Game_Maker_Language
http://wiki.yoyogames.com/index.php/Documentation:The_Game_Maker_Language
http://wiki.yoyogames.com/index.php/Documentation:The_Game_Maker_Language
http://wiki.yoyogames.com/index.php/Documentation:The_Game_Maker_Language
http://wiki.yoyogames.com/index.php/Documentation:The_Game_Maker_Language
http://wiki.yoyogames.com/index.php/Documentation:The_Game_Maker_Language
http://wiki.yoyogames.com/index.php/Documentation:The_Game_Maker_Language
http://wiki.yoyogames.com/index.php/Documentation:The_Game_Maker_Language
http://wiki.yoyogames.com/index.php/Documentation:The_Game_Maker_Language
http://wiki.yoyogames.com/index.php/Documentation:The_Game_Maker_Language
http://wiki.yoyogames.com/index.php/Documentation:The_Game_Maker_Language
http://wiki.yoyogames.com/index.php/Documentation:The_Game_Maker_Language
http://wiki.yoyogames.com/index.php/Documentation:The_Game_Maker_Language
http://wiki.yoyogames.com/index.php/Documentation:The_Game_Maker_Language
http://wiki.yoyogames.com/index.php/Documentation:The_Game_Maker_Language
http://wiki.yoyogames.com/index.php/Documentation:The_Game_Maker_Language
http://wiki.yoyogames.com/index.php/Documentation:The_Game_Maker_Language
http://wiki.yoyogames.com/index.php/Documentation:The_Game_Maker_Language
http://wiki.yoyogames.com/index.php/Documentation:The_Game_Maker_Language
http://www.gmtoolbox.com/
http://www.gmtoolbox.com/
http://www.gmtoolbox.com/
http://www.gmtoolbox.com/
http://www.gmtoolbox.com/
http://www.gmtoolbox.com/
http://www.gmtoolbox.com/
http://www.gmtoolbox.com/
http://www.rpgmakerweb.com/
http://www.rpgmakerweb.com/
http://www.rpgmakerweb.com/
http://www.rpgmakerweb.com/
http://www.rpgmakerweb.com/
http://www.rpgmakerweb.com/
http://www.rpgmakerweb.com/
http://www.rpgmakerweb.com/
http://www.ruby-lang.org/en/
http://www.ruby-lang.org/en/
http://www.ruby-lang.org/en/
http://www.ruby-lang.org/en/
http://www.ruby-lang.org/en/
http://www.ruby-lang.org/en/
http://www.ruby-lang.org/en/
http://www.ruby-lang.org/en/
http://www.ruby-lang.org/en/
http://www.ruby-lang.org/en/
http://www.ruby-lang.org/en/
http://www.ruby-lang.org/en/
http://www.embarcadero.com/products/delphi
http://www.embarcadero.com/products/delphi
http://www.embarcadero.com/products/delphi
http://www.embarcadero.com/products/delphi
http://www.embarcadero.com/products/delphi
http://www.embarcadero.com/products/delphi
http://www.embarcadero.com/products/delphi
http://www.embarcadero.com/products/delphi
http://www.embarcadero.com/products/delphi
http://www.embarcadero.com/products/delphi
http://www.embarcadero.com/products/delphi
http://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt
http://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt
http://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt
http://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt
http://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt
http://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt
http://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt
http://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt
http://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt
http://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt
http://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt
http://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt
http://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt
http://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt
http://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt
http://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt
http://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt
http://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt
http://www.cs.princeton.edu/~dpw/popl/06/Tim-POPL.ppt
http://swerl.tudelft.nl/twiki/pub/Main/PastAndCurrentMScProjects/JeroenDobbe.pdf
http://swerl.tudelft.nl/twiki/pub/Main/PastAndCurrentMScProjects/JeroenDobbe.pdf
http://swerl.tudelft.nl/twiki/pub/Main/PastAndCurrentMScProjects/JeroenDobbe.pdf
http://swerl.tudelft.nl/twiki/pub/Main/PastAndCurrentMScProjects/JeroenDobbe.pdf
http://swerl.tudelft.nl/twiki/pub/Main/PastAndCurrentMScProjects/JeroenDobbe.pdf
http://swerl.tudelft.nl/twiki/pub/Main/PastAndCurrentMScProjects/JeroenDobbe.pdf
http://swerl.tudelft.nl/twiki/pub/Main/PastAndCurrentMScProjects/JeroenDobbe.pdf
http://swerl.tudelft.nl/twiki/pub/Main/PastAndCurrentMScProjects/JeroenDobbe.pdf
http://swerl.tudelft.nl/twiki/pub/Main/PastAndCurrentMScProjects/JeroenDobbe.pdf
http://swerl.tudelft.nl/twiki/pub/Main/PastAndCurrentMScProjects/JeroenDobbe.pdf
http://swerl.tudelft.nl/twiki/pub/Main/PastAndCurrentMScProjects/JeroenDobbe.pdf
http://swerl.tudelft.nl/twiki/pub/Main/PastAndCurrentMScProjects/JeroenDobbe.pdf
http://swerl.tudelft.nl/twiki/pub/Main/PastAndCurrentMScProjects/JeroenDobbe.pdf
http://swerl.tudelft.nl/twiki/pub/Main/PastAndCurrentMScProjects/JeroenDobbe.pdf
http://swerl.tudelft.nl/twiki/pub/Main/PastAndCurrentMScProjects/JeroenDobbe.pdf
http://swerl.tudelft.nl/twiki/pub/Main/PastAndCurrentMScProjects/JeroenDobbe.pdf
http://swerl.tudelft.nl/twiki/pub/Main/PastAndCurrentMScProjects/JeroenDobbe.pdf
http://swerl.tudelft.nl/twiki/pub/Main/PastAndCurrentMScProjects/JeroenDobbe.pdf
http://swerl.tudelft.nl/twiki/pub/Main/PastAndCurrentMScProjects/JeroenDobbe.pdf
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://blogs.msdn.com/b/nicgrave/archive/2010/07/25/rendering-with-xna-framework-4-0-inside-of-a-wpf-application.aspx
http://en.wikipedia.org/wiki/Model_View_ViewModel
http://en.wikipedia.org/wiki/Model_View_ViewModel
http://en.wikipedia.org/wiki/Model_View_ViewModel
http://en.wikipedia.org/wiki/Model_View_ViewModel
http://en.wikipedia.org/wiki/Model_View_ViewModel
http://en.wikipedia.org/wiki/Model_View_ViewModel
http://en.wikipedia.org/wiki/Model_View_ViewModel
http://en.wikipedia.org/wiki/Model_View_ViewModel
http://en.wikipedia.org/wiki/Model_View_ViewModel
http://en.wikipedia.org/wiki/Model_View_ViewModel
http://en.wikipedia.org/wiki/Model_View_ViewModel
http://en.wikipedia.org/wiki/Model_View_ViewModel
http://en.wikipedia.org/wiki/Model_View_ViewModel
http://en.wikipedia.org/wiki/Model_View_ViewModel
http://en.wikipedia.org/wiki/Model_View_ViewModel
http://en.wikipedia.org/wiki/Simula
http://en.wikipedia.org/wiki/Simula
http://en.wikipedia.org/wiki/Simula
http://en.wikipedia.org/wiki/Simula
http://en.wikipedia.org/wiki/Simula
http://en.wikipedia.org/wiki/Simula
http://en.wikipedia.org/wiki/Simula
http://en.wikipedia.org/wiki/Simula
http://en.wikipedia.org/wiki/Simula
http://en.wikipedia.org/wiki/Simula
http://en.wikipedia.org/wiki/Simula
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

52

3 - Editor Images

RPG Maker

(The programming language of RPG Maker)

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

53

(The event system in RPG Maker, with commands)

(The class system in RPG Maker)

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

54

(The skill system used in RPG Maker)

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

55

Game Maker

(Example of a code section in Game Maker)

(Object screen in Game Maker with events and Drag & Drop)

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

56

(The Room (Area) screen in Game Maker)

(The included image editor in Game Maker)

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

57

4 - Task Descriptions

1. Journey Editor 6. Troop Editor

T1.1: Manage Journey T6.1: Manage Troops

T1.1: Manage Resources T6.2: Manage Monster

T1.2: Manage Image T6.3: Manage Drops

T1.3: Manage Sprite

T1.4: Manage Sound 7. Area Editor

T1.5: Manage Function T7.1: Manage Area

T1.6: Manage Enum T7.2: Manage Background

2. Profession Editor 8. Object Editor

T2.1: Manage Profession T8.1: Manage Class

T2.2: Manage Equipment T8.2: Manage Zone

 T8.3: Manage Combat Background

3. Companion Editor T8.4: Manage Event

T3.1: Manage Companion T8.5: Manage Variable

4. Ability Editor 9. Storyline editor

T4.1: Manage Ability T9.1: Manage Storyline

T4.2: Manage Effect T9.2: Manage Quest Item

T4.3: Manage Condition

T4.4: Manage Ability Animation 10. NPC editor

 T10.1: Manage NPC

5. Item Editor T10.2: Manage Speech

T5.1: Manage Item T10.3: Manage Shop

T5.2: Manage accessory

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

58

T1.1: Manage Journey

Start: User opens editor

End: User closes editor

Frequency: Very often

Subtasks: Example Solution:

1. Open journey(optional)
 a. Open new empty journey
 b. Open previous journey

Either opens a new empty journey, or if
previously journey has been saved,
opens the latest worked on journey

12. Save journey (optional) Menu option with possible shortcut on
main toolbar that saves the journey

13. Load journey (optional)

Menu option with possible shortcut on
main toolbar that opens the file system
to find a journey to open and replace
current journey

13. Compile journey (optional)
 a. Compile journey successfully
 b. Compile journey with errors

Menu option with possible shortcut on
main toolbar. Any errors during
compilation should be gathered in a list
of all outstanding issues

14. Manage errors and warnings (optional) Subpage with list of all found problems.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

59

T1.2: Manage Resources

Start: User opens editor

End: User closes editor

Frequency: Very often

Subtasks: Example Solution:

1. Select tab (optional)
 a. Select Object tab
 b. Select Resource tab
 c. Select Profession tab
 d. Select Ability tab
 e. Select Story tab
 f. Select Troop tab
 . h. Select item tab

7 tabs, each with a subset of tree lists - the
object tab has classes, zones, functions and
enums, the resources tab has sprites,
images and sounds, the profession tab has
professions and companions, the ability tab
has abilities, the story tab has story, npc,
shop and speeches, the troop tab has troops
and monsters, and the item tab has
equipment, accessories, items and quest
items

2. Add new tree list element (optional)
 a. Add new resource
 b. Add new folder

Right click add on tree list. Adds resource on
selected tree with a standardized name

3. Remove tree list element (optional)
 a. Remove resource
 b. Remove folder

Right click remove on tree list. Removes
resource or folder - if folder is seleccted,
removes all inside of the folder

4. Rename tree list element (optional)
 a. Rename resource
 b. Rename folder

Double click to rename element.

5. Manage tree list element (optional) Double click on element in tree list to open
the respective editor

6. Move tree list element (optional) Click and drag element in tree list to move
the element

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

60

T1.3: Manage Image

Start: User opens image editor

End: User closes image editor

Frequency: Often

Subtasks: Example Solution:

1. Find image (optional) Button opens file system search for valid
image file

2. Set image tileset status (optional) Checkbox if image is tileset, and text fields
for horizontal and vertical tile offset,
spacing and tile sizes

3. Close image editor
 a. Accept changes
 b. Cancel changes

Buttons that saves and cancels changes
made to the current image

T1.4: Manage Sprite

Start: User opens sprite editor

End: User closes sprite editor

Frequency: Often

Subtasks: Example Solution:

1. Find image (optional) Button opens file system search for valid
image file, and adds it to image list

2. Remove image (optional) Button removes selected image

3. Move image (optional) Buttons for moving image in list of images

4. Set image center position (optional) Normal text fields, with coordinates for the
center of the selected image

5. Set collision box (optional) Normal text fields for x position, y position,
width and height of the collision box

6. Close sprite editor
 a. Accept changes
 b. Cancel changes

Buttons that saves and cancels changes
made to the current sprite

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

61

T1.5: Manage Sound

Start: User opens sound editor

End: User closes sound editor

Frequency: Often

Subtasks: Example Solution:

1. Find sound (optional) Button opens file system search for valid
sound file

2. Play sound (optional) Button, visible if sound is not playing

3. Pause sound (optional) Button, visible if sound is playing

4. Stop Sound (optional) Button

5. Set loops (optional) Checkbox

6. Set volume (optional) Adjustable bar, with text indicator

7. Set panning (optional) Adjustable bar, with text indicator

8. Close sound editor
 a. Accept changes
 b. Cancel changes

Buttons that saves and cancels changes
made to the current sound

T1.6: Manage Function

Start: User opens function editor

End: User closes function editor

Frequency: Often

Subtasks: Example Solution:

1. Set code (optional) Large text field with keyword highlighting

2. Close function editor
 a. Accept changes
 b. Cancel changes

Buttons that saves and cancels changes
made to the current function

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

62

T1.7: Manage Enum

Start: User opens enum editor

End: User closes enum editor

Frequency: Often

Subtasks: Example Solution:

1. Create new enum instance (optional)

Button that adds a new entry into list of
enum instances, with a number increased
by one, and with a temporary name

2. Set enum instance name (optional)

Double clicking on the list of enum
instances opens op a prompt where you
can change the name of the enum instance

3. Remove enum instance (optional)

Button that removed currently selected
enum instance on a list, updating the
numbers of the later enum instances on the
list

4. Close enum editor
 a. Accept changes
 b. Cancel changes

Buttons that saves and cancels changes
made to the current enum

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

63

T2.1: Manage Profession

Start: User opens profession Editor

End: User closes profession Editor

Frequency: In the region of 1-6 times per Journey

Subtasks: Example Solution:

1. Set profession name (optional) Normal text field

2. Set health-mana scaling levels (optional) Two adjustable bars for health and mana
that adjusts each other to end on set
overall value

3. Set power scaling levels (optional)

Multiple adjustable bars for strength,
intelligence, stamina and agility, that adjust
each other to end on set overall value

4. Add ability (optional)

Button that opens up a hierarchical view of
the sprites for selection, and adds it to the
ability list

5. Edit ability (optional) Double click on list to edit selected ability in
ability editor

6. Remove ability (optional) Button to remove selected ability from list

7. Add equipment (optional)

Button that opens up a hierarchical view of
the equipment for selection, along with a
"none" option

8. Edit equipment (optional) Double click on list to edit selected
equipment in equipment editor

9. Remove equipment (optional) Button that removes selected item from list

10. Add sprites (optional)

A drop down of required character
animations, and their associated sprites
shown when animation is selected. Button
that opens up a hierarchical view of the
sprites for selection, along with a "none"
option.

11. Edit sprite (optional) Double click on list to edit selected sprite in
sprite editor

12. Remove sprite (optional) Button that removes selected sprite from
list

13. Close profession editor
 a. Accept changes
 b. Cancel changes

Buttons that saves and cancels changes
made to the current profession

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

64

T2.2: Manage Equipment

Start: User opens equipment editor

End: User closes equipment editor

Frequency: Often

Subtasks: Example Solution:

1. Set equipment type (optional) Radio buttons with the 3 equipment types

2. Set power balancing levels (optional) Multiple adjustable bars that adjust each
other to end on set overall value

3. Create new equipment instance (optional) Button that adds a new entry into the
equipment name list with temporary content

4. Set equipment instance level (optional) Normal text field for selected instance on list

5. Set equipment instance name (optional) Normal text field for selected instance on list

6. Set instance description (optional) Normal text field for selected instance on list

7. Remove equipment instance (optional) Button that removes currently selected
instance on list.

8. Close equipment editor
 a. Accept changes
 b. Cancel changes

Buttons that saves and cancels changes
made to the current equipment

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

65

T3.1: Manage Companion

Start: User opens companion Editor

End: User closes companion Editor

Frequency: In the region of 1-5 times per Journey

Subtasks: Example Solution:

1. Set name (optional) Normal text field

2. Set profession (optional)

Button that opens up a hierarchical view of the
professions for selection, along with a "none"
option

3. Edit profession (optional) Double click on profession to edit it in
profession editor

4. Add ability (optional)

Button that opens up a hierarchical view of the
ability for selection, and adds it to the ability list

5. Edit ability (optional) Double click on ability on list to edit it in ability
editor

6. Remove ability (optional) Button that removes selected ability from list

7. Set ability learning level (optional) Normal text field for selected ability on list

8. Close companion editor
 a. Accept changes
 b. Cancel changes

Buttons that saves and cancels changes made
to the current companion

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

66

T4.1: Manage Ability

Start: User opens ability Editor

End: User closes ability Editor

Frequency: Often

Subtasks: Example Solution:

1. Set ability name (optional) Normal text field

2. Set damage/heal amount (optional) Normal text field

3. Set damage type (optional) Drop down menu with limited types, including physical,
pure magic, fire damage and heal.

4. Set ability mana cost (optional) Normal text field

5. Set hit rate (optional) Normal text field

6. Set strikes (optional) Normal text field

7. Set target types (optional) Drop down menu with limited target types

8. Set ability cast time (optional) Normal text field

9. Add effect (optional) Button that adds a new empty effect to the list

10. Edit effect (optional) Double click on effect on list to edit it in effect editor

11. Remove effect (optional) Button that removes selected effect from list

12. Add condition (optional) Button that adds a new empty condition to the list

13. Edit condition (optional) Double click on condition on list to edit it in condition
editor

14. Remove condition (optional) Button that removes condition from list

15. Add ability animation (optional) Button that adds a new empty animation to the list

16. Edit ability animation (optional) Double click on ability animation to edit it in ability
animation editor

17. Remove ability animation
(optional)

Button that removes animation from list

18. Close ability editor
 a. Accept changes
 b. Cancel changes

Buttons that saves and cancels changes made to the
current ability

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

67

T4.2: Manage Effect

Start: User opens effect editor

End: User closes effect editor

Frequency: Often

Subtasks: Example Solution:

1. Set effect type (optional) Drop down menu with limited effect types

1. Set effect value (optional)
 a. Choose desired numerical value
 b. Choose no value

If the given effect type requires a numerical
value, a normal text field will be used

4. Set effect duration (optional) Drop down menu with limited round numbers

5. Set target types (optional) Drop down menu with limited target types

6. Add applied effect (optional) Button that adds a new empty effect to the list

7. Edit applied effect (optional) Double click on applied effect to edit it in a new
effect editor

8. Remove applied effect (optional) Button that removes the selected effect

9. Add required condition (optional) Button that adds a new empty condition to the
list

10. Edit required condition (optional) Double click on condition to edit it in condition
editor

11. Remove required condition (optional) Button that removes the selected condition

12. Add expires condition (optional) Button that adds a new empty condition to the
list

13. Edit expires condition (optional) Double click on condition to edit it in condition
editor

14. Remove expires condition (optional) Button that removes the selected condition

17. Close effect editor
 a. Accept changes
 b. Cancel changes

Buttons that saves and cancels changes made
to the current effect

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

68

T4.3: Manage Condition

Start: User opens condition editor

End: User closes condition editor

Frequency: Often

Difficult: None

Subtasks: Example Solution:

1. Set condition type (optional) Drop down menu with limited types

2. Set condition value (optional)
 a. Choose selected ability to have used
 b. Choose desired numerical value
 c. Choose no value

Different setup for each condition type. For
conditions requiring no value, no additional
work required. For conditions with a number
value, a normal text field is used. For checking
ability used, selection is done in a hierarchical
view

3. Close effect editor
 a. Accept changes
 b. Cancel changes

Buttons that saves and cancels changes made
to the current condition

T4.4: Manage Ability Animation

Start: User opens ability editor

End: User closes ability editor

Frequency: Often

Difficult: None

Subtasks: Example Solution:

1. Set start and end frames (optional) Normal text fields with scroll wheel adaptor

2. Set sprite (optional) Button that opens up a hierarchical view of the
sprites for selection, along with a "none" option

3. Set movement type (optional) Drop down menu of limited types

4. Set animation speed (optional) Normal text field

5. Set animation from position (optional) Normal text fields and drop down with coordinate
type

6. Set animation to position (optional) Normal text fields and drop down with coordinate
type

7. Close ability animation editor
 a. Accept changes
 b. Cancel changes

Buttons that saves and cancels changes made to
the current ability animation

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

69

T5.1: Manage Item

Start: User opens item Editor

End: User closes item Editor

Frequency: Often

Subtasks: Example Solution:

1. Set item name (optional) Normal text field

2. Set item description (optional) Normal text field

3. Set chosen ability (optional) Button that opens up a hierarchical view of the
abilities for selection, along with a "none" option

4, Edit ability (optional) Double click on ability to edit it in ability editor

5. Close item editor
 a. Accept changes
 b. Cancel changes

Buttons that saves and cancels changes made to
the current item

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

70

T5.2: Manage Accessory

Start: User opens accessory Editor

End: User closes accessory Editor

Frequency: Often

Subtasks: Example Solution:

1. Set accessory name (optional) Normal text field

2. Set accessory description (optional) Normal text field

3. Add ability (optional)

Button that opens up a hierarchical view of the
abilities for selection, and adds it to the ability list

4. Edit ability (optional) Double click on ability to edit it in ability editor

5. Remove ability (optional) Button to remove selected ability on list

6. Set accessory type (optional) Drop down with limited accessory types

7. Set accessory value (optional) Normal text field used by certain types

8. Set buff type (optional) Drop down with limited buff types, visible if
accessory type is buff

9. Set status effect type (optional)

Drop down with limited status effect types, visible
if accessory type is status effect resistance or
immunity.

10. Set magic element type (optional) Drop down with limited magic types, visible if
accessory type is magic resistance

6. Close accessory editor
 a. Accept changes
 b. Cancel changes

Buttons that saves and cancels changes made to
the current accessory

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

71

T6.1: Manage Troop

Start: User opens troop Editor

End: User closes troop Editor

Frequency: Often

Subtasks: Example Solution:

1. Set monster (optional)

6 radio buttons positioned as they would in battle,
with the name or image of the selected monster
next to it.

Button that opens up a hierarchical view of the
monster for selection, along with a "none" option

2. Edit monster (optional) Double click on monster name to edit monster in the
monster editor

3. Set troop rate (optional) Slider

4. Set background music (optional) Button that opens up a hierarchical view of the
sounds for selection, along with a "none" option

5. Close troop editor
 a. Accept changes
 b. Cancel changes

Buttons that saves and cancels changes made to
the current troop

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

72

T6.2: Manage Monster

Start: User opens monster Editor

End: User closes monster Editor

Frequency: Often

Subtasks: Example Solution:

1. Set monster name (optional) Normal text field

2. Set monster type (optional) Radio buttons with the 4 monster types

3. Set power levels (optional)

Multiple adjustable bars for health, attack,
defense and magic values that updates the
suggested monster level based on the values

4. Set status effect immunities (optional) List of status effects to apply with checkboxes
for each effect

5. Set magic type affinity (optional)

A list of all magic types, each with radio buttons
for immune, absorb, resistant, neutral and
weakness

6. Add ability (optional)

Button that opens up a hierarchical view of the
abilities for selection, and adds it to the ability
list

7. Edit ability (optional) Double click on ability to edit it in ability editor

8. Remove ability (optional) Removes selected ability from list

9. Add drop (optional) Button that adds an empty drop to the list

10. Edit drop (optional) Double click on drop to edit it in drop editor

11. Remove drop (optional) Removes selected drop from list

12. Close monster editor
 a. Accept changes
 b. Cancel changes

Buttons that saves and cancels changes made
to the current monster

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

73

T6.3: Manage Drop

Start: User opens drop Editor

End: User closes drop Editor

Frequency: Often

Subtasks: Example Solution:

1. Set drop or steal (optional) Radio buttons with drop and steal

2. Set amount (optional) Normal text field

2. Set dropped item type (optional) Drop down with limited item types

3. Set drop chance (optional) Normal text field

4. Set dropped item (optional) Button that opens up a hierarchical view of
the items for selection, if item is selected

5. Set dropped accessory (optional)

Button that opens up a hierarchical view of
the accessories for selection, if accessory is
selected

6. Add dropped quest item (optional)

Button that opens up a hierarchical view of
the quest items for selection, if quest item is
selected

7. Close drop editor
 a. Accept changes
 b. Cancel changes

Buttons that saves and cancels changes
made to the current drop

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

74

T7.1: Manage Area

Start: User opens editor

End: User closes editor

Frequency: Very Often

Subtasks: Example Solution:

1. Set area name (optional) Normal text field

2. Set area size (optional) Normal text field

3. Set current depth value (optional) Normal text field, and drop down of used ones

4. Set grid size (optional) Normal text fields

5. Set remove below (optional) Checkbox

6. Set displayed options (optional) Checkboxes for zones, objects, and others

7. Set background music (optional)

Button that opens up a hierarchical view of the song
folder setup for selection, along with a "none" option

8. Add background (optional) Button that adds a new background to the list

9. Edit background (optional) Double click on background to edit it in background
editor

10. Remove background (optional) Button that removes selected background

11. Select tileset (optional)

Button that opens up a hierarchical view of the image
folder setup for selection, along with a "none" option

12. Select tile (optional) Clicking on displayed tileset selects specific tile below
mouse cursor

13. Set tile (optional) Left mouse click adds selected tile on to area at
depth, and removes any tiles with right click

14. Select class (optional) Button that opens up a hierarchical view of the class
folder setup for selection

15. Set instance (optional) Left mouse click adds selected tile on to area, and
removes any instaces with right click

16. Select zone (optional) Button that opens up a hierarchical view of the zone
folder setup for selection

17. Set zone position (optional) Left mouse down drags a zone to area, and removes
any zone instances with right click

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

75

T7.2: Manage Background

Start: User opens background editor

End: User closes background editor

Frequency: Often

Subtasks: Example Solution:

1. Set image (optional)

Button that opens up a hierarchical view of the image
folder setup for selection, along with a "none" option

2. Set background depth (optional) Normal text field

3. Set repeating background (optional) Two checkboxes, one for horizontal repeating, one for
vertical

4. Set background speed (optional) Normal text fields

5. Set position (optional) Normal text fields

6. Close background editor
 a. Accept changes
 b. Cancel changes

Buttons that saves and cancels changes made to the
current background

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

76

T8.1: Manage Class

Start: User opens class editor

End: User closes class editor

Frequency: Often

Subtasks: Example Solution:

1. Set start sprite (optional)

Button that opens up a hierarchical view of the sprite
folder setup for selection, along with a "none" option

2. Set parent class (optional)

Button that opens up a hierarchical view of the class
folder setup for selection, along with a "none" option

3. Set start depth (optional) Normal text field

4. Set if solid (optional) Checkbox

4. Create new object variable (optional) Button that adds new variable with temporary info into
list

5. Edit object variable (optional) Double click variable on list to edit it in variable editor

6. Remove object variable (optional) Button that removes selected object variable from list

7. Set NPC (optional)

Button that opens up a hierarchical view of the NPC
folder setup for selection, along with a "none" option

8. Edit NPC (optional) Double click on NPC to edit it in NPC editor

9. Add event (optional)

Button that opens a prompt of event type. Selecting
custom event prompts event name, and selecting
collision event prompts a hierarchical view of the
class folder setup for selection.

10. Edit event (optional) Double click on event to edit it in event editor

11. Remove event (optional) Button for removing selected event from list

12. Close class editor
 a. Accept changes
 b. Cancel changes

Buttons that saves and cancels changes made to the
current class

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

77

T8.2: Manage Zone
Start: User opens zone editor
End: User closes zone editor
Frequency: Often

Subtasks: Example Solution:

1. Set zone having depth (optional) Checkbox

2. Set troop (optional) Button that adds an empty troop to the list

3. Edit troop (optional) Double click troop on list to edit in troop editor

4. Remove troop (optional) Button that removes selected troop from list

5. Set combat background (optional) Button that adds an empty combat background to the
list

6. Edit combat background (optional) Double click background on list to edit it in combat
background editor

7. Remove combat background
(optional)

Button that removes selected background from list

8. Set terrain (optional) Drop down menu with limited terrain types

9. Set combat rate (optional) Slider

10. Set color (optional) Color picking tool

11. Create new zone variable (optional) Button that adds new variable with temporary info into
list

12. Edit zone variable (optional) Double click variable on list to edit it in variable editor

13. Remove zone variable (optional) Button that removes selected zone variable from list

14. Add event (optional)

Button that opens a prompt of event type. Selecting
custom event prompts event name, and selecting
collision event prompts a hierarchical view of the
class folder setup for selection.

15. Edit event (optional) Double click on event to edit it in event editor

16. Remove event (optional) Button for removing selected event from list

17. Close zone editor
 a. Accept changes
 b. Cancel changes

Buttons that saves and cancels changes made to the
current zone

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

78

T8.3: Manage Combat Background

Start: User opens combat background editor

End: User closes combat background editor

Frequency: Often

Subtasks: Example Solution:

1. Set image (optional) Button that opens up a hierarchical view of the
image folder setup for selection, along with a
"none" option

2. Set background depth (optional) Normal text field

4. Set repeating background (optional) Two checkboxes, one for horizontal repeating,
one for vertical

5. Set background speed (optional) Normal text fields

6. Set position (optional) Normal text fields

7. Close combat background editor
 a. Accept changes
 b. Cancel changes

Buttons that saves and cancels changes made to
the current combat background

T8.4: Manage Event

Start: User opens event editor

End: User closes event editor

Frequency: Very Often

Subtasks: Example Solution:

1. Set code (optional) Large text field with keyword highlighting

5. Close event editor
 a. Accept changes
 b. Cancel changes

Buttons that saves and cancels changes made to the
current event

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

79

T8.5: Manage Variable

Start: User opens variable editor

End: User closes variable editor

Frequency: Often

Subtasks: Example Solution:

10. Set variable type (optional) Drop down box

11. Set variable name (optional) Normal text field

12. Set array type and length (optional) Check boxes and normal text fields

13. Set default value (optional) Normal text field

17. Close variable editor
 a. Accept changes
 b. Cancel changes

Buttons that saves and cancels changes made to
the current variable

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

80

T9.1: Manage Storyline

Start: User opens storyline editor

End: User closes storyline editor

Frequency: Often

Subtasks: Example Solution:

1. Add state (optional) Button that adds a new state to the storyline,
increasing the state value by one

2. Add state progress (optional) Button that adds a new progress to the selected
state

2. Add progressed storyline state (optional) Button that opens up a prompt, where storyline
and new state can be selected

3, Remove progressed story state (optional) Button that removes selected progressed
storyline state from the progresses list

3. Set progresses NPC (optional)

Button that opens up a hierarchical view of the
NPC folder setup for selection, along with a
"none" option

4. Edit progresses NPC (optional) Double click on NPC to edit it in NPC editor

5. Set progresses required amount
(optional)

Normal text field

6. Set progresses removes items (optional) Checkbox

7. Set progresses Quest Item (optional)

Button that opens up a hierarchical view of the
quest item folder setup for selection, along with a
"none" option

8. Edit progresses Quest Item (optional) Double click on Quest Item to edit it in Quest
Item editor

9. Set progresses Speech (optional) Button that opens up a hierarchical view of the
speech folder setup for selection

4. Edit progresses Speech (optional) Double click on NPC to edit it in Speech editor

9. Remove progress (optional) Button that removes selected progress from
selected state

9. Remove state (optional) Removes state selected on list, changing the
values of the following states on the list

10. Close storyline editor
 a. Accept changes
 b. Cancel changes

Buttons that saves and cancels changes made to
the current storyline

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

81

T9.2: Manage Quest Item

Start: User opens quest item editor

End: User closes quest item editor

Frequency: Often

Subtasks: Example Solution:

1. Set quest item name (optional) Normal text field

2. Set quest item description (optional) Normal text field

3. Close quest item editor
 a. Accept changes
 b. Cancel changes

Buttons that saves and cancels changes made
to the quest item

T10.1: Manage NPC

Start: User opens NPC editor

End: User closes NPC editor

Frequency: Often

Subtasks: Example Solution:

1. Set NPC name (optional) Normal text field

2. Set NPC role (optional) Drop down of limited NPC role

3. Set healing price (optional) Normal text field - only available if NPC type is
healer

4. Set storyline (optional)

Button that opens up a hierarchical view of the
storyline folder setup for selection, along with a
"none" option

5. Set shop (optional)

Button that opens up a hierarchical view of the
shop folder setup for selection, along with a
"none" option - only available if NPC type is
shop

6. Close quest NPC editor
 a. Accept changes
 b. Cancel changes

Buttons that saves and cancels changes made
to the NPC

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

82

T10.2: Manage Speech

Start: User opens speech editor

End: User closes speech editor

Frequency: Often

Subtasks: Example Solution:

1. Set text (optional) Large text field with keyword highlighting

2. Close speech editor
 a. Accept changes
 b. Cancel changes

Buttons that saves and cancels changes made
to the speech

T10.3: Manage Shop

Start: User opens shop editor

End: User closes shop editor

Frequency: Often

Subtasks: Example Solution:

1. Set equipment level (optional) Normal text field

2. Add item (optional) Button that opens up a hierarchical view of the
items for selection, and adds it to the list

3. Edit item (optional) Double click on item in the list to edit it in item
editor

4. Remove item (optional) Button that removes selected item from list

5. Add accessory (optional) Button that opens up a hierarchical view of the
accessory for selection, and adds it to list

6. Edit accessory (optional) Double click on accessory in the list to edit it in
the accessory editor

7. Remove accessory (optional) Button that removes accessory from list

8. Set companions to stock for (optional) List of all available companions, with a check
box for each entry

9. Close shop editor (optional)
 a. Accept changes
 b. Cancel changes

Buttons that saves and cancels changes made
to the shop

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

83

5 - Virtual Windows

(Main window, with resource views and area)

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

84

(Ability Editor)

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

85

(Resource Editor)

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

86

(Story Editor)

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

87

(Profession Editor)

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

88

(Item Editors)

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

89

(Object Editor, Part 1)

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

90

(Object Editor, Part 2)

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

91

6 - JourneyScript

Variable types

JourneyScript uses several types:

● booleans, which are either true or false

● states, which corresponds to integers

● values, which corresponds to doubles

● objects, which are references to other objects

● strings, which are simple text elements

● sounds, which are sound resource elements with some additional information

● sprites, which are advanced image resource elements with some additional information

● images, which are simple image resource elements with some additional information

● speeches, which are text resource elements with some additional information

● storylines, which are named state resource elements

● NPCs, which are characters that can perform speeches

● items, which is a collection of all in-game items

Booleans

JourneyScript uses booleans for truth and false. In order to define a new boolean, the following

code is used:

boolean x = false;

x = 1;

Booleans can only be assigned the values 0 and 1. The keywords true and false can be

used instead of these for use in readability, but are simply translated to 1 and 0 respectively.

Setting a boolean to a value above zero will result in the value being true, otherwise zero.

Booleans can be used in assignments with states and values, but not in arithmetic operations.

bool can be used as a short version of boolean.

States

Booleans will often not be the natural choice for cases where there may be more than two

options for a variable. In this case, states can be used. States correspond to integers in other

languages. In order to define a new state, the following code is used:

state x = 10;

x = -5;

States are very useful in switch statements, and enumerations are a finite set of states.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

92

Values

In the case of calculations, states are not usable if a decimal value is desired. For this, values

can be used. Values translates to floating point numbers in other programming languages.

value x = 0;

x = 3.124;

The keyword value is used to define values, with val can be used as a shorthand of value.

Values can noticably not be used in switch statements, but can be used easily in both

assignments and arithmetic operations with states.

Objects

Object references cannot be used in arithmetic operations apart from equality comparisons. In

order to define an object reference, the following code is used:

object o = null;

o = this;

o.x = 240;

Notice that an object reference cannot use the same name as a boolean or value, and that

null is a special keyword indicating no object. obj can be used as a shorthand of object.

Objects has several object variables that can be called on them. Notice that it is not possible to

call custom defined object variables through object references besides this without using a

casting to the desired class.

● x, a value - the x-position of the object

● y, a value - the y-position of the object

● speed, a value - the current overall position moving along a direction per game loop step

● direction, a value - the direction moved by the object, from 0 to 360

● hspeed, a value - the horizontal movement by the object per step

● vspeed, a value - the vertical movement by the object per step

● acceleration, a value - the increase of speed by step

● accdirection, a value - the direction in which acceleration works

● sprite, a sprite - the sprite assigned to the object - notice that this may return null

● animation, a value - the current animation number of the shown sprite

● animspeed, a value - the increase of the animation numbers by step

● depth, a state - the current depth of the object

● solid, a boolean - if the object is traversable (cannot be changed)

● class, a class - the class of the current object (cannot be changed)

● parent, an object - the parent class of the current object (cannot be changed)

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

93

Strings

Strings are text elements that are inserted straight into the code. Like objects, arithmetic

operations cannot be used, besides comparisons (lesser and greater using alphanumeric

sorting), and addition. A string is defined by using the string keyword:

string x = "abc ";

x = x + "val: " + 10;

Strings can be any size, including empty and even null. Strings are assigned to using text inside

quotation marks. Newlines inside of the quotation mines are translated to newlines in the string.

Likewise, written escape sequences like \n and \r are kept in the string. It is also possible to

add booleans, states and values together with strings, as long as they are added to the right

side of a string - either a reference or a new string.

It should be noted, that string objects that are created in an event and assigned to a local

variable will be re-created every time the event is called. This may cause significant resource

problems, if a string is recreated in an often repeated event. Consider assigning the string to an

object variable in order to prevent unnecessary string creations. Also, string concatenations are

done two at a time - a long line of strings will not run optimized. JourneyScript does not have a

string builder. Lastly, all strings in JourneyScript are encoded in UTF-8.

Sounds

sound elements are references to individual sound effects and music numbers that are saved in

the sound resource structure for the project. The play_sound function is used to create sound

elements from the list of sound resources:

sound s = play_sound(Sound.attack02);

s.volume = 50;

It should also be noted the sound is a specific instance of a sound playing, and where

comparing two sounds created separately, would be false. Each sound have different variables:

● loop, a boolean - true/false if song loops

● volume, a state - how loud the sound is played, from 0 to 100

● pan, a state - the sounds position, left/right speaker wise, from -100 to 100

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

94

Sprites

Each object has a sprite element assigned to it at all times - a sprite being the image that is

drawn at the object's location. Each sprite consists of not just one image, but a series of images

which are then animated. Besides the image, additional information is required to correctly

position a sprite, with the origin of the sprite being drawn at the origin of the object. It is not

possible to change any of this information at runtime.

To access the sprites, either get the sprite directly through the object, or retrieve it from the

global sprite resource list:

sprite spr = Sprite.soldierWalkUp;

this.sprite = spr;

Each sprite have different variables:

● width, a state - the width of the sprite (cannot be changed)

● height, a state - the height of the sprite (cannot be changed)

● frames, a state - the number of frames the sprite has (cannot be changed)

Images

image elements are similar to sprites, but serves a different purpose. While sprites involves

animations and are tightly bound with objects and their execution, images are not animated, has

a fixed center of origin, and cannot be assigned to an object. The purpose of images are for the

background, and can be split into sub-images to be used as tiles. It is not possible to change

any of this information at runtime. Images can be loaded from the global image resource list:

image im = Image.Cloud03;

Each image have different variables:

● width, a state - the width of the image (cannot be changed)

● height, a state - the height of the image (cannot be changed)

● tileset, a boolean - determines if the image is a tileset (cannot be changed)

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

95

Speeches

speech elements are in essence strings. However, they are stored in an external resource file,

and are all loaded at the beginning of the game. The speech resource is made purposely for

use in creating speeches for NPCs, signs, and other similar text throughout a Journey. It is not

possible to create speeches at runtime - that is the purpose of using strings.

The main advantage of the speeches is, that it is possible to have words be changed depending

on the player's choice of character:

● {{gender}} - is replaced by the player characters choice of gender - 'he', 'she' or 'it'...

● {{genderp}} - is replaced by a possessive gender word - 'his', 'her', or 'its'...

● {{name}} - is replaced by the player characters name

● {{title}} - is replaced by the player characters title - 'hero', 'warror', 'princess'...

● {{class}} - is replaced by the player characters class - 'white mage', 'soldier', 'bard'...

● {{weapon}} - is replaced by the player characters weapon - 'sword', 'bow', 'whip'...

In the resource structure, each speech has an id, which is referred to by a name in the global

resource list Speech. Speeches can be retrieved from this resource list.

speech sp = Speech.townNPC03;

Storylines

A game is constructed over a series of storylines. A storyline element is in and of itself little

more than a state - an integer value representing the current progress through the storyline.

Each storyline has a name, and can be accessed through the global storyline list:

storyline sto = Storyline.mainquest4;

sto.current = 6;

Each storyline has some variables:

● current, a state - the current state of the storyline

NPCs

In the game, NPCs are characters that, while not necessarily important to the plot, gives

speeches when talked to based on the current progress of a given storyline. The existing NPCs

can be retrieved through the global NPC list:

npc cha = NPC.villeger4;

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

96

Items

Items are the weapons, armor, accessories, quest necessary objects and consumables that can

be stored in the player's inventory. An item can be retrieved through multiple items lists:

equipment it1 = Equipment.Sword(56);

accessory it2 = Accessory.BloodRing;

item it3 = Item.HighPotion;

questitem it4 = QuestItem.OddCrystal;

Note, that the names of the items are not the in-game name, as these may contain spaces. Also

note, that equipment need the level of the equipment in order to retrieve it.

Enums

Enumerations can be accessed through the global enum collection. Each enum has a list of

individual states. For instance:

state s = Enum.keys.BossKey;

Classes

A class is the type of an object, and what defines an object. While there may be multiple object

instances of a class, there can be only one class of a given name. Classes can be referenced

either through the object through the class variable, or through the class global resource. The

special is relation are used to see if an object can be cast to a specific class - either the class or

its parent.

class c = this.class;

if (other is c)

 other.x = 2;

Areas

Areas are the sections of the game, one of which is the current one. Areas cannot be

referenced by variable, but the names of areas can be used with the goto statement, where the

current area is set to the area with the given name:

goto OverworldMap;

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

97

Scope of variables

JourneyScript uses three scope layers for variables. Global, Object, and Local. Global and

Object are in the heap - global being a global repository all objects can access, and Object

being an instance of a given object, which has its own variables that can be set. Local is on the

stack, and is only visible inside of a given block, much as local variables in other programming

languages.

Global variables uses the global keyword to refer to a list of variables in a special singleton

object that all other objects can access. All global variables, both boolean and values, must be

defined at compile time.

Global variables can be accessed with:

global.x = 10;

value x = global.x;

Object variables can be referred through known object - the current using the this keyword.

The event caller is referred to using the keyword other. It is possible to modify the other

object's variables during the event - and generally possible to modify the variables of any

referenced object.

object x = other;

x.y = this.y;

Notice that it possible for there to be a variable of the same name internally, in the object, and in

the global space without them ever conflicting - due to the need of using this and global to

refer to the object and global variables.

It should be noted that all global and object variables are initialized to either false in case of

booleans, zero in case of states and values, and nulll in case of anything else, including arrays.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

98

Arrays

Arrays are created similar to arrays in other programming languages. Brackets indicates a

variable being an array - for values, the value keyword is mandatory when creating value

arrays:

value[] x = val[10];

x[9] = 5;

x[3] = 2.00;

Notice, that in the value array, different entries may store different types - some doubles, some

integers. Also, shorthands may be used interchangeably.

Besides simple arrays, it is also possible to create two-dimensional arrays. In order to do so,

another set of brackets are included.

val[][] x = value[10][20];

x[3][2] = 5.0;

It is possible to redefine arrays, by setting it to another set of arrays to create a new 1 or 2

dimensional array with a new length, as long as the amount of dimensions match the array:

val[][] x = value[10][20];

x[3][2] = 5.0;

x = value[4][3];

x[3][2] = 5.0;

It is also possible to set the content of the array instead of the length:

val[] x = {1.0, 2.0, 3.0, 4.0};

val[][] y = { {1.0, 2.0}, {2.0, 3.0}, {3.0}, {4.0} };

It should be noted that the two-dimensional arrays are not jagged, and the dimensions of all

internal arrays in the set content has to be of the same length.

Conditionals and Loops

Loops and conditionals are similar to other languages. Simple conditions can be constructed

with if and else. The keyword if is followed by a condition in parentheses. If the condition is

true, the following block of code will be executed. If not, it will be skipped, and an optional block

of code after an else keyword will be executed instead. A block of code is either lines of code

in brackets, or a single line of code. Conditionals for values and states are true if the value is

larger than zero, and for all other references, it is true if the reference is not null.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

99

An example of a conditional:

if (x == 0)

 x++

else if (x > 10)

{

 x--

}

else

 x = 0

Besides the if-else conditional, the in-line ternary conditional is also usable. A variable can be

assigned to an expression that starts with a conditional. If this evaluates to true, the expression

after a question mark will be used, otherwise the expression next to the following colon will be

used. An example of a ternary conditional:

x = 1 > 0 ? true : false

For loops are constructed using the keyword for, a parenthesis section, and a code block. In

the parenthesis, three sub-sections are included, divided by semi-colons - the initiator, which is

run before the loop starts, the conditional, which checks if another loop is to be performed, and

the incrementor, which is performed at the end of each loop. Each of these may be empty -

which is how an infinite loop is normally defined. It is also possible to use the break statement

to prematurely end the loop, and the continue statement to jump directly to the incrementor.

Examples of for loops:

for(val x = 0; x < 10; x++)

 x++

for(;;)

{

 x++

}

While loops are similar to for loops, except it does not have an initiator, or an incrementor. It is

constructed using the while keyword, a conditional in parenthesis, and a code block. Like with

for-loops, breaks and continues can be used to prematurely end or restart the loop. An example

of a while loop:

while (true)

 x++

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

100

A variant of the while loop is the do-while loop. It is constructed using the do keyword, followed

by a code block, followed by the while keyword and a conditional in parenthesis. The

difference between this and a standard while loop is, that the code block will be executed once

before the conditional is checked - even if it is false. An example of a do-while loop:

do

{

 x++

}

while (true)

Switches are an optimized alternative to an if-else structure. In the switch, a variable is checked,

and if it is equal to one of the cases, the code for that case is performed until the next case is

reached (there is no fall through) or a break keyword is used. A switch is constructed with a

switch keyword, followed by a variable in parenthesis. Followed is a block of code inside

brackes, with seperate cases. It is possible to have multiple cases use the same code by

separating them with commas. The code is performed if any of the cases it is attached to are

true. Notice that only one instance of a case may be used in a switch. An optional default case

can be inserted at the end of the switch, which will be performed if no other case is met.

For booleans, only true and false are usable, so they are not really ideal for switches. For

states, all integers can be used. In the case of objects, the class of the object is used, along with

null. For sprites, sounds, speeches and images, using resource accesses will be possible, also

along with null, and no resource reference is required, as the type is gather by the switched

variable. It is not possible to use switches with values. Examples of switches:

switch (x)

{

 case 1,2: { x++; break }

 case 3: x--

 case 4: x = 8

 default: x = 0

}

switch (spr)

{

 case SoldierMoveUp: x = 0

 case SoldierMoveDown: x = 1

 case SoldierMoveLeft: x = 2

 case SoldierMoveRight: x = 3

}

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

101

Events

JourneyScript is an event based system. An event can be considered a method that can be

invoked, either by the engine or by other events. Events are attached to a class, and is the

primary area where the user can write code.

An event is assigned for a class or zone, which contains a code segment. This code segment

includes an event, with a possible set of parameters, and local functions that can be called from

the event.

An example of an event with a local function:

event(state x,

 val y) {

 extraLocalFunktion();

}

val extraLocalFunktion () { return 0; }

Each event has an event method, which is invoked when the event is called. When creating the

event, a list of parameters can be set, comma-separated in parenthesis. When calling the event,

the correct parameters must be supplied. The type of the parameter must be written before the

name of the parameter.

To call an event, one needs to have an object reference, and know what class the object is.

Only by casting an object to a given class, or if calling it on the this reference, is it possible to

call it's events. The code in order to call an event is:

call oref(ObjectClass) EventName(x,y)

Notice that casting an object reference to a class that it is not, and is not a child of, will trigger

an exception. To prevent this, it is possible to check the castability of an object:

if (oref is ObjectClass)

 call oref(ObjectClass) EventName(x,y)

In events, a special keyword other is usable in order to reference the object that called the

current event. However, if the event call is from a zone or from the system, other will be null. If

using an event that may be triggered by the system or by user defined zones, checking if other

is null before using it is essential.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

102

7 - JourneyScript, Backus-Naur Form

<char> ::= a | b | c | d | e | f | g | h | i | j | k | l | m | n | o |

 p | q | r | s | t | u | v | w | x | y | z | A | B | C | D |

 E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S |

 T | U | V | W | X | Y | Z | _ | -

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<digits> ::= | <digit> <digits>

<charordigit> ::= | <char> <charordigit> | <digit> <charordigit>

<escape> ::= \" | \\ | \t | \n | \r

<special> ::= | ! | @ | # | £ | ¤ | $ | % | & | / | { | (| [|) |]

 | = | } | ? | + | ´ | | | , | ; | . | : | ^ | ¨ | ~ | * | '

<any> ::= | <char> <any> | <digit> <any>

 | <escape> <any> | <special> <any>

<number> ::= <digit> <digits>

<floatnum> ::= <digit> <digits> . <digits> | . <digit> <digits>

<name> ::= <char> <charordigit>

<cstring> ::= " <any> "

<boolean> ::= boolean | bool

<value> ::= value | val

<object> ::= object | obj

<jssection> ::= <n> <sectiontype> <n> <functionlist> EOF

<functionlist> ::= | <function> <functionlist> <n>

<function> ::= <typeempty> <name> (<parametersdec>) <n>

 { <n> <body> <n> }

<sectiontype>: <eventfunc> | <functionfunc>

<eventfunc> ::= event (<parametersdec>) <n> { <n> <body> <n> }

<functionfunc> ::= <typeempty> function

 (<parametersdec>) <n> { <n> <body> <n> }

<n> ::= | '/n' <n>

<typekind> ::= <boolean> | state | <value> | string | <object>

 | sound | speech | sprite | image | story | npc

 | item | equipment | questitem | accessory | class

<type> ::= <typekind> | <typekind> [] | <typekind> [] []

<typeempty> ::= | <type>

<parametersdec> ::= | <n> <paramdec> <nextparamdec>

<nextparamdec> ::= | , <n> <paramdec> <nextparamdec>

<paramdec> ::= <type> <name>

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

103

<body> ::= | '/n' <n> <body> | <stmt> '/n' <n> <body>

 | <stmt> ; <n> <body> | <control> '/n' <n> <body>

 | <ctrlunbalanced> '/n' <n> <body>

 | <stmt> | <control> | <ctrlunbalanced>

<innerbody> ::= <n> <singleinnerbody> <n> | <n> { <n> <body> <n> } <n>

<singleinnerbody> ::= ; | <stmt> ; | <control> | <ctrlunbalanced>

<expr> ::= <access> | <operationNeg>

<access> ::= this | this . <accessref> | other <accessoption>

 | global . <name> <accessoption>

 | global . <name> [<expr>] <accessoption>

 | global . <name> [<expr>] [<expr>] <accessoption>

 | <name> <accessoption>

 | Zone . <name> | Zone . <name> . <accessref>

 | <name> [<expr>] <accessoption>

 | <name> [<expr>] [<expr>] <accessoption>

<accessref> ::= <name> <accessoption> | <name> [<expr>]

<accessoption>

 | <name> [<expr>] [<expr>] <accessoption>

<accessoption> ::= | (<name>) | . <accessref> | (<name>) .

<accessref>

<operatinNeg> ::= <operation> | - <expr>

<operation>::= <access> <n> = <n> <expr> | <access> <n> is <n> <name>

 | <access> <n> = <n> <arr1assign>

 | <access> <n> = <n> <arr2assign>

 | <number> | <floatnum> | <cstring> | null

 | <resource> | <expr> <n> ? <n> <expr> <n> : <n> <expr>

 | ! <expr> | (<n> <expr> <n>)

 | <expr> + <expr> | <expr> - <expr> | <expr> * <expr>

 | <expr> / <expr> | <expr> % <expr>

 | <expr> <n> == <n> <expr>

 | <expr> <n> < <n> <expr> | <expr> <n> <= <n> <expr

 | <expr> <n> != <n> <expr> | <expr> <n> >= <n> <expr>

 | <expr> <n> && <n> <expr> | <expr> <n> || <n> <expr>

 | <name> (<n> <params> <n>)

 | ++ <access> | -- <access> | <access> ++ | <access> --

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

104

<resource> ::= | Sprite . <name> | Image . <name>

 | Sound . <name> | Speech . <name>

 | Storyline . <name> | NPC . <name>

 | Accessory . <name> | Item . <name>

 | QuestItem . <name> | Class . <name>

 | Zone . <name> | Equipment . <name> (<number>)

 | Enum . <name> . <name>

<arr1assign> ::= <type> [<number>] | { <var1element> }

<arr2assign> ::= <type> [<number>] [<number>] | { <var2element> }

<var1element> ::= <expr> <var1next>

<var1next> ::= | , <n> <expr> <var1next>

<var2element> ::= { <var1element> } <var2next>

<var2next> ::= | , <n> { <var1element> } <var2next>

<params> ::= | <expr> <nextparams>

<nextparams> ::= | , <n> <expr> <nextparams>

<stmt> ::= <expr> | <vardec> | break | continue

 | call this . <name> (<params>)

 | call Zone . <name> . <name> (<params>)

 | call (<access>) . <name> (<name>) . <name> (<params>)

 | return | return <expr>

<control> ::= if (<expr>) <n> <innerbody> <n> else <n> <innerbody>

 | while (<expr>) <n> <innerbody>

 | do <n> <innerbody> <n> while (<expr>)

 | for (<n> <inst> ; <n> <ltest> ; <n> <cexpr> <n>)

 <n> <innerbody>

 | switch (<access>) <n> { <n> <cases> <n> }

<ctrlunbalanced> ::= if (<expression>) <n>

 <innerbody> <n> else <n> <ctrlunbalanced>

 | if (<expression>) <n> <innerbody>

<vardec> ::= <typekind> <name> <nextvardec>

 | <typekind> <name> <n> = <n> <expr> <nextvardec>

 | <typekind> [] <name> <nextarr1dec>

 | <typekind> [] <name> <n> = <n> <arr1assign> <nextarr1dec>

 | <typekind> [] [] <name> <nextarr2dec>

 | <typekind> [] [] <name> <n> = <n> <arr2assign> <nextarr2dec>

<nextvardec> ::= <n> | , <n> <name> <nextvardec>

 | , <n> <name> <n> = <n> <expr> <nextvardec>

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

105

<nextarr1dec> ::= <n> | , <n> <name> <nextarr1dec>

 | , <n> <name> <n> = <n> <arr1assign> <nextarr1dec>

<nextarr2dec> ::= <n> | , <n> <name> <nextarr2dec>

 | , <n> <name> <n> = <n> <arr2assign> <nextarr2dec>

<inst> ::= | <access> <n> = <n> <expr>

<ltest> ::= | <expr>

<cexpr> ::= | <operation>

<cases> ::= case <case> <orcase> : <n> <innerbody> <n> <casen>

<casen> ::= | case <case> <orcase> : <n> <innerbody> <n> <casen>

 | default : <n> <innerbody>

<case> ::= <number> | <cstring> | <name> . <name> | <name> | null

<orcase> ::= | , <n> <case> <orcase>

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

106

8 - E/R Model Explanation

Due to the amount of different types of E/R models, it is necessary to describe the specific

syntax used for the project.

Entities contains a series of attributes, where entities are translated to classes in the

implementation. Primary keys that uniquely identify the entities (used for uniqueness in the

unique lists through override of the equals methods) are written with full uppercase letters. All

attributes are simple types or enums. References to other classes are not written as attributes,

but instead using relations, which are written as a diamond shape. The relations may or may not

be named.

There are different types of relations between entities. Each relation is connected to two entities

(more is possible, but that is not used in this case). The type of connector between the relation

and the entity matters, and shows in what amount the entity is involved with in the relation. A

simple lines indicates that many relations between the two are possible, while an arrow

indicates that only one relation is possible. If a line is used on both ends, there is a many-to-

many relationship, and the relation has to be expanded to a class itself. If there is an arrow at

one end, then the first entity may simply have a variable relating to it. It may still have to be

expanded to a new class in the case it has an attribute of its own - which a simple variable

reference would not be able to contain.

The width of the connector also matters - thin shows that there may be no relations, and if used

with an arrow, that means that a reference may be null. A special case of this being used are

weak entities, which are shown with a white background instead of blue. Weak entities cannot

describe themselves fully without the use of another class, and have a relation of exactly one to

another entity - the relations that are part of this master-slave relation is also shown with a white

background. In a database that would be shown by having the weak entity contain the primary

keys of the master entity, but in our implementation, weak entities are simply part of the master

entities composition, and the weak entities cannot be referenced outside of it. That does mean

that all non-weak entities can be accessed globally, which is done through the resource

manager.

Finally, in the case where two entities are too far apart to create a simple link, portal relation

nodes are used specifically for this project, because we are thinking with portals. Portal nodes

are connected by color, and otherwise works as a normal relation would.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

107

9 - User Manual

Main Window

1. The file menu where you save, load and compile projects.

2. The resource tab, this gives access to all project resources.

3. The resource view, here resources are displayed.

4. The area map where tiles, zones and objects can be placed.

5. The area view settings.

6. The area settings tab, giving access to tiles, zones etc.

7. The setting for each tab, this is where you set size, choose tiles etc.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

108

Tutorial - Creating the Warrior:

Creating the Ability

1. Create new ability by right clicking the Abilities

folder, followed by New Ability.

2. Rename the new ability by right clicking and

choosing Rename.

3. Double click the ability to open the Ability Editor

(or by right click > Edit).

4. Set the following values in the fields and leave all

other things unchanged.

5. Click Save to finalize the changes.

Load the Sprites

1. Create new sprite by right clicking the

Sprites folder, followed by New Sprite.

2. Rename the new sprite by right

clicking and choosing Rename.

3. Double click the sprite to open the

Sprite Editor (or by right click > Edit).

4. Use the Load Image button to load

each individual part of the sprite.

5. Set the following values in the fields.

6. Press Save to save the changes.

7. Rinse and repeat until all sprites have

been created.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

109

Creating Equipment

1. Create new equipment by right clicking the Equipment folder, followed by New

Equipment.

2. Rename the new equipment by right clicking and choosing Rename.

3. Double click the equipment to open the Equipment Editor (or by right click > Edit).

4. Set the values as shown in the picture below.

5. To add the leather vest. Press the new button and double click the item.

6. Set the values as shown and press save.

7. Finalize it by pressing the save button.

Journey Infinita Kristian Spencer, Michael Bo Magling

2012

110

Creating the Profession

1. Create new profession by right clicking the Professions

folder, followed by New Profession.

2. Rename the new profession by right clicking and

choosing Rename.

3. Double click the profession to open the Profession

Editor (or by right click > Edit).

4. Set the values as shown in the picture below.

5. Add the created equipment list by choosing the

equipment and pressing add.

6. Add the created ability list by choosing the ability and

pressing add.

7. Write a fitting description.

8. In the sprite menu choose the type of sprite animation

you want along with the correct sprite.

9. Do that for all sprites for this profession.

10. Press the Save button to finalize the changes.

