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Broad Band Digital Radiometers
Principal Investigator: Robert F Jarnot (382F)

Sharmila Padmanabhan (382F), Ryan M Monroe (GIT, SURF student)
Zachary W Pannell (389D)

Poster No. SI-51       

Report: Wideband Spectroscopy: The design and 
implementation of a 3 GHz, 2048 channel digital 
spectrometer. URS224289.

Project Objectives:

1.Determine why high performance FPGA-
based DSP designs created using the 
standard Matlab/Simulink/System 
Generator tool flow perform very poorly 
once FPGA utilization exceeds ~60% of 
available resources, and find solutions to 
this problem

2.Implement a 3 GHz bandwidth, 1024 
channel, digital spectrometer in a Berkeley 
ROACH platform (Xilinx XC5VSX95T FPGA 
and interleaved  National Semiconductor 
ADC083000 3 Gsps ADCs) to support 
upcoming  microwave radiometer 
requirements

3.Design and implement a low power, rad 
hard,  ASIC with multiple 1 GHz, 2 bit ADCs 
and cross-correlators to improve ASIC 
design skills at JPL, and to provide a proof 
of concept test chip for GeoSTAR

FY10/11 Results:
•Multiple reasons for poor performance were determined, including:

• Current synthesis tools do not make effective use of critical FPGA blocks such as 
DSP48s (multiply-accumulate), using either the multiplier or the adder (but never both), 
and most often ignoring the DSP blocks completely in favor of logic-based equivalents

• Poor layouts, which result in poor timing, higher power consumption than necessary, 
and an inability to use the dedicated inter-DSP signal routing.  The poor layouts also 
lead to significant clock speed degradation as FPGA utilization increases beyond ~60%

•Solutions:
• Instantiate key blocks (such as DSP48s) and set their operating modes explicitly
• Manually floorplan designs to make effective use of dedicated inter-DSP48 routing, to 

provide short data paths between key elements (DSP48s and Block RAMs), and to force 
overall data flow in the FPGA to follow vendor-provided guidelines

• Modify designs and layouts of key structures (such as FFT butterflies) to make efficient 
use of FPGA resources

• Provide pipelining as necessary to meet timing requirements for ‘obstinate’ nets
•Accomplishments:

• An 8192 channel, 8 tap, digital polyphase spectrometer with 3 GHz signal bandwidth, 
successfully tested in the field.  See figures below for an example of field data 

• This design uses over 90% of the FPGA DSP resources, and operates at 375 MHz (with 8 
way parallelism), showing that high FPGA resource utilization and high clock speed are 
not mutually exclusive goals given appropriate insight and adequate design effort

• The ASIC design effort has resulted in a prototype low -power ASIC meeting the original 
performance goals.  This design is currently in fabrication.  The test ASIC layout is 
shown below

Benefits to NASA and JPL:
•Broad band, high resolution, digital spectrometers are essential for future instruments such as SMLS on the Decadal Survey 
GACM mission, and Heteracam on SOFIA (32 pixel submm array), and this work has shown the path for their development, 
demonstrating a state of the art digital spectrometer
•High performance, low power, ASIC back-ends are essential for future synthetic aperture radiometers such as GeoSTAR, and 
this work has made significant progress in bringing the necessar y design skills to JPL
•The transition to digital back-ends for radiometers will bring additional advantages in terms of science data quality, 
calibration, cost, mass, size, power consumption, stability and manufacturability – i.e. more competitive designs

National Aeronautics and Space Administration
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

www.nasa.gov

National Aeronautics and Space Administration

Copyright 2011. All rights reserved.

Figures.  Manually constrained high level FFT data flow paths in the 3 GHz 
bandwidth spectrometer are shown at the left.  Two radix-4 FFTs are at the top 
and bottom of the chip, with their outputs fed to a direct form radix-16 FFT in 
the center.  The center panel shows data (CO emission at 230.538 GHz) taken 
at Table Mountain Observatory with this spectrometer.  The right hand panel 
shows the 45 nm SOI CMOS ASIC designed at JPL, currently under 
fabrication.  Chip packaging and testing will take place in FY12.
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Wideband Spectroscopy: the design and implementation of a 3 GHz bandwidth, 

8192 channel, polyphase digital spectrometer 

Ryan M. Monroe 

Georgia Institute of Technology, Atlanta, GA 30332 

Mentor: Robert Jarnot 

Jet Propulsion Laboratory, Pasadena, CA 91109 

A family of state-of-the-art digital Fourier Transform spectrometers has been 

developed, with a combination of high bandwidth and fine resolution 

unavailable elsewhere.  Analog signals consisting of radiation emitted by 

constituents in planetary atmospheres or galactic sources are downconverted 

and subsequently digitized by a pair of interleaved Analog-to-Digital 

Converters (ADC).  This 6 Gsps (giga-sample per second) digital 

representation of the analog signal is then processed through an FPGA-based 

streaming Fast Fourier Transform (FFT), the key development described 

below.  Digital spectrometers have many advantages over previously used 

analog spectrometers, especially in terms of accuracy and resolution, both of 

which are particularly important for the type of scientific questions to be 

addressed with next-generation radiometers. The implementation, results 

and underlying math for this spectrometer, as well as potential for future 

extension to even higher bandwidth, resolution and channel orthogonality, 

needed to support proposed future advanced atmospheric science and 

radioastronomy, are discussed. 

 

I. Introduction 

 With present concern for ecological sustainability ever increasing, it is desirable to accurately 

measure and model the composition of Earth's upper atmosphere with regards to certain helpful and 

harmful chemicals, such as greenhouse gases, Ozone, and pollutants.  The Microwave Limb Sounder 

(MLS) on the Aura Spacecraft is an instrument designed to map the global day-to-day concentrations of 

key atmospheric constituents continuously. 

 An important component in MLS is the spectrometer, which processes the raw data provided by 

the receivers into frequency-domain information which can not only be transmitted to the ground more 

efficiently, but also be processed directly once received.  The present generation mainstream 

spectrometer in use is fully analog: the present goal is to include a fully digital spectrometer in the next 

generation sensor.  A digital spectrometer would offer considerably superior bandwidth and uniform 

resolution, while suffering considerably less leakage from side-lobes, and providing a lower cost, more 

stable and manufacturable solution. 
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II. Background 

 In a digital spectrometer, incoming analog data must first be converted into a digital format, 

processed through a tapped finite impulse response (polyphase FIR) filter, a streaming Fourier 

Transform, and finally accumulated to reduce data rate and the impact of input noise.  While the final 

design will be placed on an Application Specific Integrated Circuit (ASIC), the building of these chips is 

prohibitively expensive (over a million dollars): every possible effort must be made to ensure the design 

is fully functional before sending the chip to manufacturing.  To that end, we are constructing our design 

on a Field Programmable Gate Array (FPGA), which will allow us to prototype and fully test our design 

before sending it to fabrication, and readily test new ideas (such as RFI detection and enhanced 

sideband separation). 

 Field Programmable Gate Arrays are special chips designed with a large amount of logic and 

interconnect wiring on board.  The interconnect is both programmable and extremely flexible, enough 

that any logical design could, in principle, be made and placed on an FPGA.  Unlike regular computer 

software, designing for an FPGA is really programming the hardware itself, which is both very different 

from writing conventional software, and poses a special set of problems: for instance, when designing 

for software, instructions are executed sequentially.  In hardware, every ‘instruction’ is processed 

simultaneously, with the result being presented to the next instruction on the subsequent clock cycle.  

For this reason and others, it is extremely difficult to send test vectors to the simulation of a hardware-

based design.  Once a design is completed on an FPGA, several steps must be processed sequentially in 

order to build the design into a version which is functional on the actual chip.  These steps, in order, are 

'Synthesis', 'Translate', 'MAP', 'Place and Route' and finally 'Bitstream Generation'.  

 In the synthesis stage, the Hardware Description Language (HDL) code is compiled into a logical 

netlist, which describes the operations required to transform the input data into the form required of 

the output data.  This stage is hardware independent, and many optimizations may be made in order to 

improve performance or hardware consumption for the later (less flexible) stages.   

 In the translate stage, the design is converted from the hardware-independent logical netlist 

into a physical netlist, which describes the physical hardware on the target FPGA which will process each 

logical transformation.  Because different hardware is available on each chip, and even similar hardware 

on different chips may have varying functionality, this step is specific to the class of chips being targeted. 

 In the MAP stage, the physical hardware is placed throughout the chip.  Placement is a very 

computationally "hard" problem, because not only is the task of finding the optimal placement for a 

given physical netlist NP-Complete, but the solution space is huge.  In addition, finding a good 

placement has a gigantic impact on the final performance of the chip.  All the placed hardware must 

eventually be connected together using programmable interconnection paths, and hardware blocks 

which are too distant from each other will have a considerably longer interconnect delay, leading to a 

slower clock rate.  As a consequence, modern toolsets use heuristics to predict placement solutions 
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which will be "good".  Because these tools are imperfect, the results for densely packed hardware, such 

as that which we are targeting, can be inconsistent and are usually poor compared to what a human can 

achieve. 

 In the Place and Route (PAR) stage, signals are routed between the placed hardware (the 'Place' 

in the name is now a misnomer, as that process is managed in 'MAP’).  Like MAP, this is a 

computationally hard problem, and depends heavily on the results produced by MAP. 

 In the final stage, Bitstream Generation, the completed design is compiled into a bitstream 

which configures the FPGA directly.  This stage is deterministic, and if the preceding stages completed 

successfully, this one typically will complete without any issues as well. 

 The Fourier Transform is a mathematical 

technique which transforms data between the 'time 

domain' and the 'frequency domain'.  The time domain 

represents signals as magnitudes with respect to time: it 

is the form in which humans most commonly interpret 

information.  The frequency domain, however, represents 

signals as their magnitude and phase, with respect to 

frequency.  The frequency domain is useful for analyzing 

signals with many different spectral components, because 

their amplitudes can be viewed directly, even when the 

time domain signals are intermixed and hard to notice.  

When used in a discrete setting, the Fourier Transform 

becomes the Discrete Fourier Transform (DFT), which has 

very similar properties. 

 The DFT, happens to be extremely slow, requiring 

O(N^2) operations for an N-point DFT.  This is 

unacceptable when trying to run the algorithm quickly 

with N >= 128.  In 1966, two mathematicians named 

Cooley and Turkey released the Fast Fourier Transform, 

which allows the FFT to be computed in O(N * log(N)) by 

taking advantage of "divide and conquer" methodology.  

A variant of this algorithm is used in our proposed digital 

spectrometer. 

 Unfortunately, the frequency response of each 

output channel from the FFT is actually rather poor.  The 

response sags near the edge of the channel, and output channels respond to some frequencies near 

their channel but outside the intended pass-band.  By adding a low-pass filter before the FFT, this 

frequency response can be improved greatly.  This combination of FFT and low-pass filter is known as a 

 

Several Fourier Transform pairs: The 

‘time’ domain examples on the left are 

equivalent to the ‘frequency’ domain 

graphs on the right. 
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Polyphase Filter Bank (PFB).  Adding these filters is often challenging, however, because quality filters 

are hardware expensive. 

 Assisting us in the design of this spectrometer is the Center for Astronomy Signal Processing and 

Electronics Research (CASPER), who collaborate to produce tools used for the rapid production of DSP 

tools.  Their toolset allows for the automated generation of the hardware descriptions of several 

prominent DSP algorithms.  Their tools also process the generated model through all the steps listed 

above, all the way to bitstream generation with the press of a single button. 

 

III. Objectives 

 The objective of this internship was initially fairly ill-defined, because it was impossible to know 

what was practical until some progress had been made on basic improvements.  Over a previous 

semester another intern, Suraj Gowda (UCB), performed similar work, creating an FFT-based digital 

spectrometer with 512 channels which performed admirably.  One goal of the current internship was to 

expand on this design by improving the output resolution (in both amplitude and frequency) and 

maximum number of accumulations.  Additional goals included adding a PFB filter to the design and 

making the firmware compatible with an alternative, more compact FGPA/ADC board, produced by 

Nallatech. 

IV. Approach 

A. Enhance the present spectrometer 

 Prior to the start of my internship, Suraj Gowda had already designed a working spectrometer.  

My task was to continue his work and further improve the tool.  The first task was to improve the logical 

design of the algorithm by replacing inefficient fabric operations for multiply and add operations with 

DSP48E blocks of the Xilinx Virtex 5 FPGA, which are well designed to manage math-heavy DSP 

operations.  In addition, extra storage elements were added to the end of the design in order to allow 

superior output resolution and accumulation lengths. 

 Achieving a working spectrometer was a great struggle.  While the tools are innovative, they are 

also still in their infancy.  Changing any parameters in CASPER Library blocks caused the hardware 

contained within those blocks to be corrupted in an unpredictable fashion.  In addition, simulation often 

took nearly an hour, resulting in a segmentation fault (thus crashing MATLAB) about half of the time.  

Because of these problems, the MATLAB design was placed on hold for a period of about a month, while 

the design was re-created directly as hardware in Xilinx ISE (the FPGA vendor design environment).    

Ultimately, however, that design was discarded in favor of a return to the original Simulink design.  

Using the knowledge gained from my experience in ISE, I returned to the MATLAB/Simulink design and 

proceeded production from there.  After locating a flaw in the constraints for the design, a working 

spectrometer was achieved and efforts to improve the spectrometer continued. 
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 As more aggressive spectrometer designs were created, designing the hardware to run at a 

sufficiently high clock rate became progressively more difficult.  These issues were mitigated by 

duplicating hardware and adding (or removing) latency as necessary.  The floorplanning of the design 

was changed dramatically from the original provided by Suraj, which proved inefficient for larger 

designs. 

 

 

Spectrometer output, showing actual atmospheric data near 230 GHz captured from Table Mountain 

using an SIS (superconducting) microwave radiometer.  The large peak to the left represents the Ozone 

line, while the smaller peak to the right is a television station. 
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IV. Results and Discussion 

 The final spectrometer designed (as of the writing of this paper) is an 8192-channel polyphase 

FFT implementation.  Designed with additional output capacity, the spectrometer has superior 

frequency resolution, dynamic range and accumulation length when compared to previous versions.  An 

alternate, dual-polarization 1.5 GHz, 4096 channel spectrometer is available as well, and also a 3 GHz, 

4096 channel version for applications requiring reduced output data rate.  All designs are capable of 

accumulating for hours, several orders of magnitude above what is required (this may actually be 

considered a design flaw which will be addressed in the next generation: accumulation time can be 

traded for superior amplitude resolution).  The image shown on the previous page represents actual 

output recorded from Table Mountain Observatory (TMO), using a previous generation (lower 

resolution/higher noise) spectrometer design. 

 In addition, a further improved spectrometer with double the frequency resolution, a 

Polyphase-FIR filter frontend, and substantially reduced noise has been successfully simulated and is 

presently in the final stages of development.  When finished, it will, to our knowledge, be the best 

spectrometer developed on Virtex-5 hardware in the world with regards to bandwidth as well as 

spectral resolution.  These results are an order of magnitude superior to the capabilities of the analog 

spectrometers we presently use.  

 There are several factors which collectively result in a lack of high quality digital spectrometer 

designs.  One major contributing factor is the distinct lack of developers who are knowledgeable in both 

 
 

Measured channel frequency response from 8192 channel spectrometer 
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DSP algorithms and FPGA design.  While creating firmware is possible for a developer who lacks either 

skill, the results will typically be inferior due to either a lack of mathematical optimization or inefficient 

use of hardware.  In addition, the tools which allow the design of these spectrometers are of surprisingly 

poor quality:  for large sized models we are designing, they crash consistently or change important 

component attributes arbitrarily. 

 In order to mitigate those problems, I applied several techniques to segregate complicated parts 

of the design.  These techniques have been outlined in previous sections of this paper, and will be 

elaborated in the attached (informal) appendix, which describes the techniques in excruciating detail. 

VII. Conclusions and Future Work 

 My endeavor in this internship can be considered a complete success.  The tool created can be 

easily regarded as top-of-the-line, and will likely be used by several teams around the world.   

 Future work will involve adding features to support these teams, as well as striving to improve 

noise characteristics further.  Adding an additional accumulator as well as supporting logic will allow the 

accumulator to automatically select between saving output data to one of two accumulators (signal vs 

reference), or discard the data entirely.  This will allow users who need to take advantage of a 

mechanical chopper to take advantage of my firmware as well, opening its use to another family of 

potential ‘customers’. 

 This tool is just a stepping stone towards future, even more ambitious projects.  Plans to make 

an 8 GHz bandwidth spectrometer taking advantage of the same technology used for this device are 

already being made.  Finally, efforts are presently being made to interface this design to a compact 

Nallatech board, which consumes less power and can be more readily used in remote locations and 

demanding environments, such as an upcoming high altitude aircraft mission flight planned for October 

2011. 
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Appendix 1: Optimizing the Spectrometer 

 The goal of this project was to produce a high resolution with (ideally) excellent channel 

orthogonality.  Because the FPGA chip the design is being tailored to has limited resources, and adding 

resolution and pre-filters are both hardware-expensive, considerable efforts were made to maximally 

streamline the algorithm.  As the design became larger, more extreme measures were required in order 

to meet timing.  These will be discussed in the following sections. 
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First-Generation Efficient Butterflies 

 Since the foundation of most modern FFTs is the butterfly, it was essential that this block was 

optimized properly.  A butterfly design consuming six DSP48Es was implemented and tested, which 

proved acceptable.  This was managed by first computing b*w, by using the standard technique of 

computing [b*w]_re =  b_re*w_re - b_im*w_im and [b*w]_im = b_im*w_re + b_re*w_im.  Using the 

PCOUT and PCIN ports on the DSP48s allowed for savings in fabric, as well as additional DSPs.   

 After computing b*w, one must find a+b*w and a-b*w.  Four real add/subtracts are required to 

perform these two complex arithmetic operations.  Since DSP48E adders are 48 bits wide, while the 

argument values are only 18 bits wide, it is practical to convert a DSP48E block into two 24-bit adders.  

Thanks to support by Xilinx for this functionality, the feature can be achieved simply by applying a 

certain setting and presenting the pairs of arguments to the top and bottom 24 bits of the adder, 

respectively. 

Second-Generation Efficient Butterflies 

 A UC-Berkley PhD student and former JPL intern, Suraj Gowda, further improved the butterfly by 

reducing the number of DSP48E's to five.  He instead computes a+bw = ( (a_re - b_im*w_im) + 

b_re*w_re ) + j( (a_im + b_im*w_re) + w_re*b_im ), and a-bw = 2a - (a+bw).  Unfortunately, the benefit 

of this modification is limited in many areas due to several other hardware bottlenecks, and therefore 

has not yet been fully implemented. 

Sync management 

 The original Casper design uses a naive implementation for the 'Sync' signal, which travels with 

the same latency as the data path, acting as a 'valid data warning' signal and resetting coefficient 

counters as well as the other logic needed to run the FFT.  Throughout the original design, at any place 

where there were multiple 'sync' signals being released and later multiple signals collected and used, the 

design would drop all but one of the output signals, and duplicate the one signal which was passed, to 

allow it to serve the next stage in the design.  While this does provide the same logical functionality, 

Xilinx place and route algorithms do a poor job at managing the fanout and routing considerations of 

that one sync pulse.  In particular, they tend not to duplicate the given register, instead simply placing 

the one instance equidistant to all the recipient hardware.  In many locations, where there are up to 

eight or sixteen destinations for that pulse, occasionally spread to different sides of the chip, which 

results in extremely poor timing.  Two mitigating solutions must be used situationally to minimize the 

impact of this deficit. 

 In situations where there are multiple drivers and multiple receivers, it is essential that each 

driver's signal is actually routed to the pieces of hardware which will ultimately be placed closest to it.  

This may involve adding extra logical ports to the Simulink model of the hardware to be generated. 
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 In situations where there are several distant destinations for the sync pulse, a binary tree must 

be added before the area of the design which the sync pulse must serve.  Extreme care must be taken 

that the sync latency remains identical to the data latency, or increased noise and strange errors will 

ensue.  In some cases, such as the beginning of the entire algorithm, the precise latency of the sync 

pulse is immaterial, because it is not yet coordinating any logic before the beginning of the design.  Be 

aware, however, that in the event that further logic is later added in front of the present beginning of 

the design, that the binary delay tree will have to be removed to maintain latency integrity. 

Hardware duplication 

 On larger designs, the growing bit-width of various counters, as well as the increased routing 

demand imposed by the added logic makes meeting timing much more challenging.  One of the main 

driving forces behind the timing problems is wide fanout:  counter bits which previously drove just 6 

pieces of hardware now drive 11 devices or more.  In order to meet timing, it is often necessary to 

duplicate any counters which are addressing several devices, an act which also simplifies placement 

greatly. 

Naming conventions 

 After building the netlist, larger designs will also have to be floorplanned to meet timing.  

Because Xilinx System Generator appends randomized prefixes to the hierarchy in order to ensure name 

uniqueness, finding or identifying hardware elements can become difficult.  In order to make identifying 

hardware elements as simple as possible, I strongly recommend maintaining consistent naming 

conventions, such as identifying any DSP48E blocks which are serving as multipliers with a 'dsp48_mult' 

prefix.   

 

On Hardware Implementation of Simulink Designs 

 The Virtex-5 FPGA has several idiosyncrasies which must be attended to in the use of their 

designs, especially regarding System Generator.  Those will be discussed here. 

 All delays implemented using Xilinx System Generator blocks are implemented using one SRL16 

per bit.  A single SRL16 block is an FPGA hardware element which supports delaying a single bit up to 16 

clock cycles.  This has two important consequences:  First, after adding a single delay element to a 

location in hardware, you may add up to 15 more at no additional hardware cost.  Second, if you are 

trying to improve routing, adding a multi-cycle delay will not improve the routing of your process 

because those multiple delays will typically be implemented as a single SRL16.  If multiple latencies are 

needed for routing concerns, one must use several delays of once clock cycle a piece explicitly.  In 

addition, a delay with a latency of ‘1’ is implemented as a single ‘D-Flip Flop’, which (according to Xilinx) 

has a lower setup time than an SRL16.  Keep that in mind in the use of any adjustments for timing-based 

optimizations 
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 If you are using DSP48E blocks with the PCOUT/ PCIN functionality, be aware that long (4 or 

longer especially) chains of DSP48E blocks will interfere with placement and routing, and will probably 

require manual placement for good results.   Breaking the blocks up into groups of 4 or fewer may be 

prudent. 

 DSP48E blocks provide a power-inexpensive tool for performing math operations, when 

compared to fabric.  Using every DSP48E block on the chip will consume between 2 and 3 watts. If you 

are trying to conserve power, be sure to mark any add/subtract only blocks as such in the Simulink 

settings, as this will reduce power consumption considerably. 

 Block RAMs (distributed FPGA RAM elements) are implemented as 18 bit wide, 1024 element 

deep memories.  Keeping these values in mind will allow the designer to take maximum advantage of 

the hardware.  Because Xilinx allows their memories to be used in a half-width / double-depth mode, 

wider memories are implemented as numerous RAMB18s, each serving a fraction of the required bits.  

For instance, an 18 bit wide, 2048 element deep memory will be implemented as two 9 bit wide, 2048 

element deep memories.   

 

Optimizing the Polyphase Filter Bank 

 One disadvantage to a FFT is the considerable leakage to adjacent channels when an input 

frequency does not lie perfectly in the center of a channel.  Adding a Polyphase Filter Bank (henceforth 

abbreviated ‘PFB’) allows for the reshaping of the FFT channels into more ‘ideal’ shapes with evener 

pass bands, weaker side lobes and a steeper and deeper roll off.  In a naive implementation of a PFB 

filter with N taps, each of the simultaneous inputs will require one multiply per tap (N multipliers), as 

well as one add and one delay for each tap past the first (N-1 adds and N-1 delays, implemented in Block 

RAM).  It will also require a coefficient block for each tap (N Block RAMs).  Adds and Multiplies are both 

implemented in DSP48E blocks, while both delay elements and coefficient storage are managed by Block 

RAM blocks.  Therefore, we can add the costs of these respective components.  Consequently, each 

simultaneous input to the filter bank will require <2N-1> DSP48E blocks and <2N-1> Block RAM blocks. 

For input vectors longer than 1024 elements, the Block Ram consumption is increased dramatically.  This 

means that it is difficult to make a PFB filter with more than four taps for spectrometers with 4096 

channels or fewer, and almost impossible to make any PFB at all for larger spectrometers.  The following 

section discusses techniques explored to improve the efficiency of the PFB. 

Halving adder consumption 

 Re-using the same technique for halving the required number of DSP48E blocks used for small 

adds, the number of DSP48E blocks used in the system can be reduced to <N + ceil((N-1)/2)> with no 

further hardware cost. 
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Removing adders completely 

 For a small additional price, however, the adders can be completely removed.  Because each 

DSP48E block supports a multiply followed by an add, the PCOUT ports of the first multipliers can be 

attached to the input ports of subsequent taps.  If the input data and coefficient blocks are each delayed 

by an additional clock cycle, the final accumulated result will be provided by the output of the final tap.  

For larger designs, this will impose a large fabric cost in the form of SRL delay components.  Half of these 

can be removed by simply moving the coefficient delays to the reset port of the counter which 

addresses the coefficient BRAM, which negates the necessity of delaying the output ports of the 

coefficient blocks.  This reduces the DSP48E cost of the PFB filter to <N> 

Reducing delay element Block Ram consumption 

 Each Block Ram element contains space for up to 1024 elements, as well as two ports which can 

be used for both reading and writing independently.  For designs with vectors of 512 and fewer 

elements (spectrometers with 4096 or fewer channels), the second ports on these Block Ram elements 

can be used for a second delay element, saving half of the Block Ram hardware for ‘free’.  This reduces 

Block Ram consumption to <ceil((N-1)/2)> (designs with vectors of 512 elements or fewer) and <N-1> 

(designs with vectors of 1024 or more).  By cleverly grouping input signals and using the optimal number 

of bits per port, a further 10% savings can be incorporated.  This final optimization adds the additional 

constraint of requiring input pairs to be placed in a monotonically increasing or decreasing manner. 
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Halving coefficient Block Ram consumption 

 Consider the impulse response of the PFB filter:  It is a windowed <sin(x)/x> function.  When 

centered on zero, this is an even symmetrical function.  In practical implementations, however, this is 

shifted such that the first element of the filter is at time t=0.  As a consequence, a naive implementation 

of the PFB filter stores each coefficient twice:  for a N-element filter (1-indexed), elements 1 and N are 

identical, as are 2 and N-1, et cetera.  In a simple design with only one simultaneous input, this means 

that the final tap's coefficients are just the initial tap's coefficients read in reverse order. 

 Unfortunately, this technique is complicated when the input signals are presented 

simultaneously.  When multiple signals are presented simultaneously, the coefficient values for the 

second (duplicate) half of the spectrum are available only on a different simultaneous input.  If there are 

X simultaneous inputs, the Nth input will find its duplicate coefficients on the X-N'th simultaneous input.  

Consider the first coefficient on the first tap of the first simultaneous input (the very first coefficient in 

the PFB):  this will be equivalent to the final coefficient on the last tap of the last simultaneous input 

(which will hold the very last coefficient in the PFB).  If there are an odd number of taps, no savings will 

be available for that tap, since it will not have a duplicate available elsewhere (that data will be 

contained within the second half of the same Block Ram).  This means that the modification is best 

applied to PFB's with even numbers of taps. 

 

Four-tap Polyphase Low-Pass Filter, split by taps 
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 This technique has serious implications 

regarding the hardware efficiency of the PFB.  It 

will reduce the number of coefficient Block 

RAMs to <ceil(N/2)>, without any additional 

hardware requirements.  Since the taps will 

have to be paired in an inconvenient manner, 

however, there may be routing costs imposed 

by using this design.  It is my professional 

opinion that these challenges will be worth the 

hardware benefits which are provided. 

Summary (PFB optimizations): 

 Using these four techniques together 

results in a much more streamlined PFB 

implementation.  Collectively, they reduce the 

cost of an even-tap-count PFB from <2N-1> 

DSP48Es and <2N-1> Block RAMs down to <N> 

DSP48Es and (512 length vector or smaller) 

<N+1> or (1024 length vector or greater) <3N/2 

- 1> Block RAMs.  Practically, this equates to a 

50% increase in PFB taps for designs with 

vector lengths of 1024 or greater, and 100% 

increase in PFB taps for designs with vector 

lengths of 512 or less.  Clearly, this allows for 

designs with excellent channel orthogonality. 

 

Optimizing the FFT 

Like the PFB, the FFT can be aggressively optimized to improved performance.  By using an 

optimized butterfly design, about one out of every 6 DSP48Es can be saved.  In addition, using dual-port 

memories to store both the real and imaginary components of the FFT coefficients in a single block 

allows for further savings of 50% of the coefficient memories.  Finally, the same memory sharing 

technique used in the PFB delay elements can be used to conditionally save further memory. 

Collectively, the optimizations save about 33% of block memory hardware, as well as 17% of the 

DSP48Es.   

 

Developed library blocks 

 

Block RAMs can be saved by reading coefficient 

Block RAMs in reverse order. 
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All the optimizations described above are implemented in a set of ‘blocks’, analogous to those 

found in the CASPER block.  Given a set of parameters, these blocks will automatically draw the desired 

algorithm.  They also include several further optional optimizations.  These allow for coefficient sharing, 

which reduces hardware consumption in exchange for increased routing constraints.  Optional reduced 

coefficient sets are also made available.  The documentation for the blocks, which can be found in the 

‘monroe_library’, can be found in appendix 2. 



NASA USRP - Internship Final Report 

16 Summer 2011 Session 

Floorplanning the Design 

 The tools provided by Xilinx to automatically place and route designs perform incredibly poorly 

when given extremely crowded designs, or designs which are dominated by routing-heavy math 

operations.  By passing physical constraints to the Xilinx tool flow, these results can be improved greatly.  

The following sections will describe general rules used to produce 'good' results. 

PlanAhead 

 The Xilinx tool provided to add constraints is known as "PlanAhead".  This is a graphical interface 

which displays the architecture of the chip and allows the user to input constraints and floorplan as 

necessary.  The tool also allows the user to analyze previous implementation results. 

Floorplanning by Partition Blocks 

 Partitioning is the most general way to assign constraints.  Any components assigned to a P-

Block will be ultimately be placed somewhere in that P-Block during the tool flow.  P-Blocks may be 

drawn graphically using the "Draw P-Block" tool.  Once a P-Block is drawn, you may assign components 

to a P-Block by selecting them, right clicking and selecting "assign".  You may view the consumption of P-

Blocks in the properties window while the P-Block is selected.  P-Blocks are most easily selected using 

 

Planahead Interface 
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the "Physical Constraints" window, which is not available by default and must be selected from the 

"Window" menu. 

Caveats on P-Blocks 

 It is necessary that each P-Block contain enough resources to support all the hardware 

contained within (hardware assigned to a P-Block, but manually placed elsewhere does not count).  

Failure to do so will cause the "Percent in Use" metric in the property window to exceed 100% and the 

design will produce an error during implementation.  Solve this problem by removing hardware from the 

P-Block or increasing the size of the P-Block 

 By default, each assignment to a P-Block is produced as a separate constraint.  Since System 

Generator does not produce hierarchical designs, very large numbers of components must be designed 

to a P-Block in order for them to prove useful.  Xilinx tools take a very long amount of time to read large 

numbers of constraints, so this is not recommended.  Anecdotally, placing 50,000 elements into various 

P-Blocks took over seven hours to implement.   

 The answer to this problem is to use wildcards:  all Xilinx tools support the '?' wildcard, which 

may be replaced with any single character, and the '*' wildcard, which may be replaced with any other 

string.  If these are listed in instance, port or clock names, the constraint will apply to any components 

which match that wildcard string. 

Hand-Placing Components 

 Hardware may also be placed manually.  By selecting the "Make BEL Constraint" or "Make Site 

Constraint" tools, components may be forced to specific locations.  These placements typically 

supersede any other constraints on the components.  To place a "Site" or "BEL" constraint, locate the 

piece of hardware to be constrained, select either tool and drag the hardware to the desired location on 

the chip.  It is important to realize that since "Site" and "BEL" constraints are both absolute and fixed, 

they must be extremely well placed, or the final output will have absolutely terrible timing results.   

General Floorplanning Instructions 

 Before starting floorplanning, allow the tools to generate a naive implementation automatically.  

This will allow you to determine how distant the design is from meeting your timing requirements.  After 

running an initial implementation run, load your project into PlanAhead and import your Placement and 

Timing results in order to get an inkling of the actual hardware consumption imposed by the chip.  It is 

now time to begin floorplanning your design.  I recommend printing out several copies of your chip 

architecture and drawing your floorplans before actually implementing it.  Once a high level floor plan is 

conceived, begin floorplanning the most regular sections.  These are not only the regions which are 

easiest to floor plan, but often the ones which Xilinx tools perform worst at automatically placing.  After 

building an adequate floor plan, open your <project_name>/XPS_Roach_Base/data/system.ucf file and 

append your component placement constraints onto the end of the file (it is important NOT to append 

any port or timing constraints, as they may cause errors or override the (correct) constraints provided by 



NASA USRP - Internship Final Report 

18 Summer 2011 Session 

BEE_XPS).  Afterwards, re-run BEE_XPS, selecting only the EDK/ISE/Bitgen option.  In the event that the 

process fails in only seconds, it is possible that ISE interpreted the entire design as "up to date", 

concluded that your design still did not meet timing, and returned the same results as your previous run.  

If you believe this is the case, re-run BEE_XPS on IP Creation up to (but not including) EDK/ISE/Bitgen.  

This will reset your results.  You may now update your system.ucf file and run EDK/ISE/Bitgen. 

 If your design still does not meet timing, begin by re-importing your updated placement and 

timing results.  Identifying troublesome paths is made easiest by selecting them, right clicking and 

highlighting them.  Only the actual failing paths will be highlighted.  Use these to analyze the causes of 

your timing failure.  Repair any flaws in the original floor plan, and constrain more elements if necessary.  

In the case that the placed DSP48Es and BRAMs appear good, but the design still fails timing, use P-

Blocks to restrict the fabric logic to local areas 

on the chip. 

General Floorplanning Advice 

 Special efforts should be made to pay 

attention to routing, which is a "hidden 

resource".  Remember that every signal which 

is generated must be passed through an 

invisible routing matrix, which has finite 

resources.  While the availability of this 

routing is uniform throughout the chip, 

routing demands are typically far greater near 

the center of the chip.  This means that good 

designs will try to distribute signals across the 

edges of the chip, as well as through the 

middle.  Anecdotally, it appears that vertical 

and horizontal routing resources are 

somewhat independent.  It appears to cost 

relatively little to route a signal through a 

routing-dense environment when most of the 

already-present signals are travelling east-

west, and the new signals are travelling 

north-south. 

 Be sure to consider the locations of 

the input and output ports of the chip when 

floorplanning.  The signals must inevitably travel through these ports.  In the ROACH 1, the ADC I/O 

ports are all situated on the West side of the chip, while the Software Registers and other BEE_XPS I/O 

logic is found on the East side of the chip. 

 

Actual Spectrometer Floorplan, data-paths annotated.  

Planning datapaths in advance is crucial. 
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 In addition, both the 

Block RAM and DSP48E 

blocks have their input ports 

on the West side of the 

components, and the output 

ports on the East side of the 

component.  Due to both the 

ROACH port locations and 

the internal Block RAM / 

DSP48E ports, it is advisable 

for the majority of designs to 

use a predominately West-to-

East design. 

Regarding Block Slices 

 BRAM and DSP48E 

components appear to have an extremely weak driving potential.  Placing their destination components 

nearby or buffering the DSP's output has a very substantial result on the maximum running speed of the 

design.  DSP48E components appear to suffer more severely from this problem than BRAMs.   

 DSP48Es are designed such that the 'P' port of a given chip (the 'P' port is on the right side of the 

component) lines up bitwise perfectly with the 'C' port on the DSP48E block immediately to its left (the 

'C' port is on the left side of the component).  Placing so connected components in this manner will 

produce extremely routing-efficient designs.  Note that this trick is only advantageous if there are not 

intervening BRAMs or other gaps in the chip between the adjacent DSP48E components (a small amount 

of fabric, however, is acceptable). 

 

BEE XPS Toolflow 

 The steps of the BEE_XPS toolflow and their (apparent) actions are as such: 

1. Update Design (runs all scripts on all CASPER blocks in the design, appears to be optional if a 

simulation has just been run).  Very slow. 

2. Design Rules Check (checks for BEE_XPS block and XSG block, ensures there are no extra 'gateway in' 

and 'gateway out' blocks) 

3. Xilinx System Generator (runs System Generator.  Produces VHDL equivalent to the model and 

synthesizes it).  Very slow. 

4. Copy Base Package (overwrites the contents of <model_name>/XPS_Roach_Base> with 

<casper_library/xps_lib/XPS_Roach_Base) 

 

DSP48E slice diagram.  Note that fabric signals enter from the left and exit to 

the right, indicating a West-to-East datapath. 
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<<The remaining steps are performed in the Xilinx XPS tool> 

5,6,7. IP Creation/Synthesis/Elaboration (adds CASPER yellow blocks as pcores into the XPS project, 

configures and synthesizes them. 

8. Software generation (parses the included constraints files and adds constraints as necessary).  

Options 5-8 are poorly understood. 

9. EDK/ISE/Bitgen (synthesizes and implements the finished design.  Generates placement, timing and 

bit files into XPS_Roach_Base/Implementation. 

10. JTAG Download (unused in ROACH builds) 

 

Failing Timing 

 If your design does not meet timing, the design will error out before building a bit file.  Often a 

design will function even if it fails a static timing analysis.  If you are prepared to take this risk, follow 

these instructions to override the timing error: open up an instance of Xilinx XPS (command 'xps').  

Select 'open recent project / browse for more projects'.  Navigate to <model_name>/XPS_Roach_Base/'.  

Your project will be the only file.  Open up 'Project Options', locate the 'Treat Timing Closure Failure as 

Error' setting and disable it.  Close the options dialog and exit XPS.  Re-run BEE_XPS under 

EDK/ISE/Bitgen.  Your project will probably still fail to meet timing, but a bit file will still be generated.  

Your mileage may vary. 
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Appendix 2: Monroe_library Documentation 

Hey all,  
 

I've been pretty busy over here in Pasadena.  I've built myself a bit of a personal library on top of 

the xBlocks scripting language.  Please feel free to take a look! 
 

Please note that while these blocks have been tested in a general sense, I do not believe that they 

are up to the rigor we need to release them to the CASPER community.  While they're probably 

largely functionally correct, I haven't tested every reasonable combination of parameters, and my 

checking for valid inputs is still a bit spotty. 
 

In addition, while these blocks can use much less hardware than the stock casper blocks, they 

have not been performance tested.  There are many parameters to adjust at the top level, and I'm 

not quite sure what values are most significant/useful.   
 

Finally, Andrew commented on these blocks being inter-compatible with the stock casper ones 

and I will have to clarify:  that is probably not going to happen.  The xBlocks method is very 

different from the stock blocks, and the drawing functions are called quite differently.  I think it 

would be best if they were separate blocks in the casper library, or if existing software support 

for the old blocks was maintained, but the new blocks were the only ones that showed up in the 

“library browser” 
 

Using the monroe_library 

In order to use the current version of the monroe_library, extract the files included to any folder 

and add both the 'monroe_library' folder and the 'monroe_library/xblock_helper_functions' folder 

to your path. 
 

All the blocks listed below can be found in the monroe_library.mdl file, which is the only way to 

access monroe_library blocks at the moment. 
 

I have included two copies of one of my spectrometers (redesigned with my new blocks) as a 

demonstration.  They can be found in the monroe_library/demonstration folder.  The base design 

runs at full bit width (but shares coefficients between butterflies wherever possible), while the 

'lessbits' design uses less bits / coefficients.  For the 'lessbits' design, pol1 is set to use fewer 

coefficient values in the FFT Direct, while pol0 is set to have 9 bits through the entire datapath 

(data and coeffs).  They may be tested by opening the model, running the simulation, and using 

the included script to unpack the results.  You may have to change the offset at the top of the file, 

depending on which design/settings you use. 
 

Neither design is intended to be built to hardware using these libraries yet. 
 

Known issue 
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Sometimes, when changing the parameters of a block, it does not immediately re-draw.  I don't 

know why this is, but if you right-click on the block and choose 'look under mask', it will re-

draw. 
 

Know that this library has been developed and tested entirely in Matlab r2010b, with Xilinx ISE 

13.1. 
 

Index of blocks 

(top level-ready blocks are green) 

Misc 

oneSync 

counter_limited_fast 

bit_reverse 

cram 

uncram 
 

Delays 

delay_tree_z^-6 

bulk_delay 

sync_delay_fast 

delay_bram_fast 

double_delay_bram_fast 

double_delay_bram_external_counter 

double_delay_distrib (unsupported) 

multi_delay_bram_fast (super proud of this block) 
 
 

Math 

dsp48e_mult 

dsp48e_mult_add_pcin 

dsp48_negate_dual 
 

Polyphase Filter Bank Logic 

pfb_coeff_gen_dual 

fitst_tap_improved 

middle_tap_improved 

last_tap_improved 

pfb_fir_real 
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Biplex FFT Logic 

twiddle_stage1 

twiddle_stage2 

twiddle_cheap 

biplex_stage 

coeff_gen_dual 

biplex_coeff_muxsel_gen 

biplex_4x_unscr 

unscr_tail 

FFT_Biplex_4x 
 
 

Direct FFT Logic 

coeff_gen_dual 

direct_coeff_gen 

fft_direct_stage 

FFT_direct 
 
 

Draw times for blocks potentially superseded by the monroe_library.   

Block Time (casper_library) Time (monroe_library) Notes 

Biplex FFT 6 minutes, 55 seconds 12.5 seconds FFTSize = 10 

Direct FFT 28 minutes, 26 seconds 24.8 seconds FFTSize = 4 

Polyphase- Filter Bank 32.8 seconds 31.6 seconds n_sim_inputs = 4 

n_taps = 6 

Note that for the direct FFT, the mask script for each butterfly was run five (!!) times.  It's 

possible that my library is out of date and the present casper library version draws up to 5x faster  
 

The biplex FFT also ran its scripts several times, which may be why it's so slow. 
 
 

I'm not going to document each and every of the blocks here (but I will someday).  Here's a thing 

or two about how to use my blocks: 
 
 

(any 1-d array can be replaced with a single integer, which will be interpreted as an 

appropriately- sized array composed entirely of that integer) 

pfb_fir_real 

Parameter  Format Bounds 

PFB Size Integer  1 <= x <= 25 

# Simultaneous Inputs Integer  1 <= x <= 6 

# Taps Integer  x <25 

Input Bit Width Integer  1 <= x <= 25 (recommended max 18) 

# Coefficient Bits Integer 1<= x <=18 
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Output Bit Width Integer  x >0 

Window Function Pull-Down  

Channel Width Real Positive  

Downscale at end Integer -1 = default; else, downscale by 2^x 

Delay at end? Boolean <0 or 1> 

Use Cheap Sync Hardware Boolean <0 or 1> 

Autoplacement mode? Pull-Down <not active yet> 

Optimize for Autoplacement? Check-Box <not active yet> 

Bram Latency <coefficients> Integer <2 or 3> 

Bram Latency <delays> Integer <2 or 3> 

Register delay counters? Boolean <0 or 1> 
 

Comments: 
I have a half-finished auto-placing constraints generator for this block.  I'm going to be leaving 

JPL soon, so I probably won't finish it for another month or two. 
 

Settings for auto-placement mode are presently ignored 
 

The 'Register delay counters' setting is probably fine at 0, but I have not tested it.  Setting it to '1' 

may improve performance, but will be extremely hardware-expensive. 
 

Optimizations: 
 

Used dual-port memory for the coefficients, saving ½ the coefficient BRAMs. 
 

Connected all the FIR DSP48E's into one PCIN/PCOUT chain, which removes the need for an 

adder tree at the end.  Saves almost ½ the DSP48Es.  Adds one datapath- delay element and one 

counter -delay element per stage (except the first). 
 

Used the 2-stage pipeline the DSP multipliers to remove the need for the second delay in both 

the counter and the datapath. 
 

Made a highly optimized self-drawing block for multiple delays.  Uses the minimum number of 

BRAMs for a given number of delay bits.  Variable gains in efficiency, based on filter 

parameters, but typically saves 45%-55% of the BRAMs and ½ the delay counters. 
 

The above multi-delay block uses pipelined counters for high-speed, but drops down to simple 

(fabric-cheaper) counters when the vector-length is short enough. 
 
Optionally uses a cheaper sync-delay, which uses a SRL to delay mod(totalDelayLen, vectorLen) 

cycles instead of the full pfb latency.  This is good if it is ok for the sync to be offset by several 

vectors from the start of the PFB 

FFT_Biplex_4x 

Parameter  Format Bounds 

FFT Size Integer  1 <= x 
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Input Bit Width Integer  1 <= x <= 24 (recommended max 18) 

# Coefficient Bits Integer Array(FFTSize-2) 1<= x <=18 

Output Bit Width Integer  x >0 

Inter-Stage Bit Widths Integer Array (FFTSize-1)  1 <= x <= 24 (recommended max 18) 

Shift after n-th stage? BooleanArray (FFTSize) <0 or 1> 

Coefficient BRAM Limit? Integer  x >0 

Delay BRAM Limit? Integer  x >0 

Register Coefficients? Boolean <0 or 1> 

Stage Pre-delay? Boolean <0 or 1>; Recommend 0 

Stage Mid-Delay Boolean <0 or 1>; Recommend 1 

Stage Post-Delay Boolean <0 or 1>; Recommend 1 

BRAM Latency (FFT) Integer <2 or 3> 

Bram Latency (Unscrambler) Integer <2 or 3> 

reorder data-in Latency Boolean <0 or 1> 
 
 

Comments: 
 

Bit Growth FFT:  To make a 10-stage FFT which grows from 8 bits to 18, simply do the 

following: 

Input Bit width:   8 

inter-stage-bit-widths:     9:18 

output bit width:   18 
 

You can also do coefficient bit-growth, but I don't recommend using anything other than 9 or 18 

bits for coefficients, as there's little benefit to using values in between. 
 

I'm not quite sure if carrying 24 data bits has any benefit over using only 22 or 23.  I'll test this 

later 
 

I have removed the option to change the down-converts at each stage to use rounding or 

saturation.  These were *very* fabric expensive, and in my opinion, not worth it.  Especially 

because they make my design more complicated and draw more slowly. 
 

Optimizations: 

Used dual-port BRAMs for coefficients, halving coefficient bram usage for stages 3-10.  Also 

saves on counters. 
 

Moved all the coefficient generation and mux-select generation to a single coefficient/muxSel 

generation block, so that in the future we can share those values between several biplex FFTs. 
 

Used dual-port BRAMs for delays, halving bram delays for delays of 512 cycles or fewer.  Also 

saves on counters. 
 

Used Suraj'es 5-DSP butterfly trick (thanks Suraj!)  to reduce DSP use by 16% 
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Also connected stray DSPs with their PCIN/ PCOUT ports.  They don't actually use the data 

bussed through the port, but Xilinx infers it as a useful connection, and places them in a column 

anyways!  I'm pretty proud of this  :-) 
 

Made several fabric optimizations, which won't all be listed here. 
 

Instead of using a separate counter for the Muxes in each biplex stage, I made a single counter, 

and used progressively fewer bits on each stage. 
 

There was another counter driving the mux in stage 2: drove this with an inverted (and delayed) 

version of the mux signal already being delivered to stage 2. 
 

In the unscrambler: 
 

Consolidated the two early reorders, and shared the BRAM.  Also made a special bit-reverse 

block, removing the need for a 0-latency distributed memory. 
 

Likewise replaced the distributed memory-(being addressed with an upcounter) with a down-

counter, saving more hardware 
 

replaced the delays with half-hardware double-delay blocks 
 

Replaced the complex conjugate blocks with half-hardware equivalents 
 

Duplicated two counters that kept the design running below 375 MHz 
 
 

To Do: 
 

Add a feature to limit the number of BRAMs being used for a given biplex stage (or, 

equivalently, add an adjustable ceiling to the number of brams)  this is pretty easily 

implemented, but didn't make it into this test.  This feature is already implemented in the 

FFT_Direct, but didn't quite make it into this release. 
 

(if there is demand) Add a feature to share coefficients and mux-selects between biplex FFTs.  

Perhaps make a fft_biplex_x8 block for it. 
 

Add an option to remove the PCIN-connection between the A-BW DSP and the rest of the 

butterfly.  This feature is helpful for unconstrained designs, but it actually hurts for hand-placed 

designs or RLOC-ed designs. 
 

Improve the error-checking and warnings for bad input parameters.  I think my blocks might be a 

bit hard to use right now. 
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(semi-near future):  Add RLOCs to constrain each butterfly into its own box.  I have a pretty well 

thought out plan for how this will happen, including the exact values the constraints should take.  

I won't be starting this until everyone's perfectly happy with the unconstrained block though. 
 

^^^ doing this will change a lot of things.  Many of the parameters that are presently settable will 

no longer need to be, as many delays are only there because bits of the butterflies are placed far 

from each other.  I imagine we can save massively on fabric by doing this, and then use BRAMs 

for most of the delays and coefficients (since they're going to be well placed) to save even more 

on fabric. 
 

(distant future):  fully auto-placing biplex blocks, given that the block is either: 

a. attached directly to one of the ADCs, or 

b. attached directly to a PFB (which is attached directly to one of the ADCs) 

FFT_Direct 

Parameter  Format Bounds 

FFT Size Integer  1 <= x <= <larger_fft_size> 

Larger FFT Size Integer <fft_size><= x 

Input Bit Width Integer  1 <= x <= 24 (recommended max 18) 

# Coefficient Bits Integer Array(FFTSize-2) 1<= x <=18 

Inter-Stage Bit Widths Integer Array (FFTSize-1)  1 <= x <= 24 (recommended max 18) 

Output Bit Width Integer  x >0 

Delay Input Boolean x >= 0; Recommend 1 

Inter-stage Delays Integer Array (FFTSize-1) x >= 0; Recommend 1 

Delay Output Boolean x >= 0; Recommend 1 

Add Sync Tree to Input? Boolean <0 or 1> 

Register Coefficients? Boolean <0 or 1> 

Coefficient Grouping Array <read below> <read below> 

Coefficient Step Size Integer Array (FFTSize) x >= 0; see below 

Shift after n-th stage? BooleanArray (FFTSize) <0 or 1> 
 

Comments: 
I actually haven't tested the new direct FFT for anything other than FFTSize=3.  Worth 

considering. 
 

Bit Growth FFT:  Like the biplex FFT, this also supports bit growth.  Coefficients too (but again, 

I recommend 9 or 18 bit coefficients. 
 

Again, I'm not quite sure if carrying 24 data bits has any benefit over using only 22 or 23.  I'll 

test this later 
 

As in the biplex FFT, options to change the down-converts at each stage to use rounding or 

saturation have been removed. 
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Add Sync Tree to Input: 

The high fanout for sync on the first stage of the direct FFT caused a bit of a performance 

bottleneck.  By adding a binary tree to the input, this problem is resolved.  Using said binary tree 

restricts the FFTSize to 6 (as if anyone's actually going to use one that large).  If this actually 

becomes a problem, we can extend the binary tree to be larger.  Remember that unused parts of 

this tree will be pruned by the synthesizer. 

 

Coefficient Group Array (AKA Butterfly Coefficient Sharing): 

For the first several stages of the direct FFT, the coefficients for adjacent butterflies are the same.  

Hardware can be saved by using a single coefficient generator for many butterflies.  This setting 

allows you to implement that. 

The coefficient grouping array allows you to build 'groups' of butterflies, which will all be 

serviced by the same coefficient generator.  There are no error checks regarding 'safe' arrays 

(which will not be delivering the wrong coefficients to a butterfly), so make sure your array is 

correct!  A coefficient group array is composed of FFTSize number of rows, each 2^(FFTSize-1) 

wide.  Each row represents a stage (top row is the first stage, second row is the second, etc).  In a 

given row, butterflies with the same group number will receive their coefficients from the same 

piece of hardware.  Group numbers must span from '1' to 'N', where N is the number of groups 

desired.  Having the same group number for butterflies on different stages is OK; stage numbers 

are only considered within that given stage.  If an empty array is provided (looks like this:   []       

), the default casper-equivalent will be used. 

 

Examples of group arrays for a FFT_Direct of FFTSize=3: 

 

<identical to the stock casper design, maximum hardware consumption> 

1 2 3 4 

1 2 3 4 

1 2 3 4 
 

-------------- 

 

<also identical to the stock casper design, maximum hardware consumption> 

4 3 2 1 

3 2 1 4 

1 2 4 3 
 

---------------------------- 

 

<Absolute minimum hardware consumption> 
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1 1 1 1 

1 1 2 2 

1 2 3 4 

(this will cause low hardware consumption, but high fanout and routing costs will limit clock 

rate) 

 

------------------------------ 

 

<bad array; delivers incorrect coefficients to butterflies... first row OK, 2
nd

 and 3
rd

 broken> 

1 1 1 1 

1 2 1 2 

1 1 2 2 
 

--------------------------------- 

 

<invalid array; incorrect size (causes error)> 

1 1 1 1 

1 2 1 4 

1 1 2 2 

1 2 3 4 
 

----------------- 

 

<invalid array; incorrect size (causes error)> 

1 1 1 1 1 

1 1 2 2 3 

1 2 3 4 5 
 

 

 

Coefficient Step Array (AKA 'discard half the coefficients'): 

For large FFT Sizes, having the full vector of coefficients is somewhat overkill.  In these 

circumstances, it can be advantageous to reduce the size of the vector by a factor of 2^N, saving 

memory in exchange for increased noise.  For manually floor-planned or auto-placed designs, it 

is recommended that a good coefficient group array is used to minimize hardware consumption 

first.  Each value above zero that an integer receives in this array will half the number of 

coefficients used.  Please consider that there are no hardware gains from reducing the number of 

coefficients below 2^9 (which can fit in a single BRAM18).  Examples are shown below. 
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Imagine a 16-element coefficient array, to be used in a direct-fft.  The full coefficient list looks 

like this: 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
 

These coefficients will be presented to the butterfly in order, from 0 to 15, repeatedly.  This is 

what you would expect with the stock casper blocks.  It is also what happens in my block if the 

step array is a '0' for that stage. 

 

If the array is incremented to a '1' for that stage, the coefficients stored now would look like this: 

0 2 4 6 8 10 12 14 
 

 

And they would be presented to the butterfly in this pattern: 

0 0 2 2 4 4 6 6 8 8 10 10 12 12 14 14 
 

Because adjacent coefficients will be similar, this crudely emulates the original coefficient 

vector.  As you can see, considerable memory savings can be achieved in this manner. 

 

Optimizations: 

 

The optimizations used here are largely cannibalized from the biplex FFT.  There was not quite 

as much to optimize away from this design. 

 

I used the same cheaper butterflies as in the biplex FFT.  Thanks again, Suraj! 

 

I took the mandatory delays at the beginning and end of the improved butterfly and folded them 

together in the outside of the direct FFT.  The first delay element for each stage also goes here.  

This means that it is highly recommended to have at least one delay between each stage of the 

FFT_Direct, since it only adds hardware to 1/4
th

 of the datapath, and will greatly simplify 

placement. 

 

To Do: 
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Add an option to remove the PCIN-connection between the A-BW DSP and the rest of the 

butterfly.  This feature is helpful for unconstrained designs, but it actually hurts for hand-placed 

designs or RLOC-ed designs. 
 

Allow for a 'biplex direct FFT' block/option, which shares coefficient values across two direct 

FFTs 
 
 

(near-ish future) As before, add butterfly-wise RLOC constraints 
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Appendix 3: Spectrometer Documentation 

Dual Polarization, 4096 Channel, 1.5GHz Spectrometer on 

ROACH 
 

User Manual 
 
 

Overview: 

 

This design accepts input from two ADCs (running at no more than 3GSPS each) and computes 

a 4096-point, 8-tap PFB FFT on the data.  It subsequently accumulates the data and releases it to 

the user via the shared BRAM interface. 
 

Usage: 
 In general, this design follows most of the conventions of CASPER spectrometers.  There 

are a few important features to note: 

  

Sync Pulse:  Because this design is meant to be used with very long accumulation lengths, the 

sync pulse is fully managed within the design.  There are no user-available software registers to 

manage the sync generation. 
 

Starting/Stopping accumulation:  By default, the design will not automatically accumulate.  

In order to start an accumulation, set the 'start_acc' software register to '1' and reset it back to '0'.  

This can also be managed via a GPIO pin, as mentioned below. 
 

Continuous accumulation:  By setting the 'cont_acc' software register to '1' while an 

accumulation in in progress, the spectrometer will continuously accumulate new vectors and 

update the shared BRAMs accordingly.  This was originally designed as a 'development' feature 

and was never intended for general use, so use at your own risk. 
 

Accumulation Length:  The design features a configurable accumulation length, via the 

software register 'acc_len'.  Accumulations of up to 2^32 vectors long are supported, but output 

values are subject to overflow.  A conservative worst-case estimate gives a maximum 

accumulation length of 200,000 (about 0.5 seconds).  A noise signal can run for considerably 

longer.  Please note that the vector accumulator does not reset on changes in accumulation 

length.  As a consequence, you should always restart the accumulation after reducing 

accumulation lengths, or your design will appear to be locked up (it will, in fact, be running 

through the full 2^32 vectors)  
 

GPIO pins:  Several GPIO pins have been conscripted as an easier way to send signals between 

a computer controlling the ROACH and external hardware.  GPIO port A has been assigned to 

'Output', and has pins 0 through 5 (inclusive) available for use.  Setting software register 

'to_gpio_a' with an appropriate bit pattern control those pins.  Likewise, GPIO port B has been 
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assigned as an 'Inport' register.  Since two pins are already in use for the accumulation control, 

only three pins are available for input: 2, 3 and 7.  Inputs will appear on 'from_gpio_b'.  Note that 

there is a plastic header covering pin B-7 on my board; I did not test this pin, use at your own 

risk. 
 

<value to assign to 'to_gpio_a'> = (a0) + 2*(a1) + 4*(a2) + 8*(a3) + 16*(a4) + 32*(a5) 

<value appearing on 'from_gpio_b'> = (b2) + 2*(a3) + 4*(a7) 
 
 
 
 
 

Output Format: 
 At the end of the design, the 4096 channels of each spectrometer are broken up into four 

blocks of 1024 channels each.  (thus, eight blocks total for both polarizations). 

The accumulated values are stored as 48-bit, unsigned integers.  The upper 32 bits are stored in a 

separate BRAM for each block, while the lower 16 bits of a given block are shared with another 

block for efficiency purposes.  The sample python script collects all 48 bits, but if acquisition 

time is of the essence, the lower bits could be ignored for a small increase in noise. 
 
 

GPIO Pin Purpose 

A-0 to_gpio_a[0] 

A-1 to_gpio_a[1] 

A-2 to_gpio_a[2] 

A-3 to_gpio_a[3] 

A-4 to_gpio_a[4] 

A-5 to_gpio_a[5] 

B-0 start_acc 

B-1 cont_acc 

B-2 from_gpio_b[0] 

B-3 from_gpio_b[1] 

B-7 from_gpio_b[2] 
 
 

Channel shapes, spectra, etc: 
 

Below is a plot of several channels frequency responses plotted together.  This was generated by 

sweeping a signal generator across the channel's frequencies in fine increments.  The first 

sidelobe is very small, and has a frequency response of -50dB, relative to the passband.  The 

second sidelobe is located in the middle of the adjacent channel, and has a frequency response of 

-55dB, relative to the passband. 
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Typical output from spectrometer: 

 
 

 

Known issues: 
Reducing the accumulation length has a substantial chance to cause the accumulator to lock up 

for the next 3hr, 15min.  Doing so is not recommended.  Workaround:  re-program the fpga when 

starting a shorter accumulation.  This issue can be resolved in a future release, if there is 

sufficient demand. 
 

It is worth noting the presence of harmonics in the spectrum of our output: this appears to be 

caused by the ADCs used in our setup (National Semiconductor 083000s).  The first harmonic is 

generally 25dB to 

35dB below the level of the desired output. 
 

In addition, channel 2048 on both pols is corrupted due to (in my opinion) the gain/offset 

mismatch between the two internal ADCs on each 083000.  Those channels must be ignored. 
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Approximately 1/5
th

 of the time upon programming the FPGA, polarization 1 is corrupted 

beyond use.  The reasons for this are unclear, but reprogramming the FPGA usually remedies the 

problem. 

Polarization 0 always functions normally. Below are plots showing typical spectra with a 

corrupted 

polarization 1.  
 
 

Pol0 is on the left; Pol1 on the right. 
 

Signal generator on: 

 
 
 
 
 

Signal generator off: 

 

 


