

FLIGHT DATA RECORDER FOR THE AMERICAN
FOOTBALL

By

Chris J. Nowak

A project submitted to the
Faculty of the Graduate School of

State University of New York at Buffalo in partial
fulfillment of the requirements for the degree of

Master of Engineering

May 25th, 2003

 - 2 -

 - 3 -

Table of Contents:

1. Abstract 4

2. Background 5

3. Technical Background

 Plan 8

 Implementation 10

4. Data 27

5. Discussion 35

6. Conclusions and Recommendations 36

7. Endnotes 37

8. References 38

9. Acknowledgements 39

10. Appendices

 Appendix A – Parts List 40

 Appendix B – Data Sheets 43

 Appendix C – Schematics 44

 Appendix D – Operating Instructions 47

 Appendix E – Microcontroller Source Code 49

 - 4 -

Abstract:

American Football is a game enjoyed both by participants and spectators, young and old.

The game is played on a field 100 yards long by 30 yards wide, with an inflatable ball that

is somewhat oval in shape with a point on each end. When properly thrown, the ball spins

as it travels, not unlike a bullet fired from a rifled gun barrel. As the ball flies along its

trajectory its spin begins to degrade and it exhibits a wobble. It’s also been observed that

the ball follows a curved path to its target as opposed to a simple ballistic trajectory.

The goal of this project is to develop an electronic data collection system that can be

mounted inside a football to measure, store, and download several seconds of acceleration

data that are sampled while the ball is “in play”. The data recorders that I will design will

each be a small self contained unit with 2 dual axis accelerometers, microprocessor, and 4

memory devices. The entire project will require 2 of these devices to monitor accelerations

in different areas within the football. The electronics are all mounted on professionally

printed circuit boards, powered by a battery, and containing enough electronic memory to

store the data. A total of seven channels of acceleration data will be recorded at a rate of

200 samples per second. Data will be continually stored for at least 10 seconds from the

point that the recording is initiated. The “ball” used for this project will have the familiar

shape and appearance of a football, but will be constructed of foam rubber (a “Nerf”

football) and a zipper for ease of access to the electronics for service, repair, battery

replacement, or future system upgrades. Efforts will be made to keep the weight of the

unit within 2 ounces of regulation, and that the ball will be approximately balanced.

 - 5 -

Background:

This project follows the research done in 2001 for SUNY at Buffalo by David Francis and

Narayana Sundaram about mounting an accelerometer inside a football. They proceeded

to mount a singe tri-axial accelerometer at the center of the ball, and broadcast data from

this accelerometer while in flight to a receiver connected to a desktop PC. 1

Using accelerometers to measure and record data about some sort of event in a moving

body is not new, crash test dummies can have 30 or more accelerometers in them to

measure forces on the different body parts in an automotive crash test. There are products

on the market available to race car owners that will monitor vehicle performance based on

accelerations in each of the 3 principle axes. Recent breakthroughs in accelerometer

design have allowed accelerometers, which were once fairly large, high precision,

expensive instruments, to become much smaller and less expensive. The accelerometers

chosen for this project are actually micro machined semiconductors, in an integrated circuit

package, that can be soldered directly onto a printed circuit board. Some accelerometers

also contain multiple axes of sensitivity, as well as a broad range of acceleration sensing

ability, with their maximum range being as little as 1 or 2 G’s, up to the thousands of G’s.

The accelerometers chosen for this project will be 50 G’s in sensitivity. They are based on

micromachining a differential capacitor into the actual die of the chip. Figure 1 at the top

of the next page shows the basic theory behind the accelerometer technology.

Micromachining, or the manufacture of tiny moving mechanical structures, is considered

to be one of the most significant new technologies since genetic engineering. Funded by

governments, universities, and corporations worldwide, researchers have actually built

motors smaller than the size of a pinhead. They have developed complex manipulators

capable of grasping a single red blood cell and demonstrated prototype micromachines,

ranging from gear trains to microscopic steam engines - notions once reserved for science

fiction writers. 2

 - 6 -

Surface micromachining builds layers of material on top of a silicon wafer and then

selectively etches material away to make sensor structures, as opposed to machining

material out of the wafer itself (Figure 2). 4

Because it is easy to electrically isolate the different structural components, most

implementations use a capacitive sensing technique to measure the movement of the mass

due to acceleration. This is a significant advantage as the capacitors drift little over

temperature and therefore temperature compensation circuitry is minimal. 6

Analog Devices uses an integrated approach that combines the sensor and the electronics

on a single chip. They call this process is called iMEMS, or integrated-MEMS to highlight

the more integrated nature of this approach. The advantages of the surface approach are

versatility in design, the ability to build a two axis sensor on a single chip, and a built-in

capacitive sensing technique that is superior to the piezoresistive approach. The

disadvantage is that the sensor structures are much smaller, and have lower mass.

Deflections of the structures are minute, generating capacitive changes at the attofarad

Figure 1 – The basic
theory on how a
differential capacitor is
used to measure
acceleration 3

Figure 2 – Side view of iMEMS surface micromachined structure. 5

 - 7 -

level; the ability of the electronics to sense these small changes sets the resolution limit of

the device. 7

Figure 3 (above) shows a photograph taken of an actual sensing element on an

accelerometer, and Figure 4 (below) shows the sensing elements in place on the die of the

ADXL250. 9

The Calspan Corporation, now part of Veridian, has used these small inexpensive

accelerometers in systems that monitor driving behavior in automobiles, as well as in

systems designed to automatically detect if the vehicle has been in an accident and

assistance is required. Other uses for these small accelerometers include vibration

measurement, tilt sensing, and also as a replacement for a shock switch, which is a sensor

that can determine if a package was handled roughly during shipping. 11

Figure 3 – iMEMS
Accelerometer showing
structural beam and
surrounding electronics 8

Figure 4 – Sensing Elements
(pink areas) in place on the
die of the ADXL250 10

 - 8 -

Technical Background:

Plan:
The plan for the design of the project began with the idea to expand and improve upon the

project design of David Francis and Narayana Sundaram. Their idea of mounting a single

tri-axial accelerometer in the center of a football was a good one, however there were flaws

in the design mostly revolving around technology available and selection of components.

My first idea was to do away with the accelerometer at the centroid of the ball, and instead

mount accelerometers a radially around the circumference of the ball, as well as at the

points. The electronics would be laid out not on a circuit board per se, but instead on a

“flex circuit” of Kynar film with copper traces. This would then be held in place between

the ball’s bladder and outer shell. In researching available accelerometers, it was decided

early on that an integrated circuit or “chip” style package was desirable, for purposes of

both cost and of ease of integration. Because it could be mounted directly on a printed

circuit board, or flex circuit, it eliminated excess cables, connectors, and bracketry that

would otherwise be required. Analog Devices manufactured the least expensive

accelerometers I found that would suit my needs. They were available in single and dual

axis configurations and in varying sensitivities. The orientation for the sensing elements

for these was in the X, or X-Y axis, on the plane of the chip. Motorola had similar form

factor accelerometers, and also made a single axis accelerometer that was sensitive normal

to the chip. Details of how these accelerometers function was presented in an earlier

section of this report.

 This idea was abandoned for a number of reasons, such as expense of the manufacture of

the flex circuit, selection of accelerometers available, cost of other electrical components,

and also of course, my own ability to accomplish this task. It was also decided that

although this would be a very packageable solution, the lack of sensors at the centroid

would make the calculation of the ball’s position with respect to the ground much more

difficult, as well as the need for at least some of the accelerometers to be sensitive in the

normal direction. It was decided that if accelerometers would be needed at the centroid,

then they could all be attached to 2 PCB’s (printed circuit boards) and somehow suspended

within the ball. After consulting with an expert in electrical design, who had experience

with the Analog Devices products, and who volunteered to assist me in answering

technical questions and offering advice, the configuration of four bi-axial accelerometers

 - 9 -

was chosen. Two accelerometers would be placed at the centroid, to measure accelerations

of the ball regardless of spin and wobble; one at a point of the ball to capture and end over

end rotations, and one a distance off to the side of the ball to measure roll velocity. The

raw acceleration data would be processed by a low pass Butterworth multiple-feedback

(MFB) filter for the ADXL250, seen below in Figure 5. The filtered data will be read by

one of two Microchip PIC16F876 microprocessors, which has 5 channels of built in A/D

Conversion, each of which is responsible for 4 channels of acceleration (2 accelerometer

chips). Each channel of acceleration data will then be written to a 64k EEPROM

(electronically erasable programmable read only memory) chip for storage.

To extract the data form the ball after the event, a serial cable is plugged into the ball, and

the data is continuously looped and can be captured by a communications program such as

Microsoft’s HyperTerminal. The data can be imported into a spreadsheet and analyzed

further.

The plan in the previously described paragraphs is the third in a series of designs that was

attempted for this project, and the first one to actually succeed. Plan A was a more elegant

and ambitious design that involved a single PCB and a larger single microprocessor and

conventional SRAM (as found in a PC), plan B involved 4 small self contained data

acquisition units, each of which was able to record 2 channels of acceleration to

EEPROMS . Details of the design and implementation problems of those designs will be

addressed in a later section of this report.

Figure 5 – Schematic of a
Multiple Feedback Filter

 - 10 -

Implementation:

The electronics for Plan A can be seen on the following pages in Figures 6-9 with the

major components labeled. This plan was abandoned because I was never able to

successfully read from, and I’m assuming also to write to, the SRAM device. The

schematic, which can be seen in Appendix C, called for port D of the microprocessor to

have 3 separate functions;

1. To send the high byte of the memory address (a 17 bit number) to one of the flip

flop chips

2. To send the low byte of the memory address to the other flip flop chip

3. To send/receive the data to/from the SRAM chip

A “flip flop” is actually a bistable multivibrator, which is also a type of memory device. In

this case it’s used to remember what either the high or low byte of the memory address is.

It had 8 input and 8 output pins, as well as a clock pin. When the clock pin is manipulated,

it will latch the output pins to match the input pins. Each of these functions was controlled

in software by enabling a clock pin on each of the chips (flip flop 1, flip flop 2, and

SRAM) at the right time to determine which chip was receiving the data across the

microprocessor’s Port D. This process was further complicated by having to toggle the

pins between being output pins for generating the address and writing to memory, to input

pins for reading from memory. I was never able to identify cause of the problem in either

hardware of software. The decision was made to abandon this approach and attempt a

more brute force approach to solve the problem. The factors influencing that decision are

as follows:

• This was my first ever attempt at designing a PCB, and no less than 12

mistakes were identified in the board layout including missing traces,

crossed traces, and misplaced traces. All these were fixed after the fact

with a razor blade and fine wire. I couldn’t find any more mistakes on the

memory area of the PCB, but that didn’t convince me that there wasn’t

one.

• The code required to manipulate Port D was complicated

• Because surface mount components were chosen for this design, the

questionable part of the circuit could not be taken off the PCB and tested

on a breadboard to aid diagnosis

 - 11 -

• My lack of experience reading data sheets resulted in my running the clock

pins to the flip flop chips and the SRAM chip in reverse, possibly

damaging the chips. (The clock pin was “active low, which means that it is

held high normally, and then pulled low to make something happen. I had

been driving it as if it were active high)

PIC16F877
microprocessor

Figure 6 – Front of PCB for
Plan “A” showing major

components

Accelerometers
SRAM

9V Battery

Figure 7 – Rear of PCB for
Plan “A” showing major
components

Flip-Flop

 - 12 -

Figure 8 – PCB Layout. This design was created with software downloaded from
ExpressPCB.com, who was the manufacturer of the PCB. This software both allows you to lay
out the traces and components on the PCB, and also automatically transfers the information over
the internet to the manufacturing facility. The printed bare boards arrived 3 business days later.

 - 13 -

Figure 9 – Front and back of
PCB as received from
ExpressPCB.com

Front

Back

 - 14 -

 Figure 10 – Assembled electronics shown in football shaped enclosure

 - 15 -

The design cycle for Plan B was much shorter than that of Plan A, since there were fewer

learning curves involved. A smaller microprocessor was chosen, as well as EEPROMs for

the memory unit instead of the SRAM. The schematic for the Plan B design can be found

in Appendix C. In a trade off for speed, as Plan A was expected to record 1000 samples per

second, per acceleration channel, the EEPROMs could only record 200, but the advantage

being in the simplicity of the interface. The data is written to and read from them via a SPI

serial interface, which is a much less complex procedure, from both hardware and software

standpoints. The board layout for Plan B can be seen below in Figure 11. A photo of the

assembled 2 channel board can be seen on the following page in Figure 12.

Figure 11 – PCB Layout for Plan B. The design is seen twice here, the board
was ordered from a stock size, and the layout fit on the available space 2 times.
After the finished boards were received, they were cut in half.

 - 16 -

The flaw in the design of Plan B that ultimately led to the decision to move on to Plan C

was in the choice of the microprocessor. The Microchip PIC16C717 was chosen based on

its features, most notably, 5 built in A/D converters, a direct SPI interface, and an 18 pin

surface mount package. The fact that was overlooked was that it was not a “flash

programmable” microprocessor, but was instead a “write once” microprocessor. After

programming, if any problems were discovered in the code, and the software needed

revising, the microprocessor had to be replaced with a new one. If I had realized this when

I chose it, I would have not soldered it directly to the board, but instead would have had a

socket placed there so the microprocessor could be easily changed. I also only had a few

of them on hand that I received as samples, and felt that it would not be practical to de-

solder and re-solder the microprocessor as many times as I’d need to, to make the device

work. I attempted to locate an alternate microprocessor that had the same pin layout,

which was flash programmable, but failed to find an exact match. However, I found one

that was close, but the programmer and compiler I was using was not compatible, and an

upgrade for those was prohibitively expensive.

Figure12 – Plan B assembled PCB

Microprocessor

EEPROM Accelerometer

 - 17 -

Plan C was devised as a combination of the better design aspects of both Plan A and Plan

B. It was decided that rather than needing 4 separate self contained units, a more

integrated approach was attractive, similar to Plan A. The design details from Plan B that

were retained were the EEPROM memory, with a separate chip for each channel of

acceleration data, and the idea of multiple microprocessors on multiple, less complex,

identical PCBs. Even Plan A was not truly a “one PCB” design as there was a small area

of the main board that was cut out, and turned 90º to the plane of the main PCB and

reattached. This was done so that an accelerometer that is only sensitive in the plane of the

chip could be turned on end, so that the chips Y axis would be the Z axis of the main

board. The can be seen below detailed in Figure 13.

Accelerometer turned 90º to plane
of main PCB to measure Z axis
data at the centroid of the ball

Accelerometer at centroid of ball to
measure data in the X/Y plane

Figure13 –Detail of modification to Plan A board to allow
triaxial acceleration data to be captured at centroid of the ball

 - 18 -

To maintain the ability to capture triaxial data from the ball’s centroid, but to allow all the

PCBs to identical, and therefore requiring only a single board layout design, a slotted

board was designed that allowed 2 boards to “nest” together, similar to a divider in a

packing container. The board layout can be seen below in Figure 13, and photos of the

boards both individually and also nested together can be seen in figures 15-18 on the

following pages.

In the notation in Figure 15 a vacant area is shown for an accelerometer. The circuit is

designed so that an accelerometer is placed in either the location denoted as vacant (U13),

or in the location at the middle of the left side of the board (U4), but not both. The data

output pins for both locations are wired together and share common low pass filters for the

X and Y accelerations before the signal is sent to the microprocessor for A/D conversion

and then on to the EEPROMS for storage. These low pass filters were present in Plans A,

B, and C, and will be detailed out in a later section. Accelerometers at these locations are

Figure14 – PCB Layout for Plan C. The Blue area with the holes in the
middle right side of the board is material that would need to be removed
after the boards were received

 - 19 -

used to measure the centripetal accelerations from the spinning and/or tumbling ball to

better formulate a complete picture of the ball’s motion.

Microprocessor

Accelerometers

EEPROMs

Vacant location for accelerometer
mounting (see text)

Figure15 – Assembled PCB. Two (almost) identical units are required to
record all the data inside the football.

 - 20 -

Figure16 – Two assembled PCBs nested together. On Board 1 the
accelerometer is placed in the U4 location, which is nearest the “point” of the
football, and on board 2 the accelerometer is placed in the U13 location

Figure17 – Alternate view of Board 1 and Board 2 nested together

Accelerometer at
the U4 location

 - 21 -

Each channel of acceleration has a Multiple Feedback Butterworth style of filter in place to

remove the high frequency components of the acceleration data. A freeware program

called Filter Pro which is a low pass filter design program was downloaded from

www.ti.com, the Texas Instruments website. A screen capture of the program can be seen

on the next page in Figure 19.

This software allows you to easily select the sizes of the resistors and capacitors needed to

accomplish the desired result. The Multiple Feedback (MFB) or Infinite Gain topology

places two feedback paths around an op amp. This Filter is less sensitive to component

values that the Sallen-Key topology, which uses an op amp in a noninverting gain mode.

The Sallen-Key filter provides excellent passband gain accuracy. The Butterworth filters

have the flattest possible passband response and a smooth transition into the stopband. The

MFB Butterworth filter was recommended to me by a colleague that has past experience

working with the ADXL250 and a Pic processor with built in A/D conversion.

Accelerometers at
the U3 location
forming the
triaxial unit at the
centroid of the ball

Figure18 – Two assembled PCBs nested together. The accelerometers at the
U3 position of each PCB are 90º opposed to each other at the centroid of the
ball. The X axis of the accelerometer on board 2 is recorded as the Z axis
acceleration at the centroid.

Accelerometer at
the U13 location

 - 22 -

I had chosen 200 samples per second per channel to be my target data acquisition rate, and

as such selected 200 Hz as the cutoff frequency. Filter design is a very complex area of

electrical engineering, and as such I was relying heavily on advice from people that are

much better versed in it than I. At some point I had a misunderstanding of exactly how to

enter the criteria into Filter Pro to achieve the result that I wanted. After the unit was built

and testing had begun, it was learned that what I actually should have had was a filter with

a cutoff frequency in the range of 75-100 Hz. This cutoff frequency has to do with the

sampling theorem which states that to reconstruct the frequency content of a measured

signal accurately, the sample rate must be more than twice the highest frequency contained

in the measured signal. If the filter was set at a 200 Hz cutoff, the sampling rate would

have to be increased to 400+ samples per second to meet these criteria. The 2 nested PCBs

of the football unit are joined together by hot melt glue that had encapsulated some of the

Figure19 – Screen capture of Filter Pro, a freeware
program to aid in the design of low-pass filters

 - 23 -

resistors and capacitors that would need to be replaced in order to change the filter’s cutoff

frequency, and because of time and expense, rebuilding the entire unit, or trying to remove

the glue was not an option. The EEPROM chosen as the storage device was limited to

performing a read or write action with a minimum of 5ms between each action. This limits

the EEPROM to recording 200 samples per second. An additional EEPROM could be

designed in and have the data sent to alternating EEPROMs to get 400+ data samples per

second, but again, extensive hardware redesign was not an option. What was decided on as

a solution was to “oversample” the accelerometer, or to take more samples than you

record, since the microprocessor was very capable of working faster, and to average 2

consecutive samples from the accelerometer at 400 samples per second thus recording 200

samples per second. The algorithm for this process was as follows:

1. do the A/D conversion on x1, y1, x2, and y2

2. save y1 and y2 each to a dummy variable

3. do the A/D conversion on x1, y1, x2, and y2

4. y1 = (y1 + stored y1)/2 and y2 = (y2 + stored y2)/2

5. save y1 and y2 to memory

6. save x1 and x2 each to a dummy variable

7. do the A/D conversion on x1, y1, x2, and y2

8. x1 = (x1 + stored x1)/2 and x2 = (x2 + stored x2)/2

9. save x1 and x2 to memory

10. go to step 2 and repeat for the duration of the data recording time envelope

The code for each of the two boards in the football is virtually identical, and the exact same

code could be used. The only differences between the two versions are in the interface with

HyperTerminal. This stems from the fact that although the 4 channels of acceleration data

available on the secondary board, only three are useful. When the primary board

downloads, it streams out via a serial cable the following information:

1. Start of data recording

2. End of data recording

3. Beginning of data dump

4. Data in tab delimited columns;

a. Memory Address

b. Acceleration X1

 - 24 -

c. Acceleration Y1

d. Acceleration X2

e. Acceleration Y2

5. End of data dump

6. go to step 3 and loop indefinitely

The secondary board works the same except for step 4, which downloads the following

a. Memory Address

b. Acceleration Z1 (actually the X channel of accelerometer U3)

c. Acceleration X3

d. Acceleration Y3

The code for the football was written in PicBasic Pro, which is a compiler based on the

BASIC computer language, and very similar to the code used to program the Parallax

family of Basic Stamps. The user’s manual and disk can

be seen to the left in Figure 20. The final code for each of

the 2 PCBs (as well as for some of prior design iterations)

in the football can be found in Appendix E. The actual

coding is done in a program called CodeDesigner Lite, or

CD Lite. A screenshot of CD Lite can be seen below in

Figure 21.

Figure 21 – Screen capture
of CodeDesigner Lite, a
programming environment
used with PicBasic Pro.

Figure 20 – PicBasic Pro 13

 - 25 -

Upon writing the code in PicBasic the Code was compiled into .hex and .asm files that

could be used by a programmer to install the software on to the Pic Microcontroller.

The programmer that was used was the EPIC Programmer (see below in Figure 22) by

microEngineering Labs Inc.

The programmer runs off two 9-volt batteries or an AC adapter (16VDC, 500ma). It

plugs into the PC parallel printer port using a 25-pin male to 25-pin female parallel

printer extension cable. It connects to the ICSP (in circuit serial programming) header

on each of the football PCBs with a custom built cable. The design of a cable such as

this is detailed in the microEngineering Lab website, and in the schematics seen in the

appendix of this document.

After a period of software debugging and experimental code writing, the code for each

of the two boards was finalized and the microprocessors were flash programmed a final

time. This code can be found in Appendix E at the end of this document. It was at this

point that data collection began.

The final step before collecting real data was to install the electronics into a football, or

in this case a “football like” enclosure. As seen in Figure 10 (page 8) Plan “A” utilized

a hard plastic football shaped enclosure, which was actually the carcass of a football

phone. It was the same size as a real football, and with the system installed weighed

only a couple ounces more. Both of those features were attractive, but it also had

serious drawbacks. Its primary drawbacks were that it was rather fragile, and more

Figure 22 – The pocket-sized EPIC Plus
Programmer quickly and easily programs
most PICmicro microcontrollers. The
basic programmer includes an 18-pin
socket for programming 8-, 14- and 18-pin
PICmicro MCUs. The connection for
ICSP is circled in red. 14

 - 26 -

importantly, poorly balanced. For Plan “C” it was decided that something a little more

robust might be required. A Nerf football was settled upon as a reasonable

compromise. After a failed search for an “official size” Nerf football, a smaller

football was chosen. The football was sectioned into halves along the plane in the

middle of the ball, so that it would split into a “laces half, and a “non-laces” half.

Additional material was then removed to create voids that then would accept the

electronics, batteries, wires, etc. To return the ball into a single unit, a variety of

mechanisms were considered, ranging from tape, to Velcro, to snaps. The solution

finally chosen was a zipper. Since the current design mandated that the electronics be

exposed for downloading data to a PC, the zipper provided an ideal access control

device. The zipper was secured to the ball with cloth gaffer’s tape and adhesive glue.

A LED from one of the PCB is poked through the ball to tell the user the status of the

data recorder. The electronics can be seen in the ball below in Figure 23 -24.

Figure 23 – Electronics
installed into the Nerf
football

Figure 24 – Zipper
closure. The green arrow
points out the status LED

 - 27 -

Data:
Data collection began with some bench testing of the PCBs individually. The first test

performed involved holding the boards and just shaking and wiggling them to induce some

random accelerations. A sample plot of the data can be seen below in Figure 25. Test data

was also collected for the other PCB, which looked similarly random. At this time the

programming on the 2 boards was identical, and as such both boards had channels X1, Y1,

X2, and Y2.

Preliminary Test Data

110

115

120

125

130

135

140

0 100 200 300 400 500

Data Sample

A
cc

el
er

at
io

n
U

ni
t

X1 Y1 X2 Y2

The coordinate system for the football was defined as seen on the following page in Figure

26. After reprogramming the boards to work together, the seven channels of data to be

collected were labeled X1, Y1, X2, and Y2 for the 4 channels available on the board in the

X-Y Plane of the ball, and Z1, X3, and Y3 for the board in the Y-Z Plane of the ball. X1,

Y1, and Z1 are nearest the centroid of the ball (which will be dubbed Accelerometer 1

from now on), X2 and Y2 are at the “forward point” of the ball (which will be dubbed

Accelerometer 2) , and X3 and Y3 are offset from the centroid of the ball along Yb (which

will be dubbed Accelerometer 3).

Figure 25 – Preliminary Test Data

 - 28 -

The next step in data collection was to take some baseline data to determine calibration

points for the various accelerometers. Nominally, at 0g, each accelerometer would register

128 in what I’m calling “acceleration units” but is actually the raw value stored as part of

the 8-bit analog to digital conversion of the voltage output of the ADXL250 accelerometer,

which is equivalent to 2.5 volts. There is some variation between the 4 accelerometers,

and thus the test data seen in the following figures shows the accelerometers either under -

1, 0, or +1 g’s of acceleration depending on the orientation of the ball. Figure 27 is a graph

showing all seven channels of recorded data, and 28-30 is the same data shown per

accelerometer. The data received for channel Z1 fluctuates rapidly between 128 and 129

when sitting at 0g. Once the accelerometer has been exposed to accelerations under a

power on, this appears to subside. The other channel of the physical accelerometer chip

that Z1 is a part of is not relevant, as it is redundant with Y1, but it does not exhibit this

behavior.

Figure 26 – Axis Definitions

 - 29 -

Calibration Rolls

118
120
122
124

126
128
130
132

0 500 1000 1500 2000

Sample (1/200 sec)

A
cc

el
er

om
et

er
 U

ni
ts

Z1 X3 Y3 X1 Y1 X2 Y2

Laces Up, LED Front Roll 90° About X Axis Laces Up, LED Front Roll 90° About Y Axis

Accelerometer #1 Calibration

122

124

126

128

130

132

0 500 1000 1500 2000

Time (1/200 second)

A
cc

el
er

at
io

n
U

ni
ts

Z1 X1 Y1

Figure 27 – Baseline Data For All
Accelerometers

Figure 28 – Baseline Data For
Accelerometer #1

 - 30 -

Accelerometer #2 Calibration

118

120

122

124

126

0 500 1000 1500 2000

Time (1/200 second)

A
cc

el
er

at
io

n
U

ni
ts

X2 Y2

Accelerometer #3 Calibration

120

122

124

126

128

130

132

0 500 1000 1500 2000

Time (1/200 second)

A
cc

el
er

om
et

er
 U

ni
ts

X3 Y3

Figure 29 – Baseline Data For
Accelerometer #2

Figure 30 – Baseline Data For
Accelerometer #3

 - 31 -

After acquiring baseline data, I began to simulate actual conditions present in the motion of

the ball as best I could to determine if the data I was going to receive from an actual throw

could be successfully interpreted. The graph seen below in Figure 31 is data collected

from an induced “spin” on the ball, which by the previously defined coordinate system

would be classified as a “roll condition”. I held the ball in a laces up orientation, induced

the roll, with very little horizontal displacement of the ball, and some limited vertical

displacement, and then caught the ball again before it struck the ground. The data from

Accelerometer #1 was of little interest and was omitted from the graph to aid in clarity.

Spin About Long Axis
Accelerometers #2 & #3

110

120

130

140

150

0 50 100 150 200 250 300

Time (1/200 second)

A
cc

el
er

at
io

n
U

ni
ts

X2 Y2 X3 Y3

The most noteworthy data in the above figure is the data from channel “X3.” The roll

condition is introduced after about 2.5 seconds of sampling had begun (50/200ths of a

second) as can be seen by the activity across all 4 displayed channels. The X3 value shifts

abruptly from ~131 to 112, and then gradually up to about 116, before the ball was caught,

which is the event at about 225 on the time scale. This is the centripetal acceleration

induced by the rotation. At ~0.4g per “acceleration unit” this equated to an induced

acceleration of ~7.6 G’s, which degraded to ~6 G’s before the roll was stopped. The offset

from the axis of rotation is 1 inch. The rpm’s of the ball can be calculated from this as

follows:

Figure 31 – Roll about Xb with
minimal horizontal displacement

 - 32 -

A = 7.6 * 32.2 ft/sec^2 = 244.72 ft/sec^2

N is the revolutions per second of the ball

w is the angular velocity

A = v^2/r and therefore v = sqrt(A*r) so that v = 15.64 in/sec

Since r = 1, w = v

N = w/2π therefore N = 15.64/6.28 = 2.49 RPS

The ball rolled at 149 rpm

Another noteworthy bit of data from the graph is the “Y3” channel is the sinusoidal

oscillation present. That is an acceleration that is induced by the “wobble” of the ball as it

spins, which is an observed phenomenon present in actual football flight.

The next test to be preformed was an actual “forward pass” of the football. The conditions

were a pass of ~25 yards, thrown to the best of my quarterbacking abilities. The ball was

not caught and instead impacted the ground. The data from Accelerometer #3 can be seen

below in Figure 32.

25 Yard Tight Spiral Pass
Accelerometer #3 Data

80

90

100

110

120

130

140

150

0 100 200 300 400 500 600 700 800
Time (1/200 second)

A
cc

el
er

at
io

n
U

ni
ts

X3 Y3

Figure 32 – 25 Yard “Dropped”
Forward Pass

 - 33 -

Similar to the data seen in the previously discussed roll condition test, X3 Exhibits

predictable behavior. A sudden and abrupt change of the acceleration of X3, that gradually

over time drifts back closer to it’s quiescent value, followed by a chaotic event and then

some unpredictable oscillations. After some interpretation, what is visible is that at the

point in time the ball is released a roll condition is initiated. The angular velocity of the

roll decreases over time as the ball flies to the target. The oscillation in Y3 is again

characteristic of the wobble of the pass, as the desirable “spiral” condition of the forward

pass was not ideal. It can be seen in the Y3 data that the wobble changes over time as the

roll speed is reduced. The frequency is gradually decreasing, and the amplitude is slightly

increasing. A longer pass thrown by a stronger individual ought to show continued loss

“spiral integrity” as the ball fights aerodynamic forces.

The final test preformed was to see if undesirable pass characteristics could be discerned

and differentiated from good characteristics, the good characteristics being a fast tight

spiral with little wobble. Seen below in Figure 33 is what is usually referred to as an “end-

over-end” or “tumbling” pass, which is a result of little if any roll, and excessive yawing

and/or pitching.

End Over End Pass
Accelerometers #2 & #3

90

100

110

120

130

140

150

0 100 200 300 400 500 600

Time (1/200 second)

A
cc

el
er

at
io

n
U

ni
ts

X2 Y2 X3 Y3

Figure 33 – 20 Yard “Dropped”
Tumbling Pass

 - 34 -

This pass initiated be holding the ball at its “point” and flipping it high into the air with an

underhand toss. An effort was made to impart as little roll on the ball as possible. It can

be seen that Y2, X3, and Y3 have and oscillatory behavior, but of small magnitude. The

data of X2 however shows that same sort of characteristics that was seen in X3 in the

previous examples, that being that large change in acceleration, gradually decaying back

nearing to the quiescent value.

 - 35 -

Discussion:
The data presented in the previous section focused primarily on the recordings of the

accelerometers located at the periphery of the ball, and paid little attention to the

accelerometer at the centroid. The reasons for this are two-fold;

1. The accelerations at the centroid are relatively small when compared to the values

of the other 2 accelerometers

2. The PCB that records X1, Y1, X2, and Y2 seems to have an intermittent problem

that I’m unable to fully diagnose.

To elaborate on the second point, the electronics seem to function perfectly while sitting on

a workbench, or collecting random data such as violently shaking the ball, the impact

between the ball and the ground, some good data like the “spin” test data that was

presented in Figure 28 (page 30), the calibration roll test, etc. Where the problem seems to

manifest itself is during an actual forward pass. As you can see below in Figure 34, the

data seems to collect without variation, and then suddenly begins to respond. Fortunately

for the sake of this project the data that is invalid is of the least interest for the test

performed, but it is a problem that must be solved before the football flight data recorder

can be declared complete. My primary theory for the problem is that a soldered connection

is losing contact somewhere when subjected to the sustained high G’s imparted by a fast

roll condition of the ball.

Data Collection Problem

118

120

122

124

126

128

130

0 100 200 300 400 500 600 700 800 900 1000

Time (1/200 second)

A
cc

el
er

at
io

n
U

ni
ts

X1 Y1 X2 Y2

Figure 34 – Data Recording Problem

 - 36 -

Conclusions and Recommendations:
This project proved to be a much more substantial learning experience that I originally

thought it would be. The data recorder that I designed served its purpose, however it if far

from being optimized. If I were to continue development, the next iteration would see the

following improvements:

• More optimized power source, the 9v batteries work well, but they are big and

heavy

• Instead of through hole resistors and capacitors, I’d switch to surface mountable

chip versions

• Surface mount IC’s for the Pic and EEPROMS

• An additional EEPROM per channel, which would allow 400 samples per second

to be recorded

• Wireless serial communication for transmitting the data from memory to a PC for

analysis, either with an infrared link or RF communication.

• Better integration into the ball itself, with the switches and download ports (if

necessary) available on the exterior of the ball.

• More development of a trigger algorithm that would allow for an indefinite window

for data capture

• A custom downloading application that will have 2 way communication with the

ball to start the download only when it is ready to receive the data

• Scale the accelerometers to increase resolution

• Diagnose and repair the intermittent data collection problem

The design being what it was, I feel that it was a good solid foundation on which to build a

football analysis/simulation system. The goal of this project was to capture 3 axis of

acceleration at the centroid of the ball, as well as attempt to measure spin and wobble that

are important contributors to a balls in flight characteristics. I believe that all those goals

were met. This project taught me a great deal about integrating an electronic measurement

system to capture real world events, electronics in general, microprocessors in particular,

and also, and possibly most importantly, that it is possible to look forward to and enjoy

working on engineering problems.

 - 37 -

Endnotes:

1. Accelerometer for Football Aerodynamics Study; Francis, David and Narayana

Sundaram, SUNY at Buffalo, 2001

2. Analog Devices, www.analog.com

3. ibid

4. ibid

5. ibid

6. ibid

7. ibid

8. ibid

9. ibid

10. ibid

11. ibid

12. Filter Pro; Texas Instruments, www.ti.com

13. MicroEngineering Labs; www.melabs.com

14. ibid

 - 38 -

References:

Accelerometer for Football Aerodynamics Study; Francis, David and Narayana

Sundaram, SUNY at Buffalo, 2001

The Art of Electronics 2nd Edition; Horowicz, Paul and Winfield Hill, Cambridge

University Press, 1989, Reprinted 2001

http://www.analog.com

http://www.digikey.com

http://www.expresspcb.com

http://http://www.melabs.com

http://www.ti.com

PicBasic Pro Compiler; microEngineering Labs, Inc., 2002

Programming and Customizing PICmicro Microcontrollers 2nd Edition; Predko, Mike,

McGraw-Hill, 2001

 - 39 -

Acknowledgements:

The completion of this project would have been impossible without the input and guidance

of the following individuals and/or institutions (in alphabetical order):

• Mr. Daniel P. Fuglewicz

• Mr. James Hussar

• Dr. Venkat Krovi

• Dr. William Rae

• Mr. David G. Schabel

• Veridian Engineering

The all have my utmost thanks and appreciation for their advice, moral support,

understanding, and any other burdens which I bestowed upon them.

 - 40 -

Appendix A - Parts Lists:

Parts List

Plan A

Item Qty Rqd Part Description package unit price
sub
total

1 22 0.1 uF Capacitor, Ceramic .1" leads $0.16 $3.52
2 2 22 pF Capacitor, Ceramic .1" leads $0.07 $0.14
3 8 0.022 uF Capacitor, Ceramic .1" leads $0.18 $1.44
4 8 0.033 uF Capacitor, Ceramic .1" leads $0.18 $1.44
5 1 47 uF Capacitor, Electrolytic .1" leads $2.85 $2.85
6 2 ADXL250JQC Accelerometer 14 pin $17.00 $34.00
7 1 LM7805 Voltage Regulator TO-220 $0.48 $0.48

8 1 LM358 Op-Amp
8 pin
SOIC $0.50 $0.50

9 1 20 MHz Crystal HC-49U $0.64 $0.64
10 2 ADXL210JQC Accelerometer 14 pin $17.00 $34.00

11 1 PIC16C877 Microprocessor
44 pin
QFP $18.99 $18.99

12 1 Bi-Color LED 5mm $0.90 $0.90
13 1 Pushbutton Switch NO $1.00 $1.00
14 1 128k SRAM $3.49 $3.49
15 12 4.7k Resistor 5% 1/4 watt $0.06 $0.67
16 12 6.27k Resistor 1% 1/4 watt $0.19 $2.28
17 4 13.9k Resistor 1% 1/4 watt $0.19 $0.76
18 6 10k Resistor 5% 1/4 watt $0.06 $0.34
19 1 500 ohm Resistor 5% 1/4 watt $0.06 $0.06
20 2 Flip Flop $2.47 $4.94
21 1 Custom PCB $152.00 $152.00

 90
Total
Cost $218.46

 - 41 -

Parts List

Plan B

Item Qty Rqd Part Description package
unit
price

sub
total

1 12 0.1 uF Capacitor, Ceramic .1" leads $0.16 $1.92
2 2 22 pF Capacitor, Ceramic .1" leads $0.07 $0.14
3 2 0.022 uF Capacitor, Ceramic .1" leads $0.18 $0.36
4 2 0.033 uF Capacitor, Ceramic .1" leads $0.18 $0.36
5 1 47 uF Capacitor, Electrolytic .1" leads $2.85 $2.85
6 1 ADXL250JQC Accelerometer 14 pin $17.00 $17.00
7 1 LM7805 Voltage Regulator TO-220 $0.48 $0.48

8 1 LM358 Op-Amp
8 pin
SOIC $0.50 $0.50

9 1 20 MHz Crystal HC-49U $0.64 $0.64

10 2 AT25320 Serial EEPROM
8 pin
SOIC $3.21 $6.42

11 1 PIC16C717 Microprocessor
18 pin
SOIC $2.50 $2.50

12 1 Bi-Color LED 5mm $0.90 $0.90
13 1 Pushbutton Switch NO $1.00 $1.00
14 1 Pushbutton Switch NC $1.00 $1.00
15 3 4.7k Resistor 5% 1/4 watt $0.06 $0.17
16 4 6.27k Resistor 1% 1/4 watt $0.19 $0.76
17 2 13.9k Resistor 1% 1/4 watt $0.19 $0.38
18 2 10k Resistor 5% 1/4 watt $0.06 $0.11
19 1 500 ohm Resistor 5% 1/4 watt $0.06 $0.06
20 1 Custom PCB $15.50 $15.50

 42
Total
Cost $46.72

 - 42 -

Parts List

Plan C

Item Qty Rqd Part Description package
unit
price

sub
total

1 20 0.1 uF Capacitor, Ceramic .1" leads $0.16 $3.20
2 2 22 pF Capacitor, Ceramic .1" leads $0.07 $0.14
3 4 0.022 uF Capacitor, Ceramic .1" leads $0.18 $0.72
4 4 0.033 uF Capacitor, Ceramic .1" leads $0.18 $0.72
5 1 47 uF Capacitor, Electrolytic .1" leads $2.85 $2.85
6 2 ADXL250JQC Accelerometer 14 pin $17.00 $34.00
7 1 LM7805 Voltage Regulator TO-220 $0.48 $0.48

8 2 LM358 Op-Amp
8 pin
SOIC $0.50 $1.00

9 1 20 MHz Crystal HC-49U $0.64 $0.64
10 4 AT25640 Serial EEPROM 8 pin DIP $3.21 $12.84
11 1 PIC16C876 Microprocessor 28 pin DIP $14.98 $14.98
12 1 Bi-Color LED 5mm $0.90 $0.90
13 1 Pushbutton Switch NO $1.00 $1.00
14 1 Pushbutton Switch NC $1.00 $1.00
15 6 4.7k Resistor 5% 1/4 watt $0.06 $0.34
16 8 6.27k Resistor 1% 1/4 watt $0.19 $1.52
17 4 13.9k Resistor 1% 1/4 watt $0.19 $0.76
18 2 10k Resistor 5% 1/4 watt $0.06 $0.11
19 1 500 ohm Resistor 5% 1/4 watt $0.06 $0.06
20 2 Custom PCB $20.67 $20.67
21 1 10 position dip switch $0.79 $0.79
22 1 SPDT slide switch $1.15 $1.15
23 2 9v battery $3.65 $7.30
24 2 1/8" phono jack female cable $2.58 $5.16

 74
Total
Cost $72.54

 - 43 -

Appendix B - Data Sheets:
Microchip:
 16F876/16F877:
http://www.microchip.com/download/lit/pline/picmicro/families/16f87x/30292c.pdf

 16C717
http://www.microchip.com/download/lit/pline/picmicro/families/16c71x/41120b.pdf

Atmel
 AT25640 EEPROM
http://www.atmel.com/dyn/resources/prod_documents/doc0675.pdf

Cypress
 SRAM
http://rocky.digikey.com/WebLib/Cypress/Web%20Data/CY62128BLL.pdf

Texas Instruments
 Flip Flop
http://www-s.ti.com/sc/psheets/scls148e/scls148e.pdf

Analog Devices
 Accelerometer ADXL202/210
http://www.analog.com/UploadedFiles/Datasheets/70885338ADXL202_10_b.pdf

 Accelerometer ADXL250
http://www.analog.com/UploadedFiles/Datasheets/573918736ADXL150_250_0.pdf

National Semiconductor
Dual Op-Amp
http://www.national.com/ds/LM/LM158.pdf

Voltage Regulator
http://www.national.com/ds/LM/LM7512C.pdf

 - 44 -

Appendix C – Schematics:

Plan A

 - 45 -

 Plan B

 - 46 -

 Plan C

 - 47 -

Appendix D - Operating Instructions:

1. Unzip football

2. Slide power switch to ON (I) position

3. LEDs will cycle red, then amber then green

4. While LED is green, data is collecting

5. LED will hold steady red at end of data collection

6. LED will Flash red to signal that data is available for download

7. on a PC with Microsoft Windows 95 or better, start HyperTerminal

8. Unzip and open the football

9. Connect the Data Cable to Connector #1 inside the football

10. Set up a connection to Com x (whatever port the cable is connected to)

11. Setting are as shown below

 - 48 -

12. In the “Transfer” pull down, select capture text

13. Enter a file name
14. When all data is captured, close HyperTerminal
15. Open the Data File in a Spreadsheet and view and/or graph data.

 - 49 -

Appendix E - Microcontroller Code:

Plan A
' PicBasic Pro program to log result of
' 7 channel 8-bit A/D conversion to SRAM
'
' Connect analog input to (AN0,1,2,4,5,6,7)

' Define ONINT_USED to allow use of the boot loader.
' This will not affect normal program operation.
DEFINE ONINT_USED 1

' Define ADCIN parameters
DEFINE ADC_BITS 8 ' Set number of bits in result
DEFINE ADC_CLOCK 3 ' Set clock source (3=rc)
DEFINE ADC_SAMPLEUS 50 ' Set sampling time in uS

' Define Clock Speed
DEFINE OSC 20

' define the serial transmit pin to PortC bit 6
DEFINE DEBUG_REG PORTC
DEFINE DEBUG_BIT 6

' Define baud rate for serial debug
DEFINE DEBUG_BAUD 9600

' Define serial debug mode for inverted
DEFINE DEBUG_MODE 1

advalX1 VAR WORD ' Create adval to store result of AN0
advalY1 VAR WORD ' Create adval to store result of AN1
advalY2 VAR WORD ' Create adval to store result of AN2
advalX3 VAR WORD ' Create adval to store result of AN4
advalY3 VAR WORD ' Create adval to store result of AN5
advalX4 VAR WORD ' Create adval to store result of AN6
advalY4 VAR WORD ' Create adval to store result of AN7

accdata VAR BYTE 'create accdata to count which accel channel to write
to memory
addlow VAR BYTE 'create addlow to generate low byte of sram address
addhigh VAR BYTE 'create addhigh to generate high byte of sram
address
add16 VAR BIT 'create addlow to generate A16 of sram
address

triglow VAR BYTE 'create triglow to store low byte of trigger address
trighigh VAR BYTE 'create trighigh to store high byte of trigger address

 - 50 -

trig16 VAR BIT 'create trig16 to store A16 value of trigger
address

triggeron VAR BIT 'create triggeron to indicate trigger status

scratch VAR BYTE 'dummy variable for misc

ClkLowReg VAR PORTC.4 'rename clock pin on low register
ClkHiReg VAR PORTC.5 'rename clock pin on high register

GreenLED VAR PORTB.2 'rename pine to control green led
RedLED VAR PORTB.1 'rename pin to control red led
 'LED is amber when red and green are
both on
WriteRAM VAR PORTC.2 'write enable for SRAM
ReadRAM VAR PORTC.1 'object enable for SRAM

'***
TrigValu CON 245 '**** set trigger here for Y3 ****

'***

 TRISA = %11111111 ' Set PORTA to all input
 TRISE = %11111111 ' Set PORTE to all input
 TRISD = %00000000 ' Set PORTD to all output

 '???

 ADCON1 = 0 ' Set PORTA and PORTE analog and right justify result

 '???

 accdata = 0 ' Set initial state of accdata

 Low RedLED ' turn off red LED on PORTB.1
 High GreenLED ' Turn on Green LED connected to PORTB.2
 Low PORTC.0 ' set ram a16 to zero
 triggeron = 0

Readloop: For Add16 = 0 TO 1
 For AddHigh = 0 TO 255

 - 51 -

 For AddLow = 0 TO 255

 IF addlow = 191 AND addhigh = 99 AND add16 = 1
Then High RedLED
 'turns LED amber. this
and the next line ensure that
 'the entireevent require
no wraparound in the buffer
 IF addlow = 255 AND addhigh = 255 AND add16 =
1 Then Low RedLED
 'turns LED Green

 IF accdata = 9 Then accdata = 0
 'tracks which
channel to write to memory

 Low PORTC.0 'set A16 of
SRAM low

 Poke PORTD, AddLow 'Set Port D to low byte of
address

 Low ClkHiReg 'Send nothing to add hi
register

 High ClkLowReg 'enable low register to
recieve

 PauseUs 5 'DELAY FOR 5 uS

 Low ClkLowReg 'lock address low byte
in low register

 Poke PORTD, AddHigh 'Set Port D to high byte
of address

 High ClkHiReg 'enable high register to
recieve

 PauseUs 5 'DELAY FOR 5 uS

 Low ClkHiReg 'lock address in high
byte of register

 IF Add16 = 1 Then High PORTC.0
 'set ram A16 to
1

 PauseUs 5 'DELAY FOR 5 uS

 - 52 -

 High WriteRAM 'enable writing to
memory address

 'GoSub AccelData
 'IF triggeron = 1 Then GoTo skiptrigger
 'GoSub AccelTrigger

 SkipTrigger:

 Poke PORTD, addlow 'write mem address low
to memory address
 'IF accdata = 1 Then Poke PORTD, advalY1
 'write accel y1 to memory address
 'IF accdata = 2 Then Poke PORTD, advalY2
 'write accel y2 to memory address
 'IF accdata = 3 Then Poke PORTD, advalX3
 'write accel x3 to memory address
 'IF accdata = 4 Then Poke PORTD, advalY3
 'write accel y3 to memory address
 'IF accdata = 5 Then Poke PORTD, advalX4
 'write accel x4 to memory address
 'IF accdata = 6 Then Poke PORTD, advalY4
 'write accel y4 to memory address
 'IF accdata = 7 Then Poke PORTD, %00000000
 'write zeros to memory address

 'Debug DEC advalx1,9, DEC advaly1,9, DEC
advaly2,9,_
 'DEC advalx3,9, DEC advaly3,9, DEC advalx4,9,
DEC advaly4,9, DEC addhigh,9, DEC addlow,10,13

 'send accelerometer data to hyperterminal

 PauseUs 5 'DELAY FOR 5 uS

 'accdata = accdata + 1

 Low WriteRAM 'lock in data to memory
address

 PauseUs 5

 TRISD = %11111111 ' Set PORTD to all input

 Peek PORTD, scratch

 - 53 -

 Debug "Ram16 = ",add16,9, "RAM HI =
",addhigh,9, "RAM LOW = ",addlow,9,"DATA = ",scratch,10,13

 PauseUs 5

 TRISD = %00000000 ' Set PORTD to all output

 Next AddLow

 Next AddHigh

 Next Add16

 'IF triggeron = 1 Then WriteLoop

 'GoTo ReadLoop 'endless read loop if no
trigger detected

WriteLoop: 'Debug "TRIGGER CONDITION WAS MET",10,13
 'Debug "DATA SAVED TO RAM",10,13
 'Debug "TRIGGER MEMORY ADDRESS IS ", BIN trig16,9, BIN
trighigh,9, BIN triglow,10,13

Blinker: For scratch = 1 TO 20
 Low GreenLED 'temporary blinker to
indicate program finished
 High RedLED
 Pause 500
 Low RedLED
 Pause 500
 Next Scratch

End

'Subroutines

'AccelData: ADCIN 0, advalX1 ' Read channel 0 to adval
 ' ADCIN 1, advalY1 ' Read channel 1 to adval

 - 54 -

 ' ADCIN 2, advalY2 ' Read channel 2 to adval
 ' ADCIN 4, advalX3 ' Read channel 4 to adval
 ' ADCIN 5, advalY3 ' Read channel 5 to adval
 ' ADCIN 6, advalX4 ' Read channel 6 to adval
 ' ADCIN 7, advalY4 ' Read channel 7 to adval

 ' Return

'AccelTrigger: IF advalY3 > trigValu Then triggeron = 1
' triglow = addlow
' trighigh = addhigh
' trig16 = add16
'
' Return

 - 55 -

Plan B

Code was never written

 - 56 -

Plan C

Board 1
' PicBasic Pro program to log result of
' 4 channel 8-bit A/D conversion to SRAM
'
' Connect analog input to (AN0,1,2,3)

' Define ONINT_USED to allow use of the boot loader.
' This will not affect normal program operation.
DEFINE ONINT_USED 1

DEFINE OSC 20

' define the serial transmit pin to PortC bit 6
DEFINE DEBUG_REG PORTC
DEFINE DEBUG_BIT 6
' Define baud rate for serial debug
DEFINE DEBUG_BAUD 9600
' Define serial debug mode for inverted
DEFINE DEBUG_MODE 1

' Define ADCIN parameters
DEFINE ADC_BITS 8 ' Set number of bits in result
DEFINE ADC_CLOCK 3 ' Set clock source (3=rc)
DEFINE ADC_SAMPLEUS 50 ' Set sampling time in uS

 INCLUDE "modedefs.bas"

CS1 VAR PORTB.4 ' Chip select pin
CS2 VAR PORTB.2 ' Chip select pin
CS3 VAR PORTB.1 ' Chip select pin
CS4 VAR PORTB.0 ' Chip select pin

SCK VAR PORTC.3 ' Clock pin
SI VAR PORTC.4 ' Data in pin
SO VAR PORTC.5 ' Data out pin

addr VAR WORD ' Address
B0 VAR BYTE ' Data
B1 VAR BYTE ' Data
B2 VAR BYTE ' Data
B3 VAR BYTE ' Data

adX1 VAR BYTE ' Create adval to store result of AN0
adY1 VAR BYTE ' Create adval to store result of AN1
adX2 VAR BYTE ' Create adval to store result of AN2

 - 57 -

adY2 VAR BYTE ' Create adval to store result of AN3

dumX1 VAR BYTE ' Create adval to store adX1
dumY1 VAR BYTE ' Create adval to store adY1
dumX2 VAR BYTE ' Create adval to store adX2
dumY2 VAR BYTE ' Create adval to store adY2

REDLED VAR PORTC.0 ' Red LED pin
GREENLED VAR PORTC.1 ' Green LED pin

memloop VAR WORD ' create memloop to store # of address'

 '~~~
~~~~~ 
 '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~ 

 memloop = 2000 ' Set memloop to number of address'

 '~~~
~~~~~ 
 '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~   

 TRISB.0 = 0 ' Set CS4 to output
 TRISB.1 = 0 ' Set CS3 to output
 TRISB.2 = 0 ' Set CS2 to output
 TRISB.4 = 0 ' Set CS1 to output

 ADCON1 = %00000010 ' Set PORTA analog

 High REDLED ' led turns red

 Pause 1000 ' Wait 1 second

 High GREENLED ' led turns amber

 Pause 1000 ' Wait 1 second

 Low REDLED ' led turns green

 Pause 1000 ' Wait 1 second

 Debug "DATA COLLECTION BEGINNING",10,13

 GoSub AccelData

 GoSub OvrSmplX

 - 58 -

 GoSub eewrite1
 GoSub eewrite3

 dumY1 = adY1
 dumY2 = adY2

 For addr = 1 TO memloop ' Loop "memloops" times

 Pause 2

 GoSub AccelData

 GoSub OvrSmplY

 GoSub eewrite2 ' Write to SEEPROMs
 GoSub eewrite4 ' Write to SEEPROMs

 dumX1 = adX1
 dumX2 = adX2

 Pause 2 ' Delay 2ms

 GoSub AccelData ' Read Accelerometers

 GoSub OvrSmplX

 GoSub eewrite1 ' Write to SEEPROMs
 GoSub eewrite3 ' Write to SEEPROMs

 dumY1 = adY1
 dumY2 = adY2

 Next addr

 Low GREENLED

 High REDLED

 Debug "DATA COLLECTION OVER",10,13

 Pause 1000 'Wait 1 second

 Debug "DATA DUMP BEGINNING",10,13

 '~~~
loop: Debug "Address",9, "X1",9, "Y1",9, "X2",9, "Y2",13

 - 59 -

 For addr = 0 TO memloop ' Loop "memloop" times

 GoSub eeread1 ' Read from SEEPROM #1
 GoSub eeread2 ' Read from SEEPROM #2
 GoSub eeread3 ' Read from SEEPROM #3
 GoSub eeread4 ' Read from SEEPROM #4

 Debug DEC addr,9, DEC B0,9, DEC B1,9, DEC B2,9, DEC B3,13

 Low REDLED
 Pause 50
 High REDLED

 Next addr

 High GREENLED

 Debug "DATA DUMP OVER",10,13

 Pause 5000

 Low GreenLED

 GoTo loop

' Subroutines to read data from addr in serial EEPROM

eeread1: CS1 = 0 ' Enable serial EEPROM
 ShiftOut SI, SCK, MSBFIRST, [$03, addr.byte1, addr.byte0]
 ' Send read
command and address
 ShiftIn SO, SCK, MSBPRE, [B0] ' Read data
 CS1 = 1 ' Disable
 Return

eeread2: CS2 = 0 ' Enable serial EEPROM
 ShiftOut SI, SCK, MSBFIRST, [$03, addr.byte1, addr.byte0]
 ' Send read
command and address
 ShiftIn SO, SCK, MSBPRE, [B1] ' Read data
 CS2 = 1 ' Disable
 Return

eeread3: CS3 = 0 ' Enable serial EEPROM
 ShiftOut SI, SCK, MSBFIRST, [$03, addr.byte1, addr.byte0]
 ' Send read
command and address
 ShiftIn SO, SCK, MSBPRE, [B2] ' Read data
 CS3 = 1 ' Disable

 - 60 -

 Return

eeread4: CS4 = 0 ' Enable serial EEPROM
 ShiftOut SI, SCK, MSBFIRST, [$03, addr.byte1, addr.byte0]
 ' Send read
command and address
 ShiftIn SO, SCK, MSBPRE, [B3] ' Read data
 CS4 = 1 ' Disable
 Return

' Subroutine to write data at addr in serial EEPROM

eewrite1: CS1 = 0 ' Enable serial EEPROM
 ShiftOut SI, SCK, MSBFIRST, [$06] ' Send write enable command
 CS1 = 1 ' Disable to execute command
 CS1 = 0 ' Enable
 ShiftOut SI, SCK, MSBFIRST, [$02, addr.byte1, addr.byte0, adx1]
 ' Send address
and data
 CS1 = 1 ' Disable

eewrite2: CS2 = 0 ' Enable serial EEPROM
 ShiftOut SI, SCK, MSBFIRST, [$06] ' Send write enable command
 CS2 = 1 ' Disable to execute command
 CS2 = 0 ' Enable
 ShiftOut SI, SCK, MSBFIRST, [$02, addr.byte1, addr.byte0, ady1]
 ' Send address
and data
 CS2 = 1 ' Disable

eewrite3: CS3 = 0 ' Enable serial EEPROM
 ShiftOut SI, SCK, MSBFIRST, [$06] ' Send write enable command
 CS3 = 1 ' Disable to execute command
 CS3 = 0 ' Enable
 ShiftOut SI, SCK, MSBFIRST, [$02, addr.byte1, addr.byte0, adx2]
 ' Send address
and data
 CS3 = 1 ' Disable

eewrite4: CS4 = 0 ' Enable serial EEPROM
 ShiftOut SI, SCK, MSBFIRST, [$06] ' Send write enable command
 CS4 = 1 ' Disable to execute command
 CS4 = 0 ' Enable
 ShiftOut SI, SCK, MSBFIRST, [$02, addr.byte1, addr.byte0, ady2]
 ' Send address
and data
 CS4 = 1 ' Disable
 Return

 - 61 -

' Subroutine to read accelerometer data into microprocessor

AccelData: ADCIN 0, adX1 ' Read channel 0 to
adx1
 ADCIN 1, adY1 ' Read channel 1
to ady1
 ADCIN 2, adX2 ' Read channel 2
to adx2
 ADCIN 3, adY2 ' Read channel 3
to ady2
 Return

OvrSmplX: adX1 = (adX1 + dumX1) / 2
 adX2 = (adX2 + dumX2) / 2
 Return

OvrSmplY: adY1 = (adY1 + dumY1) / 2
 adY2 = (adY2 + dumY2) / 2
 Return

 End

 - 62 -

Plan C
Board 2

' PicBasic Pro program to log result of
' 4 channel 8-bit A/D conversion to SRAM
'
' Connect analog input to (AN0,1,2,3)

' Define ONINT_USED to allow use of the boot loader.
' This will not affect normal program operation.
DEFINE ONINT_USED 1

DEFINE OSC 20

' define the serial transmit pin to PortC bit 6
DEFINE DEBUG_REG PORTC
DEFINE DEBUG_BIT 6
' Define baud rate for serial debug
DEFINE DEBUG_BAUD 9600
' Define serial debug mode for inverted
DEFINE DEBUG_MODE 1

' Define ADCIN parameters
DEFINE ADC_BITS 8 ' Set number of bits in result
DEFINE ADC_CLOCK 3 ' Set clock source (3=rc)
DEFINE ADC_SAMPLEUS 50 ' Set sampling time in uS

 INCLUDE "modedefs.bas"

CS1 VAR PORTB.4 ' Chip select pin
CS2 VAR PORTB.2 ' Chip select pin
CS3 VAR PORTB.1 ' Chip select pin
CS4 VAR PORTB.0 ' Chip select pin

SCK VAR PORTC.3 ' Clock pin
SI VAR PORTC.4 ' Data in pin
SO VAR PORTC.5 ' Data out pin

addr VAR WORD ' Address
B0 VAR BYTE ' Data
B1 VAR BYTE ' Data
B2 VAR BYTE ' Data
B3 VAR BYTE ' Data

adX1 VAR BYTE ' Create adval to store result of AN0
adY1 VAR BYTE ' Create adval to store result of AN1
adX2 VAR BYTE ' Create adval to store result of AN2

 - 63 -

adY2 VAR BYTE ' Create adval to store result of AN3

dumX1 VAR BYTE ' Create adval to store adX1
dumY1 VAR BYTE ' Create adval to store adY1
dumX2 VAR BYTE ' Create adval to store adX2
dumY2 VAR BYTE ' Create adval to store adY2

REDLED VAR PORTC.0 ' Red LED pin
GREENLED VAR PORTC.1 ' Green LED pin

memloop VAR WORD ' create memloop to store # of address'

 '~~~
~~~~~ 
 '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~ 

 memloop = 2000 ' Set memloop to number of address'

 '~~~
~~~~~ 
 '~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~   

 TRISB.0 = 0 ' Set CS4 to output
 TRISB.1 = 0 ' Set CS3 to output
 TRISB.2 = 0 ' Set CS2 to output
 TRISB.4 = 0 ' Set CS1 to output

 ADCON1 = %00000010 ' Set PORTA analog

 High REDLED ' led turns red

 Pause 1000 ' Wait 1 second

 High GREENLED ' led turns amber

 Pause 1000 ' Wait 1 second

 Low REDLED ' led turns green

 Pause 1000 ' Wait 1 second

 Debug "DATA COLLECTION BEGINNING",10,13

 GoSub AccelData

 GoSub OvrSmplX

 - 64 -

 GoSub eewrite1
 GoSub eewrite3

 dumY1 = adY1
 dumY2 = adY2

 For addr = 1 TO memloop ' Loop "memloops" times

 Pause 2

 GoSub AccelData

 GoSub OvrSmplY

 GoSub eewrite2 ' Write to SEEPROMs
 GoSub eewrite4 ' Write to SEEPROMs

 dumX1 = adX1
 dumX2 = adX2

 Pause 2 ' Delay 2ms

 GoSub AccelData ' Read Accelerometers

 GoSub OvrSmplX

 GoSub eewrite1 ' Write to SEEPROMs
 GoSub eewrite3 ' Write to SEEPROMs

 dumY1 = adY1
 dumY2 = adY2

 Next addr

 Low GREENLED

 High REDLED

 Debug "DATA COLLECTION OVER",10,13

 Pause 1000 'Wait 1 second

 Debug "DATA DUMP BEGINNING",10,13

 '~~~
loop: Debug "Address",9, "Z1",9, "X2",9, "Y2",13

 - 65 -

 For addr = 0 TO memloop ' Loop "memloop" times

 GoSub eeread1 ' Read from SEEPROM #1
 GoSub eeread2 ' Read from SEEPROM #2
 GoSub eeread3 ' Read from SEEPROM #3
 GoSub eeread4 ' Read from SEEPROM #4

 Debug DEC addr,9, DEC B0,9, DEC B2,9, DEC B3,13

 Low REDLED
 Pause 50
 High REDLED

 Next addr

 High GREENLED

 Debug "DATA DUMP OVER",10,13

 Pause 5000

 Low GreenLED

 GoTo loop

' Subroutines to read data from addr in serial EEPROM

eeread1: CS1 = 0 ' Enable serial EEPROM
 ShiftOut SI, SCK, MSBFIRST, [$03, addr.byte1, addr.byte0]
 ' Send read
command and address
 ShiftIn SO, SCK, MSBPRE, [B0] ' Read data
 CS1 = 1 ' Disable
 Return

eeread2: CS2 = 0 ' Enable serial EEPROM
 ShiftOut SI, SCK, MSBFIRST, [$03, addr.byte1, addr.byte0]
 ' Send read
command and address
 ShiftIn SO, SCK, MSBPRE, [B1] ' Read data
 CS2 = 1 ' Disable
 Return

eeread3: CS3 = 0 ' Enable serial EEPROM
 ShiftOut SI, SCK, MSBFIRST, [$03, addr.byte1, addr.byte0]
 ' Send read
command and address
 ShiftIn SO, SCK, MSBPRE, [B2] ' Read data
 CS3 = 1 ' Disable

 - 66 -

 Return

eeread4: CS4 = 0 ' Enable serial EEPROM
 ShiftOut SI, SCK, MSBFIRST, [$03, addr.byte1, addr.byte0]
 ' Send read
command and address
 ShiftIn SO, SCK, MSBPRE, [B3] ' Read data
 CS4 = 1 ' Disable
 Return

' Subroutine to write data at addr in serial EEPROM

eewrite1: CS1 = 0 ' Enable serial EEPROM
 ShiftOut SI, SCK, MSBFIRST, [$06] ' Send write enable command
 CS1 = 1 ' Disable to execute command
 CS1 = 0 ' Enable
 ShiftOut SI, SCK, MSBFIRST, [$02, addr.byte1, addr.byte0, adx1]
 ' Send address
and data
 CS1 = 1 ' Disable

eewrite2: CS2 = 0 ' Enable serial EEPROM
 ShiftOut SI, SCK, MSBFIRST, [$06] ' Send write enable command
 CS2 = 1 ' Disable to execute command
 CS2 = 0 ' Enable
 ShiftOut SI, SCK, MSBFIRST, [$02, addr.byte1, addr.byte0, ady1]
 ' Send address
and data
 CS2 = 1 ' Disable

eewrite3: CS3 = 0 ' Enable serial EEPROM
 ShiftOut SI, SCK, MSBFIRST, [$06] ' Send write enable command
 CS3 = 1 ' Disable to execute command
 CS3 = 0 ' Enable
 ShiftOut SI, SCK, MSBFIRST, [$02, addr.byte1, addr.byte0, adx2]
 ' Send address
and data
 CS3 = 1 ' Disable

eewrite4: CS4 = 0 ' Enable serial EEPROM
 ShiftOut SI, SCK, MSBFIRST, [$06] ' Send write enable command
 CS4 = 1 ' Disable to execute command
 CS4 = 0 ' Enable
 ShiftOut SI, SCK, MSBFIRST, [$02, addr.byte1, addr.byte0, ady2]
 ' Send address
and data
 CS4 = 1 ' Disable
 Return

 - 67 -

' Subroutine to read accelerometer data into microprocessor

AccelData: ADCIN 0, adX1 ' Read channel 0 to
adx1
 ADCIN 1, adY1 ' Read channel 1
to ady1
 ADCIN 2, adX2 ' Read channel 2
to adx2
 ADCIN 3, adY2 ' Read channel 3
to ady2
 Return

OvrSmplX: adX1 = (adX1 + dumX1) / 2
 adX2 = (adX2 + dumX2) / 2
 Return

OvrSmplY: adY1 = (adY1 + dumY1) / 2
 adY2 = (adY2 + dumY2) / 2
 Return

 End

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

