CNVRuler

User Manual

V1.2

CNVRuler software is freely available with associated files and user manual in our website: http:// www.ircgp.com/CNVRuler/index.html

Contact to developer: Yeun-Jun Chung (<u>yejun@catholic.ac.kr</u>) and Ji-Hong Kim (<u>lomolith@gmail.com</u>) CNV-Ruler is designed for CNVR based association analysis with user-friendly graphic interface. All forms of major CNV call outputs from different segmentation tools such as Genotyping Console, Genome Studio, Genomic Workbench, BirdSuite, PennCNV and Nexus can be processed without additional converting steps. CNV-Ruler supports defining three different types of CNV regions (CNVRs) and four statistical methods for CNVR based association analysis. Users can analyze CNVR-phenotype associations with their preferable segmentation tools and can test various CNVR definitions and statistical methods suitable for their own study design.

1. Prerequisites

CNV-Ruler needs Java Run-time Environment of SUN Microsystems or equivalent (JRE 1.6.0 or higher). For all statistical analyses, R is used as a calculation core.

• JRE

If your system does not have Java Virtual Machine (JVM), you can download it from Oracle's Java home page (<u>http://www.oracle.com/technetwork/java/javase/downloads/index.html</u>).

For checking whether JVM is properly installed, type *java* –*version* on a terminal prompt. The version of your JVM will appear if it is correctly installed. Windows users can type the command on the command line window from Start button.

• R

CNV-Ruler needs R for its calculation process. You can download it from its project home page. <u>http://www.r-project.org/</u>

After selecting download mirror site and OS platform, you can download the distribution binaries. If your system doesn't have the R package on it, CNV-Ruler will prompt it and try to open the R download site.

NOTICE: If CNV-Ruler keeps warning that there is no R package after installation, you may add *PATH* variable manually. Test by typing *R* –-*version* on your terminal. Usually, Linux users do not need to change it.

2. Installation

The CNV-Ruler package consists of two executable files – CNVRuler.bin and CNVRuler.exe – and one text file – readme.txt – which is the change log of version history. Simply uncompress it and select executable by type of your OS – CNVRuler.bin for Linux, CNVRuler.exe for Windows.

Step 1) Download compressed zip file. Right click and select Extract All.

Step 2) Extract anywhere you want to put them by following instruction

Extraction Wizard	\mathbf{X}
Select a Destination Files inside the ZIP a choose.	archive will be extracted to the location you
	Select a folder to extract files to. Files will be extracted to this <u>directory:</u> <u>C:\download\CNVRuler</u> <u>Browse</u> <u>Password</u> Extracting
	< <u>B</u> ack <u>N</u> ext > Cancel

Step3) Double click to execute CNVRuler.exe

NOTICE: Do not put programs nor data on the folder which has a name with 2-byte character (ex. Asian characters). It makes R occurs inside error (cannot make temporary directory)

After finishing installation, user interface will be appeared.

Clinical Information	Clinical infomation file				
	Sample ID 🕞 Gender				
	Phenotype Age				
	Covariate				
CNV	CNV call file				
	Remove smaller than 0 LOD (BirdSuite) 2				
	Segment mean cut-off (TCGA, NimbleScan) 0.3				
CNV Region	Method CNVR Recurrence 0.1				
	Gain/Loss separated regions				
Association Test	Method Logistic Regression				
	Use PCA as covariates for Population Stratification				
	Minor Allele Threshold 0.05				
	Separated p-values for Gain/Loss				

3. Data analysis

A) Data uploading

Clinical Information	Clinical infomation file	
	Sample ID Gender	•
	Phenotype Age	-
	Covariate	
CNV	CNV call file	
	Remove smaller than 0 LOD (BirdSuite)	2
	Segment mean cut-off (TCGA, NimbleScan) 0.	

For CNV-Ruler analysis, two types of information (Clinical and CNV data) must be prepared.

• Step 1. Uploading clinical data

In the clinical information (CI) file, 4 items (sample ID, age, sex and phenotype) are to be included as separate columns in the CI txt file (see the example below). If age or sex information is not available, the users can do the association analysis with just sample ID and phenotype data. Phenotype means the dependent variable for regression analysis. After selecting the CI file for the analysis, you must choose the sample ID and phenotype columns in the user interface with other covariates. The sample ID should be matched to the name of the samples in the CNV data file. Phenotype status must have binary values 0 and 1 for logistic regression. For sex column, users can input values as a string 'male' or 'female'; 'm' or 'f'; 'man' or 'woman'; '1' or '0'; '1' or '2' and it is not case sensitive. In addition to the four basic CIs, other variables for logistic regression analysis can be added in your CI (see an example below). If you have more CIs than the 4 CI columns, click the *Covariates* button, then 'Covariates' pop up window will appear. You can select the extra variables as many as you want. Only the selected extra covariates will be included for the association analysis.

Example of clinical information file and data loaded screen:

Sample ID	Phenotype	Age	Gender	Smoking	Atopy
A016	3.06	53	0	1	0
A028	1.862	31	0	0	1
A042	2.009	45	1	0	0
A044	3.313	54	1	0	1
A061	1.681	37	0	1	1
A063	2.435	16	1	0	1
A065	3.035	54	1	1	1
A077	2.121	44	1	1	0
A084	1.072	65	1	0	0
A085	3.301	26	0	1	1
A121	3.313	60	0	0	0
A130	2.382	69	0	0	1
A142	0.412	49	0	0	1
A150	2.74	47	0	0	1
A161	1.993	75	0	0	0
A162	2.072	51	1	0	0

1) Analysis with sample ID and phenotype

CNV-Ruler ver 1.2.1beta					
Clinical Information	/workspace/pap	er/ACAT/120108/example_ci_manual.txt			
	Sample ID	Sample ID 🔻 Gender -	-		
	Phenotype	Phenotype 👻 Age -	-		
	Covariate				

2) Analysis with four main CIs

CNV-Ruler ver 1.2.1beta					
Clinical Information	/workspace/pa				
	Sample ID	Sample ID 🔻 Gender Gender	-		
	Phenotype	Phenotype 🔻 Age Age	-		
	Covariate				

3) Analysis with additional covariates

2	CNV-Ruler ver 1.2.1beta					٠	-	×
	Clinical Information	/workspace/pape	r/ACAT/120108/ex	ample_ci	_manual.txt			
		Sample ID	Sample ID 🔻	Gender	Gender	•		
		Phenotype	Phenotype 💌	Age	Age	-		
		Covariate						

₫	CNV-Ruler ver 1.2.1beta					
					1	
	Clinical Information	/workspace/pap	er/ACAT/120108/example_ci_manual.txt			
		Sample ID	Sample ID 🔻 Gender Gender	-		
		Phenotype	Phenotype 💌 Age Age	-		
		Covariate	Smoking,Atopy			

• Step 2. Uploading CNV data

Choose your CNV call output file for analyzing the CNVR based association. CNV-Ruler can read 10 types of CNV call outputs (see Table below) and a custom CNV call.

Format	Version Tested	Ref.
PennCNV	2011Jun16	Wang <i>et al.</i> , 2007
Nexus	5.1	www.biodiscovery.com
Genomic Workbench	6.5	www.agilent.com
CGHscape	1.5	Jeong <i>et al.</i> , 2008
TCGA files	Jun.2011	cancergenome.nih.gov
NimbleScan	2.6	www.nimblegen.com
Genome Studio	2011.1	www.illumina.com
QuantiSNP	2.0	Colella <i>et al.</i> , 2007
BirdSuite	1.5.5	Korn <i>et al.</i> , 2008
Genotying Console	4.1	www.affymetrix.com

If you want to use your own CNV list file, you must prepare a simple tabdelimited text file containing 5 columns as the example below. The names and order of column headings should be Chr, Start, End, Event and Sample_ID respectively.

Example of user own CNV data file:

Chr	Start	End	Event	Sample_ID
1	10430	10592	Loss	Syndrome_TypeA_01
1	12410	12900	Loss	Syndrome_TypeA_01
2	400	8210	Gain	Syndrome_TypeA_01
1	2430	2592	Loss	Syndrome_TypeA_02

• Filtering options

There are two filtering options in the CNV data uploading section.

CNV	CNV call file	
	Remove CNVs smaller size than	0
	Segment mean cut-off (TCGA, NimbleScan)	0.3

1) CNV size filter

Users can set their own threshold for minimum size to define the CNVs (unit: bp). A CNV which is smaller than the threshold will be excluded.

2) Mean signal intensity of the segment filter

This option will be only used when the input file is TCGA or NimbleScan data. TCGA and NimbleScan data do not have 'gain or loss' information but have mean value of segmentation. Therefore, a cut-off criterion is required to define the copy number 'gain' or 'loss' status. Default value is ± 0.3 , which means that

a CNV segment with mean value < -0.3 will be assigned as 'loss' and > 0.3 as 'gain CNV'. Users can set their own cut-off filter.

B) Defining CNVR

CNV Region	Method	CNVR	Recurrence	0.1
	Gain/Loss se	eparated regions s across low freque	ncy are	

CNV-Ruler supports three different definitions of CNV Regions (CNVRs): CNVR, RO, and Fragment. They produce similar but slightly different boundaries and each of them has its own advantages and limitations as described in the main text.

Method

Select one of the following 3 definitions of CNVRs.

- 1) CNVR (CNV region)
- 2) RO (Reciprocal Overlap)
- 3) Fragment

1) CNVR (CNV region)

CNVR is defined by merging of overlapping CNVs.

i. CNVR trimming threshold

Definition of CNVR is simple and straightforward, but this definition can overestimate the size and frequency of CNVR due to the potential false calls, which are usually rare and long-sized. CNV-Ruler can trim these extreme ones during merging process by CNV frequencies. In case of the CNVR method, users can trim the sparse area by using the regional density (recurrence) threshold. This option checks the regional density of participating CNVs base-wise and trimming the sparse area not satisfying the given density threshold (default: 0.1). This option does not affect RO nor Fragment method.

ii. Additional options for building CNVRs: Gain/Loss separated region

Using this option, the CNVR can be created with same types of CNVs, gain or loss type, within the considering area. If you select this option, CNVR outputs will be copy number gain CNVR or loss CNVR. If you don't select this option, all overlapped CNVs will be used for building CNVR regardless of their type.

2) Reciprocal overlap (RO)

CNV regions are determined by reciprocal overlap (RO) measure. First, CNVs which overlap at least one-base are grouped as initial CNV clusters. Within each cluster, RO is calculated for each CNV to the others. The pair of which RO is highest (default minimum threshold is >50%) will be merged and formed a CNV element (in orange). This process is repeated until every pair has RO of 50% or lower. The detailed process is illustrated in the following figure.

In st ep 1, since the pair consisting of CNV2 and CNV3 has the highest RO, these two CNVs are merged into a CNV element called CNV2-3. Similarly, in step 2, CNV2-3 and CNV4 are merged into CNV2-3-4. As the RO values of all the remaining pairs do not pass the RO threshold, three CNV regions are defined (in black).

The RO method can reduce the extent of size overestimation of CNV regions caused by CNVR method. However, compared with the other two methods, the RO method may increase the possibility of false negative results. For example, suppose that one locus embedded within CNVR3 (in the final step, figure above) is truly associated with the trait of interest. In both CNVR and fragment methods, the frequency of this locus is 2, but in the RO method, the frequency is 1, which may cause the true association to be statistically missed.

3) Fragment

The fragment method dissects overlapping regions which have different frequencies of CNVs from the neighboring regions into smaller, separate fragments.

Therefore, this method has the least probability of size overestimation compared with the other two methods. Also, the potential of false negative results may be lower than the RO method. By dissecting overlapping CNVs into smaller fragments, this method could generate a large number of smaller CNV elements which may increase the possibility of false positive associations as well as the calculation burden.

NOTICE: CNV region information is stored in *tmp* directory and can be used later. You can remove it safely by deleting *tmp* directory if error is occurred.

• Examples of CNVR outputs from the same CNV data

The list below contains the CNVs in chromosome 1 identified from the 7 samples from Affymetrix Genotype Console. You can download the sample CNV file from our web site (www.ircgp.com/CNVRuler/index.html)

Chr	Start	End	Туре
1	61723	228694	Gain
1	61723	229063	Loss
1	61723	229607	Gain
1	61723	356530	Gain
1	85924	229607	Gain
1	235658	564621	Loss
1	740857	1030307	Gain
1	16830808	16935995	Gain
1	16968362	17298496	Gain
1	17029580	17245518	Gain
1	17035208	17177033	Gain
1	17036531	17182425	Gain
1	17037085	17182425	Gain
1	17045446	17190850	Gain
1	63704937	63810371	Gain
1	82461630	82644795	Gain
1	104130168	104307231	Gain
1	121343784	121482967	Gain
1	121343784	121482967	Gain
1	121343784	121482967	Gain
1	144036737	144849544	Gain
1	145206610	145398179	Gain
1	148530424	148662751	Gain
1	148530424	148953984	Gain
1	148947698	149051903	Loss
1	149086173	149202866	Loss
1	149086551	149190306	Loss
1	166574788	166966828	Gain
1	182454823	182611606	Loss
1	196706260	196812518	Gain
1	196706260	196812518	Gain
1	196711067	196812518	Gain
1	243163830	243274530	Gain

Total CNV List

1) CNVR (Recurrence Threshold is 0.1)

Chr	Start	End	Туре
1	61,723	564,621	Mixed
1	740,857	1,030,307	Gain
1	16,830,808	16,935,995	Gain
1	16,968,362	17,298,496	Gain
1	63,704,937	63,810,371	Gain
1	82,461,630	82,644,795	Gain
1	104,130,168	104,307,231	Gain
1	121,343,784	121,482,967	Gain
1	144,036,737	144,849,544	Gain
1	145,206,610	145,398,179	Gain
1	148,530,424	149,051,903	Mixed
1	149,086,173	149,202,866	Loss
1	166,574,788	166,966,828	Gain
1	182,454,823	182,611,606	Loss
1	196,706,260	196,812,518	Gain
1	243,163,830	243,274,530	Gain

2) RO			
Chr	Start	End	Туре
1	61,723	356,530	Mixed
1	235,658	564,621	Loss
1	740,857	1,030,307	Gain
1	16,830,808	16,935,995	Gain
1	16,968,362	17,298,496	Gain
1	63,704,937	63,810,371	Gain
1	82,461,630	82,644,795	Gain
1	104,130,168	104,307,231	Gain
1	121,343,784	121,482,967	Gain
1	144,036,737	144,849,544	Gain
1	145,206,610	145,398,179	Gain
1	148,530,424	148,662,751	Gain
1	148,530,424	148,953,984	Gain
1	148,947,698	149,051,903	Loss
1	149,086,173	149,202,866	Loss
1	166,574,788	166,966,828	Gain
1	182,454,823	182,611,606	Loss
1	196,706,260	196,812,518	Gain
1	243 163 830	243 274 530	Gain

3) Fragment

Chr	Start	End	Туре
1	61,723	85,923	Mixed
1	85,924	228,694	Mixed
1	228,695	229,063	Mixed
1	229,064	229,607	Gain
1	229,608	235,657	Gain
1	235,658	356,530	Mixed
1	356,531	564,621	Loss
1	740,857	1,030,307	Gain
1	16,830,808	16,935,995	Gain
1	16,968,362	17,029,579	Gain
1	17,029,580	17,035,207	Gain
1	17,035,208	17,036,530	Gain
1	17,036,531	17,037,084	Gain
1	17,037,085	17,045,445	Gain
1	17,045,446	17,177,033	Gain
1	17,177,034	17,182,425	Gain
1	17,182,426	17,190,850	Gain
1	17,190,851	17,245,518	Gain
1	17,245,519	17,298,496	Gain
1	63,704,937	63,810,371	Gain
1	82,461,630	82,644,795	Gain
1	104,130,168	104,307,231	Gain
1	121,343,784	121,482,967	Gain
1	144,036,737	144,849,544	Gain
1	145,206,610	145,398,179	Gain
1	148,530,424	148,662,751	Gain
1	148,662,752	148,947,697	Gain
1	148,947,698	148,953,984	Mixed
1	148,953,985	149,051,903	Loss
1	149,086,173	149,086,550	Loss
1	149,086,551	149,190,306	Loss
1	149,190,307	149,202,866	Loss
1	166,574,788	166,966,828	Gain
1	182,454,823	182,611,606	Loss
1	196,706,260	196,711,066	Gain
1	196,711,067	196,812,518	Gain
1	243,163,830	243,274,530	Gain

C) CNVR-Phenotype association analysis

Association Test	Method	Logistic Regression		-	
	Use PCA a	Use PCA as covariates for Population Stratification			
	Minor Allele	Minor Allele Threshold			
	🗌 Separate	ed p-values for Gain/Loss			

Methods

- A. Logistic regression
- B. Linear regression
- C. Chi-Squared
- D. Fisher's Exact Test

Users select one of the methods above.

Regarding the Chi-Squared test, users can select between 'Chi-Squared test' or 'Chi-squared test with Yates' continuity correction' based on the characteristics of their data.

Logistic Regression	•
Logistic Regression	
Linear Regression	
Chi-Square Test	
Chi-Square Test (Yate's continuity correction)	
Fisher's Exact Test	

Additional options for the association analysis 1) LRT

CNV Ruler supports -2 Log Likelihood Ratio Test (LRT) and calculates p value of chi-squared distribution of LRT. With this value, user can figure out the regression model used for association analysis is significantly better than null model or not. Currently, this option could be applied to logistic regression only.

2) Population Stratification by PCA

Since the association found could be due to the underlying structure of the population and not a disease associated locus, CNV Ruler can use Principal Component Analysis (PCA) to adjust population stratification. CNV Ruler calculates eigen vectors and uses up to 3 principal components as covariates for regression. Currently, this option could be applied to logistic regression only.

3) Separated p-values for Gain/Loss

If a region contains both type of CNV – Gain and Loss - CNV Ruler will calculate p-values for statistical test using only gain-type CNVRs or only loss-type ones with this option.

4) Minor allele frequency

Default value is 0.05 (5%). This means that CNVRs with less than 5% allele frequency will be excluded from the downstream association analysis. Alternatively, users can set their own threshold. For example, by setting the minor allele threshold to '0', users can observe the association result of all CNVRs regardless of the allele frequency.

D) Running

After selecting statistical methods and setting allele frequency threshold level, click 'Run' key. Then the output of statistical calculation will be displayed in the report screen.

Report Screen

A. CNVR Report

The CNV region determined by user's preference will be displayed in this window. The same list is also stored as a tab-delimited text file on the same directory. The file name consists of original name and region type.

These are example tables for three different type of region

CNVR

RO

Fragment

🛃 example_ci_GC.cmt0x1s0c0x3.table 🛧 🗕 🗙	🛃 example_ci_GC.rmt0x1s0c0x3.table + _ X	🛃 example_ci_GC.fmt0x1s0c0x3.table 🛧 _ 🗙
example_cl_GC.cmt0x1s0c0x3.table + - X ChWR ID Chromoso Start End Type ChWR 1 Y 2,995,993 3,066,364 Gain ChWR 2 Y 3,352,707 3,588,704 Gain ChWR 3 Y 3,613,770 3,284,394 Gain ChWR 4 4,181,582 4,224,808 Gain ChWR 5 Y 4,410,751 4,550,549 Gain ChWR 7 Y 4,607,883 4,780,229 Gain ChWR 8 Y 4,610,781 4,550,549 Gain ChWR 7 Y 4,607,883 4,708,229 Gain ChWR 8 Y 5,653,461 5,850,821 Gain ChWR 9 Y 5,653,461 5,850,821 Gain ChWR 9 Y 5,653,461 5,850,821 Gain	example_ci_GC.rmt0x1s0c0x3.table * × CNVR ID Chromoso Start End Type R0_0 Y 2.985,939 3.086,364 Gain * R0_1 Y 3.352,770 3.538,704 Gain * R0_2 Y 3.613,770 3.784,346 Gain * R0_3 Y 4.181,552 4.324,080 Gain * R0_4 Y 4.410,751 4.550,549 Gain * R0_5 Y 4.670,883 4.780,229 Gain * R0_6 Y 4.909,027 5.013,153 Gain * R0_7 Y 5.633,369 5.471,500 Gain * R0_8 Y 5.653,461 5.850,821 Gain *	example_cl_GC.fmt0x1s0c0x3.table + - × CNVR ID Chromoso Start End Type FRAG_1 Y 2,995,939 3,086,364 Gain + FRAG_2 Y 3,352,707 3,423,827 Gain + - FRAG_3 Y 3,423,828 3,471,481 Gain + - × FRAG_4 Y 3,471,482 3,538,704 Gain + - × FRAG_5 Y 3,613,770 3,655,028 Gain + - × FRAG_6 Y 3,665,083 3,778,385 Gain + + - × FRAG_7 Y 3,678,370 3,656,083 3,778,385 Gain + FAAG +<
CNVR 11 V 7,524,092 7,697,801 Loss CNVR 12 1 61,723 564,621 mixed CNVR 12 1 740,857 1,030,307 Gain CNVR 13 1 740,857 1,030,307 Gain CNVR 14 1 16,830,080 16,935,995 Gain CNVR 15 1 6,648,22 17,298,496 Gain CNVR 16 1 63,704,937 63,810,371 Gain CNVR 17 1 92,461,630 82,644,795 Gain CNVR 18 1 104,130,1 104,307,2 Gain CNVR 19 1 121,343,7 124,489,5 Gain CNVR 19 1 121,343,7 Gain Gain	RO 9 Y 7,127,027 7,522,678 Loss RO 10 Y 7,524,092 7,697,801 Loss RO 11 1 61,723 356,530 mixed RO 12 1 235,658 564,621 Loss RO 13 1 740,857 1,030,307 Gain RO 14 1 16,830,808 16,935,995 Gain RO 16 1 63,704,997 63,810,371 Gain RO 16 1 63,704,997 63,810,371 Gain RO 16 1 82,461,620 82,644,795 Gain RO 17 1 82,461,620 82,644,795 Gain	FRAG 9 Y 4,410,751 4,550,549 Gain FRAG 10 Y 4,670,883 4,780,229 Gain FRAG 11 Y 4,909,027 5,013,153 Gain FRAG 12 Y 5,363,369 5,471,500 Gain FRAG 12 Y 5,363,369 5,471,500 Gain FRAG 13 Y 5,653,446 5,683,811 Gain FRAG 14 Y 5,683,812 5,838,453 Gain FRAG 14 Y 5,683,812 5,838,453 Gain FRAG 15 Y 5,838,454 5,850,821 Gain FRAG 16 Y 7,122,702 7,522,678 Loss FRAG 16 Y 7,524,092 7,697,801 Loss
ChVR 21 1 145:205.6 145:398.1Gain ChVR 23 1 149:061 149:051.9 mixed ChVR 23 1 149:061 149:021.8 Gain ChVR 24 1 166:574.7 166:966.8 Gain ChVR 25 1 82:454.8 162:01.6 Gain ChVR 26 1 196:706.2 196:81.2.5 Gain ChVR 27 2 29:431.2 145:899 Gain ChVR 28 2 29:433 145:899 Gain ChVR 29 2 89:900.461 Gain ChVR 30 2 112:464.0 112:649.8 Gain ChVR 30 2 112:464.0 112:649.8 Gain	RO 1 104,130,1104,307,25ain RO 1 121,343,7121,482,96ain RO 20 1 144,036,7121,482,96ain RO 20 1 144,036,7121,482,96ain RO 21 1 145,206,6145,398,16ain RO 22 1 148,530,4148,953,96ain RO 23 1 148,530,4148,953,96ain RO 24 1 149,917,169,9651,9Loss RO 25 1 149,026,1149,051,9Loss RO 26 1 165,574,7166,966,8Gain RO 27 1 182,454,8182,611,6Loss RO 28 1 196,706,2196,812,5Gain RO 29 1 243,163,8243,274,5	HAG_18 1 61,723 85,923 Mixed FRAG_19 1 85,924 228,694 Mixed FRAG_20 1 228,695 229,063 Mixed FRAG_21 1 229,064 229,667 Gain FRAG_22 1 229,068 235,657 Gain FRAG_23 1 235,658 356,530 Mixed FRAG_24 1 356,531 564,621 Loss FRAG_25 1 740,857 1,030,307 Gain FRAG_26 1 16,968,7362 1,07,759 Gain FRAG_26 1 16,963,908 16,935,995 Gain FRAG_28 1 17,029,580 17,035,207 Gain
CMVR 32 2 131,932,4 132,170,8 Gain	RO 30 2 29,443 145,899 Gain RO 31 2 89,133,112 89,500,461 Gain RO 32 2 89,428,082 90,023,495 Gain	FRAG 29 1 17.035,208 17.036,530 Gain FRAG 30 1 17.036,531 17.037,084 Gain FRAG 31 1 17.037,085 17.045,445 Gain FRAG 32 1 17.045,446 17.177,033 Gain FRAG 33 1 17.177,034 17.182,425 Gain

B. Association analysis Report

This is the window for the output of the association test. You can sort it by any column by clicking its header. It is also stored as a tab-delimited text file. The detailed option information is written in the header of the file.

2	_	_	exa	mple_ci_G	C.20111217	112307	_	_	_	+ _	×
CNVR ID	Chr	Start	End	Size	Freq. (Co	Freq. (Ca	Description	p value	-2 Log LRT	LRT.	
CNVR 73	9	68,683,835	69,942,276	1,258,442	2	1	Gain	0.220824	7.023	0.26	-
CNVR 93	14	19,002,112	20,422,583	1,420,472	1	3	mixed	0.300951	7.863	0.3825	
CNVR 139	22	18,626,234	18,887,369	261,136	1	3	Gain	0.300951	7.863	0.3825	
CNVR 51	5	68,867,282	70,178,835	1,311,554	2	1	Loss	0.362467	8.179	0.4874	
CNVR 40	3	129,715,	129,914,	199,134	1	3	Gain	0.362467	8.179	0.4874	=
CNVR 145	22	22,864,059	23,258,994	394,936	1	3	Gain	0.362467	8.179	0.4874	
CNVR 110	16	32,113,670	32,573,464	459,795	2	1	mixed	0.376290	8.227	0.5142	
CNVR 66	8	7,222,169	7,809,894	587,726	2	1	mixed	0.376290	8.227	0.5142	
CNVR 137	22	16,055,171	16,386,602	331,432	1	2	Gain	0.398321	8.251	0.4745	
CNVR 151	X	88,861,135	89,182,355	321,221	2	3	Gain	0.442138	8.38	0.5495	
CNVR 70	9	39,313,808	41,480,601	2,166,794	1	1	Gain	0.442138	8.38	0.5495	
CNVR 60	7	143,917,	144,066,	149,347	1	2	Gain	0.545384	8.68	0.5329	
CNVR 118	17	44,394,400	44,794,572	400,173	1	2	mixed	0.585999	8.725	0.5408	
CNVR 56	7	61,063,962	61,839,758	775,797	1	1	Gain	0.628756	8.816	0.6085	
CNVR 68	8	47,012,218	47,262,143	249,926	1	1	Gain	0.628756	8.816	0.6085	
CNVR 123	19	90,898	258,072	167,175	1	1	Gain	0.628756	8.816	0.6085	
CNVR 108	16	21,412,391	21,620,547	208,157	1	1	Loss	0.687884	8.9	0.6236	
CNVR 88	12	8,357,507	8,601,982	244,476	1	1	Gain	0.687884	8.9	0.6236	
CNVR 83	11	3,426,602	3,624,237	197,636	1	1	Gain	0.687884	8.9	0.6236	
CNVR 44	4	69,338,450	69,489,323	150,874	2	3	Loss	0.687884	8.9	0.6236	
CNVR 79	10	51,231,564	51,479,639	248,076	1	1	Gain	0.706006	8.918	0.6271	
CNVR 45	4	132,545,	132,780,	234,793	1	2	Gain	0.714802	8.929	0.5836	
CNVR_34	2	132,873,	133,136,	262,772	2	2	Gain	0.746615	8.96	0.5911	
CNVR 59	7	143 211	1/13 576	364 411	11	1	mixed	0 842918	9 026	0 6197	-

References

Bae, JS. *et al.* (2010) Genome-wide association analysis of copy number variations in subarachnoid aneurysmal hemorrhage. *J. Hum. Genet.*, **55(11)**, 726-30

Barnes, C. *et al.* (2008) A robust statistical method for case-control association testing with copy number variation. *Nat. Genet.*, **40**, 1245–1252.

Colella, S. *et al.* (2007) QuantiSNP: an Objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data. Nucleic Acids Res., **35**, 2013–2025.

Forer,L. *et al.* (2010) CONAN: copy number variation analysis software for genome-wide association studies. *BMC Bioinformatic*, **11**, 318

Joeng, Y. *et al.* (2008) CGHscape: A Software Framework for the Detection and Visualization of Copy Number Alterations. Genome & Informatics, **6(3)**, 126-129

Korn, J.M. *et al.* (2008) Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs. *Nat. Genet.*, **40**, 1253–1260.

Pique-Regi, R. *et al.* (2010) R-Gada: a fast and flexible pipeline for copy number analysis in association studies. *BMC Bioinformatics*, **11**, 380

Purcell, S. *et al.* (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. *Am. J. Hum. Genet.*, **81**, 559–575.

Subirana, I. *et al.* (2011) CNVassoc: Association analysis of CNV data using R. *BMC Medical Genomics*, **4**:47

The Cancer Genome Atlas (TGCA) research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, **455**,1061–1068.

Wang,K. *et al.* (2007) PennCNV: An integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. *Genome Res.*, **17**, 1665.

Wittig, M. et al. (2010) CNVineta: a data mining tool for large case–control copy number variation datasets. *Bioinformatics*, **26**, 2208-2209