24DSI32 — 24DSI|12

24-bit, 32 Channel Delta-Sigma A/D Boards

PCI-24DSI132
PMC-24DSI12

Linux Device Driver
User Manual

Manual Revision: July 7, 2005

General Standards Corporation
8302A Whitesburg Drive
Huntsville, AL 35802
Phone: (256) 880-8787
Fax: (256) 880-8788
URL.: http://www.generalstandards.com
E-mail: sales@generalstandards.com
E-mail: support@generalstandards.com

http://www.generalstandards.com/
mailto:sales@generalstandards.com
mailto:support@generalstandards.com

24DSI32, Linux Device Driver, User Manual

Preface
Copyright ©2004-2005, General Standards Corporation
Additional copies of this manual or other literature may be obtained from:

General Standards Corporation
8302A Whitesburg Dr.

Huntsville, Alabama 35802

Phone: (256) 880-8787

FAX: (256) 880-8788

URL: http://www.generalstandards.com
E-mail: sales@generalstandards.com

General Standards Corporation makes no warranty of any kind with regard to this material, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose. Although extensive editing
and reviews are performed before release to ECO control, General Standards Corporation assumes no
responsibility for any errors that may exist in this document. No commitment is made to update or keep current the
information contained in this document.

General Standards Corporation does not assume any liability arising out of the application or use of any product
or circuit described herein, nor is any license conveyed under any patent rights or any rights of others.

General Standards Corporation assumes no responsibility for any consequences resulting from omissions or
errors in this manual or from the use of information contained herein.

General Standards Corporation reserves the right to make any changes, without notice, to this product to improve
reliability, performance, function, or design.

ALL RIGHTS RESERVED.

The Purchaser of this software may use or modify in source form the subject software, but not to re-market or
distribute it to outside agencies or separate internal company divisions. The software, however, may be embedded in
the Purchaser’s distributed software. In the event the Purchaser’s customers require the software source code, then
they would have to purchase their own copy of the software.

General Standards Corporation makes no warranty of any kind with regard to this software, including, but not
limited to, the implied warranties of merchantability and fitness for a particular purpose and makes this software
available solely on an “as-is” basis. General Standards Corporation reserves the right to make changes in this
software without reservation and without notification to its users.

The information in this document is subject to change without notice. This document may be copied or reproduced
provided it is in support of products from General Standards Corporation. For any other use, no part of this
document may be copied or reproduced in any form or by any means without prior written consent of General
Standards Corporation.

GSC is a trademark of General Standards Corporation.

PLX and PLX Technology are trademarks of PLX Technology, Inc.

2
General Standards Corporation, Phone: (256) 880-8787

http://www.generalstandards.com/
mailto:sales@generalstandards.com

24DSI32, Linux Device Driver, User Manual

Table of Contents

IR oo U 1 o] o RSP 5
O o T T USRS 5
LB N« 10317 11 TS TSR URTPRTP 5
130 DETINILIONS ...ttt sttt ettt b e bbbt e bt e st et et e s e e e bt e bt ebeeb e eaees b et et enbesaeebe e bt ent et ennenee 5
1.4, SOTIWATE OVETVIEWeeuiiiiiiiiitietteiteite ettt ettt et ettt et e b bt e bt bt e bt e st e st e e et e bt sbeebeebees b et et e nbeseeebeeseenteneensenee 5
1.5, HArdWare OVEIVIEWc..oouiiiiriiriirierieeitetetent st sttt ettt ettt sttt be bt et et et e s ae e bt e bt sb e e bt estesb et et enbesbeebesbeeneeneenaenee 5
1.6. REference MatErial.........cccuieiieiieiieiieieee sttt ettt ettt et e et e et et e e seenseensesnaessaesseesseeseanseenseensenssensnensenn 5

N 151 L F= LA o o SRS 7
2.1. CPU and KeINEl SUPPOTTc.vieuvieiiieiieitieie et ete ettt ettt e et e et e steebeesbeessessaesteesseesseesseessesseesseenseessesssesssesssesens 7
2.2. THe /PrOC FIl@ SYSTEIMeecvietieiieiieieeiesiee st ete ettt et esteeste e b e esbeesaessaesseessaessesssesseesssessesssesssesseesseessenssenssessaesses 7
2.3 FILE LISt ettt ettt bbb h e a e sttt bbbt bt bt e aeea b et et e bbbt bt ebe et et enee 7

2.3 1 INSTAIIALION ..ottt bbbt bbbttt b et b e bt bttt nee 7
2320 BUIIA ottt h et h e bt bbbt bt et et ae st b e bt ea et nee 8
B N T 1 11| o O TSP UPPROPPTR 8
B T Y N o7 15 o) s DRSSP 9
e T V1 3 T) o NSRS 10
2,306, SHULAOWIL.....e.tiiieiieiieeee ettt sttt ettt e st e e e be s e te et e eseeseeneesse s asseseeseeseeneensensanseaseeseeseeneensensaneas 10
237 REMOVAL ..ttt ettt b e et e st et et e be e bt eb e ea e e et e s et e bt eheeh e entent et et e beeaeebeeneenteneenean 10
2.4, SAMPIE APPIICALION. .. .cviirieiiietiiitieite ettt et ettt ettt e et e eteesbeesbeesbeesaeseeesseesseesseessessseseesseesseassesssessseseesseensennns 10
B R 1] o) o TSP SRRRPRTRPPRRPPRRN 11
242, TNSTAITATION ...vteeiieciie ettt ettt sttt este et e esteetbessee b e esseesseessasssesseesseessesssesssesseenseenseenseessensaenneas 11
243 BUIIA ot bbbttt h bbbt bt e bt e a b et et bbbt et e st et enten 11
244, EXECULE ..c.uveeuiieeiieeeitte st e et e site e sttt e s ateesateesabeesateesate e st eenabe e st e e sbeensseensbeenss e e sbeensseensaeensaeensbeensbeensbeesteennreenn 11
24,5, ROIMOVAL ..ottt ettt sttt et e et e st e s st et e et e enteesseesaesse e seenseenseensesneenseenseenseanseenaenseesean 11
T D L AT gl [g =] = ot SRRSO 12
B IMIACTOS ettt ettt h et et et s a e e bt et e bt e et e h e eb e e bt e bt e a bt ea bt eht e eh e e eh e et e e bt en bt ea bt eh e e eb e e eb e e bt e bt e et enteeaee 12
Bl L TOCTL ettt ettt ettt e b e a e e e e et e bt eh e e bt en e em s e e e beebeebeeseemeeseemeenseabeeseebeeneeneeneantenens 12
B L2, REEISEEIS 1uvieuvieutieiiieeieetteettete et e e teste st e s te e beesbeesaeessesseesseessaesseessaassessaessaesseessesssesssesssessenseenseensenssenssessaensens 12
I D 1 - T) o1 OO USSP SORRUURR 13
TN TR 010 T3 (=111 2SSOSR 13
3.2.2. dEVICE TCZISLEI PATAINISveeuveereeieeeeteeteestesteenseesteenteassesssesseesseesseensesssesseesseesseenseenseessanseenseensesssesssessesssees 13
3.2.3. EN_TALE PATAIMS ...uueeeutieetieeieeeiteetteeteeebteeteeebteesteesabeesateesabeeeateesabeeeabeesabeesateesabeesateesabaesateesaseennseesaseennns 14
3.2.4. GON_ ASSIZI PATAINISeuvietietieteeteeteettesueesteesueeseenteeneeeseaaseeseanseamseamsesaeesseesseanseenseenseeneanseenseenseensesneanseennenn 14
3.2.5. 1at€ dIVISOT PATAINISeevietietieieeteeieeeteetteste et eateeste et ee st e st emteemteemeesseesseenseenseemeeemeeeseanseenseenseenseeneenneenneas 14
3.2.6. device _read PCi_CONTIZ PATAIMN.....cc.eeiuieiiieiieiieetieteete ettt ettt et e et e et et e et e et e eneeeseenteeneeeneesseeaneas 15
32,7, COMTIZ TRES 1.ttt ettt ettt ettt ettt e et eateeh e e e bt e bt et e e abesaeesheesatenbe e bt emteenteeneeebeenbeenbean 15
3.3 FUNCHIOMNS ...ttt et e a et b et e et e bt e bt e s bt e bt et e eme e ea et saeesb e e bt en bt ea b e eseeebeeabeenbe e beeneeenteeaee 18
T8 T o) 1331 TS SR P ST PSRPS 18
T TR < 1o [T SO U PRSP SRR 18
3330 WITEE() c-veneenterte ettt ettt ettt ettt et et bt bbbt st e s ettt b e e bt e bt e h e a s et e b e bkt e bt e bt eh e en e e st et et e beshe bt eneententen 20
3314, CLOSE() touveenreeerieiieetee ettt et et et e et e bt et e e bt e beesae et e ateeh e e b e ea b e eRbeasb e et b et ae b e e beesbeenaeenaeeReeeseenteenseenseesseesaentaerees 20
3.4 TOCTL SEIVICES ...ttt sttt ettt et et et et st b e bt et et et et e st b e s bt e bt eat e st ea b et e beebees b et et e bt sbeebeebeennensennen 21
3

General Standards Corporation, Phone: (256) 880-8787

24DSI32, Linux Device Driver, User Manual

3.4.1. IOCTL_GSC_NO_COMMAND......c.cccstttiirieiiinieiiinietttstete sttt ettt ettt tes sttt sese et eebesenne 22
3.4.2. IOCTL_GSC_READ_REGISTER.......ccecestmitiimirieiiinieiitnieietsteit ettt ettt ettt st 22
3.4.3. IOCTL_GSC_WRITE_REGISTERccocsttirtiteiiinieiiinieieet ettt ettt 22
3.4.4. IOCTL_GSC_SET INPUT _RANGEc.cceceimirieiiiieiiinietetret ettt 22
3.4.5. IOCTL_GSC_SET INPUT _MODEcccosiiuimirieiiinieiiinieieinettteieteteieietetete ettt 23
3.4.6. IOCTL _GSC SET SW_SYNCHootiiiitiiiiirtie ettt ettt 23
3.477. IOCTL _GSC AUTO CAL....ouirtiiiiiieiieieeteste ettt ettt ettt eb b eens 23
3.4.8. IOCTL _GSC INITIALIZE......coeoiitiieieieese ettt sttt 23
3.4.9.I0CTL_GSC_SET DATA FORMATc.ioitririirtitctntee ettt 23
3.4.10. IOCTL_GSC_SET INITIATOR MODE......cccccoeiimiiiiiniiiiiniiiitneteesteeei ettt 24
3.4.11. IOCTL_GSC_SET BUFFER THRESHOLDcccecttctriieiiniiieiriieinietei ettt 24
3.4.12. IOCTL_GSC_CLEAR _BUFFER.......c.ccoottitirrieiiiiciinnieietrteie ettt ettt sttt st 24
3.4.13. IOCTL_GSC_SET _ACQUIRE_MODEccocecirtmiiiinieiiinieiiinieietntetttstete sttt ettt 24
3.4.14. IOCTL_GSC_SET_GEN_RATEcociiiiiiriiiirieiiinieitntetctneee ettt sttt 25
3.4.15. IOCTL_GSC_ASSIGN_GEN_TO_GROUPc.ccoeceimiriiiiieiininieiinietteeieteneietee et 25
3.4.16. IOCTL_SET RATE DIVISOR.......cccceiiiriiiinieiiinieiitnieictnieiei sttt ettt se e 26
3.4.17. I0CTL_GET DEVICE ERROR......cccccitiiiiitiieirtie ettt 26
3.4.18. IOCTL _GSC READ PCI CONFIG.....cctsiiriiiiiniiieiinieieieteteitsee ettt ettt 26
3.4.19. IOCTL _GSC READ LOCAL CONFIG....cccctreiriiieiiriiieinieietseetetsieee ettt 27
3.4.20. IOCTL_GSC_SET TIMEOUT......cociriiiitiieiriicinieteeree ettt ettt 27
3.421. IOCTL_GSC_SET DMA STATE ...cittitiiiiiieieteentetee ettt ettt 27
3.4.22. IOCTL_GSC_GET DEVICE TYPE ..ottt 27
3.4.23. IOCTL_GSC_FILL BUFFERccossitiririeiinirieiiinietnsieie ettt ettt ettt ettt 28
3.4.24. TOCTL_GSC_SYNCHRONIZE SCANccossitiririetininieienintet ettt ettt sttt stesee et sessesesenne 28
3.4.25.I0CTL_GSC_SET RATE A EXT CLK ..c.eoosiciririeiinirieiirinieinieieteieitesieies ettt ettt 28
3.4.26. IOCTL_GSC_CLEAR _BUFFER _SYNC ...c.ccocicirtiiiniiieiiiiieiininieicteteitteieieteseveeese ettt senesenaen 28
3.4.27. I0OCTL_GSC_SET _OVERFLOW_LEVELcccosiiitiiiiiniiiinieieinietcnreietseeieesieiee et 28
3.4.28. IOCTL_GSC_SET_OVERFLOW_CHECKccccsicimiiiiiiiieiiinieiiiriciteeictereiceeevee et 29
3.429. IOCTL GSC_SET RATE A CLK OUT ..c.iotiiiiiiiieiniiiecrieieitseeietsteei sttt 29
3.4.30. IOCTL _GSC _SELECT IMAGE FILTER.....cccciiittiiiiiieiiirteteeeet et 29
3.431. I0CTL _GSC _SELECT TTL EXTERN SYNC... ..ottt 30
3.4.32. IOCTL_GSC_SET DATA WIDTH ...ccooiiriiiriiiiriiicntee ettt ettt 30
T @ o 1= -1 1 o] o OSSR 31
4.1, REAA OPETALIONS......euieiieiiieieeeiestiesttesteetestesttesseeseesseessesseasseesseassesssesseeseenseansesssesseenseenseansenssesssesseesseensesnsennns 31
T B L T AT T<) 15 o) s WSSO 31
4.3. Data TransSTer OPtIONScc.eeeeeieetieiteeite et ete et st et ettt e ete et e e bt e teeatesseess e e st enseeneeeseesseenteenseenseeseesseeseenseenseenes 31
A.3.1.PLO bbb bbb st bt h e bbb e st ene 31
4.3.2. Standard DMA........coooiiiiiin ettt 31
4.3.3. Demand Mode DMAccoiiiiineiiiieet ettt et 31
DOCUMENT HISTOIY ...ttt e e et e st e et e s s e steentesraenaeeeenreens 32
4

General Standards Corporation, Phone: (256) 880-8787

24DSI32, Linux Device Driver, User Manual

1. Introduction

1.1. Purpose
The purpose of this document is to describe the interface to the 24DSI32 Linux device driver. The driver software

provides the interface between “Application Software” and the 24DSI32 board. The designation “24DSI32” is used
throughout the document to refer to any member of the board family, either the PCI-24DSI32 or the PMC-24DSI12.

1.2. Acronyms

The following is a list of commonly occurring acronyms used throughout this document.

Acronyms | Description

DMA Direct Memory Access

GSC General Standards Corporation
PCI Peripheral Component Interconnect
PMC PCI Mezzanine Card

1.3. Definitions

The following is a list of commonly occurring terms used throughout this document.

Term Definition

Driver Driver means the kernel mode device driver, which runs in the kernel space with kernel mode
privileges.

Application | Application means the user mode process, which runs in the user space with user mode privileges.

1.4. Software Overview
The 24DSI32 driver software executes under control of the Linux operating system and runs in Kernel Mode as a
Kernel Mode device driver. The 24DSI32 device driver is implemented as a standard dynamically loadable Linux

device driver written in the C programming language. The driver allows user applications to: open, close, read, and
perform I/O control operations. Data write to the hardware is not supported.

1.5. Hardware Overview

See the hardware manual for the board version for details on the hardware. Current board manual PDF files may be
found at:

http://www.generalstandards.com/

Look under the “device user manuals” heading and select your board model.

1.6. Reference Material
The following reference material may be of particular benefit in using the 24DSI32 and this driver. The
specifications provide the information necessary for an in depth understanding of the specialized features

implemented on this board.

e The applicable 24DSI32 User Manual from General Standards Corporation.

5
General Standards Corporation, Phone: (256) 880-8787

http://www.generalstandards.com/

24DSI32, Linux Device Driver, User Manual

e The PCI9080 PCI Bus Master Interface Chip data handbook from PLX Technology, Inc.

PLX Technology Inc.

870 Maude Avenue

Sunnyvale, California 94085 USA
Phone: 1-800-759-3735

WEB: http://www.plxtech.com

6
General Standards Corporation, Phone: (256) 880-8787

http://www.plxtech.com/

24DSI32, Linux Device Driver, User Manual

2. Installation

2.1. CPU and Kernel Support

The driver is designed to operate with Linux kernel versions 2.4 and 2.6 running on a PC system with Intel x86
processor(s). Testing was performed under Red Hat Linux with kernel versions 2.4.18-14 and 2.6.7-1.494.2.2smp on
a PC system with dual Intel x86 processors. Support for version 2.2 of the kernel has been left in the driver, but has
not been tested.

NOTES:

e The driver may have to be rebuilt before being used due to kernel version differences between the
GSC build host and the customer’s target host.

e The driver has not been tested with a non-versioned kernel.

e The driver has only been tested on an SMP host. SMP testing is much more rigorous than single
CPU systems, and helps to ensure reliability on single CPU systems.

2.2. The /proc File System

While the driver is installed, the text file /proc/gsc24dsi32 can be read to obtain information about the driver.
Each file entry includes an entry name followed immediately by a colon, a space character, and the entry value.
Below is an example of what appears in the file, followed by descriptions of each entry. Note that with a debug
build, there may be more information in the file.

version: 1.00
built: June 13 2002, 09:08:07

boards: 1

Entry Description

Version | The driver version number in the form X . XX.

Built The drivers build date and time as a string. It is given in the C form of printf("%s, %s",

__DATE__, _ TIME_).

Boards The total number of boards the driver detected.

2.3. File List
See the README.TXT file in the release tar for the latest file list. The Driver

This section discusses unpacking, building, installing and running the driver.

2.3.1. Installation
Install the driver and its related files following the below listed steps.

1. Create and change to the directory where you would like to install the driver source, such as
/usr/src/linux/drivers.

2. Copy the gsc_24dsi32Driver._tar._gz file into the current directory. The actual name of the

file may be different depending on the release version.

7
General Standards Corporation, Phone: (256) 880-8787

24DSI32, Linux Device Driver, User Manual

3. Issue the following command to decompress and extract the files from the provided archive. This
creates the directory gsc_24dsi32_release in the current directory, and then copies all of the
archive’s files into this new directory.

tar —xzvf gsc_24dsi32Driver.tar.gz

2.3.2. Build
To build the driver:

1. Change to the directory where the driver and its sources were installed in the previous step. Remove
all existing build targets by issuing the below command.

make clean

2. Edit Makefile to ensure that the KERNEL DIR environment variable points to the correct root of the
source tree for your version on Linux. The driver build uses different header versions than an
application build, which is why this step is necessary. The default should be correct for 2.4 and newer
kernels.

3. Build the driver by issuing the below command.
make all

NOTE: Due to the differences between the many Linux distributions some build errors may

occur. The most likely cause is not having the kernel sources installed properly. See the

documentation for your release of Linux for instructions on how to install the kernel sources.

To build the test applications:

1. Type the command:

make —F app.mak

2.3.3. Startup

The startup script used in this procedure is designed to ensure that the driver module in the install directory
is the module that is loaded. This is accomplished by making sure that an already loaded module is first
unloaded before attempting to load the module from the disk drive. In addition, the script also deletes and
recreates the device nodes. This is done to insure that the device nodes in use have the same major number
as assigned dynamically to the driver by the kernel, and so that the number of device nodes corresponds to
the number of boards identified by the driver.

2.3.3.1. Manual Driver Startup Procedures

Start the driver manually by following the below listed steps.

1. Login as root user, as some of the steps require root privileges.

2. Change to the directory where the driver was installed. In this example, this would be
/usr/src/linux/drivers/gsc_24dsi32_release.

3. Type:

8
General Standards Corporation, Phone: (256) 880-8787

24DSI32, Linux Device Driver, User Manual

./gsc_start

The script assumes that the driver be installed in the same directory as the script, and that the
driver filename has not been changed from that specified in Makefile. The above step must be
repeated each time the host is rebooted. It is possible to have the script run at system startup. See
below for instructions on automatically starting the driver.

NOTE: The kernel assigns the 24dsi32 device node major number dynamically. The minor
numbers and the device node suffix numbers are index numbers beginning with zero, and
increase by one for each additional board installed.

Verify that the device module has been loaded by issuing the below command and examining the
output. The module name gsc24ds i 32 should be included in the output.

Ismod

Verify that the device nodes have been created by issuing the below command and examining the
output. The output should include one node for each installed board.

Is -1 /dev/gsc24dsi32*

2.3.3.2. Automatic Driver Startup Procedures

Start the driver automatically with each system reboot by following the below listed steps.

1.

Locate and edit the system startup script rc. local, which should be in the Zetc/rc.d directory.
Modify the file by adding the below line so that it is executed with every reboot.

/usr/src/linux/drivers/gsc_24dsi32_release/gsc_start

NOTE: The script assumes the driver is in the same directory as the script.

2.

3.

Load the driver and create the required device nodes by rebooting the system.

Verify that the driver is loaded and that the device nodes have been created. Do this by following the
verification steps given in the manual startup procedures.

2.3.4. Verification

To verify that the hardware and driver are installed properly and working, the steps are:

1.

2.

Install the sample applications, if they were not installed as part of the driver install.
Change to the directory where the sample application testapp was installed.

Start the sample application by issuing the below command. The argument identifies which board to
access. The argument is the zero based index of the board to access.

./testapp <board>

So for a single-board installation, type:

9
General Standards Corporation, Phone: (256) 880-8787

24DSI32, Linux Device Driver, User Manual

./ testapp O

The test application is described in greater detail in a later section.

2.3.5. Version
The driver version number can be obtained in a variety of ways. It is appended to the system log when the driver is

loaded or unloaded. It is recorded in the text file /proc/gsc24dsi32. It is also in the driver source header file
pci24dsi32.h,.

2.3.6. Shutdown
Shutdown the driver following the below listed steps.
1. Login as root user, as some of the steps require root privileges.
2. Ifthe driver is currently loaded then issue the below command to unload the driver.
rmmod gsc24dsi32

3. Verify that the driver module has been unloaded by issuing the below command. The module name
gsc24DS 132 should not be in the list.

Ismod
2.3.7. Removal
Follow the below steps to remove the driver.
1. Shutdown the driver as described in the previous paragraphs.

2. Change to the directory where the driver archive was installed. This should be
/usr/src/linux/drivers.

3. Issue the below command to remove the driver archive and all of the installed driver files.
rm —rf gsc24DS132Driver.tar.gz gsc 24dsi32_release
4. Issue the below command to remove all of the installed device nodes.
rm —F /dev/gsc24dsi32*
5. If the automated startup procedure was adopted, then edit the system startup script rc. local and

remove the line that invokes the gsc_start script. The file rc. local should be located in the
/etc/rc.d directory.

2.4. Sample Application

The archive file gsc 24dsi32Driver.tar.gz contains sample applications. The test applications are Linux
user mode applications whose purpose is to demonstrate the functionality of the driver with an installed board. They
are delivered undocumented and unsupported. They can however be used as a starting point for developing

10
General Standards Corporation, Phone: (256) 880-8787

24DSI32, Linux Device Driver, User Manual

applications on top of the Linux driver and to help ease the learning curve. The principle application is described in
the following paragraphs.

2.4.1. testapp

This sample application provides a command line driven Linux application that tests the functionality of the driver
and a user specified 24DSI32 board. It can be used as the starting point for application development on top of the
24DSI32 Linux device driver. The application performs an automated test of the driver features. The application
includes the below listed files.

File Description

testapp.-cC | The test application source file.

testapp The pre-built sample application.

app -mak The build script for the sample application.

2.4.2. Installation

The test application is normally installed as part of the driver install, in the same directory as the driver.

2.4.3. Build

The test applications require different header files than the driver, consequently they require a separate make script.
Follow the below steps to build/rebuild the sample application.

1. Change to the directory where the sample application was installed.

2. Remove all existing build targets by issuing the below command.
make —F app.mak clean

3. Build the sample applications by issuing the below command.
Make —F app.mak

NOTE: The build procedure assumes the driver header files are located in the current directory.

2.4.4. Execute
Follow the below steps to execute the sample application.
1. Change to the directory where the sample application was installed.

2. Start the sample application by issuing the command given below. The argument specifies the index of
the board to access. Use 0 (zero) if only one board is installed.

/testapp O

2.4.5. Removal

The sample application is removed when the driver is removed.

11
General Standards Corporation, Phone: (256) 880-8787

24DSI32, Linux Device Driver, User Manual

3. Driver Interface

The 24DSI32 driver conforms to the device driver standards required by the Linux Operating System and contains
the standard driver entry points. The device driver provides a uniform driver interface to the 24DSI32 family of
boards for Linux applications. The interface includes various macros, data types and functions, all of which are
described in the following paragraphs. The 24DSI32 specific portion of the driver interface is defined in the header
file pci24dsi32.h, portions of which are described in this section. The header defines numerous items in
addition to those described here.

NOTE: Contact General Standards Corporation if additional driver functionality is required.

3.1. Macros

The driver interface includes the following macros, which are defined in pci24dsi32_ioctl _h. The header
also contains various other utility type macros, which are provided without documentation.

3.1.1. IOCTL

The IOCTL macros are documented following the function call descriptions.

3.1.2. Registers

The following tables give the complete set of 24DSI32 registers. The tables are divided by register categories.
Unless otherwise stated, all registers are accessed as 32-bits. The only exception is the PCICCR register, which is
24-bits wide but accessed as if it were 32-bits wide. In this instance the upper eight-bits are to be ignored. Register
values are passed as 32-bit entities and bits outside the register’s native size are ignored.

3.1.2.1. GSC Registers

The following table gives the complete set of GSC specific 24DSI32 registers. For detailed definitions of these
registers refer to the relevant 24DSI32 User Manual. The macro defines of the registers are located in
pci24dsi32 ioctl.h. Note that the hardware manual defines the register address in 8-bit address space. The driver
maps the registers in 32-bit space. For example, the BUFFER CONTROL register has local address 0x20 as
defined in the hardware manual. The driver accesses this register at local address 8 (0x20/4).

BOARD_CTRL_REG
RATE_CTRL_A_B_REG
RATE_CTRL_C_D_REG
RATE_ASSIGN_REG
RATE_DIVISORS_REG
RESERVED_1

RESERVED_2

RESERVED_3
BUFFER_CONTROL_REG
BOARD_CONFIG_REG
BUFFER_SIZE_REG
AUTOCAL_VALUES_REG
INPUT_DATA_BUFFER_REG

12
General Standards Corporation, Phone: (256) 880-8787

24DSI32, Linux Device Driver, User Manual

3.1.2.2. PCI Configuration Registers

The 16DSDI driver also allows access to the PLX registers. See plx_regs.h for macros defining the registers, and
refer to the PCI9080 Data Book for detailed descriptions of the registers. Normally, there is no need to access the

PLX registers.

3.2. Data Types

This driver interface includes the following data types, which are defined in pci124dsi32_ioctl .h.

3.2.1. board_entry

This structure is used with the IOCTL_GSC_GET_DEVICE_TYPE IOCTL.
Definition

struct board_entry {
long subsystem_vendor;
long subsystem_device;
char name[40];
int index;

¥

Fields Description

subsystem_vendor | The subsystem ID returned from the PCI configuration registers. This value is
the same for all General Standards products.

subsystem_device | The subsystem ID returned from the PCI configuration space. This value is
unique for each member of the SDI family. Refer to your hardware manual for
the value assigned to your board.

name [40] A short string describing the SDI model.

index An ENUM type_index for board type, defined in pci24dsi32_ioctl.h.

3.2.2. device_register_params

This structure is used to transfer register data. The IOCTL_GSC _READ REGISTER,
IOCTL_GSC_READ LOCAL CONFIG REGISTER, IOCTL_GSC_READ PCI_CONFIG REGISTER,

IOCTL _GSC_WRITE REGISTER, IOCTL_GSC WRITE PCI CONFIG REGISTER and

IOCTL _GSC WRITE LOCAL CONFIG REGISTER IOCTLs use this structure to read and write a user selected
register. 'eRegister’ stores the index of the register, range 0-94, and ‘ulValue’ stores the register value being written
or read. The absolute range for ‘ulValue’ is 0x0-OxFFFFFFFF, and the actual range depends on the register
accessed.

Definition

typedef struct device register_params {
unsigned int eRegister;
unsigned long ulValue;
} DEVICE_REGISTER_PARAMS, *PDEVICE_REGISTER_PARAMS;

Fields Description
eRegister | Register to read or write. See pci24dsi32_ioctl .h for register definitions.
ulvValue Value read from, or written to above register.

13
General Standards Corporation, Phone: (256) 880-8787

24DSI32, Linux Device Driver, User Manual

3.2.3. gen_rate_params

The IOCTL_GSC SET GEN RATE IOCTL uses this structure to set a generator's rate. 'eGenerator' specifies the
generator, range, and 'ulNrate' specifies the rate.

Definition

typedef struct gen_rate params {
unsigned int eGenerator;
unsigned long ulNrate;

} GEN_RATE_PARAMS, *PGEN_RATE_PARAMS;

Fields Description
eGenerator | Which rate generator to select.
ulNrate The rate to use for this generator.

3.2.4. gen_assign_params

The IOCTL_GSC_ASSIGN_GEN_TO_GROUP IOCTL command uses this structure to assign a channel group to a
specified generator. 'eGroup' contains the channel group, and 'eGenAssign' specifies which generator.

Definition

typedef struct gen_assign_params {
unsigned int eGroup;
unsigned int eGenAssign;

} GEN_ASSIGN_PARAMS, *PGEN_ASSIGN_PARAMS;

Fields Description
eGroup The group of channels to use with the selected generator.

eGenAssign | The selected generator.

3.2.5. rate_divisor_params

The IOCTL_GSC_SET RATE DIVISOR IOCTL command uses this structure to set the channel group divisor.
ulGroup’ specifies the channel, and 'ulDivisor' specifies the frequency divisor value. The divisor is calculated using

the generator frequency and the sampling rate. See the hardware manual for details.

Definition

typedef struct rate_divisor_params {
unsigned long ulGroup;
unsigned long ulDivisor;
} RATE_DIVISOR_PARAMS, *PRATE_DIVISOR_PARAMS;

Fields Description
ulChannel | The group of channels to use with the selected generator.

ulDivisor | The divisor for the selected generator.

14
General Standards Corporation, Phone: (256) 880-8787

24DSI32, Linux Device Driver, User Manual

3.2.6. device_read _pci_config_param

This structure stores information about the PCI Configuration registers. The IOCTL_GSC_READ PCI_CONFIG
IOCTL command uses this structure to read the PCI Configuration registers.

Definition

typedef struct device_read_pci_config_param {
unsigned long ulDeviceVendorliD;
unsigned long ulStatusCommand;
unsigned long ulClassCodeRevisioniD;
unsigned long ulBISTHdrTypeLatTimerCacheLineSize;
unsigned long ulRuntimeRegAddr;
unsigned long ulConfigRegAddr;
unsigned long ulPClBaseAddr2;
unsigned long ulPCIBaseAddr3;
unsigned long ulUnusedBaseAddril;
unsigned long ulUnusedBaseAddr2;
unsigned long ulCardbusCISPtr;
unsigned long ulSubsystemVendorlID;
unsigned long ulPCIRomAddr;
unsigned long ulReservedl;
unsigned long ulReserved?2;
unsigned long ulMaxLatMinGntIntPinlntLine;
} DEVICE_READ_PCI_CONFIG_PARAM, *PDEVICE_READ_PCI_CONFI1G_PARAM;

Fields Description
ulDeviceVendorlID Vendor ID
ulStatusCommand Status /command
ulClassCodeRevisionlD Class code, revision
ulBISTHdrTypeLatTimerCacheLineSize | Latency
ulRuntimeRegAddr Runtime registers address (BAR 0)
ulConfigRegAddr Unused (BAR 1)
ulPClBaseAddr2 Local registers (BAR 2)
ulPCIBaseAddr3 Unused
ulUnusedBaseAddril Unused
ulUnusedBaseAddr2 Unused
ulCardbusCISPtr Unused
ulSubsystemVendorID Device specific ID
ulPCIRomAddr Rom address
ulReservedl Unused
ulReserved2 Unused
ulMaxLatMinGntintPinlntLine Latency/grant

3.2.7. config_regs

This structure stores information about all the Local Configuration registers. The
IOCTL_GSC READ LOCAL_CONFIG IOCTL command uses this structure to read and return all the Local
Configuration registers in the PLX. See the PLX manual for details.

Definition
typedef struct config_regs {

/* -——- Local Configuration Registers —---- */
unsigned long ulPcilLocRangeO;

15
General Standards Corporation, Phone: (256) 880-8787

24DSI32, Linux Device Driver, User Manual

unsigned long ulPcilLocRemapO;
unsigned long ulModeArb;
unsigned long ulEndianDescr;
unsigned long ulPciLERomRange;
unsigned long ulPciLERomRemap;
unsigned long ulPcilLBRegDescrO;
unsigned long ulLocPciRange;
unsigned long ullLocPciMemBase;
unsigned long ulLocPcilOBase;
unsigned long ulLocPciRemap;
unsigned long ulLocPciConfig;
unsigned long ulOutPostQIntStatus;
unsigned long ulOutPostQIntMask;
unsigned char uchReservedl[8];
/* -—-—- Shared Run Time Registers ---- */
unsigned long ulMailbox[8];
unsigned long ulPcilLocDoorBell;
unsigned long ullLocPciDoorBell;
unsigned long ullntCntriStat;
unsigned long ulRunTimeCntrl;
unsigned long ulDeviceVendorliD;
unsigned long ulRevisionlD;
unsigned long ulMailboxRegO;
unsigned long ulMailboxRegl;
/* -—-—- Local DMA Registers ---- */
unsigned long ulDMAModeO;
unsigned long ulDMAPCIAddressO;
unsigned long ulDMALocalAddressO;
unsigned long ulDMAByteCountO;
unsigned long ulDMADescriptorPtrO;
unsigned long ulDMAModel;
unsigned long ulDMAPCIAddressl1;
unsigned long ulDMALocalAddressl1;
unsigned long ulDMAByteCountl;
unsigned long ulDMADescriptorPtrl;
unsigned long ulDMACmdStatus;
unsigned long ulDMAArbitration;
unsigned long ulDMAThreshold;
unsigned char uchReserved3[12;
/* ---- Messaging Queue Registers ---- */
unsigned long ulMsgUnitCfg;
unsigned long ulQBaseAddr;
unsigned long ullnFreeHeadPtr;
unsigned long ullnFreeTailPtr;
unsigned long ullnPostHeadPtr;
unsigned long ullnPostTailPtr;
unsigned long ulOutFreeHeadPtr;
unsigned long ulOutFreeTailPtr;
unsigned long ulOutPostHeadPtr;
unsigned long ulOutPostTailPtr;
unsigned long ulQStatusCtrl;
unsigned char uchReserved4[4;
unsigned long ulPcilLocRangel;
unsigned long ulPcilLocRemapl;
unsigned long ulPcilLBRegDescrl;

} CONFIG_REGS, *PCONFIG_REGS;

16
General Standards Corporation, Phone: (256) 880-8787

24DSI32, Linux Device Driver, User Manual

Fields Description

ulPcilLocRangeO range for pci to local 0

ulPcilLocRemapO remap for pci to local 0

UIModeArb mode arbitration

UIEndianDescr Big/little endian descr.

UIPciLERomRange range for pci to local expansion rom
ulPciLBRegDescro0 Bus region descriptions for pci to local (space 0)
UlLocPciRange range for local to pci

ulLocPciMemBase base addr for local to pci memory
ulLocPcilOBase base addr for local to pci 10/Config
ulLocPciRemap remap for local to pci

ulLocPciConfig Pci config address reg for local to pci 10/Config
ulOutPostQIntStatus | outboard post queue interrupt status
ulOutPostQIntMask outboard post queue interrupt mask
uchReservedl1[8] Reserved

ullMai lbox[8]

8 mailbox registers

ulPciLocDoorBell

Pci to local doorbell reg

ulLocPciDoorBell

local to pci doorbell reg

ulIntCntriStat

interrupt control/status

ulRunTimeCntrl eeprom control, pci command codes, user 1/0, init ctrl
ulDeviceVendorlID device id
ulRevisionlD revision id

ullMai lboxRegO

mailbox register 0

ullMai lboxRegl

mailbox register 1

ulDMAModeO dma channel 0 mode
ulDMAPCIAddressO dma channel 0 pci address
ulDMALocalAddressO | dma channel 0 local address
ullDMAByteCountO dma channel 0 transfer byte count
ulDMADescriptorPtr0 | dma channel 0 descriptor pointer
ulDMAModel dma channel 1 mode
ulDMAPCIAddressl dma channel 1 pci address
ulDMALocalAddressl | dma channel 1 local address
ulDMAByteCountl dma channel 1 transfer byte count
ulDMADescriptorPtrl | dma channel 1 descriptor pointer
ulDMACmdStatus rw dma command/status registers
ulDMAArbitration dma arbitration register
ulDMAThreshold dma threshold register
uchReserved3[12] Reserved

ullMsgUnitCfg messaging unit configuration
ulQBaseAddr queue base address register

ul InFreeHeadPtr

inbound free head pointer

ul InFreeTai lPtr

inbound free tail pointer

ul InPostHeadPtr

inbound post head pointer

ul InPostTai lPtr

inbound post tail pointer

ulOutFreeHeadPtr outbound free head pointer

ulOutFreeTai IPtr outbound free tail pointer
ulOutPostHeadPtr outbound post head pointer

ulOutPostTai lPtr outbound post tail pointer

ulQStatusCtrl queue status/control

uchReserved4[4] Reserved

ulPcilLocRangel range for pci to local 1

ulPcilLocRemapl remap for pci to local 1

ulPciLBRegDescrl bus region descriptions for pci to local (space 1)

17

General Standards Corporation, Phone: (256) 880-8787

24DSI32, Linux Device Driver, User Manual

3.3. Functions

This driver interface includes the following functions.

3.3.1. open()
This function is the entry point to open a handle to a 24DSI32 board.
Prototype

int open(const char* pathname, int flags);

Argument | Description
pathname | This is the name of the device to open.
flags This is the desired read/write access. Use O_RDWR.

NOTE: Another form of the open() function has a mode argument. This form is not displayed
here as the mode argument is ignored when opening an existing file/device.

Return Value | Description
-1 An error occurred. Consult errno.
else A valid file descriptor.

Example

#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include “pci24dsi32_ioctl_h”

int 24DS132_open(unsigned int board)

{
int fd;
char name[80];
sprintf(name, "'/dev/gsc24dsi32%u’’, board);
fd = open(name, O_RDWR);
if (fd == -1)

printfF("'open() failure on %s, errno = %d\n', name, errno);

return(fd);

}

3.3.2.read()

The read() function is used to retrieve data from the driver. The application passes down the handle of the driver
instance, a pointer to a buffer and the size of the buffer. The size field portion of the request is passed to the
read () function as a number of bytes, and the number of bytes read is returned by the function.

Depending on how much data is available and what the read mode is, you may receive back less data than requested.
The Linux standards only require that at least one byte be returned for a read to be successful.

18
General Standards Corporation, Phone: (256) 880-8787

24DSI32, Linux Device Driver, User Manual

How the buffer is filled is dependant on what DMA setting is active:

No DMA: This is called programmed I/O or PIO. The driver will read data from the data register until
either the buffer is full, or there is no more data in the input buffer, whichever comes first.

Regular DMA: For a regular DMA transaction, the driver needs to determine how much data to transfer.
The driver is set up to only do a DMA operation when the input buffer contains at least
BUFFER _THRESHOLD samples in the buffer. So if the flags indicate that there is greater than
BUFFER _THRESHOLD samples available, the driver immediately initiates a DMA transfer between the
hardware and a system buffer. The driver sets an interrupt and sleeps until the DMA finished interrupt is
received, then copies the data into the user buffer and returns.

If the flags indicate that there is not enough data in the buffer, the driver sets up for an interrupt when the
BUFFER_THRESHOLD is reached and sleeps. When the interrupt is received, the driver then sets up a
DMA transfer as described above.

Demand mode DMA: The byte count passed in the read() is converted to words and written to the
DMA hardware. The driver sets an interrupt for DMA finished and goes to sleep. The DMA hardware
then transfers the requested number of words into the system (intermediate) buffer and generates an
interrupt.

The difference between regular and demand mode has to do with when the transaction is started. A
demand mode transaction may be initiated at any buffer data level. The regular DMA transaction is only
started when there is sufficient data.

DMA always uses an intermediate system buffer then copies the resulting data into the user buffer. It is not

currently possible with (version 2.4) Linux to DMA directly into a user buffer. Instead, the data must pass through

an intermediate DM A-capable buffer. The size of the intermediate buffer is determined by the #define
DMA_ORDER in the pci24dsi32.h file. The driver attempts to allocate 2"DMA_ORDER pages. On larger

systems, this number can be increased, reducing the number of operations required to transfer the data. Demand

mode DMA transfers are also limited to the capacity of the intermediate buffer.

Prototype

int read(int fd, void *buf, size t count);

Argument | Description

fd This is the file descriptor of the device to access.

buf Pointer to the user data buffer.

count Requested number of bytes to read. This must be a multiple of four (4).
Return Value Description

Less than O An error occurred. Consult errno.

Greater than O | The operation succeeded. For blocking I/O a return value less than count
indicates that the request timed out. For non-blocking I/O a return value less than
count indicates that the operation ended prematurely when the receive FIFO
became empty during the request.

19
General Standards Corporation, Phone: (256) 880-8787

24DSI32, Linux Device Driver, User Manual

Example:

#include <errno.h>
#include <stddef.h>
#include <stdio.h>
#include <unistd.h>
#include "'pci24dsi32_ioctl._h"

int 24DS132_read(int fd, _ u32 *buf, size_t samples)
{

size_t bytes;

int status;

bytes = samples * 4;
status = read(fd, buf, bytes);
if (status == -1)
printf("'read() failure, errno = %d\n'", errno);
else
status /= 4;

return(status);

3.3.3. write()

This service is not implemented, as the 24DSI32 has no destination to which to transfer a block of data. This
function will therefore always return an error.

3.3.4. close()
Close the handle to the device.
Prototype

int close(int fd);

Argument | Description

Fd This is the file descriptor of the device to be closed.
Return Value | Description

-1 An error occurred. Consult errno.

0 The operation succeeded.

Example

#include <errno.h>
#include <stdio.h>
#include <unistd.h>
#include “pci24dsi32_ioctl._h”

int 24DS132_close(int fd)

20
General Standards Corporation, Phone: (256) 880-8787

24DSI32, Linux Device Driver, User Manual

A
int status;
status = close(fd);
if (status == -1)
printF('close() failure, errno = %d\n'", errno);
return(status);
}

3.4. I0CTL Services

This function is the entry point to performing setup and control operations on a 24DSI32 board. This function should
only be called after a successful open of the device. The general form of the ioctl call is:

int ifoctl(int fd, int command);
or
int ioct(int fd, int command, arg*);

where:

fd File handle for the driver. Returned from the open() function.

command | The command to be performed.

arg* (optional) pointer to parameters for the command. Commands that have no parameters (such as
IOCTL_DEVICE _NO_COMMAND) will omit this parameter, and use the first form of the call.

The specific operation performed varies according to the command argument. The command argument also
governs the use and interpretation of any additional arguments. The set of supported IOCTL services is defined in
the following sections.

Usage of all IOCTL calls is similar. Below is an example of a call using 10CTL_DEVICE_READ_REGISTER to
read the contents of the board control register (BCR):

#include 'gsc24dsi32_ioctl_h"

int ReadTest(int fd)

{
device_register_params RegPar;
unsigned long dwTransferSize;
int res;

regdata.ulRegister = BOARD_CTRL_REG;

regdata.ulvValue = 0x0000; // to make sure it changes.

res = ioctl(fd, (unsigned long)
I0CTL_DEVICE_READ_REGISTER, ®data);

21
General Standards Corporation, Phone: (256) 880-8787

24DSI32, Linux Device Driver, User Manual

if (res <0) {
printF(""%s: 1octl 10CTL_READ REGISTER failed\n', argv[0]);
}

return (res);

3.4.1. I0CTL_GSC_NO_COMMAND
NO-OP call. IOCTL_GSC _NO_COMMAND is useful for verifying that the board has been opened properly.

Usage

ioctl () Argument | Description
request I0CTL_GSC_NO_COMMAND

3.4.2. I0OCTL_GSC_READ_REGISTER
This service reads the value of a 24DSI32 register. This includes all PCI registers, all PLX PCI9080 feature set
registers, and all GSC specific registers. Refer to pci24dsi32_ioctl .h for a complete list of the accessible

registers.

Usage

ioctl () Argument | Description
request I0CTL_GSC_READ_REGISTER
arg device_register_params*

3.4.3. I0OCTL_GSC_WRITE_REGISTER
This service writes a value to a 24DSI32 register. This includes only the GSC specific registers. All PCI and PLX
PCI9080 feature set registers are read-only. Refer to pci24dsi32_ioctl _h for a complete list of the accessible

registers.

Usage

ioctl () Argument | Description
request I0CTL_GSC_WRITE_REGISTER
arg device_register_params*

3.4.4. I0CTL_GSC_SET_INPUT_RANGE
Set the input voltage range. Possible values are:
RANGE_2p5V

RANGE_5V
RANGE_10V

22
General Standards Corporation, Phone: (256) 880-8787

24DSI32, Linux Device Driver, User Manual

Usage

ioctl () Argument | Description
request I0OCTL_GSC_SET_INPUT_RANGE
arg unsigned long*

3.4.5. I0CTL_GSC_SET_INPUT_MODE
Set the input mode. Possible values are:
MODE_DIFFERENTIAL

MODE_ZERO_TEST
MODE_VREF_TEST

Usage

ioctl () Argument | Description
request I0CTL_GSC_SET_INPUT_MODE
arg unsigned long *

3.4.6. I0OCTL_GSC_SET_SW_SYNCH
Initiates an ADC SYNCH operation. Also generates the external sych output if the board is in initiator mode.

Usage

ioctl () Argument | Description
request I0CTL_GSC_SET_SW_SYNCH

3.4.7.10CTL_GSC_AUTO_CAL
Initiates an auto-calibration cycle.

Usage

ioctl () Argument | Description
request I0CTL_GSC_AUTO_CAL

3.4.8. IOCTL_GSC_INITIALIZE

Initialize the board to a known state. Sets all defaults. The driver waits for an interrupt from the hardware
indicating that the initialization cycle is complete.

Usage

ioctl () Argument | Description
request I0CTL_GSC_INITIALIZE

3.4.9. IOCTL_GSC_SET_DATA_FORMAT

Set the digital data output format. Options are:

23
General Standards Corporation, Phone: (256) 880-8787

24DSI32, Linux Device Driver, User Manual

FORMAT_TWOS_COMPLEMENT
FORMAT_OFFSET_BINARY

Usage

ioctl () Argument | Description
request I0CTL_GSC_SET_DATA_FORMAT
arg Unsigned long *

3.4.10. IOCTL_GSC_SET_INITIATOR_MODE
Set this board as the initiator for synchronized acquisition. Enables the external synch output. Options are:

TARGET_MODE
INITIATOR_MODE

Usage
ioctl () Argument | Description
request I0OCTL_GSC_SET_INITIATOR_MODE
arg unsigned long *

3.4.11. IOCTL_GSC_SET_BUFFER_THRESHOLD

Set the data buffer threshold register. Range is 0x0-0x3FFF (INPUT BUFFER_SIZE).

Usage
ioctl () Argument | Description
request I0CTL_GSC_SET_BUFFER_THRESHOLD
arg unsigned long *

3.4.12. IOCTL_GSC_CLEAR_BUFFER

Clear any residual data from the data buffer. This command does not halt sampling. For the most consistent results,
use 1OCTL_GSC_SET_ACQUIRE_MODE to halt sampling before clearing the buffer.

Usage

ioctl () Argument | Description
request I0CTL_GSC_CLEAR_BUFFER

3.4.13. IOCTL_GSC_SET_ACQUIRE_MODE
Set the hardware to either start or stop acquiring data. Possible values are:

START_ACQUIRE
STOP_ACQUIRE

24
General Standards Corporation, Phone: (256) 880-8787

24DSI32, Linux Device Driver, User Manual

Usage

ioctl () Argument | Description
request I0CTL_GSC_SET_ACQUIRE_MODE
arg unsigned long *

3.4.14. 10CTL_GSC_SET_GEN_RATE

This call provides information about the rate at which a specified generator should be set. The
IOCTL_GSC _SET GEN RATE IOCTL command uses the GEN_ RATE PARAMS structure to set

a generator's rate. 'eGenerator' specifies the generator, range being 0-3, and 'ulNrate' specifies the rate, range being
0x0-0x1FF.

Possible values for eGenerator are:

/* -—-—-- generator codes ---- */
GEN_A
GEN_B
GEN_C
GEN_D

The following values are defined to assist computing a value for ulNrate:

/* -—--- generator rate value limits —--—- */
#define MIN_NRATE 0x0
#define MAX_NRATE Ox1FF

Usage

ioctl () Argument | Description
request I0CTL_GSC_SET_GEN_RATE
arg gen_rate_params *

3.4.15. I0CTL_GSC_ASSIGN_GEN_TO_GROUP

This call is used to assign a generator to a group consisting of four channels. The
IOCTL_GSC_ASSIGN_GEN _TO_GROUP IOCTL command uses the gen_assign_params structure to assign a
channel group to a specified generator.

/* -——- channel group codes ---- */
GRP_O
GRP_1
GRP_2
GRP_3

/* -—--- generator assignment codes ---- */
ASN_GEN_A

ASN_GEN_B

ASN_GEN_C

ASN_GEN_D

ASN_EXT_CLK

ASN_GEN_DIRECT_EXT_CLK

ASN_GEN_NONE

25
General Standards Corporation, Phone: (256) 880-8787

24DSI32, Linux Device Driver, User Manual

Usage
ioctl () Argument | Description
request I0OCTL_GSC_ASSIGN_GEN_TO_GROUP
arg gen_assign_params *

3.4.16. IOCTL_SET_RATE_DIVISOR

This call is used to set the value that divides the assigned rate generator frequency for a specified group of channels.
The rate_divisor params structure is used to set the channel divisor. 'ulGroup' specifies the channel group , and
'ulDivisor' specifies the frequency divisor value. The divisor is calculated using the generator frequency and the
sampling rate.

typedef struct rate_divisor_params {
unsigned long ulGroup;
unsigned long ulDivisor;

} RATE_DIVISOR_PARAMS, *PRATE_DIVISOR_PARAMS;

/* -——- channel group codes ---- */

GRP_O

GRP_1

GRP_2

GRP_3
/* ——-- rate divisor value limits -——- */
#define MIN_NDIV 0
#define MAX_NDIV 25

Usage

ioctl () Argument | Description

request I0OCTL_GSC_SET_RATE_DIVISOR
arg Rate divisor_params *

3.4.17. IOCTL_GET_DEVICE_ERROR
This call is used to retrieve the detailed error code for the most recent error. Possible return values are:

GSC_SUCCESS
GSC_INVALID_PARAMETER
GSC_INVALID_BUFFER_SIZE
GSC_PI10_TIMEOUT
GSC_DMA_TIMEOUT
GSC_10CTL_TIMEOUT
GSC_OPERATION_CANCELLED
GSC_RESOURCE_ALLOCAT ION_ERROR
GSC_INVALID_REQUEST
GSC_AUTOCAL_FAILED

3.4.18. I0CTL_GSC_READ_PCI_CONFIG

Read the PCI configuration registers.

26
General Standards Corporation, Phone: (256) 880-8787

Usage

24DSI32, Linux Device Driver, User Manual

ioctl () Argument

Description

request

10CTL_GSC_READ_PCI_CONFIG

arg

device_read_pci_config_param *

3.4.19. IOCTL_GSC_READ_LOCAL_CONFIG

Read the PLX configuration registers.

Usage

ioctl () Argument | Description
request I0CTL_GSC_READ_LOCAL_CONFIG
arg device_register_params *

3.4.20. IOCTL_GSC_SET_TIMEOUT

Set the wait timeout for reading a data buffer, initialization and autocal, in seconds. Default is five seconds.

Usage

ioctl () Argument | Description
request I0OCTL_GSC_SET_TIMEOUT
arg unsigned long *

3.4.21. 10CTL_GSC_SET_DMA_STATE

Enable or disable DMA for read. Possible values are:

Usage

DMA_DISABLE
DMA_ENABLE
DMA_DEMAND_MODE

For most systems DMA is the preferred choice. Default is DMA_DISABLE.

ioctl () Argument | Description
request I0CTL_GSC_SET_DMA ENABLE
arg unsigned long *

3.4.22. 10CTL_GSC_GET_DEVICE_TYPE

Returns a unique enumerated type for each board type supported. Allows the use of multiple varieties of General
Standards boards in the same system. See pci24dsi32 ioctl.h for a listing of board types supported by this driver.

Usage

ioctl () Argument | Description
request I0CTL_GSC_GET_DEVICE_TYPE
arg unsigned long *

27

General Standards Corporation, Phone: (256) 880-8787

24DSI32, Linux Device Driver, User Manual

3.4.23. IOCTL_GSC_FILL_BUFFER
This IOCTL is used to instruct the driver to fill the user buffer before returning. If set TRUE, the driver will make
one or more read transfers from the hardware to satisfy the user request. If the state is set to FALSE, the driver will

return one or more samples per the Linux convention. Default is FALSE.

Usage

ioctl () Argument | Description
request I0CTL_GSC_FILL_BUFFER
arg unsigned long *

3.4.24. IOCTL_GSC_SYNCHRONIZE_SCAN

This IOCTL is used to set the hardware to synchronize scan mode. If set TRUE, the hardware will use synchronize
scan mode. If FALSE, the hardware will not use synchronize scan mode. Default is FALSE.

Usage

ioctl () Argument | Description
Request I0CTL_GSC_SYNCRONIZE_SCAN
Arg unsigned long *

3.4.25. I0CTL_GSC_SET_RATE_A_EXT_CLK

This IOCTL is used to set the state of the RATE-A external clock. When TRUE, selects the RATE-A generator as
the external clock output source for the initiator mode. If low, selects the channel-00 sample clock.

Usage

ioctl () Argument | Description
Request I0CTL_GSC_SET _RATE_A EXT_CLK
Arg unsigned long *

3.4.26. IOCTL_GSC_CLEAR_BUFFER_SYNC

This IOCTL is used to set the state of the software sync control bit. When TRUE, the software sync control bit
becomes “clear buffer”. Default is FALSE.

Usage

ioctl () Argument | Description
Request I0CTL_GSC_CLEAR_BUFFER_SYNC
Arg unsigned long *

3.4.27. IOCTL_GSC_SET_OVERFLOW_LEVEL

This IOCTL is used to set the threshold level for the driver to check for the input buffer overfilling. The value
passed is the actual trigger level, not, say, the number of words until full. The hardware does not support buffer

28
General Standards Corporation, Phone: (256) 880-8787

overflow checking, so the driver checks to see if this buffer level has been exceeded when a read call is made.
has, and checking is enabled, the driver fails the read and sets the global error code.

Usage

24DSI32, Linux Device Driver, User Manual

ioctl () Argument

Description

Request

10CTL_GSC_SET_OVERFLOW_LEVEL

Arg

unsigned long *

3.4.28. IOCTL_GSC_SET_OVERFLOW_CHECK

This IOCTL is used to enable or disable buffer overflow checking. When TRUE, the driver will check to see if the
overflow threshold has been exceeded and fail the read call if it has. If FALSE, the driver ignores the overflow level.

Usage

ioctl () Argument | Description
Request I0CTL_GSC_SET_OVERFLOW_CHECK
Arg unsigned long *

3.4.29. 10CTL_GSC_SET_RATE_A_CLK_OUT

This IOCTL is used to set the source of the external clock. Possible values are:

Usage

EXT_CLK_RATE_A
EXT_CLK_GROUP_O

ioctl () Argument | Description
Request IOCTL_GSC_SET_RATE_A CLK OUT
Arg unsigned long *

3.4.30. I0CTL_GSC_SELECT_IMAGE_FILTER

This IOCTL is used to select low or high frequency image filtering. Default is high frequency filtering Possible

values are:

Usage

IMAGE_FILTER_LO_FREQ
IMAGE_FILTER_HI_FREQ

ioctl () Argument

Description

Request

10CTL_GSC_SELECT_IMAGE_FILTER

General Standards Corporation, Phone: (256) 880-8787

29

24DSI32, Linux Device Driver, User Manual

| Arg | unsigned long * |

3.4.31. I0CTL_GSC_SELECT_TTL_EXTERN_SYNC

This IOCTL is used to select differential LVDS or single-ended TTL external sync signals. The default is LVDS.
Possible values are:

EXTERN_SYNC_TTL
EXTERN_SYNC_LVDS

Usage
ioctl () Argument | Description
Request I0CTL_GSC_SELECT_TTL_EXTERN_SYNC
Arg unsigned long *

3.4.32. IOCTL_GSC_SET_DATA_WIDTH
This IOCTL is used to select the output data width. Possible values are:

DATA_WIDTH_16
DATA_WIDTH_18
DATA_WIDTH_20
DATA_WIDTH_24

Usage
ioctl () Argument | Description
Request I0CTL_GSC_SET_DATA_ WIDTH
Arg unsigned long *

30
General Standards Corporation, Phone: (256) 880-8787

24DSI32, Linux Device Driver, User Manual

4. Operation

This section explains some operational procedures using the driver. This is in no way intended to be a
comprehensive guide on using the 24DSI32. This is simply to address a few issues relating to using the 24DSI32.

4.1. Read Operations

Before performing read() requests the device 1/O parameters should be configured via the appropriate
IOCTL services.

4.2. Data Reception

Data reception is essentially a three-step process; configure the 24DSI32, initiate data conversion and read the
converted data. A simplified version of this process is illustrated in the steps outlined below.

1. Perform a board reset to put the 24DSI32 in a known state.
2. Perform the steps required for any desired input voltage range, number of channels, scan rate settings, etc.
3. Initiate a date conversion cycle.

4. Use the read() service to retrieve the data from the board.

4.3. Data Transfer Options
4.3.1. PIO

This mode uses repetitive register accesses in performing data transfers and is most applicable for low
throughput requirements.

4.3.2. Standard DMA

This mode is intended for data transfers that do not exceed the size of the 24DSI32 data buffer. In this mode, all data
transfer between the PCI interface and the data buffers is done in burst mode. The data must be in the hardware
buffer before the DMA transfer will start.

4.3.3. Demand Mode DMA

The byte count passed in the read()is converted to words and written to the DMA hardware. The driver sets an
interrupt for DMA finished and goes to sleep. The DMA hardware transfers the requested number of words into the
system (intermediate) buffer and generates an interrupt.

The difference between regular and demand mode has to do with when the transaction is started. A demand mode
transaction may be initiated at any buffer data level. The regular DMA transaction is only started when there is
sufficient data.

Note that due to limitations of the Linux operating system, the driver cannot copy directly from the hardware to the
user buffer. Instead, the data must pass through an intermediate DMA-capable buffer. The size of the intermediate
buffer is determined by the #define DMA ORDER in the pci24dsi32.h file. The driver attempts to allocate
2"DMA_ORDER pages. On larger systems, this number can be increased, reducing the number of operations
required to transfer the data. Demand mode DMA transfers are also limited to the capacity of the intermediate
buffer.

31
General Standards Corporation, Phone: (256) 880-8787

24DSI32, Linux Device Driver, User Manual

Document History

Revision Description

January 18, 2004 | Initial draft.

February 23, 2004 | Added new IOCTLs, corrected typographical errors.

July 13, 2004 Added IOCTLs to set buffer overfill level, and enable/disable checking.
August 9, 2004 Added reference to supporting and testing on the 2.6 kernels.
July 7, 2005 Added support for the PMC-24DSI12 and several new IOCTLs.

32

General Standards Corporation, Phone: (256) 880-8787

	24DSI32 – 24DSI12
	24-bit, 32 Channel Delta-Sigma A/D Boards
	PCI-24DSI32
	PMC-24DSI12
	Linux Device Driver
	User Manual

	Introduction
	Purpose
	Acronyms
	Definitions
	Software Overview
	Hardware Overview
	Reference Material

	Installation
	CPU and Kernel Support
	The /proc File System
	File List
	Installation
	Build
	Startup
	Manual Driver Startup Procedures
	Automatic Driver Startup Procedures

	Verification
	Version
	Shutdown
	Removal

	Sample Application
	testapp
	Installation
	Build
	Execute
	Removal

	Driver Interface
	Macros
	IOCTL
	Registers
	GSC Registers
	PCI Configuration Registers

	Data Types
	board_entry
	Definition

	device_register_params
	Definition

	gen_rate_params
	Definition

	gen_assign_params
	Definition

	rate_divisor_params
	Definition

	device_read_pci_config_param
	Definition

	config_regs
	Definition

	Functions
	open()
	Prototype
	Example

	read()
	Prototype

	write()
	close()
	Prototype
	Example

	IOCTL Services
	IOCTL_GSC_NO_COMMAND
	Usage

	IOCTL_GSC_READ_REGISTER
	Usage

	IOCTL_GSC_WRITE_REGISTER
	Usage

	IOCTL_GSC_SET_INPUT_RANGE
	Usage

	IOCTL_GSC_SET_INPUT_MODE
	Usage

	IOCTL_GSC_SET_SW_SYNCH
	Usage

	IOCTL_GSC_AUTO_CAL
	Usage

	IOCTL_GSC_INITIALIZE
	Usage

	IOCTL_GSC_SET_DATA_FORMAT
	Usage

	IOCTL_GSC_SET_INITIATOR_MODE
	Usage

	IOCTL_GSC_SET_BUFFER_THRESHOLD
	Usage

	IOCTL_GSC_CLEAR_BUFFER
	Usage

	IOCTL_GSC_SET_ACQUIRE_MODE
	Usage

	IOCTL_GSC_SET_GEN_RATE
	Usage

	IOCTL_GSC_ASSIGN_GEN_TO_GROUP
	Usage

	IOCTL_SET_RATE_DIVISOR
	Usage

	IOCTL_GET_DEVICE_ERROR
	IOCTL_GSC_READ_PCI_CONFIG
	Usage

	IOCTL_GSC_READ_LOCAL_CONFIG
	Usage

	IOCTL_GSC_SET_TIMEOUT
	Usage

	IOCTL_GSC_SET_DMA_STATE
	Usage

	IOCTL_GSC_GET_DEVICE_TYPE
	Usage

	IOCTL_GSC_FILL_BUFFER
	Usage

	IOCTL_GSC_SYNCHRONIZE_SCAN
	Usage

	IOCTL_GSC_SET_RATE_A_EXT_CLK
	Usage

	IOCTL_GSC_CLEAR_BUFFER_SYNC
	Usage

	IOCTL_GSC_SET_OVERFLOW_LEVEL
	Usage

	IOCTL_GSC_SET_OVERFLOW_CHECK
	Usage

	IOCTL_GSC_SET_RATE_A_CLK_OUT
	Usage

	IOCTL_GSC_SELECT_IMAGE_FILTER
	Usage

	IOCTL_GSC_SELECT_TTL_EXTERN_SYNC
	Usage

	IOCTL_GSC_SET_DATA_WIDTH
	Usage

	Operation
	Read Operations
	Data Reception
	Data Transfer Options
	PIO
	Standard DMA
	Demand Mode DMA

	Document History

