

CSE 367 CS Research Lab

Prof. Steve Demurjian

Final Project Report

14 May 2001

Implementation of Constraint-based Security Model

in JINI Environment

Group Members:

Qi Jin (Qi): qjin@engr.uconn.edu

Mumtaz Lohawala (Mumtaz): mumtaz@engr.uconn.edu

Nayana A Limaye (Nayana): nsp@engr.uconn.edu

 2

Table of Contents

Section Page

1. Introduction and Motivation ……………………………………………… 3

2. Software Architecture and Improvement …………………………………. 5

2.1 The Unified Security Resource (USR) .…………………………….. 6

2.2 Security Enforcement for Executing Client Application …………… 9

2.3 Participation of Resources in Security Paradigm …………………… 10

3. Implementation of Client (User) Registration and

Constraint-Based Authorization …….…………………………………… 11

3.1 Client (User) Registration …………………………………………. 11

3.2 Constraint-Based Authorization …………………………………… 13

4. Implementation of Time constraints and Signature Constraints ………… 16

4.1 Time Constraints …………………………………………………… 16

4.2 Signature Constraints ………………………………………………. 18

5. Implementation of Tracking and Analysis Tools ………………………… 21

5.1 Tracking Tool ………………………………………………………. 21

5.1.1 Implementation of Tracking Tool ………………………….. 21

5.2 Analysis Tool ………………………………………………………. 22

5.2.1 Implementation of Analysis Tool ………………………….. 23

6. Conclusion and Proposed Future Work ………………………………….. 27

6.1 Proposed Future Work ……………………………………………… 27

6.2 Conclusion …………………………………………………………... 30

6.3 Work Breakdown by Student ……………………………………….. 31

Acknowledgement …………………………………………………………….. 32

Appendix A (User Manual to run the JINI Security System) ………………… 33

Appendix B (ER and UML Class Diagrams for JINI Security System) ……… 41

 3

1. Introduction and Motivation

 Security for a distributed environment is an ever-increasing problem, and seeking

solutions for web-based, distributed, and agent-based applications is critically important,

and has been investigated from many different perspectives. In the past 5 years, role-

based approach to security for object-oriented models has customized the public

interface, allowing different subsets of the public methods to be visible to different users

based on role. By cataloging these different subsets of methods across an entire class

library, it is possible to enforce, at runtime, this custom behavior, in object-based, agent,

and distributed settings. Thus, an end user playing a role via a client application can be

restricted as to which methods can be invoked, and the same client application will

consequently work different at different times and different locations based on role.

In the previous semester, we incorporated the use of a security token to build a

JINI-based security system. This system could restrict the end-users’ access to the system

according to their user name/password, their roles and their locations (IP address).

However, our system had the following major limitations:

1. From the user-role perspective, the user was either simply granted or denied the

ability to play certain roles;

2. From the role-method call perspective, the role was either simply granted or

denied the method call;

3. There were no tracking and analysis tools to keep track of the activities going on

in the system;

4. The interface of the security system was not user-friendly.

This semester we, therefore, strove for a more versatile and robust system by

extending our existing security model to incorporate a solution to the above limitations.

The major extensions made this semester to increase the scope of the existing security

model are the addition of “time and signature constraints” and the inclusion of a “tracking

and analysis tool”.

The two types of constraints, viz., Time constraints (TC) and Signature

constraints (SC) limit the accessibility of system resources by users depending on the

time at which the user plays a particular role and the actual role that he plays. Time

 4

Constraints means that the action has to be performed within valid time intervals.

Signature Constraints means that the roles’ invocation of a method is based on allowable

values. These constraints control method invocations by limiting the time period of the

invocation (time constraints) and are based on the return and/or parameter values

(signature constraints). Signature constraints are independent of database integrity

constraints (which are the responsibility of the resource) and programming types (which

are the responsibility of the compiler/runtime environment). In our current version of the

security system, users can play roles based on TC, and roles can access methods based on

TC as well as SC.

As an enhancement, the security system will keep a dynamic tracking log to let

security officers trace all the activities occurring in the whole environment. Likewise, a

static analysis tool is employed to guarantee that the inner method calls are consistent

with the security policies.

To make the system more intuitive for the security officers, GUI improvements

were done to the existing security policy and authorization lists. GUI modifications were

also done to the resource system to prevent illegal accesses by users to the system hence

making the system secure right from the log-in time.

In the remainder of this report, we will first introduce our new system

architecture, especially our improvements to the security system in section 2. Then we

will illustrate the logic and implementation of the two core parts of the security system

viz., the client (user) registration and the constraint-based authorization in section 3. In

section 4, we will discuss the implementation of signature constraints and time

constraints. We will concentrate on the implementation of dynamic tracking and static

analysis tools in section 5. Finally, in section 6, we will conclude our work done in this

semester and propose some issues and enhancements for the future system. In the

appendices, we will include a user’s manual and UML diagrams of the current system.

 5

2. Software Architecture and Improvement

In Figure 1, we represent the security-related clients and resources that comprise

our new system architecture. We have a Unified Security Resource (USR), which

provides role-based security support in Distributed Resource Environment (DRE). USR

provides four categories of services:

1. Security Policy Services define user roles (UR’s), register the resources, services

and methods, and grant access to roles for resources, services and/or methods.

Security Policy Services also include several methods that are provided for

resource servers to publish themselves, their services and methods.

2. Security Authorization Services are utilized to maintain profiles on the clients

(e.g. users, tools, software agents, etc.) that are authorized and actively utilizing

non-security services. These services allow a security officer to grant users to

roles.

3. Security Registration Services are utilized by clients at start-up time for identity

registration (User id, IP address and user role).

4. Security Tracking and Analysis Services are utilized by the security officers to

dynamically trace the activities in the security environment and statically analyse

the inner method calls of the resource server.

In addition to USR, there are two security clients bundled with the security

resource: a Security Policy Client (SPC) and a Security Authorization Client (SAC). SPC

enables the security officer to manage user roles by granting/revoking privileges

(resource, service, and/or methods) to/from user roles and to support tracking and

analysis of defined security privileges. SAC, on the other hand, enables the security

officer to authorize roles to end users, and to assign them negative and additional

privileges. A Global Clock Resource1 (GCR) is introduced to support time-constrained

access of resources (and their services and methods) by the user role. An Analysis Tool

Resource is provided for security officers to statically analyze the inner method calls of

the resource server and keep the consistency of the inner method calls with the security

policies.

1We didn’t implement GCR this semester. We only put it in the conceptual model of this report.

 6

Wrapped
Resource
for Legacy
Application

Wrapped
Resource

for Database
Application

Figure 1: Security Clients and Resources in Distributed Environment.

Security
Authorization
Client (SAC)

Security
Policy

Client (SPC)
Security

Registration
Services

Unified Security Resource (USR)

Security
Policy

Services

Lookup
Service

General
Resource

Wrapped
Resource
for COTS

Application

Global Clock
Resource (GCR)

Java
Client

Legacy
Client

Database
Client

Software
Agent

COTS
Client

Lookup
Service

Security
Authorization

Services

Security
Tracking and

Analysis

Analysis
Client

The prototype of our system has a USR and a resource system, the Course

Database Resource. The Course Database Resource comes with a server and a client. In

the server, we have two services: Read Services and Modification Services. Each of these

services has a couple of methods. Please refer figure 2 for the list of services provided by

the resource server. The Course Database Resource Client is used to access USR for

registering clients and accessing Course Database Server for actions. The focus of this

report will be on USR, and all the different interactions that take place with resource and

clients in dynamic environment. In Section 2.1, we will list the services and methods of

the USR. In Section 2.2, we will present the token-based interaction within the DRE

environment. Section 2.3 will consider the process from the perspective of the resource

registering itself, its services and its methods for a secure access.

2.1 The Unified Security Resource (USR)

The Unified Security Resource (USR) is a repository for all static and dynamic security

information on roles, clients, resources, authorizations, etc., and is organized into a set of services, as given

in Figure 2.

 7

Figure 2: The Services of USR.

Register Service
Register_Resource(R_Id);
Register_Service(R_Id, S_Id);
Register_Method(R_Id, S_Id, M_Id);
Register_Signature(R_Id, S_Id, M_Id, Signat);
UnRegister_Resource(R_Id);
UnRegister_Service(R_Id, S_Id);
UnRegister_Method(R_Id, S_Id, M_Id);
Unregister_Token(Token)

Query Privileges Service
Query_Resource();
Query_Method(R_Id);
Query_MethodDesc(Token, R_Id, S_Id, M_Id);
Check_Privileges(Token, R_Id,

S_Id, M_Id, ParamValueList);
User Role Service
Create_New_Role(UR_Name, UR_Disc, UR_Id);
Delete_Role(UR_Id);
Query_Role(UR_Id)

Constraint Service
DefineTC(R_Id, S_Id, M_Id, SC);
DefineSC(R_Id, S_Id, M_Id, SC);
CheckTC(UR_Id, R_Id, S_Id, M_ID,
CheckSC(UR_Id, R_Id, S_Id, M_ID, ParamValueList);

Grant-Revoke Service
Grant_Resource(UR_Id, R_Id);
Grant_Service(UR_Id, R_Id, S_Id);
Grant_Method(UR_Id, R_Id, S_Id, M_Id);
Grant_SC(UR_Id, R_Id, S_Id, M_Id, SC);
Grant_TC(UR_Id, R_Id, S_Id, M_Id, TC);
Revoke_Resource(UR_Id, R_Id);
Revoke_Service(UR_Id, R_Id, S_Id);
Revoke_Method(UR_Id, R_Id, S_Id, M_Id);
Revoke_SC(UR_Id, R_Id, S_Id, M_Id, SC);
Revoke_TC(UR_Id, R_Id, S_Id, M_Id, TC);

SECURITY POLICY SERVICES

Register Client Service
Create_Token(User_Id, UR_Id, Token);
Register_Client(User_Id, IP_Addr, UR_Id);
UnRegister_Client(User_Id, IP_Addr, UR_Id);
IsClient_Registered(Token);
Find_Client(User_Id, IP_Addr);

SECURITY REGISTRATION SERVICES

SECURITY AUTHORIZATION SERVICES

Authorize Role Service
Grant_Role(UR_Id, User_Id);
Revoke_Role(UR_Id, User_Id);

Client Profile Service
Verify_UR(User_Id, UR_Id);
Query_Client(User_Id);
Erase_Client(User_Id);
Find_Client(User_Id);
Find_All_Clients();

SECURITY TRACKING AND ANALYSIS SERVICES
Tracking Service
Logfile(Log String)

Analysis Service
Analyze(Java Class File)

Security Policy Services are utilized to define, track, and modify user roles, to

allow resources to register their services and methods (and signatures), and to

grant/revoke access by user roles to resources, services, and/or methods with optional

time and signature constraints. These services are used by a security officer to define a

policy and by the resources (e.g., database, Java server, etc.) to dynamically determine

whether a client has the permission to execute a particular [resource, service, method]

under a time and/or signature constraint. There are five different security policy services:

Register for allowing a resource to (un)register itself, its services, and their methods (and

signatures), which are used by a resource for secure access to its services; Query

Privilege for basic introspection and verification of privileges, used by the security

officer via the security policy client and at runtime by the resource to verify whether the

client (via a token) has the permission to invoke a method under a set of constraints; User

Role to allow the security officer to define and delete user roles; Constraint to allow

time and signature constraints to be defined by the security officer, and for these

constraints to be dynamically verified at runtime; and, Grant-Revoke for establishing

privileges, where a UR can be granted/revoked a resource, its services, and their methods,

 8

with or without time and signature constraints. The security officer can access these

services from Security Policy Client.

Security Authorization Services are utilized to maintain profiles on the clients

(e.g., users, tools, software agents, etc.) that are authorized and actively utilizing non-

security services, allowing a security officer to authorize users to roles with or without

time constraints. There are two services: Authorization Role for the security officer to

grant and revoke a role to a user with the provision that a user may be granted multiple

roles, but must play only a single role when utilizing a client application; and, Client

Profile for the security officer to monitor and manage the clients that have active

sessions. The security officer can access these services from Security Authorization

Client.

Security Registration Services are utilized by clients at start-up time for identity

registration (client id, IP address, user role and access time), which allows a unique token

to be generated for each session of a client. The single service, Register Client, can also

be utilized by the resource to decide whether the user can play the role, verify client

identity and by the security officer to monitor client activity via the security authorization

client.

Security Tracking and Analysis Services are utilized to dynamically track all the

activities in the security environment and to statically analyze the inner method calls of

the resource system. There are two services: Tracking Service, which maintains a real-

time log file for the security officer to trace and monitor all the successful and

unsuccessful activities (including user sign-in/sign-out, the status of user’s access to

resource/service/method, the reason for access failure or success, etc) in the security

environment. Analysis Service, which will help the security officers to analyze the inner

method calls of the joining resource server and keep the consistency of actual method

calls and the security policy. The security officer will use Tracking Service from Security

Policy Client and Analysis Service from Analysis Client.

 9

2.2 Security Enforcement for Executing Client Application

4 Return role list for this client

1 Login(user_id, pass_wd)

* GCR has not been implemented this semester

Figure 3: Client Interactions and Service Invocations.

Security
Authorization

Services

Security
Registration

Services

Resource
Client

2 Client OK?

11 Return Result of
constraint-based Check

9 Request to do something
(token, parameters)

USR

3 getRoleList
(user_id)

Security
Policy

Services

Resource
Server

5 register_client(user_id, pass_wd, role)

8 if within valid time, return token

GCR*

6 Request
a time

7 Return
a time

10 hasClientRight(role_id,
r_id, s_id, m_id,date/time,
paramlist)

12 return the
result of the

Requested actions Dynamic
Tracking

The processing required by a client application that is joining the distributed

environment and subsequently attempting to access resources, is best illustrated with an

example, which is given in Figure 3. In the first step in the process, the Course DB Client

must be authenticated to verify that the client has access to the desired resource. Then he

selects the specific user role that he wants to play in this session. After this, a token is

generated and assigned to the user for the session. To do so, the Course DB Client first

enters his user name and password. USR verifies his identity and returns him the roles he

can play in the current resource system. The Course DB Client then picks a role and

registers with USR via the Register_Client method, which must verify that the user is in

the valid time interval for playing this role. USR then requests a global time from GCR1

and then returns a token to the client via the Create_Token method. A new token is

generated each time a valid user enters the system and begins a session. Since GCR

processes all requests sequentially, a unique time is always returned, and hence the token

that consists of User-ID, Role-ID, IP address, and creation time, is always unique. Even if

the user has multiple sessions open at the same time from the same machine with the

same role, the creation time of the token distinguishes the sessions. Assuming that the

 10

registration and token generation were successful and Course DB Client finds the desired

method from lookup service (can be JINI lookup service or CORBA lookup service), the

user can then attempt to utilize resources from the distributed application, and in this

example, from the Course DB Resource. In the example of Figure 3, a proxy to the

method is returned, and the method is invoked with the parameters - Token and the

parameters required by the specific method. The Course Database Resource has two

critical steps to perform before executing RegisterCourse. First, CourseDB Resource

verifies that the Client has registered with the security services. If this fails, a negative

result is sent back via the method invocation result. If this is successful, then the Course

Database Resource must perform a constraint-based check to verify if the user role can

access the method limited by signature constraints and/or time constraints (both may be

null), the Course Database Resource will return the result of the requested invocation to

the client. The logic of Client (User) Authentication and Constraint-based Authorization

will be explained in Section 3. All the activities in USR will be tracked dynamically by

the dynamic tracking tool in USR.

2.3 Participation of Resources in Security Paradigm

In our enforcement framework as presented in Figure 1, there is an implied

requirement that those resources that want to utilize the security capabilities, must

publish themselves to USR. Specifically, each resource must register with the Security

Policy Services, so that the master resource list, service list, and method list (and their

signatures), can be modified to include resources as they dynamically enter the

environment. Resources must be allowed to both register and un-register themselves,

their services, and methods (with signatures) via the Register service. For our example,

the Course Database Resource that we have utilized would need to register its Read and

Modification services and all of their methods and signatures. This registration is critical,

since it stores the relevant information via USR into a relational database system, which

is then accessible to a security officer using either the Security Policy Client or the

Security Authorization Client to establish and review security requirements. This process

is illustrated in Figure 4, with the enumeration of all of the register and unregister

methods. USR provides a set of methods to help the resource register or update its own

profile. Whenever the resource server is online, it will use the methods provided by USR

 11

to register (if this is the first time it is online) or update (if it is registered before) its own

profile in the database of security system. The security officer can always unregister any

resource/service/method from Security Policy Client at any time.

 In addition to this process, as we discussed in Section 2.2, the Course DB

Resource uses the USR at runtime to dynamically verify if the client is authorized to a

[resource, service, method] under optional time and security constraints.

Figure 4: Resource Interactions and Service Invocations.

Security
Authorization

Services

Security
Registration

Services

Lookup
Service

U
S
R

Security
Policy

Services

Course DB
Resource

Discover
Service

Return
Proxy

1 IsClient_Registered(Token)

3 Check_Privileges(Token, R_Id, S_Id,
M_Id, ParamValueList)

4 Return Result of Check_Privileges(…)

2 Return Result of IsClient_Registered(…)

Register_Resource(R_Id);
Register_Service(R_Id, S_Id);
Register_Method(R_Id, S_Id, M_Id);
Register_Signature(R_Id, S_Id, M_Id

Signature);

UnRegister_Resource(R_Id);
UnRegister_Service(R_Id, S_Id);
UnRegister_Method(R_Id, S_Id, M_Id);

Tracking and
Analysis

3. Implementation of Client (User) Registration and Constraint-based Authorization

As we mentioned in Section 2, the core parts of USR are Client (User)

Registration and Constraint-based Authorization. In Section 3.1, we will discuss the logic

of Client (User) Registration and in Section 3.2, we will discuss the logic of Constraint-

based Authorization.

3.1 Client (User) Registration

This part of the security system verifies the identity of the user at login time

before the user can be allowed to access the resource that he is trying to access.

Following are the steps involved in client registration/authentication (and figure 5 depicts

 12

this process in the form of a flowchart):

1. User must input the user id and password first.

Error: Incorrect user id or password or both.

2. If the user id and password are valid then a role list is brought to the user from

which he can select the role that he wants to assume. This role list is the list of

roles that this user can possibly have for the given resource.

Error: The user cannot assume any role for the given resource.

3. After he selects a role, the client will register with USR via the Register_Client()

method which will verify whether the user is in the valid time interval to play this

role and then return a token via the Create_Token() method.

Error: The user cannot access the resource by this role in invalid time interval.

Here we give an example to illustrate the Client (User) Authentication process. Qi

is a user of Course Database System. When she starts a session, the system will first

prompt her to input her user name and password. If both the user name and password are

correct, she will be asked to select a role from the roles she can play in Course Database

System. Qi then selects CSEUndergrad role. Once she submits, USR then checks if she is

allowed to play this role within the valid time interval. If so, USR finishes authentication

for her in this session and returns her a unique token to access Course Database System.

 13

Start
Authentication

Is access time
for the selected role

 valid?

User id or
password
incorrect

Input user id
and

password

Allowable roles
for this user

for this resource

Register client
with the

selected role

End Authentication
successfully

No

Yes

Are user id
and password

correct?

No
Access denied

Figure 5: Flowchart for Client (User) Authentication

3.2 Constraint-Based Authorization

If the user passes the authentication check above, he can use the services offered

by the resource. However, in order to be able to use any service, the user must have the

right to use it. The privileges to access resources and their services (methods) are

determined by a policy, which is dictated by a Security Officer. A user can access a

service (or method) if all of the following are satisfied:

1. Token is valid

2. IP is valid

3. IP constraints are met with

4. No negative privilege is granted (to the user) to access that method2

5. Positive privilege is granted (to the role) to access the method

6. Time constraints are met with, i.e. the access is within the valid time interval

7. Signature constraints are met with (given to the role) if there are any signature

constraints defined for the method

 14

A flowchart for this kind of constraint-based authorization is given below:

Start Constraint-Based
Authorization

Is token valid? Token expired

End Authorization
Successfully

Is IP valid?

Are IP constraints
met?

Is positive privilege
granted to this role

for this service?

Are signature
constraints met?

Are time
constraints met?

Are time constraints
assigned to this user

for this service?

IP invalid

IP constraints
are not met

User has negative privilege
to access this service

User does not have positive
privilege to access this service

End Authorization
Unsuccessfully

Is negative privilege
granted to this user

for this service?1

Are signature constraints
assigned to this user

for this service?

Signature constraints mismatch
for this service for this user

Time constraints mismatch
for this service for this user

No

No

No

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Figure 6: Flowchart for Constraint-Based Authorization

The order followed while checking the above privileges and constraints is 1 to 7

(above). If an error is encountered at any of these checks then the user cannot access that

service (or method). These checks are described below in detail:

Token Check

This check is performed to verify the validity of the token to ensure that the token has

not expired. However, according to Prof. Demurjian’s feedback, we now set the token

expiration time to be infinite.

Error: The token has expired.

2 In the new security model, we will not have a negative privilege check. We have, however, not removed it
from the code in case we might need it later. But since there are actually no negative privileges defined in
the database, the constraint-based authorization just skips it.

 15

IP Constraint Check

This check is done in order to ensure that the user logs on to the system from the

permitted locations.

Error: The user cannot log on to the system from this location.

Negative Privileges Check

The negative privileges, given to a user, on either a whole resource or a service

(method), disable that particular user from accessing that resource or service (method)

respectively.

Error: The user has a negative privilege for either the whole resource or the service

(method) that he is trying to use in the given resource.

Positive Privileges Check

The positive privileges are assigned to a client (role) in order to enable him to use a

resource or its methods.

Error: The client (role) does not have a positive privilege for the service (method)

that he is trying to use in the given resource.

Signature Constraints Check

Signature constraints allows to restrict the use of methods by clients (roles) in the

system depending upon the value of the signature passed as arguments and returned

as return value.

Error: The client (role) does not meet the signature constraints for the service

(method) that he is trying to use in the given resource.

Time Constraints Check

Time constraints restrict the access of methods by clients (roles) in the system to a

limited time period.

Error: The client (role) does not meet the time constraints for the service (method)

that he is trying to use in the given resource.

We cite here an example to explain this process.

Consider that the role CSEDeptHead is assigned to user Ting, the role CSEFaculty is

 16

assigned to users Ting and Steve and the role CSEUndergrad is assigned to user Mumtaz.

Now consider three methods, addCourse(), updateCourseCapacity() and

registerCourse() present in Course Database resource. If the security officer grants a

positive privilege to the roles, CSEDeptHead and CSEFaculty, to use addCourse() then

Ting may use this method if he signs in as either CSEDeptHead or CSEFaculty. Next,

assume that updateCourseCapacity() takes as parameter an integer that represents the

enrollment capacity for a course and that both CSEDeptHead and CSEFaculty have a

positive privilege to use this method. A constraint is put on this parameter such that

CSEDeptHead may modify the enrollment capacity up to 40 whereas CSEFaculty may

do so only up to 30. Now Ting, as the CSEDeptHead may be able to update the

enrollment capacity of a course to 35; however, as a CSEFaculty he will not be able to

update the enrollment capacity to 35 (signature constraints). Next, suppose that a

constraint is put on the usage of registerCourse() method, which role CSEUndergrad has

a positive privilege to, such that this role can access this method only between Jan 1,

2001 and Feb 28, 2001. Now user Mumtaz will have a time constraint on the usage of

this method and she cannot access this method before or after this time period.

4. Implementation of Time Constraints and Signature Constraints

Time Constraints and Signature Constraints are two major changes we made to

USR this semester. Time Constraints are used to limit the time period when a method can

be invoked. Signature Constraints are used to limit the values (return and parameter)

under which a method can be invoked. Signature Constraints are different from database

integrity constraints. The limitation of Signature Constraints is based on the role, while

the limitation of database integrity constraints are for all the roles.

4.1 Time Constraints

In a lot of situations, we need to limit the time when the client can access the

system. In the system last semester, the system assumed that resource/service/method and

role/user were valid only for a certain period of time. We found it not reflecting the actual

situation and inflexible when we investigated the security logic this semester. In real life,

 17

the resources/services/methods themselves do not expire, instead they just become

inaccessible for certain roles. It is, in fact, the definition of user roles’ access to them that

expires after the valid time period. The same logic also applies to the definitions of user

and role. It is the assignment of a role to a user that should expire instead of a user or a

role itself. This semester, we made modifications to the existing system to support this

more reasonable logic.

In the database schema, we added two more optional time-related columns to

tables that store the relationship, including user_role, role_resource, role_service,

role_method and role_ip. These two columns will store the valid time interval for the

relevant access if there is any. For example in the role_method table, each tuple now

becomes [ur_id, r_id, m_id, begin_date, end_date] instead of the previous simplistic

tuple of [ur_id, r_id, m_id]. In the security server, we changed our client (user)

registration logic and constraint-based authorization logic accordingly. These logic will

check if the access is in the valid time period if there are any time constraints for the

access. In both Security Policy Client and Security Authorization Client, we added

relevant fields for the security officer to set up time constraints. In Figure 7, we give

examples of the changed Security Policy Client and Security Authorization Client.

Figure 7: Security Client with Time Constraint Support

 18

4.2 Signature Constraints

Signature Constraints basically are to extend role-based method invocation based

on allowable data values (both return and parameters). It is very critical since they will

allow us to limit the conditions under which a method of a service for a resource may be

invoked based on role. Using Signature Constraints, multiple users can be allowed to

access the same method but in different ways based their roles. Take the following

scenario for an example: in the course database system, both faculty role and student role

should be able to query available courses. But in some transition period, the student role

should only have an access to the classes in the current semester, while the faculty can

have an access to classes from both the current semester and the next semester for

reviewing purposes. It is the Signature Constraints that take care of this. When getClass()

method in the course database system is invoked, it will take the semester name as a

parameter. The security officer can add a signature constraint in Security Policy Client

for this method to limit the value of the semester name for these different roles. For the

faculty role, they can query classes from both the semesters, while the student role can

query classes only from the current semester.

In order to support the signature constraints, we changed the database, security

server, and policy client.

1. Database Changes: We added two more tables, signature and role_signature. We

required the resource server to publish and register its method signature information,

including the number of parameters each method is taking, the data type of each

parameter and its description. This information will be stored in signature table. The

role_signature table is used to store the assignment of signature constraints to the

role. In order to support multiple parameters and future logic relationships of the

constraints to these parameters (AND, OR, NOT, etc) 3, we use a preformatted string

to keep the signature constraints for each method. The string is in the following

format:

NOT [parameter name, parameter data type, (parameter constraint)] AND/OR

…….

The italicized strings are optional. The first two parts in the bracket are easy to

3 As the first prototype of signature constraints, the current system only supports AND

 19

understand. The third part will change according to the data type. Each data type

needs to follow a rule. Now we accept three different data types. For STRING, the

parameter constraint should be an enumeration of accepted strings separated by

comma. For BOOLEAN, it should be True or False or both of them separated by

comma. For NUMBER, it should follow “min-max” (for example, 0-40) for one

range or one number for a specific value (for example, 30). Multiple ranges and

values will be separated by commas.

 For example, in course database system, the method updateClassCapacity() takes

two parameters, one is the course number and the other is the new capacity. We now

add a constraint so the faculty role can only update the capacity of the class CSE123

and CSE124 up to 30. This constraint string will be as follows: [course number,

STRING, (CSE123, CSE124)] AND [capacity, NUMBER, (0-30)].

2. Security Server Changes: We added several new methods to support signature

constraints: signatureRegister() for the resource to register its signature information

for each method, grantMethodSignature() for assigning signature constraints to a

role, revokeMethodSignature() for revoking the signature constraints from a role

and getMethodSignature for Security Policy Client to get the signature information

for the method. A method, changeToConstraintString will be provided to help the

resource server to change the method call to a preformatted input string, [parameter

name, parameter type, parameter value]. Two classes are added for parsing the

constraint string and compare the constraint string in the database with the input

string. The parser will change the constraint string and input string to two vectors and

the comparator will match each parameter according to its data type and return a

Boolean expression for the constraint-based authorization check. For example, when

the course database client using faculty role is calling a method, updateCapacity by

updateCapacity(“CSE123”, 35). The resource server will first call

changeToConstraintString method to generate a string like [Course Number,

STRING, (CSE123)] AND [capacity, NUMBER, (35)]. This string will be a

parameter for the constraint-based authorization check together with the role id,

resource id and method id. There are constraints to both of two parameters. The

constraint-based authorization check will then parse this string and the string

retrieved from the database to compare each parameter. Since CSE 123 is within

 20

(CSE 123, CSE 124), the first parameter check will return True. It continues to the

second parameter. Since 35 is out of 0-30 range, this parameter check will return

False. The constraint string specifies that these two constraints are connected by

AND, so the comparator will return False to the constraint-based authorization check

and reject the client’s update to the class capacity.

3. Security Policy Client Changes: The security officer will use the Security Policy

Client to add and remove signature constraints. To avoid possible illegal accesses, if

the method has not been assigned to the role, the security officer cannot set the

signature constraints. For different data types, GUI for assigning signature is different

which makes the system user-friendlier. Security Policy Client will also generate the

constraint string according to the security officer’s input and return to the security

server for putting it in the database. In Figure 8, we give examples of the changed

Security Policy Client GUI.

Figure 8: Security Policy Client with support for Signature Constraint

 21

5. Implementation of Tracking and Analysis Tools

5.1 Tracking Tool

 Any security system cannot be called perfectly secure unless all the calls made to

the resources in the security system can be recorded and traced for any security

violations. To allow this facility in our system, we have developed a tracking tool that

will dynamically and automatically start recording relevant information about every

attempt that is made to access the resources by any clients. This tool will, therefore, let

security officers monitor all the activities that occur in the environment, right from the

time a client starts a session with the security system till the time he logs out of the

system. This tool has been added to USR and the security officers can use this tool to

generate a list that contains all such information from a specific start date to the current

date.

5.1.2 Implementation of Tracking Tool

Since almost all of the security checks occur in the hasClientRight() method, the

major part of the implementation of tracking tool has been incorporated within the

hasClientRight() method. Every time a client requests any kind of access to the system

resources, the checks described in section 3.1 or section 3.2 are performed, which

essentially pass through the hasClientRight() method. All the key information, which is

either passed through the parameters of the method called (example, token), or is

generated by the system itself (example, time and date), or which reflects the status of the

access (success or error) etc. is recorded. Precisely, the data recorded comprise of the

following:

1. The date and time when the user tried to access the service

2. The IP address of the machine from where the user signed in

3. The user id of the client

4. The role id of the user

 22

5. The token assigned to the user if the authentication check was successful (if the

authentication step was unsuccessful then the token is supposed to be ‘0’)

6. The resource id that the user was accessing

7. The service (or method id) that the user was trying to use

8. The status of the access viz., SUCCESS or ERROR

9. A precise description of the status (why an error was caused, etc)

A table called log is maintained in the database, which keeps all these data. The

information can then be tracked at any time by the security officers through the security

policy client.

Figure 9 shows the changed Security Policy Client to support the tracking tool

and also gives an example of a log file generated through the security policy client.

Figure 9: Security Policy Client GUI and Output of Tracking Tool

5.2 Analysis Tool

Static Analysis Tool is an attempt to add introspection capabilities, which

augment the definitional capabilities with analyses, to the Role-Based security system

prototype. The current approach to analyze the actual source code for each of the Java

 23

resources that are developed, allows tracking not only the method on a resource that has

been directly authorized to a role, but also the other resources and/or methods that are

called to realize a particular method. Clearly, a significant assumption regarding the

availability of source code was made to conduct analysis. Such code will not typically be

available for a legacy or COTS application. The developed Static Analysis Tool is the

initial version of introspection and analysis capabilities.

The Static Analysis Tool analyzes a class, which implements all the methods of a

given resource. It inspects all the method definitions one after the other to find any other

method called inside the one under inspection. When it finds such situation, it does the

appropriate database queries to retrieve the Roles to which these methods are assigned. It

creates an alert message for each such finding in the result file. The result whether the

Authorized Roles for one method match with those for the other are reported back in the

result file.

5.2.1 Implementation of Analysis Tool

The Static Analysis Tool inspects a given Java class in the following manner:

1. All the declared methods for that class are obtained.

2. Each method definition in the source code for that class is checked to locate any

call to the other method(s) of that class.

3. When located, an entry of alert message is recorded in the result table.

4. Appropriate database queries are done to acquire the knowledge of the Roles to

which the methods are assigned.

5. The resultant Authorized Role sets of the outer and inner method are matched

against each other.

6. The result is stored in the alert table in the output file.

7. Every time when the tool runs, it stores the results of the previous analysis in the

file "Static_Analysis_Result_Old.txt" and stores the new results in the file

"Static_Analysis_Result_Current.txt".

 24

As the tool uses its own authorization for the security manager, and is

implemented with Java classes it is capable of analyzing the Java classes defined for any

resource of the current prototype.

Following is a list of expected results obtained from Static Analysis:

♦ NO Roles Found..... : No Roles were defined for both the methods.

♦ Roles MATCH Exactly : The Roles assigned for both the methods match exactly.

♦ ---- MISMATCH ALERT ---- : The outer or inner method have no Roles defined for

it, while the other one is having some Roles defined for it. This situation must be

inspected to find the possible security violation.

♦ ---- MISMATCH ALERT (# of Roles) ---- : The Roles assigned to the outer method

form a subset of the Roles defined for the inner method. This situation must be

inspected to find the possible security violation.

♦ **** Roles MISMATCH **** : The Roles assigned to the inner method form a

subset of the Roles defined for the outer method. This is clearly the security violation,

since the role that is not authorized for the inner method can call the same via outer

method, for which it is authorized.

Hence, the tool creates different types of alert messages according to the result of

Role matching for both the inner and outer method. The security officer should observe

and take a necessary step for each one of them.

In case of any “MISMATCH ALERT”, the security officer should inspect the identifiers

and Role sets for both the methods. If a private method of that class, which is not

assigned to any of the Roles in the system is calling a public method assigned for some

Roles, then that might not be a potential security violation unless that outer private

method is called inside another public method. In such a case if the Roles of that third

method do not match with those of the inner method, then that would prove as a security

threat.

Similarly, if a public method assigned to certain Roles is calling a private method

may not be a security violation unless the inner method calls a third public method. Here

again if the Roles for that third method do not match with those of the inner method, then

that would be a security violation.

 25

The “MISMATCH ALERT (for # of Roles)” also should be inspected by security

officer to see whether the Roles for the outer method form a proper subset of the Roles

for the inner method.

The case of “Roles MISMATCH” should be avoided in any case as that tells the

clear mismatch in the Roles for the inner and outer methods. This can be demonstrated

with an example below.

E.g. We analyzed “UniversityDBImpl”, which is the implementation of the methods of

the resource “UniversityDB”. The analysis of this example can be seen in Figure 10.

public boolean registerCourse(....)

{

 :

 addCourse(token, course);

 :

}

♦ Roles for registerCourse() :

CSEUndergrad, ta

♦ Roles for addCourse() :

CSEDeptHead

Tool reports

“**** Roles MISMATCH ****”

This is indeed a security violation !!

public boolean registerCourse(....)

{

 :

 getClassDescription(course,isCoursenum);

 :

}

♦ Roles for registerCourse() :

CSEUndergrad, ta

♦ Roles for getClassDescription () :

CSEDeptHead, CSEFaculty,

CSEUndergrad, ta

Tool reports

“---- MISMATCH ALERT (# of

Roles) ----”

No potential security violation here.

Figure 10: Output of Analysis Tool in different scenarios

 26

Figure 11 is the screen shot for analysis client while the various alert messages for

different situations are depicted in Figure 12.

Figure 11: Static Analysis Tool for Role-based Security System

Figure 12: Output of Static Analysis Tool for Role-based Security System

 27

6. Conclusion and Proposed Future Work

6.1 Proposed Future Work

1. Mandatory Access Control (MAC) and Role-Based Access Control (RBAC). It will

be a good concept to make a system that combines the concepts of both RBAC and

MAC.

(We feel that the best that can be done is to have a Role-based Model with MAC

feature. This would require changing our database schema to account for

classifications of database resources and security clearance levels of users.)

2. Cryptosystems. There are several public and symmetric key cryptographic systems in

use that could be adapted to our security system. This is something that would need

to be done in order to have a credible security system.

3. JINI/CORBA bridge. The clients should be able to use resources/services/methods

registered with CORBA as well as JINI i.e. there should be a facility to share

resources/services/methods regardless of the middleware they are registered with.

(Slightly complicated. JINI resource needs to add CORBA support and CORBA

resource needs to add JINI support. There should be a way to coordinate this.)

4. Common Use Resource and Global Clock. A common use resource is a resource

shared within a computing environment for whatever the reason. JINI and CORBA

should be able to share a common resource. A Global Clock is a common resource

used to make sure that database entries are entered in the proper sequence in a

distributed environment. Implementing a Global Clock as a common use resource is

an important improvement to our implementation.

(Kind of complicated. A brand new resource is needed and we should consider its

interaction with security server and other resources.)

5. Single Security Server. There should be only a single security server for all the

resources regardless of the middleware.

(Very easy to change our current more sophisticated security server to CORBA

environment. The CORBA wrapper should be kept and the security server and client

implementations should be replaced.)

6. (Resource, service, method) tuple. The (resource, method) pair should be changed to

 28

a (resource, service, method) tuple in order to identify each method. In the current

version, the service is ignored.

(Not difficult, but need to be careful. The codes for supporting service is ready in the

security server and clients, extensive tests and debugging are needed for finally

putting it to use.)

7. OR and NOT Signature Constraints. The relation assumed amongst the signature

constraints currently is that of AND. Future work should allow OR and NOT relations

as well.

(Easy to do. When we design the signature constraint implementation, we already

consider this. Small changes to parser and comparator classes will be required.)

8. Return Type Constraints. Currently, only the arguments or parameters passed into

methods are being taken into consideration while defining signature constraints. In

the future, however, the return value must also be considered while defining signature

constraints.

(Easy to do. Changes in the database for storing return parameter and the constraints

on return parameter are needed.)

9. Expanding data types. The data types currently allowed for signature constraints are

integer, boolean and String. In future, a constraint on all other remaining primitive

data types (like float, long, etc) as well as more complicated data types like objects

should be allowed.

(Support for primitive data types is simple to implement, but for more complicated

data type, it is difficult. We haven’t figured out a way to do this.)

10. Integrity Constraints. Set up integrity constraints on all elements of the resource

database. The integrity constraints are the limits to all Signature Constraints and will

ensure database integrity.

(Very easy to do, and would be a good complement to the security model.)

11. Groups. The concept of group refers to several users coming together to use the same

resources. An example would be a team of advisors for a single student.

(Not difficult. But need to clarify concepts before implementation.)

12. Constraints on Users. Currently, we only concern ourselves with the constraints based

on role. However, there should be some way to assign constraints to an individual.

(Very easy to implement. It can be done in the same way as negative privileges are

assigned to users.)

 29

13. Tracking Tool. In the Tracking Tool, currently a log file is returned based on a start

date from where the data should be tracked. A future version should allow

information to be tracked based on any of the 9 different types of information

recorded (excluding perhaps, the status description).

(Very easy to implement. The required additions should be made to the logFile()

method in SecurityOfficerImpl.java with the corresponding changes also made to the

Tracking tool GUI.)

14. Analysis Tool. Currently, the Static Analysis Tool is capable of inspecting

Authorized Roles for a given method of a resource. A future enhancement should also

allow analysis of combinations of methods assigned to a Role, such that, when a Role

is authorized for a given set of methods, the tool should be able to test whether that

set is necessary and sufficient, and whether it causes any kind of security violation.

(Easy to do. Change the GUI interface to include tabs & drop-down menus for

"Select a Resource" & "Select a Role" in the Tool window to select a role from

existing roles for a given resource. Query the "role_method" table depending upon

the role selected. Then, make use of FileAnalysis and MatchRoleMethod classes to

analyse the methods assigned to the Role selected.)

15. Analyzing multiple source files. The Static Analysis Tool inspects a single source

file, which defines a given Java class implementing the resource methods. It should

be altered to check a set of classes, which collectively realize that resource.

(Slightly complicated. An extensive use of java reflection package will be required. An

alternative could be to use compiler tools like Lex and Yacc, which are tools used to

generate lexical analyzers and parsers, to analyze the source code.)

16. Role Deconfliction. This would be a function of the analysis tool where certain roles

cannot be present if other roles are present.

(This will require a good understanding of the Chinese Wall Problem. For example, a

budget officer should not also be a procurement officer because the budget officer

would fund everything that he or she procures. There is a conflict of interest. The

conflicts would most likely be established in policy, so we would need a way to collect

and then check for these policy conflicts. We might want to call this Policy Constraint

Management.)

17. Agents. Our current security model cannot handle agents. A good feature of the

system would be that it integrates our security prototype with an agent environment.

 30

18. Date Selection GUI. Scroll-down menus should be used for inputting dates rather

than letting the user input the dates through text box (as is done in the current version)

so as to prevent the user from making any mistakes in the acceptable date formats.

(Easy to do. Only GUI changes are needed, but need to make sure every place has

been changed and throughout the system, the date format should be consistent.)

19. Role Assignment GUI. The system should incorporate an FTP like double window

exchange configuration to make it easier for the security officer to select privileges

for a user role or roles for a user.

20. Solution to JINI’s problems. JINI development team should be contacted in order to

resolve JINI’s memory relocation problems on NT machine.

6.2 Conclusion

This semester, we successfully extended the JINI security system. The major

changes we made to the system include:

1. Rewriting the GUI’s of all the clients to add drop-down menus at almost all places

where user input is required. In addition, the selections in the drop-down menus

are made to be always consistent with the most up-to-date information in the

database. The system is thus made user-friendlier, easy to use now and foolproof.

2. Designing and implementing the signature constraints concept from the very

beginning and successfully proving the prototype.

3. Redesigning and implementing the time constraints for the security system.

4. Addition of Dynamic Tracking and Static Analysis tools to the security system.

5. Fixing the bugs in the older system. The current version of our system is much

more unbreakable and robust as compared to the older version.

6. Designing and implementing Additional Privilege for the security system. The

codes for both security server and clients are ready to use though the concept was

discarded later.

The user manual and UML documentation for the system are included in the Appendice

 31

6.3 Work Breakdown by Student

We had a great team of three members this semester. The work breakdown is as follows:

• Qi Jin (Qi)

Qi continued her work from last semester. She helped other group members to

become familiar with the security model and the previous security system. She was

also responsible for fixing bugs in the previous system. She designed and

implemented Time Constraints. She was the primary designer of Signature

Constraints. Qi rewrote GUI interfaces for the previous system (both security system

and course database system) and added new GUI interfaces to support new Time

Constraints and Signature Constraints features. In addition to this, she also designed

and implemented Additional Privilege before it was removed from the security

model.

• Mumtaz Lohawala (Mumtaz)

Mumtaz was responsible for designing and implementing the Tracking Tool in

the security system. She contributed to the implementation of Signature Constraints

by writing the major parser and comparator classes. She assisted in writing the GUI

interface for the Analysis Tool. Mumtaz also modified the Authentication Client

GUIs to conceptually change the log-in process.

• Nayana A Limaye

Nayana was the designer of the Static Analysis Tool for the existing Role-

based security system. She also implemented the Static Analysis Tool to function

independently from JINI or CORBA. She added to the Tool, the Authorization of its

own to make it portable to any security system. She suggested some additions to

database schema, which Qi and Mumtaz implemented. These additions would be

helpful for the future version of Static Analysis Tool.

 32

Acknowledgement

We would sincerely like to extend our vote of thanks to Prof. S. Demurjian and

Charles. E. Phillips for all their guidance and help throughout the course of this project.

 33

Appendix A

User Manual to run the JINI Security System

 34

Software Requirements

1. JINI as the lookup service

2. Oracle for database

3. Java 2 Platform SE v1.3 or greater

Required Directory and Files

When you distribute the system on multiple machines, first you have to change

the corresponding batch files to make sure all the servers and clients can find JINI. Here

is a guide to put source/class files.

Security Server: common/, server/ and startserver.bat

Security Policy Client: common/, policy/ and startpolicy.bat

Security Authorization Client: common/, enforce/ and startenforce.bat

Course Database Server: common/, dbserver/ and startdb.bat

Course Database Client: common/, dbclient/ and startdbclient.bat

Static Analysis Tool: analysis/, dbserver/, server/ and starttool.bat

Steps to start the system

Note:

[1] One always needs to have JINI in the environment.

[2] One always needs to run the Security Server in order to run any of the security

clients.

[3] One always needs to run both Security Server and Course DB Server to run Course

DB client.

[4] The static analysis tool does not require any other system components running.

 35

Here are the steps to running the demo on the NT machine:

1. START JINI

From a DOS Command Prompt window:

a. C:\> cd files

b. C:\files> startgui

This will give you a GUI for JINI, from this window: go to FILE, then double

click (open) jini_win32_test.property, which will give you a new window

called " START SERVICE", do the following:

i. In the "Reggie" Tab, check the following:

Codebase: make sure "hostname" is changed to "localhost" or IP

address of this host

Log Directory: C:\tmp\reggie_log### (must fill in a new number for

or delete the current number from “C:\tmp” directory)

ii. In “Run” tab, click

• Start RMID

• Start Web Server

• Start Reggie

• If you see the screen like Figure A.1.1, JINI is up.

2. START Security Server

From a second DOS Command Prompt window:

a. D:\project> startserver

b. If you see the screen like figure A.1.2, the security server is up and registered with

JINI.

 36

Figure A.1.1 JINI is up
Figure A.1.2 Security Server is up

Figure A.1.3 Course Database
Server is up

Figure A.1 DOS windows for starting JINI and servers

3. START Policy Client

From another DOS Command Prompt window:

a. D:\project> startpolicy

“Security Policy Client Authentication” frame will pop up. Input user

name and password first (default user: security_admin and default Passwd:

chongsong). Click on “Select Role”, it will bring a list of roles. Select one of the

roles and click OK. The Policy Client will pop up. See Figure A.2 for

Authentication frame and Security Policy Client.

 37

Figure A.2: Security Policy Client Authentication and GUI

Figure A.2: Security Policy Client Authentication and GUI

4. START Authorization Client

From another DOS Command Prompt window:

a. D:\project> startenforce

“Security Authorization Client Authentication” frame will pop up. Input

user name and password first (default user: security_admin and default Passwd:

chongsong). Click on “Select Role”, it will bring a list of roles. Select one of the

roles and click OK. Security Authorization Client will pop up. See Figure A.3 for

Authentication frame and Security Authorization Client.

 38

Figure A.3: Security Authorization Client Authentication and GUI

Figure A.3: Security Authorization Client Authentication and GUI

5. START Course Database Server

From another DOS Command Prompt window:

a. D:\project> startdb

b. If you see the screen like Figure A.1.3, the Course Database server is up and

registered with JINI.

6. START Course Database Client

From another DOS Command Prompt window:

a. D:\project> startdbclient

“Course Database Client Authentication” frame will pop up. Input user

name and password first (see existing users and passwords). Click on “Select

Role”, it will bring a list of roles. Select one of the roles and click OK. Course

Database Client will pop up. See Figure A.4 for Authentication frame and Course

 39

Database client.

A list of a few existing users, and their corresponding passwords and roles

for the universitydb client is as below:

² User: universitydb_admin, Password: security, Role: universitydb admin

² User: steve, Password: steve, Role: CSEFaculty

² User: ting, Password: ting, Role: CSEDeptHead, CSEFaculty

² User: chip, Password: chip, Role: CSEUndergrad

Figure A.4: Course Database Client Authentication and GUI

Figure A.4: Course Database Client Authentication and GUI

7. START Tracking Tool

Tracking tool is part of Security Policy Client. Start Security Policy Client as above.

Select “Checking Tool” tab. Enter a valid date and click “Track”. It will prompt you

to go to “logfile.txt” for log information. See Figure A.5.3 for Tracking Tool tab.

 40

8. START Static Analysis Tool

From a DOS Command Prompt window:

a. D:\project> starttool

“Authentication for Static Analysis Tool” dialog box will pop up. See Figure A.5.1.

Input user name and password. (User: security_admin and Password:chongsong)

Click OK. “Static Analysis Tool for Role Based Security System” will pop up.

Click on “Select a File” tab and select the source file for the class, which you want to

analyze. The absolute path for the file will appear in a text window. Click “Check”.

See Figure A.5.2 Analysis Client.

Figure A.5.3 Tracking Tool GUI

Figure A.5.2 Analysis Tool GUIFigure A.5.1 Analysis Tool Authentication

Figure A.5: Analysis Tool Client GUI and Tracking Tool Tab

 41

Appendix B

ER and UML Class Diagrams for JINI Security System

 42

Security System Database Schema

Figure B.1 is ER diagram for Security System database.

Figure B.1 ER diagram for Security System Database

Common classes (common package)

This package contains classes that are common to all the packages described below and

hence have been placed in a separate package accessible to all. UML class diagrams for

the classes in this package are in put in the other packages. The main classes and their

descriptions are as follows:

1. AuthenDialog(): GUI interface used for authentication of any client/user.

 43

2. Const(): Defines the constants which are basically the Oracle JDBC driver name; the

URL, ID and password for accessing the Oracle databases for the security resource

and the University resource; et. al.

3. GuiUtil(): Defines the utility static functions for all GUIs.

4. SecurityInterface(): This interface is used by all the resource clients and resource

servers. The methods declared in this interface are implemented in the

SecurityOfficerImpl() class.

5. SecurityOfficerInterface(): This interface is used by the security officer and the

methods declared in this interface are implemented in the SecurityOfficerImpl() class.

6. SecurityException(): This is the exception class which treats every exception related

to security.

7. NoRightException(): This is the exception class which is thrown when the client has

no right.

Security server (server package)

 Figure B.2 is the UML class diagram for Security Server. The main classes and their

descriptions are as follows:

1. sserver(): It is a service class that publishes a proxy. It is a "wrapper" class that

handles publishing the service item for the security server.

2. SecuritySystemResourceID(): This class defines all the constants which are required

by other classes in the server package and also for filling out the method table when

the security system resource (server) is up.

3. SecurityOfficerImpl(): It is a proxy object that will be downloaded by security clients.

This class implements all the methods that are declared in the

SecurityOfficerInterface() and SecurityInterface() interface.

4. StringComparator(): This class has methods that are used by Signature Constraints

methods.

5. StringParser():This class has methods that are used by Signature Constraints

methods.

 44

Figure B.2 UML Class Diagram for Security Server

 45

Policy (policy package)

Figure B.3 is the UML diagram for Security Policy Client. The main classes in this

package along with their descriptions are as follows:

1. PolicyClient(): This class is JINI wrapper for Security Policy Client.

2. policy(): GUI interface for creating policies regarding creating roles; granting

resources, services, methods and IP’s to roles; registering resources, services and

methods; querying resources, IP etc.; tracking access information; et. al.

 46

Figure B.3 UML class diagram for Security Policy Client

 47

Enforce (enforce package)

Figure B.4 is the UML diagram for Security Authorization Client. The main classes in

this package along with their descriptions are as follows:

1. EnforceClient():This class is JINI wrapper for Security Authorization Client.

2. enforce(): GUI interface for enforcing the policy which involves creating and erasing

users; granting roles, negative privileges and additional privileges to users; et. al.

Figure B.4 UML class diagram for Security Authorization Client

 48

Course DB server (dbserver package)

Figure B.5 is the UML diagram for Course DB server. The Course DB is a resource to

which the security server will assign a unique resource id once it is registered. This

package contains classes that implement the services offered by the Course DB resource.

The main classes in this package along with their descriptions are as follows:

1. userver(): It is a service class that publishes a proxy. It is a "wrapper" class that

handles publishing the service item for the University DB resource server.

2. UniversityDBResourceID(): This class defines all the constants which are required

by other classes in the dbserver package. These constants are also used for filling out

the resource/service/method/signature tables when the University DB resource server

(dbserver) is up.

3. UniversityDBInterface(): It is an interface that declares the methods that are offered

by the University DB resource.

4. UniversityDBImpl(): This class implements all the methods that are declared in the

UniversityDBInterface() interface.

 49

Figure B.5 UML class diagram for Course DB server

 50

Course DB client (dbclient package)

Figure B.6 is the UML diagram for Course DB Client. The Course DB client is a client of

the Course DB resource server. This package contains classes that are mainly the GUI

interfaces for use by the clients to access the Course DB resource server. The main

classes in this package along with their descriptions are as follows:

1. GUIFrame(): GUI interface for accessing the University DB server which involves

querying the database for courses; registering and dropping courses; adding,

modifying and removing courses; et. al.

2. DBClient(), DBClientWrapper(), Dinner(): JINI wrappers for Course Database

Client.

Figure B.6 UML class diagram for Course DB Client

 51

Analysis (analysis package)

Figure B.7 is the UML diagram for Analysis Tool. This package has classes, which are

used by the Static Analysis Tool. The main classes and their descriptions are as follows:

1. AnalysisTool(): The main GUI interface for selecting the file to be analyzed.

2. MatchRoleMethod(): Contains methods for performing analysis which involves

matching the methods that a role can take; et. al.

3. FileAnalysis(): This class contains methods for fetching the inner method calls from

the methods of a given file.

 52

Figure B.7 UML class diagram for Analysis Tool

