

MPEGIOPro SDK User Manual Page 1 Ver. 1.0.4

MPEGIOPro SDK User Manual

For Writing Software to

Live Capture & Stream Multi-Channel Multi-Card Hardware-Encoded MPEG2/4/1 Video with OSD

Version 1.0.4

Copyright © 2007~2011 Inventa Australia Pty Ltd

Table of Contents

 1. Introduction ----------------- 2

 2. MPEGIOPro.DLL & MPEGIOPro SDK ----------------- 2

 3. SDK Function List ----------------- 3

 4. Encoding OSD ----------------- 16

 5. Live Streaming ----------------- 17

 6. Direct Chipset Programming ----------------- 18

 7. SDK Function Calling Sequence ----------------- 19

 8. SDK Operation Requirement ----------------- 19

 9. Sample Source Code ----------------- 20

MPEGIOPro SDK User Manual Page 2 Ver. 1.0.4

1. Introduction:

MPEGIOPro SDK (Software Development ToolKit) is for developing application software using

MPEGIOPro hardware MPEG2/4/1 encoder card.

For details on the MPEGIOPro PCI card, including its hardware and device driver installation, please refer

to the “MPEGIOPro User Manual”, here is a summary of the PCI card’s main features:

� Realtime Capture 4-Channel superior-quality video/audio as MPEG2, MPEG4(H.263) or MPEG1 files

� Live Stream All Channels’ Video/Audio to Any User-Defined TCP/IP Address in Unicast or Multicast

� All channels can capture/stream full D1 size (720X576 or 720X480 Pixel) video simultaneously

� Support up to 4 Cards in One PC to Simultaneously Record & Stream 16-Channel Full D1-Size MPEG Video

� Each Input Channel Can Record Video Only, Stream Video Only, or Record and Stream Simultaneously

� All Channels’ Recording and Streaming Parameters Can Be Individually Defined

� Wide-Range Capture/Streaming Data Rates 128Kbps~15Mbps for MPEG1, MPEG2 & MPEG4 formats

� Various Video Capture/Streaming Frame Sizes from 176X120 to 720X576-Pixels

� Multiple encoding Frame Rate supported: 23.976fps, 24 fps, 25fps, 29.97fps, 30fps, 50fps, 59.94fps, 60fps

� Allow Multiple Aspect Ratio Encoding & Streaming: 4:3, 16:9(Wide-Screen), and Square PEL

� Forever Video & Audio Sync during video preview, capture, streaming and in the recorded files

� Video Capture Process Can Seamlessly Split Files either manually or at user-defined file size or time

� No single frame lost during video splitting: combining all split files will form the exact original video stream

� Instantly Start Video Capture at User’s Request (manually or programmatically) without lengthy delays

� Start Video Capture as Video Signal Appears

� Stops Video Capture after Video Signal Disappears for a period of user-defined time

� Pause and Resume recording without closing recording file

� Realtime Overlay Text/Time onto Recorded MPEG File, Streamed Video and Previewed Video

� Overlaid Text Can Have Different Size, Position, Duration, Black/White Colour, User-Definable Frames

� Text Overlay Can Contain Any Text, or Current Encoding File Name, Video Bit Rate, MPEG Type, etc

� Simultaneous Multi-line Text Overlay: max. 450 characters (15 rows X 30 columns) can be overlaid

� Motion Detect is supported by on-board hardware for 9 separate regions on every input channel

� Motion Detect returns quantitative Motion Vector Sums indicating the strength of each region’s motion activity

� Capture still images in various formats: JPEG, BMP, GIF, TIFF, and PNG

� Capture/Stream DVD-Compliant or arbitrary MPEG2, MPEG4 or MPEG1 video files

� Captured/Streamed DVD-Compliant files can be burnt to DVD movie immediately without re-compression

� Capture Audio-Only MPEG files in small sizes without video components

� Realtime on-screen preview video and audio always in sync with incoming video signal

� PAL and NTSC video format are automatically detected and switched

� Composite/BNC Video Input

� Stereo Audio Input

� Hardware-encoding chip built-in, low system resources needed: Pentium4 3GHz can record 16 Channels

� Any-length Timer Recording and Date-Time-Scheduled Recording with user-definable file names

� Support live colour change on incoming video

� Automatic email-out of warning messages on signal loss, disk full and start/stop conditions

� Recorded video file name can contain multiple fields inc. recording date, time, video length, video format, etc.

� Loop Disk and Split File Number Reset functions to automatically free disk space on pre-set conditions

� Works on Windows XP, Vista or Windows 7 PCs with PCI slot

2. MPEGIOPro.DLL & MPEGIOPro SDK
The MPEGIOPro SDK is based on a dynamic linking library MPEGIOPro.DLL, which supports all the SDK

function calls the application software might use. MPEGIOPro.DLL will need to be copied to the target PC

running your application software. The MPEGIOPro.DLL works under Windows XP, Vista and Windows 7.

MPEGIOPro SDK User Manual Page 3 Ver. 1.0.4

3. MPEGIO SDK Function List:

-- const char * MPEGIOPro_SDKVer (void);

Function: Return the version of the MPEGIOPro SDK as a string.

-- ULONG MPEGIOPro_Init(bool ignoreOSD = false);

Function: Initialize the MPEGIOPro hardware

Parameters:

 ignoreOSD: If true, then OSD will not be displayed although can still be set up in the SDK,

default is false(OSD will be displayed). If this is set to true then the SDK load

(start up) will be faster.

 Return: the number of total video channels, < 1 means no channel or hardware not ready

-- ULONG MPEGIOPro_Uninit(void);

Function: Un-initialize the MPEGIOPro hardware

 Return: 0 for success, non-zero for failure

-- BOOL MPEGIOPro_StartDevice(ULONG nDev, bool ignoreOSD = false);

Function: Start one video channel on the MPEGIOPro card

Parameters:

 nDev: the channel number (first channel is 0) to be started, must be < the total channel

number returned by MPEGIOPro_Init

 ignoreOSD: If true, then OSD will not be displayed although can still be set up in the

SDK, default is false(OSD will be displayed).

 Return: TRUE (non-zero) for success, FALSE(zero) for failure

-- BOOL MPEGIOPro_StopDevice(ULONG nDev);

Function: Stop one video channel that has been started by MPEGIOPro_StartDevice

Parameters:

 nDev: the channel number (first channel is 0) to be stopped, must be < the total channel

number returned by MPEGIOPro_Init

 Return: TRUE (non-zero) for success, FALSE(zero) for failure

-- BOOL MPEGIOPro_IsChannelStarted (ULONG nDev);

Function: Test if a channel has been started

Parameters:

 nDev: the channel number (first channel is 0) to be tested, must be < the total channel

number returned by MPEGIOPro_Init

 Return: TRUE (non-zero) if the channel has been started

-- ULONG MPEGIOPro_CreateScreen(void);

Function: Create a DirectX display surface for displaying live video overlay

 Return: Zero for success

-- ULONG MPEGIOPro_ReleaseScreen(void);

Function: Release theDirectX display surface created by MPEGIOPro_CreateScreen

 Return: Zero for success

-- ULONG MPEGIOPro_UpdateScreen(void);

Function: Reclaim a DirectX display surface that was created by MPEGIOPro_CreateScreen

MPEGIOPro SDK User Manual Page 4 Ver. 1.0.4

 but later lost because of other application software or user intervention

 Return: Zero for success

 Note: On PCs with some graphics cards such as Nvidia GeForce 7X/8X00, this function needs

to be called constantly to get live video overlay on PC’s screen: this can be done in a timer of

about 30~40 ms interval.

-- ULONG MPEGIOPro_CleanScreen(RECT *pRect);

Function: Clean a rectangle area on the display surface created by MPEGIOPro_CreateScreen

Parameters:

 pRect: the rectangle area to be cleaned. NULL means the entire display surface.

 Return: Zero for success

-- ULONG MPEGIOPro_SetOverlayColorKey (COLORREF ColorKey);

Function: Set the colour key for the video display: only video displayed on this background brush colour

can be seen.

Parameters:

 ColorKey: the RGB colour used to create background brush for the video preview window

 Return: Zero for success

 Note: Use a rarely seen colour as ColorKey, such as pink (RGB(255,0,255))

-- ULONG MPEGIOPro_SetScreenScale(ULONG nXScale, ULONG nYScale);

Function: Set video display screen scale: scale 1000:1000 is for displaying the video in the original

resolution of 704X576-Pixel for PAL, and 704X480-Pixel for NTSC. To display video in

a new resolution newXPixel X newYPixel, use this formula to calculate the values for

nXScale and nYScale:

nXScale = (newXPixel * 1000) / 704

nYScale = (newYPixel * 1000) / 576 for PAL, or

nYScale = (newYPixel * 1000) / 480 for NTSC

Example 1: to display live PAL video in an area of 1024X768 – Pixels, call

MPEGIOPro_SetScreenScale((1024 * 1000)/704, (768 * 1000)/576);

Example 2: to display live NTSC video in an area of 800X600 – Pixels, call

MPEGIOPro_SetScreenScale((800 * 1000)/704, (600 * 1000)/480);

Parameters:

 nXScale: new resolution’s X scale as calculated above

 nYScale: new resolution’s Y scale as calculated above

 Return: Zero for success

 Note: To set scale for video display in an area <= 704X576 (PAL) or 704 X 480(NTSC) pixels, use

nXScale = 1000

nYScale = 1000

-- ULONG MPEGIOPro_CleanWindow(HWND hWnd, RECT rect, COLORREF color);

Function: Clean up rectangle area “rect” in window hWnd using background colour “color”

 hWnd: handle of the window whose rectangle area will be cleaned

 rect: rectangle area in hWnd to be cleaned

 color: colour used to clean up the “rect” area

 Return: Zero for success

 Note: 1. color normally should equal to the ColorKey used for MPEGIOPro_SetOverlayColorKey()

 2. this function will clean up any content inside rectangle area “rect”

 3. hWnd should be the window MPEGIOPro uses to display video

MPEGIOPro SDK User Manual Page 5 Ver. 1.0.4

-- ULONG MPEGIOPro_StartPreview(ULONG nDev, RECT *pWindow);

Function: Start Video Preview for Channel nDev

Parameters:

 nDev: the channel number to start preview, must be < the total channels found

 pWindow: address of the rectangle to display the video, in screen-co-ordinates

 Return: Zero for success

 Note:

1. the right & bottom values of pWindow must be smaller than the current screen width and height

 2. after calling this function the live video should appear in the area defined by pWindow

-- ULONG MPEGIOPro_StopPreview(ULONG nDev);

Function: Stop Video Preview for Channel nDev

Parameters:

 nDev: the channel number to stop preview, must be < the total channels found

 Return: Zero for success

-- ULONG MPEGIOPro_GetVideoParam(ULONG nDev, ULONG * pStandard,

RLS_VIDEOPARAM * pVideoParam);

Function: Retrieve video standard and colour parameters of a video channel.

Parameters:

 nDev: the channel number, must be < the total channels found

 pStandard: pointer to variable to hold the returned video standard.

 Video standard values: 1 for PAL, 2 for NTSC

 pVideoParam: pointer to structure holding the returned colour parameters

 RLS_VIDEOPARAM structure is defined as:

 typedef struct _RLS_VIDEOPARAM

{

 int nBrightness;

 int nContrast;

 int nSaturation;

 int nHue;

}RLS_VIDEOPARAM;

 Return: Zero for success

-- ULONG MPEGIOPro_SetVideoParam(ULONG nDev, RLS_VIDEOPARAM * pVideoParam);

Function: Set colour parameters for one video channel.

Parameters:

 nDev: the channel number, must be < the total channels found

 pVideoParam: pointer to structure holding the returned colour parameters, as defined in

MPEGIOPro_GetVideoParam
 Return: Zero for success

-- ULONG MPEGIOPro_SetVideoOffset(ULONG nDev, ULONG nXOffset, ULONG nYOffset);

Function: Set video preview’s X and Y offset

Parameters:

 nDev: the channel number to set offset, must be < the total channels found

 nXOffset: the number of pixels video display will cutoff from the left edge

 nYOffset: the number of pixels video display will cutoff from the top

 Return: Zero for success

 Note:

MPEGIOPro SDK User Manual Page 6 Ver. 1.0.4

 1. The default offsets are zero for nXOffset and nYOffset

 2. offset set will only affect video preview display, not the recorded video

-- ULONG MPEGIOPro_CapturePicture(ULONG nDev, UCHAR * pBuffer, int *pBufSize,

int nWidth, int nHeight, ULONG tFormat);

Function: Capture one frame of pixels from video

Parameters:

 nDev: the channel number, must be < the total channels found

 pBuffer: buffer to hold the captured frame pixel data

 pBufSize: pointer to variable holding the size of pBuffer, this function returns the actual size

of the captured frame data in this variable

 nWidth: width of the picture to capture in pixels, must be within 48 ~ 720

 nHeight: height of the picture to capture in pixels, within 32~576 for PAL, 32~480 for NTSC

 tFormat: must be 0

 Return: Zero for success

 Note: the captured picture is in 24-bit bitmap colour format, upper left corner pixel first,

running left to right, top-down, max.720X576 pixel for PAL, 720X480 pixel for NTSC.

-- ULONG MPEGIOPro_StartAudioMonitor (ULONG nDev);

Function: Start audio for one channel

Parameters:

 nDev: the channel number, must be < the total channels found

 Return: Zero for success

-- ULONG MPEGIOPro_StopAudioMonitor (ULONG nDev);

Function: Stop audio for one channel

Parameters:

 nDev: the channel number, must be < the total channels found

 Return: Zero for success

-- ULONG MPEGIOPro_RegisterCallback(MPEGIOPRO_CALLBACK callbackProc);

Function: Register a function to be called back by MPEGIOPro.DLL to pass back encoding data

Parameters:

 nDev: the channel number, must be < the total channels found

 callbackProc: callback function name, MPEGIOPRO_CALLBACK is defined as

 typedef void (CALLBACK *MPEGIOPRO_CALLBACK)

(int nDev, UCHAR * pData, int nSize, ULONG DataType, void *pUserParam);

where dDev is the channel number,

 pData is the encoded video data

 nSize is the length of data held by pData, in number of bytes

 DataType is the encoded data type: 5 for “Motion Detect”, others for MPEG data)

 pUserParam points to the user-defined variable passed over to

 MPEGIOPro_StartEncode(see below), normally used to

 pass channel/application specific data to the callback function

 Return: Zero for success

 Note: the successfully registered function callbackProc will be called by MPEGIOPro.dll if any video

MPEGIOPro SDK User Manual Page 7 Ver. 1.0.4

channel has called MPEGIOPro_StartEncode(see below) successfully and encoded data on that

channel is ready for processing

-- ULONG MPEGIOPro_StartEncode(ULONG nDev, void * pUserParam,

HWND hwnd, UINT errMsg);

Function: Start encoding for a video channel (start the on-board video encoding hardware)

Parameters:

 nDev: the channel number, must be < the total channels found

 pUserParam: user-defined variable passed over to the callback function registered by calling

MPEGIOPro_RegisterCallback, see description in

MPEGIOPro_RegisterCallback above

 hwnd: window handle to which the SDK will send back encoding error message

 errMsg: the message MPEGIOPro SDK will send back to window hwnd when encoding error

 happens, message “WM_MPEGIOPRO_ENCODE_ERR” can be used here.

 Return: Zero for success

 Note: If parameter hwnd is not a valid window then no message will be sent by the SDK

-- ULONG MPEGIOPro_StopEncode(ULONG nDev);

Function: Stop encoding for a video channel (stop the on-board video encoding hardware)

Parameters:

 nDev: the channel number, must be < the total channels found

 Return: Zero for success

 Note: Once encoding is stopped, the callback function will not be called for that particular channel

-- ULONG MPEGIOPro_StartMotionDetect (ULONG nDev);

Function: Start Motion Detect for a video channel

Parameters:

 nDev: the channel number, must be < the total channels found

 Return: Zero for success

 Note: 1. Before calling this function, MPEGIOPro_SetMotionDetect() must be called successfully to

 setup each motion detect region’s starting X/Y and Width/Height

2. MPEGIOPRo must be in encoding mode(MPEGIOPro_StartEncode is called) before calling

 this function.

-- ULONG MPEGIOPro_StopMotionDetect (ULONG nDev);

Function: Stop Motion Detect for a video channel

Parameters:

 nDev: the channel number, must be < the total channels found

 Return: Zero for success

 Note: If encoding has started(MPEGIOPro_StartEncode is called) and

MPEGIOPro_StartMotionDetect () has been called successfully, this function

must be called before stopping encoding(calling MPEGIOPro_StopEncode).

-- ULONG MPEGIOPro_SetEncodeStreamType (ULONG nDev, ULONG StreamType);

Function: Set MPEG encoding type

Parameters:

 nDev: the channel number, must be < the total channels found

MPEGIOPro SDK User Manual Page 8 Ver. 1.0.4

 StreamType: 1 for MPEG1, 2 for MPEG2, 4 for MPEG4(H.263)

 Return: Zero for success

-- ULONG MPEGIOPro_SetEncodeAudioBitRate(ULONG nDev, ULONG nAudioBitRate);

Function: Set MPEG audio encoding bit rate

Parameters:

 nDev: the channel number, must be < the total channels found

 nAudioBitRate: in bit per sec., valid values are:

32000, 48000, 56000, 64000, 80000, 96000, 112000, 128000,

160000, 192000, 224000, 256000, 320000, 384000

 Return: Zero for success

-- ULONG MPEGIOPro_SetEncodeAudioSamplingRate(ULONG nDev,

ULONG nAudioSamplingRate);

Function: Set MPEG audio encoding sampling rate

Parameters:

 nDev: the channel number, must be < the total channels found

 nAudioSamplingRate: in Hz., valid values are: 32000, 44100, 48000

 Return: Zero for success

-- ULONG MPEGIOPro_SetEncodeAudioMode(ULONG nDev, ULONG nAudioMode);

Function: Set MPEG audio encoding mode

Parameters:

 nDev: the channel number, must be < the total channels found

 nAudioMode: 0- Stereo (default), 1-Joint Stereo, 2-dual channel, 3-single channel

 Return: Zero for success

-- ULONG MPEGIOPro_SetEncodeAudioLayer(ULONG nDev, ULONG nAudioLayer);

Function: Set MPEG audio encoding layer

Parameters:

 nDev: the channel number, must be < the total channels found

 nAudioLayer: 1-MPEG1Layer1, 2-MPEG1Layer2(Default), 3-MPEG1Layer3

 Return: Zero for success

-- ULONG MPEGIOPro_SetEncodeAudioStreamType(ULONG nDev,

ULONG nAudioStreamType);

Function: Set MPEG audio encoding stream type

Parameters:

 nDev: the channel number, must be < the total channels found

 nAudioStreamType: 1-MPEG1(default), 2-MPEG2, 6-AC3

 Return: Zero for success

-- ULONG MPEGIOPro_SetEncodeVideoBitRate(ULONG nDev, BOOL bVBR,

ULONG nVideoBitRate, ULONG nVideoMaxBitRate);

Function: Set MPEG video encoding bit rate

Parameters:

 nDev: the channel number, must be < the total channels found

 bVBR: true for Variable Bit Rate(VBR) Encoding, false for Constant Bit Rate(CBR) encoding

 nVideoBitRate: average encoding bit rate, in bit per sec. Unit

MPEGIOPro SDK User Manual Page 9 Ver. 1.0.4

 nVideoMaxBitRate: maximum encoding bit rate, in bit per sec., only valid if bVBR is true

 Return: Zero for success

-- ULONG MPEGIOPro_SetEncodeVideoSize(ULONG nDev,

 ULONG nWidth, ULONG nHeight);

Function: Set MPEG video encoding frame size

Parameters:

 nDev: the channel number, must be < the total channels found

 nWidth: encoding frame width, in pixels

 nHeight: encoding frame height, in pixels

 Return: Zero for success

 Note: valid combinations for nWidth X nHeight:

 PAL: 176 X 144, 352 X 288, 480 X 576, 704 X 576, 720 X 576

 NTSC: 176 X 120, 352 X 240, 480 X 480, 704 X 480, 720 X 480

-- ULONG MPEGIOPro_SetEncodeVideoStandard(ULONG nDev, ULONG nStandard);

Function: Set MPEG video encoding frame size

Parameters:

 nDev: the channel number, must be < the total channels found

 nStandard: 1 for PAL, 2 for NTSC

 Return: Zero for success

-- ULONG MPEGIOPro_SetEncodeFrameMN(ULONG nDev, ULONG M, ULONG N);

Function: Set MPEG video encoding intervals of the I,B,P frames in each GOP

Parameters:

 nDev: the channel number, must be < the total channels found

 M: frame distance between reference frames, 0 ~ 3

 N: number of frames in GOP, 1 ~ 256

 Return: Zero for success

 Note:

1. If M is not 0, then N must be a multiple of M. If M = 0, then N must be set to 1.

2. M and N parameters set the group_of_picture (GOP) structure:

6 <= N < 256 in integer multiples of M for M = 3

4 <= N < 256 in integer multiples of M for M = 2

2 <= N < 256 in integer multiples of M for M = 1

N= 1, M = 0 (I-Frames only)

For example,

If N=15 and M=3, the GOP structure is I B B P B B P B B P B B P B B.

If M = 0, the GOP structure is I (encoder will generate I frames only)

If M = 1, the GOP structure is IP

If M = 2, the GOP structure is IBP

If M = 3, the GOP structure is IBBP

3. Default is N = 15, M = 3

-- ULONG MPEGIOPro_SetEncodeFrameSkip(ULONG nDev, ULONG nSkip);

Function: Set number of skipped over frames during encoding

Parameters:

 nDev: the channel number, must be < the total channels found

 nSkip: frame skip number:

MPEGIOPro SDK User Manual Page 10 Ver. 1.0.4

 0 means not dropping any frame, making frame rate 25/sec PAL, 30/sec. NTSC

1 means drop 1 frame every 2 frames, making frame rate 25/2 PAL, 30/2 NTSC

2 means drop 2 frames every 3 frames, making frame rate 25/3 PAL, 30/3 NTSC

3 means drop 3 frames every 4 frames, making frame rate 25/4 PAL, 30/4 NTSC

 Return: Zero for success

 Note: Default is nSkip = 0 (not dropping any frame)

-- ULONG MPEGIOPro_DefaultEncodeParam(ULONG nDev);

Function: Make the encoding parameters set by all above MPEGIOPro_SetXXX() calls effective

Parameters:

 nDev: the channel number, must be < the total channels found

 Return: Zero for success

 Note:

1. This function must be called after calling all the above functions

from MPEGIOPro_SetEncodeStreamType

to MPEGIOPro_SetEncodeFrameSkip

 2. This function must be called before all following MPEGIOPro_Set…() functions :

 from MPEGIOPro_ SetVOBFormat ()

 to MPEGIOPro_SetAspectRatio()

-- ULONG MPEGIOPro_SetEncodeFrameRate(ULONG nDev, int frcode);

Function: Set video encoding frame rate

Parameters:

 nDev: the channel number, must be < the total channels found

 frcode: frame rate value:

1: 24000/1001 (23.976) frame per sec.

2: 24 fps, for film

3: 25 fps, for PAL default

4: 29.97 fps, for NTSC default

5: 30 fps, NTSC Drop Frame

6: 50 fps, Double Frame Rate for PAL

7: 59.94 fps, Double Frame Rate for NTSC

8: 60 fps, Double Frame Rate Drop Frame NTSC

 Return: Zero for success

 Note: Default value for PAL is 3 (25 fps), for NTSC is 4 (29.97 fps).

-- ULONG MPEGIOPro_SetVOBFormat(ULONG nDev, BOOL vob);

Function: Set Video Encoding VOB Format

Parameters:

 nDev: the channel number, must be < the total channels found

 vob: 1 for VOB format(default), 0 for StandardPS format

 Return: Zero for success

 Note:

1. non-VOB format (vob = 0) will cause MPEGIOPro.dll to crash if signal is lost during encoding

 2. This function must be called after calling MPEGIOPro_DefaultEncodeParam()

-- ULONG MPEGIOPro_SetBlackScreen(ULONG nDev, ULONG black);

Function: Set Video Encoding Black Screen Status

Parameters:

MPEGIOPro SDK User Manual Page 11 Ver. 1.0.4

 nDev: the channel number, must be < the total channels found

 black: non-zero means all encoded frames are black

 Return: Zero for success

 Note: This function must be called after calling MPEGIOPro_DefaultEncodeParam()

-- ULONG MPEGIOPro_SetBadSync(ULONG nDev, ULONG badSync);

Function: Set Video Encoding Bad Sync Status

Parameters:

 nDev: the channel number, must be < the total channels found

 badSync: non-zero means enable bad sync: useful for bad quality input video signal

 Return: Zero for success

 Note: This function must be called after calling MPEGIOPro_DefaultEncodeParam()

-- ULONG MPEGIOPro_SetClosedGOP(ULONG nDev, ULONG closedGOP);

Function: Set Video Encoding Closed GOP status

Parameters:

 nDev: the channel number, must be < the total channels found

 closedGOP: non-zero means closed GOP : prediction is based only on pictures in the present

GOP, not on pictures in previous or next GOP.
 Return: Zero for success

 Note: This function must be called after calling MPEGIOPro_DefaultEncodeParam()

-- ULONG MPEGIOPro_SetHSP(ULONG nDev, ULONG hsp);

Function: Set new Horizontal Start Position for encoding video frame

Parameters:

 nDev: the channel number, must be < the total channels found

hsp: new horizontal start position (in pixels)

 Return: Zero for success

 Note: This function must be called after calling MPEGIOPro_DefaultEncodeParam()

-- ULONG MPEGIOPro_SetVSP(ULONG nDev, ULONG vhsp);

Function: Set new Vertical Start Position for encoding video frame

Parameters:

 nDev: the channel number, must be < the total channels found

vsp: new vertical start position (in pixels)

 Return: Zero for success

 Note: This function must be called after calling MPEGIOPro_DefaultEncodeParam()

-- ULONG MPEGIOPro_SetAspectRatio(ULONG nDev, ULONG newar,

int MPEGType, int VideoType);

Function: Set new encoding video aspect ratio

Parameters:

 nDev: the channel number, must be < the total channels found

newar: new aspect ratio:

1 -- Square pels

 2 -- 4:3 display

 3 -- 16:9 display

MPEGIOPro SDK User Manual Page 12 Ver. 1.0.4

 4 -- 2.21:1 display

MPEGType: 1 for MPEG1, 2 for MPEG2, 4 for MPEG4

VideoType: 1 for PAL, 2 for NTSC

 Return: Zero for success

 Note: This function must be called after calling MPEGIOPro_DefaultEncodeParam()

-- BOOL MPEGIOPro_textOSDEnabe(int nDev, bool enable);

Function: Enable/Disable On Screen Display for a channel

Parameters:

 nDev: the channel number, must be < the total channels found

enable: TRUE(default setting) to enable OSD, false to disable OSD

 Return: TRUE(non-zero) for success

 Note: after displaying many OSDs on a channel, calling this function with enable=FALSE will hide all

OSD result instantly, while calling this function with enable=TRUE will show all OSD result

again: useful for toggling a channel’s overlay

-- ULONG MPEGIOPro_OSDTime(ULONG nDev, BOOL bEnable,

ULONG row, ULONG column);

Function: Display OSD as Date/Time

Parameters:

 nDev: the channel number, must be < the total channels found

eEnable: TRUE to enable OSD date/time, false to disable OSD date/time display

row: X-position for display, must be between 0 ~ 14

column: Y-position for display, must be between 0 ~ 29

 Return: Zero for success

 Note:

1. Each channel can have at most one Date/Time OSD at any particular time. Subsequent

calls to this function with a different row/column stop previous calls’ display of date/time.

2. Date/Time is always displayed as white colour

-- BOOL MPEGIOPro_textOSDEraseRow(int nDev, int row);

Function: Erase OSD display on one row

Parameters:

 nDev: the channel number, must be < the total channels found

row: row to erase OSD , must be 0 ~ 14

 Return: TRUE(non-zero) for success

Note: to erase arbitrary length of characters on a row, just display equal amount of spaces (blank

character, 0x20) by calling function MPEGIOPro_textOSDDisplay.

-- BOOL MPEGIOPro_textOSDDisplay(int nDev, char *string, int row, int column,

bool doubleWidth, bool doubleHeight, bool blinking, char colour);

Function: Display OSD text

Parameters:

 nDev: the channel number, must be < the total channels found

string: null-terminated string of text to display

row: X-position for display, must be between 0 ~ 14

column: Y-position for display, must be between 0 ~ 29

doubleWidth: TRUE to display double width text

MPEGIOPro SDK User Manual Page 13 Ver. 1.0.4

doubleHeight:TRUE to display double height text

blinking: TRUE to blink text

colour: 1(or odd number < 8) is white, 0(or even value < 8)

 Return: TRUE(non-zero) for success

-- BOOL MPEGIOPro_textUserFont(int nDev, char fontIndex, char *fontBitmap);

Function: Set User- defined font for OSD for ASCII code 248 ~ 255

Parameters:

 nDev: the channel number, must be < the total channels found

fontIndex: must be between 0 ~ 7, representing ASCII code 248 ~ 255

fontBitmap: must be 36 bytes, each two bytes indicate a row in the font bitmap with the last

4 bits discarded(i.e. only the left-most/highest 12 bits are used to form the bitmap)

 Return: TRUE(non-zero) for success

 Note: Each font is 18 Row by 12 Pixels, each row is represented by 2 Bytes with the last 4 bits unused

-- BOOL MPEGIOPro_textSetFrame(int nDevth, int frameNum, bool enable = false,

char rowStartAddr = 0, char rowEndAddr = 0,

char colStartAddr = 0, char colEndAddr = 0, char colour = 1);

Function: Set frame area: maximum 4 frames can be set up as background frames under OSD text

Parameters:

 nDev: the channel number, must be < the total channels found

 frameNum: frame number, within 1 ~ 4

 enable: TRUE to enable, FALSE to disable this frame

rowStartAddr: frame’s start row, 0 ~ 14

rowEndAddr: frame’s end row, 0 ~ 14, Must be >= rowStartAddr

colStartAddr: frame’s start column, 0 ~ 29

colEndAddr: frame’s end column, 0 ~ 29, Must be >= colStartAddr

colour: 1 for white, 0 for black

 Return: TRUE(non-zero) for success

-- BOOL MPEGIOPro_textFrameStartPos(int nDev, char HORD, char VERTD);

Function: set text characters' starting display position inside the video frame(default is [15, 4] pixels)

Parameters:

 nDev: the channel number, must be < the total channels found

 HORD: horizontal position, must be within [0, 255], default is 15

 VERTD: vertical position, must be within [0, 255], default is 4

 Return: TRUE(non-zero) for success

-- BOOL MPEGIOPro_textVerticalHeight(int nDev, char height);

Function: set text characters' vertical height (default is 18 pixels)

Parameters:

 nDev: the channel number, must be < the total channels found

 height: text height, must be between [18, 71]

 Return: TRUE(non-zero) for success

 Note: default height is 18

-- BOOL MPEGIOPro_textSetRowSpacing(int nDev, char spacing);

Function: set pixel distance between rows of text

Parameters:

 nDev: the channel number, must be < the total channels found

MPEGIOPro SDK User Manual Page 14 Ver. 1.0.4

 spacing: in pixels, must be between 0, 31

Return: TRUE(non-zero) for success

 Note: default spacing is 0

-- BOOL MPEGIOPro_textEnableShadow(int nDev, bool enableShadow, bool enableBorder);

Function: set OSD text shadow and border styles

Parameters:

 nDev: the channel number, must be < the total channels found

 enableShadow: enable (TRUE) or disable (FALSE) shadow

 enableBorder: enable (TRUE) or disable (FALSE) border

Return: TRUE(non-zero) for success

 Note: default are not enabled for both

-- ULONG MPEGIOPro_ResetVideoChip (int nDev);

Function: Hardware reset the on-board Video Decoder (Analogue-Digital Converter) Chip

Parameters:

 nDev: the channel number, must be < the total channels found

Return: Zero for success

 Note: This function must be used when video preview is in progress, and is usually used in extreme

situations when the MPEGIOPro card is facing difficult incoming signal/noise etc, e.g.

when video suddenly becomes very unclear/noisy. Do not use this function when

recording/streaming is in progress or breakups will appear in the encoded video stream.

-- ULONG MPEGIOPro_SetMirror(ULONG nDev, bool mirror);

Function: Flip the video preview horizontally 180-degree (left-to-right, right-to-left)

Parameters:

 nDev: the channel number, must be < the total channels found

 mirror: TRUE to flip(mirror the video), FALSE to restore back the normal display

Return: Zero for success

Note: the flipped video is only for live preview, will not affect the recorded/streamed video

-- int MPEGIOPro_OpenFile(char *fileName);

Function: Open a disk file for writing

Parameters:

 fileName: full file name inc. path

 Return: opened file’s handle if >= 0, negative value means failure

 Note: returned file handle can be passed to MPEGIOPro_CloseFile() and MPEGIOPro_WriteFile()

-- int MPEGIOPro_CloseFile(int handle);

Function: Close a disk file opened by MPEGIOPro_OpenFile

Parameters:

 handle: file handle returned by a successful MPEGIOPro_OpenFile call.

 Return: 0 for success, non-zero for failure

-- int MPEGIOPro_WriteFile(int handle, , int pStr, int nSize);

Function: Write data to disk file

Parameters:

 handle: file handle returned by a successful MPEGIOPro_OpenFile call

 pStr: integer form of the address of a memory area holding data to be written

 nSize: number of bytes in the memory area pointed to by pStr

MPEGIOPro SDK User Manual Page 15 Ver. 1.0.4

 Return: equal to nSize means nSize of bytes have been written successfully, otherwise failure

 Note: This function can be used in programming languages where passing string address is difficult,

e.g., in callback functions inside VisualBasic, in conjunction with MPEGIOPro_OpenFile and

MPEGIOPro_CloseFile function calls.

-- ULONG MPEGIOPro_NewInitialTimeCode(ULONG nDev, int drop_frame_flag, int hour,

 int min, int sec, int frame);

Function: Set new initial video encoding time code

Parameters:

 nDev: the channel number, must be < the total channels found

 drop_frame_flag: 1 for drop frame frame-rate, 0 for not drop frame frame-rate (NTSC only)

 hour: hour value in the time code

 min: minute value in the time code

 sec: second value in the time code

 frame: frame number in the time code

 Return: Zero for success

Note: If called during encoding or streaming time, this function must be followed by calling function

MPEGIOPro_UpdateEncodingParam() or new time code will not become effective. If this

function is never called the initial encoding time code defaults to all zeroes.

-- ULONG MPEGIOPro_UpdateEncodingParam (ULONG nDev, UINT yes);

Function: Make some encoding parameter change effective during encoding time

Parameters:

 nDev: the channel number, must be < the total channels found

 yes: 1 for updating, 0 for not updating

 Return: Zero for success.

Note: During encoding time, some functions such as MPEGIOPro_NewInitialTimeCode (), must be

followed by calling this function to make their parameter change to become effective. However,

calling this function during preview time still returns success although that has no effect at all.

-- ULONG MPEGIOPro_SetMotionDetect(ULONG nDev, RECT *pRect,

int *pThreshold, int nNumOfRect);

Function: Set up Motion Detect area (regions).

Parameters:

 nDev: the channel number, must be < the total channels found

pRect: point to an array of RECT structures each has 4 X 32-bit integers(left, top, right, bottom),

indicating the nNumOfRect motion detect regions’ upper left (left, top) and lower right

(right, bottom) screen co-ordinates.

 pThreshold: point to an array of nNumOfRect 32-bit integers indicating the motion detect

regions’ threshold, each valid threshold is between 1 ~ 65535 (0xFFFF)

nNumOfRect: indicating how many motion detect regions to be set up: must be between 1 and 9.

 If this is smaller than 9, only the first nNumOfRect members in array pRect and

 pThreshold hold valid values.

 Return: Zero for success.

Note: 1.MPEGIOPro allows 1 to 9 regions on screen to be setup for motion detection. Each region’s

upper-left and lower right X/Y co-ordinates must be multiples of 16, and must be within the

maximum video frame size (720X576-pixel for PAL, 720X480-pixel for NTSC). The width and

height of each region must be at least 16-pixel. Regions can overlay.

2.Each region has a motion detect Threshold, as indicated by the members pointed to by

MPEGIOPro SDK User Manual Page 16 Ver. 1.0.4

parameter pThreshold: each threshold is between 1 ~ 65535, indicating the sensitivity of motion

detect: larger value means less sensitive: more activity is needed for MPEGIOPro card to think

there is motion, smaller value means more sensitive: less activity will make MPEGIOPro to think

there is motion. Zero value is illegal

3.This function must be called successfully before calling MPEGIOPro_StartMotionDetect().

-- bool MPEGIOPro_GetMotionDetectResult(ULONG nDev, WORD *MDResult);

Function: Receive Motion Detect results from the MPEGIOPro hardware

Parameters:

 nDev: the channel number, must be < the total channels found

MDResult: must point to an array of 9 16-bit unsigned integers, receiving the corresponding

 motion detect region’s motion vector: bigger value means more motion is detected in

 the region. If less than 9 regions were setup by MPEGIOPro_SetMotionDetect then

 extra members in MDResult receive meaningless value.

 Return: true for success: some regions have motion detected and their motion vectors are non-zero.

 Note: After encoding and motion detect both are started

(MPEGIOPro_StartEncode and MPEGIOPro_StartMotionDetect are called), call this

function from within the callback function (see MPEGIOPro_RegisterCallback) when the

callback function’s “DataType” vale is 5 (indicating “motion detect”), if this function returns true,

then some values in MDResult array will have non-zero value indicating motion.

-- ULONG MPEGIOPro_ResetEncoderIC (ULONG nDev);

Function: Reset the MPEG Encoding Chip

Parameters:

 nDev: the channel number, must be < the total channels found

 Return: Zero for success.

 Note: Use this function cautiously, use it only when a channel is receiving encoding error, e.g. when the

“errMsg” is received from the SDK as passed to MPEGIOPro_StartEncode in its last parameter,

or when resetting card hardware is necessary. Avoid using this function too frequently since that

could cause unnecessary wearing out of the IC.

4. Encoding OSD
MPEGIOPro allows text overlay on all video channels in the following manners:

Individual Video Channels can set their own OSD differently

Colour: black or white

Max. Horizontal Text Columns: 30

Max. Vertical Text Rows: 15

Text Features: Double Width, Double Height, Blinking, Shadow, Border

Built-in Font Characters: ASCII code 0 ~ 247

User-Definable Font Characters: ASCII code 248 ~ 255

Number of Frames Displayable on Screen: 4 (can be used as background for text or stand alone rectangles)

Frame Colours: black or white

During video preview, recording and streaming, all OSD text can be turned on or off instantly by

MPEGIOPro.dll function calls. Date and Time are provided as special OSD strings.

MPEGIOPro SDK User Manual Page 17 Ver. 1.0.4

5. Live Streaming
MPEGIOPro allows un-modified raw MPEG video streams to be sent out in multicast/unicast UDP protocol to

any TCP/IP address and port, therefore allowing any third-party MPEG video streaming client, such as Inventa

MPEGIO PCI card, VideoLan vlc.exe software etc, to receive, record and display the streamed out video. No

MPEGIOPro hardware or software is required to receive the streamed MPEG video.

Application software can collect the video data to stream out from within the callback function(callbackProc)

whose pointer was passed to MPEGIOPro.dll in the MPEGIOPro_RegisterCallback (callbackProc) function

call.

Live video streaming is implemented with the following functions:

-- ULONG MPEGIOPro_NetworkInit(void);

Function: Initialise TCP/IP network of this PC

 Return: 0 means success, otherwise failure in which case all other streaming functions cannot work.

 Note: 1. MPEGIOPro_NetworkInit must precede all other streaming functions listed below

2. Each MPEGIOPro_NetworkInit() must be matched by a MPEGIOPro_NetworkEnd()

-- void MPEGIOPro_NetworkEnd(void);

Function: De-Initialise TCP/IP network of this PC

 Note: Each MPEGIOPro_NetworkInit() must be matched by a MPEGIOPro_NetworkEnd()

-- HANDLE MPEGIOPro_Multicast_SocketCreate(char *IP, int port);

 Function: create a multicast streaming socket

 Parameters:

 pIP: IP address of multicast in string format (e.g. “239.255.0.0”)

 port: port number for the IP address

 Return: handle for the socket(non-zero), NULL for failure

-- void MPEGIOPro_Multicast_Send(HANDLE hSocket, unsigned char * pData, int len);

 Function: Send data to multicast socket

 Parameters:

 hSocket: valid socket as returned by MPEGIOPro_Multicast_SocketCreate

 pData: data to send

 len: length of data in bytes

-- void MPEGIOPro_StreamVideoMulticast(HANDLE socket, int pStr, int nSize);

 Function: Send data to multicast socket using integer data address

 Parameters:

hSocket: valid socket as returned by MPEGIOPro_Multicast_SocketCreate

 pStr: address of the data memory to send, in 4-byte integer form

 nSize: length of data in bytes

 Note: This function can be used in programming languages where passing string address is difficult,

e.g., in callback functions inside VisualBasic, to replace MPEGIOPro_ Multicast _Send

-- void MPEGIOPro_Multicast_SocketClose(HANDLE hSocket);

 Function: close a multicast streaming socket

 Parameters:

 hSocket: valid socket as returned by MPEGIOPro_Multicast_SocketCreate

MPEGIOPro SDK User Manual Page 18 Ver. 1.0.4

-- HANDLE MPEGIOPro_Udp_SocketCreate(int port);

 Function: create a unicast streaming socket

 Parameters:

 port: port number for the IP address

 Return: handle for the socket(non-zero), NULL for failure

-- void MPEGIOPro_Udp_Send(HANDLE hSocket, const char * pIP,

unsigned char * pData, int len);

 Function: Send data to unicast socket

 Parameters:

 hSocket: valid socket as returned by MPEGIOPro_Udp_SocketCreate

 pIP: IP address of unicast in string format (e.g. “169.212.123.2”)

 pData: data to send

 len: length of data in bytes

-- void MPEGIOPro_StreamVideoUnicast(HANDLE socket, int IP, int pStr, int nSize);

 Function: Send data to unicast socket using integer data area address

 Parameters:

hSocket: valid socket as returned by MPEGIOPro_Udp_SocketCreate

IP: IP address in 4-byte integer form, e.g. “192.168.1.255” is in 0xC0A801FF form

 pStr: address of the data memory to send in 4-byte integer form

 nSize: length of data in bytes

 Note: This function can be used in programming languages where passing string address is difficult,

e.g., in callback functions inside VisualBasic, to replace MPEGIOPro_Udp_Send

-- void MPEGIOPro_Udp_SocketClose(HANDLE hSocket);

 Function: close a unicast streaming socket

 Parameters:

 hSocket: valid socket as returned by MPEGIOPro_Udp_SocketCreate

6. Direct Chipset Programming

The following functions program the three main chipsets on board directly, consult the chips’ user manuals and

Inventa Australia before proceeding if you are not sure of the chips’ registers and working principles.

ULONG RlsSendMuxCommand(ULONG nDev, CMD_BLOCK *cmd_block, UINT reg_size);

 Function: Send command to MPEG Encoder Chip VW2005

 Parameters:

 nDev: the channel number, must be < the total channels found

 cmd_block: command parameter structure defined as:

 typedef struct _CMD_BLOCK

{

 unsigned char ACK; // Must set to 1

 ULONG Handle; // Set to 0

 ULONG RCode; //returning: 0=good; otherwise error code

 ULONG ParamsLen; // number of parameters for this cmd

 ULONG VWCmd; //VW2005 command code

 ULONG Params[256]; // VW2005 cmd parameters

} CMD_BLOCK, *PCMD_BLOCK;

 reg_size: Must set to sizeof(CMD_BLOCK)

 Return: 0 for success

MPEGIOPro SDK User Manual Page 19 Ver. 1.0.4

 Note:

1. Before calling this function, zero the cmd_block structure, then filling the values

2. calling MPEGIOPro_DefaultEncodeParam(nDev) will reset many values to the encoder, so

this function should be called after MPEGIOPro_DefaultEncodeParam

ULONG RLSI2CSendDataArray(ULONG nDev, UCHAR cAddr, ULONG nLen, UCHAR *pVal);

 Function: Send command to OSD Chip MTV118

 Parameters:

 nDev: the channel number, must be < the total channels found

 cAddr: Must be set to 0x7A

 nLen: Length of command pointed to by pVal, in bytes

 pVal: Point to the actual commands

 Return: 0 for success

ULONG RlsGet713xReg(ULONG nDev, ULONG nReg, UCHAR *pRegVal);

 Function: Get Register Value from Video Decoder Chip SAA7130

 Parameters:

 nDev: the channel number, must be < the total channels found

 nReg: Register Address

 pRegVal: Pointer of Variable to Hold the Returned Register Value (One Byte Long)

 Return: 0 for success

ULONG RlsSet713xReg(ULONG nDev, ULONG nReg, UCHAR ucRegVal);

 Function: Set Register Value for Video Decoder Chip SAA7130

 Parameters:

 nDev: the channel number, must be < the total channels found

 nReg: Register Address

 ucRegVal: Register Value (One Byte Long) to Set

 Return: 0 for success

7. SDK Function Calling Sequences

(1). MPEGIOPro_Init()

Must be called first before calling any other functions except MPEGIOPro_SDKVer

(2). All Other Functions except MPEGIOPro_SDKVer

 Can be called after MPEGIOPro_Init()

(3). Various encoding parameters setup functions, such as MPEGIOPro_SetEncodeVideoBitRate,

MPEGIOPro_SetAspectRatio, etc, must be called before calling MPEGIO_StartEncode, to

make the encoded video bearing the intended encoding parameters. Once MPEGIO_StartEncode has

been called, setting up encoding parameters will not be possible until MPEGIO_StopEncode is called.

(4). OSD and Colour setup(MPEGIOPro_SetVideoParam) functions can be called during the encoding

time (after MPEGIO_StartEncode is called and before MPEGIO_StopEncode is called)

(5). MPEGIOPro_Uninit()

 Must be called before exiting Application Software

(6). MPEGIOPro_SDKVer

 MPEGIOPro_SetMirror

 Can be called any time anywhere

(7). Streaming functions must be called between MPEGIOPro_NetworkInit() and

MPEGIOPro_NetworkEnd()

MPEGIOPro SDK User Manual Page 20 Ver. 1.0.4

8. SDK Operation Requirement

8.1 To use MPEGIOPro SDK functions to write application software, or to execute application software

written by using MPEGIOPro.DLL, MPEGIOPro.DLL-related files(see 8.2 section), are needed.

To run the linked C++ sample program MPEGIOPro.exe on the MPEGIOPro Setup CD, MPEGIOPro

device driver must be installed first (see Section 5. Software Installation in the “MPEGIOPro User Manual”).

To run the compiled VisualBasic sample program MPEGIOProVB.exe on the MPEGIOPro Setup CD,

apart from the device drivers, Microsoft .Net Framework 2.0 and above must also be installed.

8.2 To copy MPEGIOPro.DLL-related files to a development PC that you will use to write and execute

application software written by using MPEGIOPro.dll:

1. copy all “.lib” and “.dll” files from the SDK\lib folder of the MPEGIOPro Setup CD to a folder on the

development PC that is in the library search path, e.g. the C:\Windows\System32

2. Copy all “.sre” files from the SDK\lib folder to the folder on the development PC where the compiled

and linked .exe file of your application software will stay, e.g. the Debug and Release folders under your

Microsoft VisualStudio’s Project folder of your application software to be developed

3. Copy all “.h” files from the SDK\inc folder of the MPEGIOPro Setup CD to a folder on the

development PC that is in the header file search path, e.g. your project’s include folder

8.3 To copy MPEGIOPro.DLL-related files to a target PC that will run application software written by

using MPEGIOPro.dll:

1. Copy all “.dll” files from the SDK\lib folder of the MPEGIOPro Setup CD to a folder on the target PC

that is in the library search path, e.g. the C:\Windows\System32 or your application software’s

installation folder

2. Copy all “.sre” files from the SDK\lib folder to the folder on the target PC where your application

software will be installed

8.4 Include Files:

MPEGIOPro.h must be included within C++ source code calling MPEGIOPro.DLL functions.

8.5 Firmware Files:

The boot.sre and pscodec.src files are MPEG encoding chipset firmware files, they must reside in the same

folder as any MPEGIOPro executable programs, inc. the sample MPEGIOPro.exe and MPEGIOProVB.exe

programs mentioned above.

8.6 Windows XP, Windows Vista and Windows 7 share the same MPEGIOPro.DLL Library

9. Sample Source Code
Sample applications with full C++ and VisualBasic source codes and Microsoft VisualStudio Pro 2008 project

files are included on the MPEGIOPro Setup CD under the SDK\src folder.

Note:

1. in C++ the XP and above XP source codes are identical except the preprocessor have different values:

In XP WINVER=0x0501 is defined, in above XP WINVER=0x0600 and ABOVE_WINXP are defined.

 2. both the C++ and VisualBasic .Net projects are for MS VisualStudio Pro 2008 environment

