
1

The relocatable assembler for i-Core3

RASi3

User's manual

Program development support software

2005-5 making

 ii

* A change history is only the in-company version. It deletes with the shipment
version.

Change history

Revision Date The contents of correction Person
in

charge

The

provisional

version

04/7/30 New making Kosaka

First edition 04/9/01 FIX of RASi3 specification Kawano

The 2nd

edition

04/9/03 Correction of explanation of a user symbol. Correction of

the explanatory note of a STACKSEG

pseudo-instruction.

Kawano

The 3rd

edition

04/9/21 Explanation correction of an EQU pseudo-instruction Kawano

The 4th

Edition

05/4/01 Correction by architecture change.

5.9 Restriction of a basic instruction

6.7 Memory initialization pseudo-instruction

6.13 Optimization pseudo-instruction

Update 6.14 C debugging pseud-instruction

kawano

The 5th Edit

ion

05/05/26 6.2.2 STACKSEG : correct “_$$SP” to “_$$XSP or

_$$YSP”

8.2 Error message list : update the error message

kawano

1

NOTICE

1. The information contained herein can change without notice owing to product and/or technical
improvements. Before using the product, please make sure that the information being referred
to is up-to-date.

2. The outline of action and examples for application circuits described herein have been chosen
as an explanation for the standard action and performance of the product. When planning to
use the product, please ensure that the external conditions are reflected in the actual circuit
and assembly designs.

3. When developing and evaluating your product, please use our product below the specified
maximum ratings and within the specified operating ranges including, but not limited to,
operating voltage, power dissipation, and operating temperature.

4. Oki assumes no responsibility or liability whatsoever for any failure or unusual or
unexpected operation resulting from misuse, neglect, improper installation, repair,
alteration or accident, improper handling, or unusual physical or electrical stress
including, but not limited to, exposure to parameters beyond the specified maximum
ratings or operation outside the specified operating range.

5. Neither indemnity against nor license of a third party’s industrial and intellectual property right,
etc. is granted by us in connection with the use of the product and/or the information and
drawings contained herein. No responsibility is assumed by us for any infringement of a third
party’s right which may result from the use thereof.

6. The products listed in this document are intended for use in general electronics equipment for
commercial applications (e.g., office automation, communication equipment, measurement
equipment, consumer electronics, etc.) and especially only for use in development and
evaluation of control programs for equipment and systems. These products are not authorized
for other use (as an embedded device and a peripheral device) and for use in any system or
application that requires special or enhanced quality and reliability characteristics nor in any
system or application where the failure of such system or application may result in the loss or
damage of property, or death or injury to humans. Such applications include, but are not limited
to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power
control, medical equipment, and life-support systems.

7. Certain products in this document may need government approval before they can be exported
to particular countries. The purchaser assumes the responsibility of determining the legality of
export of these products and will take appropriate and necessary steps at their own expense
for these.

8. No part of the contents contained herein may be reprinted or reproduced without our prior
permission.

 2

Copyright 2003 Oki Electric Industry Co., Ltd.

Chapter 1 Introduction

1

Table of Contents

1 Chapter Introduction..6

2 Chapter Introduction..8

2.1 THE FLOW OF PROGRAM DEVELOPMENT... 8
2.2 DCL FILE ...10

2.2.1 Discernment information on a target device ..10
2.2.2 The range of the memory space which can be used ..10
2.2.3 Access allowed to SFR..10
2.2.4 The reserved word showing an address ...10

2.3 FILE SPECIFICATION ...11
2.4 ENVIRONMENT VARIABLE...12
2.5 MEMORY SPACE..12
2.6 ADDRESS SPACE...13

3 Chapter Starting of RASi3...14

3.1 THE DEFAULT AT THE TIME OF FILE SPECIFICATION...15
3.2 THE OPERATION METHOD OF RASI3 ..16
3.3 OPTION SPECIFICATION BY A STARTING OPTION DEFINITION FILE17

3.3.1 The specification method of a starting option definition file ...18
3.3.2 The form of a starting option definition file ..18

4 Chapter Option...19

4.1 OPTION LIST..19
4.2 THE FEATURE OF EACH OPTION...22

4.2.1 /PR,/NPR..22
4.2.2 /L,/NL...23
4.2.3 /S,/NS ..24
4.2.4 /R,/NR..24
4.2.5 /E,/NE ..26
4.2.6 /O,/NO ...26
4.2.7 /NC ..27
4.2.8 /DEF..28

1Introduction

 2

4.2.9 /V ...28
4.2.10 /PL...28
4.2.11 /PW..29
4.2.12 /I ...30
4.2.13 /D,/ND..30
4.2.14 /SD,/NSD..31
4.2.15 /T..31
4.2.16 /A ...32
4.2.17 /G ...32
4.2.18 /BCODE, /BPRAM, /BXRAM, /BXROM, /BYRAM, /BYROM..33

5 Chapter Language specification..35

5.1 COMPOSITION OF A PROGRAM ...35
5.1.1 A program and a sentence...35
5.1.2 Constituent factor ...35
5.1.3 The kind of sentence..36
5.1.4 The end of a program...37

5.2 A CLASSIFICATION AND ATTRIBUTE OF A VALUE...38
5.2.1 An integer type, a decimal type and an address type ..38
5.2.2 You sage type..38

5.3 CONSTANT...39
5.3.1 The number of settings ...39
5.3.2 Decimal constant ...40
5.3.3 Character constant ...40
5.3.4 Character string constant ..40

5.4 ESCAPE SEQUENCE ..41
5.5 FULL-WIDTH CHARACTER..42
5.6 SYMBOL..42

5.6.1 Distinction of an alphabetic character..42
5.6.2 Reserved word ..42
5.6.3 User symbol..43

5.7 EXPRESSION ..49
5.7.1 The definition of an expression..49
5.7.2 The feature of a operator...49
5.7.3 A relocatable type and constant expression..53
5.7.4 Simple relocatable type...55
5.7.5 Operation rule..56

5.8 ADDRESSING..68

Chapter 1 Introduction

3

5.8.1 The form of addressing..68
5.8.2 The range and addressing check of a value ...70
5.8.3 The conversion rule of the value at the time of describing a decimal to an immediate

operand 76
5.9 RESTRICTION OF A BASIC INSTRUCTION...78

5.9.1 Address register use restrictions.......................エラー! ブックマークが定義されていません。
5.9.2 Delay instruction use restrictions...78
5.9.3 Repeat instruction use restrictions..78
5.9.4 Access to a stack...エラー! ブックマークが定義されていません。
5.9.5 Use restrictions of a loop instruction..79
5.9.6 Use restrictions of an EXIT instruction..79
5.9.7 Use restrictions of a PCSTK access instructionエラー! ブックマークが定義されていません。

6 Chapter False instruction ..80

6.1 ASSEMBLING INITIAL-SETTING FALSE INSTRUCTION ..84
6.1.1 TYPE false instruction ...84

6.2 SEGMENT DEFINITION FALSE INSTRUCTION..85
6.2.1 SEGMENT false instruction ...85
6.2.2 STACKSEG false instruction ..86

6.3 SEGMENT CONTROL FALSE INSTRUCTION ..87
6.3.1 CODESEG false instruction...87
6.3.2 PRAMSEG false instruction...87
6.3.3 XRAMSEG false instruction...88
6.3.4 XROMSEG false instruction ..88
6.3.5 YRAMSEG false instruction...89
6.3.6 YROMSEG false instruction ..89
6.3.7 RELSEG false instruction ...90

6.4 LINKAGE CONTROL FALSE INSTRUCTION ..90
6.4.1 EXTRN false instruction..90
6.4.2 PUBLIC false instruction ..91
6.4.3 COMM false instruction...91

6.5 SYMBOL DEFINITION FALSE INSTRUCTION ..92
6.5.1 EQU false instruction ...92
6.5.2 = False instruction ...93
6.5.3 DEFINE false instruction...94

6.6 ADDRESS CONTROL FALSE INSTRUCTION ..94
6.6.1 ORG false instruction...94

6.7 MEMORY INITIALIZATION FALSE INSTRUCTION...95

1Introduction

 4

6.7.1 DW false instruction..95
6.8 ASSEMBLING CONTROL FALSE INSTRUCTION...96

6.8.1 INCLUDE false instruction ...96
6.8.2 END false instruction ...96

6.9 CONDITION ASSEMBLING FALSE INSTRUCTION ..97
6.9.1 IF, an IFE false instruction ...97
6.9.2 IFDEF, an IFNDEF false instruction ...98
6.9.3 IFB, an IFNB false instruction...98

6.10 LISTING CONTROL FALSE INSTRUCTION..98
6.10.1 TITLE false instruction ..98
6.10.2 PAGE false instruction ..99
6.10.3 PRN, a NOPRN false instruction ...99
6.10.4 LIST, a NOLIST false instruction ... 100
6.10.5 SYM, a NOSYM false instruction.. 100
6.10.6 REF, a NOREF false instruction ... 101
6.10.7 ERR, a NOERR false instruction... 101
6.10.8 OBJ, a NOOBJ false instruction .. 102

6.11 MACRO DEFINITION FALSE INSTRUCTION... 102
6.11.1 MACRO false instruction... 103
6.11.2 EXITM false instruction .. 103
6.11.3 LOCAL false instruction .. 105
6.11.4 REPT false instruction.. 105
6.11.5 IRP false instruction .. 105

6.12 SCOPE DEFINITION FALSE INSTRUCTION.. 106
6.12.1 SCOPE false instruction .. 106

6.13 OPTIMIZATION FALSE INSTRUCTION ... 106
6.13.1 GJMP, GJMPD, GJSR, a GJSRD false instruction .. 106

6.14 C DEBUGGING INFORMATION FALSE INSTRUCTION... 107
6.14.1 CFILE false instruction... 107
6.14.2 CFUNCTION, a CFUNCTIONEND false instruction ... 107
6.14.3 CARGUMENT false instruction ... 108
6.14.4 CBLOCK, a CBLOCKEND false instruction... 108
6.14.5 CLABEL false instruction.. 108
6.14.6 CLINE false instruction .. 108
6.14.7 CGLOBAL false instruction.. 109
6.14.8 CLOCAL false instruction ... 109
6.14.9 CSLOCAL false instruction .. 109
6.14.10 CSTRUCTTAG, a CSTRUCTMEM false instruction... 110

Chapter 1 Introduction

5

6.14.11 CUNIONTAG, a CUNIONMEM false instruction ... 110
6.14.12 CENUMTAG, a CENUMMEM false instruction.. 111
6.14.13 CTYPEDEF false instruction .. 111
6.14.14 CENVINFO false instruction... 111
6.14.15 CMAINFO false instruction ... 112

7 Chapter List file .. 113

7.1 READING OF AN ASSEMBLY LIST ... 114
7.2 READING OF A CROSS REFERENCE LIST .. 115
7.3 READING OF A SYMBOL LIST.. 116

8 Chapter A message and end code .. 118

8.1 FORM OF AN ERROR MESSAGE .. 119
8.2 ERROR MESSAGE LIST .. 119

8.2.1 Fatal error message ... 119
8.2.2 Assembling error message .. 121
8.2.3 Warning message ... 129

8.3 END CODE... 131

1Introduction

 6

1 Introduction

This manual explains the usage of the relocatable assembler RASi3 for OKI original
DSP core (i-Core2 and i-Core3).

RASi3 creates an object file, a list file, and an error file from the source file described
by the assembly language.

A required system

The following environment is required in order to operate RASi3.
Hardware: IBM PC/AT compatible machine and clone machine
 CPU beyond Pentium 90MHz
 64MB or more of memory
 10MB or more of hard disk
OS: Windows2000 and WindowsXp
RASi3 is the command line type tool which operates by the command prompt of

Windows.

Related software
RASi3 has the following relational software. RASI3 and RLi3 are generically called a

MACi3 assembler package.
- CCi3 compiler
- RLi3 Linka
- DTi3 debugger simulator

Related documents
The following document other than this manual is attached to RASi3. Please refer to

if needed.
- MACi3.TXT

 The latest information which is not in this manual is described by this file.
- DCLi3.TXT

 Explanation of the DCL file which RASi3 uses is described by this file.

RASi3 has a related document in addition to the above-mentioned document. A

related document refers to the hardware manual, instruction manual of a target device
and the manual of an emulator, etc. The MACi3.TXT file explains the kind of
document.

Chapter 1 Introduction

7

Notation

By this manual, in order to give explanation intelligible, some signs are used. The
sign used by this manual and the meaning are as follows.

Sign Meaning
SAMPLE This character shows the message displayed on a screen, the

example of an input of a command line, the example of the list
file created, etc.

CAPITALS The item expressed with the English capital letter shows that
it inputs as a display.

itarics The item expressed by italic is not display, but it is replaced to
required information of an item.

[] The contents of [] are the items inputted if needed. Omitting is
also possible.

-- The item in fromt of this sign is repeatable if needed.

{choice1|choice2} One is chosen and inputted out of a parenthesis ({}). One must
input except for the case where [] is specified.

value1-value2 An input value shows the range of value1 to value2.

"Manual" It shows a name of manual.

"Reference place" It shows a reference place.

Ctrl+C It indicates pressing the Ctrl key and the C key concurrently.
PROGRAM
 .
.
.

PROGRAM

It is shown that a part of program is omitted.

In this manual, when "H" is added in the end of a numerical value, a value means a

hexadecimal.
For example, when described as 1000H, 1000 (a decimal number 4096) of a

hexadecimal is indicated.

2Introduction

 8

2 Introduction

2.1 The flow of program development

Here, the flow of the work when developing the program created by the assembly
language using a MACi3 assembler package is explained. Since this manual does not
explain debugging of a program, please refer to the manual of the debugger to be used.

The flow of program development is shown in Fig. 1-1.
Please let the following explanation correspond with the number in a figure, and read

it.
(1) A program is described using a general text editor. The file which described the

program is called a source file (.ASM file).

(2) A source file is assembled using RASi3 and an object file (.OBJ file) is created. A list
file (.LST file) is also created at this time. Moreover, an error message can also be
outputted to a file.

(3) An object file (.OBJ file) can be registered into a library file (.LIB file) using the
library feature of RLi3. The development performance of a program can be raised by
registering a flexible program into a library file. A library file can be used as an input
of RLi3. A list file (.LST file) can also be created. This is a file including the list of the
object modules and public symbols which are registered into the library.

(4) All the object files that constitute a program using the linkage feature of RLi3 are
combined, and one absolute object file (.ABS file) is created. RLi3 solves the external
reference between object files, or assigns a logic segment to a memory. Moreover, a
map file (.MAP) is also created.

Furthermore, an object file (.ABS file) is changed into a HEX file using the object
conversion feature of RLi3. Please refer to the user's manual of RLi3 about the kind of
HEX file, and a format.

2.1The flow of program development

9

(1) Text Editor

.cfg

Option File

.asm

User Program

.asm

Assembly File

.abl

Absolute Object File

CCi3 Compiler

Input Files

(2) RASi3 Assembler.dcl

Device Definition File

Reference File

.err .lst .obj .als

Output File

Error File Listing File Object File Absolute Listing File

(4) RLi3 Linker

.obj

Does it register
with a library?

(3) RLi3 Linker
.obj

Other Object Files

.lib .lst

Library File Listing File

Absolute Object
File

Mapping File

No

Yes

Fig. 1-1 Flow of program development

2Introduction

 10

2.2 DCL file

RASi3 reads the file which defined information peculiar to the device of the object
called a DCL file. RASi3 can respond to two or more devices according to this DCL file.

A DCL file is a file of text format. The extension of a DCL file is always ".DCL." The
name of the DCL file to refer to is specified in a source program. RASi3 stores the
information on a DCL file in an object file. RLi3 receives the information on a DCL file
from this object file.

Since the important information for initializing RASi3 is defined as the DCL file,
please stop rewriting the contents of the DCL file absolutely. If the contents of the DCL
file are rewritten, it may become impossible to process assembling normally.

The contents defined as the DCL file are explained below.

2.2.1 Identification information on a target device
The name of a target device is defined. RLi3 is confirming whether a modular link is

possible with reference to the identification information on a target device, when
linking.

2.2.2 The range of the memory space which can be used
RASi3 determines the useful range of program memory space and data memory space

based on this information. Furthermore, the value of the operand which accesses the
target memory is checked.

There is the following kind of the information about memory space.
（１） The address range of program memory (P memory) space and data memory (X

memory, Y memory) space
（２） The address range of special areas, such as a SFR area

2.2.3 Access allowed to SFR
RASi3 checks access to a SFR area based on this information.

2.2.4 The reserved word showing an address
RASi3 gets the usage type which the value of the reserved word showing the address,

and reserved word from this information. Specifically, the register name currently
assigned to the SFR area is defined.

These reserved words can be used instead of an address by an operand.

2.3File specification

11

2.3 File specification

In RASi3, a file is specified as an input or an output. This manual defines such file
specification as follows.

<Drive:> <directory> <Base name> <. extension>

Moreover, the combination of a drive and a directory is called a path.

Example
C:¥ICORE¥MACI3¥SRC¥SAMPLE.ASM

Each part of the file specification in this example is as follows.

Name Each part of file specification
Path C:¥ICORE¥MACI3¥SRC¥
Drive C:
Directory ¥ICORE¥MACI3¥SRC¥
Base name SAMPLE
Extension .ASM
A maximum of 255 characters can be specified and a LongFilename can also be

specified as file designation.
The character which can be used for a file name and an extension is as follows.
 A--Z a--z 0--9 _ (underscore) . (dot) ~ (tilde)
The operation is not guaranteed when characters other than the above are used. It

depends for characters other than the above on OS which uses an assembler. However,
a blank character is not concerned with OS but serves as an error.

Each input-and-output file designation is performed by the starting option or a
pseudo-instruction. When specifying a file, depending on the kind of file, only
specification or path, and file name of only a path can be specified. In this case, RASi3
applies default specification of file specification.

Moreover, when only . (dot) is specified as an extension, it is judged that RASi3 is a
file without an extension.

2Introduction

 12

2.4 Environment variable

RASi3 uses an environment variable DCLI3.
An environment variable DCLI3 is used when RASi3 searchs a DCL file. When there

is no DCL file in the directory to which a current directory and RASi3.EXE exist, RASi3
uses an environment variable DCLI3, in order to search a DCL file.

The example of a setting of an environment variable DCLI3 is shown below.

SET DCLI3=C:¥ICORE¥DCL

2.5 Memory space

Memory space indicates the memory on the target device which RASi3 can manage.
RASi3 can use the following memorys.

- Maximum of 256K word program memory (P memory)
- Maximum of 64K word data memory (X memory and Y memory)

- Program memory space

Program memory space is an area for allocation instruction code
required for program execution.
The ROM area of P memory can be used as program memory space.

- Data memory space
Data memory space is the space which holds initial data required for
program execution, and the data under execution temporarily. The RAM
area of X memory and Y memory can be used as data memory space.
Moreover, although a ROM area can be specified as X memory and Y
memory, it cannot be used as program space.

・

2.6Address space

13

2.6 Address space

An address space is the space set as the object of each memory access addressing. The
segment type is assigned to each address space.

The kind of address space and the corresponding segment type are as follows.

Address space Object memory Segment type
CODE address The ROM area of P memory CODE
PRAM address The RAM area of P memory PRAM
XRAM address The RAM area of X

memories
XRAM

XROM address The ROM area of X
memories

XROM

YRAM address The RAM area of Y memory YRAM
YROM address The ROM area of X

memories
YROM

3Starting of RASi3

 14

3 Starting of RASi3

RASi3 creates an object file, a list file, and an error file from the source file described
by the assembly language.

Information required for a rearrangeable object code, and a link and debugging is
included in the object file.

The contents of the source file and the generated object code are contained in the list
file. Furthermore, the name and value of a symbol which are used by the source file can
be shown.

An error file consists of source statements which the error message and the error
occurred, and if there is no output specification to a file, it will be displayed on up to a
console.

3.1The default file specification

15

3.1 The default file specification

When using RASi3, the specification of an input file and output file are required. A
file is specified by the command line or the operand of a psuedo-instruction. There is
the following kind of file specification of RASi3.

1. Specification of Source File
２． Specification of an include file
３． Specification of a option file
４． Specification of an object file
５． Specification of a list file
６． Specification of an error file
７． Specification of a DCL file

In the above-mentioned file specification, a drive and a directory are omissible.
Except specification of a source file, an include file, and a option file, a base name is
also omissible. The default when omitting a drive, a directory, a base name, or an
extension is as follows.

Kind of file Default path
specification

Default file name Extension

Source file Current path 1 An abbreviation is
impossible.

.ASM

Option definition
file

Current path An abbreviation is
impossible.

An
abbreviation
is
impossible.

Include file Search path 2 An abbreviation is
impossible.

An
abbreviation
is
impossible.

DCL file Search path An abbreviation is
impossible.

.DCL

Object file The path of a source
file

The file name of a source
file

.OBJ

List file The path of a source
file

The file name of a source
file

.LST

1 A current path points out the working directory which performs RASi3.

2 Please refer to an include file "an INCLUDE pseudo-instruction" and a DCL file "a TYPE pseudo-instruction"

about search path.

3Starting of RASi3

 16

Error file The path of a source
file

The file name of a source
file

.ERR

3.2 The operation method of RASi3

This section explains how to perform RASi3.
It types with “RASi3” to the command prompt, a source file and an option are

specified after that, and the Enter key is pressed. The format of a command line is as
follows.

 RASi3 [options] source_file [options]
The source file to assemble is specified as Source_file. It is used for options combining

an option or option file specification. Before the alphabetic character showing an option,
you have to attach a slash (/). Please insert a blank character between an option, and
source files and options.

If it typed only with RASi3 and the Enter key was pressed, without specifying
source_file, after the list of options will be displayed on a console in how to use RASi3,
it returns to a command prompt.

Example

 When a /S option is attached and it assembles source file MAIN.ASM, it types as
follows.

RASi3 MAIN.ASM /S

When the extension of a source file name is omitted, RASi3 attached and processes
extension “.ASM”. When the drive of a source file name is omitted, RASi3 considers
that a source file is in the current drive. When the directory of a source file name is
omitted, RASi3 considers that a source file is in a current directory. If a command line
is inputted correctly, the starting message of RASi3 will be displayed on a screen. Then,
the following message is displayed in order.

 [dcl_file] loading...
 pass1...
 branch optimization...
 pass2...

RASi3 loads a DCL file to the beginning of assembling processing. The following
message are displayed while loading the DCL file.

[dcl_file] loading...

dcl_file is the actually loaded DCL file name.

3.3Option specification by a starting option definition file

17

Assembling processing of RASi3 is divided into the processing called a pass 1 and a
pass 2. RASi3 determines the value of a symbol, and the address of a program in pass 1
processing. In processing of a pass 2, the result of a pass 1 is used and an object file is
created. If processing of a pass 1 starts, “pass 1…” will be displayed, and “pass 2…” will
be displayed if processing of a pass 2 starts. Moreover, RASi3 optimizes branch
instruction between processing of a pass 1 and a pass 2. “Branch optimization…” will be
displayed if this optimization processing starts.

If the created program has an error, an error message will be displayed after that.
Please refer to "6.9 Error message" about an error message.

After assembling is completed, RASi3 displays the following messages and returns to

a command prompt.

List File : MAIN.prn
Object File : MAIN.obj
Error File : Console

Errors : 0
Warnings : 0
Lines : 100
Assembly End.

Three lines of the beginning are the name of each created file. The generated list
file name is displayed on List File, the generated object file name is displayed on Object
File, and the generated error file name (usually “Console”) is displayed on Error File.

The information on an assembling result is displayed following the display of a file
name. The total of an error is displayed after Errors and the total of warning is
displayed after Warnings. The number of lines of a source file is displayed after Lines.

Reference

All the messages that RASi3 displays on a screen are outputted to the standard
output device. If the redirection feature of DOS is used, a message can be outputted to a
file.

3.3 Option specification by a starting option definition file

Instead of describing specification and the option of a source file to a command line,
there is also a method of reading an option from a text file. This text file is called an
option definition file.

3Starting of RASi3

 18

3.3.1 The specification method of a starting option definition file
In order to specify an option definition file, an option definition file is specified after a

unit price sign (@). A blank character cannot be inserted between a unit price sign (@)
and an option definition file.

Example 1:
When the option required to assemble source file MAIN.ASM is described by option

definition file FOO.OPT, it types as follows.
 RASi3 MAIN.ASM @FOO.OPT
Example 2:
Although source file specification and an option required in order to assemble

MAIN.ASM to BAR.OPT are described, when adding a /S option in addition, it types as
follows.

 RASi3 @BAR.OPT /S

3.3.2 The form of an option definition file
In an option definition file, description of the following element is possible.
１． Specification of a source file
２． Specification of various options
３． Comment
Each element is divided by a blank (20H), or TAB (09H) and LF (0AH). CR (0DH) is

omitted.
The number or the number of characters of an option which can be described to one

line do not have restriction.
Moreover, it is possible to describe a comment. If a semicolon(;), a sharp (#), or

//appears in a file, henceforth, even LF (0DH) will be interpreted as a comment and will
be skipped. A block comment cannot be used.

Example :
 The following is an example of the option definition file for assembling MAIN.ASM

with a /E, /R, and /NL option.

;---------------------------------------
; Sample of an option definition file (BAR.OPT)
;---------------------------------------
 MAIN.ASM ; Specification of a source file
 /E ; The output of an error file is confirmed.
 /R/NL ; Output item change of a list file

4.1Option list

19

4 Command Line Option

By specifying an option, operation of RASi3 and the form of an output file are
controllable. All options start in an option head character, and an option name
continues. There are some which can specify a parameter after that depending on the
kind of option.

An option head character may specify whichever of a slash (/) or Haiphong (-). For
convenience, the slash (/) is used in subsequent explanation.

Either a capital letter or a small letter can be used for an option name. A space
cannot be inserted between an option head character and an option name and between
an option name and a parameter. A pseudo-instruction with the completely same
feature exists in some options.

4.1 Option list

The option which RASi3 prepares is shown below.

Option

name

Form Feature A corresponding

pseudo-instruction

PR /PR[filename]

filename : File specification

A list file is outputted.

When filename is omitted, it becomes

default file specification.

PRN

NPR /NPR A list file is not outputted. NOPRN

L /L[line_switch]

line_switch = [0 | 1]

 0 : Line Output OFF

 1 : Line Output ON

An assembling list is outputted to a

list file.

line_switch controls the output of the

source file line number displayed on

an assembling list.

LIST

NL /NL An assembling list is not outputted to

a list file.

NOLIST

S /S A symbol list is outputted to a list

file.

SYM

NS /NS A symbol list is not outputted to a list

file.

NOSYM

R /R A cross reference list is outputted to a

list file.

REF

NR /NR A cross reference list is not outputted NOREF

4Command Line Option

 20

to a list file.

E /E[filename]

filename : File specification

An error file is outputted.

When filename is omitted, it becomes

default file specification.

ERR

NE /NE An error file is not outputted. NOERR

O /O[filename]

filename : File specification

An object file is outputted.

When filename is omitted, it becomes

default file specification.

OBJ

NO /NO An object file is not outputted. NOOBJ

NC /NC The capital letter and small letter of a

user symbol are not distinguished.

Nothing

DEF /DEFsymbol[="body"]

symbol : symbol to define.

body : The value and

character string by which a

symbol is expanded.

A symbol is defined.

A symbol is expanded by body when

[="body"] is specified.

When "="body"" is omitted, it is

regarded as [="1"].

DEFINE

V /V The version of RASi3 is displayed.

If this option is specified, only a

version display will be performed and

assembling will not be performed.

Nothing

PL /PL[num]

num : The number of lines

of 1 page

If num is omitted, it will be

regarded as 60 lines.

The number of lines of 1 page of a list

file is set as the value specified as

num.

A default is unrestricted.

PAGE

PW /PW[num]

num : The number of

characters of one line

If num is omitted, it will be

regarded as 79 characters.

The number of characters of one line

of a list file is set as the value

specified as num.

A default is unrestricted.

PAGE

I /Ipath

path : Include path

The search path of an include file is

specified.

Nothing

D /D Assembly source level debugging

information is outputted to an object

file.

Nothing

ND /ND Assembly source level debugging

information is not outputted to an

object file.

Nothing

4.1Option list

21

SD /SD C source level debugging information

is outputted to an object file.

Nothing

NSD /NSD C source level debugging information

is not outputted to an object file.

Nothing

T /Ttarget_devuce

target_device : Target

device name

A target device name is specified.

Refer to the DCL file of specified

target device name.dcl for RASi3.

TYPE

A /Afile_name

file_name : .abl file name

An absolute list file (.als) is generated

with reference to the absolute

information file specified by

file_name.

G /Gfile_name

file_name : .abl file name

A relocatable object file (.obj) is

generated with reference to the

absolute information file specified by

file_name.

B /Bmem(addr1,addr2)

mem : Memory space

 = CODE

 | PRAM

 | XRAM

 | XROM

 | YRAM

 | YROM

addr : Range to extend

A memory is extended.

The range specified by addr is added

to the address space specified by

mem.

Nothing

W /Wnum

num : warning number

Restrict output of warning message

specified to num.

Nothing

4Command Line Option

 22

4.2 The feature of each option

In an option definition file, description of the following element is possible.

4.2.1 /PR, /NPR
- Syntax
 /PR[list_file]
 /NPR
- Description
Use of a /PR option creates a list file. A list file name is specified as list_file. Please

refer to "3.1 The default file specification" about the default in the case of omitting a
part of file specification, when omitting an operand.

Use of a /NPR option does not create a list file. However, when the /A option is
specified concurrently, a list file will be created even if there is specification of /NPR.

When omitting a /PR option and a /NPR option, a list file is created and a list file
name becomes what changed the extension of a source file name into ".LST."

- A corresponding pseudo-instruction
Instead of specifying a /PR option, you may describe a PRN pseudo-instruction in a

program. Moreover, you may describe a NOPRN pseudo-instruction in a program
instead of specifying a /NPR option. Priority is given to specification of an option when
specifying both an option and a pseudo-instruction.

Please refer to "a PRN/NOPRN pseudo-instruction" about a PRN pseudo-instruction
and a NOPRN pseudo-instruction.

- Example
 RASi3 FOO.ASM /PROUTPUT.LST
A list file OUTPUT.LST is created in this example.
 RASi3 FOO.ASM /NPR
A list file is not created in this example.
- Supplement
A /PR option and a /NPR option cannot be specified concurrently.

4.2The feature of each option

23

4.2.2 /L, /NL
- Syntax
 /L
 /NL
- Description
When a /L option is specified, each statement until a NOLIST pseudo-instruction

appears in a program is outputted to an assembly list.
When a /NL option is specified, each statement until a LIST pseudo-instruction

appears in a program is not outputted to an assembly list. However, a statement
including an error will be outputted to an assembly list, even if the /NL option is
specified.

A /NL option is specified by a default.
An assembly list is outputted to a list file. The contents outputted are explained by

the "list file." Please refer to "a LIST/NOLIST pseudo-instruction" about a LIST
pseudo-instruction and a NOLIST pseudo-instruction.

- A corresponding pseudo-instruction
The feature of these options, a LIST pseudo-instruction, and a NOLIST

pseudo-instruction is almost the same. However, a LIST pseudo-instruction and a
NOLIST pseudo-instruction have effect to the statement after the described line to
specification of an option being available from the head of a program.

- Example
When outputting the contents of source file FOO.ASM to an assembly list and

assembling them, it types as follows.
 RASi3 FOO.ASM /L
When assembling without outputting the contents of source file FOO.ASM to an

assembly list, it types as follows.
 RASi3 FOO.ASM /NL
- Supplement
/L and /NL cannot be specified concurrently.

4Command Line Option

 24

4.2.3 /S, /NS
- Syntax
 /S
 /NS
- Description
When a /S option is specified, the information on all user symbols is outputted to a

symbol list. When a /NS option is specified, a symbol list is not created.
A symbol list is not created by a default.
A symbol list is outputted to a list file. The contents outputted are explained to the

"list file."
- A corresponding pseudo-instruction
Instead of specifying a /S option, you may describe a SYM pseudo-instruction in a

program. Moreover, you may describe a NOSYM pseudo-instruction in a program
instead of specifying a /NS option. Priority is given to specification of an option when
both an option and a pseudo-instruction are specified. Please refer to "a SYM/NOSYM
pseudo-instruction" about a SYM pseudo-instruction and a NOSYM pseudo-instruction.

- Example
When outputting all the symbols currently used for source file FOO.ASM to a symbol

list and assembling them, it types as follows.
 RASi3 FOO.ASM /S
When assembling the contents of source file FOO.ASM, it types as follows, without

creating a symbol list.
 RASi3 FOO.ASM /NS
- Supplement
/S and /NS cannot be specified concurrently.

4.2.4 /R, /NR
- Syntax
 /R
 /NR
- Description
When a /R option is specified, the appearance line number in all user symbol is

outputted to a cross reference list. When a /NR option is specified, a cross reference list
is not created.

Correctly, the cross reference list created is influenced of the REF pseudo-instruction
and NOREF pseudo-instruction described in a program. Even if the /R option is
specified, when a NOREF pseudo-instruction is described in a program, a line number
until a REF pseudo-instruction appears is not outputted to a cross reference list. On the
other hand, even if the /NR option is specified, when a REF pseudo-instruction is
described in a program, a line number until a NOREF pseudo-instruction appears is

4.2The feature of each option

25

outputted to a cross reference list. Therefore, the REF pseudo-instruction and the
NOREF pseudo-instruction have the role of the switch of the output of a cross reference
list.

However, generally there is almost no above usage. Therefore, you may think that a
/R option creates a cross reference list and a /NR option does not create a cross
reference list.

A cross reference list is not created by default.
A cross reference list is outputted to a list file. The contents outputted are explained

to the "list file." Please refer to "a REF/NOREF pseudo-instruction" about a REF
pseudo-instruction and a NOREF pseudo-instruction.

- A corresponding pseudo-instruction
The feature of these options, a REF pseudo-instruction, and a NOREF

pseudo-instruction is almost the same. However, although specification of an option
becomes available from the head of a program, REF and NOREF are available to the
statement after the line which described the pseudo-instruction.

- Example
When creating and assembling the cross reference list of symbols currently used for

source file FOO.ASM, it types as follows.
 RASi3 FOO.ASM /R
When assembling source file FOO.ASM without making of a cross reference list, it

types as follows.
 RASi3 FOO.ASM /NR
- Supplement
/R and a /NR option cannot be specified concurrently.

4Command Line Option

 26

4.2.5 /E, /NE
- Syntax
 /E[error_file]
 /NE
- Description
A /E option directs the output place of an error message to RASi3. If an error file

name is specified as error_file, an error message will be outputted to the file. When an
operand is omitted, please refer to "the default of file specification" about the default in
the case of omitting a part of error file.

A /NE option directs to display an error message on a screen (standard output) to
RASi3.

By a default, an error message is displayed on a screen.
Only an assembling error message and a warning message can control the output

place of an error message by a /E option. When you also output a fatal error message
and an internal processing error message to a file collectively, please use the
redirection feature of DOS.

- A corresponding pseudo-instruction
Instead of specifying a /E option, you may describe an ERR pseudo-instruction in a

program. Moreover, you may describe a NOERR pseudo-instruction in a program
instead of specifying a /NE option. Priority is given to specification of an option when
specifying both an option and a pseudo-instruction.

Please refer to "an ERR/NOERR pseudo-instruction" about an ERR
pseudo-instruction and a NOERR pseudo-instruction.

- Example
 RASi3 FOO.ASM /EERROR.LST
Making of an error file ERROR.LST is specified in this example.
- Supplement
/E and a /NE option cannot be specified concurrently.

4.2.6 /O, /NO
- Syntax
 /O[object_file]
 /NO
- Description
An object file is created when a /O option is used. An object file name is specified as

object_file. Please refer to “the default of file designation” about the default when
omitting a part of file designation, when an operand is omitted.

Use of a /NO option does not create an object file.
When a /O option and a /NO option are omitted, a print file is created and an object

file name becomes what changed the extension of a source file name into ".OBJ."

4.2The feature of each option

27

- A corresponding pseudo-instruction
Instead of specifying a /O option, you may describe an OBJ pseudo-instruction in a

program. Moreover, you may describe a NOOBJ pseudo-instruction in a program
instead of specifying a /NO option. Priority is given to specification of an option when
specifying both an option and a pseudo-instruction.

Please refer to "an OBJ/NOOBJ pseudo-instruction" about an OBJ pseudo-instruction
and a NOOBJ pseudo-instruction.

- Example
 RASi3 FOO.ASM /OOUTPUT.OBJ
In this example, it is pointing to making of an object file OUTPUT.OBJ.
 RASi3 FOO.ASM /NO
In this example, it specifies not creating an object file.
- Supplement
/O and a /NO option cannot be specified concurrently.

4.2.7 /NC
- Syntax
 /NC
- Description
When a /NC option is specified, the capital letter and small letter of an alphabetic

character which are used for the symbol are no longer distinguished. In this case, if
spelling of a symbol is the same, even if proper use of a capital letter and a small letter
differs, it will be managed as the same symbol. If a /NC option is specified, RASi3 will
be managed after changing into a capital letter all the alphabetic characters currently
used for the symbol. It is stored in the symbol information on a list file or an object file
by the name changed into the capital letter.

When a /NC option is omitted, the capital letter and small letter of an alphabetic
character are distinguished.

Only the user symbol defined in programs, such as a label and a segment name, and
the SFR symbol defined in a DCL file distinguish the capital letter and small letter of
an alphabetic character, and is controlled.

Reserved word, such as an instruction and a pseudo-instruction, is not concerned
with option specification, and cannot distinguish the capital letter and small letter of
an alphabetic character.

- Example
When assembling source file FOO.ASM without distinguishing a capital letter and a

small letter, it types as follows.
 RASi3 FOO.ASM /NC

4Command Line Option

 28

4.2.8 /DEF
- Syntax
 /DEFsymbol[=body]
- Description
A /DEF option defines a macro symbol. A blank character cannot be inserted between

symbol and (=), and between (=) and body.
When “=body” is omitted, body is assigned to the macro symbol “symbol”. “1” is

assigned to the macro body when “=body” is omitted.
- A corresponding pseudo-instruction
Instead of specifying this option, it is also possible to define a macro symbol using a

DEFINE pseudo-instruction.
- Example
When assembling source file FOO.ASM, defining a macro body "TYPE (MXXXXXX)"

as the macro symbol READDCL and defining "1" as the macro symbol ONE, it types as
follows.

 RASi3 FOO.ASM /DEFREADDCL=TYPE(MXXXXXX) /DEFONE

4.2.9 /V
- Syntax
 /V
- Description
A /V option displays the version information of RASi3.
Assembling is not performed when a /V option is specified.
- A corresponding pseudo-instruction
There is no pseudo-instruction corresponding to a /V option.

4.2.10 /PL
- Syntax
 /PL[page_length]
- Description
A /PL option specifies the number of lines of each page of a list file.
The number of lines of each page is specified as page_length with the number of

settings. This number of lines contains the header of a list file, the blank line before
and behind that, etc. The value specified as page_length does not have restriction in
particular. When page_length is omitted, the number of lines of a page is set as 60.

By the default, the number of lines of each page of a list file is set up without any
restriction.

- A corresponding pseudo-instruction
Instead of specifying a /PL option, you may describe a PAGE pseudo-instruction in a

4.2The feature of each option

29

program. The same setup as a /PL option can be performed by specifying the number of
lines as the 1st operand of a PAGE pseudo-instruction.

Priority is given to specification of an option when specifying both a PAGE
pseudo-instruction and a /PL option.

- Example
 RASi3 FOO.ASM /PL100
In this example, the number of lines of each page of a list file is specified as 100 lines.

4.2.11 /PW
- Syntax
 /PW[page_width]
- Description
A /PW option specifies the number of characters of each line of a list file.
The number of characters of each line is specified as page_width with the number of

settings. This number of characters means the number of single byte characters. The
value specified as page_width does not have restriction in particular. When a value is
omitted, the number of characters of one line is set as 79.

By the default, the number of characters of each line of a list file is set up without
any restriction.

- A corresponding pseudo-instruction
Instead of specifying a /PW option, you may describe a PAGE pseudo-instruction in a

program. The same setup as a /PW option can be performed by specifying the number of
characters as the 2nd operand of a PAGE pseudo-instruction.

Priority is given to specification of an option when specifying both a PAGE
pseudo-instruction and a /PW option.

- Example
 RASi3 FOO.ASM /PW132
In this example, the number of characters of each line of a list file is specified as 132

characters.

4Command Line Option

 30

4.2.12 /I
- Syntax
 /Iinclude_path
- Description
A /I option specifies the path of a file read by INCLUDE pseudo-instruction. Two or

more paths can be specified by describing two or more /I options.
RASi3 searches an include file in order of the following.
（１） An include file is searched from a current directory. The file will be read if the

target file exists in a current directory.
（２） If the path of an include file is specified as the /I option when the target file does

not exist in a current directory, the target file will be searched from the path. A
file is searched with the order described when two or more /I options are
specified.

Refer to "the INCLUDE pseudo-instruction" for the details about an INCLUDE
pseudo-instruction.

- Example
When assembling source file FOO.ASM and searching an include file in order of a

current directory, C:¥USR¥SHARE¥INC, and C:¥USR¥PRV¥INC, it types as follows.
 RASi3 FOO.ASM /IC:¥USR¥SHARE¥INC /IC:¥USR¥PRV¥INC

4.2.13 /D, /ND
- Syntax
 /D
 /ND
- Description
A /D option outputs assembly level debugging information to an object file. If this

debugging information is included in the object file, a program can be debugged
symbolically.

A /ND option does not output assembly level debugging information to an object file.
By a default, debugging information is not outputted to an object file.
- A corresponding pseudo-instruction
There is no pseudo-instruction corresponding to /D and /ND.

- Example
 RASi3 FOO.ASM /D
In this example, assembly level debugging information is outputted to the object file.
- Supplement
/D and a /ND option cannot be specified concurrently.

4.2The feature of each option

31

4.2.14 /SD, /NSD
- Syntax
 /SD
 /NSD
- Description
A /SD option is specified when a source file is created by CCi3 compiler. If this option

is specified, RASi3 will analyze C debugging pseudo-instruction embedded at the
assembly source file which CCi3 compiler created, and will create an object file
including C source-level debugging information. By specifying this option, it is
available of C source-level debugging.

When a /NSD option is specified, C source-level debugging information is not
outputted to an object file. In this case, C source-level debugging cannot be performed.

By a default, C source-level debugging information is not outputted to an object file.
- A corresponding pseudo-instruction
There is no pseudo-instruction corresponding to /SD and a /NSD option.
- Example
 RASi3 CCFOO /SD
In this example, source file CCFOO.ASM which CCi3 compiler created is assembled,

and an object file including C source level debugging information is created.

4.2.15 /T
- Syntax
 /Ttarget_device
- Description
A /T option specifies a target device name.
The name of a target device is specified as target_device.
- A corresponding pseudo-instruction
Instead of specifying a /T option, a target device can also be specified using a TYPE

pseudo-instruction. Priority is given to specification of an option when both an option
and a TYPE pseudo-instruction are specified. Please refer to "a TYPE
pseudo-instruction" about a TYPE pseudo-instruction.

- Example
When assembling source file FOO.ASM by setting a target device to MXXXXX, it

types as follows.
 RASi3 FOO.ASM /TMXXXXX

4Command Line Option

 32

4.2.16 /A
- Syntax
 /A[abl_file]
- Description
A /A option creates an absolute list file.
An absolute list file is a list file which does not have relocatable information without

including indefinite instruction code information and address information at all.
An ABL file name is specified as abl_file. An ABL file is a binary format file with

information required in order to create an absolute list file, and it is created by RLi3
Linker.

Also when using a /A option, the specification method of the file name by a /PR option
does not change. However, although the default extension of the usual list file is “.LST”,
the default extension of an absolute list file is “.ALS”.

Refer to the "absolute listing feature" for the details of the making method of an
absolute print file.

- Example
When creating the absolute list file of source file FOO.ASM, it types as follows. ABL

file APRINFO.ABL is read in this example.
 RASi3 FOO.ASM /AAPRINFO

4.2.17 /G
- Syntax
 /Gfile_name
- Description
A /G option generates a relocatable object file with reference to the ABL file specified

by file_name.
- Example
When creating a relocatable object file with reference to the absolute list file of source

file FOO.ASM, it types as follows. ABL file APRINFO.ABL is read in this example.
 RASi3 FOO.ASM /GAPRINFO

4.2The feature of each option

33

4.2.18 /BCODE, /BPRAM, /BXRAM, /BXROM, /BYRAM, /BYROM
- Syntax
 /BCODE(start_address,end_address)

 /BPRAM(start_address,end_address)

 /BXRAM(start_address,end_address)

 /BXROM(start_address,end_address)

 /BYRAM(start_address,end_address)

 /BYROM(start_address,end_address)

- Description
These options are options for specifying the kind and area of the memory, when a

user adds a memory on an address space manageable by RASi3. The kind of memory
carried in the target device cannot be redefined. The start address and end address of
an area are specified as start_address and end_address, respectively.

A /BCODE option adds a CODE area (ROM area on P address space). The ranges of
the address which can be specified are the arbitrary areas of 00000H to 3FFFFH.

A /BPRAM option adds the RAM area on P address space. The ranges of the address
which can be specified are the arbitrary areas of 00000H to 3FFFFH.

A /BXRAM option adds the RAM area on X address space. The ranges of the address
which can be specified are the arbitrary areas of 0000H to 0FFFFH.

A /BXROM option adds the ROM area on X address space. The ranges of the address
which can be specified are the arbitrary areas of 0000H to 0FFFFH.

A /BYRAM option adds the RAM area on Y address space. The ranges of the address
which can be specified are the arbitrary areas of 0000H to 0FFFFH.

A /BYROM option adds the ROM area on Y address space. The ranges of the address
which can be specified are the arbitrary areas of 0000H to 0FFFFH.

4.2.19 /W
- Syntax
 /Wwarn_num
- Description
A /W option restrict the output of warning message specified by warn_num.
- Example
When the following warining message in FOO.ASM is restricted, warning_number 60

is specify to warn_num.
Warning 60:A page address may be changed within a loop

 RASi3 FOO.ASM /W60

4Command Line Option

 34

5.1Composition of a program

35

5 Language specification

In this chapter, the specification of the source file of RASi3 assembler is explained.

5.1 Composition of a program

Here, the component of a program is explained.

5.1.1 A program and a sentence
A program is the aggregate of one or more sentences. A sentence is a set of the

character finished as a line feed code (0AH), and EOT (1AH) or EOF (end of a physical
file). A return code (0DH) is skipped.

The number of the sentences of one program is restricted to a maximum of 9,999,999
lines per 1 assembling. Moreover, although the length of a sentence does not have
restriction, the character outputted to an assembling list is from the head of a sentence
to 256 characters.

5.1.2 Component
The sentence in a program consists of elements shown below.

Separator, Special sign, Operator sign, Constant, Symbol, Comment, Block comment

Explanation of each element is shown below.

・ Separator

Separators are one or more blanks (20H) or TAB (09H) for dividing the element

which adjoins in a sentence.

・ Special sign

A special sign is the character which gives a special meaning to the element of order

by the existence. The special sign which RASi3 prepares for below is shown. Each

part explains the meaning of each sign.

 : ; , . [] ? :: // /* */ ++

・ Operator sign

A operator sign is a sign of one character or two characters used as a operator. The

5Language specification

 36

operator sign which RASi3 prepares for below is shown.

+ - * / % && || ! & | ^ ~

<< >> > >= < <= == != ()

・ Constant

A constant is description which gives a certain fixed value. A constant is classified

into the number of settings, a character constant, and a character string constant.

・ Symbol

A symbol is the character string of one or more characters which consists of an

alphabetic character, a number, an _(underscore), ?, and $. However, a number

cannot be used for the 1st character for the purpose of distinction with the number of

settings. A symbol is classified into a reserved word and a user symbol. A reserved

word is a symbol which RASi3 prepares beforehand, and a user symbol is a symbol

which a programmer defines in a program.

・ Comment

A comment is description from “//” or “::” which appeared first in the sentence, to the

end (LF). However, “//” and “::” in a character constant and a character-string

constant do not have the effect as a comment start. In a comment, it is possible to

describe a 2-byte character. A comment does not have influence of what on an

assemble result, either.

Even if “/*” is in a comment, there is no effect of a start of a block comment. The

comment described by “::” behind instruction statement in the macro body is deleted

at the time of macro expansion.

・ Block comment

A block comment is description which starts in '/*' and finishes with '*/'. The kind of

character contained in a block comment does not have restriction. Even if LF is

contained in the block comment, RASi3 does not interpret it as the end of a sentence.

Moreover, '/*' in a character string constant and '*/' are not judged to be the start of a

block comment, and an end. Nesting is possible for a block comment and a nesting

level does not have restriction.

5.1.3 The kind of sentence
The kind of sentence has the following three.

Basic instruction statement, Pseudo-instruction statement, Meaningless writing

Below, each statement is explained.

Words/phrases: LABEL= label, MNEM= mnemonic, OPR= operand, CMNT=

comment

5.1Composition of a program

37

■ Basic instruction statement

Basic instruction statement expresses the machine instruction of CPU
symbolically. The sentence showing a basic instruction is called basic instruction
statement. There is the following in the description method of basic instruction
statement. RASi3 judges a semicolon(;) to be the termination of basic instruction
statement.

[LABEL:] MNEM [OPR...] ;
[LABEL:] MNEM [OPR...] MNEM [OPR...] ;

In RASi3, two instructions are described to one line as mentioned above, and
there is the description method which generates one code. Moreover, such
description can be divided into two sentences as follows, and can also be described.
[LABEL:] MNEM [OPR...]
MNEM [OPR...] ;

Label A label is an address symbol with the address and the

segment attribute of the segment which instruction
statement sets.
A label must be described to a beginning of a sentence, and
must describe a colon (:) following a label symbol.

Mnemonic A mnemonic is a reserved word showing the kind of basic
instruction.

Operand An operand is the addressing notation which a mnemonic
requires. The number and kind of operand were decided
according to each basic instruction, and may be
unnecessary.

■ Pseudo-instruction statement

RASi3 prepares a pseudo-instruction uniquely. The description method of a
pseudo-instruction statement changes with each pseudo-instructions.

■ Meaningless writing
Meaningless writing is a sentence which does not include an instruction. The
form of meaningless writing is shown below.

[LABEL:] [CMNT]

5.1.4 The end of a program
RASi3 considers that the following sentence is the end of a program. RASi3 does not

5Language specification

 38

conduct analysis, even if there is character data after it.
- END pseudo- instruction statement
- The sentence which finishes it as EOT (1AH) or EOF (end of a physical file)

5.2 A classification and attribute of a value

Here, the treatment of the value of an expression, a constant, a symbol, and a
reserved word is explained.

5.2.1 An integer type, a decimal type and an address type
A value can be classified into a numerical value type and an address type. A

numerical value type has integer type and a decimal type.
An integer type and a decimal type express the mere constant which is not an

address. Each internal expression is expressed with 32bit without a sign, and 64bit
with a sign.

An address type expresses the address on a certain space. An address type internal
expression is expressed with 32bit with a sign.

5.2.2 Usage type
A usage type is an attribute expressing the use purpose of a value. The kind of usage

type and a meaning are shown below.

Usage type Meaning

CODE The address on a CODE address space
PRAM The address on a PRAM address space
XRAM The address on a XRAM address space
XROM The address on a XROM address space
YRAM The address on a YRAM address space
YROM The address on a YROM address space
NUMBER Integer
FLOAT Decimal fraction

5.3Constant

39

5.3 Constant

The constants which can be managed by RASi3 are an integer constant, a fraction
constant, a character constant, and a character-string constant. Furthermore, there are
a decimal number, a hexadecimal number, an octal number, and a binary number in an
integer constant.

Constant Integer constant

Fraction constant

Character constant

Character string constant

Binary

Octal

Decimal

Hexadecimal

5.3.1 Integer constant
An integer constant is expression showing the value of integer type. The character of

the beginning of an integer constant is a number. This is for clarifying distinction with
a symbol.

There are four kinds of integer constants, a binary number, an octal number, a
decimal number, and a hexadecimal. The last character (radix specifier) determines the
kind of integer constant. Moreover, when a radix specifier is omitted, it is regarded as a
decimal number. The value of an integer constant is a maximum of 0 FFFF_FFFFH
(4,294,967,295). The integer constant expressing the value exceeding this value is an
error, and a value is unfixed.

The following table show the kind of an integer constant, the character set which can
be described, and radix specifier.

Kind of an integer
constant

The character set which can be
described

Radix specifier

Hexadecimal number 0 1 2 3 4 5 6 7 8 9 A B C D E F a b c
d e f _

H h

Decimal number 0 1 2 3 4 5 6 7 8 9 _ D d
Octal number 0 1 2 3 4 5 6 7 _ O o Q q
Binary number 0 1 _ B b

An underscore (_) may appear in the arbitrary parts after the 2nd character, and does
not affect the value of an integer constant.

The usage type of an integer constant is NUMBER.

5Language specification

 40

5.3.2 Fraction constant
A fraction constant is expression showing a decimal fraction type value. The

character of the decimal fraction type beginning is a number or decimal point (.). In the
case of decimal point, a number must be in the following character.

The range of the value of a fraction constant is 1.7E-308 to 1.7E+308.
The example of format of a fraction constant which can be described is shown below.

12.34 , 12. , .34 , 1.2e23 , 1.2e+23 , 1.2e-23

The usage type of a fraction constant is FLOAT.

5.3.3 Character constant
A character constant is the character of one or more characters enclosed by the single

quotation mark ('). An escape sequence can be used for a character constant. RASi3
interprets a character constant as the numerical value of 1 byte. 2 bytes or more of
character and the value beyond 100H are errors, and a value is unfixed.

The usage type of a character constant is NUMBER.

5.3.4 Character string constant
A character string constant is zero or more character the character string of less than

255 characters enclosed by double quotes ("). An escape sequence can be used for a
character-string constant. RASi3 interprets a character string constant as the
numerical value with which the single byte code was located in a line.

5.4Escape sequence

41

5.4 Escape sequence

An escape sequence is description which starts ¥ (5CH). This is a character constant
and a character string constant, and is the feature prepared in order to express the
character which cannot be displayed. The following tables are the lists of the escape
sequences which can be used by RASi3.

Notation Value

¥ooo ooo is an octal number to three characters. A value must be
0 or less FFH.

¥xhh hh is a hexadecimal number to two characters.
¥Xhh hh is a hexadecimal number to two characters.
¥a 07H
¥b 08H
¥f 0CH
¥n 0AH
¥r 0DH
¥t 09H
¥v 0BH
¥¥ 5CH
¥' 27H
¥" 22H
¥char “char” indicates ASCII characters other than a, b, f, n, r, t,

and v, and is changed into the ASCII code corresponding to
a character.

¥j "j" is a multi-byte character (2-byte code), and although
this escape sequence can be used for a character string
constant, it cannot use it for a character constant.

5Language specification

 42

5.5 Multi-byte character

In RASi3, use of a Multi-byte character is possible within a comment, a block
comment, and a character string constant.

The multi-byte character consists of 2 bytes of codes. The kind of multi-byte character
code which can recognize RASi3 is a Shift JIS code.

The code of the multi-byte character which RASi3 recognizes is shown below.

 Shift JIS code

The 1st byte of
multi-byte

81H-9FH
0E0H-0FCH

The 2nd byte of
multi-byte

40H-7EH
80H-0FCH

5.6 Symbol

A symbol is the character string of one or more characters which consists of an
alphabetic character, a number, _ (underscore), ?, and $. However, the 1st character
must not be a number. This is for performing distinction on analysis with an integer
constant, and a fraction constant. Although the number of characters of a symbol does
not have restriction, it ignores after it, without recognizing the number of characters
which RASi3 recognizes only to the 32nd character.

Symbols include a reserved word and a user symbol.

5.6.1 Distinction of an alphabetic character
RASi3 does not distinguish the capital letter and small letter of an alphabetic

character of a reserved word.
Although RASi3 distinguishes the capital letter and small letter of a user symbol by a

default, it does not distinguish when a /NC option is specified.

5.6.2 Reserved word
Since the usage of reserved word was decided beforehand, it cannot be redefined as a

user symbol. Moreover, one symbol have two or more kinds of features. The feature is
explained according to the kind of reserved word below.
■ Basic instruction symbol

It is a symbol showing the instruction of a target device.
■ Pseudo-instruction symbol

It is a symbol showing the kind of pseudo-instruction.

5.6Symbol

43

■ Operator symbol
It is a symbol with the feature of a operator.

LONG SHORT INT SIN COS TAN EXP LOG LOG10 SQRT ABS POW BITREV
Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15

■ Register symbol

It is a symbol showing a register or a flag and has a meaning especially by
addressing description of a basic instruction.

P X Y YA A0 A1 A0L A1L RA0 RA1 RB0 RB1 GP0 GP1
IA0 IA1 IB0 IB1 CR MR SR ISR GR0 GR1 A0S A1S MD0 MD1
PC PPC PH LC LE PL SCR PCSTK LESTK LCSTK PPCSTK
DR0 DR1 DR2 DR3 DR4 DR5 DR6 DR7
DR0G DR1G DR2G DR3G DR4G DR5G DR6G DR7G
DR0H DR1H DR2H DR3H DR4H DR5H DR6H DR7H
DR0L DR1L DR2L DR3L DR4L DR5L DR6L DR7L

■ Instruction auxiliary symbol

It is a symbol showing the flag state in a basic instruction etc.

LS LC EQ NE CS CC MI PL LE GT LT GE VS VC

■ Pseudo-instruction auxiliary symbol

It is the symbol described as an operand of a specific pseudo-instruction.
■ Current location sign

It is a sign showing the present address of a current segment. It depends for an
attribute on the described segment. In this manual, although described as the
location symbol, the location counter symbol, etc., it is altogether the same.

 $

5.6.3 User symbol
A user symbol is a symbol which a programmer newly defines in a program. A user

symbol describes a label or is defined by a /DEF option or the following
pseudo-instruction.

SEGMENT, EQU, =, MACRO, SCOPE, DEFINE, COMM, EXTRN

5Language specification

 44

A reserved word cannot be defined as a user symbol.

5.6.3.1 The kind of user symbol
A user symbol is classified into four kinds. The module under following explanation

means one file in the program which consisted of two or more source files.

Kind of symbol Contents

Local symbol It is the symbol defined by a label or EQU, and =
pseudo-instruction.
This is a symbol showing the address or a numerical value, is
available only within the defined module and cannot be referred
to from other modules.

Segment symbol It is the symbol defined by the SEGMENT pseudo-instruction.
A relocatable segment is indicated.

Communal symbol It is the symbol defined by the COMM pseudo-instruction.
A share area with other modules is indicated.

External symbol It is the symbol defined by the EXTRN pseudo-instruction.
This means referring to the symbol declared by the PUBLIC
pseudo-instruction, or a communal symbol.

A special user symbol It is the symbol and temporary symbol which were defined by
MACRO, SCOPE, and DEFINE pseudo-instruction.

5.6Symbol

45

5.6.3.2 A special user symbol
In a user symbol, the symbol defined by the MACRO pseudo-instruction is called a

macro symbol, the symbol defined within SCOPE is called a scope symbol, and the
symbol defined by the DEFINE pseudo-instruction is called a DEFINE symbol.
Moreover, the symbol % was described to be at the head of the symbol is called a
temporary symbol, and has a special feature.

■ Macro symbol

The symbol defined by the MACRO pseudo-instruction is called a macro symbol.
The definition method of a macro symbol is as follows.

 macro_sym MACRO [opr1 [, opr2]]
 :
 body
 :
 ENDM

In a macro pseudo-instruction, the end of macro definition is expressed with an

ENDM pseudo-instruction, and the instruction statement described between the
MACRO pseudo-instruction and the ENDM pseudo-instruction is called the macro
body.

In the macro body, it is possible to use a symbol or to call oneself and other macroes.
The newest definition becomes available when the same macro symbol is redefined.

■ Scope symbol

The symbol defined within the scope of a SCOPE pseudo-instruction is called a
scope symbol. The definition method of a scope symbol is as follows.

 scope_tag SCOPE [global_sym1 [global_sym2]]
 :
 scope_sym (symbol definition sentence)
 :
 ENDC

The SCOPE pseudo-instruction and the ENDC pseudo-instruction indicate beginning

and the end of a scope, respectively. scope_tag indicates a scope name and scope_sym
indicates a scope symbol name. global_sym 1 and 2 indicate the global symbol used
within a scope.

When a SCOPE pseudo-instruction with the same scope_tag already exists, they are
managed as the same scope. The scope symbol name defined within the scope becomes
available only within the same scope.

5Language specification

 46

The method of describing in the case of referring to a scope symbol and a global
symbol inside a scope and outside a scope is shown below.

Symbol type Inside of a scope Outside of a scope

The symbol defined within the scope
(scope_tag1)

scope_sym scope_tag1.scope_sym

The symbol defined within the
different scope (scope_tag2)

scope_tag2.scope_sym scope_tag2.scope_sym

Global symbol .global_sym global_sym or
.global_sym

The global symbol enumerated by
the SCOPE pseudo-instruction

global_sym global_sym or
.global_sym

・Example
global_sym EQU 10h

scope_tag1 SCOPE global_sym
scope_sym EQU 30h

DW global_sym => 10h (value of the operand of DW)
DW scope_sym => 30h
ENDC

scope_tag2 SCOPE
scope_sym EQU 40h

DW .global_sym => 10h
DW scope_tag1.scope_sym => 30h
ENDC

DW global_sym => 10h
DW scope_tag1.scope_sym => 30h
DW scope_tag2.scope_sym => 40h

■ DEFINE symbol
The symbol defined by the DEFINE pseudo-instruction is called a DEFINE
symbol. The character string (DEFINE substance) of a maximum of 255
characters is assigned to the DEFINE symbol. When a DEFINE symbol is
described in a statement, RASi3 analyzes by displacing a DEFINE symbol to
DEFINE substance.
A DEFINE symbol can be referred to only after a definition. Moreover, a DEFINE
symbol may be contained in DEFINE substance. In RASi3, in order to prevent the
hang-up by refer to the self, nesting of DEFINE is restricted to 8 level.

5.6Symbol

47

■ Temporary symbol
% is attached to the temporary symbol at the head of a symbol name.
A temporary symbol can be used only within a code segment. Moreover, a
temporary symbol is defined as a label and referred to as an operand of branch
instruction. If '<' or '>' is added when referring to a temporary symbol, referring
to the back or forward addressing can be chosen, and it is possible to register two
or more same symbol names. It means that '<' refers to the temporary symbol of
the nearest back, and means that '>' refers to the temporary symbol of the nearest
front.

・Example
%tmp_sym: ---------(1)
%tmp_sym: ---------(2)

JMP >%tmp_sym ---------(3) is referred to.
JMP <%tmp_sym ---------(2) is referred to.

 %tmp_sym: ---------(3)
 %tmp_sym: ---------(4)

5.6.3.3 The attribute and usage type of a symbol
■ Public attribute

Although a local symbol cannot be referred to from an external module, it can
usually be referred to from an external module by making a public declaration. A
PUBLIC pseudo-instruction is used for this declaration.
The attribute which can be referred to from an external module is called a public
attribute, and a public symbol is called for a symbol with a public attribute.

■ The usage type of a symbol
A usage type is given to a symbol at the time of a definition. The next table shows
the usage type of a symbol according to the definition method.

The definition method Usage type

Label The usage type of the segment which belongs
EQU, = pseudo-instruction The usage type of an operand
SEGMENT
pseudo-instruction

Segment type specification of an operand

COMM pseudo-instruction Segment type specification of an operand
EXTRN pseudo-instruction Usage type specification of an operand
MACRO, SCOPE
pseudo-instruction

NUMBER

* Note: The symbol defined by MACRO and SCOPE pseudo-instruction cannot
actually be used as an expression, although NUMBER is expressed as the usage
type of a symbol list.

5Language specification

 48

5.6.3.4 An absolute symbol and a relocatable symbol

In a user symbol, the symbol which a value fixes during an assemble is called an
absolute symbol, and a relocatable symbol is called for the symbol which a value fixes
during a link.

An absolute symbol is defined as follows.
・Constant expression is specified and defined as the operand of EQU and =

pseudo-instruction.
・A definition is given as a label which belongs to an absolute segment (segment

defined by CODESEG, PRAMSEG, XROMSEG, XRAMSEG, YROMSEG, and
YRAMSEG pseudo-instruction).

A relocatable symbol is defined as follows.
・It defines by SEGMENT pseudo-instruction. (Segment symbol)
・It defines by COMM pseudo-instruction. (Communal symbol)
・It defines by EXTRN pseudo-instruction. (External symbol)
・A definition is given as a label which belongs to a relocatable segment (segment

defined by the RELSEG pseudo-instruction). (Simple relocatable symbol)
・The expression which uses simple relocatable one is specified and defined as the

operand of EQU and = pseudo-instruction.

5.7Expression

49

5.7 Expression

Here, each feature of the constituent factor of an expression and a operator and an
operation rule are explained.

5.7.1 The definition of an expression
An expression consists of an operation clause and a operator. The operation clause

itself has the character of an expression. An operation clause is a basic clause showing
a value, and can specify the following element.

Integer constant Fraction constant Character constant User symbol
Location counter sign

An expression can be classified into a numerical type and an address type.

・Numerical type
It is an expression expressing a numerical type value. A usage type is surely set to
NUMBER or FLOAT.
・Address type

It is an expression expressing an address type value. A usage type is surely except
NUMBER and FLOAT.

The usage type of an expression is determined by the kind of the operation clause

included in an expression, and performed operation.

5.7.2 The feature of a operator
The feature of all the operators currently prepared for RASi3 is explained.
The following term is used in explanation.
Left term It is the expression located in the left of a operator.
Right term It is the expression located in the right of a operator.
True It means that the value (it is an offset value in the case of an address

type) of an expression is except zero.
False It means that the value (it is an offset value in the case of an address

type) of an expression is 0.
TRUE Numerical value type 1 is meant.
FALSE Numerical value type 0 is meant.

5Language specification

 50

5.7.2.1 Arithmetic operator

Operator Form Feature

+ Right term Positive (unary operator) +
Left term + Right term Addition
- Right term Negative (unary operator) -
Left term – Right term Subtraction

* Left term * Right term Multiplication
/ Left term / Right term Division
% Left term % Right term Modulo caluculation

5.7.2.2 Logical operator

Operator Form Feature

&& Left term && Right term TRUE if both expressions are ture;
FALSE otherwise.

|| Left term || Right term TRUE if either expression is true;
FALSE otherwise.

! ! Right term TRUE if the expression is true;
FALSE if false.

5.7.2.3 Bit logical operator

Operator Form Feature

& Left term & Right term Logical AND
| Left term | Right term Logical OR
^ Left term ^ Right term Exclusive OR
~ ~ Left term Bit inversion
>> Left term >> Right term Shifts left term to the right by the

number of bits given by right term.
Zeros are shifted in from the most
significant bit.

<< Left term << Right term Shifts left term to the left by the
number of bits given by right term.
Zeros are shifted in from the least
significant bit.

5.7.2.4 Relational operator

A relational operation performs numerical size comparison and equivalent
comparison. The operation of numerical value types or the address type comrade with

5.7Expression

51

the same usage type is allowed.
Operator Form Feature

> Left term > Right term Returns TRUE if left term is grater than
right term; otherwise returns FALSE.

>= Left term > = Right term Returns TRUE if left term is grater than
or equal to right term; otherwise returns
FALSE.

< Left term < Right term Returns TRUE if left term is less than
right term; otherwise returns FALSE.

<= Left term <= Right term Returns TRUE if left term is less than
or equal to right term; otherwise returns
FALSE.

== Left term == Right term Returns TRUE if left term is equal to
right term; otherwise returns FALSE.

!= Left term != Right term Returns TRUE if left term is not equal
to right term; otherwise returns FALSE.

5.7.2.5 Special operator

A special operator is a special operator which can be used by RASi3.
Operator Form Feature

LONG LONG Right term Addressing of a basic instruction is
managed as long. *

SHORT SHORT Right term Addressing of a basic instruction is

managed as short. *

SIN SIN (Right term) A numerical value type SIN operation
result is got.

COS COS (Right term) A numerical value type COS
operation result is got.

TAN TAN (Right term) A numerical value type TAN
operation result is got.

EXP EXP (Right term) A numerical value type exponential
function is got.

LOG LOG (Right term) A numerical value type natural
logarithm is got.

LOG10 LOG10 (Right term) Numerical value type common
logarithm is got.

SQRT SQRT (Right term) A numerical value type square root is
got.

5Language specification

 52

ABS ABS (Right term) A numerical value type absolute value
is got.

INT INT (Right term) A numerical value type decimal
fraction is got.

POW POW (Right term1, Right
term2)

The number of Right term2 power of
Right term1.

BITREV BITREV (Right term1,
Right term2)

The bit of right term1 corresponding
to right term2 is reversed.

Qn
(n = 0-15)

Qn (Right term) The number of bits of fraction part is
set to n, and the decimal fraction of a
decimal number is changed into a
hexadecimal.
Warning is outputted when the
changed value is larger than 65535.

※ Only when it describes as an expression to the operand of the basic instruction
from which the size of the machine code generated according to the size of
addressing changes, a LONG operator and a SHORT operator have a meaning.
It is ignored when described by the other part. When a LONG operator is
described in the expression of an operand, the instruction is changed into the
machine code of 2-word size, and it is changed into the machine code of 1-word
size when a SHORT operator is described.
An example is shown below.

 Example
 RELSEG segsym

 // Pseudo-instruction which specifies the start of a relocatable segment
 rel_sym:

 MOV RA0, LONG rel_sym ;

// It is changed into 2 word machine code.
 MOV RA0, SHORT rel_sym ;

// It is changed into 1 word machine code.

 JMP 100H+LONG rel_sym ;

// It is changed into 2 word machine code.
 JMP 100H+SHORT rel_sym ;

// It is changed into 1 word machine code.

 MOVX X, [LONG rel_sym] ;

// It is changed into 2 word machine code.

5.7Expression

53

 MOVX X, [SHORT rel_sym] ;
// It is changed into 1 word machine code.

It becomes warning when a SHORT operator is described to the constant value of
long size.
 Example
 MOV RA0, SHORT 0FF00H ;

5.7.3 A relocatable expression and integer constant expression
A relocatable expression is an expression containing a relocatable symbol, or an

expression containing $ in a relocatable segment (current location symbol), and is an
expression which a value does not fix during an assemble. On the other hand, constant
expression is an expression which a value fixes during an assemble.

The instruction which can use a relocatable expression for an operand is as follows.
- Basic instruction
- DW pseudo-instruction (The right term when a DUP expression is used)

When a relocatable expression is used for addressing of a basic instruction, an

assembler cannot generate the fixed machine code. In this case, the information for
computing a fixed value to an object file is generated, and a linker is solved.

Depending on a operator, a relocatable expression can be specified as an operand. In
this case, unsolved operation information is generated by the object file.

The syntax of a relocatable expression is shown below.

 RELOP expression Relocatable type with unsolved operation
 REL expression Relocatable type without unsolved operation

RELOP expression : : = (RELOP expression)

| +RELOP type

REL expression ::= REL expression + Constant expression
 | Constant expression + REL expression

 | REL expression - Constant expression
 | (REL expression)
 | +REL expression
 | REL term

5Language specification

 54

REL term : : = Simple relocatable symbol
 | Segment symbol

 | External symbol
 | Communal symbol
 | $

Constant expression :: = Unary operator Constant expression

 | Constant expression binary operator Constant expression
 | (constant expression)
 | Absolute term

*1 | REL expression - REL expression

*1 The type of an expression needs to be the same by the left expression and a right

expression. The type of an expression means the kind of symbol (simple relocatable
type, segment type, communal type and external type) contained in an expression.

Unary operator ::= +

 | -
| ~

 | !
 | LONG
 | SHORT

Binary operator : : = +
 | -

 | *
 | /
 | %
 | &

 | ^
 | |
 | <<
 | >>
 | <
 | <=
 | >
 | >=
 | ==
 | !=
 | &&
 | ||

5.7Expression

55

Absolute term :: = Integer constant
 | Character constant
 | Absolute symbol
 | Address symbol
 | $
[Note]
$ in a REL term means what was described within the relocatable segment.
$ in a Absolute term means what was described within the absolute segment.

5.7.4 Simple relocatable type
A simple relocatable expression is a relocatable expression whose REL term is a

simple relocatable symbol.
A simple relocatable expression can be described to the operand of the following

instructions.

- The instruction which can use a relocatable expression for an operand
- A part of pseudo-instructions

EQU
=
CODESEG
PRAMSEG
XRAMSEG
XROMSEG
YRAMSEG
YROMSEG

5Language specification

 56

5.7.5 Operation rule
Here, the priority of a operator and the result of an expression are explained.

5.7.5.1 The priority of a operator
Each operator has a priority. RASi3 evaluates an expression previously from the

higher one of a priority. When a priority is the same, it evaluates according to unity.
The conversion table of a operator, its priority, and unity is shown below. A priority

turns into a high rank in this table like what has a small number.

Priority Operator Unity

1 () From the left to the
right

2 SIN, COS, TAN, EXP, LOG, LOG10, SQRT,
ABS, INT, POW, BITREV, LONG,
SHORT, ! ~ and + (unary) - (unary) Qn

From the right to
the left

3 * , / , % From the left to the
right

4 + (Binary operator) - (Binary operator) From the left to the
right

5 >> , << From the left to the
right

6 < , <= , > , >= From the left to the
right

7 == , != From the left to the
right

8 & From the left to the
right

9 ^ From the left to the
right

10 | From the left to the
right

11 && From the left to the
right

12 || From the left to the
right

5.7Expression

57

5.7.5.2 Evaluation of an expression
Here, the evaluation rule of the expression of RASi3 is explained according to a

operator. Description restrictions of an expression and succession of each attribute are
also covered by the rule defined here.

■ The sign to be used

Absnum A usage type NUMBER, absolute numerical type is meant.

Absaddr An absolute address type is meant.

Relnum A relocatable usage type NUMBER numerical type is meant.

Reladdr A relocatable address type is meant.

Float A usage type FLOAT numerical type is meant.

Wn The kind of warning is indicated.

 It indicates becoming an error. An operation result is unfixed.

 It indicates becoming warning. Operation is performed.

 It indicates that evaluation changes with usage types of an expression.

(Notes) explain the evaluation rule in this case outside the limit.

■ Succession of an attribute

When the evaluation result of an expression is an address type, the attribute which

the original address type has is inherited.

■ The range check of a value

Though the value of an address type is over the range specified in a corresponding

address space, in expression analysis processing, it is not managed as an error. The

range check of a value is performed into the analysis of addressing.

■ The kind of warning

There are the following kinds of warning to the form of an expression. The warning

number used here is for explanation, and differs from a formal error code.

5Language specification

 58

Warning number The contents of the error

W1 It is the operation which has a meaning only to

NUMBER.

W2 It is the operation which has a meaning only to

FLOAT.

W3 It is the operation which has a meaning only to a

numerical expression.

W4 The right expression is not a numerical expression.

W5 The right expression is not a NUMBER.

W6 Neither the right expression nor left expression is

NUMBER.

W7 Operation different usage type.

(1) Arithmetic operator

Expression type

Right expression

+ (Unary) - (Unary)

Absnum Absnum Absnum

Relnum Relnum

Absaddr Absaddr Absaddr

Reladdr Reladdr

float float float

5.7Expression

59

Expression type

Left

expressio

n

Right

expressio

n

+ - * / %

Absnum Absnum Absnum Absnum Absnum Absnum

Relnum Relnum

Absaddr Absaddr Absaddr Absnum Absanum Absnum

Reladdr Reladdr

Absnum

float float float float float

Absnum Relnum Relnum

Relnum * Notes 2

Absaddr Reladdr Reladdr

Reladdr

Relnum

float

Absnum Absaddr Absaddr Absnum Absnum Absnum

Relnum Reladdr

Absaddr Absnum

W6

* Notes 1 Absnum

W6

Absnum

W6

Absnum

W6

Reladdr Relnum

W6

Absaddr

float

Absnum Reladdr Reladdr

Relnum

Absaddr Relnum

W6

* Notes 3

Reladdr * Notes 4

Reladdr

float

Absnum float float float flaot

Relnum

Absaddr

Reladdr

float

float float float float float

5Language specification

 60

Notes 1: If it becomes when a usage type is the same, it is set to Absnum, and it will
be set to Absnum W7 when different.

Notes 2: When right and left have the same ID, it is set to Absnum, and in the case of

others, becomes an error.

Notes 3: If it becomes when a usage type is the same, it is set to Relnum, and it will

be set to Relnum W7 when different.

Notes 4: When right and left have the same SEG-ID, EXT-ID, and COM-ID, it is set

to Absnum, and in the case of others, it becomes an error.

After the operation of num and float changes num to float, it is calculated.

5.7Expression

61

(2) Logical operator

Expression type

Left

expressio

n

Right

expressi

on

&& ||

Absnum Absnum Absnum

Relnum

Absaddr Absnum Absnum

Rsladdr

Absnum

float Absnum Absnum

Absnum

Relnum

Absaddr

Rsladdr

Relnum

float

Absnum Absnum Absnum

Relnum

Absaddr Absnum Absnum

Rsladdr

Absaddr

float Absnum Absnum

Absnum

Relnum

Absaddr

Rsladdr

Reladdr

float

Absnum Absnum Absnum

Relnum

Absaddr Absnum Absnum

Rsladdr

float

float Absnum Absnum

5Language specification

 62

Expression

type

Right

expression

!

Absnum Absnum

Relnum

Absaddr Absnum

Reladdr

float Absnum

5.7Expression

63

(3) Bit logical operator

Expression type >>

Left

expressio

n

Right

expressio

n

& | ^ <<

Absnum Absnum Absnum Absnum Absnum Absnum

Relnum

Absaddr Absnum Absnum Absnum Absnum W5 Absnum W5

Reladdr

Absnum

float

Absnum

Relnum

Absaddr

Reladdr

Relnum

float

Absnum Absnum Absnum Absnum Absnum Absnum

Relnum

Absaddr Absnum Absnum Absnum Absnum W5 Absnum W5

Reladdr

Absaddr

float

Absnum

Relnum

Absaddr

Reladdr

Reladdr

float

Absnum

Relnum

Absaddr

Reladdr

float

float

5Language specification

 64

Expression

type

Right

expression

~

Absnum Absnum

Relnum

Absaddr Absnum

Reladdr

float

5.7Expression

65

(4) Relational operator

Expression type

Left

expressi

on

Right

expressi

on

> >= < <= == !=

Absnum Absnum

Relnum

Absaddr Absnum

Reladdr

Absnum

float Absnum

Absnum

Relnum

Absaddr

Reladdr

Relnum

float

Absnum Absnum

Relnum

Absaddr * Notes 2

Reladdr

Absaddr

float Absnum

Absnum

Relnum

Absaddr

Reladdr

Reladdr

float

Absnum Absnum

Relnum

Absaddr Absnum

Reladdr

float

float Absnum
* Notes 2:
If it becomes when a usage type is the same, it is set to Absnum, and it will be set to

Absnum W7 when different.

5Language specification

 66

(5) Special operator

Expressi

on type

Right

expressio

n

LONG SHORT SIN COS TAN EXP

Absnum Absnum Absnum float float float float

Relnum Relnum Relnum

Absaddr Absaddr Absaddr float W4 float W4 float W4 float W4

Reladdr Reladdr Reladdr

float float float float float

Expressio

n type

Righ

expressio

n

LOG LOG10 SQRT ABS INT Qn
(n = 0-15)

Absnum float float float float Absnum AbsnumW2

Relnum

Absaddr flaot W4 float W4 float W4 float W4 Absnum W4 Absnum W2

Reladdr

float float float float float Absnum Absnum

5.7Expression

67

Expression type

Right

expressio

n1

Right

expression

2

POW BITREV

Absnum float Absnum

Relnum

Absaddr float W4 Absnum W5

Reladdr

Absnum

float float

Absnum

Relnum

Absaddr

Reladdr

Relnum

float

Absnum float W3 Absnum W1

Relnum

Absaddr float W3 Absnum W5

Reladdr

Absaddr

float float W3

Absnum

Relnum

Absaddr

Reladdr

Reladdr

float

Absnum float Absnum W1

Relnum

Absaddr float W4 Absnum W5

Reladdr

float.

float float

5Language specification

 68

5.8 Addressing

Here, the range of a value and an addressing check are explained.

5.8.1 The form of addressing
The table of addressing which can be described to the operand of a basic instruction is

shown.

Description Meaning

[xxx_10] Direct page addressing (10bit short)

[xxx_16] Direct page addressing (16bit long)

xxx_16 Absolute addressing (16 bits)

xxx_18 Absolute addressing (18 bits)

[ar] Address register indirectnessing

[ar] ++ Post increment

[ar] -- Post decrement

[ar] + ix Renewal of an index

[ar] + disp Renewal of the De Dis placement with a mark

disp : 8 bits

imm_2 Immediate (2 bits)

imm_4 Immediate (4 bits)

imm_5 Immediate (5 bits)

imm_6 Immediate (6 bits)

imm_8 Immediate (8 bits)

imm_16 Immediate (16 bits)

[disp_9] 9-bit Displacement

[disp_13] 13-bit Displacement

.cc Conditional execution

r Register

5.8Addressing

69

The register which can be specified as an operand
RA0,RA1,RB0,RB1,IA0,IA1,IB0,IB1,LC,LE,MR,MD0,GP0,GP1,GP2,G
P3,PC,PPC,PCSTK,PPCSTK,LCSTK,LESTK,
DR0,DR1,DR2,DR3,DR4,DR5,DR6,DR7,
DR0H,DR1H,DR2H,DR3H,DR4H,DR5H,DR6H,DR7H,
DR0L,DR1L,DR2L,DR3L,DR4L,DR5L,DR6L,DR7L,
DR0G,DR1G,DR2G,DR3G,DR4G,DR5G,DR6G,DR7G

The condition identifier which can be specified as an operand

Condition
identifier

The state of a flag

LS L=1
LC L=0
EQ Z=1
NE Z=0
CS C=1
CC C=0
MI N=1
PL N=0
GE (N^V)=0
LE ((N^V)|Z)=1
GT ((N^V)|Z)=0
LT (N^V)=1
VS V=1
VC V=0

C:Carry Flag N:Negative Flag V:Overflow Flag
L:Latched Overflow Flag Z:Zero Flag

5Language specification

 70

5.8.2 The range of value and addressing check
RASi3 performs the following checks to the operand described by the basic

instruction.
- The range check of a value

The value of the expression described by the operand confirms whether be within the
limits of the value of each addressing. An error is outputted when a value is exceeds
the range.

- Usage type check
The usage type of operand confirms whether suit with the usage type which can be
described. Warning is outputted when it does not suit.

- Address check
The value of the expression described by the operand confirms whether be in the
memory area specified as the address space. An error is outputted when a value
exceeds the range.

Below, the usage type table in which the range of the value for every addressing, an

object instruction, and description are possible is shown. Each addressing is described
by the position of * in a table.

Moreover, please refer to the specification of I-Core3 about the operand which can be
described to r, r1, r2, .cc, A, Ad and ea.

■ xxx_16 , xxx_18

Addressing The range of a

value

Object instruction Usage type Address space

NUMBER JMP.cc *

JMPD.cc *

JSR.cc *

JSRD.cc *

CODE

CODE

NUMBER

xxx_16 0H - 0FFFFH

DO *

CODE

CODE

NUMBER xxx_18 0H-3FFFFH JMP.cc *

JMPD.cc *

JSR.cc *

JSRD.cc *

CODE

CODE

5.8Addressing

71

■ [xxx_16]

Addressing The range of a

value

Object instruction Usage type Address space

NUMBER XRAM/XROM

XRAM XRAM

MOVX r, *

SELX r, *

TSTX *, imm_4 XROM XROM

NUMBER MOVX *, r

SELX *, r

SETX *, imm_4

CLRX *, imm_4

XRAM

XRAM

NUMBER YRAM/YROM

YRAM YRAM

MOVY r, *

SELY r, *

TSTY *, imm_4 YROM YROM

NUMBER

[xxx_16] 0H - 0FFFFH

MOVY *, r

SELY *, r

SETY *, imm_4

CLRY *, imm_4

YRAM

YRAM

5Language specification

 72

■ [ar] + disp

Addressing The range of a

value

Object instruction Usage type Address space

MODFY.cc *

With no

specification

NUMBER

XRAM

MOVX r , *

SELX r, *

TSTX *, imm_4 XROM

NUMBER MOVX * , r

SELX * , r

SETX *, imm_4

CLRX *, imm_4

XRAM

NUMBER

YRAM

MOVY r , *

SELY r , *

TSTY *, imm_4 YROM

NUMBER

[ar] + disp -1000H –

0FFFH

MOVY * , r

SELY * , r

SETY *, imm_4

CLR”Y *, imm_4

YRAM

It does not

check.

5.8Addressing

73

■ imm_16

Addressing The range of a

value

Object instruction Usage type Address space

0H - 0FFFFH MOV r , *

AND A, r, *

ANDH A, r, *

OR A, r, *

ORH A, r, *

XOR A, r, *

XORH A, r, *

-8000H -

7FFFH

ADD A, r, *

ADDH A, *, im2

SUB A, r, *

SUBH A, *, im2

CMP A, *

CMPH A, *

THRU A, *

THRUH A, *

MAX A, r, *

MAXH A, r, *

MIN A, r, *

MINH A, r, *

None imm_16

0H - 0FFFFH SFUOP1 A,*,im2 NUMBER

It does not

check.

5Language specification

 74

■ imm_2, imm_4, imm_5, imm_6, imm_8

Addressing The range of a

value

Object instruction Usage type Address space

MVSFU A, sr, * NUMBER It does not

check.

imm_2 0H - 3H

SFUOP2 A,r,im16,* NUMBER It does not

check.

imm_4 0H - 0FH TSTX ea , *

TSTY ea , *

SETX ea , *

SETY ea , *

CLRX ea , *

CLRY ea , *

NUMBER It does not

check.

imm_5 0H - 1FH SALH.cc A , *

SARH.cc A , *

SHLH.cc A , *

SHRH.cc A , *

NUMBER It does not

check.

SAL A , *

SAR A , *

SHL A , *

SHR A , *

NUMBER It does not

check.

INS A,r1,r2,im6,*

INSU A, r, im6, *

INSS A, r, im6, *

EXTR A,r1,r2,im6,*

EXTRU A, r, im6, *

EXTRS A, r, im6, *

NUMBER It does not

check.

imm_6 0H - 3FH

INS A,r1,r2,*,im6

INSU A, r, *, im6

INSS A, r, *, im6

EXTR A,r1,r2,*,im6

EXTRU A, r, *, im6

EXTRS A, r, *, im6

NUMBER It does not

check.

imm_8 0H - 0FFH ANDH A, r, *

ORH A, r, *

XORH A, r, *

NONE It does not

check.

5.8Addressing

75

■ [disp_9] , [disp_13]

Addressing The range of a

value

Object instruction Usage type Address space

NUMBER [disp_9] -100H - 0FFH JMP *

JSR * CODE

CODE

NUMBER [disp_13] -1000H - 0FFFH JMP.cc *

JMPD.cc *

JSR.cc *

JSRD.cc *

CODE

CODE

5Language specification

 76

5.8.3 Conversion rule of the value when describing a fraction to an
immediate operand

Here, the conversion rule of the value when describing a fraction value is explained to
the operand of an immediate value.

! When a value is 1.0 or more

Overflow warning is outputted.

In the case of imm_12 and imm_16 7FFFh

imm_9 0FFh

imm_5 0Fh

imm_4 7h

DW pseudo-instruction 7FFFFFh

! When a value is less than -1.0
 Overflow warning is outputted.

In the case of imm_12 and imm_16 8000h

imm_9 100h

imm_5 10h

imm_4 8h

DW pseudo-instruction 800000h

! It is the case of -0.000061 or more smaller than 0
(When it is smaller than 0 and larger than -0.00000011921 in DW)
Overflow warning is outputted.

In the case of imm_12 and imm_16 8000h

imm_9 100h

imm_5 10h

imm_4 8h

DW pseudo-instruction 800000h

! Other case
The value which shifted the numerical value of the head following decimal point so

that it might come to the most significant bit of an operand when a fraction was
changed into a binary.

5.8Addressing

77

An example is shown below.

 Example MOV X, 0.2 ;
 ↓
 0.00011001100110011001100110011001..(B

 ↓
 1999h

Since this example is operand imm_12 and imm_16 of a MOV instruction, it is

changed into the value shifted so that below decimal point when changing 0.2 into a
binary number might become the 16-bit most significant from the 1st place. The
changed value is set to 1999h.

The shifted value is changed as follows.
In the case of imm_9, it becomes the 9-bit most significant.
In the case of imm_5, it becomes the 5-bit most significant.
In the case of imm_4, it becomes the 4-bit most significant.
In the case of the operand of DW, it becomes the 24-bit most significant.

5Language specification

 78

5.9 Restriction of a basic instruction

Here, description restrictions when describing a basic instruction are explained.
In the following explanation, the case which (G) and (D) abbreviate to the case which

describes the character in a parenthesis, respectively exists.
(.cc) has the case which is not described to be the case which describes a condition

identifier.
In addition, when there is no description especially, RASi3 outputs an error to these

restrictions.

5.9.1 MOVXY instruction use restriction
In the case of addressing from which addressing of a MOVXY instruction is except

address register indirect, and both the X side Y sides differ mutually, it forbids
specifying the same base register.

Moreover, in the case of memory read both the X and Y sides forbid specifying the
same destination register.

5.9.2 Parallel instruction use restrictions
In a parallel instruction, it forbids specifying the same destination register by a

transfer instruction and operation instruction.

5.9.3 Repeat instruction use restrictions
The following instructions cannot be described in the next instruction (instruction for

a repeat) of a REP instruction.

! The instruction which changes the value of LC
MOVXY
MOVX MOVY
MOV

! Programmed control instruction
(G)JMP(D)(.cc) (G)JSR(D)(.cc)
RET(I)(D)(.cc) RETICE(.cc)
REP TRAP
DO EXIT(.cc)

5.9Restriction of a basic instruction

79

5.9.4Use restrictions of a loop instruction
The following contents cannot be described to the end address of DO instruction.
● Specification of the expression containing a usage type of CODE label, or the

expression containing a front reference symbol
● Specification of the next address
● Specification of the address same when performing a multiplex loop
● And use of an instruction of the following in an address or the address in front of

two of them
(G)JMP(D)(.cc) (G)JSR(D)(.cc)
RET(I)(D)(.cc) RETICE(.cc)
REP TRAP
DO EXIT(.cc)

● The following instructions are used in front of the four address of the end
address.
・The instruction which changes the value of LC

MOVXY
MOVX MOVY
MOV
・The instruction which changes the value of LE

MOV

● Use of DO instruction over program space.
・Prohibition of arrangement of the end address to a different relocatable segment
・Use of the instruction which changes a PPC register within the DO loop

When the following instructions which may change a PPC register are used
within the DO loop, RASi3 outputs warning.
(G)JMP(D)(.cc) (G)JSR(D)(.cc)
RET(I)(D)(.cc) RETICE(.cc)

5.9.5 Use restrictions of program control instruction
Let the following instructions be disables within 2 instructions from immediately

after (G)JMP(D), (G)JSR(D), RET(I)(D), RETICE, EXIT instruction.

 (G)JMP(D)(.cc) (G)JSR(D)(.cc)
 RET(I)(D)(.cc) RETICE(.cc)
 DO EXIT
 REP TRAP

6Pseudo-instruction

 80

6 Pseudo-instruction

In this section, the details of the pseudo-instruction which can be specified by RASi3
are explained.

A pseudo-instruction is an instruction which RASi3 prepares uniquely, and aims at
performing control of management of a program, or assembling processing.

The list of the pseudo-instructions which can be used by RASi3 is shown in the
following table.

Classification Instruction Feature Description
restrictions

A
correspondin

g option

Assembler initial
setting

TYPE A target device is specified. The head of a
program

/T

SEGMENT A relocatable segment is
defined.

 Segment definition

STACKSEG A stack segment is defined.

CODESEG It changes to an absolute
CODE segment.

PRAMSEG It changes to an absolute
PRAM segment.

XRAMSEG It changes to an absolute
XRAM segment.

XROMSEG It changes to an absolute
XROM segment.

YRAMSEG It changes to an absolute
YRAM segment.

YROMSEG It changes to an absolute
YROM segment.

Segment control

RELSEG It changes to a relocatable
segment.

EXTRN An external reference
symbol is defined.

PUBLIC A public declaration of a
symbol is made.

Linkage control

COMM A communal symbol is
defined.

EQU, = A user symbol is defined. Symbol definition

DEFINE A user symbol is defined. /DEF

Address control ORG A start address is specified. Inside of a
segment

A memory is initialized. Only inside of
CODE, XROM,
and a YROM
segment

 Memory
initialization

DW

A memory area is secured. All segments

5.9Restriction of a basic instruction

81

INCLUDE A file is read. Assembling control

END The end of a program is
defined.

IF

IFE

IFDEF

IFNDEF

IFB

IFNB

ELSE

Condition
assembling

ENDIF

Condition assembling is
performed.

TITLE The title name of a list file is
specified.

PAGE Form feed specification and
the number of lines of a list
file, and the number of
characters of one line are
specified.

 /PL /PW

PRN A list file is outputted. /PR

NOPRN A list file is not outputted. /NPR

LIST An assembling list is
generated.

 /L

NOLIST An assembling list is not
generated.

 /NL

SYM A symbol list is generated. /S

NOSYM A symbol list is not
generated.

 /NS

REF A cross reference list is
generated.

 /R

NOREF A cross reference list is not
generated.

 /NR

ERR An error list file is
outputted.

 /E

NOERR An error list file is not
outputted.

 /NE

OBJ An object file is outputted. /O

Listing control

NOOBJ An object file is not
outputted.

 /NO

MACRO A macro symbol is defined.

LOCAL A local symbol is defined in
the macro body.

The head of a
macro body

Macro definition

REPT The imperative sentence
from REPT to ENDM is
repeated by the number of
times of specification.

6Pseudo-instruction

 82

IRP The imperative sentence
from IRP to ENDM is
repeated by the number of
times of specification. In this
time, a temporary parameter
is transposed to a real
parameter.

ENDM The end of macro body is
defined.

EXITM Terminate of macro. The inside of a
macro body.

Scope definition SCOPE A scope is defined.

GJMP[.cc] Inside of a CODE
segment

GJMPD[.cc]

It changes into the optimal
conditional branch.

GJSR[.cc] Inside of a CODE
segment

Optimization

GJSRD[.cc]

It changes into the optimal
subroutine call.

CFILE The file information on the C
language is given.

CFUNCTION The function starting
position of the C language is
shown.

After CFILE

CFUNCTIONEND The function end position of
the C language is shown.

After
CFUNCTION

CARGUMENT The function argument
definition information on the
C language is given.

After
CFUNCTION

CBLOCK The block starting position
of the C language is shown.

After
CFUNCTION

CBLOCKEND The block end position of the
C language is shown.

After
Corresponding
CBLOCK

CLABEL The label definition
information on the C
language is given.

After
CFUNCTION

CLINE The line number of the C
language is given.

After
CFUNCTION

CGLOBAL The global variable
definition information on the
C language is given.

CSGLOBAL The static global variable
definition information on the
C language is given.

Just before a
corresponding
area

CLOCAL The local variable definition
information on the C
language is given.

Between
CBLOCK and
CBLOCKEND

CSLOCAL The static local variable
information on the C
language is given.

Between
CBLOCK and
CBLOCKEND

C debugging
information

CSTRUCTTAG The structure tag definition
information on the C
language is given.

5.9Restriction of a basic instruction

83

CSTRUCTMEM The structure member
definition information on the
C language is given.

After
CSTRUCTTAG

CUNIONTAG The union tag definition
information on the C
language is given.

CUNIONMEM The union member
definition information on the
C language is given.

After
CUNIONTAG

CENUMTAG The tag definition
information on the
enumerated type variable of
the C language is given.

CENUMMEM The member definition
information on the
enumerated type variable of
the C language is given.

After
CENUMTAG

CTYPEDEF The definition information
on typedef of the C language
is given.

CENVINFO The information on compile
environment is given.

CMACINFO The macro information on
the C language is given.

6Pseudo-instruction

 84

6.1 Assembling initial-setting pseudo-instruction

An assembler initialization pseudo-instruction is for setting assembling conditions to
RASi3. Therefore, it is necessary to describe an assembler initial-setting
pseudo-instruction to the beginning of a program.

6.1.1 TYPE pseudo-instruction
- Syntax
 TYPE (device_name)
 device_name : Target device name
- Description
A TYPE pseudo-instruction is a pseudo-instruction for specifying the DCL file name

corresponding to the target target device. RASi3 reads the information on a DCL file
that device_name is used into a base name and it uses ".DCL" as an extension.

A DCL file is searched in the following order.
（１） Current directory
（２） The directory where started RASi3.EXE exists
（３） The directory specified as the environment variable DCLi3
RASi3 reads the contents of the DCL file before assembling processing. Even if an

error is in the contents of the DCL file, it reads to the end of a DCL file. RASi3 will be
ended if all DCL errors to occur are displayed. If reading of a DCL file is normal,
assembling of a source file will be started continuously.
・Supplement

You have to specify a TYPE pseudo-instruction or a /T option. Moreover, you have to
specify a TYPE pseudo-instruction at the head of a program.

If a TYPE pseudo-instruction is specified twice or more, RASi3 will output a fatal
error.

6.2Segment definition pseudo-instruction

85

6.2 Segment definition pseudo-instruction

Segment definition pseudo-instructions include the STACKSEG pseudo-instruction
which defines the SEGMENT pseudo-instruction and stack segment which define a
relocatable segment.

6.2.1 SEGMENT pseudo-instruction
・Syntax

 segment_symbol SEGMENT seg_type [boundary] [, access] [, link_atr]
・Description

A SEGMENT pseudo-instruction defines a relocatable segment. A relocatable
segment can be defined as one program to 65535 pieces. The number called segment
ID in order of a definition is given to each segment.

segment_symbol is used for discernment of a relocatable segment. This
segment_symbol is specified as the operand of a RELSEG pseudo-instruction. Moreover,
segment_symbol can also be used for the operand of an instruction. In this case,
segment_symbol indicates the base address of a relocatable segment and the value
under assemble is set to 0.

seg_typ
The segment type showing the kind of address space which assigns a relocatable

segment is specified as seg_typ. Only one can be specified out of the following segment
type.

Segment type Allocated Memory space
CODE CODE address space
PRAM PRAM address space
XRAM XRAM address space
XROM XROM address space
YRAM YRAM address space
YROM YROM address space

boundary
The boundary value of a head address when a relocatable segment is assigned is

specified as boundary. This is called boundary value attribute of a logical segment. The
integer constant is specified as boundary.

An abbreviation of boundary specifies 1.

access
The keyword (SHORT10, SHORT12 and LONG16) showing the attribute of the

address range is specified as access. The meaning of each keyword is as follows.

6Pseudo-instruction

 86

The attribute of the
address range

Allocated address range

SHORT10 0H - 3FFH
SHORT12 0H - 0FFFH
LONG16 0H - 0FFFFH

A segment symbol is described in link_atr (linkage attribute). In the same source file,

the two segment which has the pair of linkage attribute is allocated the segment start
address of respectively same value by Linker.

- Example

seg1 SEGMENT XROM , seg2
seg2 SEGMENT YROM , seg1

RELSEG seg1

x_data:
DW 10h, 20h

 --"

RELSEG seg2
y_data:

DW 30h, 40h

In this case, seg1 and seg2 are assigned to the address with respectively same X

memory and Y memory.
- Supplement
In the following description, RASi3 outputs an assembling error.
（１） When a segment symbol with segment type on the same memory space is

described
（２） When a linkage attribute is specified to a segment type CODE segment
（３） When the segment name which is not defined in the source file is described

6.2.2 STACKSEG pseudo-instruction
- Syntax
 STACKSEG [seg_type ,] size
- Description
A STACKSEG pseudo-instruction defines a stack segment. seg_type is the segment

which assigns a stack area and can specify XRAM or YRAM. The size of a stack area is
specified as size.

If a STACKSEG pseudo-instruction is specified, RASi3 defines a stack segment which are
named as a $XSTACK or a $YSTACK. Although $XSTACK or $YSTACK is one of the
relocatable segments, it cannot specify $XSTACK or $YSTACK as the operand of a
RELSEG pseudo-instruction.

 X memories Y memory
0000 (XRAM) 0000 (YRAM)

 (XROM) (YROM)

x_data seg1 y_data seg2

0FFFF
(XRAM)

0FFFF

6.3Segment control pseudo-instruction

87

- Supplement
The initial value of a stack pointer, i.e., the end address of a stack segment, can be

referred to by _$$XSP or _$$YSP. _$$XSP or _$$YSP is the symbol prepared in order to
access SP register, and in case use it, you need to make an external reference
declaration by EXTRN pseudo-instruction.

6.3 Segment control pseudo-instruction

Segment control pseudo-instructions include CODESEG, PRAMSEG, XRAMSEG,
XROMSEG, YRAMSEG and YROMSEG pseudo-instruction which define an absolute
segment, and RELSEG pseudo-instruction which defines a relocatable segment.

6.3.1 CODESEG pseudo-instruction
- Syntax
 CODESEG [address]

CODESEG address OVL real_address
- Description
CODESEG pseudo-instruction declares the start of an absolute CODE segment

definition. The definition with an OVL identifier is described when defining the
absolute segment for overlay.

The start address of the logical segment to define is specified as address. The address
is the constant expression which does not include forward reference. The value of a
location counter is updated by the specified address by address. When address is
omitted, a segment is started from the address following the end address of the
absolute segment defined by the last CODESEG pseudo-instruction. When there is no
CODESEG pseudo-instruction before, a segment is started from the minimum value of
a CODE address space.

When using overlay, the value of a label etc. is solved by the value of address during
an assemble, but it is assigned to real_address of a XROM area in practice.

- Supplement
The value specified as address must be within the limits of the CODE address space

defined by the DCL file. However, when OVL is specified, the value specified to address
must be within the limits of a PRAM address space.

6.3.2 PRAMSEG pseudo-instruction
- Syntax
 PRAMSEG [address]
- Description
PRAMSEG pseudo-instruction declares the start of an absolute PRAM segment

definition.

6Pseudo-instruction

 88

The start address of a logical segment is specified as address. The address is the
constant expression which does not contain forward reference. The value of a location
counter is updated by the specified address by address. When address is omitted, a
segment is started from the address following the end address of the absolute segment
defined by the last PRAMSEG pseudo-instruction. When there is no PRAMSEG
pseudo-instruction before, a segment is started from the minimum value of a PRAM
address space.

- Supplement
The value specified as address must be within the limits of the PRAM address space

defined by the DCL file.

6.3.3 XRAMSEG pseudo-instruction
- Syntax
 XRAMSEG [address]
- Description
A XRAMSEG pseudo-instruction declares the start of an absolute XRAM segment

definition.
The start address of a logical segment is specified as address. The address is the

constant expression which does not contain forward reference. The value of a location
counter is updated by the specified address by address. When address is omitted, a
segment is started from the address following the end address of the absolute segment
defined by the last XRAMSEG pseudo-instruction. When there is no XRAMSEG
pseudo-instruction before, a segment is started from the minimum value of a XRAM
address space.

- Supplement
The value specified as address must be within the limits of the XRAM address space

defined by the DCL file.

6.3.4 XROMSEG pseudo-instruction
- Syntax
 XROMSEG [address]
- Description
A XROMSEG pseudo-instruction declares the start of an absolute XROM segment

definition.
The start address of a logical segment is specified as address. The address is the

constant expression which does not contain forward reference. The value of a location
counter is updated by the specified address by address. When address is omitted, a
segment is started from the address following the end address of the absolute segment
defined by the last XROMSEG pseudo-instruction. When there is no XROMSEG
pseudo-instruction before, a segment is started from the minimum value of a XROM

6.3Segment control pseudo-instruction

89

address space.
- Supplement
The value specified as address must be within the limits of the XROM address space

defined by the DCL file.

6.3.5 YRAMSEG pseudo-instruction
- Syntax
 YRAMSEG [address]
- Description
A YRAMSEG pseudo-instruction declares the start of an absolute YRAM segment

definition.
The start address of a logical segment is specified as address. The address is the

constant expression which does not contain forward reference. The value of a location
counter is updated by the specified address by address. When address is omitted, a
segment is started from the address following the end address of the absolute segment
defined by the last YRAMSEG pseudo-instruction. When there is no YRAMSEG
pseudo-instruction before, a segment is started from the minimum value of a YRAM
address space.

- Supplement
The value specified as address must be within the limits of the YRAM address space

defined by the DCL file.

6.3.6 YROMSEG pseudo-instruction
- Syntax
 YROMSEG [address]
- Description
A YROMSEG pseudo-instruction declares the start of an absolute YROM segment

definition.
The start address of a logical segment is specified as address. The address is the

constant expression which does not contain forward reference. The value of a location
counter is updated by the specified address by address. When address is omitted, a
segment is started from the address following the end address of the absolute segment
defined by the last YROMSEG pseudo-instruction. When there is no YROMSEG
pseudo-instruction before, a segment is started from the minimum value of a YROM
address space.

- Supplement
The value specified as address must be within the limits of the YROM address space

defined by the DCL file.

6Pseudo-instruction

 90

6.3.7 RELSEG pseudo-instruction
- Syntax
 RELSEG seg_sym
- Description
A RELSEG pseudo-instruction declares the start of a relocatable segment definition.
The segment symbol of a relocatable segment is specified as seg_sym. The seg_sym

must be defined by the SEGMENT pseudo-instruction before the description position of
a RELSEG pseudo-instruction. A relocatable segment is started from the 0th address
during an assemble. It is assigned to an actual address space by Rli3 linker.

6.4 Linkage control pseudo-instruction

A linkage control pseudo-instruction is used when mainly splitting and creating a
program to two or more files.

6.4.1 EXTRN pseudo-instruction
- Syntax
 EXTRN usage_type [access] : symbol [symbol --]
- Description
An EXTRN pseudo-instruction declares a external symbol. In order to refer to the

symbol defined by the external module, it is necessary to surely declare by EXTRN
pseudo-instruction.

The usage type of a external symbol is specified as usage_type. To usage_type, only
one can be specified out of the following segment type.

Segment type Allocated Memory space
CODE It has an address on a CODE address space.
PRAM It has an address on a PRAM address space.
XRAM It has an address on a XRAM address space.
XROM It has an address on a XROM address space.
YRAM It has an address on a YRAM address space.
YROM It has an address on a YROM address space.
NONE It has the address which does not pinpoint

space.
NUMBER It has an integer type.
FLOAT It has a fraction type.

The keyword of the attribute (SHORT10, SHORT12 and LONG16) of the address

range is specified as access. The meaning of each keyword is as follows.

6.4Linkage control pseudo-instruction

91

The attribute of the
address range

Allocated address range

SHORT10 0H - 3FFH
SHORT12 0H - 0FFFH
LONG16 0H - 0FFFFH

- Supplement
The usage_type and access must be the same types as the symbol defined by the

external module. When unmatched, RLi3 outputs an error.
The symbol already defined cannot be specified as symbol. Moreover, an EXTRN

pseudo-instruction cannot refer a segment symbol.

6.4.2 PUBLIC pseudo-instruction
- Syntax
 PUBLIC symbol [symbol --]
- Description
A PUBLIC pseudo-instruction declares a local symbol as a public symbol. By

declaring a local symbol as public, the symbol can be used from other source files.
A local symbol and public declaration of the symbol may define whichever first.
- Supplement
In order to refer to a public symbol from other source files, you have to declare the

external symbol of the same name in the source file to refer to using an EXTRN
pseudo-instruction.

The public symbol of the same name cannot be defined in two or more source files.

6.4.3 COMM pseudo-instruction
- Syntax
 symbol COMM seg_type size [boundary] [access]
- Description
A COMM pseudo-instruction defines a shared symbol (communal symbol). A shared

symbol defines a common data area by two or more source files.
The shared symbol defined by two or more source files indicates the head address of a

common data area. RLi3 determines the address of the data area where a shared
symbol is defined.

The syntax of a COMM pseudo-instruction is similar of the SEGMENT
pseudo-instruction. However, the size of the area to secure is specified just after
seg_type.

seg_typ

6Pseudo-instruction

 92

The segment type showing the kind of address space which assigns a relocatable
segment is specified as seg_typ. Only one can be specified out of the following segment
type.

Segment type Allocated Memory space
PRAM PRAM address space
XRAM XRAM address space
XROM XROM address space
YRAM YRAM address space
YROM YROM address space

boundary
The boundary value of a head address in case a relocatable segment is assigned is

specified as boundary. This is called boundary value attribute of a logic segment. The
integer constant is specified as boundary.

An abbreviation of boundary specifies 1.

access
The keyword of the attribute (SHORT10, SHORT12 and LONG16) of the address

range is specified as access. The meaning of each keyword is as follows.

The attribute of the
address range

The range of the address [allocation /
address]

SHORT10 0H - 3FFH
SHORT12 0H - 0FFFH
LONG16 0H - 0FFFFH

- Supplement
It will become an error if the same shared symbol is declared twice or more in one

source file.
When the sizes of the shared symbol of each source file differ, the greatest area in the

size to specify is assigned to memory.

6.5 Symbol definition pseudo-instruction

A symbol definition pseudo-instruction is a pseudo-instruction for defining a symbol
and giving a value or an address value to the symbol.

6.5.1 EQU pseudo-instruction
- Syntax

6.5Symbol definition pseudo-instruction

93

 symbol EQU simple_expression
- Description
An EQU pseudo-instruction defines a local symbol. The symbol to define is specified

as symbol and the simple type which does not include forward reference is specified as
simple_expression.

The symbol defined by the EQU pseudo-instruction has the value and attribute of
simple_expression. That is, the symbol to define is an absolute symbol when
simple_expression is constant expression. When simple_expression is a simple
relocatable expression, the symbol to define is a simple relocatable symbol. Moreover, if
simple_expression is a numerical value type expression, the usage type of a symbol is
NUMBER or FLOAT, and if simple_expression is an address type, a symbol has the
property of the address of simple_expression.

- Supplement
The symbol already defined cannot be specified as symbol.
When the usage type of the symbol defined by this pseudo-instruction is except

NUMBER, FLOAT, and NONE, RASi3 confirms whether the usage type of the kind of
memory and a symbol to the address is right. When the kind and usage type of memory
are not right, RASi3 displays warning.

6.5.2 = Pseudo-instruction
- Syntax
 symbol = simple_expression
- Description
The = pseudo-instruction defines a local symbol. The symbol to define is specified as

symbol and the simple type which does not include forward reference is specified as
simple_expression.

The symbol defined by the = pseudo-instruction has the value and attribute of
simple_expression. That is, the symbol defined is an absolute symbol when
simple_expression is constant expression. When simple_expression is a simple
relocatable expression, the symbol defined is a simple relocatable symbol. Moreover, if
simple_expression is a numerical value type expression, the usage type of a symbol will
serve as NUMBER or FLOAT, and if simple_expression is an address type, a symbol
has the property of the address of simple_expression.

- Supplement
The symbol defined by the = pseudo-instruction can be redefined by an =

pseudo-instruction.

6Pseudo-instruction

 94

6.5.3 DEFINE pseudo-instruction
- Syntax
 DEFINE def_sym "def_body"
- Description
A DEFINE pseudo-instruction defines a macro symbol.
A DEFINE pseudo-instruction assigns def_body to def_sym. If symbol appears in

source statement after this definition, RASi3 will be replaced to def_body of it, and will
assemble it. The number of characters which can be specified as def_body is a
maximum of 255 bytes.

In def_body, you may describe another macro symbol. In this case, RASi3 performs
still more macroscopic replacement, when replacing the first macro. As for a maximum
of 8 level, the macroscopic nest is allowed.

- Supplement
A macro symbol can be referred to only after a DEFINE pseudo-instruction defines.

6.6 Address control pseudo-instruction

6.6.1 ORG pseudo-instruction
- Syntax
 ORG address
- Description
An ORG pseudo-instruction resets the value of the location counter of the logical

segment which belongs as the value of address. The features of an ORG
pseudo-instruction differ by the case where a logic segment is an absolute, and the case
where a logic segment is relocatable.
（１） When a logic segment belongs to an absolute segment

The value of a location counter is set to address by the constant expression which
does not include forward reference.
Constant expression must be a value more than the head address of the logic
segment which belongs. Moreover, the value of constant expression must be in
the target address space.

（２） When a logic segment belongs to a relocatable segment
The value of a location counter is specified as address by the simple formula
which does not include forward reference.
When a simple type is an address type, the present location counter is changed
into the value of an expression.
When a simple type is constant expression, the present current location is
changed for the value of an expression as offset from the head of a segment.
When a simple relocatable symbol is contained in simple expression, the

6.7Memory initialization pseudo-instruction

95

relocatable segment to which the simple relocatable symbol belongs must be the
present relocatable segment.

6.7 Memory initialization pseudo-instruction

6.7.1 DW pseudo-instruction
- Syntax
 [symbol] DW expression [, expression --]
 expression = General formula
 = count DUP (expression [, expression --])
- Description
DW pseudo-instruction initializes a memory by a word unit. The expression (a

general formula or duplicate type) can be specified as an operand. The number of
operands does not have restriction.

The symbol specified by symbol is defined as a label with the start address and
segment type of the memory area initialized by DW pseudo-instruction.

You may include forward reference in expression. 1-word data is specified as
expression.

The duplicate type specified as expression is used when initializing the continuous
range with the same value. Only the number of times which specified initialization by
the value of expression described by the operand of a duplicate type by count is
repeated.

When '?' is specified as expression, only reservation of an area is performed without
initializing.

- Supplement
The range of the value which can be described at a expression must be 0FFFFH from

-0FFFFH. When the range is exceeded, RASi3 displays warning.
DW pseudo-instruction accompanied by initialization can be described only to CODE,

XROM, and YROM segment.
DW pseudo-instruction without initialization can be described to PRAM, XRAM,

YRAM segment. When DW pseudo-instruction is described in other segments, RASi3
displays an error.

The nest level of a duplicate type is unrestricted.

6Pseudo-instruction

 96

6.8 Assembling control pseudo-instruction

6.8.1 INCLUDE pseudo-instruction
- Syntax
 INCLUDE (file_name)
- Description
An INCLUDE pseudo-instruction reads the include file specified by file_name.

Description of an INCLUDE pseudo-instruction inserts the contents of the include file
in the position.

An INCLUDE pseudo-instruction is further used in an include file, and another file
can be inserted. A maximum of 8 levels can nest an INCLUDE pseudo-instruction.

When an END pseudo-instruction is detected in an include file, RASi3 stops the
assemble after the END pseudo-instruction in the include file, and returns to assemble
processing of the source file which called the include file.

An include file is searched in following order.
（１） Current directory
（２） /I Search path specified as the option

6.8.2 END pseudo-instruction
- Syntax
 END
- Description
An END pseudo-instruction is a pseudo-instruction for informing RASi3 about the

end of a program. RASi3 assembles even an END pseudo-instruction. Even if it has
described the source statement after an END pseudo-instruction, RASi3 ignores it.
Moreover, when an END pseudo-instruction is in an include file, RASi3 stops
assembling after the END pseudo-instruction in the include file, and returns to
assembling processing of the source file which called the include file.

6.9Condition assembling pseudo-instruction

97

6.9 Condition assembling pseudo-instruction

If a condition assemble pseudo-instruction is used, only when certain conditions are
satisfied, it can control to assemble the arbitrary blocks of a program. As a result, one
source program can be used for two or more purposes.

A condition assemble feature is realized by describing a condition assemble
pseudo-instruction. The syntax of a condition assemble pseudo-instruction is as follows.

 IFxxx conditional_operand
 true_conditional_body
 [ELSE
 false_conditional_body]
 ENDIF

IFxxx indicates one of the next condition assembling pseudo-instructions.
 IF IFE IFDEF IFNDEF IFB IFNB
conditional_operand is the expression and symbol which give the truth conditions of

condition assembling. The contents specified as conditional_operand change with
condition assembling pseudo-instructions.

true_conditional_body and false_conditional_body indicate the block of a source
statement. When conditions are truth, the statement block of true_conditional_body is
assembled. When conditions are false, the statement block of true_conditional_body is
skipped. false_conditional_body is assembled when there is an ELSE
pseudo-instruction at this time.

To true_conditional_body or false_conditional_body, you may describe a condition
assembling pseudo-instruction further. As for a condition assemble pseudo-instruction,
a maximum of 15 level can nest.

6.9.1 IF, IFE pseudo-instruction
- Syntax
 IF expression
 IFE expression
- Description
IF pseudo-instruction will assemble true_conditional_body, if the value of expression

is truth, and if it is a false, it assembles false_conditional_body.
An IFE pseudo-instruction will assemble true_conditional_body, if denial of the value

of expression is truth, and if it is a false, it assembles false_conditional_body.
The expression is the constant expression which does not include forward reference.
If expression contains forward reference, and if a grammatical error is in expression,

6Pseudo-instruction

 98

conditions are judged to be a false.

6.9.2 IFDEF, IFNDEF pseudo-instruction
- Syntax
 IFDEF symbol
 IFNDEF symbol
- Description
The symbol is a symbol except a reserved word.
If symbol specified as the IFDEF pseudo-instruction is defined before this source

statement, conditions become truly. Conditions become false, if symbol is not defined in
the program, or if it defines after this source statement.

Conditions become false if symbol specified as the IFNDEF pseudo-instruction is
defined before this source statement. If symbol is not defined in the program, or if it
defines after this source statement, conditions become truly.

6.9.3 IFB, IFNB pseudo-instruction
- Syntax
 IFB <argument >
 IFNB <argument >
- Description
The argument(s) are arbitrary character strings.
If argument specified as the IFB pseudo-instruction is null statement, conditions will

become truly. Conditions will become false if argument is not null statement.
If argument specified as the IFNB pseudo-instruction is not null statement,

conditions will become truly. Conditions will become false if argument is null
statement.

6.10 Listing control pseudo-instruction

6.10.1 TITLE pseudo-instruction
- Syntax
 TITLE "string"
- Description
A TITLE pseudo-instruction specifies the title of a print file. This title is outputted to

the header of each page of a print file.
The character string of less than 70 characters made into a title is specified as string.

If the character string exceeding 70 characters is specified as string, it will be ignored
after the 71st character.

6.10Listing control pseudo-instruction

99

Although two or more TITLE pseudo-instructions can be used into a program,
available TITLE is specified at the end. An abbreviation of a TITLE pseudo-instruction
does not output a title to the header of a print file.

6.10.2 PAGE pseudo-instruction
- Syntax
 PAGE [line] [, column]
- Description
The PAGE pseudo-instruction without an operand has a different feature from a

PAGE pseudo-instruction with an operand.
The PAGE pseudo-instruction which does not specify an operand inserts a form feed

in a print file forced. It becomes the next page from the line the PAGE
pseudo-instruction was described to be.

As for the operand of a PAGE pseudo-instruction, the number of lines of each page of
a print file and the number of characters of each line are specified. The number of
lines of 1 page is specified as line, and the number of characters of one line is specified
as column. Both line and column are the constant expression which does not contain
forward reference.

The range of the value of line is from 10 to 65535. If a value smaller than 10 is
specified to line, it will be rectified by 10, and it will be rectified by 65535 if a larger
value than 65535 is specified.

The range of the value of column is from 79 to 255. If a value smaller than 79 is
specified to column, it will be rectified by 79, and it will be rectified by 255 if a larger
value than 255 is specified.

- Supplement
A PAGE pseudo-instruction is ignored in the range with an available NOLIST

pseudo-instruction.

6.10.3 PRN, NOPRN pseudo-instruction
- Syntax
 PRN [(file_specification)]
 NOPRN
- Description
These pseudo-instructions control making of a print file.
A print file is created when a PRN pseudo-instruction is specified. A print file name is

specified to file_specification.
A print file is not created when a NOPRN pseudo-instruction is specified.
A print file is created if a PRN pseudo-instruction and a NOPRN pseudo-instruction

are omitted. As for the print file name in this case, the extension of a source file name
replaces ".PRN."

6Pseudo-instruction

 100

- Supplement
These pseudo-instructions specify either only once. If specified 2 times or more, it was

specified effectively first. Moreover, priority is given to /PR and a /NPR option over
specification of a pseudo-instruction.

6.10.4 LIST, NOLIST pseudo-instruction
- Syntax
 LIST
 NOLIST
- Description
These pseudo-instructions control the output of the assembling list to a print file.
An assemble list is a list of a program and object code. By using a LIST

pseudo-instruction and a NOLIST pseudo-instruction, the range of the program
outputted to an assemble list can be specified.

Description of a LIST pseudo-instruction outputs the program from the next line to
an assemble list.

Description of a NOLIST pseudo-instruction stops outputting the program from the
next line to an assemble list. However, source statement including an error or warning
is outputted to an assemble list regardless of these pseudo-instructions.

When a LIST pseudo-instruction and a NOLIST pseudo-instruction are omitted, all
programs are outputted to an assembling list.

- Supplement
If a /L option is specified to RASi3, each statement until a NOLIST

pseudo-instruction appears in a program is outputted to an assemble list. That is, it
becomes the same operation as the case where a LIST pseudo-instruction is described
at the head of a program.

If a /NL option is specified to RASi3, each statement until a LIST pseudo-instruction
appears in a program is not outputted to an assemble list. That is, it becomes the same
operation as the case where a NOLIST pseudo-instruction is described at the head of a
program.

6.10.5 SYM, NOSYM pseudo-instruction
- Syntax
 SYM
 NOSYM
- Description
These pseudo-instructions control the output of the symbol list to a print file.
The information on the user symbol used for the program is included in a symbol list.

By using a SYM pseudo-instruction and a NOSYM pseudo-instruction, it is specified
whether a symbol list is outputted.

6.10Listing control pseudo-instruction

101

If a SYM pseudo-instruction is specified, the information on all user symbols is
outputted to a symbol list. A symbol list is not created if a NOSYM pseudo-instruction
is specified.

A symbol list is not outputted if a SYM pseudo-instruction and a NOSYM
pseudo-instruction are omitted.

- Supplement
When two or more these pseudo-instructions were specified, it was specified

effectively first. Moreover, priority is given to /S and a /NS option rather than a
pseudo-instruction.

6.10.6 REF, NOREF pseudo-instruction
- Syntax
 REF
 NOREF
- Description
These pseudo-instructions control the output of the cross reference list to a print file.
The line number for which the user symbol defined by the program and each user

symbol were used is contained in a cross reference list. By using a REF
pseudo-instruction and a NOREF pseudo-instruction, the user symbol outputted to a
cross reference list is controllable.

In the range until a NOREF pseudo-instruction appears from the next line of the line
which described the REF pseudo-instruction, the symbol defined or referred to is
outputted to a cross reference list.

In the range until a REF pseudo-instruction appears from the next line of the line
which described the NOREF pseudo-instruction, the symbol defined or referred to is not
outputted to a cross reference list.

- Supplement
If a /R option is specified to RASi3, each statement until a NOREF pseudo-instruction

appears in a program is outputted to a cross reference list. This is the same operation
as the case where a REF pseudo-instruction is described at the head of a program.

If a /NR option is specified to RASi3, each statement until a REF pseudo-instruction
appears in a program is not outputted to a cross reference list. This is the same
operation as the case where a NOREF pseudo-instruction is described at the head of a
program.

6.10.7 ERR, NOERR pseudo-instruction
- Syntax
 ERR [(file_specification)]
 NOERR
- Description

6Pseudo-instruction

 102

These pseudo-instructions control making of an error file.
If an ERR pseudo-instruction is specified, an error file will be created and an error

message will be outputted to the file. An error file name is specified as
file_specification.

Specification of a NOERR pseudo-instruction does not create an error file. In this case,
an error message is outputted to a standard error output.

If an ERR pseudo-instruction and a NOERR pseudo-instruction are omitted, an error
file is not created but an error message is outputted to a standard error output.

- Supplement
If two or more these pseudo-instructions were specified, it was specified effectively

first. Moreover, priority is given to specification of /E and a /NE option over
specification of a pseudo-instruction.

6.10.8 OBJ, NOOBJ pseudo-instruction
- Syntax
 OBJ [(file_specification)]
 NOOBJ
- Description
These pseudo-instructions control making of an object file.
Specification of an OBJ pseudo-instruction creates an object file. An object file name

is specified as file_specification.
Specification of a NOOBJ pseudo-instruction does not create an object file.
An object file is created if an OBJ pseudo-instruction and a NOOBJ

pseudo-instruction are omitted. The object file name in this case is replaced to ".OBJ" of
the extension of a source file name.

- Supplement
If two or more these pseudo-instructions were specified, it was specified effectively

first. Moreover, priority is given to /O and a /NO option over a pseudo-instruction.

6.11 Macro definition pseudo-instruction

A macro definition pseudo-instruction registers the statements (aggregate of
processing) of sequence defined as the macro body as a macro symbol. If a macro symbol
is described in a program, RASi3 will expand during an assemble the statement defined
as the macro body.

The syntax of a macro definition pseudo-instruction is as follows.
 name MACRO [[parameter] , --]
 :
 Instruction statement (macro body)

6.11Macro definition pseudo-instruction

103

 :
 ENDM
The name is the macro symbol assigned to the macro body.
In order to call a macro, a macro symbol is described to a program. If RASi3 detects

the macro symbol described in the program, it will expand in the statement defined by
the macro body.

The parameter is the formal parameter specified in the case of macro definition, and
is the symbol which can be used only within the macro body.

6.11.1 MACRO pseudo-instruction
- Syntax
 name MACRO [[parameter] , --]
- Description
A MACRO pseudo-instruction registers the statements (macro body) of sequence to

an ENDM pseudo-instruction as a macro symbol specified as name.
The parameter is the formal parameter specified in the case of macro definition, and

is the symbol which can be used only within the macro body.
In macroscopic expansion, it is replaced to the actual parameter specified at the time

of a macro call of the formal parameter in the macro body.
- Supplement
If the same macro symbol is redefined by a MACRO pseudo-instruction, the macro

symbol defined later becomes available.
In the macro body, you may describe another macro symbol. In this case, RASi3

performs still more macroscopic replacement in the processing which replaces the first
macro. The macroscopic nest allowed by the MACRO pseudo-instruction, the REPT
pseudo-instruction, and an IRP pseudo-instruction is a maximum of 24 level.

6.11.2 EXITM pseudo-instruction
- Syntax
 EXITM
- Description
An EXITM pseudo-instruction can be used within the macro body. If RASi3 detects

an EXITM pseudo-instruction during macroscopic expansion, even subsequent ENDM
pseudo-instructions will be ignored. Moreover, if an EXITM pseudo-instruction is
detected from the inside of the macro body by the include file called by the INCLUDE
pseudo-instruction, macro expansion is terminated after the end of an include file.

- Supplement
An EXITM pseudo-instruction can be described only from a MACRO

pseudo-instruction, a REPT pseudo-instruction, or an IRP pseudo-instruction to an
ENDM pseudo-instruction.

6Pseudo-instruction

 104

6.11Macro definition pseudo-instruction

105

6.11.3 LOCAL pseudo-instruction
- Syntax
 LOCAL loc_sym [, loc_sym [, --]]
- Description
A LOCAL pseudo-instruction defines a local symbol only with the available inside of

a macro.
The symbol specified as loc_sym can be used only within the macro body, and cannot

be referred to from the outside of the macro body. It is replaced to the following formats
of loc_sym after macro expansion.

 ?_?number
The number is the 4 digits hexadecimal from 0 to 0FFFFH, and is the serial number

for every assemble.
- Supplement
A LOCAL pseudo-instruction can be used only within the macro body. If RASi3

detects the LOCAL pseudo-instruction used out of the macro body, warning will be
displayed and it will be ignored.

Moreover, a LOCAL pseudo-instruction should be described at the head of the macro
body. If RASi3 detects the LOCAL pseudo-instruction described by the position which is
not the head of the macro body, warning will be displayed and it will be ignored.

6.11.4 REPT pseudo-instruction
- Syntax
 REPT const_expression
- Description
A REPT pseudo-instruction expands the statements (macro body) of sequence from

the description position to an ENDM pseudo-instruction repeatedly by the number of
times specified by const_expression.

In the macro body, you may describe another macro symbol. In this case, RASi3
performs still more macroscopic replacement, when replacing the first macro. The
macroscopic nest allowed by the MACRO pseudo-instruction, the REPT
pseudo-instruction, and an IRP pseudo-instruction is a maximum of 24 level.

6.11.5 IRP pseudo-instruction
- Syntax
 IRP dummy_symbol < [[parameter], --] >
- Explanation
An IRP pseudo-instruction is replaced to parameter of dummy_symbol used for the

statement from the description to an ENDM pseudo-instruction, and expands. Only the
number is expanded if two or more parameter(s) are specified. If parameter is omitted,

6Pseudo-instruction

 106

an IRP pseudo-instruction is ignored.
In the macro body, you may describe another macro symbol. In this case, RASi3 is the

process which replaces the first macro, and performs still more macroscopic
replacement. The macroscopic nest allowed by the MACRO pseudo-instruction, the
REPT pseudo-instruction, and an IRP pseudo-instruction is a maximum of 24 level.

6.12 Scope definition pseudo-instruction

6.12.1 SCOPE pseudo-instruction
- Syntax
 scope_tag SCOPE [[global_symbol] --]
 :
 ENDC
- Description
A SCOPE pseudo-instruction declares from the description to an ENDC

pseudo-instruction as a scope area.
scope_tag is the symbol which shows a scope area name, and calls it a scope tag.
global_symbol is the global symbol name used in a scope area, and calls it a scope

symbol.
Some scope areas with the same scope tag name are managed as the same scope.
- Supplement
The nest of a scope pseudo-instruction cannot be described.

6.13 Optimization pseudo-instruction

i-Core3 has some branch instruction. Instead of describing such branch instruction
directly, RASi3 is changed into the optimal instruction according to the distance to the
address value of a branch place, or a branch place by using an optimization
pseudo-instruction.

6.13.1 GJMP, GJMPD, GJSR, GJSRD pseudo-instruction
- Syntax
 GJMP[.cc] label
 GJSR[.cc] label
- Description
GJMP pseudo-instruction optimize a branch instruction.
GJSR pseudo-instruction optimize a subroutine call.
label is a symbol showing a branch place and it is also possible to specify a temporary

6.14C debugging information pseudo-instruction

107

symbol.
Moreover, if only a label is described to the operand of a basic instruction of JMP,

JSR, RASi3 performs optimization equivalent to an optimization pseudo-instruction.
However, if an expression is described to an operand, it is managed as a 2-word
instruction, and if a SHORT operator is specified, it is managed as a 1-word
instruction.

- Supplement
These pseudo-instructions can be described only in a CODE segment.

6.14 C debugging information pseudo-instruction

This section explains each C debugging information pseudo-instruction for
information disclosure. However, if these pseudo-instructions are described in the usual
assembly source or these pseudo-instructions contained in the source program which
CCi3 generates are rewritten, a normal assemble result may not be obtained.

The operand of C debugging information pseudo-instruction has the following
restrictions.
（１） A symbol cannot be specified.
（２） An expression cannot be specified.
（３） In a parameter, only an integer constant or a character string can be specified.

6.14.1 CFILE pseudo-instruction
- Syntax
 CFILE file_id total_line inc_id inc_line “filename”
- Description
A CFILE pseudo-instruction defines the information about the file of C source file.
The file_id is a file identification number and it is used for evaluation of the value

described by the file_id parameter of other C debugging information
pseudo-instructions.

6.14.2 CFUNCTION, CFUNCTIONEND pseudo-instruction
- Syntax
 CFUNCTION file_id fn_id
 CFUNCTIONEND fn_id
- Description
These pseudo-instructions define the information about the function of C source

program. A CFUNCTION pseudo-instruction defines the start of a function and a
CFUNCTIONEND pseudo-instruction defines the end of a function.

The fn_id is a function identification number and it is used for evaluation of the value

6Pseudo-instruction

 108

described by the fn_id parameter of other C debugging information pseudo-instructions.

6.14.3 CARGUMENT pseudo-instruction
- Syntax

CARGUMENT attrib size line column offset phy_seg "variable_name" hierarchy
- Description
A CARGUMENT pseudo-instruction defines the information about the argument of

the function of C source program.

6.14.4 CBLOCK, CBLOCKEND pseudo-instruction
- Syntax
 CBLOCK fn_id block_id line_no
 CBLOCKEND fn_id block_id line_no
- Description
These pseudo-instructions define the start and end of block description in the

function in C source program
A CBLOCK pseudo-instruction defines the starting position of a block. A

CBLOCKEND pseudo-instruction defines the end position of a block.
- Supplement
These pseudo-instructions must be defined as CFUNCTION between

CFUNCTIONEND pseudo-instructions.

6.14.5 CLABEL pseudo-instruction
- Syntax
 CLABEL label_no "label_name"
- Description
A CLABEL pseudo-instruction relates the label described on C source program, and

the label in the assembly source which CCi3 compiler outputs.
- Supplement
The CLABEL pseudo-instruction must be defined as CFUNCTION between

CFUNCTIONEND pseudo-instructions.

6.14.6 CLINE pseudo-instruction
- Syntax
 CLINE line_atr line_no start_column end_column
- Description
A CLINE pseudo-instruction defines the information about the line number of C

source program.
- Supplement

6.14C debugging information pseudo-instruction

109

The CLINE pseudo-instruction must be defined as CFUNCTION between
CFUNCTIONEND pseudo-instructions.

6.14.7 CGLOBAL pseudo-instruction
- Syntax
 CGLOBAL file_id usg_typ attrib size line column “variable_name” hierarchy
- Description
A CGLOBAL pseudo-instruction defines the information about the global variable

defined in C source program. The variable_name is the name of the global variable on C
source program. The symbol by which the underscore (_) was added to the head of
variable_name is outputted to an assembly source file as a public symbol or a share
symbol.

6.14.8 CSGLOBAL pseudo-instruction
- Syntax
 CSGLOBAL file_id attrib size line column “variable_name” hierarchy
- Description
A CSGLOBAL pseudo-instruction defines the information about the static global

variable defined in C source program. The variable_name is the name of the static
global variable on C source program. The symbol by which the underscore (_) was
added to the head of variable_name is outputted to an assembly source file as a public
symbol or a share symbol.

6.14.9 CLOCAL pseudo-instruction
- Syntax
 CLOCAL attrib size line column offset block_id "variable_name" hierarchy
- Description
A CLOCAL pseudo-instruction defines the information about the local variable which

C source program defined. The variable_name is the name of the local variable on C
source program.

- Supplement
The CLOCAL pseudo-instruction must be defined as CBLOCK between

CBLOCKEND pseudo-instructions.

6.14.10 CSLOCAL pseudo-instruction
- Syntax
 CSLOCAL attrib size line column alias_no block_id "variable_name" hierarchy
- Description
A CSLOCAL pseudo-instruction defines the information about the static local

6Pseudo-instruction

 110

variable which C source program defined. The variable_name is the name of the static
local variable on C source program. The decimal number shown by alias_no is added
behind "_$ST" at the symbol of the assembly source.

- Supplement
The CSLOCAL pseudo-instruction must be defined as CBLOCK between

CBLOCKEND pseudo-instructions.

6.14.11 CSTRUCTTAG, CSTRUCTMEM pseudo-instruction
- Syntax

CSTRUCTTAG file_id fn_id block_id su_id total_mem total_size line column "tag_name"
 CSTRUCTMEM attrib size line column offset "member_name" hierarchy
- Description
These pseudo-instructions define the information about the structure described on C

source program.
A CSTRUCTTAG pseudo-instruction defines the tag of a structure , and a

CSTRUCTMEM pseudo-instruction defines the structure member defined by the
CSTRUCTTAG pseudo-instruction described just before.

- Supplement
These pseudo-instructions must be defined as CBLOCK between CBLOCKEND

pseudo-instructions.

6.14.12 CUNIONTAG, CUNIONMEM pseudo-instruction
- Syntax

CUNIONTAG file_id fn_id block_id su_id total_mem total_size line column "tag_name"
 CUNIONMEM attrib size line column "member_name" hierarchy
- Description
These pseudo-instructions define the information about the union described on C

source program.
A CUNIONTAG pseudo-instruction defines the tag of a common object, and a

CUNIONMEM pseudo-instruction defines the union member defined by the
CUNIONTAG pseudo-instruction described just before.

- Supplement
These pseudo-instructions must be defined as CBLOCK between CBLOCKEND

pseudo-instructions.

6.14C debugging information pseudo-instruction

111

6.14.13 CENUMTAG, CENUMMEM pseudo-instruction
- Syntax
 CENUMTAG file_id fn_id block_id enum_id total_mem line column "tag_name"
 CENUMMEM value line column "member_name"
- Description
These pseudo-instructions define the information about the enumerator type

described on C source program.
A CENUMTAG pseudo-instruction defines an enumerator tag, and a CENUMMEM

pseudo-instruction defines the enumrator list of the CENUMTAG pseudo-instruction
described just before.

- Supplement
These pseudo-instructions must be defined as CBLOCK between CBLOCKEND

pseudo-instructions.

6.14.14 CTYPEDEF pseudo-instruction
- Syntax
 CTYPEDEF file_id fn_id block_id attrib line column "type_name" hierarchy
- Description
A CTYPEDEF pseudo-instruction defines the information about the type defined by

typedef in C source program.
- Supplement
The CTYPEDEF pseudo-instruction must be defined as CBLOCK between

CBLOCKEND pseudo-instructions.

6.14.15 CENVINFO pseudo-instruction
- Syntax
 CENVINFO language "compiler_info" "work_directory"
- Description
A CENVINFO pseudo-instruction defines the compile environment which generated

the assembly source file.
language is a value showing the language of a source program, and, in the case of

CCi3 compiler, is set to 1.

6Pseudo-instruction

 112

6.14.16 CMAINFO pseudo-instruction
- Syntax
 CMACINFO file_id line def_flag “macro_string”
- Description
A CMAINFO pseudo-instruction defines the macroscopic information defined at the

time of compile.

6.14.17 CINCPATH pseudo-instruction
- Syntax
 CINCPATH inc_id “include_path”
- Description
A CINCPATH pseudo-instruction defines the include path information defined at the

time of compile.

6.14C debugging information pseudo-instruction

113

7 List file

In this chapter, the form and reading of a list file which RASi3 creates are explained.
The list file consists of following lists.
１． Assembly list

Assembly listing is a list of the object code corresponding to a program.
２． Cross reference list

A cross reference list shows the line information by which each user symbol was
defined, and the line information for which each user symbol was referred to.

３． Symbol list
A symbol list is a list including the information about the user symbol used for
the program.

４． End message
 An end message is the list which is outputted when an assemble is completed,
and displays the number of an error or warning.

The following options or pseudo-instructions are used and the output of a list file can

be controlled.

 Pseudo-instruction Option
Whole of list file PRN, NOPRN /PR, /NPR
Assembly list LIST, NOLIST /L, /NL
Cross reference list REF, NOREF /R, /NR
Symbol list SYM, NOSYM /S, /NS

7List file

 114

7.1 Reading of an assembly list

The example of an assembly list is shown below.

RASi3 (Target) Relocatable Assembler Ver.x.xx Assembly list.Page : # <-- (1)
 Source File : filename <-- (2)

Object File : filename <-- (3)
Date : date day time <-- (4)
Title : title <-- (5)

Loc. Object Line Source Statements
(6) (7) (8) (9)

 (10)

Target :Core Type / Machine Type <-- (11)
Errors :# <-- (12)
Warnings :# <-- (13)
Lines :# <-- (14)

（１） This line is displayed at the head of each page of an assembling list. The target

model name specified by the TYPE pseudo-instruction goes into Target, and the
number of pages goes into #.

（２） An input source file name is displayed.
（３） An object file name is displayed.
（４） The date and time which started assembling are displayed.
（５） The character string specified by the TITLE pseudo-instruction is displayed. It

becomes blank when there is no description of a TITLE pseudo-instruction.
（６） The location of the instruction statement of each segment is displayed.
（７） The 32-bit machine code to each instruction statement is displayed.
（８） The line number in a source file is displayed.
（９） The instruction statement described by the source file is displayed.
（１０） When there is an error, the occurred error message is displayed under a sauce

line.
（１１） The target core specified by the CORE pseudo-instruction and the target model

specified by the TYPE pseudo-instruction are displayed.
（１２） The total number of error is displayed.
（１３） The total number of warning is displayed.

7.2Reading of a cross reference list

115

（１４） The total number of lines of an input source file is displayed.
(2),(3),(4) and (5) are displayed only on the page of the beginning of an assembling list.

(11),(12),(13) and (14) are displayed only on the page of the last of an assembling list.

7.2 Reading of a cross reference list

A cross reference list shows the list of the line numbers of the symbol which appeared
in the program.

The example of a cross reference list is shown below.

**
RASi3 (Target) Relocatable Assembler Ver.x.xx.xx C-Ref list.Page : # <-- (1)

symbol lines (#:definition line)
------------ ----------------------------

(2) (3)
-------SCOPE Symbol----------

symbol scope_tag lines (#:definition line)
------------ --------------- ----------------------------
 (4)
------Temporary Symbol-------

symbol def_line lines (#:definition line)
------------ --------------- -----------------------------
 (5)

（１） This line is displayed at the head of the page of a cross reference list. Target is

the target model name specified by the TYPE pseudo-instruction, and page
number goes into #.

（２） A symbol name is displayed on alphabetic order.
（３） The line number by which the symbol was referred to is displayed. # is attached

to the defined line number.
（４） A scope tag name is displayed.
（５） The line number by which the temporary symbol was defined is displayed.

7List file

 116

7.3 Reading of a symbol list

A symbol list shows the detailed information on the symbol which appeared in the
program. The symbol list consists of a symbol information and a segment information.

The detailed information on all the symbols defined by the program and the SFR
symbol referred to once or more is displayed on a symbol information.

The detailed information on the relocatable segment defined by the program is
displayed on a segment information.

The example of a symbol list is shown below.

**
RASi3 (Target) Relocatable Assembler Ver.x.xx.xx Symbol list.Page : # <-- (1)

----- symbol information -----

symbol type usgtyp value ID
------------- ------ --------- -------- ---

(2) (3) (4) (5) (6)

----------SCOPE Symbol-----------

symbol type usgtyp value scope_tag
------------- ------ --------- --------- -----------
 (7)
---------Temporary Symbol--------

symbol type usgtyp value def_line
------------- ------ --------- --------- -----------------
 (8)
---------segment information--------

S-ID symbol segtyp size bound link_attribute
---- ----------- ------ ------ ----- --------------

(9) (10) (11) (12) (13) (14)

（１） This line is displayed at the head of each page of a symbol list. Target is the

target model name specified by the TYPE pseudo-instruction, and page number
goes into #.

（２） A symbol name is displayed on alphabetic order.
（３） The type of a symbol is displayed.

The kind of type is shown below.
seg : segment symbol

7.3Reading of a symbol list

117

mcr : macroscopic symbol
tmp : temporary symbol
scp : scope symbol
loc : other user symbols
def : DEFINE symbol
ext : external symbol
com : communal symbol
pub : public symbol
sfr : SFR symbol
*** : undefined symbol

（４） The usage type of a symbol is displayed.
（５） The value of symbol is displayed.

In the case of a macro symbol, the number of lines of the macro body is
displayed on value.

（６） ID of a segment symbol, a communal symbol, and a external symbol is displayed.
In the case of a simple relocatable symbol, ID of the segment to which the
symbol belongs is displayed.

（７） The tag name of a scope is displayed.
（８） The line number by which the temporary symbol was defined is displayed.
（９） The order of a definition of a segment symbol is displayed.
（１０） The name of a segment symbol is displayed.
（１１） A segment type is displayed.
（１２） Segment size is displayed by a hexadecimal number.
（１３） An address boundary value is displayed.
（１４） A linkage attribute is displayed. A linkage attribute is the segment name

assigned to the same address different segment type by the SEGMENT
pseudo-instruction.

A usage type is expressed in the usgtyp field as the following keywords.

Display Explanation
NUMBER Usage type NUMBER
CODE Usage type CODE
PRAM Usage type PRAM
XRAM Usage type XRAM
XROM Usage type XROM
YRAM Usage type YRAM
YROM Usage type YROM
FLOAT Usage type FLOAT

8A message and end code

 118

8 A message and end code

RASi3 reports the error about assembling processing. There is the following kind of
the reports of an error.

１． An error message is outputted to a screen or an error file.
２． The number of an error is outputted to a print file.

There is the following kind of the errors of RASi3.
１． Command line error
２． Grammar error
３． Warning
４． Fatal error
５． Internal processing error

A command line error is an error occurred when an error is in description of a
starting command line. RASi3 is terminated after outputting a command line error,
without performing assembling processing.

A grammar error is an error occurred on the analysis of a source file. RASi3 continues
assembling processing, even if a grammar error occurs, but an object file does not
generate it. Moreover, this file is deleted, when a grammar error occurs and the object
file of a same name already exists.

Warning shows that a problem may be in a program. Even if warning occurs,
assembling processing is continued, and a print file and an object file are created.

A fatal error is a fatal error to which RASi3 cannot continue assembling. If a fatal
error occurs, RASi3 will suspend assembling processing.

An internal processing error is an error occurred when a certain fault is detected by
the internal processing of RASi3. If an internal processing error occurs, RASi3 will
suspend assembling processing.

Usually, these error messages are displayed on a screen. Please use the redirection
feature of DOS to output an error message to a file. Moreover, please use a /E option or
an ERR pseudo-instruction to output only the message of an assembling error and
warning to a file.

8.1Form of an error message

119

8.1 Form of an error message

The form of the error message outputted to a screen or an error file is as follows.
- Syntax
 filename(line1) : line2 : type error code : error message

Here, filename indicates a source file, line1 indicates the line number on a source file,

line2 indicates the line number on an assemble list, error code indicates the kind of
error, and error message indicates the contents of the error.

The kind of the following errors is displayed on type.

type Explanation of an error
Error It is shown that it is a grammar error.
Warning It is shown that it is warning.

8.2 Error message list

The list of the error messages which RASi3 displays is shown below. The number of
an error message is indicated on the left of an error message, and the details are
described under the error message.

8.2.1 Fatal error message
Error number An error message and explanation
000 insufficient memory

The memory for continuing processing is lacking. The cause of
this error can consider the shortage of an area of the virtual
memory of Windows. When other applications which increase the
maximum of virtual memory which increases the availability of a
hard disk have started, please operate ending etc. and increase
the availability of virtual memory. Moreover, when the /R option
(or REF pseudo-instruction) is specified, please remove the
specification. When this error still occurs in addition, please
perform the measure which splits a program or reduces the
number of symbols.

001 file not found : file_name
The source file shown by file_name, an include file, or a DCL file
is not found.

002 cannot open file : file_name

8A message and end code

 120

The file shown by file_name cannot be created.
file_name is an object file, a print file, or an error file. Please
confirm whether the invalid character is used for specification of
a name, or the directory not existing is not specified.

003 cannot close file : file_name
The file shown by file_name cannot be closed.
The cause considered most is shortage of disk storage capacity.

004 error(s) found in DCL file
In the DCL file, a certain one or more grammar errors were
found.
In this case, since an assembling result is not secured, an
assembler outputs this error message and ends processing. As
long as the original DCL file which our company provides is used,
this error does not occur.

005 file seek error
Seeking of a file cannot be performed.

006 too many INCLUDE nesting levels
The nesting level of an include file is over 8.

007 line number overflow 9,999,999
The number of lines of one source program (total including an
include file) is over 9,999,999.

008 I/O error writing file
The writing to an object file is not made.

009 TYPE directive missing
Specification of TYPE (target device name) is not in a source
program.
Or another instruction is described before a TYPE
pseudo-instruction.

010 unclosed block comment
A block comment /* ... */has not closed.

011 illegal reading binary file:message
The contents of the ABL file are not right.
The contents of the error are displayed on message. When this
error occurs, please confirm the following thing first.
- Has not the error (except for warning) occurred in the first
assembling?
- Isn't the source file edited after the first assembling?
- Are various options and an include path in agreement by the
first assembling and re-assembling?
- Has not the fatal error of those other than addressing relation
occurred at the time of a link?

8.2Error message list

121

- Is the /A option specified when linked?
After confirming the above-mentioned contents, when an error
occurs in addition, please contact me to our company.

012 reading file check sum error
The checksum of the record of an ABL file is not right.

013 I/O error reading file
An ABL file cannot be read.

016 source filename is not specified
There is no specification of a source file at the time of RASi3
starting.

017 too many MACRO nesting levels
There are too many nesting levels of a MACRO
pseudo-instruction.

018 too less ENDM
The ENDM pseudo-instruction to a MACRO pseudo-instruction is
lacking.

020 same macro is expanding now
The same broad view is developed in the broad view.

021 too many REPT nesting level
There are too many nesting levels of a REPT pseudo-instruction.

022 too many IRP nesting level
There are too many nesting levels of an IRP pseudo-instruction.

024 valid core name is I-CORE3 or ICORE3

Invalid CORE name is specified as #CORE of DCL file.
025 TYPE derective is redefined

Two or more TYPE direcitves are specified.
026 SCOPE is not closed

ENDC directive is not specified.
027 cannot specify before TYPE directive

TYPE directive must be specified first.
028 bad memory range

Invalid memory range is specified in DCL file.

8.2.2 Assembling error message
Error number An error message and explanation
000 bad operand

Description of an operand is wrong. Specification of addressing
has mistaken or it is possible whether there to be or many
operands are few.
In a pseudo-instruction, it is possible that a format and

8A message and end code

 122

description of each pseudo-instruction are not in agreement.
001 bad syntax

It is the basic syntax mistake before recognizing an instruction.
004 bad character:c(XX)

The character c (ASCII code XX) cannot be used by a program.
005 illegal escape sequence format
006 illegal integer constant

Description of the number of settings or an address constant is
wrong.

007 unexpected EOL
The character constant ('c') or the character string constant ("--")
has not closed.

008 unexpected EOF
The character constant ('c') or the character string constant ("--")
has not closed.

009 illegal string constant
A character string constant has an invalid description.

010 string constant too long
The number of characters of a character string constant is over
256 characters.

011 illegal option:option
option is not accepted as an option. This specification is ignored.

012 constant required
The number of settings needs to be specified for the operand or
option of an instruction.

013 declaration duplicated
The same pseudo-instruction or the same option is specified 2
times or more.

014 location out of range
The location has exceeded the stipulated range.
This error takes place, when AT address of segment start
specification (CSEG pseudo-instruction etc.) or the start address
of an ORG pseudo-instruction is over the maximum or minimum
of segment restrictions, or when the location updated by an
instruction and pseudo-instruction exceeds the maximum of a
segment.

018 segment type / usage type mismatch
The segment type or you sage type which an instruction requires,
and the specified type are not in agreement. This error is
occurred when as follows.
- The you sage type of the address of segment start specification

8.2Error message list

123

is not in agreement with a current segment type.
- The you sage type of the operand of a symbol definition
pseudo-instruction is not in agreement with the type of an
instruction.
- DS pseudo-instruction is described in a bit system segment.
- The DBIT pseudo-instruction is described in a byte system
segment.
- DB pseudo-instruction and DW pseudo-instruction are described
to segments other than CODE, XRAM, XROM, YRAM, and
YROM.

019 undefined symbol:symbol
symbol is not defined.

020 segment symbol required
A segment symbol is required for the operand of a RELSEG
pseudo-instruction.

021 forward reference not allowed
It is performing "refer to the front."
Many pseudo-instructions have not permitted "refer to the front"
to an operand.
Moreover, you have to define the segment name specified as a
RELSEG pseudo-instruction in addition to it.

023 symbol redefinition:symbol
symbol is already defined.

025 segment ID mismatch
When specifying a relocatable address as the operand of an ORG
pseudo-instruction by a relocatable segment, the expression must
indicate the address of a current segment.

026 address not allowed
When a current segment is an ANY type relocatable segment, if
the address of an ORG pseudo-instruction is not an integer type
(NUMBER), it will not become.

028 local symbol required:symbol
symbol which makes a public declaration must be defined as a
local symbol.

029 out of range:message
The value of an operand is over the range of regular.
The name of a concrete area is displayed on message.

031 illegal relocation type
Boundary value specification of a SEGMENT pseudo-instruction
or a COMM pseudo-instruction or specification of a special area
attribute is wrong.

8A message and end code

 124

033 entry overflow
The number of a segment symbol, a share symbol, or external
symbols is over 65535. Or there are too many areas added by the
/B option.

034 string constant required
A character string constant is required for the operand of a
TITLE pseudo-instruction. Or the operand form of C debugging
pseudo-instruction is wrong.

035 absolute expression required
If an operand is not constant expression, it will not become.
This error is occurred when neither the operand of many
pseudo-instructions nor the shift width of a rotate shift
instruction is constant values.

036 simple relocatable expression required
If the operand of symbol definition pseudo-instructions (EQU
pseudo-instruction etc.) or an ORG pseudo-instruction is not
constant expression or a simple relocatable type, it will not
become.

037 expression is unresolved
It is calculating further to unsolved operation.
Or the expression which includes unsolved operation in the
operand of symbol definition pseudo-instructions (EQU
pseudo-instruction etc.) or an ORG pseudo-instruction is
specified.

038 illegal expression format
It is the basic syntax mistake of an expression.
For example, the case where the balance of a parenthesis is not
correct etc. corresponds to this.

039 invalid relocatable expression
Operation which is not allowed is performed to the relocatable
symbol.

040 divide by zero
The division or modulo 算 by 0 is performed.

044 illegal core name
The core-based-CPU name of #CORE sentence of a DCL file is
wrong.

048 #ENDCASE does not have a matching #CASE
There is no #CASE sentence which hangs with #ENDCASE
sentence and suits in a DCL file.

051 CODE segment only
It is the instruction or pseudo-instruction which can be described

8.2Error message list

125

only to a CODE segment.
055 LABEL or NAME format error

The syntax relation of an instruction, a symbol, or a label is
wrong.
For example, when as follows, this error occurs.
 LABEL: EQU 100H

057 invalid initialization directive
The description position of an assembler initial-setting
pseudo-instruction is not right.
This error is occurred when the instruction which cannot be
specified before an assembler initial-setting pseudo-instruction is
described.

058 illegal SFR word/byte attribute
The format of the WORD / byte access attribute field in the SFR
access attribute definition sentence of a DCL file is wrong.

059 illegal SFR bit attribute
The format of the bit access attribute field in the SFR access
attribute definition sentence of a DCL file is wrong.

060 out of SFR address range
The SFR address in the SFR access attribute definition sentence
of a DCL file is not contained in the range of the SFR area
defined by the SFR keyword.

061 misplaced ENDIF directive
There is no condition assembling start pseudo-instruction (IF,
IFDEF, IFNDEF) corresponding to an ENDIF pseudo-instruction.

062 misplaced ELSE directive
There is no condition assembling start pseudo-instruction (IF,
ENDIF, IFNDEF) corresponding to an ELSE pseudo-instruction.

063 unexpected end of file in conditional directive
There is no ENDIF pseudo-instruction corresponding to a
condition assembling start pseudo-instruction (IF, IFDEF,
IFNDEF). This error is always occurred to the line in the end of a
program.

064 too many conditional directive nesting levels
The nesting level of a condition assembling instruction is over 15.

065 too many macro nesting level
The level of nesting of a DEFINE broad view is over 8.

066 illegal relocation type combine
071 label or '$' is not allowed

At the time of branch optimization option specification, the label

8A message and end code

 126

and current location symbol which were defined within the CODE
segment become the same treatment as a front reference symbol.
Therefore, operands which do not allow "refer to the front", such
as an operand of a CODESEG pseudo-instruction or an EQU
pseudo-instruction, cannot describe.

072 invalid SHORT/LONG
Description of SHORT and a LONG addressing child is wrong.

073 usage type NUMBER expected
The numerical value type expression is demanded. When it
describes as follows, this error occurs.

074 cannot write to ROM
It is going to execute the write-in instruction to a ROM area.

075 invalid fn_id
In C debugging information pseudo-instruction, the value of a
fn_id operand is not right.

076 invalid block_id
In C debugging information pseudo-instruction, the value of a
block_id operand is not right.

077 cfunction cannot nest
It is trying to nest a CFUNCTION pseudo-instruction. For
example, when the case where a CFUNCTIONEND
pseudo-instruction is deleted by mistake differs from fn_id, this
error occurs.

078 invalid position
The description position of C debugging information
pseudo-instruction is wrong. It occurs, when C debugging
information instruction which should correspond before this
pseudo-instruction does not exist.

079 overlay location out of range
The real arrangement address of the CODE segment which uses
an overlay feature has pointed out the address in which ROM
does not exist.

080 illegal range
The specified area is wrong. This error is occurred when an area
which is different from the existing area when the range which
cannot be specified as a /B option is specified and a start address
is a larger address than an end address is specified.

082 missing member directives for previous CxxxTAG directive
To a CSTRUCTTAG pseudo-instruction, when a CSTRUCTMEM
pseudo-instruction is insufficient, when a CENUMMEM
pseudo-instruction is insufficient, this error occurs to a

8.2Error message list

127

CENUMTAG pseudo-instruction.
083 unclosed CBLOCK directive exist

Correspondence of a CBLOCK pseudo-instruction and a
CBLOCKEND pseudo-instruction cannot be taken. When the end
of the case where a CFUNCTIONEND pseudo-instruction
appears with no CBLOCKEND pseudo-instruction corresponding
to a CBLOCK pseudo-instruction, or sauce is reached, this error
occurs.

084 unclosed CFUNCTION directive exist
085 segment address mismatch

The segment is changing before the CFUNCTIONEND
pseudo-instruction which corresponds from a CFUNCTION
pseudo-instruction. RASi3 cannot output the right C debugging
information.

086 It is the instruction which cannot be described immediately after
the instruction in front of bad mnemonic for foward mnemonic.

087 cna't put near DO end address
It is the instruction which cannot be described before and after
DO instruction and an address.

088 DO end address is specified at wrong place
The description position of DO instruction and an address is
inaccurate.

089 same DO end address exist
It is the same and the address is specified.

090 missing operator LONG
There is no LONG operator.

091 bad expression
Description of an expression is not right.

092 can not scope nesting
The nest of a SCOPE pseudo-instruction cannot be performed.

093 not exist SCOPE directive
A SCOPE pseudo-instruction does not exist.

094 not exist MACRO directive
A MACRO pseudo-instruction does not exist.

095 MACRO symbol or SCOPE tag is used in operand
Neither a MACRO symbol nor a SCOPE tag can be used for the
operand of an instruction.

096 bad core name
A core name is inaccurate.

097 only foward reference symbol is allowed
Only a front reference symbol is available.

8A message and end code

 128

098 CODE segment and ROM area only
It is available only to a CODE segment and a ROM area.

099 not exist SEGMENT directive
A SEGMENT pseudo-instruction does not exist.

100 Bad parameter
101 Only can use head part of Macro body

It can describe only into a macroscopic head part.
102 too many define nesting levels

There are too many nesting levels of DEFINE.
103 illegal float constant

It is an inaccurate floating decimal constant.
104 out of memory range

It is outside the memory range.
105 stack access continuing

Access to a stack is continuing.
106 label in expression or '$' is not allowed

The expression or $ containing a label cannot be described.
107 can't use imm_9 when .cc is specified

When a condition specification child is specified, a 9-bit
immediate value cannot be specified.

108 CODE label forward reference not allowed
The CODE label of referring to the front cannot be described.

109 Bad Linkage Attribute
A linkage attribute is inaccurate.

110 This linkage attribute is already used
It is the already specified linkage attribute.

111 Segment name for linkage doesn't match
The segment specified with the linkage attribute is not in
agreement.

112 CDB directive parameter error
The parameter of C debugging information pseudo-instruction is
inaccurate.

113 can't use imm_16 when .cc is specified
When a condition specification child is specified, a 16-bit
immediate value cannot be specified.

114 FLOAT value is not allowed
A FLOAT type value cannot be specified.

115 illegal initialization
It is unjust initialization.

116 smaller than start address

8.2Error message list

129

The value smaller than the start address of a segment is
specified.

117 bad operand separator
The separator of operand is illegal.

118 Same destination register is used in parallel instruction
The same destination register is used by the parallel instruction.

119 Same address register is used in MOVXY
The same address register is used by the MOVXY instruction.

120 Same destination register is used in MOVXY
The same destination register is used by the MOVXY instruction.

121 page of end address is different
It is specified as the page address where the end addresses of DO
instruction differ.

122 loop end address cannot be specified before current location
The end address is specified in front of DO instruction.

123 forward mnemonic can't put near DO end address
The forward instruction cannot be specified near end address of
DO instruction.

124 RAM area only
It is a description effective only in RAM area.

125 Base register is same as destination register in parallel
instruction
Cannot specify same Destination register as Base register in
parallel instruction.

8.2.3 Warning message
Warning number An error message and explanation
002 option directive duplicated

The pseudo-instruction and option which were already specified
are specified again. This specification is ignored.

003 CPU type mismatch
005 address expression required

An address type is required.
This warning is occurred when a numerical type is specified as
the right-hand side of an OFFSET operator.

006 NUMBER expression required
A numerical type is required.
This warning is occurred when an address is specified as the
right-hand side of BYTE1, BYTE2, BYTE3, BYTE4, WORD1, and
WORD2 operator, and addressing which allows only a numerical

8A message and end code

 130

value type.
007 FLOAT expression required

Decimal point form is required.
008 segment address mismatch

In the operation of addresses, the segment address of the left side
and the right-hand side is not in agreement.

009 address attribute not inherited
An expression is managed as a numerical value. The attribute as
an address is lost.

011 right expression of operator must be NUMBER
If the right-hand side of a operator is not a numerical value type,
it will not become.

012 usage type mismatch
013 either right or left expression of operator must be NUMBER

If either the left side of a operator or the right-hand side is not a
numerical value type, it will not become.

025 illegal access to SFR
Access to a SFR area is invalid.
This warning is occurred when it writes in to write-protected
SFR.

026 cannot access to high byte of SFR word
028 cannot access to high byte
031 reference before first definition
038 current location was aligned
039 address out of range

The target memory does not exist in the address specified by the
operand of an instruction. This warning is occurred, when the
address in which an object memory does not exist by symbol
definition pseudo-instruction was specified, or when an area has
forgotten to be secured as a /B option.

041 error of address register restrict
It is warning to use restrictions of an address register.

042 address expressoin not allowed
An address type cannot be described.

043 this operator has mean for NUMBER
It is the operator which is meaningful only to NUMBER.

044 this operator has mean for FLOAT
It is the operator which is meaningful only to FLOAT.

045 minus number is not allowed
A negative value cannot be described.

046 float value over flow

8.3End code

131

It is overflow of a floating decimal.
047 segment type mismatch

A segment type is inharmonious.
048 extension is ignored
049 .CC is ignored

A condition specification child is ignored.
050 CODE label with forward reference in expression

The CODE label of referring to the front is contained.
051 SHORT operator can be specified

A SHORT operator can be specified.
052 Addressing size is not SHORT

Addressing size is not short size.
053 /T option is prioritized

Priority is given to a /T option.
054 out of range

The operand of DW directive is out of range.
Valid range is 0H - 0FFFFH.

055 address range attribute is ignored
The address range attribute is ignored when usage type is
NUMBER or FLOAT.

056 same parameter specified
Same symbol is specified as parameter of MACRO directive.

057 Only can use head part of Macro body
LOCAL directive only can use head part of Macro body.

058 SHORT operator is ignored
SHORT operater has no mean for this instruction.

061 illegal number. decimal constant required
The argument of /W option must be specified as decimal constant.

8.3 End code

RASi3 returns the value according to an end state at the time of an assembling end.
This value is called an end code. An end code can be inspected using a batch file etc.
There is the following in an end code.

End code Explanation
0 There is no error.
1 Warning occurred.
2 The assembling error occurred.

8A message and end code

 132

3 The fatal error and internal processing error or the DCL
error occurred and forced to terminate.

RASi3 user's manual

August, 2004 preliminary edition

(c)2004 Oki Electric Industry Co.,Ltd.

	Introduction
	Introduction
	The flow of program development
	DCL file
	Identification information on a target device
	The range of the memory space which can be used
	Access allowed to SFR
	The reserved word showing an address

	File specification
	Environment variable
	Memory space
	Address space

	Starting of RASi3
	The default file specification
	The operation method of RASi3
	Option specification by a starting option definition file
	The specification method of a starting option definition file
	The form of an option definition file

	Command Line Option
	Option list
	The feature of each option
	/PR, /NPR
	/L, /NL
	/S, /NS
	/R, /NR
	/E, /NE
	/O, /NO
	/NC
	/DEF
	/V
	/PL
	/PW
	/I
	/D, /ND
	/SD, /NSD
	/T
	/A
	/G
	/BCODE, /BPRAM, /BXRAM, /BXROM, /BYRAM, /BYROM
	/W

	Language specification
	Composition of a program
	A program and a sentence
	Component
	The kind of sentence
	The end of a program

	A classification and attribute of a value
	An integer type, a decimal type and an address type
	Usage type

	Constant
	Integer constant
	Fraction constant
	Character constant
	Character string constant

	Escape sequence
	Multi-byte character
	Symbol
	Distinction of an alphabetic character
	Reserved word
	User symbol

	Expression
	The definition of an expression
	The feature of a operator
	A relocatable expression and integer constant expression
	Simple relocatable type
	Operation rule

	Addressing
	The form of addressing
	The range of value and addressing check
	Conversion rule of the value when describing a fraction to an immediate operand

	Restriction of a basic instruction
	MOVXY instruction use restriction
	Parallel instruction use restrictions
	Repeat instruction use restrictions
	Use restrictions of a loop instruction
	Use restrictions of program control instruction

	Pseudo-instruction
	Assembling initial-setting pseudo-instruction
	TYPE pseudo-instruction

	Segment definition pseudo-instruction
	SEGMENT pseudo-instruction
	STACKSEG pseudo-instruction

	Segment control pseudo-instruction
	CODESEG pseudo-instruction
	PRAMSEG pseudo-instruction
	XRAMSEG pseudo-instruction
	XROMSEG pseudo-instruction
	YRAMSEG pseudo-instruction
	YROMSEG pseudo-instruction
	RELSEG pseudo-instruction

	Linkage control pseudo-instruction
	EXTRN pseudo-instruction
	PUBLIC pseudo-instruction
	COMM pseudo-instruction

	Symbol definition pseudo-instruction
	EQU pseudo-instruction
	= Pseudo-instruction
	DEFINE pseudo-instruction

	Address control pseudo-instruction
	ORG pseudo-instruction

	Memory initialization pseudo-instruction
	DW pseudo-instruction

	Assembling control pseudo-instruction
	INCLUDE pseudo-instruction
	END pseudo-instruction

	Condition assembling pseudo-instruction
	IF, IFE pseudo-instruction
	IFDEF, IFNDEF pseudo-instruction
	IFB, IFNB pseudo-instruction

	Listing control pseudo-instruction
	TITLE pseudo-instruction
	PAGE pseudo-instruction
	PRN, NOPRN pseudo-instruction
	LIST, NOLIST pseudo-instruction
	SYM, NOSYM pseudo-instruction
	REF, NOREF pseudo-instruction
	ERR, NOERR pseudo-instruction
	OBJ, NOOBJ pseudo-instruction

	Macro definition pseudo-instruction
	MACRO pseudo-instruction
	EXITM pseudo-instruction
	LOCAL pseudo-instruction
	REPT pseudo-instruction
	IRP pseudo-instruction

	Scope definition pseudo-instruction
	SCOPE pseudo-instruction

	Optimization pseudo-instruction
	GJMP, GJMPD, GJSR, GJSRD pseudo-instruction

	C debugging information pseudo-instruction
	CFILE pseudo-instruction
	CFUNCTION, CFUNCTIONEND pseudo-instruction
	CARGUMENT pseudo-instruction
	CBLOCK, CBLOCKEND pseudo-instruction
	CLABEL pseudo-instruction
	CLINE pseudo-instruction
	CGLOBAL pseudo-instruction
	CSGLOBAL pseudo-instruction
	CLOCAL pseudo-instruction
	CSLOCAL pseudo-instruction
	CSTRUCTTAG, CSTRUCTMEM pseudo-instruction
	CUNIONTAG, CUNIONMEM pseudo-instruction
	CENUMTAG, CENUMMEM pseudo-instruction
	CTYPEDEF pseudo-instruction
	CENVINFO pseudo-instruction
	CMAINFO pseudo-instruction
	CINCPATH pseudo-instruction

	List file
	Reading of an assembly list
	Reading of a cross reference list
	Reading of a symbol list

	A message and end code
	Form of an error message
	Error message list
	Fatal error message
	Assembling error message
	Warning message

	End code

