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Abstract. This article reports the porting of FireStation (FS), a fire
growth simulation application, from a Desktop to a Grid environment.
The objective of this work is to exploit Grid capabilities in order to have
a faster execution, to manage large data input/output files, to create a
database of results which can avoid repeated simulations, and to allow an
interactive monitoring of the fire growth. The development of a parallel
version of FireStation with the Message Passing Interface (MPI), which
can take profits of the Grid as an inherent parallel environment, was the
first stage the work. The next step was to integrate this version with
the the available Grid tools and services which suited our objectives: the
LFC file catalog to manage large data files; the AMGA metadata catalog
to create a database of previous executions and respective results; and
finally WatchDog, used to monitor the simulation.

Both the parallel and the Grid version were implemented successfully,
showing that the Grid can give a good response to improve the execu-
tion of a parallel application with large input output demands in real
time, keep track of the simulations already computed by maintaining a
metadata database, and allowing for soft real time monitoring.

1 Introduction

To take a decision in an emergency situation, Civil Protection (CP) authorities
need to follow operational procedures involving several institutions (civil pro-
tection agencies, public administrators, research centers, etc.) each one with a
different role (decision-makers, data and services providers, emergency squads,
etc.). In these situations, a faster program and real time georeferenced data can
help making the difference between an efficient rescue plan and an uncontrolled
situation. That is the case of applications used for floods and fire predictions.
The sooner the authorities have the information about how will the situation
evolve in the terrain, the sooner they will be able to react. That is why this kind
of applications need to be able to make the best use of the computational power
available, in order to model hazard situations efficiently and based in real-time
data.

In this report we describe the work of taking F'S, an integrated system aimed
at the simulation of fire growth over a complex topography, from a Desktop



environment to a Cluster environment, and finally from Cluster to a Grid envi-
ronment. With this work, we intend to make FS take profits of the computational
power available, as well as several Grid tools which can improve its execution. In
the next section, the original version of FS is described. In the third and fourth
sections, the parallel model of FS (P-FS) and its implementation are presented.
In the fifth section we present the gridification of P-FS. Then, some results are
presented, as well as the conclusions and the future work.

2 Application: FireStation

FireStation is an integrated system aimed at the simulation of fire growth over
a complex topography [2, 3]. It integrates a module for wind field generation, as
well as a module for the computation of the Fire Weather Index, from the Cana-
dian System. The FS software was developed under the environment of the CAD
application Microstation, from Bentley Company, in University of Coimbra.
The underlying software was written in MDL, a specific C language of Mi-
crostation that has built-in subroutines for the design of window-based inter-
faces, generation of visualization elements in the 3D space, on top of the usual
mathematical capabilities of the C language. The FireStation core is based on
mathematical models of fire propagation and wind fields generation.

2.1 Graphical Interface

The graphical environment of Microstation is three-dimensional. Thus the visual-
ization process is allowed to employ, not only the normal top-view, but any other
view perspectives as well, for map display and other visualization procedures.

2.2 Wind Field Generation Module

The wind model is a self-contained Fortran code, which runs as an external
program. Wind is probably the single most important input parameter for fire
spread computation. For the case of forest fires, one is primarily interested in the
knowledge of the wind speed and direction at a distance to the ground equivalent
to approximately midflame height. At this vertical level, wind is much influenced
both by topography and by vegetation. Wind field behavior, as a fluid dynamics
problem, is governed both by the continuity equation (mass conservation) and
the Navier-Stokes equations [3], which describe the momentum conservation.

2.3 Fire Weather Index Module

The fire behavior predictions given by FireStation are aimed at support decision-
making on forest and fire management activities at a local scale. Nevertheless,
the system also incorporates a fire danger rating system applicable at a broader
scale, namely at regional and national level. The fire danger rating system in-
corporates the Canadian Fire Weather Index (FWI), which integrates weather



and fuel parameters affecting fire potential. The system allows to have a broad
assessment of large-scale fire potential through the evaluation of the daily and
spatial variation of the fire danger index and estimate the moisture content of
dead and live fine fuels through empirical relationships.

2.4 Fire Growth Simulation Module

The fire growth simulation module is in charge of computing the fire spread over
a complex topography. For the present work, fire growth is the most important
feature of FireStation, as this module is the one that will be parallelized, and
ported to a Grid execution environment.

Inputs In order to simulate the fire growth, FireStation three kinds of data:
a description of the characteristics of the terrain, the wind conditions affecting
that terrain, and some control parameters.

The terrain information is described using the BEHAVE model [2]. This
model divides the terrain into cells, over which its properties are assumed to
be constant. The description of the topography and fuel characteristics of the
terrain is registered in two files which store the altitude and the fuel model for
each cell.

The information about the wind conditions at midflame high affecting the
terrain, is produced previously by the Wind Field Generation Module. Finally,
some control data such as the ignition points and the stopping criteria have to
be passed to the application. The stopping criteria can be maximum simulation
time, maximum area burned or maximum number of cells burned.

The Propagation Model The fire growth simulation is a process of contagion
between burning and non-burning cells: at a generic time instant, the time the
fire takes to propagate from each burning cell to its neighbors is computed. This
calculus is based on the cells’ wind information, slope and fuel characteristics.
Each non-burning neighbor cell is thus assigned a number which represents the
shortest time instant at which ignition will take place. In the next iteration, the
non-burning cell with the shortest time assigned becomes a burning cell, and the
propagation process is repeated. This model is based on a Dijkstra’s dynamic
programming algorithm, leads to a time progression which may not be constant.

The choice of the cells defined as neighbors plays an important role in terms
of discretization errors. Figure 1 exemplifies the case where 16 neighbors are
defined: Each burning cell (in black) propagates the fire, at most, to the 16
neighbor cells (in green).

For the present work, it is interesting to look inside the core of the application:
the fire propagation algorithm, shown in algorithm 1.

The fire propagation algorithm consists on a cycle which executes while there
are still cells marked to burn and none of the stopping criteria is verified. If
there are no cells marked to burn, then it means that there is no fire in the
area of calculus, so the simulation can terminate. If any of the stopping criteria



Fig. 1. Fire propagation from a burning cell to its neighbor cells.

Algorithm 1 Fire propagation algorithm.

While (ExistPredictions &% —StoppingCriteriaMatched) {
1. Fetches the cell set to burn in the shortest period of time
¢ = GetNextBurninglell();
2. The present time value is set to the ignition time of cell C
PresentTime = GetBurningPrediction(();
3. Cell C is burned
BurnCell(();
4. Refreshes the number of cells burned and the total burned area:
TotalBurnedCells = TotalBurnedCells + 1;
Burneddrea = TotalBurnedCells * (Celldrea;
5. Computes the fire propagation from C to its neighbour cells in the form of predictioms,
and incorporates the cells and the predictions in the list of predictions:
ComputePropagation(C);
6. Makes a set of tests to decide whether the simulation will be stopped or not
If(dny Stopping Criteria is Verified) {
StoppingCriterialatched = True;
} (End If)
} (End While)

is reached, then the simulation also stops. This stopping criteria is one out of
those which can be passed as input (see section 2.4), and also if the fire reached
the limits of the map. In each iteration, the program selects the cell C predicted
to burn in the shortest time interval (1. in algorithm 1), and sets the current
time to C’s ignition time (2.). Then cell C is burned (3.), and the area burned
and total of burned cells values are refreshed (4.). The next step is to calculate
the fire propagation from C to its neighbor cells. This is made computing the
ignition time for each C neighbor cell, and incorporate the results in the list of
predictions. Finally, a set of tests is made in order to decide if the simulation
should continue.

Outputs The output of the fire growth simulation is a list of the burned cells,
and its respective ignition time. However, this output can be post-processed in
order to get some more information. Examples of this information is the fire
spread rate and direction, the area burned and its perimeter, and the linear
intensity of the fire front.



3 P-FireStation Model

The goal of the parallelization phase was to produce a prototype of FireStation
which can take profits of the computational power available in Cluster environ-
ments. The main idea is to use multiple nodes to simulate the fire growth in
parallel. High performance Input/Output stages is also an objective, due to the
potentially large data files involved in the simulation. The starting point to pro-
duce such a prototype was a C version of FireStation. This version only included
the Fire Propagation Module.

The parallelization strategy is to assign a subset of cells obtained by par-
titioning the whole map to each process participating in the simulation. Each
process should then compute the fire growth in its own subset. The eventual
fire propagation to a neighbor subset has to be communicated to the process
in charge of it, so that the neighbor process is aware that the fire is burning
its terrain, and can simulate the fire spread from that point on. When all the
processes terminate the simulation, the results should be joint.

3.1 Domain Decomposition

The domain decomposition phase consists on deciding how will the terrain be
distributed among the processes involved in the simulation. A natural solution,
regarding the fire propagation algorithm, is to assign each processor one or more
contiguous subsets of cells. In figure 2 we can see an example of a domain de-
composition for 9 processes, where each process is assigned a single sub-terrain.

Fig. 2. Domain decomposition example for 9 processors.

The number in each of the 9 squares in bold, corresponds to the rank of the
process in charge of it.

In order to compute the fire spread in its own sub-terrain, each processor
needs more information than just the one corresponding to its sub-terrain. Let
us focus of process 4 and figure 3 (left).

When this process is computing the fire spread from a burning cell in the
border with another process (marked in red), it has to make predictions for the
16 cell surrounding the cell in red. The surrounding cells are marked in green



Fig. 3. Fire propagation to neighbor processes (left) & information needed to compute
the fire growth in a sub-terrain (right).

in the figure. The cells to where the fire can be spread are marked in green.
However, some of these cells do not belong to its sub-terrain. As a consequence,
to calculate the fire growth in its sub-terrain, the process needs to have not only
information about its local cells, but also information about all the cells from
other processes for which it can possibly make predictions. Figure 3 (right) shows
the area needed by the process 4 in order to compute the simulation.

In dark green we have the information corresponding to local cells, and in
light green, the information about cells belonging to other processes for which
process 4 might make predictions.

3.2 Parallel Fire Growth Computation

The fire growth sequential algorithm presented in section 2.4 had to be rear-
ranged for a parallel execution. The idea was to keep the most possible of the
sequential version, and inject parallel instructions in order to produce a parallel
prototype. The result is shown in Algorithm 2.

This algorithm, based in a message passing parallel paradigm, can be divided
in three main conceptual parts: the sleeping part, the burning and predictions
parts, and the termination part. The instructions injected to allow a parallel exe-
cution are marked with a P. Those which were kept from the sequential algorithm
are marked with an S.

The Messages In a parallel fire growth simulation, we identified three types
of messages which can be exchanged between the processes:

— work messages, which carry information about burning time predictions for
a set of cells;

— termination messages. When a termination message is received by a process,
the process ends the fire propagation calculus, registers the results obtained
so far in a file, end terminates its execution;

— messages which demand a test to the current simulation time of each process.
These messages, are sent from a process which is interested in the test, to
all the other processes.



Algorithm 2 Parallel Fire Propagation Algorithm.
While(—StoppingCriteriaMatched) {

P1. Cheking If Should Sleep Or Not
While (—ExistPredictions or OverMaximumTime) {

P1.1. Over The Maximum Simulation Time!
While (OverMaximumTime) {
CheckOthersTime() ;
If(All0OverMaximumTime) Then Terminate;
Else {
Sleep();
ReceivelMessages () ;
If (EndSimulation) Terminate;
} (End Else)
} (End While P1.1)
P1.2. There Are No Cells Predicted To Burn!
while(—ExistPredictions) {
Sleep();
ReceivelMessages () ;
If (EndSimulation) Terminate;
}(End While P1.2)
} (End While P1.)

P2. Receive Eventual Messages

ReceiveMessages () ;

If (EndSimulation) Terminate;

Sequential 1, 2 and 3

P3. Calculate the predictions for the burning of the neighbour cells
CalculatePredictions (i1, jj);

Sequential 5.

} (End While)

Termination When should the simulation terminate is a question which is
harder to answer when we are talking about the parallel algorithm, compared
to the sequential one. In section 3.2, we stated that the simulation could stop
due to the reaching of one of these values: maximum simulation time, maximum
area burned, maximum number of cells burned, or because the fire got out of
the map limits. For simplicity reasons, we decided that the parallel prototype
stopping criteria should be limited to maximum simulation time and whether
the fire is out of the map or not. This maximum simulation time is a measure of
the time when the cells are burned, and not the time of the simulation itself. For
example, if we say that the time is 1000 seconds, the simulation will proceed till
a cell is burned at the time 1000 or later, and not till the program is executing
for 1000 seconds.

In the parallel algorithm, the simulation can only end if all the processors are
over the maximum simulation time. The counter prove if this statement is easy
to do. Let’s imagine a case where the simulation is made by two processes. If the
simulation ended when only one of them had reached the maximum simulation
time (let us say 20 minutes), then both would register the results they had till
that point. But the second processor was in a time minor than 20 minutes. He
could only have had the time of simulating the fire growth till, for example, 15
minutes (due to work balancing reasons, or because it executed in an inferior
machine). This would lead to a corruption of the final results. The solution for



this problem is to synchronize all the process. If a process reaches the maximum
simulation time, then it should wait for the other to reach it also. Only when all
the processes involved in the simulation reach that limit, the simulation can be
terminated.

We can see this behavior in algorithm 2 if we focus on the first while of P1.1:
the process checks if all the processes are over the maximum simulation time,
and if they are, then the simulation ends, otherwise, it goes to sleep, till a new
message is received.

To Sleep or Not to Sleep In a parallel execution, a node might find itself in
a situation where there is no work to do because there are no burning cells in its
sub-terrain, or because the maximum simulation time was already reached, and
the process has to wait for the others (P1. in algorithm 2). In both situations,
the program should take the decision “go to sleep”.

The sleeping state is a state where the program is just waiting for a message
to be received. When the program detects an incoming message, it wakes up and
receives it. The action which follows the receiving of the message, depends on
the message received, and on the reason for which it was sleeping.

But before analyzing this change of state, it is important to refer a feature
of this parallel algorithm: the capacity to go back in the simulation time. If a
process receives a prediction to a local cell C which has already burned at a
given time t1, and this new prediction says that cell C should burn at a time t0
< t1, then the algorithm will go back in time till t0. Cell C will be (re)burned at
time t0, and the simulation will proceed treating every cell burned at a superior
time than the current simulation time as non-burned cells.

After this parenthesis, we can go back to the analysis of the state changes.
Imagine that a process is sleeping because it reached the maximum simulation
time (P1.1.). After waking up due to an incoming message, it can take one of
the following actions depending on the type of message received:

— Terminate the simulation: the process will take this action if a termina-
tion message is received (from a process where the fire propagation reached
the limits of the global map), or if it receives a message for a collective check
of the simulation time and the result is that all the processes are either above
the maximum simulation time or have no work;

— Continue the simulation: the computation of the fire growth will be con-
tinued if a work message making the process go back to a simulation time
inferior to the maximum limit;

— Go back to sleep: the process will go back to sleep if it receives a work
message which does not cause the simulation time to change, or if it receives
a message for a collective check of the simulation time and the result is that
there is one or more processes computing the fire growth, with a simulation
time inferior to the maximum limit;

If, on the other hand, the process is sleeping because it had no work to do
(P1.2.).



— Terminate the simulation: the program will take this action in the same
situations of the previous case study;

— Continue the simulation: the computation of the fire growth will be con-
tinued if a work message with a prediction for a non-burned cell is received,
or if the work message received contains a prediction for a burned cell, with
a time inferior to its burning time;

— Go back to sleep: the process will go back to sleep if it receives a message
for a collective check of the simulation time and the result is that there is
one or more processes computing the fire growth, with a simulation time
inferior to the maximum limit;

Burning and Predictions The parallel burning and prediction phase is just
slightly different from the sequential one. In P3., the propagation of the fire
from the actual cell to its neighbors is calculated. The behavior of the Calcu-
latePredictions function should now be the following: if the cell predicted to burn
belongs to the local process, then it will be appended to the local list of cells
predicted to burn, just as in the sequential algorithm; if, on the other hand, the
cell predicted to burn belongs to a neighbor process, then a message with the
cell location and burning time should be sent to it.

Before burn the cell and calculate the predictions, the process should check
from eventual incoming messages (P2.).

3.3 Monitoring the Simulation

One of the improvements we want to do to the sequential version of FireStation,
is the ability to watch the fire growth in real time, that is, to see the burned
cells of the map as they are marked as burned, and not only see the results in
the end.

To allow the monitoring, each process should write to a local file the cells
which are marked as burned, right after their burning. That is, in each iteration,
the burned cell should be written in this local file. This will permit that, at
the same time, an external application is constantly reading the information
placed in each local file (remember that there is one local file per process). This
information can then be shown in the screen, allowing the user to have an idea
of the fire growth, before the end of the simulation.

In a long simulation, this feature can have an important role in the decision
of the civil protection, as it provides the decider with faster information.

4 P-FS Implementation

The implementation strategy was to use the MPI protocol to define a framework
containing functions which should be injected in the sequential code, allowing
FireStation to execute in a cluster environment.



4.1 MPI

MPI [4, 5, 6] is a specification defining the rules for the implementation of an
APT that allows processes executing in different processors to communicate with
each others. This communication is based on a message exchanging mechanism.
Its objectives are performance, scalability and portability [11]. It offers a set
of primitives which allow a collective or point-to-point communication. This
communication can be made in several ways: synchronous, blocking, immediate,
etc.. The concept of message passing makes this mechanism specially suitable
for distributed memory cluster environments, where there are no common mem-
ory blocks to be used for inter-process communication executing in different
machines.

4.2 The Parallel Framework

In order implement the FireStation parallel version, a framework containing a
set of functions, tags and MPI types was developed.

Following is a list of the main functions contained in this framework, and
their description:

— goToSleep  MPI(): puts a process in sleeping mode until a message from
another process is received.

— receiveMsg MPI(): receives eventual messages from other processes;

— sendMsg _MPI(int tag, int proc, prevision p): this function has three usage
cases. If a work tag is used, a message to process proc containing the previ-
sion p. If the tag value is termination, a termination message is sent to all
the other processes, causing the end of the simulation. In case the tag is a
AllReduce tag, this function tests if all the processes are over the maximum
simulation time, and causes the termination of the simulation if so.

4.3 Domain Decomposition

The input stage were implemented with MPI-IO, according to figure 3 right,
using local arrays with ghost area [6]. The local arrays, where the terrain and
wind information will be placed, have to be allocated with a few extra rows and
columns in each dimension. This extra area, which is not really part of the local
array, is often referred as ghost area (in light green in the figure). The ghost
area is used to store the information about cells belonging to neighbor processes
needed for the calculus of local cells fire propagation. As the local array (storing
the information marked in dark green in the same figure) has ghost area around
it, the data read from file is not stored contiguously in memory, that is, the rows
of the local array in memory are separated by a few elements of ghost area. This
non-contiguous memory layout is described in terms of an MPI derived datatype,
and specified as the datatype argument to a single MPI_File read all function.

After each process reads its data to the local array, it identifies its neighbors
and makes an MPI Send_recv with each one of them in order to exchange the
ghost areas.



The use of MPI-10 as a high performance library to read the data from files,
along with the distribution of the total workload among the processes (remember
that each process only reads a part of the input file) is extremely important to
allow simulations involving very large datasets. It can make the input stage much
faster, as well as solve limitations in the local memory of each working node (for
example, if the file is larger than the memory available in the node).

4.4 Parallel Fire Growth Computation

Accordingly to the parallelization strategy stated in this document, the func-
tions defined in the parallel framework were injected in the sequential version of
FireStation, in order to implement algorithm 2.

5 G-FireStation

The objective of porting FS to the Grid (creating the G-FS) is to exploit Grid
capabilities in order to manage large data input/output files, to create a large
data base of simulation results and to allow a soft real time monitoring of the
fire growth.

To achieve these goals, several Grid tools available were used: gLite for job
description, job submission, output retrieval and data management; AMGA for
the creation and management of an executions’ database; and WatchDog as a
non-intrusive application monitoring tool.

The G-FireStation should perform the following tasks in its Grid execution:

Download the large data files from a Grid Storage Element;

Start the job monitoring tool (WatchDog);

— Execute the P-FS, using WatchDog to report the fire growth evolution;
— Register the results in a Grid Storage Elements after termination;

— Add an entry with the information about this execution in the data base
server, AMGA;

5.1 Data Management

In a fire growth simulation, the are three potentially large data files: the wind
file, the terrain altitudes, and the fuel distribution. For this reason, these files
were previously stored in a SE. Before the execution of the P-FS application,
the G-FS Job executes a script which downloads these input files from the SE
to the Working Nodes (WNs) using simple gLite Data Management commands.

As the output of a simulation is also a potentially large file, it is uploaded to
a SE after the termination of the simulation. To accomplish this task, the G-FS
executes another script, once the simulation ends.



5.2 Executions’ Database

To avoid repeated G-FS executions, and to keep track of the results and how
they were obtained, we decided to create an executions’ database, using AMGA
8]

AMGA (Arda Metadata Catalog Project) is a Grid service that allows users
to store information used to characterize the contents of the files stored in the
Grid SEs. Each file can be characterized by a set of attributes. AMGA can be
accessed using both the mdclient client application or a set of API calls.

Table 1 is a simple example of G-FS executions’ description.

[ EntryID | Map [ FuelDistr [ Wind [ Ignitions |
/Grid/firePT1.out|/Grid/portugal.asc|/Grid/fueldistrPT.asc|/Grid /windsPT.out|/Grid/ignitionPT.dat
/Grid/fireES2.out| /Grid/spain.asc |/Grid/fueldistrES.asc| /Grid/winds.out |/Grid/ignitionES.dat

Table 1. G-FS executions’ table.

Each entry is characterized by an entry identifier, which in our case is the
name of the results file (as it is unique). Each entry is defined by the map used
in the simulation (Map), the fuel distribution (FuelDistr), the wind affecting the
terrain (Wind) and the ignition points (Ignitions). More fields can be added to
this table, in order to increase the degree of information per execution.

Using this database, the user can avoid repeated executions, by checking in
the executions’ table if any execution with the same inputs took place before. If
S0, the user can use the information in the table to get the output directly from
the SE, without having to submit a job to the Grid. Each time a new execution
takes place, a new entry is added to the table, by executing a simple script.

5.3 Job Monitoring

WatchDog is a tool which allows Grid users to monitor the state of their applica-
tions during the execution [9]. It consists on three bash scripts which should be
taken to the CE along with the application to be monitored: the configuration
script, the control script, and the WatchDog core script. To actually monitor the
changes in the files, the user has to start the core script before the application
starts executing, and stop it after the application is terminated.

Watchdog runs beside the main job and consists of a simple infinite loop. In
each iteration any file change will be reported to the user via LFC or AMGA.
At the end of each iteration the Watchdog sleeps for a given and configurable
number of seconds and then a new iteration will start.

FireStation was rearranged such that each process registers into a local file
its burned cells, in real time. We called this file log file. Whenever a cell burns,
the process appends a line with the cell’s location and its ignition time to the
log file. There is one log file per process.



Algorithm 3 Simple MPI Job.

JobType = MPICH;

Executable = pearson_blocking;

CpuNumber = 3;

StdOutput = pearson.out;

StdError = pearson.err;

InputSandbox = {pearson_blocking};

OutputSandbox = {pearson.err, pearson.out};

Requirements =
({RegExp(ce.cp.di.uminho.pt,other.GlueCEUniqueID));

RetryCount = 0;

Using this feature, the task of monitoring the simulation became quite simple:
WatchDog was configured in order to keep track of the changes in the log files
produced by each processor. During the simulation, WatchDog makes snapshots
of the changes in the log files, publishes them in the LFC Catalog. The user can
access and process that information: for example, a graphical application can
be constantly reading the snapshots and show a map with the evolution of the
simulation in real time.

5.4 Job Description

To submit a job to the Grid, one must specify its characteristics and constraints,
which are taken into account to select the best resource to execute the job. This
is done with a high-level language called Job Description Language (JDL) [10].

In algorithm 3 we have an example of a JDL describing a simple MPI Job.

The values in the attributes JobType, Executable and CpuNumber mean that
this job executes in 3 nodes an MPI program named pearson_ blocking, com-
piled with the MPI flavor MPICH. The input for this job is just the executable
binary file itself as we can see from the values of Ezecutable and InputSand-
boz. The standard output and standard error are registered in the pearson.out
and pearson.err respectively. The user can fetch these two files in the end of
the execution, because they are declared in the QutputSandbox attribute. This
job has the special requirement to run in ce.cp.di.uminho.pt, a civil protection
University of Minho’s Grid Site.

However, this example is just to introduce the JDL and the description of
MPI Jobs, and it is not the best option to submit MPI Jobs, specially if we
need to do pre/post processing operations (compiling, downloading input files,
etc.). The best solution is achieved by using the mpi-start scripts, which were
developed by the int.eu.grid project and based on the work of the MPI working
group that contains members from both int.eu.grid and EGEE.

Using the mpi-start system requires the user to define a wrapper script and
a set of hooks. The mpi-start system then handles most of the low-level details
of running the MPI job on a particular site.

Wrapper Script for Mpi-Start Users typically use a script that sets up paths
and other internal settings to initiate the mpi-start processing. The script first



Algorithm 4 FireStation’s job description file.

Type = ‘“Job’’;

JobType = Normal;

CPUNumber = 12;

Executable = fireStation-start-wrapper.sh;

Arguments = fireStation MPICH;

StdOutput = std.out;

StdError = std.err;

InputSandbox = { fireStation-start-wrapper.sh, fireStation, ignition.dat, Control.dat,
fuelmodels.fls, fireStation-hooks.sh, fireStation-download-input.sh,
fireStation-upload-output.sh, synchronize-amga-se.sh };

OutputSandbox = { std.err, std.out };

Requirements = Member (MPI-START, other.GlueHostApplicationSoftwareRunTimeEnvironment)
&& Member (MPICH, other.GlueHostApplicationSoftwareRunTimeEnvironment) ;

sets up the environment for the chosen flavor of MPI using environment variables
supplied by the system administrator. It then defines the executable, arguments,
MPI flavor, and location of the hook scripts for mpi-start. Lastly, the wrapper
invokes mpi-start itself.

Hooks Script for Mpi-Start The user may write a script that is called before
and after the MPI executable is run. The pre-hook can be used, for example, to
compile the executable itself or download data. The post-hook can be used to
analyze results or to save the results on the grid.

Job Description The user must define a JDL file describing the requirements
for the job. The JobType must be MPICH and the attribute NodeNumber must
be defined. The JobType attribute must be MPICH in all cases.

Running the MPI Job Running the MPI job is no different from any other
grid job. Use the commands glite-wms-job-submit, glite-wms-job-status, and
glite-wms-job-output to submit, check the status, and recover the output of
a job.

The G-FireStation Job Description The G-FS JDL file, describing the
requirements of the G-FS job, is shown in algorithm 4.

As we can see by the inclusion of a wrapper and hooks files in the Input
Sandbox, it makes use of the mpi-start mechanism described previously. This is
the reason why the Executable is the wrapper script, and not the P-FS binary
file itself. In the Input Sandbox are also carried the parametric data for the
simulation (ignition.dat, control.dat and fuelmodels.dat); scripts for download-
ing/uploading data from/to the SE respectively (fireStation-download-input.sh
and fireStation-upload-output.sh); a script to add an entry of the execution in
the executions’ database (synchronize-amga-se.sh); and finally, the WatchDog
scripts in order to allow the monitoring of the simulation. This job will run in
12 nodes of a Grid Site with the MPI-START mechanism enabled (CPUNumber
and Requirements respectively).



Algorithm 5 FireStation’s pre and post processing phases.

# This function will be called before the MPI executable is started.
pre_run_hook () {

# Get the Input Files from the Storage Element

. fireStation-download-input.sh

# Start WatchDog

./watchdog.ctrl start

return 0

}

# This function will be called before the MPI executable is finished.
post_run_hook () {

# Stop WatchDog

./watchdog.ctrl stop

# Uploading the output form the CE to the SE

. fireStation-upload-output.sh

# Synchronising Amga database with the SE

. synchronize-amga-se.sh jobid.amga

return 0

}

Algorithm 5 contains the hooks file, describing the pre and post run phases
of the application.

In the pre run phase, the inputs are downloaded from the SE to the WNis,
WatchDog is started, and the P-FS binary file is given permissions to execute.
After the execution terminates, WatchDog is turned off, the result is uploaded
to the SE and a new entry is added to the AMGA database.

6 Results

We built a parallel prototype of FireStation (P-FS) implemented with MPI,
which makes use of multiple nodes and high performance libraries for the In-
put/Output stages, which can speed up the execution time in large simulations.
The fire propagation algorithm had to be redesigned, in order to be executed in
parallel by multiple processes. This was accomplished injecting parallel primi-
tives in the sequential code, and maintaining the core of the sequential algorithm.
The prototype executes successfully in a cluster environment.

Furthermore, this prototype was taken to the a Grid environment. The set of
tools available in the Grid allowed us to enhance the execution of the application:
the LFC file catalog was used to manage large data files; the AMGA metadata
catalog to create a database of previous executions and respective results; and
finally WatchDog, to monitor the simulation.

7 Conclusions

This work reported can be divided in two main phases: the parallelization of F'S,
and the gridification of the parallel prototype.

In the first phase, the goal was to use create a P-FS which could replicate the
behavior of the FireStation’s Propagation Module, running in a cluster environ-
ment. The idea was to achieve it using a message passing programming paradigm,



high performance input/output libraries, and injecting parallel primitives in the
sequential version. This would allow the parallelization of the module in a fast
and clean way, without requiring technical knowledge about the fire propagation
model. The successful implementation of the model proved that this approach
is feasible, and can be used for the parallelization of other FS modules.

The second phase’s goals were to execute P-FS in a Grid environment, allow-
ing to get input data in real time, create a database which could avoid repeated
executions and improve the efficiency of the prototype by returning immediately
a result previously computed and to find a solution for the job monitoring. These
goals were completely achieved, showing that the Grid can give a good response
to improve the execution of an application with large input output demands
in real time, keep track of the simulations already computed by maintaining a
metadata database, and allowing for soft real time monitoring.

8 Future Work

As future work, the G-FS prototype can be integrated with a graphical interface.
This graphical interface could allow the user to choose the ignition points, to
select a part of the map where he/she wants the simulation to take place, etc..
It could also use the information published by WatchDog in order to allow the
user to see the fire growth over the map.

G-FS could then be placed in a Grid portal. This would allow the applica-
tion to be available over web, and could also be used to enable access control.
Genius, a grid portal which allow the interaction with graphical interfaces could
eventually be a good solution.
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