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1 Assembly and Operation

1.1 EyeSeeCam Parts

The EYESEECAM video-oculography (VOG) system consists of

• a laptop

• the VOG mask

• an IEEE1394-Hub (“Firewire”-Hub)

• three firewire-cables

• and a transport case.

The Laptop is an Intel based Apple MacBook computer on which Linux is installed as the
operating system. The main reason for choosing this hardware / software combination was
the presence of an IEEE1394 connector with additional power supply from the laptop battery.
There are some caveats of this combination that are listed in Chapter 3. IEEE1394 is a standard
for transmitting (video) data that is used by EYESEECAM as its central technology. It is also
called “FireWire” or “i.Link”. The EYESEECAM VOG-system uses this standardized interface
to transmit its video data to the laptop.

Figure 1.1: VOG mask (1) with VOG camera (2), infrared mirrors (3) and LEDs (4), and cali-
bration laser (5).

9



10 Assembly and Operation

The VOG mask consists of

• swimming goggles 1.1(1), used as base frame

• two infared-sensitive FireWire-cameras 1.1(2) with its particular firewire connectors 1.2(1)
and its focusable lenses 1.3 (2)

• two infrared mirrors1.1(3) , which reflect infared light to the cameras, but which are trans-
parent for visible light

• infrared LEDs 1.1(4), which illuminate the eyes

• a calibration laser 1.1(5), which projects a pattern of light spots. These are used to cali-
brate the VOG-system.

• adjustment screws 1.2(2,3) which are used for positioning the cameras so that the bulbus
appears in the middle of the video image.

Figure 1.2: Camera connector and camera adjustment. Plug the FireWire-cable into the
firewire connector (1). The camera is adjusted vertically with adjusting screw (2)
and horizontally with adjusting screw (3) so that the eyeball appears in the middle of
the video image.

1.2 Start of operation

To start running the EYESEECAM VOG system for monucular use, plug one FireWire-cable
into the camera that you want to use. Plug the other end of the cable into the laptop’s firewire
connector.
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Figure 1.3: VOG camera (1). Plug the FireWire cable (3) into the camera’s connector. When
pluging or unplugging the cable, hold the camera (1) with your fingers on the white
camera case. Whenever possible, avoid unplugging the FireWire connector to pre-
serve the connection. Adjust focus of the eyeball’s image with the adjustable lens
(2). If the lens is rough-running, try to turn it a few times in the range ±180 to relax
the silicone rubber spring.

Attention! When plugging the cable into the camera’s connector, hold tight the camera at
its white casing (1.3 (1) ) to avoid mechanical damage of the adjustment mechanism (1.3 (3) ).
Whenever possible, avoid unplugging the FireWire connector to avoid abrasion of the connector.

1.2.1 Binocular operation

For binocular operation, both cameras have to be connected to the laptop.
Attention! Due to malfunction of the provided FireWire hub (Belkin F5U526), a certain se-

quence has to be maintained, when connecting two cameras to the laptop. It does not matter,
which of the hub’s connectors you use.

1. First, connect only one camera to the hub.

2. Connect the hub with the laptop.

3. Wait for approximately five seconds

4. Connect the second camera to the hub

1.3 Subject Preparation

Use the adjustment clip to adapt the elastic tape so that the mask is mounted tightly but com-
fortably to the subject’s head. Attach the VOG mask to the subject’s head). After starting the
EYESEECAM software as described in Chapter 2, use the adjusting screws (1.2 (2,3) ) to center
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the eyeballs in the video images shown in the video monitors of EYESEECAM. Turn the focus-
able lenses (1.3 (3) ) so that you see sharp images of the eyes in the video monitors. If the lenses
are rough-running, try to turn them a few times in the range ±180 to relax the silicone rubber
spring.

Eyes do not only move in the horizontal and vertical directions (2D) but they also move in the
torsional direction around the line of sight. If all three components are taken into account the
eye movements are measured in 3D. Pupil tracking alone gives a 2D measurement. The third
torsional component can be determined from either natural or artificial landmarks that are visible
on the sclera or on the iris. Currently, EyeSeeCam requires dark artificial landmarks that need
to be applied to the sclera with a cosmetic pigment and a sterile surgical pen. This procedure is
described in detail in Chapter B.

After all these preparatory steps the calibration procedure can be started as described in Chap-
ter 4, and subsequently, the examination can be started either with the help of the integrated
database (as described in Chapter 9) or with the methods described in Chapter 2.

1.4 Maintenance and adjustments

1.4.1 Adjustment of the calibration laser

To adjust the calibration laser, switch it on as described in Chapter 4 and turn the laser’s hori-
zontal and vertical adjustment screws (1.4 (2,3) ) so that the middle point of the laser pattern is
in straight-ahead position.

Figure 1.4: Calibration laser (1). To adjust the laser to be aligned with gaze straight ahead, turn
the horizontal (2) and the vertical (3) adjusting screw with a small screw driver.

1.4.2 Replacement of lenses

If you want to measure with the full frame rate of 500Hz, the vertical range of the video image is
limited. Depending on your measuring setup, the vertical eye positions may run out of range. To
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avoid this limitation, you can use lenses with shorter focal length. We recommend lenses with
8mm focal length for measuring with 500Hz. To replace the lenses, unscrew the original lens
from the lens holder. Remove the silicone rubber spring (1.3) from the original lens and put it
onto the new lens. Now screw the new lens on the lens holder.

Figure 1.5: infrared mirror (1) and mirror carrier (2). To preserve the infrared mirror when
transporting the system, release the mirror carrier by loosening the retaining screw
(3). Warning! DO NOT try to adjust the mirror by turning the mirror carrier! It’s
only a mounting element!
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2 Software

2.1 Run the Program

When the computer starts up the user “eyesee” is logged in automatically, see figure 2.1.

1. Make sure the hardware is pluggerd in.

2. Double-click on the desktop icon “EyeSeeCam”.

Troubleshooting Computer hangs during boot sequence. If it states “... has not been checked
for 60 days. Check forced.”, wait until this is done. Otherwise, if it really hangs, see
section A.1.

Troubleshooting If no cameras were found, see figure 2.2 and section A.2.

2.2 Graphical User Interface

The Graphical user interface (GUI) is tab based. The main tab is Eye Tracker. This tab contains
other tabs for single cameras (Left, Right, . . . ) as well as tabs for combinations of cameras
(Binocular, . . . ). The terms “left” and “right” always refer to the person who wears the eye
tracking goggles.

You can get some help on many widgets by moving the mouse pointer over it. After a short
delay a tool tip appears with some explaining text about the function of that widget. In case
there is a keyboard shortcut for e.g. a pushbutton, that is mentioned in the corresponding tool
tip. There are also keyboard shortcuts for the menu items.

The status bar at the button of the main window usually shows a message in response to a user
action. These messages are logged on tab “Log” in the lower right area of tab “EyeTracker”.

If you have connected the eye tracking camera of the left eye, the tab “Left” (within tab “Eye
Tracker”) is enabled. This tab is divided in to three areas, each of them again is a row of tabs.
The upper left row of tabs (“Processing”, “Raw”, “Status”) shows the video of the corresponding
camera plus some information about its dimensions, etc. The raw video, i.e. like it comes from
the camera, is displayed on tab “Raw”, while you can watch the intermediate results of the
processing algorithms in tab “Processing”.

The widget which shows the video has some hidden but important features. Let’s call it
videobox. On right mouse click into this videobox a context menu pops up. Here you can select
what you want to see. Un-check pupil center, and the green cross at the pupil center disappears.

15
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Figure 2.1: The desktop after start-up. There are desktop icons “EyeSeeCam” and “EyeSeeCam
Updater”.

Figure 2.2: An empty window appears if no cameras were found.
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Check globe, and watch the internal model of the eyeball. While the videobox ignores single
left-mouse-button clicks it puts the videobox to full-screen on double-click. Another double-
click returns to the normal view. When you press Ctrl+Alt (Ctrl+Apple on MacBooks) you can
drag a rectangle in the videobox with the left mouse button. The rectangle is applied when you
release the mouse button, its interpretation depends on its size and position:

• A big rectangle that extends from the left half of the image to the right half is interpreted
as a region of interest (ROI). That ROI can also be set on tab “ROI” using the four sliders.
The ROI should contain the pupil entirely for all possible gaze directions, additionally we
recommend to include also iris and some white sclera. Usually it should not be necessary
to change the ROI, except when dark shadows appear at the image border or when the or
if make-up disturbs the pupil detection.

• A smaller rectangle within the left or right half image (it does not cross the vertical mid-
line) defines the search area for a sclera marker. Markers are artificial black-pigment
dots applied to the white sclera. Marker detection is used to determine the torsion (roll)
of the eye around the axis of gaze. EyeSeeCam is capable to detect two markers per
eye: one on the left side of the iris, the other on the right side. Before you drag the
rectangles that define the marker search areas, (1) make sure the system is calibrated and
(2) advise the subject to do a straight ahead fixation. Then drag the rectangles that contain
the entire maker plus a bit of surrounding white sclera. It is essential to the maker detection
algorithm that the border of the rectangle is drawn over background.

• A zero-size rectangle (press-and-release) clears the search area of the marker of the cor-
responding side. No marker detection is performed then.

To the right of this row of tabs there is another row of tabs (“ROI”, “Thresholds”, . . . ) where
you can control the parameters of eye tracking.

Below these two rows of tabs, in the center row of the window, you find the plots (“Position”,
. . . ).

Troubleshooting If once EyeSeeCam shows some instability at program start or when you
just click through the GUI, especially after an update, then delete or rename file .eye-
seecam/appearance.xml in your home folder. At next start, EyeSeeCam appears with
standard settings.

2.3 Calibration

On tab “Eye Tracker” there is a sub-tab “Calibration” in the lower left area. Do not confuse
it with the tab “Servo Calibration” (optional, only with servo driven head mounted camera).
“Calibration” defines the relation of the pupil position in the video image and gaze direction
(horizontal and vertical eye position) while “Servo Calibration” defines the relation of the pupil
position and the servo positions to pan and tilt the head mounted camera.

Press “Start” in tab “Calibration”. The laser, located on the goggle between the eyes, is lit
and projects a target pattern of red laser points to the wall in front of the subject. You may press
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“Abort” (Key Esc) any time to break the procedure and discard the acquired data. A progress bar
shows the progress. During the calibration procedure the subject should fixate five points: the
center-point of the diffraction pattern and the four nearest neighbors (left, top, right, bottom).
The Order does not matter.

There are two tested strategies:

1. The subject performs a short fixation and “jumps” to the next target. When all five target
points have been fixated this is repeated until the laser points disappear.

2. The subject performs five long fixations. The operator advises the next target at 20%,
40%, 60%, and 80% progress.

The calibration may succeed or fail. In case of success

• the bullet of the radio-button group “Parameters” is set to “Calibrated”,

• in the videobox

– the target pattern (the group of little red crosses) has moved to a new position and
– a pink figure appears, connecting the five (really all five?!) central little red crosses

of the target pattern.

Switch on the laser target pattern again (the check-box below the progress bar) to check the cal-
ibration. Advise the subject to fixate the target dots again, this time all laser dots that are visible.
Double-click into the videobox to see the details on full-screen. The green cross indicating the
pupil center must jump to the red cross positions indicating where the pupil should be in that
gaze position according to the calibrated internal 3D model.

In case the calibration failed, check (1) whether the cameras are still operating, (2) the me-
chanical adjustments, (3) no shadows inside the ROI, (4) no reflections on the cornea big enough
to irritate the pupil detection.

See chapter 4 on page 25for details.

2.4 Database

The program provides the opportunity to create and carry out a database. This database helps you
to arrange the examination of your patients and the analysis or evaluation of your measured data.
You can enter the patient’s data and you can choose your kind of examination or measurement.
To evaluate the measured data several specialized analysis scripts are available.

See chapter 9 on page 43 for details.

2.5 Data Output

Output files are controlled in tab “Record”.
If you check a camera in button-group “Videostream”, the videostream of this camera is writ-

ten to file when recording. IMPORTANT: You may create very lage files in quite a short amount
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of recording time! Check for enough disk space. The current version creates a <basename>.pgm
file. The format is multi-image Portable Grey Map. It contains the uncompressed video images.
Most graphical tools read PGM format files, but unfortunately many of them stop reading after
the first frame. Actually the multi-image PGM is just a simple concatenation of single-image
PGM. See also section F.2 on page 73.

With standard setting, a <basename>.mat file is created that contains the results. The format
is compatible to MATLAB version 4. It can be imported by MATLAB and Octave.

A <basename>.txt file may be created that contains the same data as the <basename>.mat. It is
a tab-separated ASCII table. It can be imported by Excel, Gnumeric, gnuplot, and other spread-
sheet programs. The ’#’ character is used to mark comments as this works fine for gnuplot.

2.6 Data Input

2.6.1 Profiles

Many applications of VOG demand the measurement of eye movements combined with a given
stimulus. Such a stimulus may be a voltage output as a function of time.

EyeSeeCam offers an interface to control some program parts by a profile. A profile is a
file in MATLAB 4 format that contains mainly a time series. This time series is a matrix that
has a column “Time”, and other columns with the corresponding values, e.g. volts. Section ??
describes how to create the profiles.

Load an existing profile with button “Load” on tab EyeTracker/Paradigm. Make sure you
have the required euipment, e.g. USB-DUX, connected and ready to use.

Working with the database, the profile that corresponds to the examination and trial is auto-
matically loaded.

When the user starts the profile, at the same time recording begins automatically (see tab
EyeTracker/Record). Recording is terminated when the profile is finished (100%) or when the
user aborts the profile.

2.6.2 Recorded Videostreams

Recorded videostreams can be re-played. Drag and drop the video file on the EyeSeeCam desk-
top icon. Make sure the camera system is not connected to the computer.

The file format is automatically detected if it is supported. All file formats avaliable for
recording are supportad also for the player function. We recommend *.pgm for recording the
videostreams of eye tracking cameras, and *.avi other cameras.

Controls for the player are in tab EyeTracker/Play (bottom left area). Buttons “Start” and
“Stop” continue and halt the videostreams. If the videostreams are halted, the user may step
one frame forward and back with the buttons “Next” and “Back”. The latter buttons have an
auto-repeat mode, so keep pressing the button down for single-step mode. The button “Reload”
just queries the current frame(s) again, which is usefull if you have changed an image processing
parameter.

In case the file contains more than one videostream, the buttons above effect all videostreams,
whereas the controls below effect only the selected one. The slider “Position” can be used to
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go to a desired position. The current program version requires a pre-scan of the file in order to
make this feature avaliable. So press “Start” first, then after the file has been played once, press
“Stop” and drag the slider.

To analyse the pupil positions in a videostream, we recommend the following procedure: (1)
Use “Start” and “Stop” to go the the file position where the analysis should start. (2) Press
“Record” in tab “Record”, then press “Start” in tab “Play”. (3) Press “Stop” in tab “Play”, and
“Stop” in tab “Record”.

2.7 Other Tools

??EyeSeeCam Updater



3 Drawbacks of the Prototype

3.1 Operating System: Linux

• EyeSeeCam is a multi-treading application. In order to assign different priorities to the
various threads, Linux requires the program to be started with super-user permissions. We
have configured the system that way. Please use the provided desktop symbols to start
EyeSeeCam. Without super-user permissions all threads run in normal priority, causing
poor performance and severe disturbance on usability.

• EyeSeeCam needs your computer to run with full perfomance. Make sure that CPU fre-
quency policy is set to “Performance”, not “Dynamic”.

• When plugging in the TV adapter (Terratec Cinergy Hybrid T) into USB, there is a de-
lay of about half a minute! This is due to the corresponding USB driver modules are
loaded automatically when detecting the hardware. Do not remove and re-plug the TV-
USB-adapter, since re-loading of the driver modules does not work and may cause system
failure.

3.2 Computer platform: MacBook

Why a MacBook? We searched for a mobile, light-weighted computer platform, that has at least
one full-featured IEEE1394 plug. Unfortunately, most laptop computers are equipped only with
the smaller 4-wire plug, while we require the bigger 6-wire version, since the additional two
wires supply the power for our system. Laptops of another vendor failed with respect to the
current limitation.

The ability of MacBooks to host the Linux operating system is quite new. Hopefully there
will be updates available to get rid of the most annoying drawbacks of the Linux/MacBook
combination.

3.3 Eye Tracker

??design,
??hot mirrors, sun and spotlights,
??slippage

3.4 Head Camera (Optional)

??limitations of recording, compressed DV vs. uncompressed format
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??system latency

3.5 The Software Application

The software is still under developement. There are some issues where you might find the
program not do what you expect.

• When a file (*.pgm, *.dv, *.avi, *.etd) is given as an argument to EyeSeeCam, it is anal-
ysed for video streams. For very large files this may take some time. The splash screen
states “Searching for cameras...” meanwhile.

• The Graphical User Interface (GUI) is under development progress from a user interface
for developers to a simple-to-use application: You may want more convienient features
where there is just manual adjustment of poorly documented parameters.

• Configuration files are read at program start. No function to write back a modified config-
uration is implemented yet.



Part II

User Manual
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4 Calibration

4.1 Mechanical Adjustment

Best fit of the goggles User and operator must be aware of the slippage problem from the
beginning. The goggles are placed on the skin, and the skin is not at all fixed onto the
head. The goggles might slip slowly on the skin. The found the goggles that we use
as basis for our system to minimize both undesired effects.We recommend to advice the
user: take some time to find the best fit of the goggles. Check for even contact to the face.
People with small noses may have a gap over the bridge or root of the nose, others should
not. Check for symmetry and level. If the user reports a local discomfort, it may be better
to strengthen the belt instead of loosening it.

Focus The lense of each camera has a screw thread to allow manual focus. There is a transpar-
ent piece of hose that fixates the lense by means of friction and elasticity. As the distance
of the camera/mirror to the user’s eye is varies from person to person, the focus should be
checked and usually needs adjustment. For this purpose double-click into the videobox
that shows the corresponding eye in order to view it on full screen. Turn the plastic ring
that holds the lens and turn it. Use enough force to overcome the friction of the hose.
Optimize for a sharp edge of the pupil. Visible structures on the iris might be helpful. Do
not focus on other objects like eyelashes!

Pan and tilt Use the knurled screws on the back plane of the camera(s) to adjust pan and tilt.
If you watch the corresponding eye in the videobox, you can see it move horizontally or
vertically when you turn the screws. Adjust the camera in order to have the eye in the
image center.1

4.2 Procedure Instructions

??

4.3 Quality Check

??
1Actually it is the eyeball center that should be in the image center. You can test this if the user looks straight into

the camera. The camera is only visible under high contrast conditions, i.e. there is a dark background straight
ahead and the camera is in spot light. Then the mirror images of the cameras appear in about 100 mm distance
in front of the user. Fortunately, we have a calibration procedure, so we do not have to care about such fine
adjustments—except for some reason the calibration is not possible!
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4.4 Internals

Assumptions The angular distance of the top, left, bottom and right laser target point to the
center target point given, default value is 8.5°. The orientation is adjusted, i.e. top-center-bottom
laser target points are really vertical (in upright head position).

The distance of the system/eyes to the projection wall or screen is unknown. Instead, far
distance is assumed. Parallax is ignored.

Acquisition During the calibration procedure a given number of valid pupil coordinates is
acquired. So if the cameras run with more frames per second the procedure takes less time. If
the user blinks or for any reason there is no valud pupil detected, the procedure takes more time.

A click on the button Start in tab Calibration starts the calibration procedure for all eye track-
ing cameras. The progress bar shows the progress of one of these cameras, usually camera
“Left” if avaliable. Thus, it is possible to confuse the program by closing an eye lid.

In normal operation the user may have selected automatic or manual slippage correction, but
calibration is always based on the original data (ignoring slippage correction).

Cluster The array of pupil positions is passed to a 2D cluster algorithm. It tries to group the
pupil position into five clusters that meet criteria about distance, extent and number of samples.
In case of failure the algorithm returns without result.

The five groups are identified as the upper, leftmost, lower and rightmost cluster, and the
remaining cluster is identified as the center. The final result of the cluster algorithm is the
horizontal and vertical median position of each cluster.

Parameter Adjustment The five pupil positions that result from the cluster algorithm are
compared with five corresponding pupil positions that are reverse-calculated using the built-in
geometric model. The comparison considers

• angular orientation→angle of rotation,

• average distance→scale factor,

• location of the center-of-mass→horizontal and vertical shift.

A 2x3-matrix is built up on these four parameters to transform the un-calibrated pupil positions
to calibrated pupil positions. This affine transformation is not capable of shear, rotation larger
than about 45°, anisoptropy, or non-linearity.

For further details see chapter C on page 61.



5 Recording

The tab “Record” is located in the lower right area of tab “Eye Tracker”. You can record

• videostreams of one or more cameras to a single file, as well as

• data of pupil and marker coordinates, state calibration laser, servo positions and many
more to a data file.

Click on button “Record” to start recording. A timer (above the “Record” button) counts up the
seconds. Click on “Stop” to stop recording.

Figure 5.1: Tab “Record”. To record videostreams from several cameras, you have to check
each camera. Click “Browse” to change the <basename> of the recorded files. Click
“Options” to select video and data file formats.

5.1 Data Files

There are two formats of data files: a MAT-file and a tab-separated ASCII table. The <base-
name>.mat file is created by default, whereas the <basename>.txt file is not.

5.1.1 MAT-file

The MAT-file corresponds to MATLAB Version 4 file format. It can be opened with MATLAB
and Octave.

The MAT-file contains a sequence of matrices. Each matrix starts with a fixed-length 20 byte
header that contains information describing certain attributes of the matrix, e.g. number of rows
and columns.
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Start MATLAB and open <basename>.mat.
The main matrix is named Data. It uses the numeric format IEEE Little Endian with single

precission (32 bit) floating point numbers. Corresponding to the columns in “Data” there are text
matrices DataNames and DataUnits added that contain a name and a unit for each column.
For example, the first string in DataNames is “Time”, and the first string in DataUnits is
“s”.

Other text matrices are added for convienience. Their name begins with “Eval”, e.g. EvalDataColumns.
Im MATLAB you can type
>> eval (EvalDataColumns)
to evaluate the string. In this case a structure col is created. Its components, e.g. col.Time,
equal the column count. col.Time is set to 1, as the column time is the first column of the
Data matrix. We strongly recommend to use the literal names in scripts rather than the numeric
column index, because the number of columns may vary from MAT-file to MAT-file.

5.1.2 TXT-file

The TXT-file contains the same data as the MAT-file, except the Eval* scripts. It is a tab-
separated ASCII table. The lines of the header begin with the ’#’ which is the comment sign
of Gnuplot. The text of MAT-file’s DataNames and DataUnits is printed in the rows right
above the data rows. An additional row above just holds numeric column indices (1, 2, 3, . . . )
for convienience.

5.1.3 Data Content

Time in units of “s” (seconds). The elapsed time since button “Record” was pressed. It equals
one of the values LeftTime, RightTime, Left2Time, or Right2Time.

Left*, Right*, Left2*, Right2* Columns with these prefixes correspond to a given eye track-
ing camera. “Left” refers to the camera at the subject’s left eye. In case there is a second camera
at the left eye that has the prefix “Left2”.

LeftTime, . . . in units of “s” (seconds). The elapsed time of the current frame of the given
camera since button “Record” was pressed. The underlying timestamp is set about 0.05 ms
before the frame is available for image processing.

LeftEyeHor, LeftEyeVer, . . . in units of “deg” (degree). Horizontal and vertical eye po-
sition. Actually these are the component of a rotation vector that transforms reference gaze
direction to current gaze direction. The rotation vector directs parallel to the rotation’s axis,
and the rotation vector’s absolute value is the rotation angle in degree. The third (torsional)
component of this vector is zero.

LeftEyeTor, . . . in units of “deg” (degree). Torsion of the eye around the axis of gaze.
Actually this is the only non-zero component of a rotation vector that rolls the eye based on the
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sclera marker detection, before another rotation vector (see LeftEyeHor, LeftEyeVer, ...) rotates
the gaze direction. To get the rotation vector that does the complete transformation at once, you
must combine these two rotation vectors in correct order.1

LeftPupilCol, LeftPupilRow, . . . in units of “pixels” (pixel width and pixel height, resp.).
Image coordinates of the pupil center, based on the center-of-mass algorithm. The coordinate
system’s origin (zero) is located in the image center. Positive values are to the left (subject’s
view) and up.

LeftPupilEllipseCol, LeftPupilEllipseRow, . . . in units of “pixels” (pixel width and pixel
height, resp.). Image coordinates of the pupil center, based on an ellipse-fit algorithm2. The co-
ordinate system’s origin (zero) is located in the image center. Positive values are to the left
(subject’s view) and up.

5.2 Video Files

It is possible to record video of all cameras into serveral file formats. The default format is AVI,
but it is possible to select RAW, PGM or DV. You can record as many cameras as you like into
one single file. EyeSeeCam is able to load all these formats and display the stored cameras as
virtual live cameras.

5.2.1 AVI-file

AVI is the default container format to store videos. Each camera is stored in an extra video
track within the AVI container. Most Video-Players support only one video track and therefore
display only the first track. We recommend to use the VLC media player3 to display recorded
AVI files with all video tracks. Windows users are encouraged to download the latest DivX4

codec to view the videos in Windows Media Player and Microsoft Powerpoint. Each videotrack
is compressed by default with a FFMPEG MPEG-4 (DivX) codec with maximal 8 MBit/s data
rate. It is not yet possible to change the compression settings. You may prefer this format to
capture compressed and easy-to-use videos with the head mounted camera or for presentations.

1A “Eval*” script for MATLAB will be added in future versions.
2In case no ellipse-fit algorithmellipse-fit algorithm is used, the current software version puts the values LeftPupil-

Col, LeftPupilRow, . . . here again.
3http://www.videolan.org
4http://www.divx.com
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Figure 5.2: The VLC media player displays all recorded video tracks of one single AVI file.
VLC is available for various operating systems (here: Mac OS X).

5.2.2 PGM-file

The “Portabe GrayMap” (PGM) format is attended to store every frame and additional meta
information directly to disk. It provides no compression or color conversion, but delivers the
data in exactly the same way as it was grabbed form the camera. You may prefer this format,
if you like to examine the videostream by your own and can’t accept any distortion, caused by
video compression. The Grayscaled VOG eye cameras are stored as 8bit graymap, analog color
cameras in YUV422 format are stored as 16bit graymap.

5.2.3 DV-file

The “Digital Video” (DV) format is only selectable, if you use an analog video to digital video
(AV/DV) converter, like Canopus ADVC-55. This converter compresses the analog video by
default with no additional CPU load. The compressed images from each camera are stored
interleaved into a single *.DV file.



6 Mini Interface

The default EyeSeeCam user interface could be to cluttered and difficult, if you want to create
simple recordings with your head mounted cameras. The EyeSeeCam.mini provides an easy-to-
use interface for the main tasks you have to do in a mobile situation:

• View all camera, to check correct capturing of the eyes, sharpness and image formation.

• Control servo actuators and start calibration procedure.

• Start and stop recordings.

The mini interface was designed for simple navigation. It is structured as a simple tree menu,
similar to the one you find in your Apple iPod music player. The root menu presents you a list of
five items. As you will see, the items are either options to enable or disable something, actions
or sub menus. Sub menus are marked by an arrow on the right side. The last item in each sub
menu leads you back to the upper menu. When you leave the root menu, you see the last viewed
camera. It is possible to use your mouse or the up and down arrow keys to navigate. Active
items are marked in orange. Press the left mouse button, the return key or the right arrow key to
enter. Press the right mouse button or the left arrow key to leave a sub menu.

Figure 6.1: You can start the mini interface by selecting “Run EyeSeeCam.mini” in menu “Set-
tings”. The mini interface appears in a new window. To return to the default inter-
face, select “Classic interface” with a mouse click or using the arrow keys.

Activate the “View Camera” sub menu item in the root menu and press the left mouse button,
the return key or the right arrow key. You can choose between all attached cameras to view a
camera. While viewing a single camera it is possible to use the mouse wheel to switch between
all cameras.
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Figure 6.2: “View Cameras” sub menu.

The “Control & Record” sub menu lets you start and stop the servo actuators, start and stop
record, start the calibration procedure and switch the laser pointer. The mini interface always
uses the custom calibration. The calibration is automatically stored and loaded on next start.
When pressing “Start Record” the mini interface always creates a new AVI file with MPEG4
compression. The VOG data is stored in a MAT file. The filename has the format “yyyymmdd-
hhmmss”.

The “Settings” sub menu lets choose, which camera should be recorded (default “C” & “D”),
if any filter should be applied to servo movement and if the mini interface should be displayed on
EyeSeeCam startup by default. Every time you click “Save appearance” in the classic interface,
EyeSeeCam will start with the classic interface at the following progam launches.

Figure 6.3: “Control & Record” sub menu lets you start and stop the servo actuators, start and
stop record, start the calibration procedure and switch the laser pointer. The “Set-
tings” sub menu lets choose, which camera should be recorded



7 Viewer

The EYESEECAM program records eye movement data to Matlab (mat) files. EYESEECAM is
shipped with an external stand-alone Matlab program named “ezplot” that enables the user to
view the contents of such a file as well as to browse through the saved data by using the “Zoom”
and the “Hand” functions from the Matlab figure toolbar. With this tool the data can also be
printed or exported to eps, pdf or other image files. Immediately after a data file is recorded it
can be viewed by pushing the “Plot ...” button that is located in the “Record” tab in the
lower right corner of the graphical interface (see Figure 7.1).

Figure 7.1: The data Viewer can be started from the graphical interface by pressing the “Plot
...” button that is located in the lower right corner of the “Record” tab.

The “Plot ...” button activates a file browser dialog in which the desired Matlab file can
be selected (see Figure 7.2).
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Figure 7.2: The “Plot ...” pushbutton opens a file browser dialog in which a Matlab file
can be selected that will opened by the external data viewer.

After a file is selected and the “Open” button is pressed the external viewer (see Figure 7.3)
is started1 and the data contents are displayed on a new graphical user interface that mainly
consists of three plots, one for the horizontal, one for the vertical, and one for the torsional eye
movement component.

Figure 7.3: The external data viewer displays horizontal (top), vertical (middle), and torsional
(bottom) eye movement components. By default, it plots the uncalibrated eye posi-
tion in pixel units over time.

In each of the subplots the eye position data are plotted over time in uncalibrated pixel units.
The “Zoom” function that is located in the toolbar can be used to view the data contents at every
level of detail required by the specific analysis. With the “Hand” tool the data can be dragged in
either direction while the time axes of the subplots remain synchronized. At every viewing step,
the current display contents can be printed or exported to a high-quality image file format like

1The external data viewer is a stand-alone program that can also be started from a shell by entering a command like:
ezplot mydata.mat
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pdf. This functionality is standard for Matlab Figures, and therefore, it is not documented in
great detail here. It is also standard Matlab functionality to export the thus plotted data to pdf,
eps and a number of other formats. Please refer to the Matlab documentation for further details
on the plotting and graphical capabilities.

Part of the Matlab functionality like, e.g., the export functions, can be accessed from the
standard “File” menu of the viewer application. The functionality that is specific to this data
viewer can be accessed from the “Actions” menu (see Figure 7.4).

Figure 7.4: The data viewer functionality can be accessed from the “Actions” application
menu. From here, the control can be transfered to a Matlab command window
with “Command ...”, and also, different data viewing types can be activated with
the menu “Plot >”. With “File Open ...” a new Matlab data file can be
opened for display (In the current version this function doesn’t work properly due to
a Matlab bug). The menu “Show PDF >” provides access to pdf export and view-
ing capabilities. With “Exit” the ezplot Matlab data viewer application can be
terminated. The “File” menu is common to all Matlab applications. This menu
was not altered and its use is documented in Matlab.

7.1 Data Browser

The external stand-alone Matlab application ezplotwas designed to support the EYESEECAM
user with data browsing and monitoring capabilities. Immediately after a trial data set is recorded
in the main EYESEECAM application it can be viewed for control purposes by pressing the
“Plot ...” pushbutton (see Figure 7.1). When the “(+) Zoom” function is pressed in the
toolbar a data region can be selected with the mouse in order to zoom in to the selected region.
The time axes of all other subplots remain synchronized. In Figure 7.5, for example, one of
the saccades from Figure 7.3 is displayed in a zoomed-in version. After this step the “Hand”
tool can be used from the toolbar in order to scroll through the data, e.g., in the left and right
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directions. Again, all other subplots remain synchronized. At each step, the user can return to
the original view as displayed in Figure 7.3 by klicking with the right mouse button in any of the
three subplots. Just like in Matlab, a pup-up menu appears in which “Reset to original
view” can be selected.

Figure 7.5: Browsing through the data with the Matlab zoom and scroll functions. The zoom
function (left) can be activated by pressing the magnifying glass with the (+) symbol
on the toolbar. After this step a region can be selected in one of the subplots. In this
example one of the saccades from Figure 7.3 was selected. When the hand symbol
is pressed in the toolbar (right) the data can be scrolled from left to right by klicking
in one of the subplots and dragging the mouse in the horizontal direction. The time
axes of the individual subplots remain synchronized both during zooming (left) and
scrolling (right). Plese note that the toolbar symbols for the magnifying glass and
the hand are depressed in the left and right figure parts, respectively.

7.2 Exporting and Printing

With ezplot it is possible not only to display and browse EYESEECAM
eye movement data on the screen but also to print the displayed data plots
on a printer. Related to this printing functionality is an export function-
ality, that serves to generate image files in a number of standard formats
like pdf and eps. This is a convenient means to exchange high-quality
data plots with other programs like Word, PowerPoint or LATEX. pdf and
especially eps files are highly welcome by publishers as the standard file
format for scientific data plots. eps files can also be imported into graphi-

cal programs like Adobe Illustrator which in turn can serve as an intermediate step for integrating
a figure into Microsoft Word or PowerPoint.
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Figure 7.6: The data plots from Figure 7.3 can be exported to a pdf file. Such a pdf file can be
viewed with a program like kpdf or Acrobat Reader (acroread).

When the user presses the “Show PDF >” button the current contents of the display are ex-
ported to a pdf file. This file is located in the same directory and –apart from the additional
suffix .pdf– it is also given the same file name as the original Matlab data file. This pdf file
can then be viewed and subsequently printed either with Acrobat Reader (acroread) or with
kpdf which is also a pdf viewer (see Figure 7.6).

The standard Matlab “File” menu provides additional printing and exporting possibilities.
With the menu “Save as ...” it is possible to export the current display contents to a
number of file formats that are supported by Matlab. A file browser is opened in which the
desired file name can be entered. The desired image file format can be chosen from the drop-
down box entitled “Save as type:”.

Figure 7.7: ”Save As ...” menu (left) and Matlab file browser (right). A number of image file
formats like pdf, eps, fig, etc. can be generated with the Matlab “Save as ...”
functionality.
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7.3 Types of Data Views

By default ezplot displays uncalibrated eye position data of the left eye in units of pixels over
time. This default option is denoted with “LeftEyeRaw” in the “Plot” menu. The right eye
data can be plotted with the corresponding menu entries with a “Right” prefix.

There are also other ways to present the data that is contained in the EYESEECAM data file.
Instead of the raw data the calibrated eye positions can also be plotted with the “LeftEyePos”
or “RightEyePos”menus. The eye movement velocities can be plotted with the “LeftEyeVel”
or “RightEyeVel” menus. Another means to present the data is not by plotting it over time
but by plotting the vertical over the horizontal component. Such an example is given in Figure
7.8.

Figure 7.8: Calibrated eye position data with the vertical component plotted over the horizontal
component (left subplot in right figure). Eye movement data can not only be plotted
over time as in Figure 7.3 but also with one of the horizontal, vertical, or torsionl
components plotted over another component. This plotting function can be activated
with the “Plot” menu entry “LeftEye3D” (left).

The Matlab plotting commands are directly integrated into the EYESEECAM data files. These
files contain a Matlab string variable called “EvalEZPlot” in which the plotting program is
stored. This string can be viewed either with Matlab, with ezplot or with octave2. After
loading an EYESEECAM data file into the Matlab workspace the command eval(EvalEZPlot)
would generate exactly the plot from Figure 7.3. The format of the EYESEECAM data file is ex-
plained in Chapter F.1 and in the next chapter some restricted methods of using ezplot for
generating customized plots are discussed.

2octave usage is shortly explained in Chapter 7.5.
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7.4 Matlab Command Window

Advanced users who know how to use Matlab can work with a small subset of additional Matlab
possibilities by invoking “Command ...” from the “Actions” menu of ezplot. The
Matlab stand-alone program ezplot always has an accompanying xterm shell window open in
which a prompt “>>” appears as soon as “Command ...” was invoked from the menu (see
Figure 7.9). Some of the simpler Matlab commands can be entered at the prompt in this xterm
window. It is possible to create an additional figure by entering figure(2), for example. The
Matlab command plot can then be used to create customized plots. Invoking the command
eval(EvalEZPlot) would simply generate again the plot from Figure 7.3, however, more
sophisticated plots are also possible.

Figure 7.9: The Matlab stand-alone program is executed in an xterm window (right). As soon
as the “Command ...” menu is activated (left) a prompt “>>” appears in the
xterm window and a restricted subset of simple Matlab commands can be entered.

7.5 Data Browsing with Octave

ezplot is a stand-alone Matlab application, however, compared to Matlab its functionality is
drastically reduced. An alternative way to browse the Matlab data files that are generated by
EYESEECAM and to generate plots is octave. octave is a free program that clones part
of the Matlab functionality. While Matlab is not shipped with EYESEECAM due to its high
price octave is shipped together with EYESEECAM. octave can be invoked either from
the desktop by clicking on the octave icon or from the shell by entering octave. A small
octave session for plotting the horizontal eye position is displayed in Figure 7.10. octave
uses gnuplot as the plotting program. Further documentation of these two programs can be
obtained from the respective project websites.
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Figure 7.10: The free Matlab clone octave can be used for generating simple plots of the
EYESEECAM data. In this example a data file is loaded with the function load. The
warnings displayed by octave can be ignored. The data file contains a Matlab
string with the name EvalDataColumns. When eval(EvalDataColumns)
is invoked a structure col is generated whose fields contain the column indices of
the Data matrix. The command plot(Data(:,col.LeftEyeHor)) gener-
ates a plot of the calibrated eye position data.



8 Sequencial Control

8.1 Introductions to Profiles

??

8.2 Receivers

8.2.1 Diffraction Pattern

??
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9 Database

EYESEECAM contains some basic database functionality which can be accessed from the “Database”
tab. The database consists of a number of tables and each of these tables provides support for
managing one of the following items:

Patients Patient data like names, birthdays, etc. can be entered and edited (see figure 9.1)

Examinations Examinations like caloric stimulation, saccade metrics, etc. can be selected
from the predefined entries. New examinations can also be created and edited.

Conditions Conditions like light, darkness, control, etc. can be selected from the predefined
entries New conditions can also be created and edited.

Measurements Measurements are in a 1:n relation to Examinations, i.e., a certain exami-
nation can contain n measurements. A caloric stimulation, for example, consists of five
individual measurements. After a new examination is created at least one measurement
must be added to the Measurements table. A certain measurement is either defined by a
measurement time or by a (stimulation) profile.

Trials Trials are in a 1:n relation to Measurements, i.e., a certain measurement can contain n
trials. If everithing goes well during a measuremnt only one item will be added automat-
ically to the Trials table. If something has gone wrong the measurement can be repeated
and the table will be extended by an additional item.

Analysis Analyses are in a 1:n relation to Examinations, i.e, a certain examination can contain
n analyses. The caloric stimulation, for example, can be analyzed by the predefined stand
alone Matlab application or by a new user defined function.

Examinator Examinator name and contact data are managed in this table.

System System settings, like paths to input and output data are managed here.

The database supports the user in carrying out the required examinations. Baiscally, the user
simply has to add a new patient and enter his data and then select the desired examination from
the Examinations tab, e.g., the caloric stimulation. After this step he can click on the Measure-
ments tab and select the measurement he wants to perform next, e.g., the cold water stimulation
of the left ear. Now the examination can be started by clicking on the “Eyetracker” tab
and by subsequently pressing the “Start” button in the “Record” tab. Before the button is
pressed the proper eye alignment should be monitored.

After data acquisition is finished a new file will be saved to disk. The name of this new
file is assembled from the item IDs that were previously selected on the “Database” tab.
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Immediately after the file is stored its contents can be viewed by clicking on the “Plot ...”
button of the “Record” tab (see Chapter 7 for details). Another way to view (previously)
recorded data is to click again on the “Database” tab. There, the desired trial can be selected
from the “Trials” tab. A press on the “Plot Data” button, will start the data viewer.

Figure 9.1: The “Patient” table of the database.

9.1 Database Tab

On the “Database” tab regular database operations can be performed. These operations are
common to all database applications and include forward and backward navigations as well as
the creation, editing, and deletion of items (rows) in a database table. All these actions can be
accessed from the button bar above the tab area.

Bar with buttons The arrow buttons “<” and “>” switch between different entries of the table.
The buttons “Insert New”, “Update” and “Delete” change the content of the table.

Tabs with the names of the tables.

Data form In this form you can edit the content of the table. Some entries or given fields which
stand for a distinct function of the database are marked grey and cannot be edited.
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Table-view This table shows clearly arranged all entries inside the current table.

9.2 Usage of the database

9.2.1 Patient

In this example a new file for a patient named “John Newman” will be created. With the key
“Insert New” an empty entry is generated. Now you can fill in the empty fields with the patient’s
data. To save the edited patient form in the database click the button “Update”. Any further
changes of this form can be saved with the “Update” function. See figure 9.2.

Figure 9.2: Create new patient.
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9.2.2 Examination

You can find predetermined examinations in the table called “Examination”, see figure 9.3. You
can also add your own or new examinations. How you add the examinations is the same way as
explained in chapter “Patient”.

Figure 9.3: Table Examination.

9.2.3 Measurement

The examination consists of one or more measurements. Figure 9.4 shows all different measure-
ments of the examination “Kalorik”. Each new defined examination gets automatically a default
measurement named calibration.

In figure 9.5 you can see an example of a newly defined measurement “My_Measurement”.
You can also add your own or new measurements.

There is one important aspect of the Measurements table: In the column “Profile” either the
duration1 in seconds of the measurement should be entered here or the name of a Matlab version
4 data file. This data file must adhere to a specific syntax that is described in more detail in
Section G.1 on page 77. It defines the duration and a synchronized sequence of stimulations that
are applied as soon as the measurement is started. Possible stimulations are a visual stimulus
like an optokinetic motion pattern presented on a video beamer or a vestibular galvanic current
that is controlled by the analog outputs of connected data aquisition hardware like USB-DUX.

1Using a duration instead of a stimulation profile is the easiest way to operate EyeSeeCam. If the user wants to de-
liberately start and stop measurements without the restrictions of a predefined duration he can enter a ridiculously
high value for the duration and press the “Start” and “Stop” buttons on the “Eyetracker/Record” tab
whenever he wishes.
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Figure 9.4: Table Measurement.

The directory from which these stimulation profile data files are loaded is defined in the database
table System (see Section 9.2.9 on page 50 for details).

Figure 9.5: New measurement.

9.2.4 Loading Measurement

After you have chosen a measurement you load it with the key “Load Measurement”. The pro-
gram automatically will switch to the tab “Eye Tracker”. You start the measurement by clicking



48 Database

the key “Start Record”. The duration of the measurement is determined by the previously loaded
file “profile.mat” (see chapter “Measurement”).

9.2.5 Measurement Results : Trials

The content of the table “Trials” consists of the automatically generated filenames of all mea-
surements of the previously chosen examinations. See figure 9.6.

Figure 9.6: Table Trials.

The analysis of a trials (results of a measurement) is based on only one successful trial, there-
fore you can mark the valid trial in the table "Trials". You actually mark the trial in the column
"Valid". As a default adjustment the last trial is marked as valid. You can also mark an trial
afterwards as valid.

Figure 9.7 shows a repetition of the measurement "Referenz" with the last trial marked as
valid.

Figure 9.7: Table Trials.
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9.2.6 File Names

The file names assembled by the database have the following structure: pXXXXeXXcXXmXXtXX.mat.
An example of a file name is p0001e03c00m02t02.mat. The first letter of the file name p
prefixes the patient ID, which in this example is 1. The examination is denoted with the letter e
which is followed by the examination ID. Condition, Measurement, and Trial are denoted by the
letters c, m, and t, respectively. Although with this naming convention file names tend to get
quite long and cryptical, this approach can be quite helpful in the automated analyisis of huge
data sets with many patients and conditions. The thus created and named files are stored to a
location that is defined in the table “System” (see Section 9.2.9). The “System” entry with
the name “data” contains the storage path in its “Value” field.

9.2.7 Plotting data

To create a figure of your collected data you mark a results file out of the table “Trials” and then
click the button “Plot Data”.

9.2.8 Data analysis

In the table “Analysis” you can find all possible analysis programs for your selected examination,
see figure 9.8. These programs are in a special directory (see chapter “System”).

Figure 9.8: Table Analysis.

This figure shows a selection of the analysis program “Kalorik”. This program analyses all
previously selected trials from the table “Trials”. The results of the analysis are plotted in a
figure placed in the new window.
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9.2.9 System

System-specific adjustments can be done in the table “System”, see figure 9.9.

Figure 9.9: Table System.

The entries “profile” and “analysis” define the directories from where the profile
files or analysis programs will be loaded. The entry “data” defines the directory where your
data has been or is going to be saved.

9.2.10 Examinator

Here you can add the name and additional information of the examiner, see figure 9.10.
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Figure 9.10: Table Examinator.



52 Database



Part III

Reference Manual

53





A Troubleshooting

A.1 MacBook

Computer hangs during boot sequence The computer has been switched on or has just
been re-booted. White text has been prompted on a black background screen. There has not
been progress for a while.

Press and hold the power button until the computer is shut down. Wait a few seconds. Turn the
computer on again. In case the problem remains, plug off any periphery, e.g. mouse, cameras.

Computer hangs during shut down Press and hold the power button until the computer
is shut down.

Missing keys The MacBook’s keyboard differs from the common PC keyboards.
PC MacBook PC MacBook PC MacBook
Alt Apple [ Apple 5 < ^

Alt Gr Alt ] Apple 6 > °
@ Apple L | Apple 7 ^ <
~ Apple + { Apple 8 ° >

Del (missing) } Apple 9

A.2 Cameras

No IEEE1394 (“FireWire”) cameras detected Connect the IEEE1394 cable. Wait for
2 seconds, allow the camera to initialize. Then start EyeSeeCam. If no IEEE1394 cameras is
found,

1. most likely there is already an instance of EyeSeeCam program running. Press Ctrl+Esc.
A window named ProcessTable appears. Look for “eyeseecam”, select it and press button
Kill. Quit the ProcessTable.

2. there might be a problem with the kernel modules that have “1394” in their names. We
have observed such problems when un-plugging a IEEE1394 camera while EyeSeeCam
is running. Un-plug the cameras and reboot the computer. 1

Lost frames ??

1Advanced users: unload and reload those modules using lsmod, rmmod and modprob.
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B Eye Movements in 3D with Scleral
Markers

For measuring 3D eye movements that include torsional rotations around the line of sight EYE-
SEECAM currently requires dark artificial landmarks that can be applied to the sclera with a
cosmetic pigment and a sterile surgical pen. The main advantage of using such artificial land-
marks is the superior data quality in comparison to measurements that are based on natural
iris landmarks. However, the procedure of applying the scleral markers can be called invasive,
although it is tolerated very well. This chapter describes how the scleral markers can be applied.

B.1 Marker Application

This chapter lists both the material that is required for applying the dark artificial markers to
the sclera and the single steps of the marker application process. The markers consist of a dark
pigment that –being a cosmetic product– is already tested for physiological compatibility. The
pigment absorbs infrared light and, therefore, the markers appear as dark or almost black dots
with a high contrast to the white sclera. The markers have to be applied with a sterile surgical
pen onto the anesthetized sclera.

Material

1. Dark cosmetic pigment1

2. Contact lens holder; in the one half the pigment is kept and in the other half it can be
dissolved with saline solution

3. Conjuncain EDO 0,4% eye drops

4. Disposable injection with a small needle

5. Physiological saline solution; this can be kept in the injection.

6. Sterile surgical pen2

1The dark cosmetic pigment can be purchased from www.eyeseecam.com
2Surgical pen, Fine, 26.665.00.000 from Pfm AG in Cologne, Germany, http://www.pfm-ag.de/
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Process

1. The eye needs to be anesthetized with a drop of Conjucain about 3 minutes before the
markers can be applied to the sclera.

2. A pasty solution can be dissolved in the contact lens holder from a small amount of pig-
ment (as much as fits on the tip of a scalpel) and a much smaller drop of physiological
saline solution. The thin injection needle can be used for the drop.

3. The surgical pen can then be permeated with this pasty solution.

4. The most important step consists of painting the markers on the sclera as soon as the eye
anesthesia is in effect.

a) The subject / patient has to assume the same head and trunk position as during the
later examination, since the head orientation can have an effect on the eye position.

b) The subject / patient has to assume an excentric eye position by fixating an excentric
dot. The sclera can then be approached with the pen from the opposite side. The
patient must not blink and keep the eye open for about half a minute until the pigment
is dry, otherwise the marker may be washed out by the eyelid.

c) The markers have to be painted at a distance of about 1-2 mm from the limbus.
d) There are many methods around of how to apply the markers, probably as many as

there are examinators. One of the methods is to repeatedly paint the dot with a gentle
pressure on the sclera.

5. This process can be applied more than one time if the marker is washed out. Preferably,
the same location should be chosen on the sclera for the new marker.

6. Finally, the EYESEECAM goggles can be put on and the appearance of the eye and the
markers can be monitored in the EYESEECAM video displays.

This process has to be practiced. After the first few trials the markers will probably wash out in
minutes, however, after some practice the markers will stay for at least one hour and the time for
completing the process can be reduced to less than ten minutes. The subsequent steps that are
required to prepare the software for marker tracking are detailed in Chapter. The tracked marker
positions are saved to a Matlab data file whose format is described in Chapter F.1.

B.2 Detection

This section describes how to work with EyeSeeCam in order to detect the sclera markers and
evaluate the torsional eye position.

1. The checkbox “Markers” in buttongroup “Enable” in tab “Eye Tracker/Common” must
be checked. The default state of this checkbox can be set in camera.xml, see section E.1,
camera/imgproc/marker_enable.
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2. Perform a successful gaze calibration.

3. Switch Laser Pattern on again. Advice the subject to fixate on the center laser dot. Hori-
zontal and vertical eye position are close to zero now.

4. Select the tab “Left”, “Right” or “Binocular”, if the subject has the markers in the left eye,
the right eye or both eyes, respectively.

5. Enlarge the videobox (by double-click or mouse wheel). Make sure that item “Markers”
of the videobox’es popup-menu is checked, so yellow vectors will be diplayed from pupile
to markers once they are detected. We also recommed to check item “Globe”.

6. Press and hold Ctrl+Alt (on MacBooks: Ctrl+Apple) and draw a rectangle with the left
mouse button over the two markers.

• The entire marker must be within the rectangle. The border of the rectangle should
cover the evenly white sclera, and not be disturbed by any high-contrast details.

• You may repeat the rectangle-drawing until it fits.
• A single click with the left mouse button deletes the marker (remember to press

and hold Ctrl+Alt/Apple, else the left mouse button has no effect). The rectangle is
interpreted by the program as marker sample pattern if it is eitherr in the left or right
half of the image. If you happen to draw the rectangle over the vertical mid-line, it
is interpreted as the new ROI (region of interest for pupil detection), thereafter you
must set the desired ROI again.

• If both eyes have sclera markers, repeat this procedure for the other eye.

7. Check the range of eye positions where the marker detection works well: Switch off the
laser pattern and advice the subject to look around, first with head upright, then with head
tilted to the left (left ear to left shoulder), then to the right.

• Watch for interactions of the markers to the eye lids.
TROUBLESHOOTING: If the rectangle was drawn too large it gets in touch with
the eye lid too early. Re-draw the rectangle a little smaller.

• Watch for interactions of the markers to illumination reflexes.
TROUBLESHOOTING: Try to cover the corresponding illumination LED, which is
embedded in the goggle’s frame, e.g. by black tape.

• Watch the Globe (dark blue spherical wire frame) when the eye moves. The Globe
should stick to the markers!
TROUBLESHOOTING: Do the calibration again.

8. Settings: Select the eye tab “Left” or “Right” and watch the graph “T” (torsional compo-
nent) in plot “Postion” for discontinuities.

• Slider “Search range” on tab “Marker” controls the angular length of the search path.
The search path is displayed as a yellow arc in the videobox. Do not set a value that
is much bigger than required. We recommend about 3° more than the expected
maximum amplitude of ocular torsion. The measurement is easily disturbed if the
search path touches the eye lids.



60 Eye Movements in 3D with Scleral Markers

• Slider “Pixel noise”: You might only want to fine-tune this parameter for markers
that are about to disappear (e.g. one hour after application). Watch the sample
images in the corners of the videobox to see the effect of this value. The background
must appear white, not gray and dirty.

9. When recording, the columns about markers will be included in the MAT-file and TXT-
file if “Markers” are enabled (checkbox on tab “Common”) and the rectangle for marker
detection has been drawn.



C Tracking of Horizontal, Vertical, and
Torsional Eye Movements

Methods and corresponding bibliography from

T. Dera, G. Böning, S. Bardins, and E. Schneider, “Low-latency video tracking
of horizontal, vertical, and torsional eye movements as a basis for 3DOF realtime
motion control of a head-mounted camera,” in Proceedings of the IEEE Conference
on Systems, Man and Cybernetics (SMC2006), Taipei, Taiwan, 2006.

C.1 METHODS

C.1.1 Overview

The evaluation of eye orientation in the head involves two major steps.

1. The pupil in the image is detected, in both horizontal and vertical directions.

2. Artificial sclera markers are used to determine the torsional component of eye orientation,
i.e., the rotation angle around the axis of gaze direction.

The second step, the detection of the landmarks on the eyeball even for eccentric eye orienta-
tions, requires a geometric model of the eyeball. The geometric model basically is a transforma-
tion function that provides the functionality listed in table C.1.

Table C.1: Interfaces of the geometric model.
Input Output
Image coordinate Eye orientation, zero

torsion
Eye orientation Image coordinate of

pupil
Image coordinate, eye
orientation

Location of marker on
the eyeball

Location of a marker on
the eyeball, eye orienta-
tion

Image coordinate of the
marker

Sequence of pupil im-
age coordinates during
calibration

no output, but internal
parameters adjusted.
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Figure C.1: Left: A cutout of the VOG video image showing just the pupil. Although the pupil
area may be partially covered by light reflexes, the detection of the pupil center
should not be affected. Middle: The pupil edge is detected. Right: Edge segments
that do not meet the expected edge curvature of the elliptic pupil edge are removed.
Fitting an ellipse to the remaining pixels results in the correct pupil center coordi-
nates.

C.1.2 Pupil Detection

For the detection of the 2D projection of the pupil within a video image the parameters describing
the pupil position and shape are initially estimated and then sequentially improved by several
processing steps. All steps are based on the assumption that the pupil can be identified by its
brightness and by the brightness gradient between the pupil and the iris or, e.g., reflections of
the illumination.

Brightness thresholds are therefore automatically determined for each frame by analyzing its
brightness histogram. These thresholds are utilized to form horizontal and vertical projections of
the binarized image. After background subtraction, the back-projection of these profiles yields
a first guess of the pupil’s center coordinate. Starting from this center the connected cloud of
pupil pixels is searched along a spiral path. A principle component analysis of the pixel cloud
yields a first and robust estimate of the pupil’s ellipse parameters, its center, the length of both
axes, and its rotational angle.

To increase the accuracy of the 2D pupil detection, a further edge search and edge analysis
following a method proposed in [1] is performed. Starting from the edge of the previously
detected pixel cloud, a more precise edge search is performed using a 3x3 pixel mean filter until
a connected edge around the pupil is found, followed by a curvature analysis which eliminates
edge inhomogeneities. Finally, a 2D variance image of the pupil is calculated to allow the
identification and exclusion of edge pixels with an unusually high variation in their 7x7 pixel
neighborhood. This step is intended to delete edge pixels which have not been identified by
the curvature analysis but still are affected by nearby cornea reflections. An ellipse is linearly
fitted [2] on the remaining edge pixels to achieve the final ellipse parameters that describe the
2D projection of the pupil. Fig. C.1

shows a representative image of the pupil (left) and the connected pupil edge (middle). The
boundaries of the cornea reflections are accurately removed by curvature and variance analysis
(right figure) to improve the results of the final fit operation.

The two actuators that control pan and tilt of the scene camera take pupil coordinates as input
without further geometrical interpretation. This is because the calibration procedure relates
measured pupil positions to given servo commands. This procedure was described previously in
[3] and in the companion paper [4].

C.1.3 3D Geometric Model Approach for Eyeball and Camera

The geometric model described here is a sequence of three transfer functions. Fig. C.2 presents
a concise graph of the data flow.
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Figure C.2: Transformation sequence from pupil image coordinates to eye orientation as used
for gaze evaluation. For calibration the reverse transformation calculates expected
pupil coordinates from given eye orientations.

The three transfer functions are each specialized on a certain task:

1. The affine transformation transforms image coordinates. The parameters of the internal
matrix are set by the calibration procedure. See section C.1.6.

2. The axially symmetric geometric model is based on the dimensions of eyeball radius,
camera to eyeball distance, camera focal length, etc. See section C.1.4.

3. Since another reference for gaze direction may be desired than the eyeball-camera-axis, a
rotation is applied to the coordinate system. See section C.1.5.

C.1.4 Geometric Model: Axially symmetric configuration

In an ideal configuration, the eyeball is spherical and centered at the origin of the coordinate
system, as illustrated in Fig. C.3.

Figure C.3: The geometric model of eyeball and camera. In this idealized configuration the
camera looks directly at the eyeball center. For eccentric gaze direction the pupil
center is projected to the camera image plane at coordinates distant from the image
center. The model works best for a pupil that is located below the spherical eyeball
surface and above the iris plane. Optical properties of the cornea are not considered
further.
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In this coordinate system the gaze angle is zero in case the eye is oriented towards the pupil.
The configuration of the eye and the camera is symmetrical to the axis through the eyeball

center and the camera focal point. Thus, the gaze direction can be separated into two angles:
deviation ϑ from this axis and an azimuth angle ϕ that equals the polar angle of the projected
pupil center in the image, measured from the image center. Given the gaze angles (ϑ, ϕ), the
pupil center is projected onto the polar image coordinates (r′, ϕ′) as described by the function

r′

f
=

sin(ϑ)
c/r − cos(ϑ)

, ϕ′ = ϕ (C.1)

with f camera focal length, c distance of the camera focal point to eyeball center, and r distance
of pupil center to eyeball center. Polar image coordinates are finally transformed into Cartesian
coordinates (x′, y′).

The reverse transformation is needed to process the video image and calculate the gaze direc-
tion. Since (C.1) cannot be solved analytically for ϑ, an approximation is used instead:

r′

f
≈ a sin(b ϑ) ↔ ϑ ≈ 1

b
arcsin

(1
a

r′

f

)
(C.2)

with the parameters

a =
(c/r) sin(arccos(c/r))

1− (c/r)2
, b =

1 + c/r

sin(arccos(c/r))
.

In (C.1) and (C.2) r′ share the same maximum value and the same first derivative for small ϑ.
The deviation of the approximation from the exact formula is below 0.8% of eyeball radius for
ϑ < 90◦.

In 3D eye tracking, eye orientation (also referred to as eye position) is commonly represented
as a rotation vector, i.e., a vector that is parallel to the axis of rotation. In contrast to the quater-
nion vector used in [5], the absolute value of which is sin(α/2), we used the “Euler-Rodrigues
parameters”, a 3-component vector with an absolute value tan(α/2). This definition consid-
erably simplifies the mathematics [6]. Once the gaze direction is available from the spherical
coordinate angles ϑ and ϕ, the corresponding rotation vector can be calculated. It transforms the
position vector of the pupil center from the reference direction to the current gaze direction.

C.1.5 Geometric Model: Rotation of the Coordinate System

A laser mounted on the goggles provides a gaze direction that corresponds to a straight-ahead
view. In Fig. ?? this laser is in the white housing, and has an attached diffraction grating, as in
[7]. It projects a pattern of laser points with the center-point being the brightest. As laser and
camera are both mounted on the same platform, the angular relation is constant for the system,
and independent of the user. The central laser point also provides a common reference direction
for both eyes.

The position of the camera is given as the one eye orientation (a rotation vector) rRC which
lets the eye look directly into the camera. Combining this rotation with the eye orientation rC
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Figure C.4: Illustration of the effect of the affine transformation. Left: un-calibrated, right: with
calibrated parameters. Scaling, rotating and shifting any pupil center coordinate is
equivalent to transforming the entire image before pupil detection. In this way the
main factors of static deviation can be compensated.

calculated above, is equivalent to a rotation of the coordinate system. Thus, the resulting eye
orientation rR is relative to the reference orientation rather than to the eyeball-camera axis,

rR = rRC ◦ rC =
rRC + rC + rRC × rC

1− rRC · rC
,

with the operator “◦” denoting the non-commutative combination of two rotations [8].

C.1.6 Geometric Model: A Calibrated Affine Transformation of the Image

To account for real-world variations between individual users as well as variances within single
sessions, an affine transformation of image coordinates is introduced. The two transformations
described above in C.1.4 and C.1.5 are not designed for automatic parameter adjustments.

From the camera’s point of view variations of eye-to-goggle position (tilt and pan, camera-
mirror-eye distance) and also physiological eyeball diameter variations result in variations of
horizontal and vertical image shift ∆x and ∆y, respectively, image rotation α, and image scale
s. We therefore applied an additional affine transformation

(
x′

)
=

(
s cos α

) (
x′′

)

to compensate for shift, rotation and scale deviations (see Fig. C.4
for illustration), with x′′ and y′′ the coordinates taken directly from the image.
Four adaptive parameters in a transformation matrix with six elements mean that two types of

transformations are not considered: shear and anisotropic scaling. With our hardware configu-
ration and the mechanical constraints no variations of that type are expected.

A calibration procedure must be performed to adjust the parameters of the affine transfor-
mation. Before calibration the affine transformation equals identity, with scale s set to 1, and
rotation α and shifts ∆x and ∆y set to zero.

During the calibration procedure a laser diffraction pattern is presented to the user, projected
on a wall straight-ahead [7]. It consists of a bright laser point in the center and four adjacent laser
points (above, below, left and right) which have a known angular distance (8.5◦ at λ = 833 nm)
to the center-point. Other less bright laser points are ignored. The user fixates each of these
five laser points for about 5–6 seconds, in an arbitrary order. Subsequently the corresponding
pupil positions are analyzed by a cluster algorithm [9], resulting in five representative pupil
coordinates (average of cluster). Finally, the parameters (scale, rotate, horizontal and vertical
shift) are calculated, transforming the cluster positions x′′, y′′ into the expected positions x′, y′.
The expected pupil positions were calculated earlier by simply applying the geometric model to
the eye orientations that correspond to the given laser point.
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C.1.7 Measuring Torsional Eye Movements

As many people do not display natural structures in their iris that have enough contrast for
robust image processing, and because of the more simple search algorithm implementation, we
use artificial pigment markers on the sclera (see Fig. C.5).

Figure C.5: Black pigment markers applied to the white sclera left and right of the iris.

Artificial markers have been used before [10], and the method is described in [11]. Other
methods using contact lenses (e.g. [12]) are applied in clinical or research environments.

Once the pupil is found in the video image, the orientation of the eye in the head system is cal-
culated by transfer functions C.1.6, C.1.4 and C.1.5 of the geometric model. The transformation
used here was developed in order to avoid the complexity of a general matrix formulation.

Fig. C.5 shows an eye with two markers applied to the sclera. The markers consist of an
infrared-absorbing cosmetic pigment. They were applied to the sclera by means of a sterile
surgical pen. Prior to the application the pen was permeated with a solution prepared from a
small amount of pigment and a drop of water [11].

The geometric model also allows detection of these sclera markers in case of eccentric view.
When selecting the marker in the video by placing a rectangular field around it, zero torsion
is assumed. The marker location on the eyeball is evaluated and stored. Then, for eccentric
eye orientations and a requested torsional angle, the geometric model of the eyeball predicts the
location of the marker. The pupil center is located closer to the eyeball center then the sclera
markers. A difference of about 8% was found empirically. Further details of the the eye anatomy,
e.g. the optical magnification effect of the cornea, are not taken into account.

A marker search is started in an angular range around zero torsion in clockwise and counter-
clockwise directions. The marker search has two phases.

1. Search along an arc-shaped search path to find the marker, with only pixel resolution.

2. Center-of-mass analysis is performed on the region to calculate the marker position pre-
cisely.

Being aware of the restrictions of a real-time application, the following algorithms were de-
veloped as trade-offs for speed and precision, intentionally avoiding image filters, sorting, deep
nested loops, etc.

Figure C.6: Marker detection and eye orientation. The upper left image illustrates the search
path method. Copies of the selected marker fields are shown in the upper corners of
the image. As the markers in this example have a bimodal brightness distribution,
the signatures, displayed in the lower corners and on the search path, have double-
stripes. The upper right image illustrates the center-of-mass evaluation. It shows
the the search sample in the upper corners as well as the local sample on the search
path. The markers appear bright and clear on black background. The lower left and
right images illustrate eye orientations with ocular torsion.
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Marker detection starts when the operator—with the video on the computer screen—uses the
mouse to drag a rectangular region containing the dark marker and some “white” surrounding
pixels of the sclera. Applying two markers, left and right of the iris, suppresses the noise from
the pupil position in the final result of the torsional angle. The selected subimages are then
stored, and they will serve as the search pattern for subsequent images. The geometric center of
this subimage is fed into the calibrated geometric model, which returns locations in the eyeball
coordinate system.

While the analysis of the search pattern is done only once, the following steps are applied to
every frame:

1. Coarse search along a path

a) Image positions are calculated for zero torsion, and e.g., 12◦ clockwise and 12◦

counterclockwise torsion. A circular arc is fitted onto these three image points. The
arc-function is used as search path.

b) A signature s (one-dimensional array) is calculated along the search path, in the
same way that a signature is calculated in the search pattern. Each element si of
the signature array is calculated si = maxj pij − minj pij , with i a row index, j a
column index, and pij the value of the pixel. Therefore, each signature element si

expresses how much of a marker is found in row i (the pixel row is just as wide as the
search sample), independent of the local brightness level of the sclera background.

c) The search pattern signature is compared row by row with the search path signature.
The vertical position with the least squares residuals yields the first estimation of
marker position.

2. Center-of-mass analysis

a) The region around the resulting position of the coarse search along the path is an-
alyzed. Each pixel is scaled by a combined gamma and threshold function making
background colors black (zero) and darker marker pixels bright.

b) Background is a polynomial function b(x, y) = b1+b2x+b3y+b4xy that fits best to
the pixel values of the rectangle outline. With all the background pixels eliminated,
only marker pixels contribute to the center-of-mass. Following this rule the center-
of-mass position is calculated once for the search pattern.

c) Two image coordinates are of interest at this stage.
• the center-of-mass where the marker was actually found, and
• the center-of-mass of the search pattern moved to that position where it would

have been in case of zero torsion.
d) Both center-of-mass image coordinates are transformed by the geometric model into

locations in the eyeball coordinate system.
e) These two location are projected into the plane which is perpendicular to the gaze

direction, and contains the eyeball center. The angle between the two corresponding
rays from eyeball center to these projected locations yields the final result, the torsion
angle.
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D User Environment

This chapter describes how the computer is pre-configured.
The root password is “EyeSee” by defaults.

D.1 The User “eyesee”

Standard user is “eyesee”. This user is logged in at startup without query for password. The pass-
word is “EyeSee”, same as the administrator’s password. In the user’s home folder /home/eyesee/
there exist two folders: .eyeseecam/ (the dot at the beginning makes this folder a hidden
folder) and eyeseecam/.

Note that the files created by the application eyeseecam are owned by the user “root”1 rather
than the user “eyesee”. Anybody has read and write permissions on those files. So the user
“eyesee” is also allowed to make himself/herself the new owner.

D.2 Create a New Working Directory

/home/eyesee/eyeseecam/ is intended to be the working directory. The work path of the
desktop icon “EyeSeeCam” (Properties > Application > Work path) is set to this folder.In case
you want to start eyeseecam from another working directory, edit the Properties > Application
> Work path of a copy of the desktop icon appropriately. If your preferences differ from the
default settings, you should also copy the configuration files *.xml to the new working directory
(see chapter ??).

When eyeseecam starts up, it also looks in the hidden folder “~/.eyeseecam/” and the
current directory for optional configuration files2.

D.3 Create a New User

We have prepared the user eyesee to work with eyeseecam. In case you are an experienced
administrator, you may want to create other users accounts. In order to run eyeseecam as another
user,

• copy ~/.eyeseecam,

1The application eyeseecam is owned by root and configured to run with superuser permissions. Consequently, the
files created are owned by the superuser “root”, no matter which user has called the application.

2“~/” is short for the current user’s home folder.
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• set CPU frequency to maximum (“Performance”), since eyeseecam is a real-time applica-
tion and the user interface requires idle intervals,

• add the user to group “uucp” to permit access to serial ports.



E Configuration Files

The files below control the defaults properties and parameter values of EyeSeeCam. They are not
required. EyeSeeCam determines the default parameter values at program start in the following
order, where the later overrules the current values:

1. the built-in values,

2. optional configuration files in the hidden folder ~/.eyeseecam/,

3. optional configuration files in the working folder (~/eyeseecam/ if you use the desktop
link), and finally

4. the built-in system database.

The system database is queried with the results of the hardware detection procedure. It holds
e.g. information about where and how an individual camera is mounted.

The resulting configuration is written to the hidden folder ~/.eyeseecam/ in several files with
common suffix “.save.xml”. You can use copies of these files where you remove the “.save”
from the filename. Edit these copies in order to change the configuration. “KXMLEditor”,
“Conglomerate XML Editor” amd “Kate” are appropriated tools. XML contains a hierarchical
structure of elements that look like <element attribute=”value”>. . .</element>
or <element attribute=”value” />. It is easy to change a value. You may delete
any element or attribute that you do not need.

Most important parameter is camera/grabber/hw_pgr/height to set the camera speed: Reduce
the height for more frames per second (fps).

E.1 camera.xml

camera/grabber/hw_pgr/height (integer) The height of a given digital camera in pixels.
There is a list of hw_pgr elements, enumerated by the attribute id. id=”0” refers to the first
digital camera, id=”1” to the second, and so on. Use this attribute to control the camera
speed: A PointGrey FireFly MV runs with 120 frames per second at height=”348”, 131
frames per second at height=”216”, 300 fps at height=”80”, and 500 fps at height=”40”.
IMPORTANT: Use the same value for all connected eye tracking cameras!

camera/imgproc/marker_enable (bool) Enable sclera marker detection by default. In GUI-
tab EyeTracker/Common in buttongroup “Enable” the item “Markers” will be checked
after program start.

??
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E.2 iofile.xml

??

E.3 ports.xml

??

E.4 servo.xml

??



F Output Files

F.1 Data in MAT-File

??

F.2 Video in PGM-File

Multi-image Portable Graymap. The format specification is described at
http://netpbm.sourceforge.net/doc/pgm.html. EyeSeeCam saves images un-
compressed, as they come from the camera, to file with the PGM frame header added.

Many programs process PGM, see
http://netpbm.sourceforge.net/doc/directory.html. There are even inter-
preters for Bayer tiled cameras:
http://netpbm.sourceforge.net/doc/pambayer.html.

Before July 2000, there could be at most one image in a PGM file. As a result, most tools
to process PGM files ignore (and don’t read) any data after the first image. Unfortunately,
MATLAB R2006b is one of those ignorant tools.

Here is the (simplified) C source code that reads the meta information of a frame. See also
section F.3 for the declaration of struct CAMERA_property and TIMESTAMP. Finally “size”
is set to the number of bytes of the image and the current file position is at the first byte of the
image.
do / / f i n d a f rame wi th r e q u e s t e d camera i d
{

/**− move t o n e x t f rame ( no move i n f i r s t l oop wi th s i z e ==0) * /
e r r o r = f s e e k ( i o f i l e _ p g m −>fp , s i z e , SEEK_CUR ) ;
i f ( e r r o r ) g o to e r r o r _ s e e k ;

/**− r e a d magic number * /
r e a d = f s c a n f ( i o f i l e _ p g m −>fp , " P%i " , &magic_number ) ;
i f ( r e a d < 1) go to r e t u r n _ f a i l u r e ;
s w i t c h ( magic_number )
{

c a s e 5 : c a m e r a _ p r o p e r t y . co lor_mode = CAMERA_LUMINANCE; b r e a k ;
c a s e 6 : c a m e r a _ p r o p e r t y . co lor_mode = CAMERA_RGB; b r e a k ;
d e f a u l t : go to r e t u r n _ f a i l u r e ; b r e a k ;

}

/**− d e f a u l t v a l u e s i n c a s e no comment i s g i v e n * /
cam_id = 0 ;
memset ( t , 0 , s i z e o f (TIMESTAMP) ) ;
s h i f t _ h = s h i f t _ v = 0 . ;
meta_imgproc . vog . f o u n d _ p u p i l = f a l s e ;
meta_imgproc . vog . p u p i l _ c o l = meta_imgproc . vog . p u p i l _ r o w = 0 . ;
meta_imgproc . e y e _ r o t a t i o n [ 0 ] =
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meta_imgproc . e y e _ r o t a t i o n [ 1 ] =
meta_imgproc . e y e _ r o t a t i o n [ 2 ] = 0 . ;

/**− r e a d n e x t c h a r a c t e r * /
w h i l e ( ( c = f g e t c ( i o f i l e _ p g m −>fp ) ) == ( i n t ) ’ # ’ )
{

/**− r e a d comment l i n e * /
i f ( f g e t s ( l i n e _ b u f f e r , 80 , i o f i l e _ p g m −>fp ) )
{
/**− e v a l u a t e comment l i n e wi th known keyword * /
s s c a n f ( l i n e _ b u f f e r , " %s " , keyword ) ;
i f ( s t r c mp ( keyword , " cam " ) == 0)
s s c a n f ( &l i n e _ b u f f e r [ 3 ] , " %i " , &cam_id ) ;
e l s e i f ( s t r cm p ( keyword , " t ime " ) == 0)

s s c a n f ( &l i n e _ b u f f e r [ 4 ] , " %l i %l i " , &t−>t v _ s e c , &t−>t v _ u s e c ) ;
e l s e i f ( s t r cm p ( keyword , " s h i f t " ) == 0)

s s c a n f ( &l i n e _ b u f f e r [ 5 ] , " %f %f " , &s h i f t _ h , &s h i f t _ v ) ;
e l s e i f ( s t r cm p ( keyword , " p i x e l s i z e " ) == 0)

s s c a n f ( &l i n e _ b u f f e r [ 9 ] , " %f %f " ,
&c a m e r a _ p r o p e r t y . p i x e l w i d t h ,
&c a m e r a _ p r o p e r t y . p i x e l h e i g h t ) ;

e l s e i f ( s t r cm p ( keyword , " m i r r o r " ) == 0)
s s c a n f ( &l i n e _ b u f f e r [ 6 ] , " %i %i " ,

&c a m e r a _ p r o p e r t y . mi r ro r_x ,
&c a m e r a _ p r o p e r t y . m i r r o r _ y ) ;

e l s e i f ( s t r cm p ( keyword , " vog " ) == 0)
{

meta_imgproc . vog . f o u n d _ p u p i l = t r u e ;
s s c a n f ( &l i n e _ b u f f e r [ 3 ] , " %f %f " ,

&meta_imgproc . vog . p u p i l _ c o l ,
&meta_imgproc . vog . p u p i l _ r o w ) ;

}
e l s e i f ( s t r cm p ( keyword , " eye " ) == 0)

s s c a n f ( &l i n e _ b u f f e r [ 3 ] , " %l f %l f %l f " ,
&meta_imgproc . e y e _ r o t a t i o n [ 0 ] ,
&meta_imgproc . e y e _ r o t a t i o n [ 1 ] ,
&meta_imgproc . e y e _ r o t a t i o n [ 2 ] ) ;

}
}
/**− push back r e c e n t c h a r a c t e r which was n o t a comment * /
u n g e t c ( c , i o f i l e _ p g m −>fp ) ;

/**− r e a d image d i m e n s i o n s * /
r e a d = f s c a n f ( i o f i l e _ p g m −>fp , " %i %i %i " ,

&c a m e r a _ p r o p e r t y . width , &c a m e r a _ p r o p e r t y . h e i g h t , &maxval ) ;
i f ( r e a d < 3) go to r e t u r n _ f a i l u r e ;

/**− d e t e r m i n e d e p t h i n b y t e p e r p i x e l * /
i f ( maxval > 0 x f f )
{

c a m e r a _ p r o p e r t y . co lor_mode = CAMERA_YUV422; / / we do n o t have t h a t w i th CAMERA_LUMINANCE
c a m e r a _ p r o p e r t y . d e p t h = 2 ;

}
e l s e

c a m e r a _ p r o p e r t y . d e p t h = 1 ;
s i z e = c a m e r a _ p r o p e r t y . wid th * c a m e r a _ p r o p e r t y . h e i g h t * c a m e r a _ p r o p e r t y . d e p t h ;

/**− move t o s t a r t o f image , t h e r e f o r e s k i p a s i n g l e w h i t e s p a c e * /
i f ( ! i s s p a c e ( f g e t c ( i o f i l e _ p g m −>fp ) ) ) go to r e t u r n _ f a i l u r e ;

} w h i l e ( cam_id != t r a c k && / / r e q u e s t e d t r a c k n o t y e t found
! f e o f ( i o f i l e _ p g m −>fp ) ) ; / / end of f i l e n o t r e a c h e d
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F.3 Video in RAW-File

This file format comes without file header and frame headers. It’s just the series of uncompressed
images. The first pixels of each frame are sacrified to store some meta data. The advantage
of *.raw files is that (assuming there is only on camera or all cameras have the same image
dimensions) having read the image size of the first frame(s), the positions of all frames in the
file is known. This makes file access very easy and fast.

This is the current declaration of the data structure (“abstract”):
# i f d e f WIN32 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# i n c l u d e < t ime . h>
t y p e d e f s t r u c t
{

t i m e _ t t v _ s e c ; / / / < d a t e and t ime ( s e c o n d s )
lo ng t v _ u s e c ; / / / < m i c r o s e c o n d s

}
TIMESTAMP;
# e l s e / / WIN32 =============================================
# i n c l u d e < s y s / t ime . h>
t y p e d e f s t r u c t t i m e v a l TIMESTAMP;
# e n d i f / / WIN32 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

/ * * camera image p r o p e r t i e s a t t ime of i n i t i a l i z a t i o n * /
s t r u c t CAMERA_property
{

s i z e _ t wid th ; / / / < wid th o f image i n u n i t s o f p i x e l
s i z e _ t h e i g h t ; / / / < h e i g h t o f image i n u n i t s o f p i x e l
s i z e _ t d e p t h ; / / / < d e p t h o f image i n b y t e s p e r p i x e l
enum CAMERA_colormode color_mode ; / / / < 0= g r a y s c a l e , e t c
bo o l a l t e r n a t e ; / / / < bo th f i e l d s a l t e r n a t i n g i n t o s e p a r a t e b u f f e r s , o r i n t e r l a c e d ?
TIMESTAMP t imes t amp ; / / / < t imes t amp a t camera i n i t i a l i z a t i o n
f l o a t p i x e l w i d t h ; / / / < wid th o f a p i x e l ( c o n s i d e r b i n n i n g mode ! ) , i n u n i t s o f mm
f l o a t p i x e l h e i g h t ; / / / < h e i g h t o f a p i x e l ( c o n s i d e r b i n n i n g mode ! ) , i n u n i t s o f mm
i n t m i r r o r _ x ; / / / < f a c t o r +1 ( no m i r r o r ) o r −1 ( m i r r o r f l i p s view h o r i z o n t a l l y )
i n t m i r r o r _ y ; / / / < f a c t o r +1 ( no m i r r o r ) o r −1 ( m i r r o r f l i p s view v e r t i c a l l y )
f l o a t f r a m e p e r i o d ; / / / < measured a v e r a g e f r a m e p e r i o d , i n u n i t s o f s

} ;

/ * * image meta i n f o r m a t i o n * /
s t r u c t IOFILE_RAW_abstract
{

s i z e _ t sizeof_ABSTRACT ;
i n t t r a c k ; / / camera i n d e x

/ * image p r o p e r t i e s * /
s t r u c t CAMERA_property c a m e r a _ p r o p e r t y ;

/ * VOG p r o p e r t i e s * /
bo o l vog ;
f l o a t x_deg ;
f l o a t y_deg ;
f l o a t x _ p u p i l ;
f l o a t y _ p u p i l ;
f l o a t l a t e n c y ;

} _ _ a t t r i b u t e _ _ ( ( packed ) ) ;

Here is the (simplified) C source code that reads the meta information from a frame:
do
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{
/**− move t o n e x t f rame ( no move i n f i r s t l oop wi th s i z e ==0) * /
e r r o r = f s e e k ( i o f i l e _ r a w −>fp , s i z e , SEEK_CUR ) ;
i f ( e r r o r )

go to r e t u r n _ f a i l u r e ;

/**− r e a d a b s t r a c t from f i l e * /
r e a d = i o f i l e _ r e a d ( &a b s t r a c t , s i z e o f ( s t r u c t IOFILE_RAW_abstract ) , i o f i l e _ r a w −>fp ) ;
i f ( r e a d < 1)

go to e r r o r _ r e a d _ a b s t r a c t ;

/**− check i f v e r s i o n s match * /
i f ( a b s t r a c t . sizeof_ABSTRACT != s i z e o f ( s t r u c t IOFILE_RAW_abstract ) )

go to e r r o r _ s i z e _ o f _ a b s t r a c t ;

/**− on ly images l a r g e r t h a n t h e i r i n c l u d e d a b s t r a c t make s e n s e * /
s i z e = a b s t r a c t . c a m e r a _ p r o p e r t y . wid th *
a b s t r a c t . c a m e r a _ p r o p e r t y . h e i g h t *
a b s t r a c t . c a m e r a _ p r o p e r t y . d e p t h ;
i f ( s i z e < a b s t r a c t . sizeof_ABSTRACT )

go to e r r o r _ s i z e _ o f _ i m a g e ;

/**− move back t o t h e s t a r t o f t h e a b s t r a c t , which i s a l s o t h e s t a r t o f t h e image f rame * /
e r r o r = f s e e k ( i o f i l e _ r a w −>fp , −1 * a b s t r a c t . sizeof_ABSTRACT , SEEK_CUR ) ;
i f ( e r r o r && ! f e o f ( i o f i l e _ r a w −>fp ) )

go to r e t u r n _ f a i l u r e ;
} w h i l e ( a b s t r a c t . t r a c k != t r a c k && / / r e q u e s t e d t r a c k n o t y e t found

! f e o f ( i o f i l e _ r a w −>fp ) ) ; / / end of f i l e n o t r e a c h e d

F.4 Video in DV-File

Videos from a digital camcorder that is connected via FireWire are transmitted in compressed
DV format. Choose the *.dv format if you want to store such a videostream to file. The vide-
oframes are recorded without re-coding. WARNING: Do not choose this file format for any
other video soure; this would result in empty target files without further notice!

This version of the DV file format is similar to the AVI Type 1. While AVI Type 1 has a file
header and frame headers according to the RIFF specification, the DV format is just a serie of
equal sized blocks (PAL 144000 bytes, NTSC 120000 bytes per frame). For Mac OS it is a well
supported format, whereas many Windows tools prefer AVI Type 1 over pure DV.

F.5 Video in AVI-File

This format is for lossy encoded videos. The video files are much smaller than uncompressed
formats. The current version uses a codec of libquicktime to make MPEG4, but the codec
actually used is subject of change.

If you use the *.avi files to create videos for presentation, test your player/decoder on the target
platform for compatibility! IMPORTANT: Do not use a videoformat with lossy compression like
this, if you want to process the video later, e.g. for pupil detection!

MPEG4 encoded AVI-files are probably your desired output for the head mounted cameras.
However, the encoding puts a lot of load to the processor, so watch the counter of lost frames
(tab “All Cameras”).
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G.1 Stimulation Profiles

EyeSeeCam is not only a video-oculography device, it can also act as a central control unit for
physiological experiments in the course of which not only eye movements are measured, but
the subjects are also stimulated by visual stimuli presented on a video beamer or by vestibular
motion or galvanic stimuli that are generated by data aquisition hardware (USB-DUX). Other
signals like the a posturography platform or a head tracker can also be measured synchronously
to the eye movements.

The values on the analog outputs of the data aquisition hardware and the movement or position
profiles of the visual stimuli have to be defined as a time series in a Matlab version 4 data file.
Such data must adhere to a specific “syntax” which is described in this chapter.

The EyeSeeCam user can either use the predefined stimulation profiles or he can generate his
own files in conjunction with a new experiment. Similar to experiments, the administration of
stimulation profiles is also done in the Database (see Chapter 9 for details). If the file name
of a stimuluation profile is inserted as an item to the “Profile” column of the Database table
“Measurements” the measurement is started together with the thus defined stimulation sequence
as soon as the “Start” button on the “Eyetracker / Record” tab is pressed.

G.1.1 Basic Contents and Syntax

A stimulation profile can be generated either in Matlab or in another program that can handle
Matlab files (like octave). It is assumed that the user is comfortable with the Matlab syntax.
At a minimum, such a file (e.g. profile.mat) must contain the following Matlab matrixes
or variables1:

Algorithm 1 Matlab session for viewing the contents of the Matlab file profile.mat
>> load profile.mat
>> whos
Name Size Bytes Class Attributes

Comment 1x17 34 char
Data 1000x3 24000 double
DataArgs 3x13 78 char
DataNames 3x6 36 char
DataUnits 3x1 6 char

1Possible Matlab variables are: Data, DataArgs, DataNames, DataUnits, VisualObjectX,
Comment
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The most important variable is Data2; it contains the time series and it can have a content
similar to this one:

Algorithm 2 Matlab session for viewing part of the contents of the Matlab variable Data
>> Data
Data =

0 0 0
0.0050 0.0314 0.0346
0.0100 0.0628 0.0691
0.0150 0.0941 0.1035
0.0200 0.1253 0.1378

...

The variable DataNames3 contains as many names as strings in its rows as there are columns
in Data. The names are used by EyeSeeCam to establish the proper mapping between a column
in Data and the corresponding device. The contents of DataNames might look like this:

Algorithm 3 Matlab session for viewing the contents of the Matlab variable DataNames
>> DataNames
DataNames =

time
usbdux
usbdux

The variable DataUnits4 is similar to the variable DataNames except that it defines the
units in which the values in the columns of Data are given. The contents of DataUnits might
look like this:

Algorithm 4 Matlab session for viewing the contents of the Matlab variable DataUnits
>> DataUnits
DataUnits =

s
V
V

The variable DataArgs5 is again similar to the variable DataNames except that it defines
... The contents of DataArgs might look like this:

2The number of Data columns is variable and it depends on the devices used.
3Possible row values as names for DataNames are: time, usbdux, visual
4Possible row values for DataUnits are: s (seconds), V (Volts), W (visual world coordinates)
5Possible row values for DataArgs are: D/A Channel 1, D/A Channel 3
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Algorithm 5 Matlab session for viewing the contents of the Matlab variable DataArgs
>> DataArgs
DataArgs =

D/A Channel 1
D/A Channel 3

The main task of a profile designer will be to write appropriate Matalb scripts that generate
a Matlab6 file with the required matrices. A script that generates the mentioned variables might
look like this:

Algorithm 6 Matlab script for generating a simple stimulation profile
% Generate sinusoidal profiles for analog outputs of the USB-DUX

clear all;
%% Sampling period (s)

dt = 0.005;
%% Total duration of profile (s)

T = 5;
%% Amplitude (V)

A1 = 1; A2 = 1; A_text = ’1.0’;
Comment = ’Amplitude = 1.0 V’;

%% Create the time series and corresponding data
t = (0:dt:(T - dt))’;
x1 = A1 * sin( 1*2*pi*t); % DUX-BOX DA channel 1
x2 = A2 * sin(1.1*2*pi*t); % DUX-BOX DA channel 3
Data = [t x1 x2];

%% Create Table Header
DataNames = [

’time ’;
’usbdux’;
’usbdux’;
];

DataUnits = [
’s’;
’V’;
’V’;
];

DataArgs = [
’ ’;
’D/A Channel 1’;
’D/A Channel 3’;
];

% Note that only 2 channels are allowed,
% DUX-BOX channelss 0 and 2 do not work properly

%% Plot and Save to File
plot(Data(:,1),Data(:,2:end),’k-’);
xlabel([DataNames(1,:) ’ [’ DataUnits(1,:) ’]’]);
ylabel([DataNames(2,:) ’ [’ DataUnits(2,:) ’]’]);
legend(DataArgs(2:end,:));
save(’profile.mat’, ’-v4’, ...
’DataNames’, ’DataUnits’, ’DataArgs’, ’Data’, ’Comment’);

6It is mandatory to generate files that are compatible with version 4 of Matlab. This file format is simple, it was
documented right from the beginning and other programs like octave can also handle it. Such a file can be
generated by using the option ’-v4’ of the Matlab save command.
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The results can be displayed with the Matlab command plot as in this figure:
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Figure G.1: Visualization of the contents of a profile. In this example the two functional D/A
channels of the DUX-BOX hardware will generate two sinusoidal voltage profiles
of different frequencies and peak amplitudes of 1 V.

G.1.2 Laser Pattern Activation

One of the simplest functionalities that can be implemented in a stimulation profile is a time
series containing activations / deactivations of the laser calibration pattern. This can be achieved
with the following contents of a stimulation profile:

Algorithm 7 Matlab session for viewing the contents of a profile that switches the calibration
laser on and off.
>> DataNames, DataUnits

DataNames =

time
usbdux
usbdux

DataUnits =

s
V
V

G.1.3 Recording Voltage Signals from other Devices

Text
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Posturography platforms

Text

G.1.4 Output of Voltage Signals for other Devices

Text

Galvanic Vestibular Stimulation

Galvanic Vestibular Stimulation (GVS) is a method that stimulates the labyrinthine (vestibular)
nerve in the inner ear directly with currents on the order of a few mA. Normally, a voltage con-
trolled bipolar current generator7 [13] is used to apply the stimulation current transcutaneously
by means of two electrodes on the mastoid processes. Such a generator can be driven by a
voltage from an attached DUX-BOX. This way, the stimulation current can be synchronously
recorded together with the eye movements, and, depending on other attached devices, additional
signals like those from a posturographic platform can also be aquired. The Matlab script that was
used to generate the results of Figure G.1 on the facing page is well able to create an appropriate
GVS profile.

G.1.5 Recording an External Head Tracker

Text

G.1.6 Visual Stimulation

When another video monitor or beamer is connected to the external display connector of the
EyeSeeCam laptop, EyeSeeCam can act as a visual stimulator. With an appropriate stimulus
profile a full screen with a dark background is opened on the external video monitor and con-
figurable visual motion patterns are displayed. Both the appearence of visual objects and the
movement parameters of those objects can be configured in the profile. This way, eye movement
data can be recorded synchronous to the visual stimulus and parameters like saccade metrics can
be determined from the same data set.

First, the visual world needs to be set up in the variable VisualWorld. Parameters like
screen size, type of projection, and distance of the subject from the screen are part of the visual
world. A Matlab script snippet that generates an appropriate variable might look like this8:

7The current stimulator proposed by [13] needs some minor modifications in order to work properly.
8Those skilled in the art of OpenGL programming will immediately recognize the structure of the functions
glFrustum and glOrtho in the way the parameters are defined. For further details on the meaning of these
parameters a profile designer is referred to the documentation of these OpenGL functions.
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Algorithm 8 Matlab script snippet for generating the variable VisualWorld
% Generate VisualWorld

VisualWorld = [
2.0; % Screen width in m (meter)
1.5; % Screen height in m
2.0; % Distance of subject from screen in m
1.0; % Type of projection (1=perspective, 2=orthographic)
-1.0; % left world coordinate of the near plane
+1.0; % right world coordinate of the near plane
-.75; % bottom world coordinate of the near plane
+.75; % top world coordinate of the near plane
+2.0; % distance of viewpoint from the near plane in the world
+5.0; % distance of viewpoint from the far plane in the world
];

G.2 Offline Analysis of Video Files

The PGM and RAW video files that have been created with EyeSeeCam (see Sections F.2 and
F.3, respectively) can also be opened and analyzed offline by dragging and dropping a file to the
EyeSeeCam Desktop icon. As soon as EyeSeeCam is started with this method the opened video
file acts as a “virtual” Camera and EyeSeeCam becomes a video player.
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