

3430 Schmon Parkway Thorold, ON, Canada L2V 4Y6 Phone: 866-667-4362 ◆ (905) 227-8848 Fax: (905) 227-1061

Email: techsupport@norgenbiotek.com

RNA/Protein Purification Kit Product # 24100

Product Insert

Norgen's RNA/Protein Purification Kit provides a rapid method for the isolation and purification of total RNA and proteins simultaneously from a single sample of cultured animal cells, small tissue samples, blood, bacteria, yeast, fungi or plants. The total RNA and proteins are both column purified in under 25 minutes using a single column. It is often necessary to isolate total RNA and proteins from a single sample, such as for studies of gene expression including gene silencing experiments, mRNA knockdowns or experiments correlating RNA and protein expression levels. Traditionally the RNA and proteins would be isolated from different aliquots of the same sample, however this novel technology will allow for their simultaneous isolation from the same sample. This will not only save time, but will also be of a great benefit when isolating RNA and proteins from precious, difficult to obtain or very small samples. Furthermore, gene expression analysis will be more reliable since the RNA and proteins are derived from the same sample, therefore eliminating inconsistent results.

Norgen's Purification Technology RNA Purification

Purification is based on spin column chromatography using Norgen's proprietary resin as the separation matrix. The process involves first lysing the cells or tissue of interest with the provided Buffer SK (please see the flow chart on page 4). The Buffer SK contains detergents, as well as large amounts of a chaotropic denaturant that will rapidly inactivate RNases and proteases that are present. Alcohol is then added to the lysate, and the solution is loaded onto a spin-column. Norgen's resin binds nucleic acids in a manner that depends on ionic concentrations, thus only the RNA will bind to the column while the proteins are removed in the flowthrough. Next, an optional step can be carried out in which the genomic DNA can be digested allowing for a more pure RNA sample to be isolated. The bound RNA is then washed twice with the provided Wash Solution A in order to remove any impurities, and the purified RNA is eluted with the Elution Solution A.

The kit purifies all sizes of RNA, from large mRNA and ribosomal RNA down to microRNA (miRNA) and small interfering RNA (siRNA). The purified RNA is of the highest integrity, and can be used in a number of downstream applications including real time PCR, reverse transcription PCR, Northern blotting, RNase protection and primer extension, and expression array assays.

Protein Purification

The proteins that are present from the initial flowthrough can now be loaded directly onto an SDS-PAGE gel for visual analysis. Alternatively, the protein samples can be further purified using the spin columns provided with the kit. After the RNA has been eluted from the column, the flowthrough is then pH adjusted and loaded back onto the column in order to bind the proteins that are present. The bound proteins are washed with the provided wash buffer, and are then eluted such that they can be used in downstream applications. The purified proteins can be used in a number of downstream applications including SDS-PAGE analysis or Western blots.

Specifications

Kit Specifications		
Maximum Column Binding Capacity	50 μg for RNA 200 μg for protein	
Maximum Column Loading Volume	650 μL	
Size of RNA Purified	All sizes, including small RNA (<200 nt)	
Maximum Amount of Starting Material: Animal Cells Animal Tissues Blood Bacteria Yeast Fungi Plant Tissues	3×10^6 cells 10 mg (for most tissues) 100 μ L 1 $\times 10^9$ cells 1 $\times 10^8$ cells 50 mg 50 mg	
Time to Complete 10 Purifications	25 minutes	
Average Yields* HeLa Cells (1 x 10 ⁶ cells) HeLa Cells (1 x 10 ⁶ cells) Liver (5 mg) Liver (5 mg)	15 μg RNA 150 μg protein 12.5 μg RNA 55 μg protein	

^{*} average yields will vary depending upon a number of factors including species, growth conditions used and developmental stage.

Kit Components

Component	Used For	Product # 24100 (50 samples)
Buffer SK	RNA Lysis	40 mL
Wash Solution A	RNA Wash	38 mL
Elution Solution A	RNA Elution	20 mL
Enzyme Incubation Buffer A	DNA Removal	6 mL
Wash Solution C	Protein Wash	30 mL
Binding Buffer A	Protein Binding	4 mL
Elution Buffer C	Protein Elution	8 mL
Protein Neutralizer	Protein Eluent Neutralization	4 mL
Protein Loading Dye	SDS-PAGE Gel Loading	2 mL
Mini Spin Columns		50
Collection Tubes		150
Product Insert		1

Advantages

- Fast and easy processing using rapid spin-column format
- All columns for RNA purification and protein purification provided
- Sequentially isolate nucleic acids and proteins from a single lysate no need to split the lysate
- Isolate total RNA, from large rRNA down to microRNA (miRNA)
- No phenol or chloroform extractions
- Isolate high quality total RNA
- High yields of isolated proteins

Storage Conditions and Product Stability

All solutions should be kept tightly sealed and stored at room temperature. These reagents should remain stable for at least 1 year in their unopened containers. The **Protein Loading Dye** should be stored at -20°C after the addition of DL-Dithiothreitol (DTT).

Precautions and Disclaimers

This kit is designed for research purposes only. It is not intended for human or diagnostic use.

Ensure that a suitable lab coat, disposable gloves and protective goggles are worn when working with chemicals. For more information, please consult the appropriate Material Safety Data Sheets (MSDSs). These are available as convenient PDF files online at www.norgenbiotek.com.

Blood of all human and animal subjects is considered potentially infectious. All necessary precautions recommended by the appropriate authorities in the country of use should be taken when working with whole blood.

Customer-Supplied Reagents and Equipment

You must have the following in order to use the RNA/Protein Purification Kit:

For All Protocols

- Benchtop microcentrifuge
- β-mercaptoethanol (Optional)
- 96 100 % ethanol
- Isopropanol
- DL-Dithiothreitol
- RNase-free DNase I (Optional)
- Molecular biology grade water (Milli-Q[®] water)
- 1.7 mL microcentrifuge tubes

For Animal Cell Protocol

PBS (RNase-free)

For Animal Tissue Protocol

- Liquid nitrogen
- Mortar and pestle
- 70% ethanol

For Bacterial Protocol

- Lysozyme-containing TE Buffer:
 - For Gram-negative bacteria, 1 mg/mL lysozyme in TE Buffer
 - o For Gram-positive bacteria, 3 mg/mL lysozyme in TE Buffer

For Yeast Protocol

- Resuspension Buffer with Lyticase:
 - o 50 mM Tris pH 7.5
 - o 10 mM EDTA
 - o 1 M Sorbital
 - 1 unit/μL Lyticase

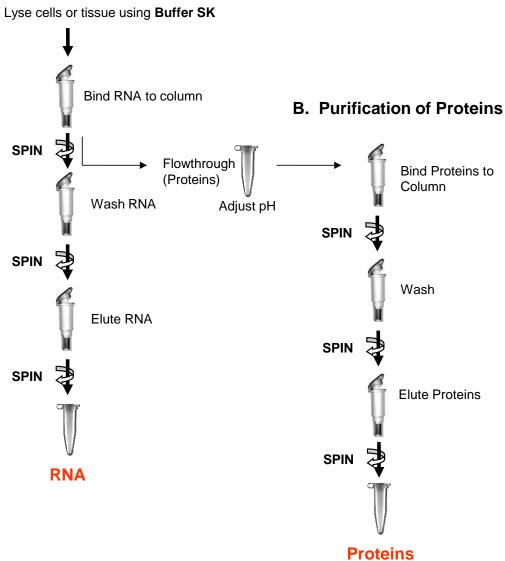
For Fungi Protocol

- Liquid nitrogen
- Mortar and pestle
- 70% ethanol

For Plant Protocol

- Liquid nitrogen
- Mortar and pestle
- 70% ethanol

Working with RNA


RNases are very stable and robust enzymes that degrade RNA. Autoclaving solutions and glassware is not always sufficient to actively remove these enzymes. The first step when preparing to work with RNA is to create an RNase-free environment. The following precautions are recommended as your best defense against these enzymes.

- The RNA area should be located away from microbiological work stations
- Clean, disposable gloves should be worn at all times when handling reagents, samples, pipettes, disposable tubes, etc. It is recommended that gloves are changed frequently to avoid contamination
- There should be designated solutions, tips, tubes, lab coats, pipettes, etc. for RNA only
- All RNA solutions should be prepared using at least 0.05% DEPC-treated autoclaved water or molecular biology grade nuclease-free water
- Clean all surfaces with commercially available RNase decontamination solutions
- When working with purified RNA samples, ensure that they remain on ice during downstream applications

Flow Chart

Procedure for Purifying Total RNA and Proteins using Norgen's RNA/Protein Purification Kit

A. Purification of RNA

Procedures

All centrifugation steps are carried out in a benchtop microcentrifuge. Various speeds are required for different steps, so please check your microcentrifuge specifications to ensure that it is capable of the proper speeds. All centrifugation steps are performed at room temperature. The correct rpm can be calculated using the formula:

RPM =
$$\sqrt{\frac{RCF}{(1.118 \times 10^{-5}) (r)}}$$

where RCF = required gravitational acceleration (relative centrifugal force in units of g); r = radius of the rotor in cm; and RPM = the number of revolutions per minute required to achieve the necessary g-force.

NOTE: This procedure is written in two steps. Section 1 contains the protocols to isolate total RNA from different types of starting materials. Please ensure that the proper protocol is followed for your sample. Section 2 contains the protocol to isolate total proteins from the sample, and the same protocol will apply to all the different starting materials.

Section 1. Procedures to Purify Total RNA from Various Cell Types

Notes Prior to Use for all Total RNA Purification Procedures

- The steps for preparing the lysate are different depending on the starting material (Step 1). However, the subsequent steps are the same in all cases (Steps 2 – 6).
- Please ensure that the correct procedure for preparing the lysate from your starting material is followed.
- All centrifugation steps are carried out in a benchtop microcentrifuge at 14,000 x g
 (~ 14,000 RPM) except where noted. All centrifugation steps are performed at room
 temperature.
- A variable speed centrifuge should be used for maximum kit performance. If a variable speed centrifuge is not available a fixed speed centrifuge can be used, however reduced yields may be observed.
- Ensure that all solutions are at room temperature prior to use.
- Prepare a working concentration of the Wash Solution A by adding 90 mL of 96 100 % ethanol (provided by the user) to the supplied bottle containing the concentrated Wash Solution A. This will give a final volume of 128 mL. The label on the bottle has a box that may be checked to indicate that the ethanol has been added.
- Add 93 mg of DL-Dithiothreitol (DTT, not provided) to the Protein Loading Dye. The Protein Loading Dye should be stored at -20°C after the addition of DTT. The label on the bottle has a box that may be checked to indicate that DTT has been added.
- **Optional:** The use of β-mercaptoethanol in lysis is highly recommended for most animal tissues, particularly those known to have high RNAse content (ex: pancreas), as well as for most plant tissues. It is also recommended for users who wish to isolate RNA for sensitive downstream applications. Add 10 μL of β-mercaptoethanol (provided by the user) to each 1 mL of **Buffer SK** required. β-mercaptoethanol is toxic and should be dispensed in a fume hood. Alternatively, the **Buffer SK** can be used as provided.
- It is important to work quickly when purifying RNA.

Section 1A. Preparation of Lysate From Various Cell Types

1A. Lysate Preparation from Cultured Animal Cells

Notes Prior to Use

- For optimal results, it is recommended that 1 x 10⁶ cells be used for the input. However, inputs of up to 3 x 10⁶ cells may be used.
- A hemocytometer can be used in conjunction with a microscope to count the number of cells. As a general guideline, a confluent 3.5 cm plate of HeLa cells will contain 10⁶ cells.
- Cell pellets can be stored at -70°C for later use or used directly in the procedure.
 Determine the number of cells present before freezing.
- Frozen pellets should be stored for no longer than 2 weeks to ensure that the integrity of the RNA is not compromised.
- Frozen cell pellets should not be thawed prior to beginning the protocol. Add the Buffer
 directly to the frozen cell pellet (Step 1A(ii) d).

1A (i). Cell Lysate Preparation from Cells Growing in a Monolayer

- a. Aspirate media and wash cell monolayer with an appropriate amount of PBS. Aspirate PBS.
- b. Add 350 μL of Buffer SK directly to culture plate.
- c. Lyse cells by gently tapping culture dish and swirling buffer around plate surface for five minutes.
- d. Transfer lysate to a microcentrifuge tube.
- e. Add 150 μ L of isopropanol (provided by the user) to the lysate. Mix by vortexing for 10 seconds. **Proceed to Step 2.**

Note: For input amounts greater than 10⁶ cells, it is recommended that the lysate is passed through a 25 gauge needle attached to a syringe 5-10 times at this point, in order to reduce the viscosity of the lysate prior to loading onto the column.

1A (ii). Cell Lysate Preparation from Cells Growing in Suspension and Lifted Cells

- a. Transfer cell suspension to an RNase-free tube (not provided) and centrifuge at no more than 200 x q (~2,000 RPM) for 10 minutes to pellet cells.
- b. Carefully decant the supernatant to ensure that the pellet is not dislodged. Wash the cell pellet with an appropriate amount of PBS. Centrifuge at 200 x g (~2,000 RPM) for another 5 minutes.
- c. Carefully decant the supernatant. A few μL of PBS may be left behind with the pellet in order to ensure that the pellet is not dislodged.
- d. Add 350 μ L of Buffer SK to the pellet. Lyse cells by vortexing for 15 seconds. Ensure that the entire pellet is completely dissolved before proceeding to the next step.
- e. Add 150 μ L of isopropanol (provided by the user) to the lysate. Mix by vortexing for 10 seconds. **Proceed to Step 2.**

Note: For input amounts greater than 10⁶ cells, it is recommended that the lysate is passed through a 25 gauge needle attached to a syringe 5-10 times at this point, in order to reduce the viscosity of the lysate prior to loading onto the column

1B. Lysate Preparation from Animal Tissues

Notes Prior to Use

- RNA in animal tissues is not protected after harvesting until it is disrupted and homogenized. Thus it is important that the procedure is carried out as quickly as possible, particularly the Cell Lysate Preparation step.
- Fresh or frozen tissues may be used for the procedure. Tissues should be flash-frozen in liquid nitrogen and transferred immediately to a -70°C freezer for long-term storage. Tissues may be stored at -70°C for several months. Do not allow frozen tissues to thaw prior to grinding with the mortar and pestle in order to ensure that the integrity of the RNA is not compromised.
- The maximum recommended input of tissue varies depending on the type of tissue being used. Please refer to Table 1 below as a guideline for maximum tissue input amounts. If your tissue of interest is not included in the table below we recommend starting with an input of no more than 10 mg.

Table 1. Recommended Maximum Input Amounts of Different Tissues

Tissue	Maximum Input Amount
Brain	25 mg
Heart	5 mg
Kidney	10 mg
Liver	10 mg
Lung	10 mg
Spleen	10 mg

1B. Cell Lysate Preparation from Animal Tissues

- a. Excise the tissue sample from the animal.
- b. Determine the amount of tissue by weighing. Please refer to Table 1 for the recommended maximum input amounts of different tissues. For tissues not included in the table, we recommend starting with an input of no more than 10 mg.
- c. Transfer the tissue into a mortar that contains an appropriate amount of liquid nitrogen to cover the sample. Grind the tissue thoroughly using a pestle.
- d. Allow the liquid nitrogen to evaporate, without allowing the tissue to thaw.
- e. Add 600 μ L of Buffer SK to the tissue sample and continue to grind until the sample has been homogenized. Homogenize by passing the lysate 5-10 times through a 25 gauge needle attached to a syringe.
- f. Using a pipette, transfer the lysate into an RNase-free microcentrifuge tube (not provided).
- g. Spin lysate for 2 minutes to pellet any cell debris. Transfer the supernatant to another RNase-free microcentrifuge tube (not provided). Note the volume of the supernatant/lysate.
- h. Add an equal volume of 70% ethanol (provided by the user) to the lysate (100 μ L of ethanol is added to every 100 μ L of lysate). Mix by vortexing for 10 seconds. **Proceed to Step 2.**

1C. Lysate Preparation from Blood

Notes Prior to Use

- Blood of all human and animal subjects is considered potentially infectious. All
 necessary precautions recommended by the appropriate authorities in the country of use
 should be taken when working with whole blood.
- It is recommended that no more than 100 μL of blood be used in order to prevent clogging of the column.
- We recommend the use of this kit to isolate RNA from non-coagulating fresh blood using EDTA as the anti-coagulant.

1C. Cell Lysate Preparation from Blood

- a. Transfer up to 100 μ L of non-coagulating blood to an RNase-free microcentrifuge tube (not provided).
- b. Add 350 μ L of Buffer SK to the blood. Lyse cells by vortexing for 15 seconds. Ensure that mixture becomes transparent before proceeding to the next step.
- c. Add 150 μ L of isopropanol (provided by the user) to the lysate. Mix by vortexing for 10 seconds. **Proceed to Step 2.**

1D. Lysate Preparation from Bacteria

Notes Prior to Use

- Prepare the appropriate lysozyme-containing TE Buffer as indicated in Table 1. This solution should be prepared with sterile, RNAse-free TE Buffer, and kept on ice until needed. These reagents are to be provided by the user.
- It is recommended that no more than 10⁹ bacterial cells be used in this procedure. Bacterial growth can be measured using a spectrophotometer. As a general rule, an *E. coli* culture containing 1 x 10⁹ cells/mL has an OD₆₀₀ of 1.0.
- For RNA isolation, bacteria should be harvested in log-phase growth.
- Bacterial pellets can be stored at -70°C for later use, or used directly in this procedure.
- Frozen bacterial pellets should not be thawed prior to beginning the protocol. Add the Lysozyme-containing TE Buffer directly to the frozen bacterial pellet (Step 1Dc).

1D. Cell Lysate Preparation from Bacteria

- a. Pellet bacteria by centrifuging at 14,000 x g (~14,000 RPM) for 1 minute.
- b. Decant supernatant, and carefully remove any remaining media by aspiration.
- c. Resuspend the bacteria thoroughly in 100 μ L of the appropriate lysozyme-containing TE Buffer (see Table 1) by vortexing. Incubate at room temperature for the time indicated in Table 1.
- d. Add 300 μL of Buffer SK and vortex vigorously for at least 10 seconds.
- e. Add 150 μ L of isopropanol (provided by the user) to the lysate. Mix by vortexing for 10 seconds. **Proceed to Step 2.**

Table 1: Incubation Time for Different Bacterial Strains

Bacteria Type	Lysozyme Concentration in TE Bufffer	Incubation Time
Gram-negative	1 mg/mL	5 min
Gram-positive	3 mg/mL	10 min

1E. Lysate Preparation from Yeast

Notes Prior to Use

- Prepare the appropriate amount of Lyticase-containing Resuspension Buffer, considering that 500 μ L of buffer is required for each preparation. The Resuspension Buffer should have the following composition: 50 mM Tris, pH 7.5, 10 mM EDTA, 1M Sorbital, 0.1% β -mercaptoethanol and 1 unit/ μ L Lyticase. This solution should be prepared with sterile, RNAse-free reagents, and kept on ice until needed. These reagents are to be provided by the user.
- It is recommended that no more than 10⁷ yeast cells or 1 mL of culture be used for this procedure.
- For RNA isolation, yeast should be harvested in log-phase growth.
- Yeast can be stored at -70°C for later use, or used directly in this procedure.
- Frozen yeast pellets should not be thawed prior to beginning the protocol. Add the Lyticase-containing Resuspension Buffer directly to the frozen yeast pellet (Step 1Ec).

1E. Cell Lysate Preparation from Yeast

- a. Pellet yeast by centrifuging at 14,000 x g (~14,000 RPM) for 1 minute.
- b. Decant supernatant, and carefully remove any remaining media by aspiration.
- c. Resuspend the yeast thoroughly in 500 μ L of Lyticase-containing Resuspension Buffer by vortexing. Incubate at 37°C for 10 minutes.
- d. Pellet the spheroplasts at 200 x g (~2,000 RPM) for 3 minutes. Decant supernatant.
- e. Add 350 μL of Buffer SK and vortex vigorously for at least 10 seconds.
- f. Add 150 μ L of isopropanol (provided by the user) to the lysate. Mix by vortexing for 10 seconds. **Proceed to Step 2.**

1F. Lysate Preparation from Fungi

Notes Prior to Use

- Fresh or frozen fungi may be used for this procedure. Fungal tissue should be flash-frozen in liquid nitrogen and transferred immediately to a -70°C freezer for long-term storage. Fungi may be stored at -70°C for several months. Do not allow frozen tissues to thaw prior to grinding with the mortar and pestle in order to ensure that the integrity of the RNA is not compromised.
- It is recommended that no more than 50 mg of fungi be used for this procedure in order to prevent clogging of the column.

1F. Cell Lysate Preparation from Fungi

- a. Determine the amount of fungi by weighing. It is recommended that no more than 50 mg of fungi be used for the protocol.
- b. Transfer the fungus into a mortar that contains an appropriate amount of liquid nitrogen to cover the sample. Grind the fungus thoroughly using a pestle.

Note: At this stage the ground fungus may be stored at -70°C, such that the RNA purification can be performed at a later time.

- c. Allow the liquid nitrogen to evaporate, without allowing the tissue to thaw.
- d. Add 600 μ L of Buffer SK to the tissue sample and continue to grind until the sample has been homogenized.
- e. Using a pipette, transfer the lysate into an RNase-free microcentrifuge tube (not provided).
- f. Spin the lysate for 2 minutes to pellet any cell debris. Transfer the supernatant to another RNase-free microcentrifuge tube. Note the volume of the supernatant/lysate.

g. Add an equal volume of 70% ethanol (provided by the user, 100 μ L of ethanol is added to every 100 μ L of lysate). Vortex to mix. **Proceed to Step 2.**

1G. Lysate Preparation from Plant

Notes Prior to Use

- The maximum recommended input of plant tissue is 50 mg or 5 x 10⁶ plant cells.
- Both fresh and frozen plant samples can be used for this protocol. Samples should be flash-frozen in liquid nitrogen and transferred immediately to a -70°C freezer for long-term storage. Do not allow frozen tissues to thaw prior to grinding with the mortar and pestle in order to ensure that the integrity of the RNA is not compromised.

1G. Cell Lysate Preparation from Plant

a. Transfer ≤50 mg of plant tissue or 5 x 10⁶ plant cells into a mortar that contains an appropriate amount of liquid nitrogen to cover the sample. Grind the sample into a fine powder using a pestle in liquid nitrogen.

Note: If stored frozen samples are used, do not allow the samples to thaw before transferring to the liquid nitrogen.

- b. Allow the liquid nitrogen to evaporate, without allowing the tissue to thaw.
- c. Add 600 μ L of Buffer SK to the tissue sample and continue to grind until the sample has been homogenized.
- d. Using a pipette, transfer the lysate into an RNase-free microcentrifuge tube (not provided).
- e. Spin the lysate for 2 minutes to pellet any cell debris. Transfer the supernatant to another RNase-free microcentrifuge tube. Note the volume of the supernatant/lysate.
- f. Add an equal volume of 70% ethanol (provided by the user, 100 μ L of ethanol is added to every 100 μ L of lysate). Vortex to mix. **Proceed to Step 2.**

Section 1B: Total RNA Purification from All Types of Lysate

Note: The remaining steps of the procedure for the purification of total RNA are the same from this point forward for all the different types of lysate.

2. Binding RNA to Column

- a. Assemble a column with one of the provided collection tubes.
- b. Apply up to 600 μ L of the lysate with the alcohol onto the column and centrifuge for 1 minute at \geq 3,500 x g (~6,000 RPM).

Note: Ensure the entire lysate volume has passed through into the collection tube by inspecting the column. If the entire lysate volume has not passed, spin for an additional minute at $14,000 \times g$ (~ $14,000 \times PM$).

- c. Retain the flowthrough for Protein Purification (Section 2). The flowthough contains the proteins and should be stored on ice or at -20°C until the Protein Purification protocol is carried out.
- d. Depending on your lysate volume, repeat steps **2b** and **2c** if necessary. The flowthroughs should be combined and retained in the same microcentrifuge tube.
- e. Reassemble the spin column with a new collection tube.

3. DNase Treatment (Optional)

This optional step is carried out if genomic DNA-free RNA is required. It is recommended that Norgen's RNase-Free DNase I Kit (Product # 25710) be used for this step.

 a. Apply 400 μL of Wash Solution to the column and centrifuge for 2 minutes. Discard the flowthrough.

Note: Ensure the entire wash solution has passed through into the collection tube by inspecting the column. If the entire wash volume has not passed, spin for an additional minute.

b. Apply 100 μL of Enzyme Incubation Buffer A mix containing of 15 μL of Norgen's RNase-free DNase I (Product # 25710) to the column and centrifuge at 14,000 x g (~14,000 RPM) for 1 minute. If using an alternative DNase I, apply 100 μL of Enzyme Incubation Buffer A containing 25 units of DNase I to the column and centrifuge for 1 minute.

Note: Ensure that the entire volume of DNase I mix passes through the column. If needed, spin at 14,000 x g for an additional minute.

c. After the centrifugation in Step b, pipette the flowthrough that is present in the collection tube back onto the top of the column.

Note: Ensure that Step c is performed in order to ensure maximum DNase activity and to obtain maximum yields of RNA, in particular for small RNA species.

- d. Incubate at room temperature for 15 minutes.
- e. Proceed to Step 4c without further centrifugation.

4. Column Wash

a. Apply 400 μL of Wash Solution A to the column and centrifuge for 1 minute.

Note: Ensure the entire wash solution has passed through into the collection tube by inspecting the column. If the entire wash volume has not passed, spin for an additional minute.

- b. Discard the flowthrough and reassemble the column with the collection tube.
- c. Wash column a second time by adding another 400 μ L of Wash Solution A and centrifuge for 1 minute.
- d. Discard the flowthrough and reassemble the spin column with its collection tube.
- e. Spin the column for 2 minutes in order to thoroughly dry the resin. Discard the collection tube

5. RNA Elution

- a. Place the column into a fresh 1.7 mL microcentrifuge tube (provided by the user).
- b. Add 50 µL of Elution Solution A to the column.
- c. Centrifuge for 2 minutes at 200 x g (~2,000 RPM), followed by a 1 minute spin at 14,000 x g (~14,000 RPM). Note the volume eluted from the column. If the entire volume has not been eluted, spin the column at 14,000 x g (~14,000 RPM) for 1 additional minute.

Note: For maximum nucleic acid recovery, it is recommended that a second elution be performed into a separate microcentrifuge tube (Repeat **Steps 5b** and **5c**).

d. Retain the column for Protein Purification. Proceed to Section 2 for Protein Purification.

6. Storage of RNA

The purified RNA sample may be stored at -20°C for a few days. It is recommended that samples be placed at -70°C for long term storage.

Section 2. Procedure to Isolate Total Proteins from All Cell Types

A. Total Protein Purification from All Cell Types

Notes Prior to Use

- At this point, the proteins that are present in the flowthrough from the RNA Binding Step (Step 2 above) can be processed by one of the following three options:
 - Direct running on an SDS-PAGE gel with the provided loading dye for visual analysis
 - Column purification (recommended)
 - Acetone precipitation
- Add 93 mg of DL-Dithiothreitol (DTT, not provided) to the Protein Loading Dye. The Protein Loading Dye should be stored at -20°C after the addition of DTT. The label on the bottle has a box that may be checked to indicate that DTT has been added
- For direct running on a gel, the provided Protein Loading Dye should be used instead of regular SDS-PAGE Loading Buffer in order to prevent any precipitates from forming. Add 1 volume of the Protein Loading Dye to the sample and boil for 2 minutes before loading.
- Column purification of the proteins is recommended. For column purification please follow steps 7 to 10 below.
- For acetone precipitation, please refer to the supplementary protocol provided in the Appendix A below

7. pH Adjustment of Lysate

a. Use 100 μL of flowthrough from the RNA Binding Step (Step 2c above).

Note: Up to 300 μL of flowthrough may be used. However, the recovery efficiency may be decreased when processing a larger volume.

- **b.** Adjust volume to 575 μL with Molecular Biology Grade Water.
- c. Add 24 µL of Binding Buffer A. Mix contents well.

Note: If the entire lysate is to be purified, repeat step **7a** to **7c** with the remaining lysate.

8. Protein Binding

a. Apply up to 600 μ L of the pH-adjusted protein sample onto the column, and centrifuge for 2 minutes at 5,200 x g (~8,000 RPM). Inspect the column to ensure that the entire

- sample has passed through into the collection tube. If necessary, spin for an additional 3 minutes.
- **b.** Discard the flowthrough. Reassemble the spin column with its collection tube.

Note: You can save the flowthrough in a fresh tube for assessing your protein's binding efficiency.

c. Depending on your sample volume, repeat steps 8a and 8b until the entire protein sample has been loaded onto the column.

9. Column Wash

- **a.** Apply 500 μ L of Wash Solution C to the column and centrifuge for 2 minutes at 5,200 x g (~8,000 RPM).
- **b.** Discard the flowthrough and reassemble the spin column with its collection tube.
- **c.** Inspect the column to ensure that the liquid has passed through into the collection tube. There should be no liquid in the column. If necessary, spin for an additional minute to dry.

10. Protein Elution and pH Adjustment

The supplied Elution Buffer C consists of 10 mM sodium phosphate pH 12.5.

- **a.** Add 9.3 μL of **Protein Neutralizer** to a fresh 1.7 mL microcentrifuge tube (provided by the user).
- **b.** Transfer the spin column from the Column Wash procedure into the Elution Tube.
- **c.** Apply 100 μ L of the Elution Buffer C to the column and centrifuge for 2 minutes at 5,200 x g (~8,000 RPM) to elute bound proteins.

Note: Approximately 95% of bound protein is recovered in the first elution. If desired, a second elution using 50 μ L of Elution Buffer C may be carried out. This should be collected into a different tube (to which 4.6 μ L of Protein Neutralizer is pre-added) to prevent dilution of the first elution.

Appendix A: Acetone Precipitation Procedure for Proteins

- Add 4 volumes of ice-cold acetone to the flowthrough from the RNA Binding Step (Step 2)
- **b.** Incubate for 15 minutes on ice or at -20°C.
- **c.** Centrifuge for 10 minutes at 14,000 x g (~12,000 RPM). Discard the supernatant and allow the pellet to air-dry.

Note: At this point the pellet can be washed with 100 μ L of ice cold ethanol and again airdried

d. Resuspend the pellet in the buffer of your choice that is suited to your downstream application.

Troubleshooting Guide

Problem	Possible Cause	Solution and Explanation
	Incomplete lysis of cells or tissue	Ensure that the appropriate amount of Buffer SK was used for the amount of cells or tissue.
An a elutic used Alcol adde Solur Recovery Low in ce used Yeas was the F Buffe Bact All tr	Column has become clogged	Do not exceed the recommended amounts of starting materials. The amount of starting material may need to be decreased if the column shows clogging below the recommended levels. See also "Clogged Column" below.
	An alternative elution solution was used	It is recommended that the Elution Solution A supplied with this kit be used for maximum RNA recovery.
	Alcohol was not added to the lysate	Ensure that the appropriate amount of isopropanol or ethanol is added to the lysate before binding to the column.
	Ethanol was not added to the Wash Solution	Ensure that 90 mL of 96 - 100 % ethanol is added to the supplied Wash Solution prior to use.
	Low RNA content in cells or tissues used	Different tissues and cells have different RNA contents, and thus the expected yield of RNA will vary greatly from these different sources. Please check literature to determine the expected RNA content of your starting material.
	Cell Culture: Cell monolayer was not washed with PBS	Ensure that the cell monolayer is washed with the appropriate amount of PBS in order to remove residual media from cells.
	Yeast: Lyticase was not added to the Resuspension Buffer	Ensure that the appropriate amount of lyticase is added when making the Resuspension Buffer.
	Bacteria and Yeast: All traces of media not removed	Ensure that all media is removed prior to the addition of the Buffer SK through aspiration.
Clogged Column	Insufficient solubilization of cells or tissues	Ensure that the appropriate amount of lysis buffer was used for the amount of cells or tissue.
	Maximum number of cells or amount of tissue exceeds kit specifications	Refer to specifications to determine if amount of starting material falls within kit specifications

Problem	Possible Cause	Solution and Explanation
Clogged Column	High amounts of genomic DNA present in sample	The lysate may be passed through a 25 gauge needle attached to a syringe 5-10 times in order to shear the genomic DNA prior to loading onto the column.
	Centrifuge temperature too low	Ensure that the centrifuge remains at room temperature throughout the procedure. Temperatures below 20°C may cause precipitates to form that can cause the columns to clog.
RNA is Degraded	RNase contamination	RNases may be introduced during the use of the kit. Ensure proper procedures are followed when working with RNA. Please refer to "Working with RNA" at the beginning of this user guide.
	Procedure not performed quickly enough	In order to maintain the integrity of the RNA, it is important that the procedure be performed quickly. This is especially important for the Cell Lysate Preparation Step in the Animal Tissue protocol, since the RNA in animal tissues is not protected after harvesting until it is disrupted and homogenized.
	Improper storage of the purified RNA	For short term storage RNA samples may be stored at -20°C for a few days. It is recommended that samples be stored at -70°C for longer term storage.
	DNase I used may not be RNase-free	Ensure that the DNase I being used with this kit is RNase-free in order to prevent possible problems with RNA degradation. Norgen's RNase-Free DNase I Kit (Cat# 25710) is recommended for this step.
	Lysozyme or lyticase used may not be RNAse-free	Ensure that the lysozyme and lyticase being used with this kit is RNase-free, in order to prevent possible problems with RNA degradation.
	Starting material may have a high RNase content	For starting materials with high RNAase content, it is recommended that β -mercaptoethanol be added to the Buffer SK.
	Frozen tissues or cell pellets were allowed to thaw prior to RNA isolation	Do not allow frozen tissues to thaw prior to grinding with the mortar and pestle in order to ensure that the integrity of the RNA is not compromised.
RNA does not perform well in downstream applications	RNA was not washed twice with the provided Wash Solution	Traces of salt from the binding step may remain in the sample if the column is not washed twice with Wash Solution. Salt may interfere with downstream applications, and thus must be washed from the column.
	Ethanol carryover	Ensure that the dry spin under the Column Wash procedure is performed, in order to remove traces of ethanol prior to elution. Ethanol is known to interfere with many downstream applications.

Problem	Possible Cause	Solution and Explanation
Poor protein recovery Low protein content in the starting materials	adjustment of	Ensure that the pH of the starting protein sample is adjusted to pH 3.5 or lower after the Binding Buffer A has been added and prior to binding to the column. If necessary, add additional Binding Buffer A.
	Run a 20 µL fraction from the flowthrough (after Nucleic Acid binding) on a SDS-PAGE gel to estimate the amount of protein present in the sample. In addition, use the entire flowthrough in protein purification procedure	
Proteins are degraded	Eluted protein solution was not neutralized.	Add 9.3 µL of Protein Neutralizer to each 100 µL of eluted protein in order to adjust the pH to neutral. Some proteins are sensitive to high pH, such as the elution buffer at pH 12.5
	Eluted protein was not neutralized quickly enough.	If eluted proteins are not used immediately, degradation will occur. We strongly suggest adding Protein Neutralizer in order to lower the pH.

Related Products	Product #
RNA/DNA/Protein Purification Kit	24000
RNase-Free DNase I Kit	25710
1kb RNA Ladder	15003
UltraRanger 1kb DNA Ladder	12100

Technical Support

Contact our Technical Support Team between the hours of 8:30 and 5:30 (Eastern Standard Time) at (905) 227-8848 or Toll Free at 1-866-667-4362.

Technical support can also be obtained from our website (www.norgenbiotek.com) or through email at techsupport@norgenbiotek.com.

3430 Schmon Parkway, Thorold, ON Canada L2V 4Y6 Phone: (905) 227-8848 Fax: (905) 227-1061 Toll Free in North America: 1-866-667-4362