
1

Smartphone & Cross-platform

Communication Toolkit User Manual

for iOS

Release 3.0.0

July 2013 Edition

© TOOLS for SMART MINDS 2 Smartphone & Cross-platform Communication Toolkit User

Manual

3

Worldwide technical support and product information:

www.toolsforsmartminds.com

TOOLS for SMART MINDS Corporate headquarter

Via Padania, 16 Castel Mella 25030 Brescia (Italy)

Copyright © 2010 Tools for Smart Minds. All rights reserved.

© TOOLS for SMART MINDS 4 Smartphone & Cross-platform Communication Toolkit User

Manual

CONTENTS

CONTENTS 4

ABOUT THIS MANUAL 6

CONVENTIONS 6

INTRODUCTION 7

GENERAL WORKING 7

SCCT publisher 7

SCCT subscriber 7

REQUIREMENTS 8

INSTALLATION 8

DOCSET INSTALLATION 8

HOW SCCT SUBSCRIBER FOR IOS WORKS 9

HOW DATA PACKAGES ARE MANAGED 10

PACKAGES 11

CONFIGURATION PACKAGE 11

Channel Configuration 11

Line Configuration 11

Receiving Configuration Package 11

ERROR PACKAGE 12

Receiving Error Package 12

ANALOG DATA PACKAGE 13

Receiving Analog Data Package 13

DIGITAL DATA PACKAGE 13

Receiving Digital Data Package 13

MESSAGE PACKAGE 14

Receiving Message Package 14

Sending Message Package 14

XML PACKAGE 14

Receiving Xml Package 14

Sending Xml Package 14

5

FILE PACKAGE 14

Receiving File Package 15

Sending File Package 15

IMAGE PACKAGE 15

Receiving Image Package 15

Sending Image Package 15

ARRAY PACKAGES 16

Receiving array packages 16

Sending array packages 17

FILTERS 18

Array Filter 18

Analog Data Filter 19

Sending Filter package 19

REGISTER AND UNREGISTER OBSERVERS 20

OPENING AND CLOSING COMMUNICATION 20

START AND STOP TRANSMISSION 20

SOURCES 21

FIGURE INDEX 22

INDEX 22

© TOOLS for SMART MINDS 6 Smartphone & Cross-platform Communication Toolkit User

Manual

ABOUT THIS MANUAL
The Smartphone & Cross-platform Communication Toolkit User Manual describes the virtual

instruments (VIs) used to communicate and pass data between LabVIEW and either a local or remote

application. You should be familiar with the operation of LabVIEW, your computer and your computer

operating system.

CONVENTIONS
The following conventions appear in this manual:

� The�symbol leads you through nested menu items and dialog box options to a final action.

The sequence Tools ����Options directs you to pull down the Tools menu, select Options item.

Bold Bold text denotes items that you must select or click on the software, such as menu items and

dialog box options. Bold text also denotes parameter names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction to a key concept.

This font also denotes text that is a placeholder for a word or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the keyboard,

sections of code, programming examples, and syntax examples. This font is also used for the proper

names of disk drives, paths, directories, programs, subprograms, subroutines, device names, functions,

operations, variables, filenames and extensions, and code excepts.

monospace italic

Italic text in this font denotes text that is a placeholder for a word or value that you must supply.

7

INTRODUCTION
The Smartphone & Cross-platform Communication Toolkit (SCCT) is a library which sets up a connection

among different devices and allows data communication. SCCT can send several types of data: analog

data, digital data, files, images, etc. and all of them in a very fast and easy way!

The toolkit offers a set of high level functions for sending data and advanced functions for customized

tasks with which SCCT has succeeded in resolving all the common problems regarding data

communication.

In this way you can see how the communication results simplified, reliable and quickened!

GENERAL WORKING

In this chapter are explained the basis of SCCT working. SCCT is constituted by two complementary

libraries: SCCT subscriber and SCCT publisher that work together during the communication process.

SCCT PU B LI SHER

SCCT publisher is a library developed in LabVIEW (to get more details about it see

http://toolsforsmartminds.com/products/labview_communication_library.php): it has the role of

producer; it can acquire from a remote system several types of data (analog and digital data, xml

messages, files, images..) and sends them through the net to all clients who request it.

SCCT SU BSC RI BER

SCCT subscriber, instead of SCCT publisher, is a library that has client role: it receives data being sent by

SCCT publisher and provides them neatly to the developer, just ready to be used. In order to receive

data and use them, the developer has only to implement the interface provided by the library.

FIGURE 1 - COMMUNICATION SCHEME

You can find more information about general features of SCCT and supported platforms in the “SCCT

Overview” document, downloadable by

www.toolsforsmartminds.it/products/SCCT.php.

© TOOLS for SMART MINDS 8 Smartphone & Cross-platform Communication Toolkit User

Manual

REQUIREMENTS
In this chapter we make you a list of the main requirements of SCCT for iOS, each of them has been

tested in the indicated versions:

• XCode 4.x version;

• iOS 5 or later version;

• One of the next architectures, as:

o armv7;

o armv7s;

o i386;

• Internet connection.

INSTALLATION
First of all you need to have XCode installed on your computer (it is possible download it from Apple

Store).

To install SCCT for iOS you have to follows next steps:

1. Open XCode.

2. Start your project.

3. Add the headers and libSCCT.a files to your project using the “Add Files to …” from File

menu or drag and drop it in your project.

4. Add to Other Linker Flags in your target “Build Settings”: -ObjC –all_load

In the next chapters it is described how to configure and use this library.

DOCSET INSTALLATION
In the SCCT library package you find also the .docset file. Copy it into the ~/Library/Developer/Shared

/Documentation/DocSets/ folder to see the SCCT documentation in the Documentation browser of

XCode.

You can download all versions of SCCT subscriber and publisher libraries from

www.toolsforsmartminds.it/products/SCCT.php .

9

HOW SCCT SUBSCRIBER FOR IOS WORKS
As said in the “General Working” chapter, SCCT is composed of two parts: a publisher and a subscriber.

SCCT for iOS works as subscriber during the data exchanging, and has to manage the connection with

the publisher.

In order to do this, SCCT for iOS implements the Observer pattern. This is a pattern intuitively used as an

architectural base of a lot of event management systems.

This pattern is substantially based on one or more objects, called observers or listeners, that are

registered to manage an event that may be generated by the "observed" object, called subject.

In particular, this library provides you with the following elements:

• SCCT_Subject is a class that has the task of managing in a direct way the communication

with the data producer (SCCT publisher), of providing methods that allow the connection with

SCCT_Observer and enable the data sending.

• SCCT_Observer is a protocol that any class can implement. It provides optional methods

that are needed to receive all sent data (NB. It starts to receive data only after having been registered to

the Subject). You can implement one or more of these methods according to your needs. You can define

observers with different roles.

• SCCT_Package is an abstract class from which other classes inherit. These classes holds

different kinds of data, and each type of package is sent in different listeners of SCCT_Observer

protocol by SCCT_Subject (for more details see “Packages” chapter).

© TOOLS for SMART MINDS 10 Smartphone & Cross-platform Communication Toolkit

User Manual

HOW DATA PACKAGES ARE MANAGED
SCCT_Subject performs the methods of more SCCT_Observer objects in the main thread

loop. This means that if the invoked Observers methods aren’t fast enough, they could stand in a queue

in the main thread loop and slow down the main thread performance and therefore the GUI.

If you need to perform long tasks with received data, you are suggested to execute them through a

background thread.

FIGURE 2 - D IAGRAM OF A POSSIBLE PACKAGES QUEUE

The packages are received by SCCT_Observer in the same order in which the publisher sent it, so

that the developer doesn’t need to worry about to sort them. The types of packages and the listeners of

observer necessary to receive them are described in the following chapters.

11

PACKAGES
SCCT manages many types of packages containing data of different kinds. These packages are used to

send data from SCCT Publisher to SCCT Subscriber and vice versa in a faster way than sending a few data

little by little. These packages are received by SCCT_Subject object that sorts them to all registered

SCCT_Observer objects. SCCT_Subject also deals with sending these packages from subscriber to

publisher.

In the following chapters are described in detail every type of package with its content and its purpose.

CONFIGURATION PACKAGE
Configurations are contained in the SCCT_ConfigurationPackage object that holds information

about the used device, like name and type of device, and channels and lines configurations. In particular,

a configuration refers to a specific data source and holds information about

SCCT_AnalogDataPackage and SCCT_DigitalDataPackage (see “Analog data package” and

“Digital data package” chapters).

Usually this package is sent at the beginning of the transmission to inform the client about how many

lines and channels are used and which configuration they have.

CH ANN EL CO NFI GUR AT I ON

SCCT_ChannelConfiguration objects are held in the channels NSArray property of

SCCT_ConfigurationPackage object.

SCCT_ChannelConfiguration has the following properties:

- Description: the name or the description of the channel;

- Direction: indicates if it is an input or output channel; this field can have “Input” or “Output”

value.

- Unit: the measurement unit of the channel;

- SamplingRate: the sampling rate of the channel;

- MinValue: the minimum value that the channel can assume;

- MaxValue: the maximum value that the channel can assume;

- Index: the index of the channel.

L I NE CONF I GUR ATI ON

SCCT_DigitalLineConfiguration objects are held in the digitalLines NSArray property of

SCCT_ConfigurationPackage object.

SCCT_DigitalLineConfiguration has the following properties:

- Description: the name or the description of the line;

- Direction: indicates if it is an input or output channel; this field can have “Input” or “Output”

value.

- Index: the index of the line.

RECE I VI NG CO NFI GUR ATI ON PACK AGE

In order to receive the configuration you have to implement the following method of

SCCT_Observer protocol:

–(void)configurationListener:(SCCT_ConfigurationPac kage*)configurationPackage

© TOOLS for SMART MINDS 12 Smartphone & Cross-platform Communication Toolkit

User Manual

ERROR PACKAGE
The errors are generated when a problem occurs and are managed with a SCCT_ErrorPackage .

Each error is associated with a code (in the SCCT_ErrorPackage class there is an enumeration of

error codes).

The error is a particular type of package because unlike other packages it doesn’t hold data but advises

that an unexpected event happened. In addictions, this package can be also generated by SCCT for iOS

itself if there is any problem in the connection or if some of these parameters are wrong.

Moreover, whenever an error occurs the connection breaks down, so this package should be handled

with particular care.

This error can be generated because of one of these reasons:

Code Name Description

1 Wrong API-Key This error is thrown if API-Key is incorrect.

2 Wrong Timeout This error is thrown if the timeout is less than or equal

to 1.

3 Wrong timestamp This error is thrown if the client's timestamp is too much

different from the producer's one.

4 Expired timeout This error is thrown if timeout is expired.

5 Lost connection This error is thrown if connection breaks down before

timeout expiring.

6 Transmission error This error is thrown if it’s impossible to send a message.

7 Destination unreachable This error is thrown if it’s impossible to open the

connection with the producer.

8 Empty address This error is thrown if the address string is empty.

9 Wrong port This error is thrown if the port is less than or equal to 0.

Some of them are generated by the library and have a different timestamp from other packages (that

are created by the producer).

RECE I VI NG ER ROR PAC KAGE

In order to receive error packages you have to implement the following method of SCCT_Observer

protocol:

–(void)errorListener:(SCCT_ErrorPackage*)errorPacka ge

13

ANALOG DATA PACKAGE
Analog data are the sampled values of analog channels and are contained in the

SCCT_AnalogDataPackage object.

These data are stored in a bidimensional matrix which is built by means of a NSArray containing in

turn other NSArray objects of NSNumber objects: the first index selects the channel and the array of

sampled values associated to it; the second index selects the single sampled value and returns a

NSNumber object.

Sample values are stored in double format.

FIGURE 3 - ANALOG DATA MATRIX

You can use these data to show them in a label, draw them in a graph or store them in a database or in a

file.

If, for example, you want to get the i-th value of the j-th channel, you have to do as follow:

[[[analogDataPackage.values objectAtIndex: j] objec tAtIndex: i] doubleValue];

RECE I VI NG AN ALO G DATA PACK AGE

In order to receive the analog data packages you have to implement the following method of

SCCT_Observer protocol:

–(void)analogDataListener:(SCCT_AnalogDataPackage*) analogDataPackage

DIGITAL DATA PACKAGE
Digital data are values of digital lines and are contained in the SCCT_DigitalDataPackage object.

These data are stored in a NSArray of NSNumber objects. The lines status is represented in BOOL

format.

If, for example, you want to get the staus of the i-th line, you have to do as follow:

[[digitalDataPackage.values objectAtIndex: i] boolV alue];

RECE I VI NG D I GI TAL DATA PACK AGE

In order to receive digital data packages you have to implement the following method of

SCCT_Observer protocol:

–(void)digitalDataListener:(SCCT_DigitalDataPackage *)digitalDataPackage

© TOOLS for SMART MINDS 14 Smartphone & Cross-platform Communication Toolkit

User Manual

MESSAGE PACKAGE
A SCCT_MessagePackage object contains a short message with an associate code number. This kind

of package is useful for exchange messages or commands with the publisher (e.g. to request some data

or to tell it to start a task).

You can instantiate it with the initWithMessage:code: instance method, or with the

packageWithMessage:withCode: class method and use the instanced object to send it with the

sendMessage: method of SCCT_Subject.

RECE I VI NG ME SS AGE PACK AGE

In order to receive message packages you have to implement the following method of

SCCT_Observer protocol:

–(void)messageListener:(SCCT_MessagePackage*)messag ePackage

SEN DI N G ME SS AGE PAC KAGE

In order to send SCCT_MessagePackage object you have to use the following method of

SCCT_Subject object:

-(NSUInger)sendMessage:(SCCT_MessagePackage*)packag e

XML PACKAGE
A SCCT_XmlPackage object contains an xml document. This class doesn’t validate the xml, so it can

be also contained a malformed xml: is a developer responsibility to validate the document if necessary.

The document is stored in the xml property as a NSString object. This kind of package is similar to

message package, but it has a different semantic purpose and then is handled differently from SCCT.

You can instantiate it with the initWithXml: instance method, or with the packageWithXml: class

method and use the instanced object to send it with the sendXml: method of SCCT_Subject.

RECE I VI NG XM L PACK AGE

In order to receive xml packages you have to implement the following method of SCCT_Observer

protocol:

–(void)xmlListener:(SCCT_XmlPackage*)xmlPackage

SEN DI N G XM L PACK AG E

In order to send SCCT_XmlPackage object you have to use the following method of SCCT_Subject

object:

-(NSUInteger)sendXml:(SCCT_XmlPackage*)package

FILE PACKAGE
SCCT allows you to exchange easily any kind of file between publisher and subscriber through the

SCCT_FilePackage class.

This class holds the following data:

- File name: The name of the file.

- File content: This is a NSData object containing the content of the file received or sent.

15

- Md5: the md5 code of file. This field is optional, so if the publisher sent the file without

calculating md5 code, this string is empty. When you send a file you can decide whether calculate it with

a flag in the constructor.

- Attributes: an NSArray of NSString objects containing a list of file attributes (e.g. the file author

name, the creation date etc.). This field is optional, so if the publisher sends the file without it, the array

will be empty.

NB: This package is available only in PRO version.

RECE I VI NG F I LE PACK AGE

In order to receive file packages you have to implement the following method of SCCT_Observer

protocol:

–(void)fileListener:(SCCT_FilePackage*)filePackage

SEN DI N G F I LE PACK AG E

In order to send SCCT_XmlPackage object you have to use the following method of SCCT_Subject

object:

-(NSUInteger)sendFile:(SCCT_FilePackage*)package

IMAGE PACKAGE

SCCT allows you to exchange easily images between publisher and subscriber through the

SCCT_ImagePackage class.

This class holds the following data:

- Description: The description or the name of the image.

- Image: The image received or sent. You can get the image in NSData object representation

using the format field to decode it or you can use the UIImage object representation already decoded.

- Attributes: an NSArray of NSString objects containing a list of image attributes (e.g. the file

author name, the creation date etc.). This field is optional, so if the publisher sends the file without it,

the array will be empty.

- Format: It’s the format of the image. The format can be one of the following values:

o kSCCTImageFormatPng;

o kSCCTImageFormatJPeg;

o kSCCTImageFormatBmp;

o kSCCTImageFormatTiff.

NB: This package is available only in PRO version.

RECE I VI NG IM AG E PACK AGE

In order to receive image packages you have to implement the following method of SCCT_Observer

protocol:

–(void)imageListener:(SCCT_ImagePackage*)imagePacka ge

SEN DI N G IM AG E PACK AGE

In order to send SCCT_ImagePackage object you have to use the following method of SCCT_Subject

object:

-(NSUInteger)sendImage:(SCCT_ImagePackage*)package

© TOOLS for SMART MINDS 16 Smartphone & Cross-platform Communication Toolkit

User Manual

ARRAY PACKAGES
The array packages, that inherit from the SCCT_2DArrayPackage class, are a powerful way to exchange

two-dimensional arrays of different primitive types. The supported types are:

Type Package

double SCCT_2DDoubleArray

float SCCT_2DFloatArray

integer SCCT_2DIntegerArray

short SCCT_2DShortArray

long SCCT_2DLongArray

boolean SCCT_2DBoolArray

String SCCT_2DStringArray

Data are stored in an NSArray object accessible by means of array2D property. array2S contains

other NSArray objects containing the single elements of the array. Each element is stored as

NSString in SCCT_2DStringArray and as NSNumber for all other kinds of array.

To understand this concept in detail, the following example shows how to receive a double array and

get the element at the 0,0 index as primitive type:

-(void)doubleArrayListener:(SCCT_2DDoubleArray*)dou bleArray{

 NSNumber * numb = [doubleArray.array2D objectA tIndex:0] objectAtIndex:0];

 double value = [numb doubleValue];

}

You can get the dimension of the array with the rowCount and columnCount properties.

Each array package has also an associated filter id (filterId property) that you can use to see which filter

is applied on these data. For more information about filters see Filters chapter.

RECE I VI NG ARR AY P ACK AGES

To receive different kinds of array, you have to implements the appropriate listeners (one for each type

of array) provided by the SCCT_Observer protocol. The following table show you the provided

listeners:

Type Listner

double -(void) doubleArrayListener:(SCCT_2DDoubleArray*)doubleArray

float -(void) floatArrayListener:(SCCT_2DFloatArray*)floatArray

integer -(void) integerArrayListener:(SCCT_2DIntegerArray*)integerArray

short -(void) shortArrayListener:(SCCT_2DShortArray*)shortArray

long -(void) longArrayListener:(SCCT_2DLongArray*)longArray

boolean -(void) boolArrayListener:(SCCT_2DBoolArray*)boolArray

17

String -(void) stringArrayListener:(SCCT_2DStringArray*)stringArray

Otherwise, you can use the generic listener arrayListener: that receive all kinds of array. In this

case you have to use the type property to discriminate the type of array and use it in the appropriate

way.

-(void)arrayListener:(SCCT_2DArrayPackage*)arrayPac kage{

 switch(arrayPackage.type){

 case kSCCTString:

 //Do something with string array

 break;

 case kSCCTDouble:

 //Do something with double array

 break;

 …

 }

}

SEN DI N G ARR AY P ACK AGES

In order to send a subclass of SCCT_2DArrayPackage object, you have to use the following method

of SCCT_Subject object:

-(NSUInteger)sendArray:(SCCT_2DArrayPackage*)packag e

© TOOLS for SMART MINDS 18 Smartphone & Cross-platform Communication Toolkit

User Manual

FILTERS
To reduce the amount of bandwidth used to communicate and the cpu and memory utilization on client

device, SCCT 3.0 has introduced filter packages. Filters allow subscribers to request a subset of data

transmitted by the publisher.

Filters is available for analog data and for 2D array of boolean, String, int, long, short, double, and float.

For analog data, filtering allows to select specific channels. Otherwise, for 2D arrays, filtering permits

you to select a subset of the available published array data.

Each instantiated filter is identified with a progress id called filterId . The filterId permits the

client to relate every received data package to the relative filter request. filterId is fundamental to

process received data in the right way. For example, if server manages a 100x100 array and a client

needs a 11x11 subarray (from index 5,5 to 15,15), the client sends a filter request. As it is the first filter

request sent to the server, the filter request must generate a filterId = 1 . When the filter request

is performed, server sends the required subarray and marks transmitted packages with filterId =

1. Later, if the client needs a different 11x11 subarray, it sends a another filter request. As it is the

second filter request, the filter request generates a filterId = 2 . The server performs this new

filter request, sends the new subarray and marks transmitted packages with filterId = 2 . The

following figure schematizes this example. The use of filterId permits the client to link every

received package with the first or the second filter request.

ARRAY F I L TER

Filters of array are represented by SCCT_ArrayFilter class. In the constructor you have to indicate

the array type on which apply the filter.

To select columns and rows you can use selectColoumnsFrom:to or selectRowsFrom:to

methods to select rows and columns. From parameter indicates the start value and to the final value to

select. Otherwise you can directly set up the query property using the following syntax: “r1-r2;c1-c2”

where r1 is the start row, r2 is the end row, c1 is the start column and c2 is the end column.

The following example explains how to select a subarray of double from index 5,5 to 15,15 .

SCCT_ArrayFilter* filter = [[SCCT_ArrayFilter alloc]initWithType:kSCCTDouble];

filter.query = @”5-15;5-15”;

/*

19

Either way, you can use the following code:

[filter selectRowsFrom: 5 to: 15];

[filter selectColumnsFrom: 5 to: 15];

*/

[subject sendFilter:filter];

AN AL OG DATA F I L TER

Analog data filter is represented by SCCT_AnalogDataFilter class. In analog data filter you can

select the channels (also scattered) and the sources to receive. To select channels and columns you can

use the following methods:

-(void)selectChannelsFrom:(NSUInteger)from

to:(NSUInteger)from
Select the channels from from to to.

-(void)selectChannels:(NSArray*)channels Select the indexes of channels in the array.

-(void)selectSources:(NSArray*)sources Select the ids of sources in the array.

-(void)setQuery:(NSString*) query The query syntax is: “c1-c2//s1,s2” or

alternatively “c3,c4//s1,s2”. In the first

case are selected the channels from c1 to

c2. In the second case, instead, the

channels c3 and c4 only are selected. In

both cases the sources s1 and s2 are

selected.

The following example explains how to select the channels from 1 to 3 of the sources 0 and 2.

SCCT_AnalogDataFilter * filter = [[SCCT_AnalogDataFilter alloc] init];

filter.query = @”1-3//0,2”;

[subject sendPackage:filter];

SEN DI N G F I L TER P ACK AGE

In order to send a subclass of SCCT_Filter object, you have to use the following method of

SCCT_Subject object:

-(NSUInteger)sendFilter:(SCCT_Filter*)filter

© TOOLS for SMART MINDS 20 Smartphone & Cross-platform Communication Toolkit

User Manual

REGISTER AND UNREGISTER OBSERVERS
The first thing to do in order to allow Observer to receive data is registering it to the Subject (multiple

registrations are possible if you are handling more than one connection at the same time), so that it

makes a request for receiving all the packages that are going to arrive (for which Observer has

implemented the method) from then on. Register behaviour is very similar to that of Delegate pattern,

often used in Cocoa Touch framework, with the only difference that, with SCCT, it’s possible to connect

more Observers to the same subject at the same time. It’s a good practice to register at least one

Observer before opening a new connection, otherwise you may lost some error or important package

transmitted at the beginning (i.e. a configuration package). Then, in any case it is possible adding or

removing an observer in any moment, also while connection is open. In order to register an Observer

you have to call the following method of SCCT_Subject object:

-(void)registerObserver:(id<SCCT_Observer>)observer

In any moment you can decide if an Observer is no more necessary and it doesn’t need data anymore. In

order to unregister it you have to use the following method of SCCT_Subject object:

-(void)unregisterObserver: :(id<SCCT_Observer>)obse rver

OPENING AND CLOSING COMMUNICATION
SCCT_Subject is the class that deals with the communication: each data passes through it. Each

object handles a single connection with a publisher, if you want communicate at the same time with

more publishers you have to instantiate more objects.

In order to open the communication with the publisher you have to invoke the SCCT_Subject

method that follows:

-(NSUInteger)openCommunication:(NSString*) address port: (UInt32)port

apikey:(NSString *) apikey description: (NSString*) description

This method has the following parameters:

- Address: The IP address or the host name of the publisher;

- Port: The port number of the publisher;

- ApiKey: The password for authenticating the client: if it’s wrong, you receive an ErrorPackage;

- Description: The name or the description of the client, useful for the publisher to identify which

client is connected;

- Timeout: The timeout value in seconds. If the connection is lost and the timeout expired the

library closes the communication and sends an expired timeout error to observers. This value must be

bigger than 1. By default this value is 10;

To close the communication, instead, you have to invoke closeCommunication method.

START AND STOP TRANSMISSION
When the communication is open a connection between publisher and subscriber is established, but the

publisher waits a client command to begin sending data. The publisher can however send some

packages if it considers them particularly important (e.g. a configuration or a message error).

To start data transmission you have to call start method, whereas you have to call stop method to

stop it.

21

SOURCES
Sometimes data can come from different sources (e.g. the publisher can handle two different devices or

take data from different databases). SCCT gives each source an ID and a description.

FIGURE 4 - SCENARIO WITH A MULTIPLE DATA SOURCE SERVER AND CLIENTS THAT NEED A SUBSET OF PUBLISHED DATA.

SCCT allows you to operate with different sources in an easy way
1
: if the sourceFilterEnabled

flag in the openCommunication method (see Opening and closing communication chapter) is

enabled the publisher will send only the packages of selected source list. By default this list is empty and

you can modify it with selectSourcesList: or selectSource: methods. The list contains

the ID of selected sources. If you call again this method, the source list selected before is overridden and

therefore it is not cumulative with the new one. If, however, sourceFilterEnabled flag is false the

publisher will send the packages of all sources.

To see which source the package arrives from, you can use sourceId and sourceDescription

properties that are available in every kind of packages.

1
 Function available only in PRO version.

© TOOLS for SMART MINDS 22 Smartphone & Cross-platform Communication Toolkit

User Manual

FIGURE INDEX
Figure 1 - Communication scheme ... 7

Figure 2 - Diagram of a possible packages queue .. 10

Figure 3 - Analog data matrix ... 13

Figure 4 - Scenario with a multiple data source server and clients that need a subset of published data.

 .. 21

INDEX
Channels ... 11; 13

Classes

SCCT_2DArrayPackage 16; 17

SCCT_2DBoolArray 16

SCCT_2DDoubleArray 16

SCCT_2DFloatArray 16

SCCT_2DIntegerArray 16

SCCT_2DLongArray 16

SCCT_2DShortArray 16

SCCT_2DStringArray 16; 17

SCCT_AnalogDataFilter 19

SCCT_AnalogDataPackage 11; 13

SCCT_ArrayFilter ... 18

SCCT_ChannelConfiguration 11

SCCT_ConfigurationPackage 11

SCCT_DigitalDataPackage 11; 13

SCCT_DigitalLineConfiguration 11

SCCT_ErrorPackage 12

SCCT_FilePackage 14; 15

SCCT_Filter.. 19

SCCT_ImagePackage 15; 17

SCCT_MessagePackage 14

SCCT_Package ... 9

SCCT_Subject 9; 10; 11; 14; 15; 17; 19; 20

SCCT_XmlPackage....................................... 14

Listeners

analogDataListener: 13

arrayListener:.. 17

boolArrayListener: 16

configurationListener: 11

digitalDataListener: 13

doubleArrayListener: 16

errorListener: 12

fileListener: 15

floatArrayListener: 16

imageListener: 15

integerArrayListener: 16

longArrayListener: 16

messageListener: 14

shortArrayListener: 16

stringArrayListener:..................................... 17

xmlListener: 14; 15

Methods

closeCommunication 20

initWithMessage:code: 14

initWithXml: .. 14

openCommunication:port:apikey:

description: 20

packageWithMessage:withCode: 14

packageWithXml: .. 14

registerObserver: 20

sendFile: ... 15

sendImage: 15; 17

sendMessage: ... 14

sendXml: 14; 15; 17; 19

start ... 20

stop ... 20

unregisterObserver: 20

Protocols

SCCT_Observer 9; 10; 11; 13; 14

SCCT publisher .. 7; 9

SCCT subscriber ... 7

