Smartphone & Cross-platform
Communication Toolkit User Manual
for iOS

. Release 3.0.0
105

July 2013 Edition

1

© TOOLS for SMART MINDS 2 Smartphone & Cross-platform Communication Toolkit User
Manual

Worldwide technical support and product information:
www.toolsforsmartminds.com
TOOLS for SMART MINDS Corporate headquarter

Via Padania, 16 Castel Mella 25030 Brescia (ltaly)

Copyright © 2010 Tools for Smart Minds. All rights reserved.

CONTENTS
CONTENTS

ABOUT THIS MANUAL

CONVENTIONS

INTRODUCTION

GENERAL WORKING
SCCT publisher
SCCT subscriber

REQUIREMENTS
INSTALLATION

DOCSET INSTALLATION

HOW SCCT SUBSCRIBER FOR 10S WORKS
HOW DATA PACKAGES ARE MANAGED
PACKAGES

CONFIGURATION PACKAGE

Channel Configuration

Line Configuration

Receiving Configuration Package
ERROR PACKAGE

Receiving Error Package
ANALOG DATA PACKAGE

Receiving Analog Data Package
DIGITAL DATA PACKAGE

Receiving Digital Data Package
MESSAGE PACKAGE

Receiving Message Package

Sending Message Package
XML PACKAGE

Receiving Xml Package

Sending Xml Package

© TOOLS for SMART MINDS 4
Manual

10
11

11
11
11
11
12
12
13
13
13
13
14
14
14
14
14
14

Smartphone & Cross-platform Communication Toolkit User

FILE PACKAGE
Receiving File Package
Sending File Package
IMAGE PACKAGE
Receiving Image Package
Sending Image Package
ARRAY PACKAGES
Receiving array packages
Sending array packages
FILTERS
Array Filter
Analog Data Filter
Sending Filter package
REGISTER AND UNREGISTER OBSERVERS
OPENING AND CLOSING COMMUNICATION
START AND STOP TRANSMISSION
SOURCES

FIGURE INDEX

INDEX

14

15

15

15

15

15

16

16

17

18

18

19

19

20

20

20

21

22

22

ABOUT THIS MANUAL

The Smartphone & Cross-platform Communication Toolkit User Manual describes the virtual
instruments (VIs) used to communicate and pass data between LabVIEW and either a local or remote
application. You should be familiar with the operation of LabVIEW, your computer and your computer
operating system.

CONVENTIONS

The following conventions appear in this manual:

> The » symbol leads you through nested menu items and dialog box options to a final action.
The sequence Tools » Options directs you to pull down the Tools menu, select Options item.

Bold Bold text denotes items that you must select or click on the software, such as menu items and
dialog box options. Bold text also denotes parameter names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction to a key concept.
This font also denotes text that is a placeholder for a word or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the keyboard,
sections of code, programming examples, and syntax examples. This font is also used for the proper
names of disk drives, paths, directories, programs, subprograms, subroutines, device names, functions,
operations, variables, filenames and extensions, and code excepts.

nmonospace italic

Italic text in this font denotes text that is a placeholder for a word or value that you must supply.

© TOOLS for SMART MINDS 6 Smartphone & Cross-platform Communication Toolkit User
Manual

INTRODUCTION

The Smartphone & Cross-platform Communication Toolkit (SCCT) is a library which sets up a connection
among different devices and allows data communication. SCCT can send several types of data: analog
data, digital data, files, images, etc. and all of them in a very fast and easy way!

The toolkit offers a set of high level functions for sending data and advanced functions for customized
tasks with which SCCT has succeeded in resolving all the common problems regarding data

communication.

In this way you can see how the communication results simplified, reliable and quickened!

You can find more information about general features of SCCT and supported platforms in the “SCCT

Overview” document, downloadable by
www.toolsforsmartminds.it/products/SCCT.php.

GENERAL WORKING

In this chapter are explained the basis of SCCT working. SCCT is constituted by two complementary
libraries: SCCT subscriber and SCCT publisher that work together during the communication process.

SCCT PUBLISHER

SCCT publisher is a library developed in LabVIEW (to get more details about it see
http://toolsforsmartminds.com/products/labview_communication_library.php): it has the role of
producer; it can acquire from a remote system several types of data (analog and digital data, xml
messages, files, images..) and sends them through the net to all clients who request it.

SCCT SUBSCRIBER

SCCT subscriber, instead of SCCT publisher, is a library that has client role: it receives data being sent by
SCCT publisher and provides them neatly to the developer, just ready to be used. In order to receive
data and use them, the developer has only to implement the interface provided by the library.

e
Storage lx
S ‘x_‘! LabVIEW application i0S app
PI l i A r"’r. " e c - =]
ST secT publisher | N1/ e S — [scer subscrber
For LabviEW T e for i08
Acquisition Board ,," I i e —

-
-
&
&
-
:‘

FIGURE 1 - COMMUNICATION SCHEME

REQUIREMENTS

In this chapter we make you a list of the main requirements of SCCT for iOS, each of them has been
tested in the indicated versions:

. XCode 4.x version;
o iOS 5 or later version;
o One of the next architectures, as:
0 armv7;
0 armv7s;
0 i386;
. Internet connection.
INSTALLATION

First of all you need to have XCode installed on your computer (it is possible download it from Apple
Store).

To install SCCT for iOS you have to follows next steps:

1. Open XCode.

2. Start your project.

3. Add the headers and libSCCT.a files to your project using the “Add Files to ...” from File
menu or drag and drop it in your project.

4, Add to Other Linker Flags in your target “Build Settings”: -ObjC —all_load

You can download all versions of SCCT subscriber and publisher libraries from

www.toolsforsmartminds.it/products/SCCT.php .

In the next chapters it is described how to configure and use this library.

DOCSET INSTALLATION

In the SCCT library package you find also the .docset file. Copy it into the ~/Library/Developer/Shared
/Documentation/DocSets/ folder to see the SCCT documentation in the Documentation browser of
XCode.

© TOOLS for SMART MINDS 8 Smartphone & Cross-platform Communication Toolkit User
Manual

How SCCT SUBSCRIBER FOR I0OS WORKS

As said in the “General Working” chapter, SCCT is composed of two parts: a publisher and a subscriber.
SCCT for iOS works as subscriber during the data exchanging, and has to manage the connection with

the publisher.

In order to do this, SCCT for iOS implements the Observer pattern. This is a pattern intuitively used as an
architectural base of a lot of event management systems.

This pattern is substantially based on one or more objects, called observers or listeners, that are
registered to manage an event that may be generated by the "observed" object, called subject.

In particular, this library provides you with the following elements:

o SCCT_Subj ect is a class that has the task of managing in a direct way the communication
with the data producer (SCCT publisher), of providing methods that allow the connection with
SCCT_Observer and enable the data sending.

o SCCT_(Observer is a protocol that any class can implement. It provides optional methods
that are needed to receive all sent data (NB. It starts to receive data only after having been registered to
the Subject). You can implement one or more of these methods according to your needs. You can define
observers with different roles.

. SCCT_Package is an abstract class from which other classes inherit. These classes holds
different kinds of data, and each type of package is sent in different listeners of SCCT_Observer
protocol by SCCT_Subject (for more details see “Packages” chapter).

SCCT Subject
SECT Observer chserverCollection
femners connection
\When a new package
arehves, the subject sends ©
to all registered ohservers
ConcreteOlserverA ConcreteOhserverl
fztermers lgteners

HOw DATA PACKAGES ARE MANAGED

SCCT_Subject performs the methods of more SCCT_Observer objects in the main thread
loop. This means that if the invoked Observers methods aren’t fast enough, they could stand in a queue
in the main thread loop and slow down the main thread performance and therefore the GUI.

If you need to perform long tasks with received data, you are suggested to execute them through a

background thread.

] — 1 >

2 Bl ek & e ekl
Nt T N

]

| = [1]

| = — @005

FIGURE 2 - DIAGRAM OF A POSSIBLE PACKAGES QUEUE

The packages are received by SCCT_Observer in the same order in which the publisher sent it, so
that the developer doesn’t need to worry about to sort them. The types of packages and the listeners of

observer necessary to receive them are described in the following chapters.

© TOOLS for SMART MINDS 10 Smartphone & Cross-platform Communication Toolkit
User Manual

PACKAGES

SCCT manages many types of packages containing data of different kinds. These packages are used to
send data from SCCT Publisher to SCCT Subscriber and vice versa in a faster way than sending a few data
little by little. These packages are received by SCCT_Subject object that sorts them to all registered
SCCT_Observer objects. SCCT_Subject also deals with sending these packages from subscriber to
publisher.

In the following chapters are described in detail every type of package with its content and its purpose.

CONFIGURATION PACKAGE

Configurations are contained in the SCCT_ConfigurationPackage object that holds information
about the used device, like name and type of device, and channels and lines configurations. In particular,
a configuration refers to a specific data source and holds information about
SCCT_AnalogDataPackage and SCCT_DigitalDataPackage (see “Analog data package” and
“Digital data package” chapters).

Usually this package is sent at the beginning of the transmission to inform the client about how many
lines and channels are used and which configuration they have.

CHANNEL CONFIGURATION
SCCT_ChannelConfiguration objects are held in the channels NSArray property of
SCCT_ConfigurationPackage object.

SCCT_ChannelConfiguration has the following properties:

- Description: the name or the description of the channel;
- Direction: indicates if it is an input or output channel; this field can have “Input” or “Output”

- Unit: the measurement unit of the channel;

- SamplingRate: the sampling rate of the channel;

- MinValue: the minimum value that the channel can assume;
- MaxValue: the maximum value that the channel can assume;
- Index: the index of the channel.

LINE CONFIGURATION
SCCT_DigitalLineConfiguration objects are held in the digitallLines NSArray property of
SCCT_ConfigurationPackage object.

SCCT_DigitalLineConfiguration has the following properties:

- Description: the name or the description of the line;
- Direction: indicates if it is an input or output channel; this field can have “Input” or “Output”
value.

- Index: the index of the line.

RECEIVING CONFIGURATION PACKAGE
In order to receive the configuration you have to implement the following method of
SCCT_Observer protocol:

‘ —(void)configurationListener:(SCCT_ConfigurationPac kage*)configurationPackage

11

ERROR PACKAGE
The errors are generated when a problem occurs and are managed with a SCCT_ErrorPackage

Each error is associated with a code (in the SCCT_ErrorPackage class there is an enumeration of

error codes).

The error is a particular type of package because unlike other packages it doesn’t hold data but advises

that an unexpected event happened. In addictions, this package can be also generated by SCCT for iOS

itself if there is any problem in the connection or if some of these parameters are wrong.

Moreover, whenever an error occurs the connection breaks down, so this package should be handled

with particular care.

This error can be generated because of one of these reasons:

Code Name Description

1 Wrong API-Key This error is thrown if API-Key is incorrect.

2 Wrong Timeout This error is thrown if the timeout is less than or equal
to 1.

3 Wrong timestamp This error is thrown if the client's timestamp is too much
different from the producer's one.

4 Expired timeout This error is thrown if timeout is expired.

5 Lost connection This error is thrown if connection breaks down before
timeout expiring.

6 Transmission error This error is thrown if it’s impossible to send a message.

7 Destination unreachable | This error is thrown if it's impossible to open the
connection with the producer.

8 Empty address This error is thrown if the address string is empty.

9 Wrong port This error is thrown if the port is less than or equal to 0.

Some of them are generated by the library and have a different timestamp from other packages (that

are created by the producer).

RECEIVING ERROR PACKAGE

In order to receive error packages you have to implement the following method of SCCT_Observer

protocol:

‘ —(void)errorListener:(SCCT_ErrorPackage*)errorPacka ge

© TOOLS for SMART MINDS

User Manual

12

Smartphone & Cross-platform Communication Toolkit

ANALOG DATA PACKAGE

Analog data are the sampled values of analog channels and are contained in the
SCCT_AnalogDataPackage object.

These data are stored in a bidimensional matrix which is built by means of a NSArray containing in
turn other NSArray objects of NSNumber objects: the first index selects the channel and the array of
sampled values associated to it; the second index selects the single sampled value and returns a
NSNumberobject.

Sample values are stored in double format.

m values

2.143 2,145

9.342 10.00 ..

n channels

FIGURE 3 - ANALOG DATA MATRIX

You can use these data to show them in a label, draw them in a graph or store them in a database orin a
file.

If, for example, you want to get the i-th value of the j-th channel, you have to do as follow:

[[[analogDataPackage.values objectAtindex: j] objec tAtindex: i] doubleValue];

RECEIVING ANALOG DATA PACKAGE
In order to receive the analog data packages you have to implement the following method of
SCCT_Observer protocol:

—(void)analogDataListener:(SCCT_AnalogDataPackage*) analogDataPackage

DIGITAL DATA PACKAGE
Digital data are values of digital lines and are contained in the SCCT_DigitalDataPackage object.

These data are stored in a NSArray of NSNumber objects. The lines status is represented in BOOL
format.

If, for example, you want to get the staus of the i-th line, you have to do as follow:

[[digitalDataPackage.values objectAtindex: i] boolV alue];

RECEIVING DIGITAL DATA PACKAGE
In order to receive digital data packages you have to implement the following method of
SCCT_Observer protocol:

—(void)digitalDataListener:(SCCT_DigitalDataPackage *)digitalDataPackage

13

MESSAGE PACKAGE

A SCCT_MessagePackage object contains a short message with an associate code number. This kind
of package is useful for exchange messages or commands with the publisher (e.g. to request some data
or to tell it to start a task).

You can instantiate it with the initWithMessage:code: instance method, or with the
packageWithMessage:withCode: class method and use the instanced object to send it with the
sendMessage: method of SCCT_Subject.

RECEIVING MESSAGE PACKAGE
In order to receive message packages you have to implement the following method of
SCCT_Observer protocol:

—(void)messageListener:(SCCT_MessagePackage*)messag ePackage

SENDING MESSAGE PACKAGE
In order to send SCCT_MessagePackage object you have to use the following method of
SCCT_Subject object:

-(NSUlinger)sendMessage:(SCCT_MessagePackage*)packag e

XML PACKAGE

A SCCT_XmlPackage object contains an xml document. This class doesn’t validate the xml, so it can
be also contained a malformed xml: is a developer responsibility to validate the document if necessary.
The document is stored in the xm property as a NSString object. This kind of package is similar to
message package, but it has a different semantic purpose and then is handled differently from SCCT.

You can instantiate it with the initWithXml: instance method, or with the packageWithXml: class
method and use the instanced object to send it with the sendXml: method of SCCT_Subject.

RECEIVING XML PACKAGE
In order to receive xml packages you have to implement the following method of SCCT_Observer
protocol:

—(void)xmlListener:(SCCT_XmlPackage*)xmlPackage

SENDING XML PACKAGE
In order to send SCCT_XmlPackage object you have to use the following method of SCCT_Subject
object:

-(NSUInteger)sendXml:(SCCT_XmlPackage*)package

FILE PACKAGE

SCCT allows you to exchange easily any kind of file between publisher and subscriber through the
SCCT_FilePackage class.

This class holds the following data:

- File name: The name of the file.
- File content: This is a NSData object containing the content of the file received or sent.

© TOOLS for SMART MINDS 14 Smartphone & Cross-platform Communication Toolkit
User Manual

- Md5: the md5 code of file. This field is optional, so if the publisher sent the file without
calculating md5 code, this string is empty. When you send a file you can decide whether calculate it with
a flag in the constructor.

- Attributes: an NSArray of NSString objects containing a list of file attributes (e.g. the file author
name, the creation date etc.). This field is optional, so if the publisher sends the file without it, the array
will be empty.

NB: This package is available only in PRO version.

RECEIVING FILE PACKAGE
In order to receive file packages you have to implement the following method of SCCT_Observer
protocol:

—(void)fileListener:(SCCT_FilePackage*)filePackage

SENDING FILE PACKAGE
In order to send SCCT_XmlPackage object you have to use the following method of SCCT_Subject
object:

-(NSUInteger)sendFile:(SCCT_FilePackage*)package

IMAGE PACKAGE

SCCT allows you to exchange easily images between publisher and subscriber through the
SCCT_ImagePackage class.

This class holds the following data:

- Description: The description or the name of the image.

- Image: The image received or sent. You can get the image in NSData object representation
using the format field to decode it or you can use the Ulimage object representation already decoded.

- Attributes: an NSArray of NSString objects containing a list of image attributes (e.g. the file
author name, the creation date etc.). This field is optional, so if the publisher sends the file without it,
the array will be empty.

- Format: It’s the format of the image. The format can be one of the following values:
kSCCTImageFormatPng;

kSCCTImageFormatJPeg;

kSCCTImageFormatBmp;

kSCCTImageFormatTiff.

O O O o

NB: This package is available only in PRO version.

RECEIVING IMAGE PACKAGE
In order to receive image packages you have to implement the following method of SCCT_Observer
protocol:

—(void)imageListener:(SCCT_ImagePackage*)imagePacka ge

SENDING IMAGE PACKAGE
In order to send SCCT_ImagePackage object you have to use the following method of SCCT_Subject
object:

‘ -(NSUinteger)sendlmage:(SCCT_ImagePackage*)package

15

ARRAY PACKAGES

The array packages, that inherit from the SCCT_2DArrayPackage class, are a powerful way to exchange
two-dimensional arrays of different primitive types. The supported types are:

Type Package

double SCCT_2DDoubleArray
float SCCT_2DFloatArray
integer SCCT_2DIntegerArray
short SCCT_2DShortArray
long SCCT_2DLongArray
boolean SCCT_2DBoolArray
String SCCT_2DStringArray

Data are stored in an NSArray object accessible by means of array2D property. array2S contains
other NSArray objects containing the single elements of the array. Each element is stored as
NSString in SCCT_2DStringArray and as NSNumberfor all other kinds of array.

To understand this concept in detail, the following example shows how to receive a double array and
get the element at the 0,0 index as primitive type:

-(void)doubleArrayListener:(SCCT_2DDoubleArray*)dou bleArray{
NSNumber * numb = [doubleArray.array2D objectA tindex:0] objectAtindex:0];
double value = [numb doubleValue];

}

You can get the dimension of the array with the rowCount and columnCount properties.

Each array package has also an associated filter id (filterld property) that you can use to see which filter
is applied on these data. For more information about filters see Filters chapter.

RECEIVING ARRAY PACKAGES
To receive different kinds of array, you have to implements the appropriate listeners (one for each type
of array) provided by the SCCT_Observer protocol. The following table show you the provided

listeners:

Type Listner

double -(void) doubleArrayListener:(SCCT_2DDoubleArray*)doubleArray

float -(void) floatArrayListener:(SCCT_2DFloatArray*)floatArray

integer -(void) integerArrayListener:(SCCT_2DIntegerArray*)integerArray

short -(void) shortArrayListener:(SCCT_2DShortArray*)shortArray

long -(void) longArrayListener:(SCCT_2DLongArray*)longArray

boolean -(void) boolArrayListener:(SCCT_2DBoolArray*)boolArray

© TOOLS for SMART MINDS 16 Smartphone & Cross-platform Communication Toolkit

User Manual

String -(void) stringArrayListener:(SCCT_2DStringArray*)stringArray

Otherwise, you can use the generic listener arrayListener: that receive all kinds of array. In this
case you have to use the type property to discriminate the type of array and use it in the appropriate
way.

-(void)arrayListener:(SCCT_2DArrayPackage*)arrayPac kage{
switch(arrayPackage.type){

case kSCCTString:
/IDo something with string array
break;

case kSCCTDouble:
/IDo something with double array
break;

}
}

SENDING ARRAY PACKAGES
In order to send a subclass of SCCT_2DArrayPackage object, you have to use the following method
of SCCT_Subject object:

‘ -(NSUInteger)sendArray:(SCCT_2DArrayPackage*)packag e

17

FILTERS

To reduce the amount of bandwidth used to communicate and the cpu and memory utilization on client
device, SCCT 3.0 has introduced filter packages. Filters allow subscribers to request a subset of data
transmitted by the publisher.

Filters is available for analog data and for 2D array of boolean, String, int, long, short, double, and float.
For analog data, filtering allows to select specific channels. Otherwise, for 2D arrays, filtering permits
you to select a subset of the available published array data.

Each instantiated filter is identified with a progress id called filterld . The filterld permits the
client to relate every received data package to the relative filter request. filterld is fundamental to
process received data in the right way. For example, if server manages a 100x100 array and a client
needs a 11x11 subarray (from index 5,5 to 15,15), the client sends a filter request. As it is the first filter
request sent to the server, the filter request must generate a filterld = 1 . When the filter request
is performed, server sends the required subarray and marks transmitted packages with filterld =

1. Later, if the client needs a different 11x11 subarray, it sends a another filter request. As it is the

second filter request, the filter request generates a filterld = 2 . The server performs this new
filter request, sends the new subarray and marks transmitted packages with filterld = 2 . The
following figure schematizes this example. The use of filterld permits the client to link every

received package with the first or the second filter request.

0,0 0,0
r 1 r 1
55
15,15
855
L L 955]
100,100) 100,100
Filter ID = 1 Filter ID = 2 ’

ARRAY FILTER
Filters of array are represented by SCCT_ArrayFilter class. In the constructor you have to indicate
the array type on which apply the filter.

To select columns and rows you can use selectColoumnsFrom:to or selectRowsFrom:to
methods to select rows and columns. From parameter indicates the start value and to the final value to
select. Otherwise you can directly set up the query property using the following syntax: “ri-r2;c1-c2”

where rl is the start row, r2 is the end row, c1 is the start column and c2 is the end column.

The following example explains how to select a subarray of double from index 5,5 to 15,15 .

SCCT_ArrayFilter* filter = [[SCCT_ArrayFilter alloc]initWithType:kSCCTDouble];
filter.query = @”5-15;5-15";
/*

© TOOLS for SMART MINDS 18 Smartphone & Cross-platform Communication Toolkit
User Manual

Either way, you can use the following code:
[filter selectRowsFrom: 5 to: 15];

[filter selectColumnsFrom: 5 to: 15];

*/

[subject sendFilter:filter];

ANALOG DATA FILTER
Analog data filter is represented by SCCT_AnalogDataFilter class. In analog data filter you can
select the channels (also scattered) and the sources to receive. To select channels and columns you can
use the following methods:

-(void)selectChannelsFrom:(NSUInteger)from Select the channels from from to to.

to:(NSUInteger)from

-(void)selectChannels:(NSArray*)channels Select the indexes of channels in the array.
-(void)selectSources:(NSArray*)sources Select the ids of sources in the array.
-(void)setQuery:(NSString*) query The query syntax is: “cI-c2//s1,s2” or

alternatively “c3,c4//s1,s2”. In the first
case are selected the channels from c1 to
c2. In the second case, instead, the
channels c3 and c4 only are selected. In
both cases the sources s1 and s2 are
selected.

The following example explains how to select the channels from 1 to 3 of the sources 0 and 2.

SCCT_AnalogDataFilter * filter = [[SCCT_AnalogDataFilter alloc] init];
filter.query = @”1-3//0,2";
[subject sendPackage:filter];

SENDING FILTER PACKAGE
In order to send a subclass of SCCT_Filter object, you have to use the following method of
SCCT_Subject object:

-(NSUinteger)sendFilter:(SCCT_Filter*)filter

19

REGISTER AND UNREGISTER OBSERVERS

The first thing to do in order to allow Observer to receive data is registering it to the Subject (multiple
registrations are possible if you are handling more than one connection at the same time), so that it
makes a request for receiving all the packages that are going to arrive (for which Observer has
implemented the method) from then on. Register behaviour is very similar to that of Delegate pattern,
often used in Cocoa Touch framework, with the only difference that, with SCCT, it’s possible to connect
more Observers to the same subject at the same time. It’s a good practice to register at least one
Observer before opening a new connection, otherwise you may lost some error or important package
transmitted at the beginning (i.e. a configuration package). Then, in any case it is possible adding or
removing an observer in any moment, also while connection is open. In order to register an Observer
you have to call the following method of SCCT_Subject object:

-(void)registerObserver:(id<SCCT_Observer>)observer

In any moment you can decide if an Observer is no more necessary and it doesn’t need data anymore. In
order to unregister it you have to use the following method of SCCT_Subject object:

-(void)unregisterObserver: :(id<SCCT_Observer>)obse rver

OPENING AND CLOSING COMMUNICATION

SCCT_Subject is the class that deals with the communication: each data passes through it. Each
object handles a single connection with a publisher, if you want communicate at the same time with
more publishers you have to instantiate more objects.

In order to open the communication with the publisher you have to invoke the SCCT_Subject

method that follows:

-(NSUInteger)openCommunication:(NSString*) address port: (UInt32)port
apikey:(NSString *) apikey description: (NSString*) description

This method has the following parameters:

- Address: The IP address or the host name of the publisher;

- Port: The port number of the publisher;

- ApiKey: The password for authenticating the client: if it's wrong, you receive an ErrorPackage;

- Description: The name or the description of the client, useful for the publisher to identify which
client is connected;

- Timeout: The timeout value in seconds. If the connection is lost and the timeout expired the
library closes the communication and sends an expired timeout error to observers. This value must be
bigger than 1. By default this value is 10;

To close the communication, instead, you have to invoke closeCommunication method.

START AND STOP TRANSMISSION

When the communication is open a connection between publisher and subscriber is established, but the
publisher waits a client command to begin sending data. The publisher can however send some
packages if it considers them particularly important (e.g. a configuration or a message error).

To start data transmission you have to call start method, whereas you have to call sStop method to
stop it.

© TOOLS for SMART MINDS 20 Smartphone & Cross-platform Communication Toolkit
User Manual

SOURCES

Sometimes data can come from different sources (e.g. the publisher can handle two different devices or
take data from different databases). SCCT gives each source an ID and a description.

SERVER SIDE CLIENT SIDE

Client A
—> wants data coming from USB
6009 and USB 6210 only

source ID=1
source description=USB 6009

source ID=2

source description=PCl 6024 Client B

wants data coming from PCI

source ID=3 6024 and PCl 6229 only
source description=USB 6210

source ID=4 Client C
source description=PCl 6229

3| wants data coming from PCI
6229 only

FIGURE 4 - SCENARIO WITH A MULTIPLE DATA SOURCE SERVER AND CLIENTS THAT NEED A SUBSET OF PUBLISHED DATA.

SCCT allows you to operate with different sources in an easy way™: if the sourceFilterEnabled

flag in the openCommunication method (see Opening and closing communication chapter) is
enabled the publisher will send only the packages of selected source list. By default this list is empty and
you can modify it with selectSourcesList: or selectSource: methods. The list contains
the ID of selected sources. If you call again this method, the source list selected before is overridden and
therefore it is not cumulative with the new one. If, however, sourceFilterEnabled flag is false the
publisher will send the packages of all sources.

To see which source the package arrives from, you can use sourceld and sourceDescription
properties that are available in every kind of packages.

! Function available only in PRO version.

21

FIGURE INDEX

Figure 1 - COMMUNICATION SCREMIE ...ciiiiiiiiiiiie e e e e et e e e e e e e r e e e e e seaanbeeeeeeeenntnaaeeaaaeans 7
Figure 2 - Diagram of a possible Packages QUEUEeeeii ittt e e e eaae e e e 10
Figure 3 - ANAlog data MatriX ..oc.uveeeiii e e e e e e e e e et e e e e e e s e tar b e e e e e e e eenaraaeaaeaean 13
Figure 4 - Scenario with a multiple data source server and clients that need a subset of published data.
.. 21
INDEX
Channelscceeeeececieeee s 11; 13 doubleArrayListener:ccoovveeeeeeiiniennenn.. 16
Classes errorListener: 12
SCCT_2DArrayPackageccccovvveeunennn. 16; 17 fileListener: e 15
SCCT_2DBOOIAITaY ..evvveviiieeeiieeeiiee e 16 floatArrayListener:ccocceeeevieeeviiiee e, 16
SCCT_2DDoubleArrayccceeevvveeveeceeeeneenns 16 imageListener: .o 15
SCCT_2DFloatArray.......cceeveveeieieiecicnienne 16 integerArrayListener:ccocevveieencincnnenne 16
SCCT_2DINtegerArraycccceevcveeeeeveveeennnenn. 16 longArrayListener:.....cccocceeeviieeiiiiiee e, 16
SCCT_2DLONGAITAY ceeveveiiiiieieieieieieieeeeeeeeeees 16 messagelistener: ... 14
SCCT_2DShOrtAIraycccvvuvecreiniicrcnees 16 ShOrtArrayListener:ccoeevevevrreeeerrneennns 16
SCCT_2DStringArraycevevvvivninecnnnn, 16; 17 StringArrayListener:.......cocoeevenceeeeeeeeenennnen. 17
SCCT_AnalogDataFilter.......ccccoveeevvveeeennnen. 19 XMILIStENEr: e, 14; 15
SCCT_AnalogDataPackage.................... 11; 13 Methods
SCCT_ArrayFilter.....ccoovevvieeeecieeeeeee e, 18 closeComMmMUNICALION .evveeeeeeeeeeeeeeeeeeeeeeenns 20
SCCT_ChannelConfiguration............c..c...... 11 initWithMessage:code:covvrvvrvrvrereennnns 14
SCCT_ConfigurationPackage.........ccccceuueee. 11 INIEWIth XML e,
SCCT_DigitalDataPackage.......cc.cccevenunne 11;13 openCommunication:port:apikey:
SCCT_DigitalLineConfiguration................... 11 description: e, 20
SCCT_ErrorPackagecccecevevveeneeeneeeninennn 12 packageWithMessage:withCode: 14
SCCT_FilePackageccccceevvveevveeneeennen, 14; 15 packageWithXml:ccccoevvieiiiiiieciiecieeee 14
SCCT_Filterauueeaiiiee e 19 registerObserver: .., 20
SCCT_ImagePackage........c.ccoeevnveviinnaes 15; 17 SENAFIIE: oo 15
SCCT_MessagePackageccvvcuniiicinns 14 sendimage: ...oceveveeererereeeeeenen, 15; 17
SCCT_PaCKage.....ovveneieieiiiiicieieieie 9 SENAMESSAZE: .o 14
SCCT_Subject...... 9; 10; 11; 14; 15; 17; 19; 20 SENAXMI: v 14; 15; 17; 19
SCCT_XmIPackage........cccvviiviiiciniiininien 14 ST ovveeceeeeeeeee et 20
Li steners SEOP weverereeeeeeeeeete et e sseete e es e st s s 20
analogDatalistener: ...t 13 unregisterObserver: ..o, 20
arrayListener: ..o 17 Protocols
boolArrayListener:.......cccccvueeeeeieeccnveneeenn.. 16 SCCT_ObSErver....o.oovvvveneen. 9;10; 11; 13; 14
configurationListener: ... 11 SCCT PUBIISRER .o 7;9
digitalDataListener: ... 13 SCCT SUBSCIIDEN ..o 7
© TOOLS for SMART MINDS 22 Smartphone & Cross-platform Communication Toolkit

User Manual

