
Table of Contents
Table of Contents

Introduction. 3
RXML Tutorial . 5

About RXML. 5
Why Roxen? . 5

If tags . 7
The basics of if-else statements . 7
The syntax of If tags . 9
If plugins . 11
A basic example of <if> . 14
Combining <if> and <define> . 16
Browser independency with <if supports> . 18
Summary . 22

Database Tutorial . 23
Installing MySQL . 24
Privileges . 24
Building a Sample Database . 25
The query() function . 26
The big_query() function. 26
Quoting . 29
SQL Syntax . 29
Conditions . 30
Sorting . 31
Limiting . 31
Functions . 32
Features Missing from MySQL. 33
Insertion Syntax. 33
The tablify Container. 34
The Business Graphics Module . 34
The emit and sqlquery Tags. 34
Database Creation . 35
Creating Tables . 35
Indices . 36
Dropping . 37
i

Table of Contents
ii

Introduction

Welcome to the first Roxen Tutorials! This section is dedicated
to all of the users of the Roxen products. The tutorials are
intended for both beginners and experienced users, and we hope
that all find some interesting reading and get creative ideas.

It is assumed that the reader is familiar with HTML and have
some knowledge of XML, since these tutorials only focuses on
their topics.

As always, if you have any suggestions, comments or com-
plaints regarding these tutorials do not hesitate to send an email
to manuals@roxen.com and if the issue is an obvious bug do
not hesitate to report it to Bug Crunch, our bug tracking system.

End of /roxen/2.1/tutorial/introduction/index.xml
3

4

d

d
g-

le

w

c
L
ro-
any

gs

e
n

rv-

y-
b,
a
e a

nd
ity

it
RXML Tutorial

The purpose of the RXML tutorial is to teach the many features
of the Roxen Macro Language (RXML) to users involved in
editing, publishing and programming web pages. This will be
done both by giving knowledge about features and by creating
real examples that illustrate how to turn the knowledge into
pratical use.

The tutorial is intended both for pure beginners of RXML
and for users already familiar with RXML looking for usage
examples.

It is assumed that the reader is well familiar with HTML
and have some knowledge about XML. These issues will not be
discussed at all in this Tutorial. Skills in programming lan-
guages are not required.

Outline

The tutorial is divided into lessons, each handling a different
subject of RXML. Lessons are split into sections, gradually dis-
cussing more complex details of the subject.

A lesson starts with an introduction presenting the subject
and the different sections. After this, the sections follow.
Finally, a summary is found, containing the essence of the les-
son and references to other sources of knowledge.

A section starts with explaining the scope, what knowledge
will be gained and which example(s) that will be shown. Then a
knowledge part follows, containing details used in the following
example part. At the end you'll find a summary with the essence
of the section and a short pointer to the next section.

Navigation

The lessons are designed so that you can move around as you
please. Feel free to read only the sections that interest you. For
navigation, use the arrows leading to the preceding/following
section (left/right arrows) or to the Introduction page (up
arrow). For your convenience, all section headlines are dis-
played as links below the upper arrow group, leading directly to
that section.

Before you Begin...
• For a list of available lessons with a brief introduction, see

Contents.
• If you wonder what RXML is, seeAbout RXMLfor an intro-

duction.
• For an introduction of the award winningRoxen Platform,

seeWhy Roxen?.

Users interested in how to write pages that really take advan-
tage of the special features ofRoxen Platform, should also read
the Web Site Creator Manual. Information about managing a
Roxen Platformserver is found in theAdministrator Manual.
TheUser Manualfocuses on editing pages in aRoxen Platform
environment.

 Happy reading!

End of /roxen/2.1/tutorial/rxml/index.xml

About RXML

Start of /roxen/2.1/tutorial/rxml/rxml.xml

TheRoxen Macro Language (RXML) is a scripting language
offering a number of tags extending the sometimes limite
power of HTML.

RXML does not try to be a programming language, instea
it tries to be as simple to use as HTML, by sharing the same ta
based syntax.

RXML is made to be easy to learn, especially for peop
with skills in HTML and is also an XML compliant scripting
language. RXML can be extended with new tags by writing ne
modules or creating wrapper tags for other kinds of scripts.

RXML makes it significantly easier to embed dynami
scripting in HTML pages. Web designers can use the RXM
tags themselves without having to learn programming, and p
grammers can create new RXML tags that can be reused on
number of pages.

Before web pages are sent to the browser, the RXML ta
are parsed by theRXML parser moduleand translated into nor-
mal HTML.

Sounds good to you? Take your time to read through som
lessons of this tutorial to learn more about the powerful Roxe
Macro Language.

End of /roxen/2.1/tutorial/rxml/rxml.xml

Why Roxen?

Start of /roxen/2.1/tutorial/rxml/why.xml

Roxen differs from other web servers and Internet related se
ers; it tries to be a web server that behaves like the web.

Its user interface is accessed from a web browser from an
where in the world, like a web site. Furthermore, like the we
Roxen is platform independent, it can run equally well on
number of operating systems and it is even possible to mov
Roxen web site to another computer with no changes.

Other important properties are a modular architecture a
that Roxen is designed with scripting and database connectiv
in mind.

For more information about Roxen products, please vis
Roxen at www.roxen.com.

End of /roxen/2.1/tutorial/rxml/why.xml
5

6

d
t
-
of

n
ng
lse

ly
lest
d

is

he
r,
the
If tags

 Welcome to the Lesson about RXML If tags!
As you surely know, a typical web page consists of text and

HTML tags sent over the Internet from a web server to a
browser. The HTML tags tell the browser how the page should
be displayed.

TheRoxen Macro Language, RXML , offers a number of
tags which are used in the same way as HTML tags, but extend
the sometimes quite limited power of HTML. One group of
RXML tags are theIf tags. These tags make it possible to cre-
ate dynamic pages based on conditions. You could let authenti-
cated users only get confidential information of a page or
optimize pages for different kinds of browsers. If tags also
make it possible to create web applications in RXML without
using any programming language.

Hopefully this brief presentation has made you curious
about the powers of If tags. If so, please don't hesitate to read
the following Sections of this Lesson.

This Lesson is designed so that you may move around as
you please. Feel free to read only the Sections that interest you.

After reading this Lesson you will be able to program web
pages using If tags and you will know some of their many use-
ful features. As in most creations, a tutorial isn't enough to
become a master. Only hard work will get you there...

Contents

The basics of if-else statementsintroduces the logic of if-else
statements in general to beginners in programming. If you have
some experience in programming, skip this Section.

The syntax of If tagsintroduces the syntax of the If tags,
including tags, attributes and operators.

If plugins introduces the If plugins and briefly explains the
usage of each plugin.

A basic example of <if>shows a very basic example of how
to use<if> in a web page to get you started.

Combining <if> and <define>explains how to combine and
use<if> and<define> to dynamically show contents of a web
page.

Browser independency with <if supports>deals with the<if

supports> plugin, used to match contents with the browser
requesting the page. Also discusses the relatedpageandclient
scopes.

In theSummaryyou will find the essence of this Lesson and
references to further sources of knowledge.

Detailed information about If tags is found in theWeb Site
Creator Manual.

End of /roxen/2.1/tutorial/if_tags/index.xml

The basics of if-else statements

Start of /roxen/2.1/tutorial/if_tags/if_else.xml

This section will introduce the logic of if-else statements in
general to beginners in programming. If you have some experi-
ence in programming you can skip this section.

After reading this section you will have knowledge of the
basics of if-else statements.

We will create a simple web page with two radiobuttons an
a regular button that will let you choose to display the tex
"Hello World!" in different styles. The example is rather mean
ingless in real life but is good to introduce you to the basics
if-else statements.

The basics

When programming you often want to control the order i
which the statements will be executed. This is done by usi
Control Flow Statements, and some of those are the if-e
statements.

The if-else statements enable your program to selective
execute other statements, based on some criteria. The simp
version, theif statement, is shown below. The block governe
by if (delimited with '{' and '}') is executed if the expression is
true, otherwise the execution continues after the last '}'.

if (expressions)
{

statement(s)
}

If you want to execute other statements when the expression
false, you use theelse statement.

if (expression)
{

statement(s) executed if expression is true
}
else
{

statement(s) executed if expression is false
}

Another statement,elseif, executes statements if an earlierif
expression was false and it's own expression is true;elseif is
used to form chains of conditions. If expression 1 is true, theif
block executes and then the program jumps to the last '}' of t
elseblock. Expression 2 will never be evaluated. If, howeve
expression 1 is false, expression 2 will be evaluated and
elseif-else will work as a regular if-else as shown above.

if (expr 1)
{

statement(s) executed if expr 1 is true
}
elseif (expr 2)
{

statement(s) executed if expr 1 is false and expr
2 is true

}
else
{

statement(s) executed if expr 1 is false and expr
2 is false

}

7

A basic example

Let's do something real to examplify what have been men-
tioned so far. We will create a simple HTML page containing
RXML (Roxen Macro Language) that will be rather meaning-
less except for demonstrating the basics ofif andelse. The file
will show the text "Hello World!" either in plain text or bold
text, depending on which radiobutton is checked by the user.
Here is the code followed by screenshots of the output in a
browser:

<html>
<head>

<style type='text/css'>
<!--

body{background-color:#FEFEC9}
h1{background-color:#FEED87}

-->
</style>

</head>

<body>

<!-- HTML FORM -->

<h1>A basic example>/h1>

<p>Check radiobutton and click "OK" for
bold.</p>

<form action='hello_world.html' method='GET'>
<input type='radio' name='style' value='plain' /

>
 Plain style

<input type='radio' name='style' value='bold' />
 Bold style

<input type='submit' value='OK' />
</form>

<p>------------------------</p>

<!-- RXML CODE -->

<if variable='form.style is bold'>
<p>Hello World!</p>

</if>
<else>

<p>Hello World!</p>
</else>

</body>
</html>

The page in the browser before any interaction.

The user chooses 'Bold style', clicks OK...

...and the text goes bold.
8

nts
ro-
s

w
ing
ld

f

c

s.

e

The interesting part of the code is the<!-- RXML CODE -->

section. We want to check if the user chose bold or not. When
the user clicks the OK button, the variablestyle will contain
either the string 'bold' or the string 'plain' (or perhaps be empty,
if something goes wrong). We use an if-else statement to check
which. If style contains 'bold', the expressionvari-
able='form.style is bold'will be true, the line insideif executes
and 'Hello World!' will be bold. Ifstyledoesn't contain 'bold',
the expression will be false and the line insideelsewill execute;
'Hello World!' will be plain text.

<!-- RXML CODE -->

<if variable='form.style is bold'>
<p>Hello World!</p>

</if>
<else>

<p>Hello World!</p>
</else>

Let us add the possibility to make the text italic. We insert the
lines:

<input type='radio' name='style' value='italic' />
 Italic style

 below the second<input> and rewrites the RXML part to

<if variable='form.style is bold'>
<p>Hello World!</p>

</if>
<elseif variable='form.style is italic'>

<p><i>Hello World!</i></p>
</elseif>
<else>

<p>Hello World!</p>
</else>

 This gives us the following result:

As you might have guessed, this is an example of the if-elseif-
else statement. Ifstylecontains 'bold', theif tag executes, if it

contains 'italic',elseifexecutes and in all other cases,elseexe-
cutes.

Summary

This section has taught you the basics of the if-else stateme
in general. If-else statements is used to control the flow of a p
gram. Theif statement test a condition and if the condition i
true, theif statement block will execute. Theelsestatement will
execute if anif condition is not true. Theelseifstatement is used
to form chains of conditions.

More details about if-else statements and other control flo
statements are found in any book or on any site that is teach
programming. However, the information in this Section shou
be enough to take you through the rest of this Lesson.

The next section,The syntax of If tagswill introduce the
RXML If tags, including tags, attributes and operators.

End of /roxen/2.1/tutorial/if_tags/if_else.xml

The syntax of If tags

Start of /roxen/2.1/tutorial/if_tags/syntax.xml

 This section will introduce the basics of the RXML If tags.
After reading this section you will know the proper usage o

RXML If tags using attributes and operators.
If you are looking for an example, seeA basic example of

<if> .

Tags

If-statements in RXML are built up by combining the six basi
tags <if> , <else> , <elseif> , <then> , <true> and <false> .
With <if> and <elseif> , attributes are used to state which
test(s) to do. One attribute should be one of several If plugin
Logical attributesand, or andnotare used to further specify the
test(s). We sum this up in the following general syntax (cod
within '[]' is optional):

<if plugin1='expr' [and|or plugin2='expr' ...] [not
]>

if block
</if>
[<elseif plugin='expr' ...>

elseif block
</elseif>]
[<else>

else block
</else>]

or

<if plugin1='expr' [and|or plugin2='expr' ...] [not
] />
<then>

if block
</then>
[...]

 Always remember to close tags

<if variable='var.foo = 10' />
or

<if variable='var.foo = 10'></if>

 and to add values to attributes

Now the user has three options.
9

t
-
e

e.
<if true=''></if>

<if variable='var.foo = 1' and='' match='&var.bar;
is bar'>

for proper XML syntax. This is necessary since RXML is a
XML compliant language.

 Let's have a look at the basic tags:

<if>
is used to conditionally show its contents; provides a frame-
work for the If plugins.

<else>
 shows its contents if the previous<if> returned false, or if
there was a<false> above.

<elseif>
 is the same as<if> , but will only evaluate if the previous
<if> returned false.

<then>
 shows its contents if the previous<if> returned true, or if
there was a<true> above.

<true>
 is an internal tag used to set the return value of If tags to
true.

<false>
 is an internal tag used to set the return value of If tags to
false.

<set variable='var.foo' value='1' />

<if variable='var.foo = 1'>
var.foo is 1

</if>
<else>

var.foo is not 1
</else>

A test is made if the variablevar.foo is 1. This is true because
the first line does nothing less than sets that variable to 1. Please
note that the spaces around the '=' operator are mandatory.

<set variable='var.foo' value='1' />

<if variable='var.foo = 1' />
<then>

var.foo is 1
</then>
<else>

var.foo is not 1
</else>

 The same test usingif-then-else instead.

<true />
<then>

truth value is true
</then>
<else>

truth value is false
</else>

In this example the internal<true> is used to set the truth value
to true so that the following<then> will be executed.

Attributes

 The attributes used with<if> are:

plugin name
The If plugin that should be used to test something, e.g.<if

variable> . It is mandatory to specify a plugin. See theIf
plugins Section for further information.

not
 Inverts the result (true->false, false->true).

or
 If any criterion is met the result is true.

and
 If all criterions are met the result is true.and is default.

<set variable='var.foo' value='1' />

<if variable='var.foo = 1' not=''>
var.foo is not 1

</if>
<else>

var.foo is 1
</else>

 Here the test is logically negated withnot.
The use of<if variable='var.foo != 1'> gives the the

same result as<if variable='var.foo = 1' not=''> .
A common mistake done is when combiningand, or and

not.

<if user='foo' or='' not='' domain='*.foobar.com'>
...

</if>

will not work since thenot attribute negates the whole tag, no
just thedomainattribute. If you want to negate the whole condi
tion, addnot at the end. If you only want to negate one of th
attributes, you must rewrite the code with anif-elseif-elsestate-
ment.

<if user='foo'>
</if>
<elseif domain='*.foobar.com' not=''>

...
</elseif>

<set variable='var.length' value='3' />
<set variable='var.string' value='foo' />

<if variable='var.length > 0' and='' match='var.str
ing = foo'>

var.string is 'foo'
</if>
<else>

Either string is empty, doesn't contain string '
foo' or both.
</else>

A multiple test with two different If plugins,variable and
match.

 You could be tempted to write expressions like:

<if variable='var.foo = 1' or='' variable='var.bar
= 1'>

...
</if>

This will not work, as you can only use the same attribute onc
HereVariable is used twice.
10

h

e
f-

ir

e
e

ts
ed.
gs
d

e)
he

p-
om
ble
Operators

Above we used the '>' operator. The operators that may be used
in expressions are:

Note that '<=' and '>=' are not possible operators except in the
Expr plugin. However, for the effect of<if vari-

able='var.foo <= 1'> you simply use <if vari-

able='var.foo > 1' not=''> instead.
Global patternsare possible to use in almost all plugin

expressions. ' * ' match zero or more arbitrary characters while '
? ' matches exactly one arbitrary character.

<if ip='130.236.*'>
Your domain is liu.se

</if>
<else>

Your domain isn't liu.se
</else>

In this example 130.236.1 as well as 130.236.123 would be
true. If the test would be<if ip='130.236.?'> only 130.236.0
- 9 would be true.

Regular expressions are not supported in If tags.

Summary

This section has taught you the basics of the If tags. If state-
ments are built up by the six basic tags,<if> , <else> ,
<elseif> , <then> , <true> and<false> .

With <if> and<elseif> an attribute naming an If plugin
must be added. The general syntax is:

<if plugin1='expr' [and|or plugin2='expr' ...] [not
]>

if block
</if>
[<elseif plugin='expr' ...>

elseif block
</elseif>]
[<else>

else block
</else>]

Logical attributes,and, or andnotadds functionality. Inside the
attribute expression, the '=', '==', 'is', '!=', '<' and '>' operators are
valid.

Always remember to close tags (/) and to give attributes a
value (='') for proper XML syntax.

More details about If tags is found in theWeb Site Creator
Manual or by putting<help for='if' /> in a web page.

The next section,If pluginswill explain the usage of the If
plugins.

End of /roxen/2.1/tutorial/if_tags/syntax.xml

If plugins

Start of /roxen/2.1/tutorial/if_tags/plugins.xml

This section will introduce the If plugins used as attributes wit
<if> and<elseif> .

After reading this section you will have knowledge of the
different plugin categories and the usage of the plugins.

The following sections will contain examples of how to us
different plugins for creating dynamic web pages in many di
ferent ways.

The categories

The If plugins are sorted into categories according to the
function:Eval, Match, State.

The following parts will go through these categories and th
corresponding plugins. We will look at the proper way of usag
and some traps you might fall into.

Eval

TheEval category is the one corresponding to the regular tes
made in programming languages, and perhaps the most us
They evaluate expressions containing variables, enities, strin
etc and are a sort of multi-use plugins. All If-tag operators an
global patterns are allowed (seeThe syntax of If tags).

CookieandVariableplugins use a similar syntax.is can be any
valid operator andname is the name of any defined or undefined
variable(cookie). They first check if the named variable(cooki
exists, and if it does and a pattern(value) is specified, t
expression will be evaluated.Variable is a general plugin while
Cookie is for testing existence and/or values of cookies.

<set variable='var.foo' value='10' />

<if variable='var.foo = 10'>
true

</if>
<else>

false
</else>

Please note that it is the name of the variable, not the entity re
resenting it, that should be used. Here we receive an error fr
the RXML parser becase we used an entity instead of a varia
name. The proper way to do the test above is<if vari-

able=' var.foo = 10'> .

Operator Meaning

= equals

== equals

is equals

!= not equals

< less than

> greater than

Plugin Syntax

clientvar clientvar='var[is value]'

cookie cookie='name[is value]'

expr expr='pattern'

match match='pattern1[,pattern2,...
]'

variable variable='name[is pattern]'
11

-

he
rs

. a

s)

)

ike

of
to
Match is used in a similar way, but there are certain differ-
ences. The syntax is<if match="pattern"> , where pattern
could be any expression. We could use<if match='var.foo =

10'> although this is rather meaningless, since we would check
if the name of the variablevar.foo (or the string "var.foo") was
equal to the string "10", which it obviously is not. The only
thing that would return true in this case is another meaningless
expression:<if match="var.foo is var.foo"> .

Instead we should always use entities withMatch, i.e.
var.foo. In RXML, entities are used to represent the contents of
something, e.g. a variable. An entity is written as a variable
name enclosed with '&' and ';'. Above thenameof the variable
is var.foo, thevalueis '10' and theentity is var.foo. The entity is
replaced by its content when parsed to HTML, in this case '10'.

<set variable='var.foo' value='10' />

<if match='var.foo = 10'>
true

</if>
<else>

false
</else>

Again, variable namegoes withVariableandentitygoes with
Match.

A warning when testing patterns with whitespaces. If you
want to test if the entityvar.fooequals the string 'he is nice' and
do like this...

<set variable='var.foo' value='he is nice' />
'var.foo'

<if match='var.foo is he is nice'>
var.foo is 'he is nice'

</if>
<else>

var.foo is not 'he is nice'
</else>

...you won't get the expected result. This is because theMatch
plugin interprets the first valid operator after a whitespace as the
operator to use. In the example above the test really is if 'he'
equals 'nice is he is nice', which obviously is false. Rember that
the string 'is' also is a valid operator.

Expr evaluates mathematical and logical expressions. The
following characters only should be used in the expression:

1, 2, 3, 4, 5, 6, 7, 8, 9, 0, ., x, a, b, c, d, e, f, X, A, B, C, D, E, F
 For numbers, decimal, octal and hexadecimal. E.g. 1.23,
010 == 8, 0xA1 == 161

int, float
 For type casting between integers and floats. E.g. (int)3.45
== 3, (float)3 == 3.000000

<, >, =, -, +, *, /, %, (,)
 Mathematical operators. Note that '==' should be used for
equality. E.g. 10 % 4 == 2 , (1 + 2) * 3 == 9

&, |
Logical operators. Note that '&&' and '||' should be used for
'and' and 'or', that '1' equals 'true' and '0' equals 'false'. E.g.
1+0 && 1

If any other character is used there will be an error in the
RXML parser. Therefore entities should be used, not the vari-
able name, in a similar way asMatch.

<set variable='var.foo' value='2' />

<if expr='1+var.foo*3==7'>

var.foo = 7
</if>
<else>

var.foo = 9
</else>

An example ofexpr showing that the regular rules of mathe
matics applies here. The expression evaluates correctly as

1+2*3 == 1+6 == 7

 and not as

1+2*3 == 3*3 == 9

Note that the '==' operator must be used for 'equals', unlike t
otherEvalplugins. Also note that whitespaces around operato
are not mandatory.

Clientvarextends theSupportsplugin, seeStatebelow. It is
used for tests of the client requesting the web page, e.g
browser or a WAP phone. The following variables (var) are cur-
rently testable:

height - The presentation area height in pixels (WAP client

javascript - The highest version of javascript supported

robot - The name of the web robot

width - The presentation area width in pixels (WAP clients

is can be any valid operator.

<if supports='javascript'>
<if clientvar='javascript < 1.2'>

Your browser supports older versions of javascr
ipt

</if>
<else>

Your browser supports javascript
</else>

</if>
<else>

Your browser doesn't support javascript at all
</else>

The variable can be used in expressions as shown above.Cli-
entvar can test the exact JavaScript version supported, unl
Supports, that only checks if JavaScript is supported or not.

Match

The Match category contains plugins that match contents
something, e.g. an IP package header, with arguments given
the plugin as a string or a list of strings.

Plugin Syntax

accept accept='type1[,type2,...]'

client client='pattern'

domain domain='pattern1[,pattern2,
...]'

ip ip='pattern1[,pattern2,...]'
12

of

n

g.

s
m-
is

l-

s

d
to
Acceptchecks which content types the browser accepts as spec-
ified by it's Accept-header, e.g. 'image/jpeg' or 'text/html'.

<p>You are using
<if client='Mozilla*'>

<if client='*compatible*msie*'>
Internet Explorer.

</if>
<elseif client='*compatible*opera*'>

Opera.
</elseif>
<else>

Netscape.
</else>

</if>
<else>

another client.
</else>
</p>

Client compares the user agent string with the given pattern.
Domain and Ip plugins checks if the DNS name or IP

address of the user's computer match any of the patterns speci-
fied. Note that domain names are resolved asynchronously, and
that the first time the browser accesses a page containing<if

domain> , the domain name might not have been resolved yet.
Languagematches languages with the Accept-Language

header.
Referrerchecks if the Referrer header match any of the pat-

terns.

State

Stateplugins check which of the possible conditions something
is in, e.g. if a flag is set or not, if something is supported or not,
if something is defined or not etc.

True and False are plugins used in exactly the same way as
<then> and <else> . Should not be confused with the<true>

and<false> tags.

<set variable='var.foo' value='10' />

<if variable='var.foo is 10' />

<if true=''>
var.foo is 10

</if>
<if false=''>

var.foo is not 10
</if>

Configtests if the RXML config named has been set by use
the<aconf> tag.

<if pragma='no-cache'>
The page has been reloaded!

</if>
<else>

Reload this page!
</else>

Pragma compares the HTTP header pragma with the give
string.

Prestatechecks if all of the specified prestate options, e.
'(debug)', are present in the URL.

Supportstests if the client browser supports certain feature
such as frames, cookies, javascript, ssl among others. An exa
ple of this with a complete list of features that can be tested
found in the sectionBrowser independency with <if supports>

Utils

The Utils category contains additional plugins, each specia
ized in a certain type of test.

<if time='1200' before='' inclusive=''>
ante meridiem (am)

</if>
<else>

post meridiem (pm)
</else>

DateandTimeplugins are quite similar. They check if today is
the date "yyyymmdd" or if the time is "hhmm". The attribute
before, after andinclusive may be added for wider ranges.

<if exists='/dir1/dir2/foo.html'>
foo.html exists

</if>
<else>

foo.html doesn't exist
</else>

Existschecks if a file path exists in a file system. If the entere
path does not begin with '/', it is assumed to be a URL relative

language lan-
guage='language1[,languag
e2,...]'

referrer refer-
rer='pattern1[,pattern2,...]'

Plugin Syntax

config config='name'

false false=''

pragma pragma='string'

prestate prestate='option1[,option2,..
.]'

supports supports='feature'

true true=''

Plugin Syntax

Plugin Syntax

date date='yyyymmdd'
[before,after] [inclusive]

exists exists='path'

group group='name' group-
file='path'

time time='hhmm'' [before,after]
[inclusive]

user user='name1[,name2,...]
[any]'
13

the directory containing the page with the<if exists> state-
ment.

Group checks if the current user is a member of the group
according the groupfile.

A usefulUtil plugin isUser, that tests if the user accessing a
site has been authenticated as one of the users specified. The
argumentanycan be given for accepting any authenticated user.

Summary

This Section has presented the If plugins that is divided into
categories,Eval, Match, State, Utils andSiteBuilder, according
to their function.

Eval plugins evaluate expressions as in regular program-
ming languages,Matchplugins match contents with arguments
given andStateplugins check which of two possible conditions
is met.Utils plugins perform specific tests such as present date
or time.

More details about If plugins are found in theWeb Site Cre-
ator Manual.

The next Section,A basic example of <if>, will show an
example of a basic usage of the Match plugin.

End of /roxen/2.1/tutorial/if_tags/plugins.xml

A basic example of <if>

Start of /roxen/2.1/tutorial/if_tags/ex_1.xml

This section will show a simple example of how we use<if> in
a web page.

After reading this section you will understand how to use
<if> with theMatch plugin.

We will create a feature on the DemoLabs Inc. site (shipped
with Roxen Platform). This feature includes the possiblity to
toggle between short view and long view using a button while
reading a protocol in the Management Protocol Archive. The
short view only displays the header of the protocol, while long
view shows the full protocol.

Short/Long feature in protocols

Imagine that the protocols tend to be rather long and that some-
one only wants to check which persons were present and what
issuses that were discussed during a meeting. Wouldn't it be
nice only to view a 'header' of the protocol per default, contain-
ing these data. The whole protocol should only be displayed
when the user explicitly requests that. To accomplish this we
add some RXML and a button. The button will be used to tog-
gle between viewing the whole protocol and only the 'header'.

Since we want every new protocol file to have this feature
we will edit the Stationary Protocol fileprotocol.html. This is a
default protocol file that is used as a foundation for creating
new protocol files. At the top of this file we add the following
code:

<!-- Page loaded first time -->
<if match='&form.request; is '>

<form method='POST'>
<input type='hidden' name='request' value='long

' />
<submit-gnutton gnutton='gnutton5' align='left'
>Long view</submit-gnutton>

</form>
</if>

<!-- When long mode is requested -->

<elseif match='&form.request; is long'>
<form method='POST'>

<input type='hidden' name='request' value='shor
t' />

<submit-gnutton gnutton='gnutton5' align='left'
>Short view</submit-gnutton>

</form>
</elseif>

<!-- When short mode is requested -->
<else>

<form method='POST'>
<input type='hidden' name='request' value='long

' />
<submit-gnutton gnutton='gnutton5' align='left'
>Long view</submit-gnutton>

</form>
</else>

Before the line<h1>Opening</h1> , which is the starting
header for the full view mode we add an<if> test. Only if the
user requests long view the content between<if> and </if>

will be sent to the browser. Finally we add</if> at the last line
of the file.

<if match='&form.request; is '>
<h1>Opening</h1>

...
</if>

This will result in the following button and short form of the
protocol file when loaded the first time:
14

g

The trick is to dynamically insert the right form depending on
which view is requested. This is accomplished with anif-elseif-
else statement.<if> checks for an emptyform.request. This
will only be the case the first time the page is loaded.<elseif>

catches the case when long view is requested and<else> the
case when short view is requested.

<if match='&form.request; is '>
...

</if>
<elseif match='&form.request; is long'>

...
</elseif>
<else>

...
</else>

The inserted form contains a hidden field with itsrequestvari-
able set to the mode that will be requested on submit and a spe-
cial XSLT defined button -<submit-gnutton> - with its
displayed text set inside the container. XSLT is not in the scope
of this Lesson, so we will leave that with telling this is used
only to get a nice look-&-feel.

<form method='POST'>
<input type='hidden' name='request' value='long'

/>
<submit-gnutton gnutton='gnutton5' align='left'

>Long view</submit-gnutton>

</form>

 You could use an ordinary submit button as well:

<input type='submit' value='long' />

Well, there it is! Finally, let's have a look at a part of the lon
view version of a protocol page:

The text displayed in the short form protocol with button added

The button inserted on a long view protocol page.
15

eft

r
n

nly
a
ail
ded
ss
the

t
e

w,
be

d
s-
two
Summary

This section has shown a basic example of how to use the<if>

pluginMatch.
More details about<if> and If Plugins are found in theWeb

Site Creator Manualand/or by adding<help for='if' /> in a
web page.

The next section,Combining <if> and <define>will teach
the basics of how to use<if> and<define> to dynamically dis-
play contents in a web page.

End of /roxen/2.1/tutorial/if_tags/ex_1.xml

Combining <if> and <define>

Start of /roxen/2.1/tutorial/if_tags/ex_2.xml

This section will show how to combine<if> and<define> to
dynamically show contents of a web page.

After reading this section you will have knowledge of how
to combine<if> and<define> when creating a web page. You
will also know how to use<define> to define your own RXML
macro.

We will create a web page with a HTML form requesting
the name and e-mail address of a user. On submit we will check
if all fields are set and if the e-mail address is valid. The page
will show a response depending on the test results.

The <define> tag

A very useful tag is theVariable tag <define> . It is used for
creating your own macros such as tags, containers or If-callers.
The most common use is to define an 'alias' for a portion of
code that will be inserted several times on a web page. We will
not discuss<define> in depth here. See theWeb Site Creator
Manual for details.

Let's create a tag that will work as a sum of some other tags.

<define tag='multi-set'>
<set variable='var.foo' value='one' />
<set variable='var.bar' value='two' />
<set variable='var.gazonk' value='three' />

</define>

<pre>var.foo is 'var.foo'
var.bar is 'var.bar'
var.gazonk is 'var.gazonk'
</pre>

<multi-set />

<pre>var.foo is 'var.foo'
var.bar is 'var.bar'
var.gazonk is 'var.gazonk'
</pre>

Here<multi-set> is used to insert the three<set> tags. If we
were to do this set operation in multiple places the value of
<define> is quite obvious. We can also add values via attributes
to our defined tag.

<define tag='hello'>
Hello there, _.name !

</define>

<hello name='John Doe' />

The attribute values are catched with entities and using the '_'
scope, representing the current scope. Here the value of the

nameattribute is represented by the entity_.name. If we want to
set default values to attributes (used when the attribute is l
out) we use the container<attrib> .

<define tag='hello'>
<attrib name='name'>Mr Smith</attrib>
Hello there, _.name !

</define>

<hello />

<hello name='John Doe' />

An interesting feature is to define a macro for an If plugin o
combinations of If plugins. You simply create an alias that ca
be used together with<if> .

<define if='js'>
<if supports='javascript' and=''

clientvar='javascript = 1.2' />
</define>

<if js='js' />
<then>

Your browser supports javascript ver 1.2
</then>
<else>

Your browser doesn't support javascript ver 1.2
</else>

Here <if js='js'> is replaced by<if supports='javas-

cript' and='' clientvar='javascript = 1.2'> before the
page is sent to the browser.

Well, that is how far we go into<define> here. In the
example part below we will use the<define tag> feature to
insert a HTML form with dynamic content.

Verifying an e-mail address

We are going to create a simple e-mail address checker o
using HTML and RXML. The first time the page is loaded
form is presented to the user for input of name and e-m
address. A submit sends the input and when the page is loa
again, we will first check that both name and e-mail addre
were added, and if so, check if the e-mail address matches
form '*@*.*'. If any of the tests fail, an error message will be
displayed together with the form for new input. Correct inpu
will not be deleted. If all goes well, a nice welcome awaits th
user.

The source code is found by following the link. (It might be
a good idea to open the source code file in a different windo
so that it is easily read parallel to this section. The code won't
displayed here to shorten the length of this section.)

First we define a RXML macro calledmail-formthat inserts
a form. Four attributes are used:nameval, mailval, statusand
mess. We use<attrib> to set default values fornamevaland
mailval to the data entered in the field. This will save entere
data so that the user won't have to retype it. The form will di
play a status message, an ordinary message and a form with
input fields and a submit button.

<!-- DEFINING FORM TAG -->
<define tag='mail-form'>

<attrib name='nameval'>&form.name_;</attrib>
<attrib name='mailval'>&form.mail_;</attrib>

<p>&_.status;
&_.mess;</p>

<form method='POST'>
<table>

<tr><td>Name:</td>
<td><input type='input' size='30' name='name_
16

est

'
er

ut

sg
'
value='&_.nameval;' /></td></tr>

<tr><td>E-mail:</td>
<td><input type='input' size='30' name='mail_

'
value='&_.mailval;' /></td></tr>

<tr><td><input type='submit' name='button'
value='OK' /></td></tr>

</table>
</form>

</define>

To display the page dynamically we use<if> and<else> . The
first test checks if the page is loaded for the first time or if the
user pushed a submit button to get there. Only if the user
clicked the 'OK' button,form.buttonwill represent 'OK'. The
next test checks if both fields contain data. If so,var.ok will
have the value 1. The last test checks if the e-mail address
match the form '*@*.*'. This test is really not sufficient in real
life, since an address like 'foo@foo@mail.gazonk' would be
correct. Remember that anything goes with '* '. It is left for you
to figure out a nice algorithm for a better check. Remember,
practice makes the master.

<if match='&form.button; = OK'><!-- OK clicked -->
...
<if variable='var.ok = 1'><!-- Both not empty -->

<if variable='var.mail_ = *@*.*'><!-- Success -
->

...
</if>
<else><!-- Mail not on proper format -->

...
</else>

</if>
<else><!-- name or e-mail empty -->

...
</else>

</if>
<else><!-- First time or Again clicked -->

...
</else>

The first time the page is loaded or if the user clicked the
'Again' button we use our defined macro to display the start
form.

<else><!-- First time or Again clicked -->
<mail-

form status='' mess='Please state your name and
e-mail address.' />

</else>

When we are sure that the user clicked the 'OK' button, we t
the data entered. We use<set> to catch the data from the two
input fields and then test if any of them where empty,<if

variable='var.name_ = '> . If so, we use<append> to set
var.okto 0, which will give a false result in the 'Both not emtpy
test. The form will then reappear with a message telling the us
to fill in both fields.

<set variable='var.ok' value='1' />
<set variable='var.name_' value='&form.name_;' />
<set variable='var.mail_' value='&form.mail_;' />

<if variable='var.name_ = '>
<append variable='var.ok' value='0' />

</if>

<if variable='var.mail_ = '>
<append variable='var.ok' value='0' />

</if>

<if variable='var.ok = 1'><!-- Both not empty -->
...

</if>
<else><!-- name or e-mail empty -->

<mail-
form status='Error' mess='You must fill in both nam
e and

e-mail address.' />
</else>

Next we check the e-mail address. We use theVariableplugin
although it looks like a typicalMatch test. This is done to avoid
the problem with whitespaces when doing aMatch. (SeeIf plu-
gins section,Eval part for a discussion on this special case.)

<if variable='var.mail_ = *@*.*'><!-- Success -->
...

</if>
<else><!-- Mail not on proper format -->

<mail-form status='Error' mess='E-
mail not on format *@*.*'

mailval='' />
</else>

If the test fails the form reappears. Note that the e-mail inp
filed is cleared by addingmailval='' to <mail-form> .

The start form

If any field is left empty the form reappears with an error mese
17

s

rs

ok-
er

y
orts
the

i-

-

n

d/
Finally, if all tests pass, we display a nice welcome message
and add a button that will take the user back to the start form
again.

<if variable='var.mail_ = *@*.*'><!-- Success -->
<p>E-mail address verified</p>
<p>Welcome &form.name_;!</p>
<p>E-mail address '&form.mail_;' is OK.</p>
<form method='POST'>

<input type='submit' name='button' value='Again
' />

</form>
</if>

Summary

This section has taught you how to combine<if> and
<define> to dynamically show contents of a web page.

The <define> tag is used for creating your own macros
such as tags, containers or If-callers. The code

<define if='js'>
<if supports='javascript' and=''

clientvar='javascript = 1.2' />
</define>

will create the macro 'js' that can be used as an alias for the
<if> tag inside the container. You simply use it like this,<if

js='js'></if> .
More details about<if> and<define> is found in theWeb

Site Creator Manualor by adding<help for='if' /> and/or
<help for='define' /> in a web page.

End of /roxen/2.1/tutorial/if_tags/ex_2.xml

Browser independency with <if supports>

Start of /roxen/2.1/tutorial/if_tags/ex_4.xml

This section will deal with the<if supports> plugin and the
page andclient scopes.

After reading this section you will know about the many
features that might be checked for with<if supports> and the
properties of thepage andclient scopes and their entities.

We will create a feature on the R&D page of DemoLab
Inc. site (shipped withRoxen Platform) that dynamically uses
JavaScript or HTML forms depending on the client browse
support for the JavaScript technique.

The <if supports> plugin features

Have you ever met somebody that have produced a good lo
ing web page for one browser and later found out that anoth
browser smashes it up totally? With RXML you can easil
check which features the browser requesting a page supp
and send the content corresponding to that. You simply use
<if supports> plugin. Below follows a list of the different fea-
tures this If plugin is able to check.

Attributes
 tests if the HTML attribute is supported inside tags. Poss
ble features:

align
 backgrounds
 fontcolor
 imagealign
 mailto
 tablecolor
 tableimages

Client type
 checks if the browser is of a certain client type, e.g.msie
checks if the browser is an Internet Explorer. Possible fea
tures:

html
 msie
 phone
 robot
 unkvown

Graphics
 is graphic related tests, i.e. if the browser supports certai
image formats. Possible features:

gifinline
 jpeginline
 pjpeginline
 pnginline
 wbmp0

Tags
 checks if the browser supports these HTML tags at all an
or in a proper manner. Note thatdivisions anddiv have the
same function. Possible features:

bigsmall
 center
 divisions/div
 font
 forms
 frames
 images

This will be displayed if E-mail doesn't match the form '*@*.*'

If all goes well we welcome the user and display the input
18

.

a

nt

.

.
r-
 layer
 math
 noscript
 supsub
 tables

Techniques
 tests if the browser supports a certain technique. Possible
features:

activex
 autogunzip
 cookies
 java
 javascript
 js_image_object
 js_inner_html
 pull
 push
 ssl
 stylesheets
 vrml
 wml1.0
 wml1.1

 The syntax forSupports is

<if supports='feature'>

wherefeatureis replaced by one of the keywords above. The
javascriptattribute is used to test if the browser supports JavaS-
cript or not. It will be used in the example part below.

<if supports='javascript'>
<if clientvar='javascript < 1.2'>

Your browser supports javascript versions less
than 1.2

</if>
<else>

Your browser supports javascript version 1.2 or
higher

</else>
</if>
<else>

Your browser doesn't support javascript at all
</else>

If you want a more exact test for which JavaScript version is
supported, you can use<if clientvar="javascript is ver-

sion"> , whereis can be replaced by any valid operator. This is
not used in the example part below.

Page and client scopes

For displaying and/or getting information about the client
browser theclient scope is suitable. The following list is an
extract of the many different entities available:

 accept-language - The preferred language of the client, e.g.
'en'.

 accept-languages - The preferred language and a list of
other languages also accepted.

 fullname - The full user agent string, e.g. 'Mozilla/4.7 [en]
(X11; I; SunOS 5.7 i86pc)'

 ip - The ip address the client is located at.

 javascript - The javascript version supported by the client

 name - The name of the client, e.g. 'Mozilla/4.7'

referrer - The URL of the page on which the user followed
link to this page.

If information about a page is wanted, there is a convenie
scope calledpage for such tasks. Some useful entities are:

bgcolor/fgcolor - the background/foreground color of the
page

description - as specified in meta data.

filename

filesize - in bytes.

keywords - as specified in meta data.

title - as specified in meta data.

type - the content type of the file, e.g. 'text/html'.

url - the URL to this file from the web server's point of view

 For the complete list of entities of these scopes, insert

<insert variables='full' scope='client' />
or

<insert variables='full' scope='page' />

 in a web page. Let's look at some examples:

<if supports='msie'>
You are using Internet Explorer

</if>
<elseif match='client.name is Mozilla/4.*'>

You are using Netscape 4.*
</elseif>
<else>

You are using client.name
</else>

 A simple check for which browser is requesting this page.

<if supports='javascript'>
JavaScript version: client.javascript

</if>
<else>

Doesn't support JavaScript.
</else>

An example of the use ofjavascriptattribute and entity. The
client.javascriptentity contains the actual version supported
Clientvarplugin can be used for narrow test for JavaScript ve
sion supported. See theIf plugins Section,If plugins part, for
details and an example.
19

e
e
v-
n.

r
ser
ct
Browser JavaScript support optimizing

To demonstrate how to use the<if supports> plugin, we will
create the possibilty to contact the R&D team of DemoLabs
Inc. by submitting a message written in a form. The contact
form will be displayed in a pop-up window and the message
will be sent back to the parent window on submission. This is
nicely done by adding some JavaScript code. However, some
browsers don't support JavaScript or has it turned off. Therefore
we will test if the browser supports our script, and if not, we
will bring the user a pure HTML form instead.

The<if supports='javascript'> works like the HTML
<noscript> tag. There is one major difference, though;<if

supports='javascript'> doesn't catch if the browser has Jav-
aScript turned off. On the other hand,<if supports> works on
all browsers, also those where<noscript> doesn't (like Internet
Explorer 2.0 and Netscape Navigator 2.0). We will show how to
combine these in a very useful manner.

The source code of the files in this example is found by fol-
lowing the link. (It might be a good idea to open the source code
file in a different window, so that it is easily read parallel to this
Section. The code won't be displayed here to shorten the length
of this Section.) Remember that this is a RXML tutorial.
Although we use JavaScript and XSLT (Extensible StyleSheet
Language Transformer) code, we won't explain that in detail
here. If you aren't familiar with those techniques, don't dig into
that code. We will add enough information for you to under-
stand this Section anyway.

 Ok, let's get down to work.

The snapshot above shows the JavaScript version of the edited
index.xmlof the R&D directory. The 'Contact R&D' part with a
button is added. Let us look how this is done.

<h1>Contact R&D</h1>

<p initial='initial'>If you have any suggestions,
complaints or other messages to the R&D staff,
please don't hesitate to

<if supports='javascript'>
... <!-- supported -->
<noscript>

... <!-- turned off -->
</noscript>

</if>
<else>

... <!-- not supported -->
</else>

First we add the headline, some text and anif-elsestatement
that will check if JavaScript is supported and on or not. Th
supportedsection will contain the JavaScript version code, th
turned offwill display a message saying that this page uses Ja
aScript, please turn this feature on or use the HTML versio
Not supported section will contain the HTML version code.

<noscript>
<p>This page uses JavaScript,

so you should enable JavaScript in your browser
options

and reload this page for the button above to wor
k.

Else, click here
to contact R&D staff.</p>

</noscript>

The<noscript> version, sent when we know that the browse
supports JavaScript but has this feature turned off, gives the u
an opportunity to choose version. The link leads to the conta
form in pure HTML. The<else> code, sent when the browser
really doesn't support JavaScript, looks like this:

<else>
contact us.

</else>

This is the JavaScript version of index.xml

The <noscript> version contents added instead

For browsers not supporting JavaScript this is added
20

icks
it-

we
d

of
y

e
the

 th
We simply insert a link leading to the message form in HTML
version. It is a basic form with no tests of input or other funny
stuff. (We don't comment the form here. Have a look in the
source code if you are curious. The file is namedmessage.xml.)

Ok, this was (hopefully) the exceptions when users view the
page. Let's consider the JavaScript version again.

<if supports='javascript'>
contact us.
<form>

<input type='button' value='CONTACT R&D'
onClick='openMessWin('messForm.xml')' />

</form>

<form name='hiddenForm' action='disp_mess.xml'>
<input type='hidden' name='_name' />
<input type='hidden' name='mail' />
<input type='hidden' name='mess' />

</form>

<noscript>
...

</noscript>
</if>

We insert a button that opens a new window using
onClick='openMessWin('messForm.xml')' . The contents of
that window is coded inmessForm.xml. If you have a look at the
source code you see that some features are added compared to
the HTML version message form - additional buttons and some
JavaScript logic checking the input. (The hidden form is added
for some JavaScript magic that we won't explain here. The nice
look&feel is possible by thepopup.xsltemplate file, but that is
another story.)

The user adds name, mail address and a message, cl
'SEND' and the pop-up window disappears and data is subm
ted and handled in some way by the server. In this example
simply display it in the browser. The message will be displaye
the same way if the HTML form is used instead.

Well, that's it. This was just a simple example of the powers
<if supports> . As shown in the former parts, there are man
features that may be checked for and dynamically handled.

Summary

This section has taught you how to check for which facilties th
browser requesting the web page supports and how to adjust

The message form in HTML version

This is the pop-up window that appears when the user clickse

If_tags, Browser support optimizing, img 6
21

m-
sent information according to that. Thepageandclient scopes
where also discussed. The syntax forsupports is

<if supports='feature'>

For displaying and/or getting information about the client
browser theclient scope is suitable, e.g. theclient.javascript
entity holds the JavaScript version supported by the client. The
pagescope gets information about a page, such aspage.file-
nameor page.filesize. For the complete list of entities, insert
<insert variables='full' scope='client' /> or <insert

variables='full' scope='page' /> in a web page.
More details about<if supports> and client and page

scopes are found in theWeb Site Creator Manualor adding
<help for="if" /> in a web page.

End of /roxen/2.1/tutorial/if_tags/ex_4.xml

Summary

Start of /roxen/2.1/tutorial/if_tags/summary.xml

This lesson have been treating the Roxen Macro Language
(RXML) If tags, used to create dynamic web pages based on
conditions. They also make it possible to create web applica-
tions in RXML without using any programming language.

The If tags correspond to the if-else control flow statements
common in regular programming languages.

If tags statements are built up by six basic tags,<if> ,
<else> , <elseif> , <then> , <true> and<false> . The general
syntax is:

<if plugin1='expr' [and|or plugin2='expr' ...] [not
]>

if block
</if>
[<elseif plugin='expr' ...>

elseif block
</elseif>]
[<else>

else block
</else>]

Mandatory attribute to<if> and<elseif> is an If plugin. Log-
ical attributes -and, or andnot - adds functionality. Inside the
attribute expression, '=', '==', 'is', '!=', '<' and '>' operators are
valid.

 For proper XML, always close tags

<if match='&var.foo; is foo' />
or

<if match='&var.foo; is foo'></if>

 and give all attributes a value

<if true=''>.

The If plugins are divided into five categories,Eval, Match,
State, Utils and SiteBuilder, according to their function.Eval
plugins evaluate expressions as in regular programming lan-
guages,Match plugins match contents with arguments given
andStateplugins check which of the conditions possible is met.
Utils plugins perform specific tests such as present date or time.

SiteBuilderplugins require aRoxen Platform SiteBuilderand
add test capabilities to web pages contained in aSiteBuilder.

<set variable='var.foo' value = '1' />

<if variable='var.foo = 1'>
foo = 1

</if>
<else>

foo is something else
</else>

Here is an example of a simple if-else with RXML<if> and
theEval pluginVariable.

References

Roxen Web Site Creator Manual

Roxen Macro Language (RXML)

Roxen Administrator Manual

HTML 4.01 Specification by W3C

XML 1.0 Specification by W3C

XSL Specification by W3C

XSLT Specification by W3C

Netscape JavaScript Reference

If you have any questions, suggestions, comments or co
plaints about this lesson, please send an e-mail tomanu-
als@roxen.com.

End of /roxen/2.1/tutorial/if_tags/summary.xml
22

e

e
d

as

t
p-

re

c-

er

y

-

er
le

et-
l-

of)

-in
it.
m
gn
ci-
Database Tutorial

This section of the manual deals with how Roxen and Pike can
connect to SQL databases, retrieve data and modify the data
stored there. It doesn't aim at teaching SQL or how to design a
database, save for very simple cases, which are not surprisingly
the most common in normal Web-related programming tasks.
So you won't find references to triggers, stored procedures, ref-
erential integrity or complex privileges management here: they
CAN be used from Pike, but they're more of an SQL matter,
which is out of the scope of this manual.

Pike and Roxen offer an uniform layer to access all the sup-
ported databases. However such a layer does not cover anything
but issuing queries and retrieving data. SQL is unfortunately
another matter: it is an ANSI standard, but just about every SQL
server has its own dialect, which may be a subset or a superset
of the standard. You'll need to check your server of choice's
documentation about its version of SQL.

This section of the manual tries to be a reference for both
Roxen and Pike programmers. To do so, most examples will be
available in two versions, a Pike snippet of code, and RXML
code.

Note! The RXML <sqloutput>, <sqltable> and <sqlquery> ar
slowly being phased out in favour of the new <emit>
container, with "sql" as data-source. In this manual th
'old' tags are used, but the new tag is briefly introduce
on theThe emit and sqlquery Tags page.

Contents

Introduction to MySQL
 MySQL by TcX AB is a simple SQL server, very popular
among web-designers. It is a relatively simple and light-
weight server, which aims at being very fast, but is not fully
ANSI-SQL compliant, as it doesn't support features such
triggers or sophisticated access control.

 Since MySQL is so popular among web-developers, i
was chosen as the reference RDBMS for Roxen. This cha
ter will introduce you to it, and to some of the pitfalls most
easily encountered when using it. The examples shown a
however as cross-platform as they could be: they should
work with any SQL server which claims at least a partial
degree of ANSI-SQL compliance.
• Installing MySQL
• Privileges
• Building a Sample Database

Querying
 Querying a server is by far the most used DB-related fun
tionality. Almost everything (in some cases, plain every-
thing) you'll do when interacting with an SQL server goes
through specifying correctly-formed SQL queries, sending
them to a server and then interpreting the results the serv
sends back.

 RXML offers three different ways to query a server,
Pike offers two. This is needed to fit all situations: a query
may yield results, or it might not, and the only way to tell the
difference is by looking at the SQL code being executed b
the server.

 It would seem that programs (or RXML pages) access
ing SQL resources are difficult and cryptic because the
results queries can return are inherently dynamic in numb
and structure. Fortunately, very few programs need to hand
the full range of possible outcomes from a query. In fact,
most SQL queries are either non-interactive, or are param
ric. This means they have a fixed structure where a few va
ues (or no value if the query is non-interactive) change on
each execution. This ensures that the results (or lack there
can be predicted accurately if not in number, at least in
structure.

 It is best to see SQL statements not as a foreign plug
into a program's execution flow, but as an integral part of
Whenever the data storage structure changes, the progra
must be changed according to it (this is why database desi
is such an important matter: a wrong database-design de
sion might end requiring an application rewrite almost from
scratch).
• The query() function
• The big_query() function
• Quoting
23

nd
es

).
m
L
ree

e
e

is

at
rt-
ys-

n
nd:

rity

y
s

Data Extraction
 In this chapter we'll introduce how to perform data-extrac-
tion queries. We'll introduce the SQL syntax for data-extrac-
tion, and provide a few examples, both in RXML and in
Pike.
• SQL Syntax
• Conditions
• Sorting
• Limiting
• Functions
• Features Missing from MySQL

Data Insertion
In this chapter we'll introduce how to insert data into a data-
base.

 Notice that data insertion and modification are two dif-
ferent operations, using two different SQL commands.
• Insertion Syntax

Using RXML Features with SQl Databases
 In this chapter we'll examine how to exploit some RXML
features when working with SQL databases.

 The examples here contained are geared towards SQL-
driven data-sources, but it is not of course the only use for
them.
• The tablify Container
• The Business Graphics Module
• The emit and sqlquery Tags

Database Maintainance
 Up to this point we have assumed the databases to be
already present for us. But this of course isn't the case in
real-world situations.

Designing a database is a very complex task for nontriv-
ial cases. It is also a very delicate operation: when dealing
with data-storage-related applications, usually the applica-
tion is built around the data, and not the other way around.
So a bad data storage design will snowball, leading to a bad
application design, which is very expensive to fix, going as
far as a rewrite from scratch.

 So for the umpteenth time we'll remark that if an appli-
cation uses non-trivially organized data, the best solution is
to hire someone to design the database.

 In this chapter we'll examine how to build and delete a
database, how to set the tables and indices up or remove
them. We'll assume that the databse structure is so simple to
be self-evident (which is often the case for web-related sys-
tems), database design won't be taken into account.

 Also, the examples will be in pike-only: these activities
are meant to be used only once at database-creation, and are
really not suited for a web-based application.
• Database Creation
• Creating Tables
• Indices
• Dropping

End of /roxen/2.1/tutorial/database/index.xml

Installing MySQL

Start of /roxen/2.1/tutorial/database/install.xml

If you have already MySQL installed on your system, you may
skip this chapter.

Also, if you're running one of the various Linux distribu-
tions, there's a chance that you can find precompiled packages
for your distribution. Be warned, if your distribution uses an

RPM package format (Red Hat, Mandrake, SuSE, Caldera a
others use this), you will need to install a group of packag
(MySQL, MySQL-client, MySQL-devel). The same probably
applies to Debian-based distributions (Debian, Corel Linux,...

You can download the sources for the MySQL server fro
the MySQL site. Be sure to check the licensing terms: MySQ
is free software as in "Free speech", not always also as in "F
beer".

Unpack the archive you downloaded:

$ output:
$ output:

Decide where you wish to install it: usually it will be in /usr/
local/mysql or /usr/local. During this tutorial we'll assume th
former. Detailed installation instructions can be found in th
INSTALL-SOURCE file in the mysql distribution.

You can then run

$ output:

if you wish to get an informative help for available build-time
configuration options.

The recommended configuration command line (with gcc)

$ output:

then:

$output:

- and if it compiles successfully,

$output:

will install the package, while

$output:

prepares the bootstrap (empty) databases.
You'll probably want to have the mysql daemon started

system startup. To do so, you can look at the file in suppo
files/mysql.server. How to use it, however, depends on your s
tem. If you aren't the system administrator, ask for his help.

The standard server-administrator name is "root", with a
empty password. To change the password, issue the comma

$output:

Not changing the adminstrator password is a serious secu
hazard.

End of /roxen/2.1/tutorial/database/install.xml

Privileges

Start of /roxen/2.1/tutorial/database/privileges.xml

A fundamental point, and a very common pitfall, in day-to-da
MySQL operations is understanding how the MySQL privilege
24

L
ain-

s to

is
that
to
o

all
ta-

e
-

in-
data
es
system works. This chapter is meant to provide only an over-
view of the basic functionalities. To get more information, it's
recommended to read the MySQL manual.

The first noteworthy aspect is that MySQL does *not* use
the security features of the host system. It has its own authenti-
cation schemes, different from the system's.

This section uses the GRANT and REVOKE commands,
which have been implemented in MySQL version 3.22.11. If
you have an earlier version, you're suggested to upgrade.

MySQL offers four levels of access control: global, data-
base, table and column. We'll only deal with the first two, as
they are the most important. If you think your setup would
require finer-grained security, you'll probably also need to hire a
knowledgeable Database Administrator: data storage and
retrieval is a very sensitive matter, performance- and security-
wise.

To manage privileges you'll have to use the GRANT and
REVOKE SQL commands. Their (simplified) syntaxes are:

GRANT *priv_type* [, priv_type ...] ON {*.*|databas
e.*} TO

user name [IDENTIFIED BY '*password*']
[, *user name* [IDENTIFIED BY '*password*'] ,

...]
[WITH GRANT OPTION]

REVOKE *priv_type* ON {*.*|database.*} FROM *user n
ame*
[, *user name*, ...]

Where *priv_type* is a type of privilege, chosen am
ong
ALL [PRIVILEGES] FILE RELOAD
ALTER INDEX SELECT
CREATE INSERT SHUTDOWN
DELETE PROCESS UPDATE
DROP USAGE

"ALL" or "ALL PRIVILEGES" means (guess what?) every
thing. "USAGE" is the
same as "no privilege".

If you use the "*.*" syntax, the altered privileges will be at
the global level. If you use "database.*", you'll touch the data-
base-level privileges.

The user name can have the form 'username@host', and can
have wild-cards ('%' or '_', see later) in both the host or user-
name parts.

If you specify the "IDENTIFIED BY..." clause, you'll set a
password for the named user. Users without a password _are_
legal in MySQL, but they are a very serious security hazard.

WITH GRANT OPTION means that the user is given the
privilege to grant the same privileges he has to other users. It
can be revoked with the syntax

REVOKE GRANT OPTION ON ... FROM *user name*

In the default MySQL setup there is an anonymous user
('%@localhost'), whose existence can cause unexpected results
while authenticating other users. It is advised to remove the
anonymous user. It can't be done with the GRANT syntax, but
you have to do it manually as detailed the examples below.
Also, in the default MySQL setup there's an empty database
named 'test', open for anonymous use. We'll use throughout this
tutorial, but it's advised to remove it ('DROP DATABASE test')
after you're done, as it can be a source of denial-of-service
attacks.

Always remember: in order to maximize the security of
your site, it's always best to give each user the minimal privi-
leges allowing him to do his work.

Create a new user named 'kinkie', having basic data access to
the 'test' database.

With Pike:

$ pike
Pike v0.6 release 116 running Hilfe v2.0 (Increment
al Pike Frontend)
object o=Sql.sql("mysql://
root:*password*@localhost/mysql");
o-
>query("grant select,insert,update,delete on test.*

to kinkie identified by
'*password*');

o->query("flush privileges");

Or, from the MySQL monitor:

$ mysql -uroot -p*password* mysql
> grant select,insert,update,delete on test.* to ki
nkie identified by

'*password*';

Create a new user named 'dbmanager' having full SQ
access to all databases (but deny him server-related maint
ance tasks):

With Pike:

object o=Sql.sql("mysql://
root:*password*@localhost/mysql");
o-
>query("grant select,insert,update,delete,create,dr
op,alter,index on

. to dbmanager identified by '*pa
ssword*'");

Disable the 'nasty' user.
With Pike:

object o=Sql.sql("mysql://
root:*password*@localhost/mysql");
o->query("revoke all on *.* from nasty");

With Pike:

object o=Sql.sql("mysql://
root:*password*@localhost/mysql");
o->query("delete from user where user='nasty'");

Delete the anonymous users and the public-access entrie
the test databases:

object o=Sql.sql("mysql://
root:*password*@localhost/mysql");
o->query("delete from user where user='');
o->query("delete from db where db like 'test%');

You might have noticed there are no Roxen examples in th
chapter: these tasks _can_ be executed by Roxen (provided
you give it enough access privileges), but it's not advised
have RXML code perform such critical tasks: one reload to
much could make your database useless.

End of /roxen/2.1/tutorial/database/privileges.xml

Building a Sample Database

Start of /roxen/2.1/tutorial/database/sample_data.xml

In the previous chapters we introduced how to build and inst
your database server. In this chapter we'll build the sample da
base that will be used throughout this manual.

Make sure your MySQL daemon is running and that th
MySQL program files are in your PATH, then use this com
mand line

$ output:

The database server will create files making a database. A s
gle database server can handle many databases: each is a
repository, completely independent from all the other databas
hosted by the same server.
25

ry
lit-

of
the

d

ty

e-
y.
all
it

ut
s,

-

A database can be dumped using the "mysqldump" utility. It
will create an SQL script file, that when run will re-create the
structure and contents of a database. The sample database was
dumped with this utility.

You'll now want to fill in the sample database. To do so, you
must use the "mysql" utility, with these command lines:

$ output:

$ output:

The "mysql" utility is a so-called "interactive monitor", an
application whose purpose is to execute arbitrary SQL state-
ments interactively. It is a very powerful and useful tool, and it's
advised to get familiar with it.

The two lines are required because I chose to dump the
database structure (the so-called 'schema') and the data sepa-
rately.

The sample database is a simplified excerpt of the CIA
World Factbook. It only covers a few nations, and for each
nation only a small amount of data.

From this moment on, we will not use the administrative
user to develop the examples. Instead, we will create a user
named 'user' with password 'password' and use it. Make sure
you remove that user once you are done with this tutorial.

To create the user, you will need to issue this query from
inside the mysql interactive monitor:

$ output:

...which grants all privileges on sample.* to the user identified
by 'password'.

The Sample Database Structure

The sample database consists of four tables. The first one,
named 'ids' is used to tie country names to their 2-letter unique
codes, which are used everywhere else. The one named 'areas'
has the purpose to tie a few world areas to an unique integer
identifier.

Although in theory both those tables could be not necessary
(they handle a very simple association, the 2-letter country code
could be very easily substituted with the country name in every
place it appears), they actually serve two purposes: they make
the other tables more compact and efficient (a 2-letter unique
code is simpler to handle and requires less space than a vari-
able-length name), and they formalize and restrict the domain
of possible choices, allowing for a cleaner and more robust
design.

The 'countries' table contains a few descriptive fields for
each country, possibly in relation with other tables. The 'bound-
aries' table contains informations about the countries bound-
aries. It could be considered relationed to the 'countries' table,
but it's more practical to see it as a separate entity.

End of /roxen/2.1/tutorial/database/sample_data.xml

The query() function

Start of /roxen/2.1/tutorial/database/query.xml

The query() method of the Sql.sql object is the "simple" que
interface. It is meant to be used for those queries that return
tle or no data.

 It's signature could look frightening:
array(mapping(string:string|float|int)) query

(string sql)

 but it isn't that bad, really.
The returned value is an array, one element for every row,

mappings whose indices are the column names, and values
column contents.

So in order to access the "foo" column in the fourth returne
row, you'll use

mixed datum = db[4]->foo;

If there are no results, the method will return an emp
array.

Find out the country code for Italy

string country_code_for_italy() {
object db=Sql.sql("mysql://

user:password@localhost/sample");
array result=db-

>query("select code from ids where name='Italy'");
if (sizeof(result)>0) { //

if there is any result
return result[0]->code;

}
return 0; //no code found

}

The reason why this interface is only suited for simple qu
ries is that it will fetch the whole results set and store it locall
It's not that big a deal for small databases, but make a sm
mistake in specifying the query on an HUGE database, and
will be tens or hundreds of megabytes to fetch. Talk abo
bloat... If you're going to retrieve potentially huge data-set
you'll need the big_query interface instead. It's a bit more com
plex to use, but it will allow you fetch results on demand.

End of /roxen/2.1/tutorial/database/query.xml

The big_query() function

Start of /roxen/2.1/tutorial/database/big_query.xml
26

../
is
pite
is
me

ts,
The big_query() function allows programmers more control
than the simpler query() function on how data is retrieved from
the database server, as it allows fetching the data rows on
demand. This is especially useful when you wish to do client-
side computations on the fly on big datasets, that would require
too much memory to be completely fetched and then processed.

 The function's signature is
object(Sql.sql_result) big_query(string sql)

The returned object is a handle to the results dataset. It
offers methods allowing you to retrieve rows and get informa-
tions on the dataset itself.

int num_rows()
 returns the total number of rows in the result object. Some
drivers (i.e. Sybase) might not provide this functionality, and
thus the only way to know how many rows there are is by
explicitly querying the server (see example below).

int num_fields()
 returns the number of columns for the result object. This
function is usually meant for development purposes only,
you shouldn't need it on production systems.

int eof()
 returns true if all rows in the result object have been
fetched.

array(mapping(string:mixed)) fetch_fields()
retrieves descriptions for the columns in the results set. The
mappings in the returned array (one for each column) have
some default fields, but they change in different drivers. See
the example below to discover what fields your driver of
choice provides. This function is usually used for develop-
ment purposes only. You should rarely need it on production
systems. Also, notice that the returned results will corre-
spond to the server's idea of the fields, which might be dif-
ferent from the actual declaration.

void seek(int skip)
 This method allows to skip fetching some rows (the skip
argument must be a nonnegative integer).

int|array(string|int) fetch_row()
 The most important function of all, this one allows you to
fetch a row of data. There is one element of the array for
each column, and the columns are ordered as returned by
fetch_fields() and as specified in the SQL query. If 0 is
returned instead, it means that there are no more rows to
retrieve. An integer 0 is returned for (SQL) NULL values,
while all types of stored data are returned as strings. It's up
to the user to do the adequate type casts where appropriate.
Type information can usually be retrieved with the
fetch_fields() function.

Notice that there are some restrictions on how data are
retrieved with some drivers. Please check the drivers-specific
section for more detailed information.

Print the name and background for all the countries in
Europe.

object(Sql.sql) db=Sql.sql("mysql://
user:password@localhost/sample");
object(Sql.sql_result) result=db->big_query(

"select ids.name, countries.background "
"from ids,countries,areas "
"where areas.name='Europe' and countries.map

_refs=areas.id and "
"ids.code=countries.country");

array(string) row;
while (row=result->fetch_row()) {

//

row[0] is the country name, row[1] is the backgroun
d info

write("---"+row[0]+"\n");
write(row[1]+"\n");

}

Now let's try writing a simple pikescript handling a multi-
page table without resorting to the LIMIT SQL clause (see
data_extract/limiting). The main purpose of this example
showing the usage of num_rows and seek functions, so des
being a complete example, it's a bit stretched (in real-world, th
is one of the cases where the Roxen caching capabilities co
handy). Also, it doesn't output formally valid HTML, and it
doesn't handle exceptions. We'll show the 'ids' table conten
with ten entries per page and links to the other pages.

---- sample begin ----
#define DBHOST "mysql://user:password@localhost/
sample"
#define QUERY "select name, code from ids order by
name"
#define ENTRIES_PER_PAGE 10
#define SEEK_IS_BROKEN

string parse (object id) {
string toreturn;
object(Sql.sql) db;
int number_of_entries, number_of_pages, page, j;
object(Sql.sql_result) result;
array(string) row;

page=(int)(id->variables->page);
toreturn="<table border=1>\n";
db=Sql.sql(DBHOST);

//connect
result=db-

>big_query(QUERY); //query
number_of_entries=result-

>num_rows(); //get the number of rows
#ifdef SEEK_IS_BROKEN

//
it looks like mysql's implementation of seek() is b
roken, probably at

//
the mysql level in my version (3.22.29). I'll do a
loop to emulate seek

for (j=0;j<ENTRIES_PER_PAGE*page;j++)
result->fetch_row();

#else
result-

>seek(ENTRIES_PER_PAGE*page); //
skip unneeded results
#endif

for(j=0; j<10; j++) { //
at most 10 results

row=result->fetch_row(); //
fetch the row

if (!row) //
no more data?

break; //exit
toreturn += "<tr><td>"+row[0]+"</

td><td>"+row[1]+"</td></tr>\n";
}

//
now the links section

number_of_pages=number_of_entries/
ENTRIES_PER_PAGE;

if (number_of_entries%ENTRIES_PER_PAGE)
number_of_pages++; //

there might be an incomplete page
toreturn+="<tr><td colspan=2>";
for (j=0;j<number_of_pages;j++) {

toreturn += "<a href='"+id-
>not_query+"?page="+j+"'>"+(j+1)+" ";

}
toreturn +="</td></tr>";
27

ver
be
ed
an

ld.
he
ight
toreturn +="</table>";
return toreturn;

}
---- sample end ----

What happens if the num_rows function is not available?
The same results can be obtained via a simple SQL query,
obtained modifying the actual query being executed. It is of
course less efficient because two queries are issued instead of
one. But it's better than nothing.

The query is obtained replacing the list of fields being
fetched with the 'COUNT(*)' SQL function. It has slightly dif-
ferent semantics for complex queries, but for all the query types
covered in this manual, it works. You might want to alias it for
easier manageability (see ../data_extract/syntax).

 So the previous example would have been written as:

---- sample begin ----
#define DBHOST "mysql://user:password@localhost/
sample"
#define COUNT_QUERY "select count(*) as num from id
s"
#define QUERY "select name, code from ids order by
name"
#define ENTRIES_PER_PAGE 10
#define SEEK_IS_BROKEN

string parse (object id) {
string toreturn;
object(Sql.sql) db;
int number_of_entries, number_of_pages, page, j;
object(Sql.sql_result) result;
array(string) row;

page=(int)(id->variables->page);
toreturn="<table border=1>\n";
db=Sql.sql(DBHOST);

//connect
number_of_entries=(int)(db-

>query(COUNT_QUERY)[0]->num); //(1)
result=db-

>big_query(QUERY); //query
#ifdef SEEK_IS_BROKEN

//
it looks like mysql's implementation of seek() is b
roken, probably at

//
the mysql level in my version (3.22.29). I'll do a
loop to emulate seek

for (j=0;j<ENTRIES_PER_PAGE*page;j++)
result->fetch_row();

#else
result-

>seek(ENTRIES_PER_PAGE*page); //
skip unneeded results
#endif

for(j=0; j<10; j++) { //
at most 10 results

row=result->fetch_row(); //
fetch the row

if (!row) //
no more data?

break; //exit
toreturn += "<tr><td>"+row[0]+"</

td><td>"+row[1]+"</td></tr>\n";
}

//
now the links section

number_of_pages=number_of_entries/
ENTRIES_PER_PAGE;

if (number_of_entries%ENTRIES_PER_PAGE)
number_of_pages++; //

there might be an incomplete page
toreturn+="<tr><td colspan=2>";
for (j=0;j<number_of_pages;j++) {

toreturn += "<a href='"+id-

>not_query+"?page="+j+"'>"+(j+1)+" ";
}
toreturn +="</td></tr>";
toreturn +="</table>";
return toreturn;

}
---- sample end

(1): this line is a quick shortcut using the simple
r query (see query)
interface. It is appropriate in this case, because
the results are tiny. We
didn't make any checks on the results either, becau
se their structure is
very well-known.

The values returned by fetch_fields depend on the ser
you are connecting to, save for a few ones which should
always there. This is one of the reasons why you shouldn't ne
to use this function except during development. Let's see
example of it in action:

With Pike:

> object db=Sql.sql("mysql://user:password@local-
host/sample");
Result: object
> object res=db-
>big_query("select country, map_refs, flag from cou
ntries");
Result: object
> res->fetch_fields();
Result: ({ /* 3 elements */

([/* 7 elements */
"decimals":0,
"flags":(< /* 2 elements */

"primary_key",
"not_null"

>),
"max_length":2,
"length":2,
"type":"string",
"table":"countries",
"name":"country"

]),
([/* 7 elements */

"decimals":0,
"flags":(< /* 1 elements */

"not_null"
>),

"max_length":1,
"length":4,
"type":"char",
"table":"countries",
"name":"map_refs"

]),
([/* 7 elements */

"decimals":0,
"flags":(< /* 2 elements */

"not_null",
"blob"

>),
"max_length":13127,
"length":65535,
"type":"blob",
"table":"countries",
"name":"flag"

])
})

An array of mappings is returned, one mapping for each fie
The "name" key is always present, as is the "flags" key. T
other fields change depending on the server, and (as you m
see) on the data type.

End of /roxen/2.1/tutorial/database/big_query.xml
28

a
e

nd

on
the
r

e-
ce

r,
f

he

ti-

pike

nd

a
be
ns
ll
Quoting

Start of /roxen/2.1/tutorial/database/quoting.xml

As better explained in theConditionspage, constants (espe-
cially string constants) must be quoted in SQL. How the quot-
ing must actually be composed will be explained later, now
we'll introduce the facilities Pike and RXML offer to perform
the quoting operation. The operation is server-transparent (that
is, it adapts to the various servers' quoting schemes.

Pike

The Pike solution is pretty straightforward: quoting is handled
via the Sql.sql->quote(string) method. It returns a string, which
is the quoted argument.

It is supposed to be used when assembling a query, and is
strongly encouraged to use it whenever a query is interactively
built from some user's input: a malformed input could break the
query by causing an SQL syntax error. It's useless to say that it
could also be used maliciously, to completely alter the query
structure, thus giving access to the lowlevel database contents.

Let's write a small interactive Pike application which prints
the background for user-entered countries.

#!/usr/local/bin/pike
#define DATABASE "mysql://user:password@localhost/
sample"

//
sample program: find out some country's background
information
int main() {

object readline=Stdio.Readline(); /
/used for interactive input

object db=Sql.sql(DATABASE); /
/connect to the DB

readline->set_prompt("Country (q to quit)> ");
string input;
array(mapping(string:mixed)) result;
while (input=readline->read()) { /

/while !eof
if (input=="q") break; /

/exit on "q"
//query-

building. I like to use sprintf to build parametric
queries, as

//
it shows the query structure in the source (increas
ed readability),

//
as well as allowing easier control over the SQL sta
tement

string query=sprintf("select background from co
untries, ids "

"where countries.country=i
ds.code and "

"name='%s'",
db->quote(input) /

/notice the quoting!
);

result=db->query(query);
if (!sizeof(result)) {

write("No such country in the database\n");
continue;

}
write(result[0]->background+"\n");

}
}

RXML

There are two occasions in which you'll want to do quoting in
RXML when performing SQL-related operations: parametric

query building and results quoting (for instance to populate
selection list). In most cases the RXML parser tries to do th
"sensible" thing, but sometimes that's just not enough, a
you'll need to manually override the parser's "opinion".

On production systems, any degree of freedom is a risk:
such systems it is thus recommended to always specify
encodingq, as it will lessen the probability of errors, failures o
security vulnerabilities.

Parametric Queries

You can use the standard entity-syntax to build parametric qu
ries: just use entities in your query strings. Make sure to for
the sql-encoding, or you might head into trouble.

Encoding Query Results

This is only relevant when used with the <sqloutput> containe
because otherwise the RXML parser will fully take care o
things for you.

By this scheme, you can perform encoding operations on t
output fields, using the syntax

#varname:encode=type#

where the allowed types are the same as with RXML en
ties: http, cookie, url, html, pike, js (or javascript), sql.

The example beneath does the same task as the above
application using RXML. It performs both of the encoding
operations: results-encoding to populate a selection list a
variable encoding to perform a parametric query:

<form method=post action="&page.url;">
Select a country: <select name=country>
<sqloutput host=""

query="select name,code from ids,countries where
countries.country=ids.code order by name">
<option value="#code:encode=html#">#name:encode=non
e#</option></sqloutput>
</select>
<input type=submit>
</form>

<if variable='form.country'>
<sqltable host="mysql://user:password@localhost/
sample"

query="select name, background from countries, id
s where countries.country=ids.code and ids.code='&f
orm.country:sql;'"/>
</if>

End of /roxen/2.1/tutorial/database/quoting.xml

SQL Syntax

Start of /roxen/2.1/tutorial/database/sql_syntax.xml

 The most basic SQL syntax for a data-extraction query is:
SELECT what FROM table name[, table name ...]

[WHERE conditions]
whatdefines what you wish to get from the query. It can be

column name (more on column names later), a function to
performed on the retrieve data (more on this in the functio
chapter). The special notation '*' means "all columns from a
the specified tables".

In order to extract everything from a table, with RXML:

<sqltable border=1 host="mysql://
user:password@localhost/sample"

query="select * from boundaries">

 with Pike:
29

en

is
to

n

list

e if
to
:

e,
n

e,
re
ted

a-
ld
s
t.

ti-
ted
be

be
ep-
x-
string parse (object id) {
object db=Sql.sql("mysql://user:password@local-

host/sample");
array(mapping) results=db-

>query("select * from boundaries");
string output="<table border=1>";
foreach (results,mapping m) {

output+="<tr><td>"+m->country_1+"<td>"+m-
>country_2+"<td>"+

m->length+"</tr>\n";
}
output+="</table>";
return output;'

}

If we wanted to get the results only for a column in that table,
we would have instead

with RXML:

<sqltable border=1 host="mysql://
user:password@localhost/sample"

query="select length from boundaries">

Of course you can select more than one column, simply
havingwhat be a comma-separated list of column names.

With RXML:

<sqltable border=1 host="mysql://
user:password@localhost/sample"

query="select country_1, country_2 from boundari
es">

Using a single table doesn't harness the power of relations.
Those are not "physical" entities, but are built when a query is
executed if multiple tables are specified together with condi-
tions to explain how the data from the tables should be collated
(or "the tables are joined"). Usually an equality test is used to
specify those conditions, but it's not a requirement. The result of
the join operation is a virtual table merging those records from
every involved table that satisfy the specified conditions.

Let's print the name of the known countries and the geo-
graphic regions they belong to. The country names are in the
'ids' table, the regions are in the 'areas' table, the two are tied via
the 'countries' table. The relations we'll use are two: ids.code
must be equal to countries.country, and countries.map_refs
must be equal to areas.id

with RXML

<sqltable border=1 host="mysql://
user:password@localhost/sample"

query="select ids.name as country, areas.name as
region

from ids, countries, areas
where ids.code = countries.country and
countries.map_refs = areas.id">

Column Names

A column can be addressed in two ways: "plain" and "dotted
notation". The latter is the more complete form, and is guaran-
teed not to be ambiguous. The former is allowed for brevity's
sake by most servers (including MySQL), but only when no
confusion is possible.

Aliases for Columns

It is possible (usually to have a function result with a simpler
name) to alias the names of the returned columns, simply
extending thewhat parameter above with the syntax

column_name AS alias
The values will be then available in the result as "alias" col-

umn, rather than "column_name".
With RXML:

<sqltable border=1 host="mysql://
user:password@localhost/sample"

query="select country_1 as first_country, countr
y_2 as second_country

from boundaries">

See the functions chapter to see how for an example wh
using functions.

Aliases for Tables

Table names can be aliased with the "as" syntax, too. This
especially important in one case, and that is when you need
cross-reference a table with itself, or if a table is involved i
multiple relations with another. It's illegal in SQL to have two
or more tables with the same name mentioned in the tables
of a query.

With our sample database, it's necessary to alias a tabl
we want to expand the country codes in the boundaries table
their names. In order to accomplish that result, we will need to

With RXML:

<sqltable border=1 host="mysql://
user:password@localhost/sample"

query="select ids_1.name as name_1, ids_2.name
as name_2, length

from ids as ids_1, ids as ids_2, boundaries

where ids_1.code=boundaries.country_1 and
ids_2.code=boundaries.country_2">

Here we aliased two times the 'ids' table for clarity's sak
we could have aliased it only once. Also, we aliased the colum
names for the same reason.

No Tables Involved

It is possible to have queries which don't involve any tabl
simply by not specifying the "FROM" clause. Such queries a
not very useful, except sometimes to perform server-assis
translations.

With Pike:

> object db=Sql.sql("mysql://user:password@local-
host/sample");
Result: object;
> db->query("select now() as time")[0]->time;
Result: "2000-02-29 12:12:57"

The conditional part of a query is explained in the following
chapter.

End of /roxen/2.1/tutorial/database/sql_syntax.xml

Conditions

Start of /roxen/2.1/tutorial/database/conditions.xml

The condition part of the query, as shown in the "syntax" par
graph is a boolean expression, usually arbitrarily complex (o
versions of MiniSQL have heavy limitations the syntax of thi
portion). Only rows that satisfy it will appear in the results se
If none does, the results set will be empty.

When evaluating the condition, column names are subs
tuted with the data they contain, and operators are evalua
according to a well-specified grammar. Constants must
quoted according to their type.

Numeric Constants

Integer and floating-point numbers are not quoted. They can
told apart because floating-point numbers have the decimal s
arator (.). Usually the server's parser is quite lenient though, fi
ing types when possible according to the context.
30

e

d
l-
l,

-

ill
nd
r-
nd
ra-

-

,

es

c-
Column Names

These are not quoted. Since they mustn't be ambiguous this
poses a bit of limitations on column names. As a general rule,
legal C variable names are legal column names (unless they are
reserved words of course). SQL is a bit more lenient than C, so
you should get a little more leeway.

String Constants and Quoting

Strings are quoted using the apostrophe symbol ('). If a string
contains the literal apostrophe character, it must be escaped.
Different escaping schemes are specified, the most usual ones
being doubling it (i.e. 'It''s a shame') or prepending it with a
backslash (i.e. 'It\'s a shame').

Let's obtain from our sample database the total area of Italy.
 With RXML:

<sqloutput host="mysql://user:password@localhost/
sample"

query="select name, area_tot from ids, countries
where ids.code = countries.country and ids.name

='Italy'>
#name#'s total surface is #area_tot# sq. km.
</sqloutput>

Other Data Types

Other data types are usually represented as formatted string,
which get interpreted by the server according to the context.

The LIKE Operator

This operator is used to do glob-like matching. It has the syntax
value *LIKE* PATTERN where the value is usually a column,
and the pattern a string literal, possibly containing two magic
characters: '_' and '%', which act like glob characters '?' and '*',
that is they match any (single) character, and any arbitrarily
long sequence of any character. If what you're matching against
contains the literal '_' or '%' characters, you can escape them
prepending the backslash character '\'.

Let's try to find out the countries neighbouring Italy. The
right way to do so would be looking in the 'boundaries' table.
But a summary can be found in the countries.location text, and
we'll use that.

 With RXML:

<sqltable border=1 host="mysql://
user:password@localhost/sample"

query="select name from ids, countries
where countries.country=ids.code and locat

ion like '%italy%'">

Notice that the "column like '%something%'" syntax (with
leading and tailing globs) is very inefficient, and should be
avoided whenever possible.

MySQL offers the more powerful REGEXP operator, with
the syntax value REGEXP expression where the value is usu-
ally a column name or a function result, and expression is a
string-quoted regular expression

NULL Column Values

Some columns can be empty, or (in SQL terms) be NULL. To
deal with them when selecting data, you use the 'IS' syntax,
which takes the form value IS [NOT] NULL where value can be
obtained from a a column (thus be a column name) or can be a
constant value (of course it would be rather dumb to evaluate a
constant expression, but you can of course do that if you wish).

End of /roxen/2.1/tutorial/database/conditions.xml

Sorting

Start of /roxen/2.1/tutorial/database/sorting.xml

Data in a result is in undefined order. To have it sorted to som
other order, theORDER BYclause can be used. It modifies the
basic query syntax:

SELECT *columns* FROM *table* [, *table* ...] WHERE
condition

ORDER BY *column_name* [DESC] [, *column_nam
e* [DESC] ...]

This will sort the returned rows according to the specifie
columns, depending on the column type (numerically if the co
umn type is numeric, syntactically if the column type is textua
etc.) If theDESCmodifier is specified, the rows will be sorted
in reverse (descending) order.

End of /roxen/2.1/tutorial/database/sorting.xml

Limiting

Start of /roxen/2.1/tutorial/database/limiting.xml

 It is sometimes useful not to retrieve all the rows in a query.
You can do it using SQL or (in Pike) you can do it by sim

ply not using some of the results you fetch.
Doing it in SQL has some advantages, for instance it w

reduce the load on your SQL server, your Pike application a
your internal network. On the other side, the syntax for pe
forming such an operation is not part of the SQL standard, a
so every server adds its own extensions to perform this ope
tion.

We will introduce the MySQL syntax here. For other sys
tems, consult your server's of choice SQL reference manual.

MySQL offers limiting via an extension of the SELECT
syntax, which gets changed like this:

SELECT <i>columns</i> FROM <i>tables</
i> [WHERE <i>condition</i>] [ORDER BY <i>columns</
i>]

[LIMIT [<i>offset</i>,]<i>howmany</i>]

offsetandhowmanyare two numbers. When returning rows
MySQL will skip the firstoffset, and only returnhowmany.

Fetch the 20th to 30th countries with their associated cod
(sorted by country name) with the 'LIMIT' syntax, in RXML:

<sqltable border=1 host="mysql://
user:password@localhost/sample"

query="select name,code from ids order by name li
mit 20,10">

...or with Pike, using the query() function and result sele
tion:

object db;
array(mapping(string:mixed)) result;
db=Sql.sql("mysql://user:password@localhost/sam-
ple");
result=db-
>query("select name,code from ids order by name");
if (sizeof(result)>20)

result=result[20..];
else

result=({});
if (sizeof(result)>10)

result=result[..10];
foreach(result,mapping m) {

write(m->name+"\t"+m->code+"\n");
}

31

ng

a

t-
The two sizeof()-based conditionals are needed because when
slicing arrays, we need to make sure that valid indexes are used,
and that the required semantics are respected.

With Pike, using the big_query() function and result selec-
tion:

object(Sql.sql) db;
object(Sql.sql_result) result;
int j;
db=Sql.sql("mysql://user:password@localhost/sam-
ple");
result=db-
>big_query("select name,code from ids order by name
");
for(j=0;j<19 && result->fetch_row();j++)

; //empty body, it's all done in the condition
for(j=0;j<11;j++) {

array row;
if (!(row=result->fetch_row()))

break;
write (row[0]+"\t"+row[1]+"\n"); //

row[0] is the name, row[1] is the code
}

End of /roxen/2.1/tutorial/database/limiting.xml

Functions

Start of /roxen/2.1/tutorial/database/functions.xml

Whenever a column or a constant can be used in a query defini-
tion, a function can be used instead. Functions perform opera-
tions on the data, the usual quoting rules applying to their
arguments.

The available function and their names names vary wildly
from server to server, as does their syntax. We'll introduce here
the most important MySQL functions. For further information,
consult your server's documentation.

Arithmetic and math functions

+, -(unary or binary), / (with infix notation), *

ABS(X)

SIGN(X)

MOD(X Y)
modulo, like 'X % Y' in C

FLOOR(X)

CEILING(X)

ROUND(X)
rounding operators

LEAST(X, Y,...)
returns the smallest of its arguments

GREATEST(X, Y,...)
returns the greatest of its arguments

Comparison and logic functions

=
equality

!= or <>
dis-equality

>, >=, <, <=

IS [NOT] NULL
true if the compared value is (not) NULL

expr IN (value, ...)
true if the expression expr appears in the list

NOT or !

OR or ||

AND or &&
logic operators

String comparison and operations

value LIKE pattern
see theConditions page

value REGEXP pattern
performs a regular-expression match

CONCAT(str1, str2,...)
 concatenates the arguments

LENGTH(str)
 returns the length of its argument

LEFT(str,len)
return the leftmost len characters

RIGHT(str,len)
return the rightmost len characters

SUBSTRING(string,start_at,length)
 returns length characters starting from position
start_at

TRIM([LEADING|TRAILING|BOTH] FROM
string)

 trims leading, trailing or both spaces from string

LOWER(string)
 returns the string in lower case

UPPER(string)
 returns the string in upper case

PASSWORD(string)
 returns a Mysql password that checks against stri

ENCRYPT(string[,salt])
 same as the Unix crypt(3) function. If supplied,
'salt' should be 2 characters long. Otherwise it uses
random salt.

Control flow operators

IFNULL(expr1,expr2)
if expr1 is not null, returns it, otherwise it returns
expr2

IF(expr1,expr2,expr3)
if expr1 is true, returns expr2, else expr3

Date-related functions

DAYOFWEEK(date)
returns the weekday index for date (Sunday=1...Sa
urday=7)
32

e-
e.
ase

n
es
ing
-

en
a is

n

s
st
the

l-
he
ht
the

e
ult

-

e
ry

k

u
if

ible

as
ed
ne
nd
ple
DAYOFMONTH(date)
 returns the day of the month for date (1..31)

DAYOFYEAR(date)
 returns the day of the year for date (1..366)

MONTH(date)
 returns the month for date (1..12)

YEAR(date)
 returns the year from date (1000..9999)

HOUR(time), MINUTE(time), SECOND(time)
 time extraction functions

CURRENT_DATE, CURRENT_TIME,
CURRENT_TIMESTAMP

'magic' variables, that are treated like functions.
They contain the current date, time, and timestamp
respectively.

Miscellaneous functions

LAST_INSERT_ID()
returns the last value automatically generated by an
'AUTO_INCREMENT'-type column

Special functions
 These functions are somewhat 'special', in that they have
different semantics when used in conjunction with the
'GROUP BY' clause (which is not covered in this manual).

COUNT([DISTINCT] expr)
if 'expr' is a column name, it returns the number of
non-null rows returned for that column. If it's an
asterisk '*', it gives the number of returned rows. If
the DISTINCT keyword is specified, duplicate val-
ues are not counted.

AVG(expr)
Returns the average of the columns matched.

MIN(expr)
Returns the least of the columns matched.

MAX(expr)
Returns the greatest of the columns matched.

SUM(expr)
Returns the sum of the columns matched.

Show the current day of the week:
Count the number of rows in a table:
Count the number of countries whose name begins by 'i':

End of /roxen/2.1/tutorial/database/functions.xml

Features Missing from MySQL

Start of /roxen/2.1/tutorial/database/missing.xml

 What's missing?
There are a few very powerful features ANSI SQL provides

that we haven't mentioned, and that we won't go into detail on.
The main excu.. ahem, reason for this is that they're quite

powerful and complex and thus out of scope for this manual.
Furthermore, they're not supported by all SQL servers. MySQL
in particular doesn't support them.

The features we're talking about here are views and sub-
queries. When your SQL server of choice supports them, Pike
and Roxen can use them.

Also, SQL is designed to support transactions via some sp
cial keywords. However, not all servers implement this featur
If you need transactions, you also need an experienced datab
administrator to optimize your SQL and your application i
general, so you won't find any reference to that here. Sometim
used as a simpler scheme in place of transactions, table lock
is available for instance on MySQL. Refer to the MySQL man
ual for further information on the topic.

End of /roxen/2.1/tutorial/database/missing.xml

Insertion Syntax

Start of /roxen/2.1/tutorial/database/syntax.xml

While data extraction queries enforce the relationships betwe
the tables in a database, data insertion queries do not. Dat
always inserted into a table, never into a relation.

This fact is reflected in the SQL syntax for an insertio
query. There are of course a few variations:

INSERT INTO table VALUES (value [, value ...])
is the basic version. It only allows to specify all the value

in a table row. The values' order is of course relevant: it mu
correspond to the order the columns were defined in when
table was created.

Sometimes it's preferrable not to specify data for all the co
umns: data may be unknown, automatically completed by t
server (unique IDs, timestamps, ...) or the default value mig
be acceptable for some columns. This can be obtained with
alternate syntax:

INSERT INTO table (column [, column ...]) VALUES

(value [, value ...])
A value must be supplied for each column specified in th

columns-list. Unspecified columns will be assigned the defa
value or NULL. If no default value is specified and NULL is
declared invalid for a column, an error will be thrown when try
ing to insert.

A particular form of subquery can be used to fill in a tabl
(usually temporary tables). This is the only form of subque
supported by the MySQL database. The syntax is:

INSERT INTO table [(column [, column ...])] SELECT

...

There are a few limitations for the SELECT query, chec
your server's of choice manual to know more about them.

An insert-type query doesn't return any results, so yo
should use SQLQUERY in RXML, or not expect any results
you're using Pike. Also, you have to watch out andQuoting
quote the values you're inserting. Program errors and poss
security breaches are possible of no proper quoting is used.

Insertion Query with Pike

This program was used to build the sample database, and
such it's hackishly raw. It takes the contents of a file nam
"country-codes.data" in the current directory. That file has o
entry per row, with two tab-separated fields (country code a
country name). Those same data are dumped into the sam
database.

int main () {
object o=Sql.sql("mysql://user:password@local-

host/sample");
array(string) rows=Stdio.read_file("countries-

codes.data")/"\n";
rows-=({""});
foreach (rows,string row) {

array(string)fields=row/"\t";
o-
33

h
e I
itors
ould
s a

to
-
or

g)

ess

ad
era-

n

by
L

s

or
ab
in

d to
r
ep-

the
of
>query("insert into ids(code,name) values ('"+field
s[0]+"','"+

o->quote(fields[1])+"')");
}

}

Insertion Query with RXML

Performing insertion queries with RXML must be considered
with extreme caution: while it is a great system, it is undoubt-
ably less flexible than the Pike programming language.

This simple RXML page will allow you to insert a new
country - country code entry into the sample database:

<form action="&page.url; method="post">
Country name: <insert name="name">

Country code: <insert name="code" maxlength=2>

<input type=submit><input type=cancel>
</form>

<if variable="form.name">
<!--we're inserting data here-->
<sqlquery host="mysql://user:password@localhost/
sample"

query="insert into ids(code,name) values ('&form.
code:sql;','&form.name:sql;')"/>
</if>

Notice that while this sample works, and can be used in a
development/internal environment, it is not suited to be used in
a production environment: events such as a duplicate entry will
cause uncaught exceptions, which could potentially leak infor-
mation such as the database's password or the implementation
internals.

 See the catch tag to address these issues.

End of /roxen/2.1/tutorial/database/syntax.xml

The tablify Container

Start of /roxen/2.1/tutorial/database/tablify.xml

This page isn't meant to be a reference for tablify, as it can be
found on the<tablify> page.

The <tablify> container can be used to make (plain or
nice) HTML tables out of formatted text, as well as allowing to
perform some operations on the data like sorting.

Of course it is not mandatory to use it to build tables, but it
can save some work, especially to build "nice" tables. The
<sqltable> tag can be used for the same purpose too, but it
doesn't have the same flexibility, and it is being slowly phased
out, so support for it might be dropped in the future.

Build a table with<emit> to print the total area of each
known nation:

<table border="1">
<tr><th>Country</th><th>Total area</th></tr>
<emit source="sql"

host="mysql://user:password@localhost/sample"
query="SELECT name,area_tot FROM ids,countries

WHERE ids.code=countries.country">
<tr><td><ent>_.name</ent></td>

<td><ent>_.area_tot</ent></td></tr>
</emit>
</table>

Doing the same with tablify:

<tablify nice="yes" interactive-sort="yes" size="3"
titlecolor="white" cellseparator="|">

Country|Total Area
<emit source="sql"

host="mysql://user:password@localhost/sample"
query="SELECT name,area_tot FROM ids,countries

WHERE ids.code=countries.country">
<ent>_.name</ent>|<ent>_.area_tot</ent>
</emit>
</tablify>

Tablify expects to receive its data in a tabular form, wit
newline-separated rows of tab-delimited entries. In this cas
chose to override the default cell separator because some ed
try to translate the tab character to a sequence of spaces. Sh
you choose to do the same, make sure that your delimiter i
character that does not occur in your dataset.

While I shamelessly used the interactive-sort parameter
tablify, it is not recommendable to use the tablify sorting func
tions in general, but rather using the SQL "order by" clause f
performance reasons.

End of /roxen/2.1/tutorial/database/tablify.xml

The Business Graphics Module

Start of /roxen/2.1/tutorial/database/business_graphics.xml

The business graphics module (providing the diagram ta
allows Roxen to build different kind of diagrams on-the-fly. A
reference chapter on the module's features (ref: the busin
graphics module chapter) is available.

We won't duplicate the reference specification, but inste
focus on how to use a sql data-source to feed a diagram gen
tion tag.

 We'll start off with an example:
Show a graphic documenting the total areas for the know

countries:

<diagram type=barchart horgrid name="Areas"
namefont="franklin gothic demi" namesize=25>

<data xnames form=column xnamesvert>
<sqltable ascii host="mysql://
user:password@localhost/sample"

query="select name,area_land,area_tot fr
om ids, countries where

ids.code=countries.country order
by area_tot desc">
</data>
<legend separator=|>Total area|Land area</legend>
</diagram>

In the example, the data are fed by columns rather than
rows (which is the default for the diagram tag) because SQ
modules are better suited for that kind of layout.

The <sqltable> tag, together with the ascii parameter, i
the most suited system to feed data to a<diagram> tag.

You always need to watch out for possible field separat
misinterpretation problems: the default field separator (the t
character) and line separator (newline) are not usually found
SQL-obtained data-sources, especially the numeric data use
feed the diagram module. But you must not take this fo
granted, so make sure to check, and possibly use a different s
arator and the<sqloutput> tag to make sure.

End of /roxen/2.1/tutorial/database/business_graphics.xml

The emit and sqlquery Tags

Start of /roxen/2.1/tutorial/database/emit.xml

 The<emit> tag is a plugin-based data management system.
Generally speaking,<emit> will iterate through all the data

in a dataset such as the result of a SQL query, processing
contents of the tag for each item in the dataset. The source
34

ll
ed
ive

a-
t an
ver
re

n a
eci-
er

re
n-

L

-
se
e.
le
pes
s-
x
st
er

the
n

s it
e,
and

n
s,

-

the dataset is specified in the tag's arguments, along with a few
source-dependent parameters. Seethe chapter on emitin the
creator manual for more details. The emit tag allows to take full
advantage of the Roxen variable scopes.

Applying this to the case of SQL queries, the dataset is a
tabular result, and the items are the result's rows. The source to
be used is named "sql", and it takes as additional arguments
host (the SQL-URL of the host to be contacted) and query (the
SQL query to be executed). Additionally, it accepts the same
parameters as the sqloutput tag.

The example in the tablify chapter can be rendered with
emit as:

<table border=1>
<emit source="sql" host="mysql://
user:password@localhost/sample"

query="select name,area_tot from ids, countries w
here

ids.code=countries.country">
<tr><td>&_.name</td><td>&_.area_tot</td></tr>
</emit>
</table>

Remember: _ is the default scope. Should it be unavailable,
or should you want to use it for some other tag, you can use
another scope, like this:

<table border=1>
<emit source="sql" host="mysql://
user:password@localhost/sample"

scope="queryscope"
query="select name,area_tot from ids, countries w

here
ids.code=countries.country">

<tr><td>&queryscope.name</
td><td>&queryscope.area_tot</td></tr>
</emit>
</table>

 The sqlquery tag can be rendered with an empty emit tag

<sqlquery host="mysql://user:password@localhost/
sample"

query="insert into foo(bar) values ('gazonk')">

 can thus be translated into

<emit source="sql" host="mysql://
user:password@localhost/sample"

query="insert into foo(bar) values ('gazonk')" /
>

There is no builtin way to emulate the sqltable tag, you'll
have to follow the syntax described in the (ref) tablify chapter.

End of /roxen/2.1/tutorial/database/emit.xml

Database Creation

Start of /roxen/2.1/tutorial/database/db_create.xml

Database creation is not a part of the SQL standard, and the
details are very much server-specific. The Pike SQL interface,
however, offers two functions as part of the Sql.sql object that
can serve for this purpose.

Create a "foo" database:

void create_new_database(string dbname)
{

mixed error;
object db = Sql.sql("mysql://admin:pass-

word@localhost/");
error = catch {

db->create_db("newdb");
};
if(error)

{
werror("Error: "+db->error()+"\n");
return;

}
}

Delete the "foo" database:

void delete_database(string dbname)
{

object db = Sql.sql("mysql://admin:pass-
word@localhost/");

db->drop_db("newdb");
}

Of course the catch {} clause in the first example is overki
here, these operations are really REALLY meant to be us
interactively, and so a stack backtrace can be very descript
and useful.

Most servers provide an SQL syntax to perform this oper
tion. In some cases creating a database is so expensive tha
external app is used to perform the operation. When your ser
supports it via SQL, using SQL is advised. This functions a
provided mostly for MiniSQL compatibility (MiniSQL doesn't
provide an SQL syntax to create a database).

End of /roxen/2.1/tutorial/database/db_create.xml

Creating Tables

Start of /roxen/2.1/tutorial/database/table_create.xml

Tables are created via a mostly standard SQL syntax. Whe
table is declared, the names and types of its columns are sp
fied, possibly along with constraints, default values and oth
options.

Most databases, however, allow changing a table structu
at any time. Be warned that doing so without breaking any co
straint might be not trivial. We won't go into details on how to
modify a table structure here. You can check your server's SQ
reference manual, looking for the keywords "ALTER TABLE".

Also, we won't go into details on referential integrity con
straints. If you need them, you also need a skilled databa
administrator, and explaining them here would be out of scop

Again, the SQL standard is not well-specified here. Whi
the basic syntax to create a table is standardized, column ty
are not (except a few). Also, some servers allow defining cu
tom types, further complicating the matter. Finally, the synta
to define constraints is heavily dialectized, save for the mo
basic functions. Check your server's documentation for furth
informations.

 We'll use the MySQL syntax as reference.
 The basic syntax is:
CREATE TABLE name (declaration[, declaration ...])
The declarations can be columns, keys or indices (see

indices chapter) in various flavors. Let's take a look at a colum
declaration syntax first: it is

column_namecolumn_type[NOT NULL] [DEFAULT value]
[AUTO_INCREMENT] [PRIMARY KEY]

The column name can be pretty much anything, as long a
doesn't clash with any reserved word. For simplicity's sak
using short, descriptive names is advised. Dots, spaces
other non-alphabetical characters are forbidden.

If the NOT NULLclause is specified, it poses a constraint o
the column, namely that it must be specified (or, in other term
it can't be NULL). An attempt to insert a row without specify
35

to

e

-

es
ve

re

6-

val-

en
d
sed

ses
er-
er,
of

uld
be
e
.
of
e
-

ar-
me

no
a-

is
lv-
v-
is

i-
to
le
s.
ing this value will result in an SQL error and a (Pike or RXML)
exception.

If the DEFAULTclause is specified, inserting a row without
specifying this column will result in inserting the default value
instead. If it's not specified, NULL will be inserted instead (pos-
sibly clashing with theNOT NULL condition).

AUTO_INCREMENTis only meaningful for numeric types,
and useful only for integer types. Its behavior is like a special-
ized default value: if NULL is specified as data for the column,
then the actual inserted value will be the maximum present
value + 1. This is useful for creating unique IDs for the rows in
the table.

 We'll return on thePRIMARY KEY argument later.

SQL Data Types

All servers should support at least the INTEGER, REAL,
CHAR and VARCHAR types. Unluckily, that's about as far as it
goes, and there is even no wide-accepted agreement on the
semantics of CHAR and VARCHAR.

INTEGER
is what it seems, an (usually 32-bits) integer. It is signed,
unless the keyword UNSIGNED (e.g. INTEGER
UNSIGNED) is used.

CHAR
is a fixed-length character string. Some servers space-pad it
at the end (and use the VARCHAR type for unpadded
strings), others don't. MySQL doesn't pad it.

VARCHAR
is a variable-length string. Usually it differs from CHAR in
terms of how it is stored on disk: while CHAR values allo-
cate the storage space for the entire field length (and if it's
shorter leave it unused), VARCHAR values are usually
stored as a (length, value) pair and are packed. This means
that they use less space on disk, but are somewhat slower to
access. More importantly, usually VARCHAR values can't
be used in indices or keys.

MySQL Data Types

Of course servers provide many more data types. Here are
some details on MySQL's types:

TINYINT [UNSIGNED], SMALLINT [UNSIGNED],
MEDIUMINT [UNSIGNED], INTEGER [UNSIGNED],
BIGING [UNSIGNED]

 are respectively 8-, 16-, 24-, 32-, 64-bit wide integers
(signed, 2's complement unless the UNSIGNED clause is
specified). Notice that while performing internal arithmetic
all values are transformed into 64-bit signed integers, so
even for BIGINT UNSIGNED (which is theoretically 64-bit
wide, no more than 63 bits values should be used.

FLOAT and DOUBLE
are what you can expect them to be (single- and double-pre-
cision floating-point numbers).

NUMERIC
(length,decimal) is an unpacked floating-point number. It is
stored as a string, one char per digit. If DECIMAL is 0, then
the numbers are considered integer, and can't have a decimal
part. LENGTH is the size, and must be in the 0-255 range.

DATE, DATETIME, TIME
are date-related types. The legal range for them is from
'1000-01-01 00:00:00' to '9999-12-31 23:59:59'. MySQL
uses the "yyyy-mm-dd hh:mm:ss" syntax to display dates,

but also understands others. It is however recommended
stick to the default.

TIMESTAMP
is a somewhat magic column-type. It stores a date and a tim
as a 32-bit UNIX datetime value, thus the legal range is from
'1970-01-01 00:00:00' to sometime in 2037. It is magic in
that when you perform an INSERT or UPDATE operation
on a row and don't specify the value for a TIMESTAMP col
umn, MySQL will fill it for you with the date-time of the
operation. Useful for time-stamping operations (hence the
name).

CHAR (length) [BINARY]
is a fixed-length string as described above. Padding spac
are not added by MySQL. Comparisons are case-insensiti
unless the BINARY keyword is specified.length must be in
the 1-255 range. Values longer than the specified length a
truncated.

VARCHAR (length) [BINARY]
is a variable-length string. Same arguments as the CHAR
type apply.

TINYBLOB, BLOB, MEDIUMBLOB, LONGBLOB
are amorphous storage spaces, long at most (2^8-1), (2^1
1), (2^24-1) or (2^32-1) bytes.

TINYTEXT, TEXT, MEDIUMTEXT, LONGTEXT
are the same as BLOBS, save that comparisons between
ues are case-insensitive.

End of /roxen/2.1/tutorial/database/table_create.xml

Indices

Start of /roxen/2.1/tutorial/database/indices.xml

Indices are one of the reasons why RDBMSes are fast wh
retrieving data: they are built from the data in user-specifie
columns when rows are inserted into the database and are u
when data is selected or retrieved, thus avoiding in most ca
the necessity to do a full table scan when performing read op
ations. Indices cause insertion operations to be slightly slow
but can make data extraction operations and joins orders
magnitude faster. Indices can span multiple columns, and co
even include all the columns (although such an index would
of limited use). Usually DBMS allow to define more than on
index per table (the maximum number might be constrained)

Keys (or unique indices) can be seen as "a stronger kind
index". A key is an index which is also constrained to b
unique: having two rows with the same key in a table is forbid
den, for any key defined on the table. The interpretation the v
ious databases give to this concept varies, however. For so
(including MySQL), a key is merely an alias for "index". For
others, indices can be used to enforce constraints but have
impact on data organization while keys do. For further inform
tion on your server's concept of keys, consult its manual.

One key is special, and is named "primary key". The data
usually put in storage in such a way that read operations invo
ing only the primary key are even faster than operation invol
ing keys or indices. It is also usually very slow to update, and
not allowed to contain NULL values.

Unique indices are the way provided by SQL to avoid dupl
cate rows, defining one that spans all the columns you wish
maintain unique, maybe even all of them. There can be multip
constraints, that can be expressed by defining multiple indice
36

d is

s

an

c-

is
b.

o
en
ns
The syntax to create an index varies from RDBMS to
RDBMS. However, there are two main syntaxes we'll explain
here. Consult your server's documentation for details on the
syntax it supports.

MySQL Syntax

MySQL has indices and keys definitions inside table creation
clauses. The basic syntax is:

CREATE TABLEname (declaration [, declaration ...])

where a declaration is either a column declaration, a key
declaration or an index declaration. For columns declaration,
see theCreating Tables page.

For indices, unique indices and primary key the syntax is
respectively:

PRIMARY KEY (column [, column...])
 UNIQUE INDEX index_name (column [, column...])
 INDEX index_name (column [, column...])

The names for indices (unique or not) must be unique in a
table (no pun intended).

This is the defininion for the "areas" table in the sample
database:

CREATE TABLE areas (
id tinyint NOT NULL auto_increment,
name char(20) NOT NULL,
PRIMARY KEY (id),
UNIQUE INDEX name (name)

)

There are two constraints: the area id must be unique, as
must the area name. Joins are made on the primary key for effi-
ciency purposes.

Postgres Syntax

With PostgreSQL and other databases indices are seen not as
part of a table definition, but are "external" entities attached to a
table. They are created by a CREATE clause, whose basic syn-
tax is

CREATE [UNIQUE] INDEX ON table (column [, column])
Primary keys are defined using the same syntax as MySQL.
The definition above would have been with PostgreSQL:

CREATE SEQUENCE areas_seq

CREATE TABLE areas (
id tinyint NOT NULL DEFAULT NEXTVAL('areas_seq'),
name char(20) NOT NULL,
PRIMARY KEY (id)

)

CREATE UNIQUE INDEX unique_area ON areas (name)

Notice that recent versions of MySQL (3.22 and later) and
PostgreSQL support both syntax styles.

Single-Column Primary Keys

If your table has a primary key spanning over a single column,
you can declare it simply appending the "PRIMARY KEY"
keyword to the column definition:

create table areas (
id tinyint NOT NULL auto_increment PRIMARY K

EY,
...

)

Notice that in most cases the PRIMARY KEY clause
implies the NOT NULL clause.

End of /roxen/2.1/tutorial/database/indices.xml

Dropping

Start of /roxen/2.1/tutorial/database/dropping.xml

To delete indices, tables or databases, the DROP comman
used in its variations:

To delete an index (where the CREATE INDEX syntax i
used), the syntax is:

DROP INDEX name
 To drop a table the syntax is:
DROP TABLE name
The table, its contents and definition will be deleted from

the database irrevocably.
To drop a database altogether (where supported), you c

use
DROP DATABASEname
The pike SQL-interface provides a specific-purpose fun

tion to drop a database: this is mainly for compatibility with
MiniSQL where the operation of dropping a database
demanded to a specific-purpose API function, named drop_d

Using SQL:

object db = Sql.sql("mysql://admin:pass@local-
host");
mixed exception;
exception = catch {

db->query("DROP DATABASE test");
};
if(exception)
{

werror("Error while dropping the database: "+db-
>error()+"\n");

throw(exception);
}

Using the API functions:

object db=Sql.sql("msql://admin:pass@localhost");
mixed exception;
exception=catch {

db->drop_db("test");
};
if(exception)
{

werror("Error while dropping the database: "+db-
>error()+"\n");

throw(exception);
}

Notice that I haven't either tried to fetch results (there's n
result to fetch anyways) and the exception handling has be
very limited, and for diagnostic purposes only: these operatio
are really meant to be used only interactively.

End of /roxen/2.1/tutorial/database/dropping.xml
37

	Table of Contents
	Introduction 3
	RXML Tutorial 5
	About RXML 5
	Why Roxen? 5

	If tags 7
	The basics of if-else statements 7
	The syntax of If tags 9
	If plugins 11
	A basic example of <if> 14
	Combining <if> and <define> 16
	Browser independency with <if supports> 18
	Summary 22

	Database Tutorial 23
	Installing MySQL 24
	Privileges 24
	Building a Sample Database 25
	The query() function 26
	The big_query() function 26
	Quoting 29
	SQL Syntax 29
	Conditions 30
	Sorting 31
	Limiting 31
	Functions 32
	Features Missing from MySQL 33
	Insertion Syntax 33
	The tablify Container 34
	The Business Graphics Module 34
	The emit and sqlquery Tags 34
	Database Creation 35
	Creating Tables 35
	Indices 36
	Dropping 37

	Introduction
	RXML Tutorial
	Outline
	Navigation
	Before you Begin...
	About RXML
	Why Roxen?

	If tags
	Contents
	The basics of if-else statements
	The basics
	A basic example
	Summary

	The syntax of If tags
	Tags
	<if>
	<else>
	<elseif>
	<then>
	<true>
	<false>

	Attributes
	plugin name
	not
	or
	and

	Operators
	Summary

	If plugins
	The categories
	Eval
	1, 2, 3, 4, 5, 6, 7, 8, 9, 0, ., x, a, b, c, d, e, f, X, A, B, C, D, E, F
	int, float
	<, >, =, -, +, *, /, %, (,)
	&, |

	Match
	State
	Utils
	Summary

	A basic example of <if>
	Short/Long feature in protocols
	Summary

	Combining <if> and <define>
	The <define> tag
	Verifying an e-mail address
	Summary

	Browser independency with <if supports>
	The <if supports> plugin features
	Attributes
	Client type
	Graphics
	Tags
	Techniques

	Page and client scopes
	Browser JavaScript support optimizing
	Summary

	Summary
	References
	Roxen Web Site Creator Manual
	Roxen Macro Language (RXML)
	Roxen Administrator Manual
	HTML 4.01 Specification by W3C
	XML 1.0 Specification by W3C
	XSL Specification by W3C
	XSLT Specification by W3C
	Netscape JavaScript Reference

	Database Tutorial
	Note! The RXML <sqloutput>, <sqltable> and <sqlquery> are slowly being phased out in favour of th...
	Contents
	Introduction to MySQL
	Querying
	Data Extraction
	Data Insertion
	Using RXML Features with SQl Databases
	Database Maintainance

	Installing MySQL
	Privileges
	Building a Sample Database
	The Sample Database Structure

	The query() function
	The big_query() function
	int num_rows()
	int num_fields()
	int eof()
	array(mapping(string:mixed)) fetch_fields()
	void seek(int skip)
	int|array(string|int) fetch_row()

	Quoting
	Pike
	RXML
	Parametric Queries
	Encoding Query Results

	SQL Syntax
	Column Names
	Aliases for Columns
	Aliases for Tables
	No Tables Involved

	Conditions
	Numeric Constants
	Column Names
	String Constants and Quoting
	Other Data Types
	The LIKE Operator
	NULL Column Values

	Sorting
	Limiting
	Functions
	Arithmetic and math functions
	+, -(unary or binary), / (with infix notation), *
	ABS(X)
	SIGN(X)
	MOD(X Y)
	FLOOR(X)
	CEILING(X)
	ROUND(X)
	LEAST(X, Y,...)
	GREATEST(X, Y,...)

	Comparison and logic functions
	=
	!= or <>
	>, >=, <, <=
	IS [NOT] NULL
	expr IN (value, ...)
	NOT or !
	OR or ||
	AND or &&

	String comparison and operations
	value LIKE pattern
	value REGEXP pattern
	CONCAT(str1, str2,...)
	LENGTH(str)
	LEFT(str,len)
	RIGHT(str,len)
	SUBSTRING(string,start_at,length)
	TRIM([LEADING|TRAILING|BOTH] FROM string)
	LOWER(string)
	UPPER(string)
	PASSWORD(string)
	ENCRYPT(string[,salt])

	Control flow operators
	IFNULL(expr1,expr2)
	IF(expr1,expr2,expr3)

	Date-related functions
	DAYOFWEEK(date)
	DAYOFMONTH(date)
	DAYOFYEAR(date)
	MONTH(date)
	YEAR(date)
	HOUR(time), MINUTE(time), SECOND(time)
	CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP

	Miscellaneous functions
	LAST_INSERT_ID()

	Special functions
	COUNT([DISTINCT] expr)
	AVG(expr)
	MIN(expr)
	MAX(expr)
	SUM(expr)

	Features Missing from MySQL
	Insertion Syntax
	Insertion Query with Pike
	Insertion Query with RXML

	The tablify Container
	The Business Graphics Module
	The emit and sqlquery Tags
	Database Creation
	Creating Tables
	SQL Data Types
	INTEGER
	CHAR
	VARCHAR

	MySQL Data Types
	TINYINT [UNSIGNED], SMALLINT [UNSIGNED], MEDIUMINT [UNSIGNED], INTEGER [UNSIGNED], BIGING [UNSIGNED]
	FLOAT and DOUBLE
	NUMERIC
	DATE, DATETIME, TIME
	TIMESTAMP
	CHAR (length) [BINARY]
	VARCHAR (length) [BINARY]
	TINYBLOB, BLOB, MEDIUMBLOB, LONGBLOB
	TINYTEXT, TEXT, MEDIUMTEXT, LONGTEXT

	Indices
	MySQL Syntax
	Postgres Syntax
	Single-Column Primary Keys

	Dropping

