
PSZ 19:16 (Pind. 1/07)

DECLARATION OF THESIS / UNDERGRADUATE PROJECT PAPER AND COPYRIGHT

 Author’s full name : NIK MOHD FARHAN SHAH BIN ABD RAZAK

 Date of birth : 09 JUNE 1988

 Title : GUITAR EFFECT PEDALS IMPLEMENTATION IN ALTERA DE2 BOARD

 Academic Session: 2010 / 2011

 I declare that this thesis is classified as :

 I acknowledged that Universiti Teknologi Malaysia reserves the right as follows :

1. The thesis is the property of Universiti Teknologi Malaysia.

2. The Library of Universiti Teknologi Malaysia has the right to make copies for the purpose

of research only.

3. The Library has the right to make copies of the thesis for academic exchange.

 Certified by :

 SIGNATURE SIGNATURE OF SUPERVISOR

 880609-03-5341 DR. SHAIKH NASIR BIN SHAIKH HUSIN
 (NEW IC NO. /PASSPORT NO.) NAME OF SUPERVISOR

NOTES : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from

the organisation with period and reasons for confidentiality or restriction.

UNIVERSITI TEKNOLOGI MALAYSIA

CONFIDENTIAL (Contains confidential information under the Official Secret

Act 1972)*

RESTRICTED (Contains restricted information as specified by the

organisation where research was done)*

 OPEN ACCESS I agree that my thesis to be published as online open access

(full text)

“I hereby declare that I have read this thesis and

in my opinion this thesis is sufficient in terms of scope and quality for the award of

the degree of Bachelor of Engineering (Electric-Microelectronics)”

Signature : ..

Name of Supervisor : DR. SHAIKH NASIR BIN SHAIKH HUSIN

Date : 20 MAY 2011

GUITAR EFFECT PEDALS IMPLEMENTATION IN ALTERA DE2 BOARD

NIK MOHD FARHAN SHAH BIN ABD RAZAK

A report submitted in partial fulfillment of the

requirements for the award of the degree of

Bachelor of Engineering (Electric-Microelectronics)

Faculty of Electrical

Universiti Teknologi Malaysia

MAY 2011

ii

I declare that this report entitled “Guitar Effect Pedals Implementation in Altera DE2

Board” is the result of my own research except as cited in the references. The report

has not been accepted for any degree and is not concurrently submitted in

candidature of any other degree.

Signature :

Name : NIK MOHD FARHAN SHAH BIN ABD RAZAK

Date : 20 MAY 2011

iii

Special dedicated to my beloved parents, ma and abah, beloved siblings,

to all my beloved friends,

and to others who encouraged me throughout my journey of education

A warm thanks to all.

iv

ACKNOWLEDGEMENT

In the Name of ALLAH, the Most Beneficent, the Most Merciful.

 My utmost thanks and gratitude goes to my family for their loving and

continuous support throughout the years of my life. Thanks for their encouragement,

love and emotional supports that they had given to me. Without them, I will never be

able to make it this far.

 I would like to express my deepest appreciation to my project supervisor, Dr.

Shaikh Nasir Shaikh Hussin for his guidance and valuable advices which have helped

me a lot in completing my project. My appreciation also goes to the staffs of ECAD Lab

of FKE who have provided me the facilities and co-operations to carry out my project.

 Special thanks dedicated to my friends especially the SEW students who have

been supporting, guiding and advising me toward completion of this project and also

this thesis. Thanks to all my friends for all the care and concerns, that has supported me

throughout my journey in UTM.

 Last but not least, appreciation is extended to those who have contributed

directly or indirectly during completion of this project.

v

ABSTRACT

 This project reports the implementation of digital guitar effect processors on

Altera DE2 development board. This project deals with analog signal processing where

signals are sent to DE2 board when the guitar player play the guitar that is connected

through line in port. In order to perform the digital signal processing, the analog audio

signal is first converted to digitized audio data by using the WM8731 audio CODEC

chip in DE2 board. This audio CODEC chip must be configured correctly. Guitar effect

processors are implemented into FPGA to perform the digital processing for those

digitized audio data. These guitar effect processors will be contain of two types of

effects which is the distortion effect and delay/echo effect where they are developed and

implemented in the FPGA architecture with VHDL language. The processed audio data

is then converted back to analog signal and sent to the speaker for the sound

amplification through line out port.

vi

ABSTRAK

 Projek ini melaporkan pemuatan efek gitar prosesor digital pada papan

pembangunan Altera DE2. Projek ini akan berurusan dengan pemprosesan isyarat

analog di mana isyarat ini akan dihantar ke papan DE2 pada ketika pemain gitar sedang

bermain gitar yang disambungkan kepada saluran line in jack. Dalam rangka untuk

melakukan pemprosesan isyarat digital, isyarat audio analog hendaklah terlebih dahulu

ditukar menjadi data audio digital dengan menggunakan cip audio CODEC WM8731

dalam board DE2. Cip audio CODEC ini haruslah diaturcarakan supaya sesuai untuk

membuatnya berpadanan bekerja dengan projek. Prosesor efek gitar diimplementasikan

ke dalam FPGA untuk melakukan pemprosesan digital untuk data audio yang telah

didigitalkan. Prosesor efek gitar akan mengandungi dua jenis kesan yang merupakan

kesan distorsi dan menunda / kesan gema yang mana ianya akan dibangunkan dan

dilaksanakan dalam seni bina FPGA dengan bahasa VHDL. Data audio yang diproses

kemudian ditukar kembali ke isyarat analog dan dihantar ke speaker untuk amplifikasi

bunyi melalui line out jack.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 FRONT PAGE i

 DECLARATION ii

 DEDICATION iii

 ACKKNOWLEDGEMENT iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLE x

 LIST OF FIGURES xi

 LIST OF ABBREVIATIONS xiii

 LIST OF APPENDICES xiv

 1 INTRODUCTION 1

1.1 Introduction to Altera DE2 board 2

1.2 Introduction of DSP with FPGA 5

1.3 Introduction of Guitar Effect Pedals 7

1.4 Problem Statement 8

1.5 Objectives 9

1.6 Scopes of Study 9

1.7 Methodology 11

 2 LITERATURE REVIEW 12

 2.1 Signal Processing for the Electric Guitar 12

 2.2 Electric Guitar Distortion Pedal Design 13

 2.3 Electric Guitar Delay Pedal Design 14

 2.4 Principle DSP of Analog Signal 15

viii

 3 AUDIO CODEC WM8731 CONTROL 17

 3.1 I2C Bus Controller 17

 3.2 WM8731 Register Map 19

 4 GUITAR EFFECT PROCESSOR MODELLING 24

 4.1 System Overview 24

 4.2 Audio Deserializer 26

 4.3 Audio Serializer 28

 4.4 Guitar Effect Processors 30

 4.5 Distortion Effect Processor 31

 4.5.1 Core design for Distortion Effect Processor 32

 4.5.2 Distortion Effect Processor in Full Spec

 Design 33

 4.6 Delay Effect Processor 34

 4.6.1 Core Design for Delay Effect Processor 36

 4.6.1 Delay Effect Processor in Full Spec

 Design 36

 4.7 Design Implementation into DE2 board 37

 5 RESULT AND DISCUSSIONS 39

 5.1 Design Simulation for Audio Deserializer 39

5.2 Design Simulation for Audio Serializer 40

 5.3 Design Simulation for Distortion Effect Module 41

 5.4 Design Simulation for Delay Effect Module 42

 5.5 Guitar Effect Processor Design in Real View 42

 5.5 Bypass Sound from Guitar Effect

 Processor Hardware 43

5.6 Sounds from Distortion Effect

 Processor Hardware 44

5.7 Sounds from Delay Effect Processor Hardware 45

5.8 Sounds from Both of the Effects is Activated 45

ix

 6 CONCLUSSION AND RECOMMENDATION 47

 6.1 Conclusion 47

6.2 Problem Highlights 48

5.3 Recommendations for Future Works 48

REFERENCES 50

APPENDIXES A - B

x

LIST OF TABLES

TABLE NO. TITLE PAGE

1.1 DE2 board information 3

3.1 2-Wire MPU Interface Address Selection 18

3.2 Register map for WM8731 20

3.3 Register map address for each corresponding settings 20

3.4 Analog audio path control 21

3.5 WM8731 pin assignment in FPGA 23

xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 Altera DE2 development and education board 2

1.2 Block diagram of the DE2 board 4

1.3 Schematic diagram for chip WM8731 6

1.4 Metal-zone guitar effect pedal 7

1.5 Overall progress for this project 10

1.6 Design synthesis guidelines 11

2.1 Basic configuration of guitar’s signal processing 13

2.2 Example of a distorted waveform 14

2.3 Delay/Echo effect system flow 15

2.4 Scheme for the digital processing of an analog signal 16

3.1 Data transmission through I2C using 2-wire serial

 interface mode 18

3.2 Settings used for WM8731 register map 22

3.3 Digital Audio Interface in master mode 23

4.1 Block diagram for the guitar effect sound system 24

4.2 System overview 25

4.3 Data transmission in Left Justified mode 26

4.4 Audio Deserializer state diagram design 27

4.5 Audio Deserializer module design 28

4.6 Audio Serializer state diagram design 29

4.7 Audio Serializer module design 29

4.8 Guitar Effect Processor System 30

4.9 Block diagram of Distortion Effect Module 31

4.10 Core design for Distortion Effect Processor 33

4.11 Distortion Effect Processor 34

4.12 Delay effect design 34

xii

4.13 Delay Effect Module buffer design architecture 35

4.14 Core design for Delay Effect Processor 36

4.15 Delay Effect Processor 37

4.16 Guitar Effect Processor Block Diagram 38

5.1 Design Simulation for Audio Deserializer module 40

5.2 Design Simulation for Audio Serializer module 40

5.3 Simulation for Distortion Effect Module 41

5.4 Simulation for Delay Effect Module 42

5.5 Actual view of Guitar Effect Processor System 43

xiii

 LIST OF ABBREVIATIONS

DSP - Digital Signal Processing

FPGA - Field Programmable Logic Array

PDSP - Programmable Digital Signal Processor

ADC - Analog Digital Converter

DAC - Digital Analog Converter

I2C - Inter Integrated Circuit

HDL - Hardware Design Language

VHSICHDL - Very High Speed Integrated Circuit Hardware Design

 Language

CAD - Computer aid design

RAM - Random Access Memory

xiv

LIST OF APPENDICES

APPENDIX TITLE PAGE

A VERILOG CODE OF WM8731 CONTROL 52

B VHDL CODE OF GUITAR EFFECT PROCESSOR 60

CHAPTER 1

INTRODUCTION

 Music is an important part of most people‟s lives where it can entertain and

bring joy to those who are listening to it. Listening to music changes our emotions [1, 2,

3], our moods [4], our efficiency [5], our shopping behavior [6] and even our eating

behavior [7, 8]. Music can come from many sources and guitar is one of the good

instruments that can be played to produce a nice sound to compose the music. Since the

invention of the electric guitar within the year of 1940, many guitar effects has been

purposely created in order to change and to make the sound of the guitar become more

interesting and can be adapted to certain style of music. Since then, most of the invented

guitar effects are designed in the form of analog circuitry. Nowadays, the audio signal

processing has become more and more developed especially in the field of Digital

Signal Processing (DSP). Meanwhile, at the present time, Electronic Industry has

offered us new possibilities to develop our own digital hardware without spending such

high quantities of money. For example, the use of Field Programmable Gate Array

(FPGA) can essentially allows the developer to develop as many designs as they wanted

to by using only a single chip of the FPGA in which, it can be reprogrammed as if it

were a software-based system. FPGA are on the verge of revolutionizing digital signal

processing in the manner that programmable digital signal processor (PDSP) did nearly

two decades ago [9].The upcoming technology of complete systems on a single

programmable chip contrasts such a software centric solution, because it combines

2

software and hardware via some co-design methodology and makes for a promising

alternative for the future of real-time audio.

1.1 Introduction to Altera DE2 board

 The Altera Development and Education (DE2) board from Terasic Technologies

Inc. is a wonderful platform for learning about digital logic, computer organization, and

FPGAs. Featuring an Altera Cyclone II FPGA, the DE2 board offers varied technology

suitable for university and college laboratory use, a wide range of design projects, as

well as sophisticated digital system development tools [10]. A picture of the DE2 board

is shown in Figure 1.1. It depicts the layout of the board and indicates the location of

the connectors and key components which is available to be used for multiple purposes.

Figure 1.1: Altera DE2 development and education board

3

The following hardware is provided on the DE2 board:

Table 1.1: DE2 board information

Feature Description

FPGA • Cyclone II EP2C35F672C6 with EPCS16 16-Mbit serial configuration device

Devices • Built-in USB-Blaster cable for FPGA configuration

• 10/100 Ethernet

• RS232

• Video Out (VGA 10-bit DAC)

• Video In (NTSC/PAL/Multi-format)

• USB 2.0 (type A and type B)

• PS/2 mouse or keyboard port

• Line In/Out, Microphone In (24-bit Audio CODEC)

• Expansion headers (76 signal pins)

• Infrared port

Memory • 8-MBytes SDRAM, 512K SRAM, 4-MBytes Flash

• SD memory card slot

Display • 16 x 2 LCD display

• Eight 7-segment displays

Switches

and

LEDs

• 18 toggle switches

• 18 red LEDs

• 9 green LEDs

• Four debounced pushbutton switches

Clocks • 50 MHz crystal for FPGA clock input

• 27 MHz crystal for video applications

• External SMA clock input

In addition to these hardware features, the DE2 board has software support for standard

I/O interfaces and a control panel facility for accessing various components. The

computer aid design (CAD) tool represent as the software of Quartus II Web Edition

4

and Nios II Embedded Processor is a compliment for the DE2 board that allows the user

to develop any design and then implement them into the FPGA. Figure 1.2 gives the

block diagram of the DE2 board. To provide maximum flexibility for the user, all

connections are made through the Cyclone II FPGA device. Thus, the user can

configure the FPGA to implement any system design.

Figure 1.2: Block diagram of the DE2 board

All of this enhancement can be used to allow the user to implement various designs of

circuits, from simple circuits to various multimedia projects in which can also be used

to dealing with digital signal processing for sound since this DE2 board is fully

equipped with audio codec chip hardware which can be used to digitized the sound data

to be processed into our own processing design

5

1.2 Introduction of DSP with FPGA

 DSP techniques have been used in wide variety of areas including audio

processing, image processing, and control, instrumentation and communication system.

The application for DSP included digital filter, image compression, speech recognition,

and digital audio. FPGAs offer a more native implementation for most DSP algorithms.

Each task is allocated its own resources, and runs independently. It intuitively makes

more sense to process each step of a continuously streaming signal processing chain in

an assembly line-like process, with dedicated resources for each step [11]. This yields

compact, low power, and low cost digital design.

 Audio processing is one of the digital signals processing with analog input. So,

in audio system, the analog audio signal is first converted to digitized audio data and

after that only the signal can be processed within user-define system. For this purpose,

the DE2 board provides high-quality 24-bit audio via the Wolfson WM8731 audio

CODEC. IC WM8731 is one of kind‟s audio codec that can process audio signal. FPGA

is used to control IC audio CODEC WM8731 on DE2 board to produce the wanted

output signals. This chip supports microphone-in, line-in, and line-out ports, with a

sample rate adjustable from 8 kHz to 96 kHz. The WM8731 is controlled by a serial

I2C bus interface, which is connected to pins on the Cyclone II FPGA. A schematic

diagram for this WM8731 chip is shown in Figure 1.3.

6

Figure 1.3: Schematic diagram for chip WM8731

7

1.3 Introduction of Guitar Effect Pedals

 In many guitar player‟s careers, there comes a time when they are unable to find

an appropriate sound with their guitar and amp, no matter how much tweaking and fine-

tuning is done. In these situations, guitarists will often use effects pedals to alter their

instrument's sound in a particular manner. There are many, many different types of

effects that can be found for the guitar. For example, there is reverb, fuzz, delay, chorus,

distortion and so on. Figure 1.4 shows a picture of an example for metal-zone guitar

effect pedals which has been selling in the market today. Of all the different types of

effects available, perhaps the most popular is still overdrive/distortion. While many

amplifiers offer built-in distortion, often guitarists find that separate distortion units

provide more tonal flexibility and to give them more satisfaction.

Figure 1.4: Metal-zone guitar effect pedal

8

1.4 Problem Statement

 Design exploration based on the DE2 board enhancement had not yet fully being

used by UTM‟s undergraduate student. The component of ADC and DAC part within

the DE2 board has never been used by any of our undergraduate student. This is a good

opportunity to explore this features of the DE2 board in the purpose to modeling our

own guitar effects and it is indeed will be a worthy effort since it can be used for the

future students of UTM to do other project that need to be dealing with ADC and DAC

such as the project of voice recognition

 Meanwhile, a single guitar effect pedal price in the market is mostly rated at the

price more than $100 USD [12] and the price of the DE2 board is normally sold at $495

USD, but for academic purpose, it is sold at the price of $269 USD [13]. If we are to

compare the price of a single DE2 board with a single guitar effect pedals, it is indeed

that the price of the DE2 board are much higher. However, despite that fact, by using

DE2 board, we can actually modeling multiple of our own guitar effects while applying

knowledge within various scopes in order to implement the effects into only a FPGA of

the DE2 board. Just imagine, if we can implement 3 of the guitar effect into a single

DE2 board, then the price of the DE2 board won‟t be a matter as if it is in a need to

argue.

 Besides that, it is much easier to modeling the guitar effect model by using the

method of Hardware/Software co-design approach for embedded system design since by

this way; we do not have to spend high quantities of money and time. Any design can be

synthesis to verify its output by using the CAD tools of Quartus II and this is a very

convenient way to debug and fix the problem within the design rather than to modeling

the guitar effect as in the form of analog hardware.

9

1.5 Objectives

 The main objective of this project is to produce a Guitar Effect Processor sound

system by implementing some of the guitar effects pedals design into DE2 board which

are:

i. Distortion Effect Processor: this model will boost and clips the guitar

signal at specific maximum and minimum value and this will produce an

overdriven guitar sound.

ii. Delay/Chorus Effect Processor: this model will make guitar sound like

multiple guitars.

1.6 Scopes of Study

 This scope of the project is mainly focused on the studying and understanding

the Altera DE2 development board. Since the usage of ADC and DAC component

within this platform is not yet being used by our students, further exploration based on

that particular part is indeed a good opportunity. Generally, this is the scopes that we

will be dealing with in order to complete this project:

i. Application of DSP knowledge to create the guitar effects.

ii. Application of the programming skills in Hardware Design Language

(HDL) to realize the effects design.

iii. Application of computer skills to generate the effects based on the

specified software.

iv. Application of the Hardware/Software co-design approach for embedded

system design.

10

1.7 Methodology

 The guitar effect processor will be developed by using Very High Speed

Integrated Circuit Hardware Design Language (VHSICHDL) or more popularly known

as VHDL. The software of Computer aid design (CAD) used for the programming

platform is Quartus II Web Edition and then as to download the design them the Altera

Cyclone II FPGA (DE2 board), programmer tool in the Quartus II is used. Figure 1.5

shows how the process of this project is done through several step which is arranged

accordingly to ease the project design.

Figure 1.5: Overall progress for this project

11

As for the designing the guitar effect processor system, Figure 1.6 show the guidelines

that is followed to ensure the design is working according to the specification needed

until it can be implemented within the FPGA.

Figure 1.6: Design synthesis guidelines

Different circuit complexities require different kinds of specification or levels of

abstraction [14]. In general there are three modeling style in VHDL that can be used to

adapt the design of digital system which is:

i. Structural Modeling

ii. Dataflow Modeling

iii. Behavioral Modeling

By this way, guitar effect processor design can essentially be developed and

implemented.

12

CHAPTER 2

LITERATURE REVIEW

 This chapter will discuss briefly about the theory and research from other

researchers related to the project.

2.1 Signal Processing for the Electric Guitar

 An acoustic guitars sound is largely dependent on the vibration of the guitar's

body and the air within it; the sound of an electric guitar is largely dependent on an

electrical signal, generated by the vibration of the strings and shaped on its path to the

amplifier. By the late 1960s, it became common practice to exploit this dependence to

alter the sound of the instrument. The most dramatic innovation was the generation of

distortion by increasing the gain, or volume, of the preamplifier in order to clip the

electronic signal. This form of distortion generates harmonics, particularly in odd

multiples of the input frequency, which are considered pleasing to the ear. Basically,

Figure 2.1 shows how does the signal from the guitar is processed where this signal

flows through from guitar through cable to a series of signal processing circuitry which

can be any guitar effect pedals, and then is sent through the speakers of a guitar

amplifier. By the 1980s and 1990s, digital effects became capable of replicating the

13

analog effects used in the past. These new digital effects attempted to model the sound

produced by analog effects, to varying degrees of quality. Hence the use of the FPGA to

modeling digital guitar effects would create a new possibility of phenomena in the new

design of guitar effects.

Figure 2.1: Basic configuration of guitar‟s signal processing

2.2 Electric Guitar Distortion Pedal Design

 Distortion of a guitar signal is created by clipping. There are two basic types of

distortion for guitar: soft clipping and hard clipping. Soft clipping is generally referred

to by members of the music industry as “overdrive”, while hard clipping is commonly

called “distortion”. This pedal is a heavy metal distortion effect, and heavy metal guitar

sound is created by almost exclusively hard clipping circuitry for the crucial heavily

distorted sound that is defines the genre of music. From this point on, the term

“distortion” will be used to refer to hard clipping, which in the most basic sense is

clipping the peaks and troughs off of the sinusoidal signal that makes up any audio

signal. Figure 1.8 is an example of a distorted waveform.

14

Figure 2.2: Example of a distorted waveform

2.3 Electric Guitar Delay Pedal Design

 In popular and electronic music, electric guitarists use delay to produce densely

overlaid textures of notes with rhythms complementary to the music. Vocalists and other

instrumentalists use it to add a dense or ethereal quality to their playing. Extremely long

delays of 10 seconds or more are often used to create loops of a whole musical phrase.

These effects can reproduce whole chunks of the original sound at particular time-based

intervals, so the detail of the part can be mostly preserved. A delay circuit memorizes

the audio signal and plays it back after a delay time from several milliseconds to several

seconds. Most delays will have a feedback control (or regeneration) which takes the

output of the delay, and sends it back to the input. If the feedback gain is less than one,

the sound will repeat over and over, becoming quieter each time it plays back. In short, a

simple circuit delay takes an audio signal, and plays it back after the delay time. The

delay time can range from several milliseconds to several seconds.

15

Figure 2.3: Delay/Echo effect system flow

2.4 Principle DSP of Analog Signal

 Since this project will be dealing with analog input signal which comes from the

guitar, therefore a little briefing in DSP of analog signal would be a good approach.

Digital signal processing is distinguished from other areas in computer science by the

unique type of data it uses, which are signals. In most cases, these signals originate as

sensory data from the real world: seismic vibrations, visual images, and sound waves

[15]. DSP is the mathematics, the algorithms, and the techniques used to manipulate

these signals after they have been converted into a digital form. This includes a wide

variety of goals, such as enhancement of visual images, recognition and generation of

speech, and compression of data for storage and transmission. Digital signal processing

of an analog signal can divided into three basic steps.

i. Conversion of the analog signal into digital data

ii. Processing of the digital data

iii. Lastly, reconversion of the processed digital data into analog signal

16

These three basic steps can be show in block diagram Figure 2.3.

Figure 2.4: Scheme for the digital processing of an analog signal

 Since the amplitude of analog input signal varies with time. Thus, a sample and

hold circuit is needed before the analog digital conversion (ADC). The sample and hold

circuit samples the analog signal at uniform interval and holds the sampled value

constant after each sampling operation for sufficient time for accurate digital conversion

by ADC. By this way, we can ensure the input signal from the analog input will not

damage the component of ADC. The input to the ADC converter is a staircase-type

analog signal if the Sample and Hold circuit holds the value until the next sampling

instant [16]. The output of ADC is a binary data stream or a sequence of word. Each

word represents a sample of the sequence. The word length of ADC output is given

number of bit, limits the achievable dynamic range of the converter and accuracy to

representing input analog signal [16]. The digital signal is then processed by the digital

processor or FPGA where various design can be implemented to process the data. The

output of the digital processor is converted into analog signal by digital analog converter

(DAC).

17

CHAPTER 3

AUDIO CODEC WM8731 CONTROL

 Among all, this is the critical things that need to be concerned. We must first set

a right configuration of mode or criteria for WM8731 to operate with. If the codec chip

is not configured accordingly then we might just end up getting no sound produced or

might as well keep producing a clean sound that comes from guitar without being

processed at all due to the bypass looping operation. In Figure 1.3 of Section 1.2, the

codec chip can be configured through Control Interface by using either using either 3-

wire serial interface or 2-wire serial interface [17], meanwhile the data and alignment

clock to be processed can be obtained from Digital Audio Interface.

3.1 I2C Bus Controller

 The FPGA communicates with the WM8731 via the I2C (Inter-Integrated

Circuit) protocol using two pins: 'SDIN' (the data line), and 'SCLK' (the bus clock)

Figure 3.1 shows the complete requirement of data transmission through I2C by using 2

wire mode control protocol that is used for this project. Within the procedure of the I2C

bus, unique situations arise which are defined as START and STOP conditions. START

means a high to low transition on the SDIN line while SCLK is high and STOP means a

low to high transition on the SDIN line while SCLK is high .The master always

18

generates START and STOP conditions. The bus is considered to be busy after the

START condition. The bus is considered to be free again a certain time after the STOP

condition. The bus stays busy if a repeated START is generated instead of a STOP

condition.

Figure 3.1: Data transmission through I2C using 2-wire serial interface mode

The data input signal is SDIN. It contains the information for the control interface. The

controller was reprogrammed using the 2-wire interface with the EP2C35F672C6 FPGA

in Cyclone II board. After the start condition that is a falling edge on SDIN while SCLK

is high. The following seven bits determines which device receives the data which in

this case is the CODEC chip. Table 3.1 shows the 2-Wire Interface address selection.

Table 3.1: 2-Wire MPU Interface Address Selection

The transfer is MSB first. The 7-bit address consists of a 6-bit base address + a single

programmable bit to select one of two available addresses for this device. The first 6 bit

of “001101” is the fixed address for the CODEC chip. The remaining address depends

on the CSB state where for 2-wire mode interface, the state of the MODE pin of the

most LSB bit is set as „0‟. Consequently, the address for the CODEC chip with 2-wire

19

mode interface configuration, RADDR is “0011010”. After this address, the bit R/W

determines the direction of data transfer, in this case a „0‟indicates „write‟. The device

recognizes the address and R/W by pulling SDIN low during the ninth clock cycle,

acknowledging the data transfer. The control follows with two bit blocks (separated with

another acknowledge) the first block B [15:9] contains the control address bits, and the

second block B [8-0] contains the control data bits. The stop condition after the data

transfer is a rising edge on SDIN when SCLK is high. If a start condition is detected out

of the sequence at any point in the data transfer then the device will jump to the idle

condition [18]. After a complete control operation, the audio codec returns to the idle

state and waits for another start condition. Each write to a register requires the complete

sequence of start condition, device address and R/W bit followed by the 16 register

address and data bits.

 The first idea was based on creating a VHDL module of the controller that

adapts to the I2C standard. A basic module was designed, supporting the fundamental

communication properties of the I2C protocol, although without any error handling at

this stage in the design process. After verifying the basic functionality through

simulation, the I2C standard was studied in more detail to complete the implementation.

However, since the implementation of the rest of the protocol seemed to be a time

consuming process, it was decided to take a closer look at the example which has been

provided by Altera for the demonstration, in order to get the communication up and

running

3.2 WM8731 Register Map

 The WM8731 audio Codec has the following set of registers shown in Table 3.2,

which is used to program the mode of operation. There are 11 registers for different

mode control. The address register is 7 bits and the data is 9 bits. Total of 16 bits data

20

will be inserted in series to SDIN input port on audio codec with SCLK as what has

been discussed in Section 3.1

Table 3.2: Register map for WM8731

Table 3.3: Register map address for each corresponding settings

21

 As we can see from the simplified register map in Table 3.2, the „X‟ notation is

the data to be computed by the user. For example, to set the analog audio path control,

register of address 0000100 is used. Then, by referring to the table provided in the

datasheet, Table 3.3, data for each bit is carefully chosen. Since the audio data need to

be processed, set to disable the bypass which now bit 3 is „0‟.Reset bit 2 to chose line-in

as the input port for the guitar. Enable mute for microphone input (bit 1 is ‟1‟), disable

boost (bit 0 is „0‟) and as well as the sidetone (bit 5 is „0‟) because we are not using this

input port. Mind as well to select DAC (bit 4 is „1‟) since the processed data will be sent

to output immediately after processing, thus DAC is always in ON condition.

Table 3.4: Analog audio path control

Bit selection for side tone selection is taking up the default value which now bit 7:6 is

„00‟. For all specification above, the data register of Analog Audio Path Control is

000010010. Thus, the value "0000100000010010" is sent to SDIN to set the

configuration of analog audio path. Others register can be set using the same method.

The setting used for the purpose of this project can be found in Figure 3.2.

22

Figure 3.2: Settings used for WM8731 register map

 WM8731 may be operated in either one of the 4 offered audio interface modes.

All four of these modes are MSB first and operate with data 16 to 32 bits. These are:

right justified, left justified, I2S, and DSP mode and this can be set in Digital Audio

Interface Format register. For this project, 16 bit audio data length is selected with left

justified format and with 48 KHz sampling rate. Carefully set the base over sampling

rate (BOSR) in Sampling Control register because it is important to have the exact

sampling rate based on the master clock for the device (refer to datasheet[17] : Table 19

& 20 ,page 40).

 The codec was set to operate in master mode in which the audio-codec provides

all signals for synchronization of audio data with the FPGA in this system, including

BCLK, ADCLRCK and DACLRCK as shown in Figure 3.3. Meanwhile in slave mode,

the codec depends on both master clock, BCLK, ADCLRCK and DACLRCK from an

external module, in this case the FPGA. All of these settings play a big role when we are

going to receive the data from Digital Audio Interface to be processed. When all of

these have been configured, carefully do the pin assignment in the FPGA for each input

and output regarding with WM8371 codec chip by referring to the Table 3.4.

23

Figure 3.3: Digital Audio Interface in master mode

Table 3.5: WM8731 pin assignment in FPGA

24

CHAPTER 4

GUITAR EFFECT PROCESSOR MODELLING

 In order to design the guitar effect processor, a complete sound system for the

guitar effect processor must first be developed so that all of the bussing and interface

can be done easily later until the integration and implementation in the FPGA. Then

after that, a single unit for each component design can be developed.

4.1 System Overview

 This system will be equipped by using a guitar, a DE2 board, and a pair of

speakers. Basically, the block diagram for this effect sound system is shown as below.

Figure 4.1: Block diagram for the guitar effect sound system

25

The signal comes from the guitar and goes to the DE2 board and then will be sent to a

pair of speakers after the signal has been processed in the signal. Hence, a complete

system as shown in Figure 4.2 is designed to routing the signal processing within the

DE2 board.

Figure 4.2: System overview

 The signal comes from the guitar and goes to the FPGA board. It is converted to

a digital signal first by using an ADC converter (AUD_ADCDAT), and then it passes

through an ADC buffer (Audio Deserializer) which will take the serial digital input

received from the ADC and buffering it so the Effects Processor can modify the data to

the desired effect. In this effect processor, it contains of the distortion and delay effect

module. After that the data will be re-serialized through the DAC buffer (Audio

Serializer) to change the bit of the data into a format which is acceptable to DAC

converter. After this, the modified signal is converted back to analog by using DAC

converter (AUD_DACDAT) and is sent to the guitar amplifier for sound generation.

26

The interface with the development board was the switches to select the effect and the

LCD will be used to show which effect has been chosen. Meanwhile, to control the

volume strength, the buttons on the DE2 board will be used.

4.2 Audio Deserializer

 Since the input that comes from AUD_ADCDAT (ADC converter) is serial 1

bit, thus we have to make some necessary processing to accumulate the data into 16 bit

and feed them to each left and right channel. From Section 3.2, the format chosen for the

data is left justified. From Figure 4.3, Left Justified mode is where the MSB is available

on the first rising edge of BCLK following a ADCLRCK or DACLRCK transition with

the left channel data are present when the alignment clock for ADC/DAC is „1‟ and vice

versa for the right channel data. While in Figure 4.4, it shows the state diagram for

Audio Deserializer module design in the project.

Figure 4.3: Data transmission in Left Justified mode

27

Figure 4.4: Audio Deserializer state diagram design

 The audio data width is set to be 16-bit in the Digital Audio Format Interface

such as what has been show in Figure 3.2 of Section 3.2. The received adc data is stored

in a register of 32 bit width by using a counter looping of 32 count. When the counter

has finish counting to 32, then the accumulated data is sent to left channel first and then

the right channel. The left channel will be taking the data bit of 31 until 16 while the

right channel is taking the bit of 15 until 0. This process is repeated again when new

data package is received and once again, the counter will start counting and wait until

the data package is fully received and transfer it again to the left and right channel.

Figure 4.5 shows the block diagram for this particular design. For this module, the

adc_data is taken from ADC_DAT pin, while bclk represent as the AUD_BCLK while

the lrck is the alignment clock for adc data which is ADCLRCK.

28

Figure 4.5: Audio Deserializer module design

4.3 Audio Serializer

 Everything happens much like in the Audio Deserializer module but only

backwards. As shown in the state diagram design of Figure 4.6, we are taking the

internal signals of 16 bits dual channel parallel and serialize them to the format

acceptable by AUD_DACDAT (serial 1 bit). For this module, the data of left and right

word is coming from the output of the last sequence of guitar effect pedal processor in

the chained effect processor. Figure 4.7 is shows the block diagram obtained by this

design. Note that, bclk is still represented by the AUD_BCLK while the lrck is the

alignment clock for dac data which is DACLRCK. Mono_selector is a simple module

that can be used to ensure the data for both left and right channel is fed properly.

29

Figure 4.6: Audio Serializer state diagram design

Figure 4.7: Audio Serializer module design

This module is placed at the last sequence in the chained guitar effect processor system.

The dac data is assigned to AUD_DACDAT where this data will be converted again

into the analog form for sound generation.

30

4.4 Guitar Effect Processors

 This is the part where we will develop and design the digital effect processor

which is the Distortion Effect Processor and Delay Effect Processor, and then integrates

them into a higher structural design in the Guitar Effect Processor. Figure 4.8 shows a

view on how the effect processor is designed and arranged. It was arranged in a chain

sequence so that the user can play two effects at the same time. A 16-bit sample input

which comes from the Audio Deserializer supply inputs for the Distortion Processor.

Bypass module is included in each effect processor where the original sound of the

guitar will be let through without any change or modification is done to it. The user will

dictate which effect module to use by using the switch on the DE2 board and supply a

gain and phase input parameter to control the strength of the effect by using buttons key

on the DE2 board. The processed data is next sent to Audio Serializer module to change

the bit of the data into the acceptable format by DACDAT.

Figure 4.8: Guitar Effect Processor System

31

4.5 Distortion Effect Processor

 Based on what has been discussed in section 2.2, we can understand that the

behavior of the distortion circuit will clip the waveform at specific maximum and

minimum value. Thus, to design this module, a comparison between the input sample

and the parameter controlled by the user can be used to control the output data. Figure

4.9 shows a block diagram of Distortion Effect Module.

Figure 4.9: Block diagram of Distortion Effect Module

 In this module, this is where a threshold value is set which is the parameter1, and

if the signal ever increases above this value and lower than the negative value of this

parameter1 value, then signal is clipped off. The 16-bit output fed from Audio

Deserializer will be fed as the sample into the first comparator. Meanwhile, 16-bit input

32

of parameter 2 will be send to both of the two comparators in the module. The first

comparator will output a „1‟ if the sample is greater than parameter1 and the signal is

then sent to the first mux. When „1‟ is sent into the first mux, it will choose the

parameter2 as the output of the mux and if „0‟ is inserted into the mux, it will allow the

value of the sample to pass through. After that, the same process is repeated again, but

this time, it will only allow the sample value to pass through as the output of the second

mux if it is smaller enough than the negative value of parameter1. By this way, there

will be no value that can be higher than positive value of parameter1 and lower than

negative value of parameter1. Thus a clipped output signal is produced which is then

amplified by parameter2 to make the sound becomes clearer when it is played on the

speakers later.

4.5.1 Core Design for Distortion Effect Processor

 The core design for Distortion Effect Processor is the integration of two

Distortion Effect Module so that two channel of left and right data can be processed. As

shown in Figure 4.10, volume module is some sort of the design for parameter2 as we

can see in Figure 4.9 but instead it was designed as a single part so that we can use it for

various purposes in another design later on. It functions as volume gain and is added at

the output of the distortion block so that we can hear a clearer sound. The threshold

parameter is in the thresh_param where the user can easily select the threshold

parameter by using the switch assigned in the higher hierarchal structure.

33

Figure 4.10: Core design for Distortion Effect Processor

4.5.2 Distortion Effect Processor in Full Spec Design

 The Distortion Effect module is now being arranged to fit into the Distortion

Effect Processor such as in Figure 4.11, where it contains along with Bypass module

and Pipeline Buffer module. Bypass module will operate as the selector to turn on or off

the effect meanwhile Pipeline Buffer module is assigned as a stabilizer in which it will

rearrange the output that comes from Bypass module into the right 16 bit data package.

It is introduced after each effect to take care of timing violations. All these buffers are

however clocked with the 50 MHz system clock whereas the sound is sampled at 48

kHz. This means that roughly 1000 of those would need to be introduced into the system

to cause a system latency of over one sample [19].

34

Figure 4.11: Distortion Effect Processor

4.6 Delay Effect Processor

 Based on what have been discussed in Section 2.3, we can see that the behavior

for the delay effect circuit is that it is taking the input to be stored in the memory and

then the stored data is added again to the input to produce the output.

Figure 4.12: Delay effect design

35

The delay effect buffers a fragment of the audio signal in memory and mixes it back into

the output signal. The effect's output is fed back into the delay unit, creating a decaying,

infinite response. There is several ways on how we could have store the data of the

input. Usually, RAM is used as a storage component, however for this particular design,

array have been choose as a storage to temporarily store the input data which then will

be shifted until 10 times. The internal shifted data can be taken as a loop to be added to

input again. Figure 4.8 is the general delay buffer design architecture. To produce

different sound of delay, we can take different value of the internal delay buffer to be

added into input again. Suppose the higher value of the internal value is taken, for

example the value in Reg 5, the sound will have longer delay time rather than Reg 2. For

the following Delay Effect Module, For the first type which when delay_type is at „0‟,

the value of Reg 0 is taken to be added with the input meanwhile when delay_type is

triggered to „1‟, value of Reg 5 is taken as a summation to the input. Decay will act as

amplifier to control the volume of the feedback sound.

Figure 4.13: Delay Effect Module buffer design architecture

36

4.6.1 Core Design for Delay Effect Processor

 Very much alike in the Distortion Effect Module, the core design for Delay

Effect Processor is the integration of two Delay Effect Module so that two channel of

left and right data can be processed.

Figure 4.14: Core design for Delay Effect Processor

4.6.2 Delay Effect Processor in Full Spec Design

The arrangement for the Delay Effect Processor is same with Distortion Effect

Processor. Only that the Distortion Effect Module is replaced by Delay Effect Module.

37

Figure 4.15: Delay Effect Processor

4.7 Design Implementation into DE2 board

 Each of the designed modules is carefully combined to form as a single Guitar

Effect Processor hardware as shown in Figure 4.16.

38

Figure 4.16: Guitar Effect Processor Block Diagram

This integration is achieved by using block diagram where we can easily made all the

bus connection between the modules. It also makes the hardware system easier to be

understood where we can see how the data is being controlled and processed within the

system. When the top level of the hardware is fully combined, then once again, the pin

assignment is ensured to be correctly mapped as mentioned in Section 3.2. Lastly, the

programmer tool is used to download the design into the FPGA (DE2 board). Make sure

that the guitar is connected to line in and the speaker to the line out port. Else than that,

just start play the guitar and use the assigned switch to activate the effects.

39

CHAPTER 5

RESULT AND DISCUSSIONS

 The chapter will discuss about the result achieved from the Guitar Effect

Processor which has been implemented into the FPGA of Cyclone II EP2C35F672C6 in

the DE2 board platform. Along with this, some briefing about the simulation result

obtain from Quartus II for crucial part in the project is also included

 5.1 Design Simulation for Audio Deserializer

 The design for both of Audio Deserializer is considered as very important in this

project. This is because this particular part will determine the right data is sent to be

processed in the effect processor by receiving the data from ADC_DAT. The design

simulation for Audio Deserializer is shown in Figure 5.1. For this simulation, the adc

data pattern is set and the alignment clock for bclk(AUD_BLCK) and

lrck(AUD_ADCLRCLK) is set accordingly to based on what has been discussed on

Section 4.2. From the simulation we can see that both left and right word can receive the

right 16-bit data package based on the adc data input.

40

Figure 5.1: Design Simulation for Audio Deserializer module

5.2 Design Simulation for Audio Serializer

 Audio Serializer work pretty much alike in what has been done in Audio

Deserializer but only in reverse process where this module will now take the each left

and right channel 16-bit parallel data package and serialize them into serial 1 bit data

where the data is then sent to the DAC_DAT.

Figure 5.2: Design Simulation for Audio Serializer module

41

5.3 Design Simulation for Distortion Effect Module

 For this time being, functional simulation is chosen and Figure 3.7 shows the

result of the simulation. This simulation is only done for a single channel data.

Figure 5.3: Simulation for Distortion Effect Module

 Based on the waveform, parameter1 is set at the value of 255 which we can also

say that this is the threshold value for the clipping. For now, parameter2 is not inserted

yet because this simulation is only intended to see whether this clipping phenomenon is

occurring or not. If we can observe, all of the output of distorted will only produce the

value within the value of positive and negative value of parameter1. Any sample value

which is higher than the maximum and lower than the minimum value will be clipped

off. For example, take a look at the time of 250ns, the sample value is now is at -31734,

which is higher than the threshold value (225). Thus, the circuit processing will now

choose the maximum value instead of the sample value where we can some sort of

saying that the extra value of the sample which is higher than the maximum value is

clipped off.

42

5.4 Design Simulation for Delay Effect Module

 The simulation based on the design for the delay effect is shown as in Figure 4.9.

This simulation is only done for a single channel data.

Figure 5.4: Simulation for Delay Effect Module

Since the delay is taking the internal signal from the delay buffer to be added to the

input, therefore the value for the output will change according what value has been

added. Decay will act as gain to amplify the delay buffer value so that in the end we can

hear a clearer delay sound.

5.5 Guitar Effect Processor Design in Actual View

 After all the designs for Guitar Effect Processor in Quartus II is completed, then

such as what has been discussed in Section 4.7, the design is downloaded into the FPGA

by using Quartus II programmer tool. Figure 5.5 shows the actual view of the system.

The guitar is connected to line in jacks of DE2 board, the speaker to the line out jack of

DE2 board and the laptop is connected to DE2 board by using USB blaster port.

43

Figure 5.5: Actual view of Guitar Effect Processor System

5.6 Bypass Sound from Guitar Effect Processor Hardware

 Bypass sound means the raw sound that produced from the guitar which has

been connected to DE2 board and has not yet been processed. For this particular clean

output, the sound produced is clear enough for each string when it was played weather it

is for a single string or with a chord combination. Since 16-bit data width with 48k Hz

sampling rate is chosen, the sound comes out with high quality without any noise along

with it and thus should providing a more precise data to be processed in the each of the

effect processor

44

5.7 Sounds from Distortion Effect Processor Hardware

 When distortion effect is selected by toggle up the assigned switch, the sound

produced becomes squeaky and fuzzy rather than clean sound of the guitar. When

playing a guitar with distortion, it is important to know how distortion affects the sound

of single notes compared to chords. Single notes will be heard clearly and the pitch of

the note played should be accurate to the instrument itself. However, chords played

through this Distortion Effect Processor will contain inter-modulated notes which may

or may not sound good. An inter-modulated note is another tone that is created by the

distortion in addition to the notes that you played. The amount or type of distortion will

determine the volume of these inter-modulated notes. For this case, there are two

different threshold parameter is provided in Distortion Effect Processor which has been

set as X"0080" and X"00FF" and for each parameter, it produces a slightly different

sound where a more squeaky and fuzzy sound is produced when parameter X”0080” is

selected. It means that lower value of threshold parameter as the clipping value will

produce more squeaky and fuzzy sound. This sounds very cool, especially when chords

are kept to a maximum of 2 or 3 notes. When chords of 6 notes are played however, the

results are usually muddy and undesirable. They may not be in tune with the chords

played and the more notes played in the chord, the more inter-modulated notes there will

be. This is what gave rise to the infamous "Power Chord". Rock bands started playing

two note chords that were an interval of a perfect 5th. For example, a G and a D, or an E

and a B. These 2-note chords, when distorted, produce an inter-modulated note that is

pleasantly in tune with the chord. However the volume strength sound produced when it

was processed in the Distortion Effect Processor became lower. To overcome this

problem, a simple gain (Volume Module) to make high of the volume is placed at the

output for each left and right channel after the Distortion Module where it resulting a

better sound after it was added.

45

5.8 Sounds from Delay Effect Processor Hardware

 There are two different type of delay provided in which it takes different value

of delay buffer to be added to the input. The resulting sound for the Delay Effect

Processor of first type where when the delay_type is „0‟, the delayed sound is hardly to

be heard. Instead of that, the design is producing more high quality distortion sound.

The delay sound is hardly heard is due to the very short amount of shifted delay in the

delay buffer because the value of Reg 0 is taken to be added to input and this value has

only been shifted for once from the input. Meanwhile, when the second type where the

value of Reg 7 is taken to be added to input is selected; the delay is still hardly heard but

the output sound has become really squeaky and fuzzy more than what the Distortion

Effect Processor has produced where it is more like as we are using the metal zone

guitar effect pedal. This has resulting the sound that has really deviated from its own

purpose but instead it can give a more metal sound where most of the guitar players

really like them. The design has also been tried to take the value of Reg 10 to be mixed

as the delay flavor but it still implies the almost same result. This may be due to the

saturated output produced which keep producing absolute minimum and maximum

value where in the end the it is producing the perfect shape of square waveform.

5.9 Sounds from Both of the Effects is Activated

 Given by the advantages of the chained pipeline design, we can essentially turn

on both of the effect at the same time. The resulting sound when both of the effect is

activated is that it is producing a much powerful and smooth distortion sound and

unexpectedly, it adds some more „metal‟ flavor into the distortion sound especially

when lower threshold parameter for Distortion Effect Processor was chose and the

longer delay effect was chose in Delay Effect Processor. This is because the delay effect

46

sound produced when the Delay Effect Processor alone is activated is still not giving a

good quality of delay effect, but instead it is giving a more powerful distortion sound,

thus activating it together with the Distortion Effect Processor still implies that the same

performance.

47

CHAPTER 6

CONCLUSSION AND RECOMMENDATIONS

6.1 Conclusion

 The proposed Guitar Effect Processor sound system and development design is

successfully implemented in the FPGA and is a success as proved by its determined

operation which is to perform guitar‟s distortion effect and as well as delay effect.

Distortion Effect Processor gives a very good performance where it can transform the

clean guitar‟s sound into a squeaky and fuzzy sound while the Delay Effect Processor

has not much give a good performance since the effect is hardly to be heard even though

the longest delayed of the input was taken. Instead of that, it is giving a smoother and

sharper distortion sound which has more quality rather than the Distortion Effect

Processor itself. However both of the effect can still be activated at the same time and it

still can produce a different sound than one another with when only each effect is

selected alone. Even though the there are only two guitar effect pedals was implemented

in this project, it provides a good opportunity to improvise the project since the audio

CODEC is already configured rightly.

48

6.2 Problem Highlights

 Getting the audio CODEC working was the critical path to the rest of the system.

In fact, it does consume a lot of time to solve this issue. It was very frustrating until that

point as I felt that all of the efforts would be worthless if that component did not work.

The issue is that even though the register of the codec has been rightfully configured by

using VHDL, it just keep giving bypass sound while I actually have disable bypass in

the register setting. This has causes the data cannot be processed into the effect

processing block. Since the time wasted on solving this problem takes too long, hence

the only option is to use the demonstration example provided by Altera where it is in

verilog and there are some modification need to be done in order to make it fit working

to the purpose of this project. Regardless about that, at the end, it has been a

successfully configured to make it work out accordingly.

 Since this project is dealing with real time audio processing, it is kind of hard to

achieve and to determine the waveform produce during the design was implemented

into the DE2 board. There suppose to be a way to use the Tap Signal compiler provided

where it can take the internal data in the FPGA to generate waveform. The attempt to

use this feature is not success and the reasons for parting with this was that there were

licensing issues requirement.

6.3 Recommendations for Future Works

 Well, there are a lot more rooms for improvement can be done on this project.

Since the Delay Effect Processor is not giving quite a satisfaction performance, thus the

design should be developed using another way. RAM can be use as storage to make a

function as delay buffer where it can give a better quality to make delay effect.

49

 There are only two of guitar effect pedals that was implemented in this project

while there many more available types such as chorus, vibrato, flanger, tremolo and so

on can be developed and implemented. Many of them are just manipulation of delay

effect. Hence, once delay effect is working perfectly, developing the others is just a

matter of time.

 To make ease of the design process, try to use DSP builder tools. Like the SOPC

builder, this tool is one of the compliment tools for Quartus II software. This tool is

intended to associate with MATLAB software where it can enable us to use the module

available in the MATLAB to do some digital signal processing. This DSP builder can

also be used to generate the VHDL code based base on the module created using

Simulink via MATLAB. While the use of the DSP builder is said to not be trivial to the

point where it requires no training, it still can be used to verify our design later on.

 Since the resource on the DE2 board such as the switch is limited, it is better if a

Graphical User Interface (GUI) can be developed for this project. When more effect is

developed, it‟s going to need more switch and consequently, there will be no more left.

Hence the only option left is to develop the GUI.

 It will be very good if other compliment for sound processing such as the tone

adjustment which can utilizes the uses of filter, audio equalizer and others can be

implemented in the project. This enhancement can greatly help to produce a better and

wonderful sound.

50

REFERENCES

1. V. Menon and D.J. Levitin, “The rewards of music listening: response and

 physiological connectivity of the mesolimbic system.” NeuroImage, vol. 28, pp.

 175-84, 2005.

2. P.N. Juslin, S. Liljeström, D. Västfjäll, G. Barradas, and A. Silva, “An

 experience sampling study of emotional reactions to music: listener, music, and

 situation,” Emotion, vol. 8, pp. 668-83, 2008.

3. P.N. Juslin and D. Västfjäll, “Emotional responses to music: the need to consider

 underlying mechanisms,” The Behavioral and Brain Sciences, vol. 31, pp. 559-

 621, 2008.

4. S. Saarikallio, “Music as mood regulation in adolescence,” Ph.D. dissertation,

 University of Jyväskylä, Jyväskylä, Finland, 2007.

5. T. Lesiuk, “The effect of music listening on work performance,” Psychology of

 Music, vol. 33, pp. 173-191, 2005.

6. R. E. Milliman, “Using background music to affect the behaviour of supermarket

 shoppers,” The Journal of Marketing, vol. 46, No. 3, pp. 86-91, 1982.

7. R.E. Milliman, “The influence of background music on the behavior of

 restaurant patrons,” Russell The Journal Of The Bertrand Russell Archives, vol.

 13, pp. 286-289, 1986.

8. H. Ragneskog, G. Bråne, I. Karlsson and M. Kihlgren, “Influence of dinner

 music on food intake and symptoms common in dementia,” Scandinavian

 Kournal of Caring Sciences, vol. 10, pp. 11-47, 2010.

9. U.Meyer-Baese. Digital Signal Processing with Field Programmable Gate

 Arrays. New York: Springer-Verlag. 2004.

10. Altera DE2 Board User Manual

11. Altera Corporation. FPGA vs. DSP Design Reliability and Maintenance.

12. Http://www.guitareffectspedals.com

13. Http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=30

51

14. Dr Mohamed Khalil Hani. “Stater‟s Guide to Digital Systems VHDL and

 Verilog Design”. Universiti Teknologi Malaysia.2009

15. Chet, C. Y. “Design and Implement of Digital Audio equalizer using

 TMS320C31 system”. Master‟s Thesis. University Technology Malaysia. 1998.

16. K.Mitra, S. Digital Signal Processing: “A Computer-based Approach”. New

 York: McGraw Hill. 2006.

17. “WM8731/WM8731L Portable Internet Audio CODEC with Headphone Driver

 and Programmable Sample Rates”, Wolfson Microelectronics Production

 Datasheet. Rev 4.0, February 2005.

18. A.R.M. Khan, A.P.Thakare, S.M.Gulhane. ”FPGA-Based Design of Controller

 for Sound Fetching from Codec Using Altera DE2 Board”. International Journal

 of Scientific & Engineering Research, Volume 1, Issue 2, November-2010.

19. Tomasz Kaczmarczyk, Tomasz Henisz, Dominik Stożek. DGN-1 Digital Guitar

 Effects Processor, Revision 1 Feature overview and basic technical

 documentation.

.

52

APPENDIX A

VERILOG CODE OF WM8731 CONTROL

--

// Copyright (c) 2005 by Terasic Technologies Inc.

// --

// Major Functions: I2C output data

// --

// Revision History :

// --

// Ver :| Author :| Mod. Date :| Changes Made:

// V1.0 :| Joe Yang :| 05/07/10 :| Initial Revision

// --

`define rom_size 6'd8

module CLOCK_500 (

 CLOCK,

 CLOCK_500,

 DATA,

 END,

 RESET,

 GO,

 CLOCK_2

53

);

 input CLOCK;

 input END;

 input RESET;

 output CLOCK_500;

 output [23:0]DATA;

 output GO;

 output CLOCK_2;

reg [10:0]COUNTER_500;

wire CLOCK_500=COUNTER_500[9];

wire CLOCK_2=COUNTER_500[1];

reg [15:0]ROM[`rom_size:0];

reg [15:0]DATA_A;

reg [5:0]address;

wire [23:0]DATA={8'h34,DATA_A}; // Main address for WM8731 with 2 wire

MPU serial interface, CBS is tied to the ground.

wire GO =((address <= `rom_size) && (END==1))? COUNTER_500[10]:1;

always @(negedge RESET or posedge END) begin

 if (!RESET) address=0;

 else

 if (address <= `rom_size) address=address+1;

end

reg [7:0]vol;

always @(posedge RESET) begin

54

 vol=vol-1;end

always @(posedge END) begin

// ROM[0]= 16'h1e00;

 ROM[0]= 16'h0c00; //Power Down Control : Power down

 ROM[1]= 16'h0ec2; //Digital audio Format Interface : left

 //justified,16 bit,master mode,invert BCLK

 ROM[2]= 16'h0812; //Analogue Audio Path Control : Disable

 //bypass,Line-in select,DAC select

 ROM[8]= 16'h0a06; //Digital Audio Path Control : 48kHz

 //deemphasizes

 ROM[3]= 16'h1000; //Sampling Control : Normal mode,mclk =

 //18.43Mhz

 ROM[4]= 16'h0017; //Left Line In : Disable mute

 ROM[5]= 16'h0217; //Right Line In : Disable mute

 ROM[6]= {8'h04,1'b0,vol[6:0]}; //Left Headhone Out : sound vol

 ROM[7]= {8'h06,1'b0,vol[6:0]}; //Right Headphone Out : sound vol

 //ROM[4]= 16'h1e00; //reset

 ROM[`rom_size]= 16'h1201;//active

 DATA_A=ROM[address];

end

always @(posedge CLOCK) begin

 COUNTER_500=COUNTER_500+1;

end

endmodule

55

--

// Copyright (c) 2005 by Terasic Technologies Inc.

// --

// Major Functions:i2c controller

// --

// Revision History :

// --

// Ver :| Author :| Mod. Date :| Changes Made:

// V1.0 :| Joe Yang :| 05/07/10 :| Initial Revision

--

module de2_i2c_controller (

 CLOCK,

 I2C_SCLK, // I2C CLOCK

 I2C_SDAT, // I2C DATA

 I2C_DATA, // DATA:[SLAVE_ADDR,SUB_ADDR,DATA]

 GO, // GO transfor

 END, // END transfor

 W_R, // W_R

 ACK, // ACK

 RESET,

 // TEST

 SD_COUNTER,

 SDO

);

input CLOCK;

input [23:0] I2C_DATA;

input GO;

input RESET;

input W_R;

56

inout I2C_SDAT;

output I2C_SCLK;

output END;

output ACK;

// TEST

output [5:0] SD_COUNTER;

output SDO;

reg SDO;

reg SCLK;

reg END;

reg [23:0] SD;

reg [5:0] SD_COUNTER;

wire I2C_SCLK = SCLK | (((SD_COUNTER >= 4) & (SD_COUNTER <= 30))?

~CLOCK : 0);

wire I2C_SDAT = SDO ? 1'bz : 0;

reg ACK1, ACK2, ACK3;

wire ACK = ACK1 | ACK2 | ACK3;

//--I2C COUNTER

always @(negedge RESET or posedge CLOCK)

begin

 if (!RESET)

 SD_COUNTER = 6'b111111;

 else

 begin

 if (GO == 0)

57

 SD_COUNTER = 0;

 else

 if (SD_COUNTER < 6'b111111)

 SD_COUNTER = SD_COUNTER + 1;

 end

end

always @(negedge RESET or posedge CLOCK)

begin

 if (!RESET)

 begin

 SCLK = 1;

 SDO = 1;

 ACK1 = 0;

 ACK2 = 0;

 ACK3 = 0;

 END = 1;

 end

else

 case (SD_COUNTER)

 6'd0 : begin ACK1 = 0; ACK2 = 0; ACK3 = 0; END = 0; SDO = 1; SCLK = 1; end

 // Start

 6'd1 : begin SD = I2C_DATA; SDO = 0; end

 6'd2 : SCLK = 0;

 // Slave Address for WM8731

 6'd3 : SDO = SD[23];

 6'd4 : SDO = SD[22];

 6'd5 : SDO = SD[21];

 6'd6 : SDO = SD[20];

58

 6'd7 : SDO = SD[19];

 6'd8 : SDO = SD[18];

 6'd9 : SDO = SD[17];

 6'd10 : SDO = SD[16];

 6'd11 : SDO = 1'b1; //ACK

 // Sub-address for WM8731 control register Map

 6'd12 : begin SDO = SD[15]; ACK1 = I2C_SDAT; end

 6'd13 : SDO = SD[14];

 6'd14 : SDO = SD[13];

 6'd15 : SDO = SD[12];

 6'd16 : SDO = SD[11];

 6'd17 : SDO = SD[10];

 6'd18 : SDO = SD[9];

 6'd19 : SDO = SD[8];

 6'd20 : SDO = 1'b1; // ACK

 // Data for WM8731 control data register

 6'd21 : begin SDO = SD[7]; ACK2 = I2C_SDAT; end

 6'd22 : SDO = SD[6];

 6'd23 : SDO = SD[5];

 6'd24 : SDO = SD[4];

 6'd25 : SDO = SD[3];

 6'd26 : SDO = SD[2];

 6'd27 : SDO = SD[1];

 6'd28 : SDO = SD[0];

 6'd29 : SDO = 1'b1; // ACK

 // Stop

 6'd30 : begin SDO = 1'b0; SCLK = 1'b0; ACK3 = I2C_SDAT; end

 6'd31 : SCLK = 1'b1;

59

 6'd32 : begin SDO = 1'b1; END = 1; end

 endcase

end

endmodule

60

APPENDIX B

VHDL CODE OF GUITAR EFFECT PROCESSOR

------------------------------------simple register with low reset-----------------------------------

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_unsigned.all;

entity reg is port (

 clk,rst : in std_logic;

 parameter : in std_logic_vector (15 downto 0);

 output : buffer std_logic_vector(15 downto 0));

end reg;

architecture arch of reg is begin

 process (clk,rst,output) begin

 if rst='0' then output <= (others => '0');

 elsif clk'event and clk ='1' then

 output <= parameter;

 else output<= output;

 end if;

61

 end process;

end arch;

--Comparator---

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_signed.all;

entity comparatorGt is port (

 sample : in std_logic_vector(15 downto 0);

 parameter : in std_logic_vector(15 downto 0);

 Gt : out std_logic);

end comparatorGt;

architecture behave of comparatorGt is begin

 Gt <= '1' when sample>parameter else '0';

end behave;

---Sign Converter---

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_signed.all;

entity convert is port (inparameter : in std_logic_vector(15 downto 0);

 outparameter : out std_logic_vector(15 downto 0));

end convert;

62

architecture behave of convert is begin

 outparameter <= -inparameter ;

end behave;

---Mux 2to1 Selector---

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_signed.all;

entity mux2to1 is port (sample , parameter : in std_logic_vector(15 downto 0);

 sel : in std_logic;

 outmux : out std_logic_vector (15 downto 0));

end mux2to1;

architecture behave of mux2to1 is begin

process (sample ,parameter,sel) begin

 if sel='1' then outmux <= parameter;

 else outmux <= sample;

 end if;

end process;

end behave;

63

---Distortion Module---

--This module is achieved by using port map style which taking parts if other module

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

use ieee.std_logic_signed.all;

entity distortion is port (clk : in std_logic;

 rst : in std_logic;

 sample : in std_logic_vector(15 downto 0);

 parameter1 : in std_logic_vector (15 downto 0);

 distorted : out std_logic_vector (15 downto 0));

end distortion;

architecture arch of distortion is

 signal reg1 : std_logic_vector(15 downto 0);

 signal conversion : std_logic_vector (15 downto 0);

 signal compare1 : std_logic ;

 signal mux1 : std_logic_vector (15 downto 0);

 signal compare2 : std_logic ;

component reg port (clk,rst : in std_logic;

 parameter : in std_logic_vector (15 downto 0);

 output : buffer std_logic_vector(15 downto 0));

end component;

component comparatorGt port (sample : in std_logic_vector(15 downto 0);

 parameter : in std_logic_vector(15 downto 0);

64

 Gt : out std_logic);

end component;

component mux2to1 is port (sample , parameter : in std_logic_vector(15 downto 0);

 sel : in std_logic;

 outmux : out std_logic_vector (15 downto 0));

end component;

component convert is port (inparameter : in std_logic_vector(15 downto 0);

 outparameter : out std_logic_vector(15 downto 0));

end component;

begin

s1 : reg port map (clk, rst, parameter1, reg1);

s2 : comparatorGt port map (sample, reg1,compare1);

s3 : mux2to1 port map (sample, reg1,compare1, mux1);

s4 : convert port map (reg1,conversion);

s5 : comparatorGt port map (mux1, conversion, compare2);

s6 : mux2to1 port map (conversion, mux1, compare2,distorted);

end arch;

--Delay Module---

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

entity delay_echo is port (

65

 --data control

 delay_enable: in std_logic;

 delay_type : in std_logic;

 --data

 sample_in: in std_logic_vector(15 downto 0);

 decay : in std_logic_vector (7 downto 0);

 sample_out : out STD_LOGIC_VECTOR(15 downto 0)

);

end delay_echo;

architecture beh of delay_echo is

 signal dataIn : std_logic_vector(15 downto 0);

 signal delay_multiplied : std_logic_vector(24 downto 0);

 signal dm: std_logic;

 signal output_sat: std_logic_vector(16 downto 0);

 type myarray is array (INTEGER range <>) of std_logic_vector(15 downto 0);

 signal delay_Buffer : myarray (9 downto 0);

begin

 process (sample_in,delay_enable,delay_Buffer)

 begin

 -- select delay_enable to do delay buffer

 if delay_enable <= '1' then

 -- delay 10 clock cycles

 delay_Buffer(0) <= delay_Buffer(1);

 delay_Buffer(1) <= delay_Buffer(2);

 delay_Buffer(2) <= delay_Buffer(3);

 delay_Buffer(3) <= delay_Buffer(4);

66

 delay_Buffer(4) <= delay_Buffer(5);

 delay_Buffer(5) <= delay_Buffer(6);

 delay_Buffer(6) <= delay_Buffer(7);

 delay_Buffer(7) <= delay_Buffer(8);

 delay_Buffer(8) <= delay_Buffer(9);

 delay_Buffer(9) <= sample_in

 else

 dataIn <= sample_in;

 end if;

 end process;

 process(delay_type,delay_Buffer,output_sat,dm,sample_in,delay_multiplied,decay)

begin

 if delay_type <= '0' then

 --Calculate the echo after decay,taking the internal delay buffer of 0

 delay_multiplied <= delay_Buffer(0) * ('0' & decay);

 --Duplicate the topmost bit to use for overflow detetction

 dm <= delay_multiplied(24);

 output_sat <= (dm & delay_multiplied(24 downto 9)) +

 (sample_in(15) & sample_in);

 if output_sat(16 downto 15) = "01" then dataIn <=

 "0111111111111111"; elsif

 output_sat(16 downto 15) = "10" then dataIn <=

 "1000000000000000"; else

 dataIn <= output_sat(15 downto 0);

 end if;

 else

 --Calculate the echo after decay,taking the internal delay buffer of 7

 delay_multiplied <= delay_Buffer(7) * ('0' & decay);

67

 --Duplicate the topmost bit to use for overflow detetction

 dm <= delay_multiplied(24);

 output_sat <= (dm & delay_multiplied(24 downto 9)) +

 (sample_in(15) & sample_in);

 -- decay is 1/2

 if output_sat(16 downto 15) = "01" then dataIn <=

 "0111111111111111"; elsif

 output_sat(16 downto 15) = "10" then dataIn <=

 "1000000000000000"; else

 dataIn <= output_sat(15 downto 0);

 end if;

 end if;

 end process;

-- changes data precision of playback data.

sample_out <= dataIn; -- 16 bits precision

end beh;

---Bypass--

--bypass.vhd

--A simple switch enabling to bypass an effect

--

library IEEE;

use IEEE.std_logic_1164.all;

entity bypass is

 port (

 --signal not transformed by the effect

 sample_in_left: in std_logic_vector(15 downto 0);

 sample_in_right: in std_logic_vector(15 downto 0);

68

 --signal transformed by the effect

 device_in_left: in std_logic_vector(15 downto 0);

 device_in_right: in std_logic_vector(15 downto 0);

 --output

 sample_out_left: out std_logic_vector(15 downto 0);

 sample_out_right: out std_logic_vector(15 downto 0);

 bypass: in std_logic);

end entity bypass;

architecture behave of bypass is

begin

 sample_out_left <= sample_in_left when bypass = '0' else device_in_left;

 sample_out_right <= sample_in_right when bypass = '0' else device_in_right;

end architecture behave;

--Pipeline Buffer--

--pipeline_buffer.vhd

--A simple pipeline buffer for two 16bit channels

--

library IEEE;

use IEEE.std_logic_1164.all;

entity pipeline_buffer is

 port (

 clk: in std_logic;

 reset: in std_logic;

 -- data

 sample_in_left: in std_logic_vector(15 downto 0);

69

 sample_out_left: out std_logic_vector(15 downto 0);

 sample_in_right: in std_logic_vector(15 downto 0);

 sample_out_right: out std_logic_vector(15 downto 0)

);

end entity pipeline_buffer;

architecture behave of pipeline_buffer is

 signal last_lrclk: std_logic;

begin

 process (clk, reset)

 begin

 if (reset='0') then

 sample_out_right <= (others => '0');

 sample_out_left <= (others => '0');

 elsif rising_edge(clk) then

 sample_out_right <= sample_in_right;

 sample_out_left <= sample_in_left;

 end if;

 end process;

end architecture behave;

---Volume Module--

--volume.vhd

--A simple digital amplifier with overflow control. It multiplies the input signal by

volume/512. Overflows are caught and result in the saturation of the amplifier.

--

library IEEE;

use IEEE.std_logic_1164.all;

use ieee.std_logic_arith.all;

70

use ieee.std_logic_signed.all;

entity volume is

 port (

 -- data

 sample_in: in std_logic_vector(15 downto 0);

 sample_out: out std_logic_vector(15 downto 0);

 -- params

 parameter: in std_logic_vector(15 downto 0)

);

end entity volume;

architecture beh of volume is

 signal signal_unnormalized: std_logic_vector(31 downto 0);

begin

 signal_unnormalized <= sample_in * parameter;

 normalize_saturate: process(signal_unnormalized)

 begin

 if (signal_unnormalized(31) = '1') then -- result negative

 if (signal_unnormalized(30 downto 23) = "11111111") then

 -- no overflow

 sample_out <= '1' & signal_unnormalized(22 downto 8);

 else -- overflow negative

 sample_out <= "1000000000000000";

 end if;

 else -- result positive

 if (signal_unnormalized(30 downto 23) = "00000000") then

 -- no overflow

 sample_out <= '0' & signal_unnormalized(22 downto 8);

 else -- overflow positive

71

 sample_out <= "0111111111111111";

 end if;

 end if;

 end process;

end architecture beh;

---Audio Deserializer--

-- ---

-- Audio - buffer . Receives seriel data from ADC , 32 bits including both --

-- channels , and transmitts 2x16 bit packages , left channel --

-- first , in parallel at the output . --

-- ---

library ieee ;

use ieee . std_logic_1164 .all ;

entity Audio_DeserializeR is

port (

 --clock and adc data care

 reset : in std_logic ;

 bclk : in std_logic ;

 lrck : in std_logic ;

 adc_data : in std_logic ;

 --adc audio buffered to 16 bit each channel

 left_word : out std_logic_vector (15 downto 0);

 right_word : out std_logic_vector (15 downto 0)

);

end entity Audio_DeserializeR ;

architecture structure of Audio_DeserializeR is

72

 type state is (IDLE , RECEIVE , TRANSFER_LEFT , TRANSFER_RIGHT);

 signal next_state : state ;

 signal audio_data : std_logic_vector (31 downto 0); --Audio - data storage

 signal counter : integer range 31 downto 0 := 31;

begin

FSM : process (bclk , reset)

 begin

 -- Initial configuration of buffer

 if(reset = '0') then

 next_state <= IDLE ;

 left_word <= (OTHERS => '0');

 right_word <= (OTHERS => '0');

 audio_data <= (OTHERS => '0');

 elsif (rising_edge (bclk)) then

 case next_state is

 --IDLE state

 when IDLE =>

 --Codec transfers data from ADC

 if(lrck = '1') then

 next_state <= RECEIVE ;

 elsif (lrck = '0') then

 next_state <= IDLE ;

 end if;

 --Receive data from both channels , left channel first

 when RECEIVE =>

 if(counter > 0) then

73

 audio_data (counter) <= adc_data ;

 --Saves audio data

 counter <= counter - 1;

 next_state <= RECEIVE ;

 else

 audio_data (counter) <= adc_data ;

 counter <= 31;

 next_state <= TRANSFER_LEFT ;

 end if;

 --Puts left channel data on the parallel output

 when TRANSFER_LEFT =>

 left_word (15 downto 0) <= audio_data (31 downto 16);

 next_state <= TRANSFER_RIGHT ;

 --Puts right channel data on the parallel output

 when TRANSFER_RIGHT =>

 right_word (15 downto 0) <= audio_data (15 downto 0);

 next_state <= IDLE ;

 end case ;

 end if;

 end process ;

end architecture ;

--Mono Selector--

--mono_selector.vhd

--Since guitar input is usually a mono signal with the right channel left silent, this

--module can be used to feed both channels from the left channel input.

--

library IEEE;

74

use IEEE.std_logic_1164.all;

entity mono_selector is

 port (

 -- data

 sample_in_left: in std_logic_vector(15 downto 0);

 sample_in_right: in std_logic_vector(15 downto 0);

 sample_out_left: out std_logic_vector(15 downto 0);

 sample_out_right: out std_logic_vector(15 downto 0);

 -- params

 mono: in std_logic

);

end entity mono_selector;

architecture beh of mono_selector is

begin

 sample_out_right <= sample_in_right when mono = '0' else sample_in_left;

 sample_out_left <= sample_in_left;

end architecture beh;

--Audio Serializer--

--

-- Audio output buffer . Receives 2 x 24 bit parallel data packages --

-- from filter , and puts 32 bits of serial data to the output when --

-- audio - codec is ready to receive . --

--

 library ieee ;

 use ieee . std_logic_1164 .all ;

75

 entity Audio_SerializeR is

 port (

 --clock care

 reset : in std_logic ;

 bclk : in std_logic ;

 lrck : in std_logic ;

 --sample to be serialized

 left_word : in std_logic_vector (15 downto 0);

 right_word : in std_logic_vector (15 downto 0);

 --dac data output

 dac_data : out std_logic -- Output to the audio - codec

);

 end entity Audio_SerializeR ;

 architecture structure of Audio_SerializeR is

 type state is (IDLE , RECEIVE_RIGHT , START_TRANSFER ,

 CONT_TRANSFER);

 signal next_state : state ;

 signal audio_data : std_logic_vector (31 downto 0);

 signal counter : integer range 31 downto 0 := 31;

 begin

 FSM : process (bclk , reset)

 begin

 -- Initial configuration of output buffer

 if(reset = '0') then

 next_state <= IDLE ;

 dac_data <= '0';

 audio_data (31 downto 0) <= (OTHERS => '0');

76

 elsif (rising_edge (bclk)) then

 case next_state is

 --IDLE state

 when IDLE =>

 --Save data for left channel on the 16 MSBs

 audio_data (31 downto 16) <= left_word (15 downto 0);

 next_state <= RECEIVE_RIGHT ;

 -- Receive and save data (24 bit) for right channel

 when RECEIVE_RIGHT =>

 audio_data (15 downto 0) <= right_word (15 downto 0);

 next_state <= START_TRANSFER ;

 -- Transmits the MSB to audio - codec when codec is ready

 when START_TRANSFER =>

 if (lrck = '1') then --When DAC is ready

 --MSB left channel

 dac_data <= audio_data (counter);

 counter <= counter - 1;

 next_state <= CONT_TRANSFER ;

 elsif (lrck = '0') then

 next_state <= START_TRANSFER ;

 end if;

 --Sends the rest of the audio data to the codec in serial

 when CONT_TRANSFER =>

 if(counter > 0) then

 dac_data <= audio_data (counter);

 counter <= counter - 1;

 next_state <= CONT_TRANSFER ;

77

 else

 dac_data <= audio_data (counter);

 counter <= 31;

 next_state <= IDLE ;

 end if;

 end case ;

 end if;

 end process ;

 end architecture ;

	1. THESIS FORM
	2.Declaration 1
	3. PROJECT TITLE
	4. Declaration 2
	5. ABSTRACT
	6. TABLE OF CONTENTS
	7. LIST OF TABLES
	8. LIST OF FIGURES
	9. LIST OF ABBREVIATIONS
	10. LIST OF APPENDICES
	11. FYP MAIN

