

1 of 37

CUDAfy User Manual 0.3

Project CUDAfy

Title CUDAfy User Manual

Reference

Client Reference

Author(s) Nicholas Kopp, Hybrid DSP Systems

Date March 17, 2011

2 of 37

CUDAfy User Manual 0.3

Revision History

Date Changes Made Issue Initials

March 17, 2011 Support to CUDAfy V0.3. First public

release.

0.3 Nko

3 of 37

CUDAfy User Manual 0.3

Hybrid DSP Systems

Email: info @ hybriddsp . com

Web: www.hybriddsp.com

© Copyright 2011 - Hybrid DSP Systems

4 of 37

CUDAfy User Manual 0.3

Revision History .. 2

Introduction .. 6

General CUDAfy Process ... 6

CUDAfy Versions ... 7

CUDAfy Express ... 7

CUDAfy Standard ... 7

CUDAfy Professional .. 7

Prerequisites .. 7

Supported Operating Systems .. 7

Supported .NET Versions .. 7

Supported HARDWARE .. 8

Development Requirements .. 8

Recommended tools .. 8

Recommended SET-UP .. 8

Installation ... 10

Cudafy SDK .. 10

Installation – Cudafy .NET reflector add-in .. 12

Cudafy By Example.. 15

hello_world.. 16

simple_kernel ... 16

simple_kernel_params .. 18

Enum_gpu .. 18

add_loop_cpu ... 19

add_loop_gpu .. 19

add_loop_gpu_alt .. 20

add_loop_long .. 20

5 of 37

CUDAfy User Manual 0.3

julia_cpu and julia_gpu ... 20

add_loop_blocks and add_loop_long_blocks ... 21

dot .. 21

ripple .. 21

ray and ray_noconst .. 22

hist_gpu_shmem_atomics.. 23

basic_double_stream_correct .. 24

copy_timed ... 25

Cudafy Examples ... 26

Array Basic Indexing ... 26

Array Multi Dimensions ... 26

Global Arrays .. 27

Complex Numbers ... 27

Dummy Functions .. 27

Cudafying with .NET Reflector ... 29

Cudafy Module Viewer .. 32

Functions .. 33

Types ... 33

Constants .. 35

Generated Source Code ... 36

PTX .. 37

6 of 37

CUDAfy User Manual 0.3

INTRODUCTION

CUDAfy is a set of libraries and tools that permit general purpose programming of NVIDIA CUDA Graphics

Processing Units (GPUs) from the Microsoft .NET framework. Its aim is to be the leading set of tools for this

task; combining flexibility, performance and ease of use.

The CUDAfy SDK comprises the following:

• CUDAfy .NET Reflector Add-in

• CUDAfy Library

• CUDAfy Host Library

• CUDAfy Math Library (Optional)

• CUDAfy by Example demo projects

• CUDAfy Examples demo projects

The .NET Reflector Add-in converts .NET code into CUDA code. To use it you will need Red Gate’s.NET Reflector

which is available from www.red-gate.com

As a developer you will also require the NVIDIA CUDA Toolkit. The latest version that CUDAfy supports is

version 3.2. You can obtain this from: http://developer.nvidia.com/object/cuda_3_2_downloads.html

It is highly recommended that the user first learns the basics of CUDA. The NVIDIA website is a good starting

point as is the book CUDA by Example by Sanders and Kandrot.

GENERAL CUDAFY PROCESS

The general process for working with CUDAfy is to:

1. Add references to Cudafy.dll and Cudafy.Host.dll from your .NET project

2. Add the Cudafy and Cudafy.Host namespaces to source files (using in C#)

3. Add a parameter of GThread type to GPU functions and use it to access thread, block and grid

information as well as specialist synchronization and local shared memory features.

4. Place a Cudafy attribute on the functions.

5. Fire up .NET Reflector and add the CUDAfy add-in. This consists of a language and a GUI element. The

language is CUDA and the GUI allows the sub-selection of types to convert.

6. Click the Cudafy button to generate a Cudafy Module. This is an xml file that can be loaded into a

GPGPU instance. The GPGPU type allows you to interact seamlessly with the GPU from your .NET

code.

7 of 37

CUDAfy User Manual 0.3

CUDAFY VERSIONS

As of writing the following versions of the CUDAfy SDK are planned:

• CUDAfy Express

• CUDAfy Standard

• CUDAfy Professional

CUDAFY EXPRESS

This is a free version that supports non-commercial; non-redistributable 32-bit application development (can

run on 32-bit or 64-bit Windows). It includes the Cudafy and Cudafy.Host libraries, Cudafy Module Viewer and

Cudafy .NET Reflector Add-in. Support is provided via the forum at www.hybriddsp.com.

CUDAFY STANDARD

The Standard version is a low cost SDK, licensed per developer seat, that permits the creation of commercial,

32-bit and 64-bit applications that can be freely redistributed. Furthermore it includes an easy to use Fourier

Transform and Basic Linear Algebra library (Cudafy.Math is a .NET wrapper for CUBLAS and CUFFT).

CUDAFY PROFESSIONAL

This version adds an extended math and signal processing library as well as source code and a one year support

contract. Support can be extended for a reduced price.

Standard and Professional include all minor version upgrades and major version upgrades at a reduced price.

PREREQUISITES

SUPPORTED OPERATING SYSTEMS

Windows XP SP3

Windows Vista

Windows 7

Both 32-bit / 64-bit OS versions are supported.

SUPPORTED .NET VERSIONS

8 of 37

CUDAfy User Manual 0.3

CUDAfy is built against Microsoft .NET Framework 3.5.

SUPPORTED HARDWARE

All NVIDIA CUDA capable GPUs with compute capability 1.1 or higher are supported. Note that some language

features may not available in earlier versions of CUDA.

DEVELOPMENT REQUIREMENTS

The following is required when developing with CUDAfy:

• NVIDIA CUDA Toolkit 3.2

• Red Gate’s .NET Reflector 7.0 Standard or higher

These are not included in the CUDAfy download must be downloaded separately.

RECOMMENDED TOOLS

Although not necessary the use of Visual Studio 2010 Professional is recommended. For 32-bit applications

Visual Studio Express can be used. NVIDIA Parallel NSight may be installed however its use from .NET

applications is not currently implemented.

Although Cudafy simplifies the use of CUDA a basic understanding of CUDA is essential especially in terms of

architecture (threads, blocks, grids, synchronization). There are various websites with useful information and

the book CUDA BY EXAMPLE (Sanders and Kandrot) is highly recommended (many of the CUDAfy examples

included in the SDK are direct .NET versions of the code in this book).

RECOMMENDED SET-UP

PC SPECIFICATION

To make use of the built in emulation that CUDAfy offers, you will ideally be using a recent multi-core AMD or

Intel processor. Emulation of blocks containing thousands of threads is very inefficient for CPUs due to the

massive thread management overhead.

GRAPHICS CARD

9 of 37

CUDAfy User Manual 0.3

The introduction by NVIDIA of the Fermi architecture (compute capability 2.x) brings a significant advancement

in terms of programming features and performance. Fermi allows better performance with less tuning of GPU

code. Although CUDAfy supports compute capability from 1.1 the focus is on supporting Fermi and therefore

we recommend using it where possible. A good value card would be a GT460 or GT560.

SOFTWARE

Ideally you will have:

Windows 7 64-bit

Visual Studio 2010 Professional

Red Gate .NET Reflector VSPro

10 of 37

CUDAfy User Manual 0.3

INSTALLATION

CUDAFY SDK

The CUDAfy SDK is available as a zip file download from www.hybriddsp.com. Unzip to a convenient location.

The contents of the zip file include bin, CudafyReflectorPlugin, Doc, Samples directories and two text files: a

license and a readme. The bin directory contains the libraries (DLLs) that you link to from your .NET

application. These are listed below:

File Description

CUDA.NET.dll This is a .NET CUDA wrapper created by GASS.

Typically you will not need to interact with this.

CUDA.NET.Readme.txt Release notes for CUDA.NET

CUDA.NET.XML Code insight information.

Cudafy.dll Key library containing all language features required

for creating GPU code in .NET. This includes main

constructs such as the Cudafy attribute and the

GThread class.

Cudafy.xml Code insight information.

Cudafy.Host.dll This library is used for loading in Cudafy modules and

interacting with the GPU.

11 of 37

CUDAfy User Manual 0.3

Cudafy.Host.xml Code insight information.

CudafyModuleViewer.exe A viewing tool for Cudafy modules.

The CudafyReflectorPlugin directory contains:

File Description

CudafyReflectorPlugin.dll Contains the .NET Reflector Cudafy GUI and language

add-ins.

The Doc directory contains:

File Description

CUDAfyVx.x.HtmlDocumentation.zip Html documentation created from xml comments in

source code. Unzip the contents and browse to the

index.html file.

The Samples directory contains two sub-directories:

Directory Description

CudafyByExample This is a Visual Studio 2010 solution containing a

project that demonstrates many of the features of

Cudafy. The examples are based on the book CUDA

BY EXAMPLE (Sanders and Kandrot). A copy of this

book is highly recommended.

CudafyExamples Another Visual Studio 2010 solution demonstrating

Cudafy features not covered in CudafyByExample.

These include dummy functions, complex numbers

and multi dimensional arrays.

12 of 37

CUDAfy User Manual 0.3

The root directory contains two text files:

Directory Description

CUDAfy-License.txt License agreement.

README.txt Release notes.

INSTALLATION – CUDAFY .NET REFLECTOR ADD-IN

Follow the instructions from Red Gate for installing and starting .NET Reflector.

To manage add-ins click on Tools : Add-Ins…

13 of 37

CUDAfy User Manual 0.3

Now click Add... An open-file dialog will appear. Navigate to the CudafyReflectorPlugin directory in the folder

where you unzipped the CUDAfy SDK.

Select CudafyReflectorPlugin.dll and then click Open.

14 of 37

CUDAfy User Manual 0.3

Click Close then go to the Tools menu again where you will find at the bottom a new menu item named

Cudafy.

You will now see something like:

15 of 37

CUDAfy User Manual 0.3

CUDAFY BY EXAMPLE

The quickest way to get up and running with CUDAfy is to take a look at the example projects. These can be

found in the Samples sub-directory of the SDK. You may wish to make a copy of these directories before you

begin building and modifying them – if so bear in mind that if you open the copies then the references to

Cudafy.dll and Cudafy.Host.dll may be broken if the relative path is different. These two dlls are in the bin

directory so re-add them if necessary.

Navigate to CudafyByExample. If you have Visual Studio 2010 installed you can simply click the solution file

(*.sln). You will soon see something like this:

The folders chapter03 through chapter10 refer to the chapters of the book CUDA BY EXAMPLE (Sanders and

Kandrot). The collection of *.cdfy files are pre-Cudafied .NET code modules. They were made using the

CUDAfy .NET Reflector Add-in targeting compute capability 1.1 (except for the atomics example with needs 1.2

or higher).

Open the file Program.cs. Since this is a Console application this is the code that will run when you run it. The

static CudafyModes class is a helper for storing our code generation and target settings so all examples can

access them. Basically we set the code generation to CUDA C and the target to a CUDA GPU. You can also set

to Emulator but it’s more fun at this stage not to since the more complex examples will be painfully slow. The

majority of the samples have an Execute method and our Main method simply calls each sequentially.

16 of 37

CUDAfy User Manual 0.3

You are probably itching to press F5 and run but first check that the target architecture is x86 if you are running

CUDAfy Express. Go to Configuration Manager and select x86. Failure to select this correctly will result in a

BadImageFormatException and general bad news.

The various examples are described below:

HELLO_WORLD

This is only included to keep things in line with CUDA BY EXAMPLE. Hopefully no explanation is needed!

SIMPLE_KERNEL

Now we are going to run a very simple function on the GPU. Functions running on a GPU are often referred to

as kernels.

using System;

using System.Collections.Generic;
using System.Linq;

using System.Text;

using Cudafy;

using Cudafy.Host;

namespace CudafyByExample

{

 public class simple_kernel

 {
 public static void Execute()

 {

 CudafyModule km = CudafyModule.Deserialize(typeof(simple_kernel).Name);

 if (!km.TryVerifyChecksums())
 Console.WriteLine(CudafyModes.csCRCWARNING);

 GPGPU gpu = CudafyHost.GetGPGPU(CudafyModes.Target);
 gpu.LoadModule(km);

 gpu.Launch(1, 1, "kernel");

 Console.WriteLine("Hello, World!");

 }

 [Cudafy]

 public static void kernel()

 {

 }
 }

}

You will see that we include two namespaces:

• Cudafy

• Cudafy.Host

17 of 37

CUDAfy User Manual 0.3

If you click expand the references folder in the solution explorer you will see that they correspond to the two

main Cudafy dlls of the same name as the namespaces.

Now follows some key points of using Cudafy. The function we wish to run on the GPU is named kernel. We

put an attribute on there name Cudafy. This tells the .NET Reflector Add-in that we wish to cudafy this

method. A GPU method that is callable from a host application must return void. We will return to this later

but briefly when CudafyByExample is compiled an executable is produced name CudafyByExample.exe. We

open this in .NET Reflector and then select the types we wish to translate (cudafy). In this case we selected

simple_kernel. This type contains only one item marked for cudafying – the method kernel. This method does

nothing useful but importantly it still does this nothing useful business on the GPU. The output of the CUDAfy

.NET Reflector Add-in is a file named simple_kernel.cdfy.

We load this into a CudafyModule object using this line:

CudafyModule km = CudafyModule.Deserialize(typeof(simple_kernel).Name);

Using typeof is a way of avoiding hardcoding the file name.

The next line does something interesting and can be a useful warning. We check whether the file

simple_kernel.cdfy was created from the same version of .NET assembly as the currently available one. Since

there is a good chance you are using the default *.cdfy files supplied the method TryVerifyChecksums will fail.

There is a good reason for this. Imagine changing our kernel method to do something else such as add

numbers together like the next example does. If we do not revisit .NET Reflector and again cudafy the

simple_kernel type in the CudafyByExample.exe assembly we’d have a mismatch between our *.cdfy module

and the .NET code. You do not really want this, or rather you want to know when this is the case so you at

least know to look out for version issues.

Okay, on with show. The CudafyHost class is static and contains a method called GetGPGPU. We have stored

the target type in our Main method in Program.cs. Hopefully it is set to Cuda, but there is nothing wrong with

choosing Emulator. Either way you will get back a GPGPU object. This is your interface with the GPU in your

computer. The CudafyModule we deserialized in the first line is loaded and then we can Launch our function.

Launch is a dramatic sounding GPU term for starting a function on the GPU.

18 of 37

CUDAfy User Manual 0.3

We will go into details of what the first two arguments are later but basically it means we are launching 1 x 1 =

1 thread. Later we’ll be launching rather more threads in parallel. The third argument is the name of the

function to run. Our module only has one but it could have many so it is required that you provide this. The

name is “kernel” to match the name of the kernel method.

SIMPLE_KERNEL_PARAMS

This is a slightly more useful example in that it actually does some processing on the GPU though a CPU or even

perhaps a calculator or doing the math in your head may be faster. Here we pass some arguments into our

GPU function:

 [Cudafy]
 public static void add(int a, int b, int[] c)

 {

 c[0] = a + b;
 }

Since we cannot return any value from a GPU function our result is passed out via parameter c. Currently there

is a limitation and the Out keyword is not supported so we use a vector instead. We need to actually allocate

memory on the GPU for this even though it will contain only one Int32 value.

int[] dev_c = gpu.Allocate<int>(); // cudaMalloc one Int32

If you take a look at the array dev_c in the debugger you’ll see that it has length zero. You cannot and should

not try to use variables that are on the GPU in your CPU side code. They act merely as pointers.

We launch the function with:

gpu.Launch(1, 1, "add", 2, 7, dev_c);

Put the arguments in the same order as the parameters of the add method. Finally we need to copy the result

back to the CPU:

int c;
gpu.CopyFromDevice(dev_c, out c);

With any luck you should end up with the correct answer.

ENUM_GPU

GPUs can list their properties and these can be useful for your application. Access the properties for all CUDA

GPUs via:

foreach (GPGPUProperties prop in CudafyHost.GetDeviceProperties(CudafyModes.Target,

false))

The first parameter is the GPU type and the second is whether to get advanced properties or not. Advanced

properties require that the cudart DLL is available in addition to the standard nvidia dll.

19 of 37

CUDAfy User Manual 0.3

ADD_LOOP_CPU

This sample demonstrates how we might add two vectors of length N on the CPU.

ADD_LOOP_GPU

And now how to do the same on the GPU. We allocate three arrays on the CPU and the GPU. As a short cut we

can use an overloaded version of Allocate that takes a CPU array as argument and then allocates the equivalent

memory on the GPU. You could get the same effect by passing the length in elements.

You will see that the Launch call passes the value N as first argument. We are going to launch N threads, so

that means we will add each element of the arrays in a separate thread.

How does each add thread know what element to operate on? This is done by adding a GThread parameter to

the GPU function. You do not need to specify an instance of this when launching as this will occur

automatically. Within GThread there are several properties. For now we are interested in blockIdx and its x

property.

 [Cudafy]

 public static void add(GThread thread, int[] a, int[] b, int[] c)

 {
 int tid = thread.blockIdx.x;

 if (tid < N)

 c[tid] = a[tid] + b[tid];

 }

Variable tid will work out to be a number between 0 and N - 1 inclusive for our N threads. Now each add

knows who he is. The rest of the code should explain itself though the last three lines are important, especially

for .NET developers not used to cleaning up their garbage:

 // free the memory allocated on the GPU

 gpu.Free(dev_a);
 gpu.Free(dev_b);

 gpu.Free(dev_c);

Here we explicitly release the memory we allocated on the GPU. The CUDAfy host (GPGPU) would also do this

when it goes out of scope but since memory on a GPU is limited in comparison to that of the host and does not

automatically cleanup it is good practice to do this.

20 of 37

CUDAfy User Manual 0.3

ADD_LOOP_GPU_ALT

Basically the same as the previous sample but avoids the additional calls to Allocate by using overloads of

CopyToDevice:

 // copy the arrays 'a' and 'b' to the GPU

 int[] dev_a = gpu.CopyToDevice(a);

 int[] dev_b = gpu.CopyToDevice(b);

Since we do not specify a destination for our CPU arrays a and b, CUDAfy automatically creates them and

returns the pointers dev_a and dev_b.

ADD_LOOP_LONG

Here we are adding two much longer vectors. Instead of adding each element in a separate thread, each

thread will be responsible for adding N / 128 elements. The first argument in Launch is 128 which is the total

number of threads.

In our GPU function we need an additional GThread property. We are now interested in blockIdx and its x

property and gridDim and its x property.

 [Cudafy]

 public static void add(GThread thread, int[] a, int[] b, int[] c)
 {

 int tid = thread.blockIdx.x;

 while (tid < N)

 {
 c[tid] = a[tid] + b[tid];

 tid += thread.gridDim.x;

 }
 }

Variable tid is incremented by the number of blocks in the grid (128) which is given by gridDim.x.

JULIA_CPU AND JULIA_GPU

These are graphical demos for CPU and GPU. On the GPU it makes use of 2D blocks of threads. Of note is the

calling of a GPU function from another GPU function. Only GPU functions that can be launched must return

void, others may return values.

21 of 37

CUDAfy User Manual 0.3

ADD_LOOP_BLOCKS AND ADD_LOOP_LONG_BLOCKS

In CUDA you have grids, blocks and threads. Grids contain 1 or more blocks and blocks contain one or more

threads. The earlier examples for adding vectors made us of grids and blocks. Now we use blocks and threads

to obtain the same result. In more complex examples a combination is used.

DOT

This example introduces the concept of shared memory. This is memory shared between threads of the same

block. There are good performance reasons for this and you are referred to the CUDA literature for

background reading. To use shared memory from CUDAfy you call the AllocateShared method of GThread.

float[] cache = thread.AllocateShared<float>("cache", threadsPerBlock);

The parameters are an id and the number of elements. We get back an array of the type specified between the

angle brackets. Another new concept is that of a barrier for the threads of a single block. This is necessary for

synchronizing all the threads at a certain point.

 // synchronize threads in this block

 thread.SyncThreads();

RIPPLE

Another graphics demo that makes use of 2D blocks and a 2D grid. You will also see the use of a GMath class.

GMath is a CUDAfy class that contains some specific versions of .NET Math methods. The reason is that some

Math methods such as Sqrt only provide overloads for double and not float. When the CUDAfy .NET Reflector

add-in translates to CUDA it would therefore add an unnecessary cast if Math was used, hence the use of

GMath.

22 of 37

CUDAfy User Manual 0.3

RAY AND RAY_NOCONST

These are two almost identical samples that illustrate a simple ray tracing implementation. They provide some

insight into some other CUDA features exposed via CUDAfy, namely performance timing, constant memory and

cudafying of structs. One example uses constant memory, the other does not. The difference you get in timing

will vary depending on whether .NET and the GPU are ‘warmed up’, your GPU and the target compute

capability used when creating the cudafy module. With the new Fermi cards there is not a significant

difference.

The Sphere struct is declared as:

 [Cudafy]

 public struct Sphere
 {

 public float r;

 public float b;
 public float g;

 public float radius;

 public float x;

 public float y;
 public float z;

 public float hit(float ox1, float oy1, ref float n1)
 {

 float dx = ox1 - x;

 float dy = oy1 - y;
 if (dx * dx + dy * dy < radius * radius)

 {

 float dz = GMath.Sqrt(radius * radius - dx * dx - dy * dy);
 n1 = dz / GMath.Sqrt(radius * radius);

 return dz + z;

 }

 return -2e10f;

23 of 37

CUDAfy User Manual 0.3

 }

 }

Placing the Cudafy attribute on classes does not work, only structs are supported. Operator overloading is also

not currently supported. Be aware that all types on the GPU whether in a struct or copied between CPU and

GPU or in a launch command, must be blittable. This means that they have to be in a standard number format

– e.g. byte, int, float, double.

Constant memory is a special kind of memory on the GPU that can be written only by the host CPU and is read

only for the GPU. It can in many circumstances be faster than the global memory of the GPU, however its size

is rather small (typically 64K). In the sample with constant memory we have an array of Spheres here:

 public const int SPHERES = 20;

 [Cudafy]

 public static Sphere[] s = new Sphere[SPHERES];

Note you should not put a Cudafy attribute on SPHERES. .NET Constants (const) are automatically placed into

cudafied code. We copy the Spheres we created on the host to the GPU’s constant memory with a special

method, where temp_s is an array of SPHERES Spheres:

Sphere[] temp_s = new Sphere[SPHERES];

...

...

gpu.CopyToConstantMemory(temp_s, s);

 Finally we should look at the timer functionality. Timing GPU code is vital to ensure that the effort that goes

into fine tuning is paying off. We start and stop a timer with:

 gpu.StartTimer();

...

...

 float elapsedTime = gpu.StopTimer();

HIST_GPU_SHMEM_ATOMICS

This is an example of a simple GPU algorithm that really shines. It makes use of shared memory and atomic

operations. Atomic operations are an optimized way of performing some basic commands such as addition in a

thread safe manner. They are accessible from .NET by using the Cudafy.Atomics namespace and will then

appear as extension methods of GThread. Note that a GPU with compute capability of 1.2 or higher is needed.

 [Cudafy]
 public void histo_kernel(GThread thread, byte[] buffer, long size,

uint[] histo)

 {

 // clear out the accumulation buffer called temp

 // since we are launched with 256 threads, it is easy

 // to clear that memory with one write per thread
 uint[] temp = thread.AllocateShared<uint>("temp", 256);

 temp[thread.threadIdx.x] = 0;

24 of 37

CUDAfy User Manual 0.3

 thread.SyncThreads();

 // calculate the starting index and the offset to the next

 // block that each thread will be processing

 int i = thread.threadIdx.x + thread.blockIdx.x * thread.blockDim.x;
 int stride = thread.blockDim.x * thread.gridDim.x;

 while (i < size)

 {
 thread.atomicAdd(ref temp[buffer[i]], 1);

 i += stride;

 }
 // sync the data from the above writes to shared memory

 // then add the shared memory values to the values from

 // the other thread blocks using global memory

 // atomic adds
 // same as before, since we have 256 threads, updating the

 // global histogram is just one write per thread!

 thread.SyncThreads();
 thread.atomicAdd(ref(histo[thread.threadIdx.x]),temp[thread.threadIdx.x]);

}

BASIC_DOUBLE_STREAM_CORRECT

GPUs can perform multiple functions in parallel. To do this we use stream ids. Stream id zero is the default

and what has been implicitly used up until now. Commands with the same stream id are queued sequentially.

Stream zero will synchronize any stream id so when doing parallel operations we want to avoid its use. Of

course to do all this we need to make sure our commands are asynchronous. There are asynchronous versions

of CopyToDevice, Launch and CopyFromDevice. The get the postfix Async and take an additional parameter

that is the stream id. To make sure all the asynchronous commands are completed we use the

SynchronizeStream method.

 // now loop over full data, in bite-sized chunks
 for (int i = 0; i < FULL_DATA_SIZE; i += N * 2)

 {

 gpu.CopyToDeviceAsync(host_aPtr, i, dev_a0, N, 1);
 gpu.CopyToDeviceAsync(host_bPtr, i, dev_b0, N, 2);

 gpu.CopyToDeviceAsync(host_aPtr, i + N, dev_a1, N, 1);

 gpu.CopyToDeviceAsync(host_bPtr, i + N, dev_b1, N, 2);
 gpu.LaunchAsync(N / 256, 256, 1, "kernel", dev_a0, dev_b0, dev_c0);

 gpu.LaunchAsync(N / 256, 256, 2, "kernel", dev_a1, dev_b1, dev_c1);

 gpu.CopyFromDeviceAsync(dev_c0, host_cPtr, i, N, 1);

 gpu.CopyFromDeviceAsync(dev_c1, host_cPtr, i + N, N, 2);
 }

 gpu.SynchronizeStream(1);

 gpu.SynchronizeStream(2);

 Another difference here is that the data on the host needs to be allocated as pinned memory. This is a

specially aligned data that offers higher performance and is a prerequisite for asynchronous transfers. We can

allocate this memory on the host with HostAllocate. Instead of getting an array back we get an IntPtr. This is

not as much fun as working with arrays so fortunately from CUDA 4.0 and the accompanying CUDAfy release

this is no longer needed. For earlier versions you can either copy host arrays to and from pinned memory with

GPGPU.CopyOnHost() or set values using the IntPtr extension method Set.

25 of 37

CUDAfy User Manual 0.3

Remember to free the IntPtrs on the host and destroy the streams.

 gpu.HostFree(host_aPtr);

 gpu.HostFree(host_bPtr);

 gpu.HostFree(host_cPtr);
 gpu.DestroyStream(1);

 gpu.DestroyStream(2);

COPY_TIMED

This sample compares the read and write performance of normal CPU to GPU transfers with that of pinned

memory to GPU transfers. Allocation of pinned memory was covered in the previous example. You should see

a significant difference.

26 of 37

CUDAfy User Manual 0.3

CUDAFY EXAMPLES

The second example project is called CudafyExamples.sln.

Samples cover arrays, complex numbers and dummy functions.

ARRAY BASIC INDEXING

Only a sub-set of the standard .NET functionality is supported for GPU side code. With future releases of

CUDAfy and of NVIDIA’s CUDA Toolkit this will be expanded. Strings are for example not supported as are

many of default classes and methods we are used to in .NET (Array, DateTime, etc). However some are and

these include the Length, GetLength and Rank members of arrays. You can freely use these in GPU code.

ARRAY MULTI DIMENSIONS

Typically we work with large arrays on GPUs. The reason for this is that small amounts of data are not very

efficient for processing on GPU and can be far better handled on the CPU. CUDAfy supports one-, two- and

three-dimensional arrays in global, constant and shared memory.

Jagged arrays are not supported. Use the notation [,] for 2D and [,,] for 3D.

27 of 37

CUDAfy User Manual 0.3

GLOBAL ARRAYS

This collection of samples shows how to work with 1D, 2D and 3D arrays of values (Int32) and structs

(ComplexFloat).

COMPLEX NUMBERS

Complex numbers are used very frequently in many disciplines. CUDA has a complex number type built in

(float and double varieties) and CUDAfy supports this via ComplexF and ComplexD. These are in the

Cudafy.Types namespace of Cudafy.dll. The real part is name x and the imaginary part y. A number of

operations are provided:

• Abs

• Add

• Conj

• Divide

• Multiply

• Subtract

Bear in mind that due to the nature of floating point values the results you get with .NET and those with the

GPU will not be exactly the same.

DUMMY FUNCTIONS

Say you already have some CUDA C code and you want to use it from .NET, then dummies are the answer. The

attribute CudafyDummy used in the same manner as the Cudafy attribute makes this possible. Items marked

with CudafyDummy are handled differently by the .NET Reflector Add-in. Instead of converting to CUDA C the

add-in expects there to be a *.cu file with the same name as the function or struct and that it also contains a

function or struct with that name.

 [CudafyDummy]

 public struct DummyComplexFloat

 {

 public DummyComplexFloat(float r, float i)
 {

 Real = r;

 Imag = i;
 }

 public float Real;

28 of 37

CUDAfy User Manual 0.3

 public float Imag;

 public DummyComplexFloat Add(DummyComplexFloat c)
 {

 return new DummyComplexFloat(Real + c.Real, Imag + c.Imag);

 }
 }

 A file named DummyComplexFloat.cu must exist and contain code such as this:

struct DummyComplexFloat
{

 public: float Real;

 public: float Imag;

 // Methods

 DummyComplexFloat(float r, float i)

 {
 Real = r;

 Imag = i;

 }

 __device__ DummyComplexFloat Add(DummyComplexFloat c)
 {

 return DummyComplexFloat((Real + c.Real), (Imag + c.Imag));

 }
};

 [CudafyDummy]

 public static void DummyDummyComplexFloatFunction(DummyComplexFloat[] result)
 {

 for (int i = 0; i < XSIZE; i++)

 {
 result[i] = result[i].Add(result[i]);

 }

 }

 A file name DummyDummyComplexFloatFunction.cu must exist and contain code such as this:

extern "C" __global__ void DummyDummyComplexFloatFunction(DummyComplexFloat *result)

{
 int x = blockIdx.x;

 result[x] = result[x].Add(result[x]);

}

29 of 37

CUDAfy User Manual 0.3

CUDAFYING WITH .NET REFLECTOR

Either open Red Gate’s .NET Reflector directly or by right clicking on the assembly you wish to cudafy and

selecting Browse with .NET Reflector… (For the latter option Reflector must be integrated with Windows

Explorer. Do this via Tools : Visual Studio and Windows Explorer Integration…)

If you have not already done so then see the earlier section on how to install the CUDAfy add-in. Two things

have happened: you have a new target language named CUDA (see the left hand of the two drop down menus

at the top) and via Tools : Cudafy you can display the GUI component.

Highlight your assembly on the left hand side. In this case the assembly is named CudafyByExample. You now

have two choices. You can add the complete assembly via the Add Assembly button on the left, or you can

navigate down to individual types and click Add. Let’s do the former.

30 of 37

CUDAfy User Manual 0.3

We’re only interested in the cudafying our ray tracing example, so select ray (CudafyByExample) from the big

list box. Now recall that the ray example needs a Sphere struct. We’re going to need to select him too. Hold

the Ctrl key and left click on Sphere (CudafyByExample).

Now the order of these two types is very important. The ray type is dependent on the Sphere type therefore

Sphere must appear higher in the list than ray. Here they are already in the correct sequence. If they were not

then select the type you wish to move and then use the Move Up and Move Down buttons. Selected types can

be removed through the use of the Remove button or pressing the delete key on your keyboard.

The next stage is to choose a minimum GPU architecture. Fermi is sm_20, earlier NVIDIA GPUs are covered by

sm_11, sm_12 and sm_13. Generally it is best for performance to target the highest architecture you expect

your app to run on, however then you reduce your potential user base.

There are three project types: Cudafy Module, Cudafy Module (Compiled) and Cuda C. The recommended

setting is Cudafy Module (Compiled) as this allows direct use of the module in your host application.

31 of 37

CUDAfy User Manual 0.3

Cudafy Modules contain as minimum reflection information. With this information the original .NET types can

be found and instaniated and the expected parameter types for specific GPU functions are recorded. In

addition generated CUDA C source code can be present as can compiled CUDA code (PTX). Cudafy Modules

can be serialized and deserialized to / from xml. The choice of Cudafy Module as project type is a module with

CUDA C code. The compiled variant also calls the NVIDIA CUDA C compiler (nvcc.exe) to create the PTX code

that can be loaded into the GPU module. The final option – Cuda C –creates a *.cu source code file.

It is important to study the output if any from the nvcc compiler. Here you may see errors and warnings that

the Cudafy .NET Reflector add-in did not catch, such as unknown types or unsupported .NET features.

32 of 37

CUDAfy User Manual 0.3

CUDAFY MODULE VIEWER

Present in the bin directory of the SDK is a tool for examining *.cdfy files. It is a graphical interface called the

Cudafy Module Viewer.

Start the application by double clicking the exe file. For convenience you may also choose to set in Windows

Explorer that *.cdfy files should always be opened with Cudafy Module Viewer as default. Double click a

*.cdfy file and when Windows asks you which program to use to open the file, choose Select a program from a

list of installed programs, then choose Browse… and navigate to Cudafy Module Viewer.

The screen shots in this chapter are based on opening ray.cdfy which is located in the CudafyByExample

project. There are five tabs:

• Functions

• Types

• Constants

• Generated Source Code

33 of 37

CUDAfy User Manual 0.3

• PTX

FUNCTIONS

A list of all GPU functions is shown in the top list box of this tab. Below are the details relating to the selected

function.

Property Description

Name The name of the .NET method from which the GPU

function was translated.

Declaring Type The type (class) in which the method is found.

Declaring Assembly The assembly (DLL) in which the type (class) is found.

Declaring Assembly CRC The CRC of the current version of the assembly.

Deserialized CRC The CRC of the assembly that was actually translated.

Checksum Match? True if Declaring Assembly CRC and Deserialized CRC

are the same, else false. This is simply a warning that

there may now be differences between the .NET code

and the CUDA module code.

Is Dummy? True if this function is a dummy function, else false.

Dummy functions are not actually translated by

CUDAfy. Instead they correspond to an existing

CUDA C file.

Parameters A list of the parameters for the .NET method.

TYPES

The Types tab shows a list of all structs in the Cudafy module.

34 of 37

CUDAfy User Manual 0.3

Property Description

Name The name of the .NET struct from which the GPU

struct was translated.

Declaring Type The type (class) in which the struct is found (if nested)

else as Name.

Declaring Assembly The assembly (DLL) in which the type (class) is found.

Declaring Assembly CRC The CRC of the current version of the assembly.

Deserialized CRC The CRC of the assembly that was actually translated.

Checksum Match? True if Declaring Assembly CRC and Deserialized CRC

are the same, else false. This is simply a warning that

there may now be differences between the .NET code

and the CUDA module code.

35 of 37

CUDAfy User Manual 0.3

Is Dummy? True if this struct is a dummy struct, else false.

Dummy structs are not actually translated by CUDAfy.

Instead they correspond to an existing CUDA C file.

CONSTANTS

This tab shows a list of variables that are allocated in GPU constant memory. Do not mistake this for normal

.NET constants.

Property Description

Name The name of the .NET constant from which the GPU

constant was translated.

Declaring Type The type (class) in which the constant is found.

Declaring Assembly The assembly (DLL) in which the type (class) is found.

36 of 37

CUDAfy User Manual 0.3

Declaring Assembly CRC The CRC of the current version of the assembly.

Deserialized CRC The CRC of the assembly that was actually translated.

Checksum Match? True if Declaring Assembly CRC and Deserialized CRC

are the same, else false. This is simply a warning that

there may now be differences between the .NET code

and the CUDA module code.

Is Dummy? True if this function is a dummy function, else false.

Dummy functions are not actually translated by

CUDAfy. Instead they correspond to an existing

CUDA C file.

Declaration Shows how the constant looks in CUDA C.

GENERATED SOURCE CODE

37 of 37

CUDAfy User Manual 0.3

Cuadfy Modules also contain the source code that was generated when the .NET assembly was cudafied. You

can optionally edit and recompile this code by going to Options : Enable Editing and then selecting

Architecture and pushing Compile.

PTX

The compiled code is in the CUDA PTX format. This is shown as read only.

