

Collaborative Large-scale Integrating Project

Open Platform for EvolutioNary Certification Of
Safety-critical Systems

Implementation of the evidence management
service infrastructure

D6.6

Work Package: WP6: Evolutionary Evidential Chain
Dissemination level: Public
Status: Final
Date: March 13th, 2015
Responsible partner: Janusz Studzizba (Parasoft S.A.)
Contact information: januszst@parasoft.com

PROPRIETARY RIGHTS STATEMENT

This document contains information that is proprietary to the OPENCOSS Consortium. Neither this document nor the
information contained herein shall be used, duplicated or communicated by any means to any third party, in whole or
in parts, except with prior written consent of the OPENCOSS consortium.

Contributors

Document History
Version Date Remarks

V0.1 2014-05-27 Document creation, initial ToC, and initial content
V0.2 2014-05-30 Initial text for each chapter provided
V0.3 2014-06-13 Implementation architecture, Impact Analysis, and Development

manual described
V0.4 2014-06-17 Simula contribution pasted. Technologies used in server

implementation described.
V0.5 2014-06-30 Tecnalia contribution added. Technologies used in client

implementation described. Review by Huáscar.
V0.6 2014-07-08 Adacore contribution merged into the document.
V0.7 2014-07-24 Review feedback applied
V1.0 2014-08-25 Deliverable finalisation after PB review. Xabier
V1.2 2014-12-10 Updated with 3rd prototype implementation information.
V1.4 2015-03-13 Updated to align with the final status of work

Names Organisation
Dariusz Oszczędłowski, Janusz Studziżba Parasoft S.A.
Jose Luis de la Vara, Sunil Nair Simula Research Laboratory
Jan Mauersberger IKV++
Angel López, Huáscar Espinoza, Xabier Larrucea Tecnalia
Jérôme Lambourg Adacore

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 3 of 52

TABLE OF CONTENTS

Executive Summary .. 8

1 Functionality implemented in OPENCOSS Platform tools ... 9

2 Implementation architecture and source code description .. 12

2.1 Client-server architecture with central data storage .. 12

2.2 Source code description .. 14

2.2.1 Server source code .. 14

2.2.2 Client plugin source code .. 16

2.3 Technologies used for implementing the OPENCOSS platform server 18

2.3.1 Web server infrastructure ... 18

2.3.2 Integration layer .. 19

2.3.3 Communication layer for exposing web-enabled APIs 19

2.3.4 Web framework ... 20

2.4 Technologies used in implementation of the clients .. 20

2.5 CDO Server implementation .. 22

2.5.1 Teneo vs CDO ... 23

2.5.2 CDO server implementation .. 24

2.5.3 Accessing the CDO server from source code ... 24

2.6 Evidence REST API and initial integration with QM .. 25

2.6.1 Overview .. 25

2.6.2 Integration details .. 25

2.6.3 Results .. 26

2.7 Evidence REST API and integration with medini analyze .. 26

2.7.1 Overview .. 26

2.7.2 Integration details .. 26

2.7.3 Results .. 27

2.8 Change Impact Analysis ... 30

3 OPENCOSS Platform tool user manual ... 35

4 OPENCOSS Platform tool developer manual .. 36

4.1 Developer manual - Server .. 36

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 4 of 52

4.1.1 Installation of OPENCOSS platform database ... 36

4.1.2 Installation and setup of Eclipse IDE ... 36

4.1.3 Running the server in Eclipse debugger .. 40

4.1.4 Building OPENCOSS server web application war files 44

4.2 Developer manual - Client ... 45

5 Research conducted and plans for future implementation ... 46

5.1 Evidence Evaluation ... 46

5.2 Impact Analysis .. 46

5.3 Approach to OSLC .. 48

5.3.1 Comparison of OSLC Assets with CCL Artefacts .. 49

5.3.2 Import artifacts from tools .. 50

5.3.3 Export artifacts to the OPENCOSS platform .. 51

5.3.4 Conclusion .. 51

6 Conclusion .. 52

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 5 of 52

List of Figures

Figure 1. OPENCOSS Tool Components - components implemented in 1st prototype are presented
in green while 2nd + 3rd prototype in blue ... 10

Figure 2. Gap Analysis web report GUI .. 11

Figure 3. OPENCOSS platform tools - technologies and collaboration ... 13

Figure 4: SVN structure .. 14

Figure 5: SVN structure plugin ... 17

Figure 6. Example of OPENCOSS client GUI which uses EMF .. 21

Figure 7. Example of OPENCOSS client GUI which uses EEF ... 22

Figure 8. Communication between OPENCOSS platform client, server and data storage 23

Figure 9. Evidence REST API bundles .. 27

Figure 8. Allowed evidence REST API method calls and data formats (excerpt) 28

Figure 8. Test call result against REST API using plain browser.. 28

Figure 12. medini analyze exporter add-in using REST API .. 29

Figure 8. Artefact export wizard add-in for medini analyze... 30

Figure 9. Artefact metamodel ... 31

Figure 10. Artefact lifecycle from the IA point of view ... 33

Figure 11. Web interface showing two IA-induced actions required to be taken by user 34

Figure 12. SVN option presented in the screenshot ... 37

Figure 13:Opening SVN Repository Explorer ... 38

Figure 14.SVN connectors .. 38

Figure 15. Installing connector .. 39

Figure 16. Entering repository connection .. 39

Figure 17. Project trunks .. 40

Figure 18. Configuring Eclipse TOMCAT .. 40

Figure 19. Configuring TOMCAT folder .. 41

Figure 22. Command line : Run gradle clean command ... 45

Figure 23 Command line : Run gradle command. ... 45

Figure 24. Overview of the approach for evaluation of individual evidence items 47

Figure 25. Simplified overview on Asset Management objects .. 49

Figure 26. CCL meta model for evidence data .. 50

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 6 of 52

Figure 27. Mockup of a REST based pull function for artefacts from external tools 50

Figure 28. Mockup of a REST based push function for artefacts from external tools 51

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 7 of 52

Abbreviations

API Application programming interface

CCL Common Certification Language

DAO Data Access Object

DX.Y OPENCOSS deliverable X.Y

DoW Description of Work

EMF Eclipse Modelling Framework

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

OSLC Open Services for Lifecycle Collaboration

QM The Qualifying Machine

REST

SACM

Representational State Transfer

Structured Assurance Case Metamodel

SVN Subversion

TX.Y OPENCOSS task X.Y

V&V Verification and Validation

WP

EMF

EEF

CDO

OPENCOSS Work Package

Eclipse Modeling Framework

Extended Editing Framework

Connected Data Objects

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 8 of 52

Executive Summary

This document presents the sixth deliverable of WP6, which aims to specify and implement a
management infrastructure for safety certification evidential chain. The deliverable is a
continuation and broad extension of D6.5, which showed the intermediate achievements of the
evidence management implementation effort. The goal of this document is to present and
summarize results of the implementation of the evidence management functionality in
OPENCOSS tool platform.

As explained in D6.5 document, OPENCOSS platform software development has been divided into
3 phases, each resulting in a functional and ready-to-use tool prototype. The current results from
T6.4 correspond to the 3rd prototype of the OPENCOSS tool platform. This document presents in
detail the functionalities implemented in the 3rd prototype for evidence management, its
software architecture, the technology used, and source code references.

Other important parts of D6.6 document are:
• User Manual, which describes how to install and use the OPENCOSS tool platform.
• Developer Manual, which describes how to set up the software development environment

of the tool platform. This manual is split into one document for the client part and
another for the server part.

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 9 of 52

1 Functionality implemented in OPENCOSS Platform tools

The following pieces of functionality have been implemented as the result of software
development done for the OPENCOSS platform 3rd prototype:

• Client-server infrastructure
• Central data storage used by both server and clients
• Evidence Gap Analysis web report
• Evidence items Change Impact Analysis
• Events mechanism framework in the server
• REST API serving evidence information
• EEF Editor (Forms Editor) for evidence management
• Integration of the evidence editor with the Impact Analysis functionality

The software implementation of the above functionality is described in detail in the following
chapters.

With regards to architectural components, Figure 1 (based on a similar one in D6.3) shows the
components that have been implemented in 1st, 2nd and 3rd prototypes. The implementation of
the components presented in green has been done in the 1st prototype and is described in D6.5
document. A description of the pieces of software developed for the components presented in
blue (i.e., implemented in the 2nd and 3rd prototype) is provided below.

EvidenceReporter component provides reporting functionalities for OPENCOSS tool users. This
module has been materialised in the Gap Analysis web report. The report presents evidence
properties and evidence evaluations. The detailed description of the report implementation is
presented in the OPENCOSS Platform tool user manual chapter. The software development
technology used for the web report implementation is described in Web framework.

EvidenceAnalyser component provides evidence-specific functionality for Change Impact Analysis.
The implementation of Change Impact Analysis is described in Change Impact Analysis chapter.
This component engine is used by client editors in order to visualize how evidence modification
affects the related artefacts.

TraceLinkEngine component is in charge of storing dependency information as traceability links. It
has been implemented together with Impact Analyser engine. The software developed is
described in Change Impact Analysis chapter.

EvidenceComplianceManager supports the measurement of the level of compliance of artefacts
with standards, rules, regulations, or company-specific practices. A prototype of this module is
implemented in Gap Analysis report, which is described in OPENCOSS Platform tool user manual.
As an example, Figure 2 shows Gap Analysis web report user interface for presenting project
safety artefacts compliance to a safety standard.

GUIEvidenceAnalyser component supports visualization, configuration, and execution of change
impact analysis and compliance check. In OPENCOSS 2nd and 3rd prototype tool, it has been
implemented as Gap Analysis report in web interface and Impact Analysis runner in client editors.

DataChangeManager module has been materialized in a database storage and CDO module
serving CCL modelled data persistence. The CDO module supports data versioning of each item

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 10 of 52

stored. For the 3rd prototype, the data versioning is done in the storage, so all the data versions
are preserved, however they are not presented in GUI modules yet. Only the last version of a
given entity is presented. CDO provides an API that can be used in future implementations to
visualize the versions of each piece of data saved in the storage. See Client-server architecture
with central data storage for further descriptions of the data persistence in OPENCOSS platform.

GUI_EvidenceEditor component provides the user interface to create, modify and delete evidence
data to the CDO repository using EMF/EEF/CDO technology. This editor is integrated with a SVN
evidence repository and it connects the artefacts model to the actual artefact objects (word
documents, excel files, pdfs, log files and so on), which are stored in the SNV evidence server. This
editor is also integrated with the Impact Analysis module to inform the user about any evidence
modification that may affect the related artefacts.

Figure 1. OPENCOSS Tool Components - components implemented in 1st prototype are presented in green while 2nd
+ 3rd prototype in blue

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 11 of 52

Figure 2. Gap Analysis web report GUI

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 12 of 52

2 Implementation architecture and source code description

The documents of the D2.3, D6.3, and D6.4 deliverables presented the OPENCOSS platform tool
architecture. The designed structure has been implemented in the scope of T6.4 and the
developed software is presented in this document. This chapter presents the detailed
implementation architecture, and the software development technologies that have been used,
their configuration, settings, and source code references.

Note: D6.4 contains a design for OPENCOSS tool integration with external evidence tools. Initial
implementation effort has been performed in this direction. In the 1st prototype integration with
Subversion (SVN) as an example evidence storage has been implemented. In the 2nd prototype
initial integration with QM has been addressed. This is described in Evidence REST API and initial
integration with QM. Further implementation in this area was made for the 3rd prototype.

2.1 Client-server architecture with central data storage

The diagram in the next page depicts the deployment and communication between the main
implementation modules of the OPENCOSS Platform. Each module technology as well as
communication protocols are presented below.

Data persistence in OPENCOSS platform tools is provided by a CDO repository. CDO is a Java
model persistence solution for EMF models and metamodels. CDO model repository
documentation can be found at http://www.eclipse.org/cdo/documentation/.

CDO can use various relational databases as its backend storage. In a default OPENCOSS platform
installation, PostgreSQL database is used. It is accessed by CDO repository using JDBC protocol at
5432 port on the database side by default.

There are two general types of OPENCOSS platform modules which access the CDO repository:
OPENCOSS clients (used on client machines) and OPENCOSS server (installed on the server
machine).

The CDO server is accessed by its clients using CDO protocol. By default, the 2036 port on the CDO
server side is used. The implementation of the CDO Server is described in the CDO Server
implementation chapter.

OPENCOSS platform client tools have been implemented as Eclipse plugins and are supposed to
be installed on user machines. They have been implemented using EMF (Eclipse Modelling
Framework) technology and auxiliary technologies like EEF (Extended Editing Framework) and
GMF (Graphical Modelling Framework). Development documentation for these technologies can
be found on the following sites, respectively:

• http://www.eclipse.org/modeling/emf/
• http://www.eclipse.org/modeling/emft/?project=eef
• http://www.eclipse.org/modeling/gmp/

http://www.eclipse.org/cdo/documentation/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emft/?project=eef
http://www.eclipse.org/modeling/gmp/

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 13 of 52

OPENCOSS Client
Eclipse/EMF/EEF/GMF

OPENCOSS Client
Eclipse/EMF/EEF/GMF

OPENCOSS Server
Web server / REST API

CDO Server
CCL metamodel and data

Web browser

REST
Client

Figure 3. OPENCOSS platform tools - technologies and collaboration

Regarding the OPENCOSS clients, they provide:
• Editors for entire CCL model data, in particular for reference frameworks, assurance

projects, argumentation, evidence chain, and process data.
• Evidence Change Impact Analysis engine.

The Functionality of the editors is described in detail in the user manual chapter (OPENCOSS
Platform tool user manual). The client source code is described in the Technologies used in
implementation of the clients chapter.

The OPENCOSS platform server has been implemented as a set of web applications using Apache
Tomcat server. It is supposed to be installed on a corporate server machine. OPENCOSS platform
server provides the following functionality:

• Host web reports, which provide analytical views of data stored in OPENCOSS repository.
• The web interface is accessible for users via their web browsers.

CDO Protocol

PostgreSQL
database

port: 2036

port: 5432
JDBC Protocol

Http Protocol
port: 8080

REST API

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 14 of 52

• Host optional services API, which allow to interface with OPENCOSS platform.

The functionality provided by the OPENCOSS server is described in the OPENCOSS Platform tool
user manual chapter. Note that some of the service APIs can be hosted separately as satellite
servers.

2.2 Source code description

This chapter presents the structure of the source code packages of both server and clients of the
OPENCOSS platform implementation. This source code has been developed in the scope of T6.4
implementation effort. Both the client and the server have been implemented in Java language.

Various technology libraries have been used (see Technologies used in implementation of the
server and Technologies used in implementation of the clients). The code has been committed to
the OPENCOSS SVN source control repository. It is hosted at the following URL:
https://svn.win.tue.nl/repos/opencoss-code

2.2.1 Server source code
The source code that implements the OPENCOSS platform server has been committed to the
following location: https://svn.win.tue.nl/repos/opencoss-code/trunk/common. There are the
following Java packages:

Figure 4: SVN structure

Most of the packages (all except org.opencoss.webapp.apd) play a direct or indirect role in
evidence chain management implementation, which is the subject of this deliverable. The general
description of these implementation packages is as follows.

org.opencoss.build - This package contains configuration files which are used for setting up a
development environment and installation builds. Both topics are described in detail in the
OPENCOSS Developer Manual (Developer manual - Server chapter).

org.opencoss.impactanalysis - This package contains the implementation of the change impact
analysis module. This engine is used by OPENCOSS platform clients to call and execute change
impact analysis. The algorithm logic and usage of this module have been described in detail in the
Change Impact Analysis chapter.

https://svn.win.tue.nl/repos/opencoss-code
https://svn.win.tue.nl/repos/opencoss-code/trunk/common

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 15 of 52

org.opencoss.webapp.reports - This package contains the implementation of OPENCOSS platform
server web pages. The functionality has been developed using Vaadin, which is a Java framework
for building modern web application (http://www.vaadin.com).

The implementation of OPENCOSS platform web pages follows a Model-View-Controller (MVC)
design pattern. The following packages play the most important parts in the implementation of
the pattern:

• Model information is provided by org.opencoss.webapp.reports.dao package classes. These
classes have been designed according to the Data Access Object (DAO) pattern, which uses
CommonStorageProvider code to access the CDO repository of the OPENCOSS platform.
CommonStorageProvider is described in the Common Storage Provider chapter.

• The View part is supported by org.opencoss.webapp.reports.view package. The classes
there implement Vaadin panels and represent various parts of GUI web layout. A main
class called by Vaadin framework is OpencossApplication.java, which provides a framework
for the layout of OPENCOSS platform server web pages.

• The Controller part is implemented by org.opencoss.webapp.reports.manager package.
When some view class is about to render any data element, it calls the manager class
(which contains the business logic), reads data from model supported by DAO classes,
performs any additional operations if necessary, and returns the prepared data to the
view module.

org.opencoss.storage.cdo - This package contains classes fur using the CDO server in the
OPENCOSS platform. This server provides a common storage for all OPENCOSS platform clients
and a server. It accesses PostgreSQL database as its data backend. It is implemented in the
StandaloneCDOServer.java class. The details of this piece of source code usage are described in
the Common Storage Provider chapter. Additionally to common storage implementation, this
package contains utility classes used when accessing the CDO server by its clients.

org.opencoss.webapp.cdo - This package constitutes a separate web application which is
responsible for starting a CDO Server that handles data requests from OPENCOSS clients and a
server. See the Common Storage Provider for a detailed explanation of how the CDO server gets
started by this web application.

org.opencoss.webapp.rest.qm - The package contains a first approach for integration with
evidence external tools - in this case QM. It provides a REST API that provides details about
evidence pieces stored in the OPENCOSS platform database. This approach has been discontinued
in the 3rd prototype. This aspects is discussed in detail in Evidence REST API and initial integration
with QM.

org.opencoss.ws.evm - The package contains an approach for an integration with external safety
assurance as medini analyze. It provides a generic CRUD based REST API without an actual
implementation but delegate interfaces to separate server from management functionality.

org.opencoss.ws.evm.emf - The package contains an implementation of the evidence
management interface – as defined by org.opencoss.ws.evm – for EMF repositories in general and
CDO in special. Both packages are required to setup a CDO backend for an evidence management
service. Automated test cases are written and available in org.opencoss.ws.evm.test.

http://www.vaadin.com/

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 16 of 52

2.2.2 Client plugin source code
The source code implementing the OPENCOSS platform clients has been committed to the
following location: https://svn.win.tue.nl/repos/opencoss-code/trunk/prototype/plugins. The
following Java packages are located there:

https://svn.win.tue.nl/repos/opencoss-code/trunk/prototype/plugins

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 17 of 52

Figure 5: SVN structure plugin

A general description of these implementation packages is as follows.

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 18 of 52

 org.opencoss.evm.evidspes - In this plugin, the evidence metamodel is defined and stored, and
the Java implementation classes for this model are generated.

org.opencoss.evm.evidspes.edit - This plugin contains a provider to display evidence models in a
user interface.

org.opencoss.evm.evidspes.editor - This plugin provides the user interface to view instances of the
model using several common viewers, and to add, remove, cut, copy and paste model objects, or
modify the objects in a standard property sheet.

org.opencoss.evm.evidspes.editor.dawn - This plugin is an extension of the previous one. It aims to
communicate with the CDO Server to store the generated model in a database instead of a file.

org.opencoss.evm.evidspec.preferences - This plugin defines the default preferences for the
communication with the SVN repository, thus it defines the type of repository (local or remote)
and a user and password to connect with the remote repository.

org.opencoss.infra.svnkit - In this plugin, the functionalities necessary for the communication with
the repository SVN (SVNKIT V1.3.8) are defined, to export and import artefacts.

org.opencoss.evm.evidspes.editor.dawn - This plugin is an extension of the previous one. It aims to
communicate with the CDO Server to store the generated model in a database instead of a file.

In addition, these plugins are necessary to handle the evidence properties:

org.opencoss.infra.properties - This plugin contains the definition of the Property metamodel, and
the Java implementation classes for this model.

org.opencoss.infra.properties.edit - As the edit plugin for evidence, this plugin contains a provider
to display the model in a user interface.

org.opencoss.infra.properties.editor - As the edit plugin for evidence, this plugin is an editor to
create and modify instances of the model.

2.3 Technologies used for implementing the OPENCOSS platform
server

This chapter presents the software development technologies that have been used in the
implementation of the OPENCOSS server stack.

2.3.1 Web server infrastructure

The OPENCOSS platform server runs on Apache Tomcat (http://tomcat.apache.org/). All the main
services, including web pages, web-enabled APIs, and common data storage infrastructure, have
been implemented as separate web applications deployed on the web server. The common
storage infrastructure is presented in the CDO Server implementation chapter. How to build
OPENCOSS server web applications is described in Building OPENCOSS server web application war
files.

http://tomcat.apache.org/

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 19 of 52

2.3.2 Integration layer

The integration layer is responsible for providing services to instantiate and bind the server code
components together. This layer is intended to ease the burden of creating boiler-plate source
code. In order to facilitate this, the Spring framework (http://spring.io/) is used. It is the most
popular integration framework for Java, provides up-to-date solutions, and is actively developed.
For example, the Spring framework is used in the following places in OPENCOSS server source
code:

• In org.opencoss.webapp.cdo web application, in order to instantiate StandaloneCDOServer
class when Apache Tomcat is started. It is configured in webapp\WEB-
INF\applicationContext.xml:

 <bean class="org.opencoss.storage.cdo.StandaloneCDOServer">

 </bean>

• In DAO classes in org.opencoss.webapp.reports.dao package - see Server source code for
DAO classes description. “@Component” Spring annotations are used in order to mark the
appropriate classes to be instantiated by the Spring framework. “@Autowired”
annotations are used in org.opencoss.webapp.reports.manager classes so that DAO objects
instances are injected in the proper places in manager classes. For example,
BaseActivityManager.java contains the following Spring invocations:

@Component

public class BaseActivityManager {

 public static final String SPRING_NAME = "baseActivityManager";;

 @Autowired

 private BaseActivityDAO baseActivityDAO;

…

}

2.3.3 Communication layer for exposing web-enabled APIs

Apache CXF framework (http://cxf.apache.org) has been used in OPENCOSS platform server as a
technology for web API implementation. This framework provides support for the two most
popular API protocols in web communication:

• Full-blown XML-based web services based on SOAP and WSDL, driven by JAX-WS
• A lightweight approach of RESTful web services, driven by JAX-RS

These standards are well established, built upon other widely adopted standards like JAXB.

The 3rd prototype implementation contains an initial approach of the API to integrate with QM to
illustrate approach that can be followed to make such an integration. It has been implemented in
org.opencoss.webapp.rest.qm.service package and described in the Evidence REST API and initial
integration with QM chapter.

http://spring.io/
http://cxf.apache.org/

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 20 of 52

Hereafter there is an example of source code exposing REST services implemented in
ArtefactService.java class. CXF framework annotations, which specify the API, have been bolded
below.

@GET

 @Description(value = "Returns a list of ALL Artefacts")

 @Produces({MediaType.APPLICATION_JSON})

 public Response getArtefacts(@QueryParam(JsonOption.INDENT_PARAM)
 @DefaultValue(JsonOption.FALSE) boolean indent)

{

…

}

2.3.4 Web framework

Web Graphical User Interface in OPENCOSS web server has been developed using the Vaadin
framework (https://vaadin.com). This library provides a rich set of widgets, and supports model-
view-presenter pattern to allow well-structured source code development. The source code
structure of this framework usage is described in the Server source code chapter above.

The main class that implements core web page UI and integrates all the graphical panels has been
implemented in the org.opencoss.webapp.reports.webapp.OpencossApplication java class.

2.4 Technologies used in implementation of the clients

The technologies involved in the generation of the Evidence editor are EMF, EEF and Dawn.

EMF generates the necessary code to manage the Evidence meta-model part of the CCL and also
generates a basic editor. The appearance of this editor can be seen in the screenshot below.

https://vaadin.com/

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 21 of 52

Figure 6. Example of OPENCOSS client GUI which uses EMF

EEF generates code to improve the graphical look and the usability of the EMF editor (see figure
below). This editor has more easy-to-use controls to specify the different properties of the
entities included the evidence metamodel and the relations between them, and it has the
possibility of grouping the properties in tabs.

The code of this editor has been modified to integrate it with SVN as evidence repository and to
capture the modified artefacts in order to call the Impact Analysis engine explained in the Change
Impact Analysis chapter.

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 22 of 52

Figure 7. Example of OPENCOSS client GUI which uses EEF

Dawn framework builds a bridge between the EEF Editor and the CDO server allowing the storage
of the generated evidence models in the database.

2.5 CDO Server implementation

As introduced in the previous chapters, CDO is a Java model persistence solution for data models.
In OPENCOSS platform tools, both the clients and the server use a common data storage, which
has been implemented based on CDO.

The following subchapters describe why CDO persistence solution has been chosen, how CDO
common server is used in OPENCOSS platform implementation, and how it is accessed by clients.

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 23 of 52

OPENCOSS Client
Eclipse/EMF/EEF/GMF

OPENCOSS Server
Web server / REST API

CDO Server
CCL metamodel and data

Figure 8. Communication between OPENCOSS platform client, server and data storage

2.5.1 Teneo vs CDO
At the beginning of T6.4, research on EMF-based storage technologies was performed. Three
solutions were investigated: CDO, Teneo and EMFStore. Results of this evaluation have been
placed in WP6/D6.5_in_progress/TechnologyResearch/CDOvsTeneovsTexovsEMFStore folder in
OPENCOSS project source repository.

As described in D6.5, chapter “2.1 Common Storage Provider”, the first approach of data
persistency implementation for OPENCOSS platform was based on Teneo technology, as it was a
reasonable recommendation after the evaluation of the three storage technologies. This solution
worked well on OPENCOSS server side. However, as the implementation progressed on
OPENCOSS Eclipse clients side, serious obstacles arose. It turned out that integration of Teneo
storage with GMF (Graphical modelling Framework), one of the technologies used in OPENCOSS
clients tools, is problematic. Furthermore, there was very little information and community
support on the Internet for such configuration. It was decided to evaluate GMF with CDO storage,
which ranked second in our technology evaluation. The integration proved to work reasonably
well, thus CDO technology has been chosen to implement OPENCOSS platform storage
compatible with EMF models.

CDO Protocol

PostgreSQL
database

port: 2036

port: 5432
JDBC Protocol

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 24 of 52

2.5.2 CDO server implementation
Initialization of CDO server storage for OPENCOSS platform has been implemented in the
StandaloneCDOServer.java class. The CDO server is started together with OPENCOSS server
Apache Tomcat. There can be various OPENCOSS server web applications deployed on Apache
Tomcat. For the 2nd prototype, org.opencoss.webapp.reports webapp facilitates OPENCOSS web
reports and org.opencoss.webapp.cdo application runs the CDO server itself. The
org.opencoss.webapp.cdo web application uses Java Spring framework, and based on the
configuration specified in webapp\WEB-INF\applicationContext.xml, it instantiates
StandaloneCDOServer class when Apache Tomcat is started.

 <bean class="org.opencoss.storage.cdo.StandaloneCDOServer">

 </bean>

This constructor of the class initializes the CDO server for OPENCOSS, i.e.:
• It connects to PostreSQL database, which is a backend with actual data storage
• It sets up CDO server and starts to listen to requests from CDO clients on the

preconfigured port

The settings, both of PostgreSQL database and CDO port can be set up in opencoss-properties.xml
configuration file. The file is read from the operating system’s user home directory and has the
following structure:

<properties>

 <entry key="dbHost">10.9.1.25</entry>

 <entry key="dbPort">5432</entry>

 <entry key="dbName">cdo-opencoss</entry>

 <entry key="dbUser">opencossdbms</entry>

 <entry key="dbPassword">opencossdbms</entry>

 <entry key="serverAddress">localhost:2036</entry>

</properties>

The details of the file configuration have been described in OPENCOSS Platform tool user manual
chapter.

2.5.3 Accessing the CDO server from source code
This chapter briefly describes the source code used to access the CDO server from client side,
both from OPENCOSS clients and a server.

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 25 of 52

2.5.3.1 Accessing the CDO server from OPENCOSS server source code
As described in previous chapters, any piece of source code that accesses OPENCOSS data
storage, i.e. the CDO server, has been designed to follow a DAO (Data Access Object) approach.
The implementation of DAO classes has been placed in org.opencoss.webapp.reports.dao package.

When any DAO class needs to access CDO storage, it calls StandaloneCDOAccessor.java object,
which implements a common way of connecting to OPENCOSS data repository. The constructor of
this class initiates a CDO connection to the server.

Similarly as in the case of the CDO server, the connection settings are read from opencoss-
properties.xml configuration file.

2.5.3.2 Accessing the CDO server from OPENCOSS client code
OPENCOSS clients, which have been implemented as Eclipse plugins and can run on any user
machine, have a separate configuration, which allows user to specify CDO server connection
settings. It is accessible for users in Eclipse Preferences menu.

In clients’ source code, the following CDO library invocation is used in order to connect to the
CDO server:

org.eclipse.emf.cdo.dawn.util.connection.CDOConnectionUtil.instance.init(

 PreferenceConstants.getRepositoryName(),

 PreferenceConstants.getProtocol(),

 PreferenceConstants.getServerName());

 CDOConnectionUtil.instance.openSession();

2.6 Evidence REST API and initial integration with QM

2.6.1 Overview
The org.opencoss.rest.qm module is responsible for integrating external tools within the
OPENCOSS platform to provide additional services to the platform. The initial goal of such
integration was to allow non-java software modules to provide some of the OPENCOSS
functionalities by using a specific REST API to browse and update the objects manipulated by the
OPENCOSS platform. As an example of such integration, QM was chosen as a candidate
technology to provide the impact analysis functionality of the OPENCOSS platform.

QM is an artefact manager tool that uses a certification project model to access artefacts of a
safety project, to construct traceability links, and from that information to provide several
functionalities to help in the certification process (impact analysis, documentation aggregation,
and artefact life cycle management).

2.6.2 Integration details
In order to integrate an external tool for such a central functionality, the tool needs to have
access to the complete database of artefacts and traceability links (e.g. Artefact relationships
database).

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 26 of 52

To do so, several REST functions are provided:
• ArtefactService/getArtefacts, returning the complete list of artefacts
• ArtefactService/{uid}, returning the details on a single artefact
• ArtefactService /{uid}/artefactParts, returning the sub-artefacts
• ArtefactService/{uid}/artefactRels, returning the list of artefact relationships
• ArtefactRelService, returning the complete list of artefact relationships

On QM side, we used two different mechanisms to perform the integration:
• QM abstracts the means of accessing resources by using a concept of ‘location’. So we

implemented a new class of locations that use the above REST methods to give it access to
the OPENCOSS-managed artefacts.

• To handle traceability links, we could also import the OPENCOSS artefact relationship
database in the form of “traceability matrix” that is then used by QM to instantiate its own
internal links.

2.6.3 Results
This integration has finally been cancelled for several reasons:

- The amount of messages that needed to be defined in order to provide a proper impact
analysis was very large, and implementing all of them would have taken a significant time,
greater than implementing the impact analysis functionality directly.

- The performance of such integration is also not great. In particular, for such a feature, the
external tool needs to access all objects of the OPENCOSS platform, as well as their
relationships. This leads to an almost complete duplication of the data between the
OPENCOSS platform and the tool.

- Finally, such internal feature is really dependent of the CCL language and integrating a
non-CCL tool leads to lowered functionalities, as there cannot be an exact match between
this tool’s data and functionalities with the data stored as CCL.

2.7 Evidence REST API and integration with medini analyze

2.7.1 Overview
Another potential use case for offering an API to external programs is the integration with existing
safety assurance tools, i.e. tools used by safety analysts and engineers to perform safety analysis
as FMEA, FTA, HARA or any other kind of method proposed by safety standards. The goal of such
integration is to allow other tools that are not based on CCL or OPENCOSS to export their
artefacts to the OPENCOSS platform in a uniform and cross-platform manner by using a dedicated
REST API to create, read, update and delete (CRUD) artefacts in the OPENCOSS platform. The
medini analyse tool – a commercial model based tool that supports multiple safety analysis
techniques – was used as a proof of concept integration.

2.7.2 Integration details
In order to export artefact data from the external tool, the REST API has to offer typical CRUD
(Create, Read, Update and Delete) style operations for the complete CCL Artefact meta-model
plus a small set of navigation and exploration features. E.g. the tool is typically used by a safety

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 27 of 52

engineer that is working for a certain project, hence has to export the artefacts to the right
assurance project in the OPENCOSS platform. All meta-information about an artefact (technique,
version, description, additional properties etc. are exported by the tool. However, the real data
are kept in the domain of the tool and need to be referenced from the platform data. This a tricky
part of the integration because there is no common way of tool data storage. Some tools use
proprietary databases where they store the data, others just store all data in local files. In both
cases it is difficult to store a reliable location of the data to the OPNCOSS server. The OPENCOSSs
platform is currently prepared to either store references to Subversion entries or an arbitrary URL
not further analysed by OPENCOSS. If the tool does not support Subversion, a proprietary URL has
to be encoded and stored that later can be used to find and open the document resp. data.

The medini tool supports multiple different working styles. The user may use Subversion to store
its project data but is not forced to do so. He may also archive the complete project as a ZIP file
and store it somewhere else on its own. Furthermore the tool is a rich client tool that is working
solely on local files. Creating a reliable URL to address safety evidence data is not possible without
using a central storage for these files and address them. To cope with the situation a small REST
service as also implemented on the tool side to provide reverse lookup of artefact URLs in the
tool.

2.7.3 Results
Due to cancelation of the first integration approach, the development of the second one did start
rather late. The service uses the same techniques as the other REST APIS as mentioned before.
However, to keep it lightweight and to support other integration scenarios, there is no
dependency to any web-server or bean framework. Instead a very slim service module was
implemented that can be launched as a separate service executable and that can be attached to
either the OPENCOSS central server or to any in-memory artefact resource. That way the pure
REST service in independent from the artefact management which can be the OPENCOSS platform
but in turn also an arbitrary other artefact management tool. A test driven development style
helped to write test cases against the REST API at the same time as implementing the
functionality behind the service. The implementation was split into three plugins, one base plugin
defining the API and data objects, usable by server as well as client side. Another plugin that
implements the management part and that can be attached to the OPENCOSS central server or to
an in-memory volatile data storage. The third and last plugin provides API and integration tests.

org.opencoss.ws.evm

org.opencoss.ws.evm.emf

org.opencoss.ws.evm.test

Figure 9. Evidence REST API bundles

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 28 of 52

The service was tested at API level using plain browser tools. For that a browser as Firefox is
sufficient. In order to send correct REST service request, typically Addons as "RESTClient" arre
required but can be easily installed via the Browser extension mechanism. In general the API
accepts four kinds of HTTP requests, GET to read from the service, POST to create something new
on the server, PUT to update existing elements and DELETE to remove an element on the server.
Other methods are not supported. The method needs to be set in the REST Client before actually
sending a request. The service only accepts (and sends) JSON as content type (except for some
convenient calls as “ping”). The following picture shows an excerpt of supported API calls, the
required URL path and the expected resp. the replied content types.

Figure 10. Allowed evidence REST API method calls and data formats (excerpt)

In theory the complete API can be covered using a plain browser + REST Addons, even though this
is not a native “safety assurance” or “evidence management” tool. However, using the RETS API it
would be possible in the future to write browser based applications too. The picture below shows
the result of a “list artefacts” call.

Figure 11. Test call result against REST API using plain browser

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 29 of 52

One big advantage of REST and data formats as JSON is the wide acceptance of both techniques
and thus the availability of good and stable frameworks. The safety assurance tool medini analyse
is an eclipse RCP based application. For Java stable libraries as Jackson & Jettison (JSON
Marshalling), Jersey (REST Client & Server), and Jetty (HTTP Server) do exist and are widely used.
Good documentation and examples are available. Based on these libraries, a proof of concept
integration was developed as an add-on to the commercial safety tool medini analyse. The proof
of concept implementation is fully based on the assumed integration scenario for OSLC described
in chapter 5.3.3: safety engineers that are working with medini analyse are executing safety
analysis and want to export the results of these analysis as artefacts to the OPENCOSS platform.
The tool supports several different safety analysis techniques as FTA, FMEA, HARA, HAZOP and
some more. From the viewpoint of OPENCOSS they are all treated similar with the only difference
that different techniques were used.

The proof of concept implementation comes with an additional eclipse exporter that allows a user
to export or update arbitrary artefacts to the platform. The tools connects to the server using the
REST API and synchronizes all available artefacts in the user’s tool workspace – selected or child of
the selection – with artefacts in the OC platform. Artefacts that are newly created can be
exported the first time. Artefacts that have been already exported in the past can be updated, i.e.
a new version of the artefact is created in the platform.

Figure 12. medini analyze exporter add-in using REST API

An expert view lets the user see the impact of the synchronization before actually executing it.
New artefacts (artefacts that were never exported before) are marked as additions while already
exported artefacts are marked as updates mixed with information of current version available on
the server side (e.g. last updated current version etc.). The user is able to make a final decision
upon which artefact he ultimately wants to export to the OC repository.

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 30 of 52

Figure 13. Artefact export wizard add-in for medini analyze

After synchronization, required meta data about the artefact GUID, about were artefacts was
exported, and when the last update was done is stored internally in medini analyse as
annotations to the safety models. The information are used on later synchronization to keep a 1:1
trace relation with the artefacts on the server.

2.8 Change Impact Analysis

Change Impact Analysis (IA) logic has been developed in org.opencoss.impactanalysis Java
package. The implementation classes provide an impact analysis engine, which can be used in any
place of OPENCOSS source code. Currently, the engine is used in OPENCOSS client Eclipse plugins
in Evidence Editor functionality.

Hereafter there is a detailed description presenting how OPENCOSS Change Impact Analysis
engine works and how to use it in a source code.

• ImpactAnalyser impactAnalyser = new ImpactAnalyser();
The above code instantiates ImpactAnalyzer class which contains IA engine’s code.

• Let us assume that user modifies some artefact (which has theArtefactCODId id) using
OPENCOSS client editor. Upon the modification, a CCL AssuranceAssetEvent with
EventKind.MODIFICATION is assigned to the changed Artefact.

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 31 of 52

• Now, the change impact analysis engine can be run, in order to detect what kind of effect
the change has on the related artefacts. In order to run IA in the source code, the
following code can be issued:

 List<ArtefactsRelationImpact> artefactsRelationImpacts =

 impactAnalyser.listArtefactsRelationImpacts(theArtefactCDOId, EventKind.MODIFICATION));

listArtefactsRelationImpacts() method takes the following parameters:
o artefactCDOId - it is an Id of the artefact object from which the IA should be started
o eventKind - the kind of event for which the analysis should start on the initial

artefact. Two basic values of EventType taking part in Impact Analysis are
EventKind.MODIFICATION and EventKind.REVOCATION.

In our example, we are passing EventKind.MODIFICATION, because the artefact has been
changed and we want to analyse this modification effect.

• The change impact analysis algorithm implemented in listArtefactsRelationImpacts() is
described below.

The main pieces of information used by the IA engine are relations between Artefacts
objects stored in ArtefactRel CCL entity.

Figure 14. Artefact metamodel

Two Artefacts are considered related when there is an ArtefactRel instance pointing to one
of them as a source and another of them as a target. Please note that ArtefactRel has
modificationEffect and revocationEffect attributes.

Note: An ArtefactRel object for specific two artefacts can be added in the following ways:
o A user can add this entity manually in the Evidence Editor of OPENCOSS platform

client
o ArtefactRel entity is added automatically when a parent-child relation is

established between two artefacts. When adding artefactPart to parentArtefact, a
new ArtefactRel object is created, with modificationEffect=MODIFY and
revocationEffect=MODIFY, source pointing to parentArtefact and target to
artefactPart.

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 32 of 52

It has been arranged that a direction of analysis flow is the following: ArtefactRel “target
affects the source”. When impact analysis is started:

o It starts from artefactCDOId for the specific EventKind (either Modify or Revoke),
o It looks into the related ArtefactRel (for which the artefactCDOId is a target) object
o It traverses to the artefact pointed by ArtefactRel source
o Depending on the initial EventKind (either Modify or Revoke), it takes the value of

modificationEffect or revocationEffect from the ArtefactRel and assumes the
appropriate AssuranceAssetEvent on the reached source artefact.

For example, let’s assume that there are the following Artefact and ArtefactRel
dependencies:

ArtefactA ---- ArtefactRelA(ModificationEffect:MODIFY, RevocationEffect:REVOKE) ---> ArtefactB

ArtefactB ---- ArtefactRelB(ModificationEffect:REVOKE, RevocationEffect:REVOKE) ---> ArtefactC

ArtefactC ---- ArtefactRelC(ModificationEffect:MODIFY, RevocationEffect:VALIDATE) ---> ArtefactD

ArtefactD ---- ArtefactRelD(ModificationEffect:MODIFY, RevocationEffect:REVOKE) ---> ArtefactE

o The engine starts with EventKind.MODIFICATION for ArtefactA and navigates via
ArtefactRelA to ArtefactB and because ArtefactRelA:ModificationEffect equals
MODIFY, it reaches ArtefactB with EventKind.MODIFICATION change effect.
Note: this change effect event is not saved in storage yet. Now it is only used for
further traversal, and will be returned as part of the result of
listArtefactsRelationImpacts() method.

o The engine continues from ArtefactB with EventKind.MODIFICATION and navigates
to ArtefactC and because ArtefactRelB:ModificationEffect equals REVOKE, it
reaches ArtefactC with EventKind.REVOKE change effect.

o The engine continues from ArtefactC with EventKind.REVOCATION and traversal
path ends here because of ArtefactRelC:RevocationEffect equals VALIDATE.

• Change effects of the above traversal are returned by listArtefactsRelationImpacts method
as a List<ArtefactsRelationImpact> result object which contains the following information:

ArtefactRelationImpact {

 int recursionDepth,

 ArtefactRel originalArtefactRel,

 ModificationEffect impactedModificationEffect

}

originalArtefactRel - is an original ArtefactRel information, containing relation traversal
ModificationEffect and target and source Artefacts.

impactedModificationEffect - is the exact change effect detected by IA path traversal.

In our example, the result would be the following:
 (1, ArtefactRelA, ModificationEffect.MODIFY)

 (2, ArtefactRelB, ModificationEffect.REVOKE)

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 33 of 52

• The result of the above analysis can be displayed using the below code.

String result = impactAnalyser.visualizeArtefactsRelationImpacts(artefactsRelationImpacts);

For the prototype implementation, the result visualization has been implemented as a simple
textual output. It can be further extended in the future.
• User observes the IA result output and can take one of two optional actions:

o Abandon the artefact change. In this case the algorithm ends here.
o Commit ArtefactA change and execute all change effects detected by the impact

analysis and returned as List<ArtefactsRelationImpact>

• In order to execute all the actions detected by change impact analysis, the following code
can be called

impactAnalyser.executeArtefactsRelationImpacts(artefactsRelationImpacts);

As a result of this invocation, AssuranceAssetEvent items are added to the artefacts along the
impact analysis result path.

Above algorithm affects the Artefact lifecycle. States of this lifecycle are presented on the figure
below.

Figure 15. Artefact lifecycle from the IA point of view

Some of these states require action from user – like “To validate” and “To modify”. To address
some restrictions of CCL these two states are recognized by the presence of given event date or
lack of it. This signals that action from the user is required and after this action date of the event
is set.

IA-induced user actions that need to be performed in the assurance project are presented on
Compliance Estimation Report and Compliance Report. These reports are described in work
package 7 in details. A screenshot of the web interface is presented below to show situation,

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 34 of 52

when “To validate” and “To modify” action are required from the user as a result of IA execution.
User simply clicks “Modified” and “Validated” action buttons to report performed action.

Figure 16. Web interface showing two IA-induced actions required to be taken by user

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 35 of 52

3 OPENCOSS Platform tool user manual

The manual describing how to use all the functionalities implemented in the OPENCOSS platform
can be found in the OPENCOSS SVN repository at:

 https://svn.win.tue.nl/repos/opencoss/WP-
transversal/Implementation/ThirdPrototype/OPENCOSS_Prototype3_UserManual.doc

https://svn.win.tue.nl/repos/opencoss/WP-transversal/Implementation/ThirdPrototype/OPENCOSS_Prototype3_UserManual.doc
https://svn.win.tue.nl/repos/opencoss/WP-transversal/Implementation/ThirdPrototype/OPENCOSS_Prototype3_UserManual.doc

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 36 of 52

4 OPENCOSS Platform tool developer manual

This chapter provides detailed instructions for software developers. It explains how to install and
set up the development infrastructure for OPENCOSS platform tools, and how to run the tools in
the development mode. Client and server environments are presented in the chapters below.

4.1 Developer manual - Server

This chapter contains instructions how to set up OPENCOSS platform server development and
build environments. In particular it describes:

• Installation of OPENCOSS platform database
• Setting up Eclipse IDE, source code checkout, and compilation
• Running OPENCOSS server in Eclipse IDE debugger
• Building OPENCOSS server web application war files

4.1.1 Installation of OPENCOSS platform database

4.1.1.1 Installation of PostgreSQL database
OPENCOSS platform tools use PostgreSQL database. The detailed description of how to download
and install PostgreSQL database server has been provided in OPENCOSS Platform tool user
manual, in the “Installation of PostgreSQL database” subchapter. Please follow the instructions
presented there.

4.1.1.2 Creating OPENCOSS database in PostgreSQL
After PostgreSQL server has been created, a database for OPENCOSS tables should be prepared.
Please follow the instructions from OPENCOSS Platform tool user manual, “Creating OPENCOSS
database in PostgreSQL” chapter.

4.1.2 Installation and setup of Eclipse IDE
This chapter presents how to install and configure Eclipse IDE for OPENCOSS development.
Checking out the code from source code repository is also described.

4.1.2.1 Installation of Java
Java JDK 8 (Java Development Kit) is required in order to compile and run OPENCOSS server from
the source code. Having JRE (Java Runtime Environment) only is not enough. In order to check if
you have JDK installed, please open a command prompt and type:

> javac -version

If JDK has been installed, javac -version output, eg. javac 1.8.0_22, will be presented. In case
javac is not a recognized command, please download JDK 8 and install it from
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 37 of 52

4.1.2.2 Installation of Eclipse IDE
Eclipse IDE is needed to work with OPENCOSS source code. The instructions for downloading and
configuring it are as follows:

1. Download the latest version of Eclipse IDE for Java EE Developers from
http://www.eclipse.org/downloads/.

2. Install it by following the instructions provided on the web site.
3. Run the Eclipse IDE pointing to a new empty workspace folder.
4. So that your Eclipse environment uses all the required libraries (e.g. EMF, EEF, GMF, CDO)

necessary for OPECOSS source code, please set up your Eclipse to use the target platform,
i.e.:
• Download OPENCOSS Eclipse target platform bundle from the following location

(depending on your platform):
http://77.252.162.49:8080/opencoss/targetPlatform/20140227/OpencossTargetPlatfor
m_20140227_Win_x64_bundle.zip
http://77.252.162.49:8080/opencoss/targetPlatform/20140227/OpencossTargetPlatfor
m_20140227_Win_32_bundle.zip
http://77.252.162.49:8080/opencoss/targetPlatform/20140227/OpencossTargetPlatfor
m_20140227_Linux_x64_bundle.tar.gz

• Unzip the package into your target folder
• Configure your Eclipse to use the target platform which has just been downloaded. In

order to do this:
o Go to the unpacked target platform package and open “How to use OPENCOSS

Eclipse Target Platform.pdf” document which is inside.
Follow the instruction from this document starting from step 2.2 there: “2.2
Configure target platform in your fresh Eclipse installation downloaded…”

Please note that all the steps describe changes to be done in your Eclipse installation, not
in the target platform.

5. Install Eclipse Subversive plugin for managing source code from a SVN repository. In order
to do this, please go to http://www.eclipse.org/subversive/downloads.php page and
follow the instructions provided in the “Install the Latest Stable Build” section there.
• Select the option presented in the screenshot below

Figure 17. SVN option presented in the screenshot

http://www.eclipse.org/downloads/
http://77.252.162.49:8080/opencoss/targetPlatform/20140227/OpencossTargetPlatform_20140227_Win_x64_bundle.zip
http://77.252.162.49:8080/opencoss/targetPlatform/20140227/OpencossTargetPlatform_20140227_Win_x64_bundle.zip
http://77.252.162.49:8080/opencoss/targetPlatform/20140227/OpencossTargetPlatform_20140227_Win_32_bundle.zip
http://77.252.162.49:8080/opencoss/targetPlatform/20140227/OpencossTargetPlatform_20140227_Win_32_bundle.zip
http://77.252.162.49:8080/opencoss/targetPlatform/20140227/OpencossTargetPlatform_20140227_Linux_x64_bundle.tar.gz
http://77.252.162.49:8080/opencoss/targetPlatform/20140227/OpencossTargetPlatform_20140227_Linux_x64_bundle.tar.gz
http://www.eclipse.org/subversive/downloads.php

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 38 of 52

• Eclipse IDE will be restarted. Select a newly installed perspective: “SVN Repository

Exploring”

Figure 18:Opening SVN Repository Explorer

• “Install SVN Connectors” window will appear. Mark “SVN Kit 1.7.11” and press
Finish

Figure 19.SVN connectors

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 39 of 52

• A new window will appear. Select both options showed on the dialog.

Figure 20. Installing connector

• The Subversive plugin should be fully installed now.

4.1.2.3 Check out OPENCOSS platform server source code
• In your Eclipse IDE, please go to SVN Perspective. Press “Add the new repository” button

 and provide the OPENCOSS source code repository URL
https://svn.win.tue.nl/repos/opencoss-code, and a valid SVN user and password.

Figure 21. Entering repository connection

• Please select and check out the following projects into your workspace:

o All projects from trunk/common/*

https://svn.win.tue.nl/repos/opencoss-code

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 40 of 52

o The following projects from trunk/prototype/plugins:

Figure 22. Project trunks

• All the projects source code should compile.

4.1.3 Running the server in Eclipse debugger

4.1.3.1 Setting up Apache Tomcat webserver
1. Download Apache Tomcat from http://tomcat.apache.org/download-70.cgi. Unpack it in

your target folder.

2. In Eclipse, define tomcat_home variable by choosing: Run -> Debug configurations -> Java
Application -> org.opencoss.webapps -> Arguments

Figure 23. Configuring Eclipse TOMCAT

Edit Variables -> New
Please enter the following data:
Name – tomcat_home,

http://tomcat.apache.org/download-70.cgi

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 41 of 52

Value – [path to your Apache Tomcat folder]. This value will be referred to as
[TOMCAT_FOLDER] in the remaining part of this document.

Figure 24. Configuring TOMCAT folder

3. Override your [TOMCAT_FOLDER]\conf\server.xml file

with org.opencoss.build\tomcat\conf\server.xml file from your workspace.

4. Edit this file and modify , docBase and workDir attributes of <context> elements.
For docbase – please enter a path to webapp subfolder of your respective project location
in workspace.
For workDir – please enter a path to work subfolder of your respective project location in
workspace.
For example:

For cdo:

<Context path="cdo" reloadable="true"
docBase="/home/dariuszo/workplace/code-staging/org.opencoss.webapp.cdo/webapp"
workDir="/home/dariuszo/workplace/code-staging/org.opencoss.webapp.cdo/work”
 …
</Context>

After modifications:
<Context path="cdo" reloadable="true" docBase="
d:\home\john\OPENCOSS_WORKSPACE/org.opencoss.webapp.cdo/webapp"
workDir="d:\home\john\OPENCOSS_WORKSPACE/org.opencoss.webapp.cdo/work”
 …
</Context>

For opencoss-report:

<Context path="opencoss-report" reloadable="true"
docBase="/home/dariuszo/workplace/code-staging/org.opencoss.webapp.reports/webapp"
workDir="/home/dariuszo/workplace/code-staging/org.opencoss.webapp.reports/work” …
</Context>

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 42 of 52

After modifications:

<Context path=" opencoss-report" reloadable="true"
docBase="d:\home\john\OPENCOSS_WORKSPACE/org.opencoss.webapp.reports/webapp"
workDir="d:\home\john\OPENCOSS_WORKSPACE/org.opencoss.webapp.reports/work” … </Context>

5. Define Apache Tomcat user by adding the below section to <tomcat-users> node in

[TOMCAT_FOLDER]\conf\tomcat-users.xml file:

<tomcat-users>

<role rolename="manager-gui"/>
<user username="tomcat" password="tomcat" roles="manager-gui"/>

</tomcat-users>

User and password to your local Tomcat will be: tomcat/tomcat.

6. Copy DevloaderTomcat7.jar from org.opencoss.build\devloader to [TOMCAT_FOLDER]\lib.

4.1.3.2 Setup a workspace to run a debugger

1. Below we use term “system user home directory”. Depending on your system this might
be:

o Windows XP: c:\Documents and Settings\<username>\
o Windows 7/8: c:\Users\<username>\
o Linux: /home/<username>/

2. Create devloaderWorkspaces file in your system user home directory and fill it with

information about location of “workspace1” (being the OPENCOSS eclipse workspace
root). This file content should look similar to this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
 <entry key="workspace1">/home/dariuszo/workplace/eclipse.opencoss.workspace</entry>
</properties>

3. Adjust OPENCOSS server configuration file settings.

Go to org.opencoss.build/conf-opencoss folder and move opencoss-properties.xml file from
this location to the operating system user home directory. This is the location from where
OPENCOSS server reads opencoss-properties.xml settings file.

Edit opencoss-properties.xml settings file.
The most important entries in this file are:

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 43 of 52

• "dbUser" / “dbPassword”
These are PostgreSQL user credentials. Please specify a valid user and password for
your PostgreSQL server.

• “serverAddress”
This is CDO repository name which is broadcasted by the CDO server. The
“localhost” default value should be replaced with the specific server machine host
name in order OPENCOSS tool clients are able to connect to this server repository
from other hosts. Please modify the following entry:

 <entry key="serverAddress">localhost:2036</entry>

 by replacing “localhost” with the specific server host name, e.g.:

 <entry key="serverAddress">host-name.acme.com:2036</entry>

4. Run project in debug mode:

5. The following messages should be displayed on the console:

6. Run your web browser and enter http://localhost:8080 - Apache Tomcat home page
should be presented.
OPENCOSS server web reports should be accessible at http://localhost:8080/opencoss-
reports/ .

http://localhost:8080/
http://localhost:8080/opencoss-reports/
http://localhost:8080/opencoss-reports/

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 44 of 52

4.1.4 Building OPENCOSS server web application war files
OPENCOSS server source code comes with an automation script that supports the building of web
application war files from the code projects. The script has been developed in Gradle technology.
A configuration procedure and build scripts execution are described below.

4.1.4.1 Installation of Gradle framework
• Download Gradle bundle from http://www.gradle.org/installation
• Unzip the downloaded Gradle package to the target folder, e.g. “C:\Program Files”. A gradle-

x.x subdirectory will be created from the archive, where x.x is the version number.
• Add the location of your Gradle “bin” folder to your operating system PATH variable. For

example on Windows this can be done by opening system properties window (WinKey +
Pause), selecting “Advanced system settings” tab, pressing “Environment Variables” button,
and then adding the bin folder path (e.g. “C:\Program Files\gradle-x.x\bin”) to the end of your
PATH variable. Please make sure not to use any quotation marks for the path value even if it
contains spaces.

• In the same dialog, make sure that JAVA_HOME exists in your user variables or in the system
variables, and it is set to the location of your JDK (e.g. C:\Program Files\Java\jdk1.7.0_06) and
that %JAVA_HOME%\bin is in your PATH environment variable.

• Open a new command prompt (on Windows type cmd in Start menu) and run
gradle –version
to verify that the framework has been installed correctly.

4.1.4.2 Configuration of environment
• Go to org.opencoss.build/gradleCopyToWorkspaceRoot folder and copy build.gradle and

settings.gradle files from this location to your Eclipse workspace.
• Edit build.gradle file and adjust tomcatHome variable to your local Apache Tomcat location:

tomcatHome='/home/john/workplace/tools/[TOMCAT_FOLDER]'

4.1.4.3 Building web application war files
• In the command prompt, go to your workspace folder.

• Run gradle clean command.

http://www.gradle.org/installation

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 45 of 52

Figure 25. Command line : Run gradle clean command

• Run gradle command.

Figure 26 Command line : Run gradle command.

• The web application war files should be created in the \build\libs output folders on the
following projects:
org.opencoss.webapp.reports
org.opencoss.webapp.rest.qm
org.opencoss.webapp.cdo
org.opencoss.webapp.apd

4.2 Developer manual - Client

A document for the developers has been elaborated, which includes step by step instructions of
how to set up their development environments with all the 2nd prototype’s client source code.
This guide can be found at:

https://svn.win.tue.nl/repos/opencoss-
code/trunk/prototype/doc/OPENCOSS_Prototype2_Client_DeveloperGuide.doc

https://svn.win.tue.nl/repos/opencoss-code/trunk/prototype/doc/OPENCOSS_Prototype2_Client_DeveloperGuide.doc
https://svn.win.tue.nl/repos/opencoss-code/trunk/prototype/doc/OPENCOSS_Prototype2_Client_DeveloperGuide.doc

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 46 of 52

5 Research conducted and plans for future implementation

Parallel to the core software development activities for D6.6, additional research has been
conducted in order to pave the way for future implementation. The main research areas are
described in the following subsections.

5.1 Evidence Evaluation

Evidence evaluation is one of the functional areas defined for the evidence management service
infrastructure in D6.2. This functional area is concerned with the assessment of the completeness
and adequacy of the body of evidence of an assurance project, and the assessment of specific
criteria defined for evaluation of individual evidence items. Functionality has been presented
above for assessing the completeness and adequacy of the body evidence with regards to the
baseline of an assurance project (gap analysis functionality). In addition, work has been
performed for the evaluation of individual evidence items.

This work has been developed in the scope of both WP5 and WP6, as evidence evaluation can
depend on the argumentation structure for which evidence is used. Details about the work can be
found in WP5 deliverables. For clarity and simplicity, we have decided to include the detailed
information only in WP5 instead of dividing the information among WP5-6 deliverables. We
summarize the work as follows, so that the reader gets an overall understanding of it:
1. Experts on safety assurance and certification were interviewed for eliciting the information

that makes them develop confidence in evidence items
2. A taxonomy of criteria was then specified based on the insights provided by the interviewees

(Figure 3)
3. Afterwards, a set of generic questions and a process were specified for evaluating evidence

items according to the criteria
4. Currently, tool support is under development and the approach is being evaluated with

information from past safety assurance and certification projects. It is expected to integrate
the tool into the overall OPENCOSS tool platform.

In essence, the approach and tool developed for evaluation of individual evidence items can be
used for the items in isolation (mainly WP6 scope) or in the context of an argumentation structure
(mainly WP5 scope).

5.2 Impact Analysis

Impact analysis, and more concretely evidence change impact analysis, is another functional area
defined for the evidence management service infrastructure (see D6.2). It is concerned with the
identification and analysis of possible effects resulting from changes in the body of evidence of an
assurance project. We have presented above the impact analysis functionality that has already
been implemented. In addition to this, work on impact analysis has been performed for analyzing
in depth current practices and needs in industry and determining specific impact analysis areas
that might require our attention.

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 47 of 52

Figure 27. Overview of the approach for evaluation of individual evidence items

We introduced a questionnaire-based survey on evidence change impact analysis in D6.3. The
questions referred to the circumstances under which safety evidence change impact analysis is
addressed, the tool support used, and the challenges faced. We obtained 97 valid responses
representing 16 application domains (including automotive, avionics, and railway), 28 countries,
and 47 safety standards. The results suggest that safety evidence change impact analysis is most
frequently addressed during system development and mainly based on system specifications
changes, and that the level of automation is low. In fact, the most common challenge is
insufficient tool support. Some outstanding findings are that over 40% of the respondents have
dealt with system re-certification for a different application domain and 50% for a different
standard, safety case evolution should be better managed, and no commercial impact analysis
tool has been reported as used for all artefact types. This makes us confident in the importance of
the impact analysis work in OPENCOSS, including (re)certification across product versions,
systems, standards, and domains, and in the need for its results. Guidance based on the analysis
of the results will be defined in D6.7 (Evidence management service infrastructure:
Methodological guidance).

The impact analysis areas that might be further studied include:
1. Types of relationships between artefacts/pieces of evidence (e.g., structural) and implications

in the type of change impact

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 48 of 52

2. Types of change impact between specific types of artefacts (e.g., requirements and source
code) and their consequences

3. Implications for impact analysis of the evolution and (re)use of artefacts/pieces of evidence
(different versions of an artefact, component reuse in several projects...)

4. Artefact change impact on other assurance assets (activities, arguments, claims…), and vice-
versa

5. Impact analysis as a means for facilitating decision making (e.g., regarding cost and time) in
situations such as component reuse and (re)certification against a different standard or in a
different domain.

6. Use of assurance cases as the basis for impact analysis

Finally, an evidence lifecycle can be specified as a way to verify that suitable impact analysis
support is provided. Available evidence lifecycles (e.g., in SACM) do not take impact analysis
needs into account, and it is not possible to explicitly specify currently with the CCL if an artefact
(or an assurance asset in general) is valid or invalid after a change. It has to be studied if extending
the CCL is really necessary, as it seems that such information can be derived based on its current
structured. In essence, impact analysis and evidence evolution with the CCL must be further
studied to determine its suitability.

Future research on impact analysis is also beyond the scope of WP6. It relates to the rest of
technical WPs (e.g., vocabulary aspects in WP4, argumentation aspects in WP5, and activities
aspects in WP7).

5.3 Approach to OSLC

As outlined in D6.5, it has been agreed “that OSLC is not going to be used as an implementation
technology in the next prototype phase” mainly due to the complexity of tool setup and of the
required infrastructure. Furthermore, the key innovations of the OPENCOSS project are largely
independent of a particular protocol or technology to exchange data between tools; the project
prefers to focus on core functionalities rather than new technology adoption.

However, as mentioned in D6.5 already as well, OSLC is more than just another implementation
technology but rather a complete tool integration approach. The idea of avoiding known
integration pitfalls (point-to-point integration complexity, exchange, conversion and duplication
of a huge amount of data) by above all keeping the data in the respective domain specific tools is
fully applicable to the OPENCOSS initiative. Hence integration of tools as for example QM or
medini did follow this approach in general.

Secondly, OSLC describes a technology foundation that is based on open Web standards,
protocols and emerging technologies such as REST and JSON. This is very close – if not equal – to
what has been used in WP6 development. Interactions between tools and the OPENCOSS
platform have been all realized using a RESTful API and JSON as exchange format, similar to what
is proposed by OSLC, but leaving the complex aspects related to RDF, resource handling, or OAuth
handshakes out.

Last but not least, there is a set of specifications already available for specific domains, though no
working group is actually working on the integration of safety evidence and assurance tools. The
closest match to “evidence management” in OPENCOSS is the specification done by the OSLC

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 49 of 52

“Asset Management” working group. A rough comparison was made with the general conclusion
that although there are differences in the detail, the general concepts and structure are similar.

5.3.1 Comparison of OSLC Assets with CCL Artefacts
The OSLC Asset Management 2.0 Specification has been designed for “tools […] that perform
asset searching and retrieval activities”. An Artifact in that specifications is treated as
“interchangeably with 'work product' or 'file'” while an Asset aka Asset Resource “may have zero
or more artifacts.”

Figure 28. Simplified overview on Asset Management objects

In CCL, the metamodel looks a bit different, but not significantly. Artefacts – according to CCL spec
an “individual, and identifiable unit of data managed in an assurance project”, and not necessarily
a file or similar kind of data – are organized in Artefact Models – similar to Asset Resource. An
additional Artefact Definition acts as a logical container for the various versions of the Artefact
itself. Media Resources are simply Resources with format and arbitrary location. Therefore, in
principle the CCL metamodel is rich enough to hold the same kind of information as the Asset
Management specification foresees for arbitrary Asset management tools. The biggest difference
is that the CCL for a good reason does not foresee to really hold the resource data since that is
outside the scope of OPENCOSS but rather left to external version control system and asset
management tools.

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 50 of 52

Figure 29. CCL meta model for evidence data

5.3.2 Import artifacts from tools
This use case follows the OSLC approach: evidence data are kept in the tool, simply meta-data
together with full qualified references back to the imported resource are imported. Data are
accessed via a REST API that is offered by the tool. A “read-only” API that only serves GET
requests is sufficient here. This approach is in line with the Subversion integration of the 1st
prototype.

Figure 30. Mockup of a REST based pull function for artefacts from external tools

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 51 of 52

5.3.3 Export artifacts to the OPENCOSS platform
This approach is complementary to the OSLC approach since data are actively exported from the
tool to the OPENCOSS platform. However, from a technological viewpoint the same techniques
are used. Meta-data are exported to the OPENCOSS platform using a REST API that accepts PU or
PUSH requests together with the respective JSON documents. The exported data again include
references back to the original resource in the external tool so that the OPENCOSS platform can
give access later and so that the meta-data are correctly traced back to the evidence data.

Figure 31. Mockup of a REST based push function for artefacts from external tools

5.3.4 Conclusion
It can be concluded that the integration of the OPENCOSS platform and external safety assurance
tools in WP6 has followed the OSLC principles without actually being OSLC compliant. The
compliance was not a criteria for the 3rd prototype phase but the general orientation towards the
OSLC idea was. Besides, OSLC is heavily evolving and its success as a real de-facto standard
(though likely) is still questionable. A simple mapping between the OSLC “Asset Management”
specification and the CCL “Evidence Management” part seems to be feasible, thus opening the
platform or the integrated tools to any OSLC consumer is a straightforward task that could be
done as a follow-up task. That means that the implementation adopted by OPENCOSS does not
preclude to conform to OSLC in the future.

Implementation of the evidence management service infrastructure

D6.6

FP7 project # 289011 Page 52 of 52

6 Conclusion

This document has summarized and presented the details of the software development
performed to implement evidence management in OPENCOSS tools done for the 2nd and 3rd
prototype of the platform.

Main functional areas and the most important requirements defined in D6.2 have been
implemented successfully. The less important requirements has been omitted in the final
OPENCOSS prototype implementation. The detailed list of implemented requirements is available
in the D3.3 document.

This document presented the exact implementation architecture, software technologies used and
their configuration. It described the most important pieces of the developed code and referred to
specific source code in the repository. It also presented the detailed user guide. Additionally, a
software development manual with instructions for computer engineers has been provided.

	Executive Summary
	1 Functionality implemented in OPENCOSS Platform tools
	2 Implementation architecture and source code description
	2.1 Client-server architecture with central data storage
	2.2 Source code description
	2.2.1 Server source code
	2.2.2 Client plugin source code

	2.3 Technologies used for implementing the OPENCOSS platform server
	2.3.1 Web server infrastructure
	2.3.2 Integration layer
	2.3.3 Communication layer for exposing web-enabled APIs
	2.3.4 Web framework

	2.4 Technologies used in implementation of the clients
	2.5 CDO Server implementation
	2.5.1 Teneo vs CDO
	2.5.2 CDO server implementation
	2.5.3 Accessing the CDO server from source code
	2.5.3.1 Accessing the CDO server from OPENCOSS server source code
	2.5.3.2 Accessing the CDO server from OPENCOSS client code

	2.6 Evidence REST API and initial integration with QM
	2.6.1 Overview
	2.6.2 Integration details
	2.6.3 Results

	2.7 Evidence REST API and integration with medini analyze
	2.7.1 Overview
	2.7.2 Integration details
	2.7.3 Results

	2.8 Change Impact Analysis

	3 OPENCOSS Platform tool user manual
	4 OPENCOSS Platform tool developer manual
	4.1 Developer manual - Server
	4.1.1 Installation of OPENCOSS platform database
	4.1.1.1 Installation of PostgreSQL database
	4.1.1.2 Creating OPENCOSS database in PostgreSQL

	4.1.2 Installation and setup of Eclipse IDE
	4.1.2.1 Installation of Java
	4.1.2.2 Installation of Eclipse IDE
	4.1.2.3 Check out OPENCOSS platform server source code

	4.1.3 Running the server in Eclipse debugger
	4.1.3.1 Setting up Apache Tomcat webserver
	4.1.3.2 Setup a workspace to run a debugger

	4.1.4 Building OPENCOSS server web application war files
	4.1.4.1 Installation of Gradle framework
	4.1.4.2 Configuration of environment
	4.1.4.3 Building web application war files

	4.2 Developer manual - Client

	5 Research conducted and plans for future implementation
	5.1 Evidence Evaluation
	5.2 Impact Analysis
	5.3 Approach to OSLC
	5.3.1 Comparison of OSLC Assets with CCL Artefacts
	5.3.2 Import artifacts from tools
	5.3.3 Export artifacts to the OPENCOSS platform
	5.3.4 Conclusion

	6 Conclusion

