
ABSTRACT

OCONNOR, TERRENCE J. Bluetooth Intrusion Detection. (Under the direction of
Professor Douglas Reeves),

Bluetooth, a protocol designed to replace peripheral cables, has grown steadily

over the last five years and includes a variety of applications. In near ubiquity now,

the Bluetooth protocol operates on a wide variety of mobile and wireless devices.

Several attacks exist that successfully target and exploit Bluetooth enabled devices.

This thesis describes the implementation of a network intrusion detection system for

discovering malicious Bluetooth traffic.

This work improves upon existing techniques, which only detect only a limited set

of known attacks through measuring anomalies in the power levels of the Bluetooth

device. This research illustrates the ability to efficiently and effectively detect a

wide variety of malicious traffic by utilizing pattern matching misuse detection. This

system identifies reconnaissance, denial of service, and information theft attacks on

Bluetooth enabled devices. In addition, this tool includes a visualization interface to

facilitate the understanding of Bluetooth enabled attacks. Furthermore, this system

implements an intrusion response based on attack classification.

This thesis presents the implementation of the Bluetooth Intrusion Detection Sys-

tem and demonstrates its detection, analysis, and response capabilities. The exper-

imental results show that the system can significantly improve the overall security

of an organization by identifying and responding to threats posed on the Bluetooth

protocol.
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Chapter 1

Introduction

1.1 Bluetooth-Enabled Technology

The Bluetooth Special Interest Group developed the Bluetooth, (IEEE 802.15.1

protocol), as a communications protocol for a multitude of mobile devices. In near

ubiquity now, over 15 million Bluetooth radios shipped per week in 2007 with over

1.8 billion Bluetooth devices in existence currently.[1, 2] Examples of Bluetooth de-

vices include smart-phones, handheld computers, hands-free audio devices, global-

positioning devices, and wireless peripherals. Bluetooth devices offer an attractive

target for hackers because physical access is not required to attack such device. Fur-

thermore, a multitude of attacks exist that can compromise the security of Bluetooth-

enabled devices. This thesis proposes a system for detecting malicious use of the

Bluetooth communications protocol.

1.2 Motivation

Bluetooth-enabled devices extend to many critical applications in industries out-

side of telecommunications. Examples include the health care, banking, and military

applications. This section reviews these applications to understand the threat posed

by Bluetooth-enabled attacks to their respective critical infrastructures.
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1.2.1 Health Care Bluetooth-Enabled Technology

The health care industry utilizes Bluetooth technology. The Bluetooth specifi-

cations provide a generic profile for medical devices.[3] In health care environments,

Bluetooth-enabled devices provide patient mobility. Bluetooth serves as an attrac-

tive protocol for health care administrators because of the low cost, low power con-

sumption, and robustness.[4] Bluetooth-enabled devices exist for heart-rate moni-

tors, glucometers, respirators, hearing aids, sleep monitors, and patient records.[5]

Bluetooth-enabled medical devices require the highest level of security measures to

protect critical and confidential applications. A denial of service attack on a floor

of heart-rate monitors could overwhelm a hospital staff. Intercepting and decoding

the packets of a hearing aid provides the equivalent of an audio bug. Compromis-

ing Bluetooth-enabled devices to reveal hospital records could compromise private,

sensitive, and potentially embarrassing patient information. While Bluetooth cer-

tainly adds convenience for patients, vendors must ensure mobile medical devices

comply with the generic Bluetooth Medical Device Profile and enforce strict security

measures.[3] This reality requires medical facilities to employ a means of detecting

malicious attacks on medical Bluetooth-enabled devices.

1.2.2 Financial Sector Bluetooth-Enabled Technology

Financial establishments have also begun implementing mobile banking applica-

tions utilizing Bluetooth. Mobile banking includes checking account balances on a

Bluetooth-enabled device, paying bills, or using a Bluetooth-enabled device to make

purchases in brick-and-mortar stores.[6] According to recent research by the Celent fi-

nancial advisory firm, 200,000 US households use some form of mobile banking.[6] By

2010, the market is expected to grow to 17 million US households.[6] In Mexico, BBVA

Bancomer has deployed more than 13,000 Bluetooth-enabled payment terminals.[7]

Mobile banking provides flexibility and convenience for consumers. However, mobile

banking via Bluetooth presents a risk. A Bluetooth initiative by Bank of America

resulted in failure when Air Defense Inc. security experts intercepted Bluetooth com-

munications for a wireless fingerprint reader.[8] While no generic profile for mobile
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banking exists for Bluetooth, application developers must design systems with secu-

rity in mind and require a protection mechanism for detecting malicious Bluetooth

traffic.

1.2.3 Military Bluetooth-Enabled Technology

The military also suffers from vulnerabilities of the Bluetooth protocol. To illus-

trate the scope of the threat to the military, a researcher can examine a recent Naval

recruiting campaign. As a method of recruiting, the Navy constructed a system that

distributed motivational videos to nearby Bluetooth devices. The Navy placed the

system at key locations on 13 different Naval posts. During a one-month experiment,

the program discovered 11,000 unique Bluetooth mobile devices and delivered video

to 2,000 devices.[9] Although benign in nature, the program provides insight into the

scope of potential targets. Instead of distributing benign videos, the program could

have delivered malware via the same mechanism and with the same relative ease.

Applications for Bluetooth extend to very sensitive military devices and programs.

Bluetooth-enabled devices process sensitive information such as the exchange of data

for the Common Access Card (CAC).[10] The CAC serves as a identification card that

allows a member to access controlled facilities and services. By transmitting CAC

information over Bluetooth, the military allows the potential capture and retransmis-

sion or decryption of such traffic by hostile attackers. Further, an ongoing program at

the Defense Advanced Research Project Agency (DARPA) includes Bluetooth com-

munication for the LANdroids projects.[11] As wireless robotics, LANdroids attempt

to create a secure wireless mesh network in urban settings. Additionally, the Air

Force Research Laboratory (AFRL) projects include a Bluetooth-connected swarm

of miniature helicopters.[12] The Space and Naval Warfare Systems Center projects

contain a Bluetooth-enabled mobile robot.[13] Even Bluetooth-enabled devices used

for military applications prove potentially vulnerable to different Bluetooth attacks

and require protection mechanisms.
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1.3 Summary of Contribution

The main contribution of this thesis is to design and implement an intrusion

detection system that provides:

• The first documented network intrusion detection system (IDS) for malicious

Bluetooth traffic.

• A well-defined set of rules and modules for known attacks.

• Several interactive analysis tools to analyze captured attacks.

• A comprehensive recording base of several Bluetooth attacks.

• An intrusion response capability for malicious Bluetooth attacks.

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 classifies the different

types of Bluetooth attacks, and reviews the function of intrusion detection systems.

Chapter 3 proposes the design of a system for detecting Bluetooth threats. Chapter 4

introduces the methodology behind the testing of the proposed IDS. Finally, Chapter

5 records the results of the testing and makes observations before the conclusion.
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Chapter 2

Background

This chapter provides a background on attacks on the Bluetooth enabled devices

and Intrusion Detection Systems (IDS). The first section classifies the threats posed

by Bluetooth-enabled attacks. The second section provides an overview of intrusion

detection monitoring schemes, detection techniques, visualization schemes and ac-

tive responses. For a further explanation of the Bluetooth protocol specifications,

Appendix A provides a Bluetooth primer.

2.1 Bluetooth-Enabled Attacks

This section examines some existing attacks on Bluetooth-enabled devices. Fur-

ther, this section classifies threats into three different categories, including device

reconnaissance, denial of service, and information theft. By classifying the different

attacks and tools into different categories, this work enables the system to direct

appropriate responses.

2.1.1 Long Distance Attacks

Prior to examining the attacks, this chapter reviews the motivation behind some

of the Bluetooth attacks. Although Bluetooth was initially developed for ranges

up to 100 meters, commercial products now exist to extend the range of Bluetooth
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to 30 km. By modifying the antenna, power, and sensitivity of the device radio,

several researchers have shown successful Bluetooth connections over extended ranges.

Herfurt et al. demonstrated device exploitation over a 1.7 km range as early as

2004.[14] Among Bluetooth hackers, the Linksys USBBT100 Bluetooth dongle serves

as a popular device for modification.[15] An attacker can pry open the device and

replace it with a more powerful high-gain antenna with specific capabilities and effects.

Thus, a Bluetooth hacker can attack devices from a comfortable range away from the

target. In building the attack testbed for this work, the author constructed a modified

Linksys dongle and attached a 7 dBi gain whip antenna, 12 dBi gain Yagi directional

antenna, and a 12 dBI gain omni-directional di-pole antenna. With a successful long-

range Bluetooth device, a hacker may conduct reconnaissance of Bluetooth-enabled

devices.

2.1.2 Reconnaissance

Device reconnaissance includes any type of attack that attempts to gather infor-

mation about a Bluetooth-enabled device in order to proceed with further attacks.

Successful reconnaissance detection allows targets to take countermeasures prior to

follow-on attacks. For a Bluetooth attacker, the first step in reconnaissance consists

of device discovery. This chapter examines three different methods of discovering de-

vices. The methods include broadcasting inquiries, brute-force detection, and passive

listening to a specific frequency for traffic. Once an attacker has discovered a de-

vice, he may proceed with further reconnaissance including location tracking, exploit

discovery, or service discovery.

Device Discovery

In the first method of device discovery, a device continually broadcasts inquiry re-

quests until receiving successful acknowledgments. An attacker can mount this attack

through a single radio or increase the probability of success by utilizing multiple ra-

dios. In either case, each radio sends an inquiry request and then requires a minimum

of 10.24 seconds to collect all inquiry responses.[16] Implementations of this attack
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include btscanner, btcrawler, greenplaque, tbsearch, and ghettotooth.[17] To demon-

strate the lethality of such a reconnaissance attack, Van Es of Bluetoothtracking.org

established a node in Apeldoorn, Netherlands, that repeatedly sent inquiry requests.

Between September and December of 2007, Van Es received replies from 45,953 unique

Bluetooth-enabled devices.[18] In addition, F-Secure demonstrated the capability to

detect 1,405 unique Bluetooth devices over a 7-day experiment.[19] While capable of

finding several discoverable devices, inquiry requests provide no information about

non-discoverable devices.

An attacker must use a separate method to find non-discoverable Bluetooth de-

vices. Although non-discoverable devices do not respond to inquiry responses, they

still respond to any remote name request messages. However, an attacker must know

the Medium Access Control (MAC) address of a device to generate a unicast remote

name request. The Bluetooth MAC address consists of 24 vendor-specific bits and

24 bits unique to the model and device. Online databases of MAC addresses for

common devices exist.[20] With knowledge of the first 24 bits of the MAC, an at-

tacker can prepare a limited brute-force attack to discover the remaining bits of the

specific model and device. Such attacks will send repeated remote name requests to

different MAC addresses until a valid response confirming the presence of a device is

received. O. Whitehouse of Symantec Security developed an implementation for this

attack that additionally utilizes multiple radios for increased probability of successful

discovery.[21]

The final method introduces a means of passively discovering devices in contrast

to the two previous aggressive methods. Spill and Bittau demonstrate a method of

passively discovering devices, utilizing a software-defined radio (USRP) that listens

for multiple frames on a single frequency.[20] Spill and Bittau dubbed this method

BlueSniff since the radio essentially sniffs for Bluetooth frames. Although each frame

contains only part of the MAC address, it contains an error correction code based on

the entire MAC. Thus, they demonstrate a technique for discovering the remaining

bits of the MAC. In this approach, the reconnaissance device generates no traffic

and therefore operates in a passive and somewhat undetectable mode. However, to

mount any future any attack, the attackers must additionally know the clock offset.
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To discover the offset, Spill and Bittau acknowledge a Bluetooth attacker must make

a connection with the device.[20] During that connection, the attacker can generate

a read remote name request or read clock offset request.

Location Tracking via Bluetooth

The previous section demonstrated that Bluetooth-enabled devices suffer privacy

issues because they will respond to certain requests regardless of the security or

discoverability modes. This enables hackers to track movements of all Bluetooth-

enabled devices by having knowledge of the device’s MAC address.[17] A hacker can

simply create a script that pings a known MAC address and reports when it receives

positive acknowledgments. Further, the attacker can use this information to create

patterns of travel. Van Es of Bluetoothtracking.org has successfully done this with

16 devices that he has watched travel over 85 miles.[18]

Alongside the location, this type of attack may reveal other information. In the

worst example, Apple computers use the owner’s name and computer type to de-

termine the name of the Bluetooth device.[22] Generally, the vendor uses at least

the product and model name. Thus, a hacker potentially knows who you are, the

type of machine you are using, and the times you have been at a location. Working

implementations of this attack include BlueAlert, BlueFang, and BlueFish.[17]

Service Discovery

With knowledge of a specific MAC address, an attacker may wish to discover the

device type, channels, and services a device offers to carry out future attacks. The

Protocol Service Multiplexer (PSM) multiplexes services for the Bluetooth Logical

Link Control and Adaptation Protocol (L2CAP) layer. In the Bluetooth protocol,

65,535 PSM ports and 30 RFCOMM channels exist.[23] A service discovery or audit

tool examines these channels and ports for services. Collin Mulliner of the Trifinite

Group created the BT Audit tool to do such auditing.[23] Additionally, the Bloover

does the same auditing but runs exclusively on handheld JSR-82-compliant devices.

This attack is the IP equivalent of a portscan attack, looking for vulnerable, suspect,
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or misconfigured services running on a device.

Exploit Discovery

Tools exist to examine Bluetooth-enabled devices’ discoverable vulnerabilities and

exploitability. Most notably, AirDefense markets a commercial Bluetooth scanner

that identifies misconfigured and vulnerable Bluetooth devices in organizations.[24]

The tool, dubbed BlueWatch, enables companies to take proactive steps to identify

threats to an organization prior to attack.

Further, several open source efforts to perform L2CAP and RFCOMM automated,

random testing of a wide array of devices exist. Security experts often refer to auto-

mated, random testing as fuzzing. The Bluetooth Stack Smasher (BSS) appears as

one implementation of a Bluetooth fuzzer.[25] BSS discovers exploits by constructing

specially crafted L2CAP messages.[25] Once the tool detects an instance of an exploit,

it records the sequence of packets that caused the specific vulnerability. An online

repository of known vulnerabilities discovered by BSS exists. With a known device

or MAC address, an attacker can create a blueprint and model to attack a device.

2.1.3 Denial of Service

Bluetooth devices operate in the military, hospitals, and other very sensitive en-

vironments. Recent work shows Bluetooth communications in military androids,

unmanned helicopters, robots, ruggedized military phones, and sensitive military

communications.[11, 12, 10] Thus, a denial of service attack can have drastic con-

sequences.

This thesis classifies Bluetooth denial of service attacks into four classes. The first

class consists of BlueJacking. The second class involves maliciously crafted messages

that attack particular vulnerabilities of devices. The third class consists of attacks

that attempt to deplete the battery life of Bluetooth-enabled devices. The final class

comprises Bluetooth worms that quickly spread, aided by the Bluetooth discovery

methods and object exchange profile.
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BlueJacking

BlueJacking consists of sending unsolicited messages via the Bluetooth protocol.[17]

Because certain applications such as the Object Exchange Push Profile require no au-

thentication, an attacker can simply distribute unrequested content to target devices.

The distributed content can consist of text, images, video, or sound. Because cer-

tain image libraries have shown vulnerabilities, this attack can be used to distribute

viruses or trojan horses.[26] Further, it can be coupled with long-range attacks to

exploit a multitude of targets.[14]

Maliciously Crafted Messages

Maliciously crafted message attacks rely on specific vendor vulnerabilities. Similar

to IP Pings of Death, some attacks send repeated L2CAP echo requests of a large

size or over an extended period of time. Tanya and BlueSmack prove to be working

implementations of this attack.[27] Further, Bluetooth attackers have reported that

Nokia and Sony Ericsson devices prove susceptible to incorrectly assembled L2CAP

packets. By modifying the L2CAP signal length field to an invalid size, an attacker

can disrupt Bluetooth communications on these devices until the user performs a

hard reset. Other malicious message attacks exploit particular vendor weaknesses by

specially crafting vCard messages that force a device to fault.

Battery Depletion Attacks

Buennemeyer et al. originally proposed attacks to deplete the battery life of mobile

devices by utilizing features of the Bluetooth protocol.[28] They created three attacks

known as BlueSYN, BlueSYN Calling, and PingBlender that deplete the battery life

of target devices. The attacks saturate the communication channel of the target

device with unsolicited messages.[28] As a result, the attacks exhaust the Bluetooth

resources of a target device. Further, the target device has no knowledge it is under

attack.[28]
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Bluetooth Worms

Inqtana provided the first proof of Bluetooth worms. The Inqtana worm specifi-

cally targets a vulnerability in the stack of the Apple OS X operating system. Once

it infects a Bluetooth-enabled Apple computer, it attempts to find other devices and

propagate. Because of the inherent device discovery tools of Bluetooth, the prop-

agation of a worm appears a legitimate threat. Yan et al. proposed a model for

examining Bluetooth worm propagation.[29] Additionally, the Cabir and CommWar-

rior worm implementations demonstrate the ability for an attacker to successfully

infect devices in a relatively quick period of time.[30, 31, 29] Bluetooth worms pose

a serious threat. To date, F-Secure has identified 71 different mobile malware worms

that use Bluetooth as the vector.

2.1.4 Information Theft

Information theft attacks attempt to gain access to unauthorized information by

exploiting particular security weaknesses. This section examines some information

theft attacks that exist in the protocol, application profiles, and protocol layers.

To illustrate the multitude of weaknesses, this section describes the encryption key

weaknesses, CarWhisperer, HIDattack, BlueSnarfer, BlueBug, and iPhone MetaSploit

attacks.

Encryption Key Disclosure

./bccmd  -d hci0 psset -r bdaddr 0x75 0x00 0x12 0xB7 0x07 0x00 0x0E 0x01

Figure 2.1 : Modification of Bluetooth MAC Address under Linux BlueZ Stack

A weak encryption scheme plagued the Bluetooth protocol until the 2.1 release.

While the 2.1 specification release provides an improved encryption protocol, nearly
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2 billion devices exist with pre-2.1 specifications. Prior to the 2.1 release, a weakness

existed in the pairing process that disclosed enough information to compromise the

linkkey created for encryption. Tools such as Btcrack and btpincrack provide a means

of implementing such attacks.[32, 33] However, both tools require the entire sequence

of messages used in the pairing process. Thus, Wool forges the identity of a valid Blue-

tooth device and resets the pairing process.[32] Because Bluetooth does not require

authentication, repudiation attacks present a problem in Bluetooth. An attacker can

spoof a valid device by flashing the valid MAC address onto his Bluetooth-enabled

device. Figure 2.1 shows how an attacker can simply flash a false MAC address onto

a Bluetooth radio. With successful theft of a linkkey and a spoofed MAC address, a

hacker can essentially hijack a device.[22]

HIDattack

The Hidattack, proposed by Mulliner, exploits the Bluetooth Human Interface

Devices (HID), such as mice, keyboards or joysticks.[34] This implementation takes

advantage of the flawed HID implementations. The Bluez Linux stack prior to 2.25,

the Windows SP2, Widcomm, and Mac OS X stacks all fail to incorporate low-level

security modes in their Bluetooth HID implementations.[34] Thus, Hidattack attack

either scans for a HID server or waits passively until a user searches for a HID device.

In either case, it then connects to the user and appears to be a legitimate HID device.

While the attack has a low probability of success, it is a high threat.

CarWhisperer

The CarWhisperer implementation attacks known vulnerabilities in hands-free

audio devices. The application can inject audio into and record live audio from a tar-

get device. Herfurt demonstrated the successful usage of the application in 2005.[35]

Manufacturers often implement hands-free audio devices with default passkeys. The

passkey serves as the secret parameter to create the linkkey in Bluetooth devices prior

to the 2.1 core specification. In order to develop targets, an attacker scans for devices

that match the appropriate hands-free-audio class. Once matching the correct class,
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he further checks the MAC address to determine the default passkey provided by the

manufacturer. He uses the passkey to create an RFCOMM connection to the vul-

nerable devices. He then creates a control connection, connecting to the SCO links,

which carry the audio for the Bluetooth device.[35]

BlueSnarfer

In BlueSnarfing, the attacker gains access to remote data by initiating an OBEX

push.[36] The OBEX Push Profile (OPP) generally does not require authentication,

so the attacker connects without knowledge of the valid passkey. The attacker then

initiates an OBEX get request for known files such as the phone book, device calendar

or message list. Marcel Holtman and Aadm Laurie of the Trifinite Group discovered

this vulnerability in several devices in late 2003.[36]

BlueBugger

While BlueSnarfing generally allows access to a limited number of resources on

devices, a separate type of attack known as BlueBugging can cause much more sig-

nificant damage. BlueBugging takes advantage of RFCOMM channels that do not

require any authentication.[37] Each Bluetooth device offers 30 RFCOMM channels.

In some implementations, these channels require neither authentication nor encryp-

tion. Thus, an attacker can simply connect to a vulnerable RFCOMM channel. Once

connected, the attacker issues a series of commands that allow initiating calls, utiliz-

ing the SMS messaging system, updating the phonebook, call forwarding or forcing

the device to utilize a certain cellular provider.[37] After gaining access, the attacker

can easedrop without any knowledge by the attacked device. Herfurt and Laurie

discovered this vulnerability and demonstrated it successfully on 50 phones during

CeBit 2004.[36, 37]

HeloMoto

A HeloMoto attack targets some Motorola phones by initiating an OBEX push,

but then interrupts the process without completing the OBEX push.[38] The result
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places the attacker on the list of authenticated devices on the target phone. The

attacker can then execute commands to the phone via the RFCOMM layer. This

enables the attacker to have the same level of access as a BlueBug attack, including

access to the phonebook, SMS messaging system, and phone settings.[38]

iPhone MetaSploit

Recently, Kevin Mahaffey and John Hering of Flexilis Inc. discovered a vulnera-

bility in the Bluetooth implementation on the iPhone.[39] They successfully managed

to introduce an exploit via the Service Discovery Profile (SDP). Utilizing a specially

crafted SDP message, the attacker can load a framework of tools to attack the entire

operating system of the phone. Further, the attack enables access to a root shell on

the iPhone device. Mahaffey and Hering also discovered that they can simplify the

discovery of the Bluetooth MAC Address for the iPhone by passive capture of the

WiFi traffic. Using the address captured in WiFi traffic, they can calculate the Blue-

tooth MAC address. As phones and mobile devices continue to grow in functionality,

the potential exploits will also grow.

2.1.5 Emerging Trends

The number of Bluetooth attacks have grown steadily over the last five years. The

F-Secure Corporation currently has classified 71 attacks that spread mobile malware

via Bluetooth. Researchers at Virginia Tech have shown how to combine classic Inter-

net protocol attacks such as the SYN flood with a Bluetooth distribution scheme.[28]

As the number of attacks have grown, so have the severity of attacks and the

ease of implementation. Repositories of attacks exist with source code. Because

Bluetooth devices are frequently managed by users that are less security conscious,

these devices are more vulnerable to attacks.[40] With almost 2 billion devices in

existence, Bluetooth poses a risk to most organizations.

Several computers and mobile computing devices now exist with WiFi, Cellular

and Bluetooth protocol interfaces. The recent attacks on the iPhone demonstrate

how hackers can combine weaknesses of each interface to exploit the overall system.
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Exposing a vulnerability in any of the protocol interfaces can lead to a possible

vulnerability in the others. Means already exist to detect intrusion on WiFi and

cellular protocols.[41] Thus, this thesis examines how to detect and prevent intrusion

on the Bluetooth interface.

2.2 Intrusion Detection

This section reviews concepts involved in intrusion detection and applies the con-

cepts to a Bluetooth-based intrusion detection system. First, this section examines the

monitoring schemes and detection techniques of intrusion detection systems. Next,

the section presents visualization schemes for intrusion detection systems. Finally, it

describes an active response for wireless intrusion detection systems.

2.2.1 Network Intrusion Detection Systems

To detect malicious and suspicious traffic, security experts may employ intrusion

detection systems either at the specific host or on the network. A host-based system

notices only threats for that particular end point by monitoring evidence such as

system calls or logs. Buennemeyer et al. developed a host-based intrusion detection

system for Bluetooth battery depletion attacks that detects attacks by monitoring

power levels.[28] However, a host-based system proves practical in only a limited per-

centage of Bluetooth devices. A smartphone or handheld computer should prompt a

user with anomalous behavior as suggested by Buennemeyer.[28] However, a headset,

mouse, or any peripheral device does not have the capability of displaying a message.

Furthermore, most mobile devices possess limited memory and processing capabili-

ties. Dedicating those resources to intrusion detection would limit the functionality of

such devices. In contrast, a network-based intrusion detection system could provide

both security and transparency to the end user. Network-based intrusion detection

systems notice threats for the entire network by monitoring the flow of traffic. Thus,

a Bluetooth network intrusion detection system examines the flow of traffic in Blue-

tooth piconets and reports anomalous or malicious behavior.
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2.2.2 Anomaly-Based Intrusion Detection

Anomaly-based detection models rely on the assumption that all intrusion activi-

ties are anomalous in nature.[42] Thus, an anomaly-based detection system establishes

a baseline of normal usage through extensive training and then flags anything that

deviates from the established baseline as anomalous and intrusive.[43]

Anomaly-based detection models suffer problems that amplify either false pos-

itives or false negatives.[42] False positives occur when the IDS flags nonintrusive,

anomalous traffic as intrusive. False negatives occur when the IDS fails to detect in-

trusive behavior that is not anomalous. Selection of an alert threshold level prevents

unreasonable magnification of these two problems.[42] By raising the threshold level,

the administrator can reduce false positives. Conversely, he can reduce false nega-

tives by lowering the alert threshold. Additionally, anomaly-based systems require

constant training to ensure the systems have an accurate representation of normal

usage. Sundaram provides a survey of anomaly-based IDSs employing a statistical

approach, predictive pattern generation, or usage of neural networks.[42] This section

examines the use of a statistical approach and predictive pattern generation for a

Bluetooth intrusion detection system.

Statistical Approach

A statistical approach relies on models such as the Bayes’ theorem to identify

anomalous behavior on the network.[44] As in all anomaly-based systems, a training

period establishes routine normal usage. In statistical systems, the IDS compares the

baseline behavior created during the training period to the current behavior. Statis-

tical systems adaptively learn the behavior of users. Therefore, statistical systems

detect intrusive behavior with a higher sensitivity than do other systems.[42] However,

statistical systems present a major problem in the fact that intruders can gradually

train a system to recognizer intrusive behavior as baseline traffic.[42]

Although this thesis does not implement a strict statistical approach, it does pro-

vide the tools to manage traffic statistics and examine the statistics for anomalous

behavior. The graphical user interface (GUI) of the Bluetooth intrusion detection sys-
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Figure 2.2 : Traffic Deviations Between Attack (BlueSmack) and Baseline Traffic

tem provides the ability to monitor several Bluetooth protocol statistics to analyze

attack behavior. Figure 2.2 shows a graph generated from the GUI of the program

showing the L2CAP layer Bluetooth traffic captured during a BlueSmack attack com-

pared to previously recorded baseline traffic. A BlueSmack attack contains a higher

percentage of quality of service messages (echo req and echo res) to implement the

attack. Using this data and further analysis, a statistical approach would train the

system to classify the behavior as anomalous and intrusive.

Predictive Pattern Generation

Predictive pattern generation presents another method of detecting intrusive be-

havior by using an anomaly detection technique. By relying on events that have

already occurred, this method attempts to predict future events. The use of patterns

can detect behavior unrecognizable by traditional methods and detect and report

behavior faster.[42] Additionally, predictive pattern systems can detect attackers at-

tempting to influence systems during the training period.[42]

Predictive pattern generation presents an interesting approach to detecting intru-

sive Bluetooth behavior. Logically, some Bluetooth attacks should follow in sequence.
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For example, an information theft attack should follow the scan of a vulnerable service.

Or a denial of service attack should follow discovery of devices. However, predictive

pattern generation may not be able to detect an attack when the hacker has passively

gained information to prepare the attack such as in the case of the iPhone MetaSploit

attack.

2.2.3 Misuse Intrusion Detection

Misuse detection systems search for known signatures or patterns of unauthorized

behavior.[43] While the specific signatures may be benign, they usually serve as le-

gitimate indicators of malicious activity. In fact, most modern commercial intrusion

detection systems rely on misuse detection.[45] IDSs can detect known patterns with

more efficiency than attempting to detect or predict abnormal behavior.[45] Misuse

detection systems may employ pattern matching, state transition analysis, or expert

systems to detect intrusions.[42]

Pattern Matching

Pattern matching encodes known signatures as patterns. The IDS compares in-

coming traffic to the set of signatures to detect an intrusion. Simple to design and

build, pattern matching systems detect known attacks. Pattern matching cannot de-

tect novel attacks or zero-day attacks. However, pattern matching detection IDSs

suffer from signature-evasion techniques. An attacker can craft an attack in such a

way to avoid a weak signature.

In spite of this weakness, pattern matching often provides the most efficient and

convenient means for detecting an attack. The SNORT network-based IDS provides

one implementation of an IDS employing pattern matching.[46] By creating simple

rules, the administrator can instruct the IDS to send an alert on malicious traffic.

Further, SNORT contains a set of plug-in modules that increase the functionality of

the system by performing specific analysis such as detecting a portscan attack.
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State Transition Analysis

The state transition analysis model takes state design into account in order to

analyze more complex attacks.[43] By maintaining states, the IDS can represent the

attack scenario by using a finite state machine. Therefore, any event that leads the

network from a safe state to an unsafe state proves intrusive behavior.[45]

Maintaining the state of Bluetooth packets would prove feasible. Since a Bluetooth

packet is 625 microseconds long, a device can send only 1600 packets per second.

Further, the maximum rate of Bluetooth ranges between 1 MB/s to 3 MB/s, based on

the specification.[47] Thus, an intrusion detection system would only require caching

of roughly 120 MB to 360 MB of data for a two-minute window. Further, the system

can remove several packets, including the majority of radio and baseband traffic to

reduce the workload required by the IDS. A modern system could easily maintain

this data in physical memory without swapping.

Expert Systems

Expert system models contain a hybrid approach to intrusion detection by com-

bining both anomaly and misuse detection models.[42] By encoding known intrusive

behavior, the system can look for anomalous behavior. Expert systems attempt to

overcome the constraints of misuse-only detection systems by providing the capability

of detecting unclassified intrusive behavior.

Depren et al. presented a model utilizing both anomaly and misuse-based de-

tection systems.[48] Depren implemented an IDS that contained an anomaly-based

detection module and misuse-based detection module. He then correlated the output

using a decision output module. The results demonstrated that the hybrid system

can benefit from the strengths of both approaches, while negating the weaknesses of

each approach.[48]

2.2.4 Realtime Intrusion Detection

Detecting attacks in realtime and taking countermeasures proves challenging in

any intrusion detection design. However, a Bluetooth IDS requires fast notification
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of intrusion because of the added mobility of the attackers. Without an immediate

response, administrators are not likely to identify and capture the attackers. Thus,

the IDS requirements dictate a fast notification of malicious activity.

Li et al. modified a model using the AprioriAll algorithm that correlated multiple

alerts.[49] Using his algorithms, he mined attack behavior patterns and make some

conclusions. Based on the current sequence of attacks, he predicted the next at-

tack and took counter-measures. By predicting attacks, Li’s model proved extremely

efficient. However, it required a well-tuned behavior model prior to the attack.

In contrast, Kim et al. presented a model using a sliding window technique.[50]

Kim’s model proved to be an efficient event counting method for a predetermined

interval. By aggregating alerts that have similar characteristics, using triggers to ex-

amine only necessary traffic and avoiding repetitive alerts, Kim’s model demonstrated

a less-efficient but more general purpose model.

The use of a sliding window proved to be an efficient method of examining Blue-

tooth traffic for malicious patterns. However, selection of a Bluetooth traffic window

size proves critical. If the system selects a traffic window too small, it misses impor-

tant traffic that contains data relevant to the attack. If the window is too large, the

system runs inefficiently and may drop packets and not recognize malicious activity.

2.2.5 Visualization of Attacks

A major criticism of intrusion detection systems is the high rate of false positives.

Displaying the large amount of information collected by a system to an administrator

proves challenging. Oline and Reiners explorerd a means of visualizing the aggregate

of intrusion detection data.[51] By examining visualized data, administrators can

fine-tune intrusion detection systems and reduce the rate of false positives.

Abdullah et al. offered a visualization model that enabled a port-based overview

of network activity.[52] They presented data using stacked histograms of aggregate

port activity, combined with the ability to drill-down for finer details. Thus, they

aided administrators in detecting attacks in realtime.
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2.2.6 Active Response

Finally, this section examines the active response of the implemented Bluetooth

IDS. Intrusion detection systems typically contain passive response techniques such

as logging and notification. Effective response to a wireless attack could include

active countermeasures.[41] Lim et al. proposed a wireless 802.11 IDS with some

active countermeasures in 2003.[41] They suggested that a wireless IDS could actively

respond to threats against the attacker. Further, they hypothesized that they would

have success because in most cases the attackers themselves have configured their

network interfaces to authenticate on the network.

This thesis implements specific responses for each category of Bluetooth attack

activity. By classifying attacker behavior into a specific category, the IDS can direct

a specific response at the hacker and prevent, deny, or disrupt the effects of the initial

attack. In addition to the work by Lim et al., the next chapter examines related

works relevant to the design of a Bluetooth IDS.
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Chapter 3

Related Work

This work presents a method of detecting malicious Bluetooth traffic using misuse

detection. Therefore, it incorporates a discipline of intrusion detecting and an under-

standing of wireless and mobile threats. While intrusion detection is a continually

improving 30 year old topic, the study of wireless and mobile threats is a fairly more

modern topic. This chapter reviews the related works in intrusion detection, wireless

and mobile threat modeling, and current related tools.

3.1 Intrusion Detection

Anderson first described the concept of an intrusion detection system in 1980.[53]

He suggested the use of audit trails to detect intrusive behavior such as unautho-

rized access to files. Denning then implemented the first generic intrusion detection

model in 1987 that detected intrusions by monitoring the audit records of a particu-

lar system.[54] For each subject (user), the system kept an audit record of particular

services such as access to the filesystem, executables, and system calls. Denning’s

model provided a means of detecting intrusive behavior by examining anomalies in

the audit records for particular single computer systems.

In contrast to an anomaly detection model, Kumar described a means of detect-

ing attacks using misuse detection.[55] Kumar described a model of misuse detection,

which encoded attacks as well defined patterns and monitors for those specific pat-
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terns. As processing power increased, further techniques automated intrusion detec-

tion to reduce human intervention. Gosh and Schwartzbard introduced the use of

artificial neural networks in order to detect novel attacks.[56] Their work also com-

bined the concept of using both anomaly and misuse detection models to create a

hybrid system.

Open source developers have created several popular IDS tools. Roesch created

SNORT as a lightweight network intrusion detection tool.[46] The design of SNORT

included a packet decoder, preprocessor, and detection engine. SNORT used the

libpcap packet sniffer and logger to capture and decode packets. Snort provided

the capability to decode and detect intrusive behavior in Ethernet, SLIP, and raw

(PPP) data link-protocol packets.[46] The system contained a rules based logging

and content pattern matching engine to detect a variety of attacks and probes.

Recent works have discussed the necessity for a wireless intrusion detection system.

Intrusion detection in wireless networks proves challenging since wireless IDSs cannot

use the same architecture as a network IDS. Lim et. al proposed a wireless IDS that

detected threats on the 802.11 protocal.[41] Additionally, the system included the

ability for an active response to wireless attackers.[41] In 2004, the US Army awarded

a multi-million dollar contract to AirFortress to protect 802.11 networks in use by

the military.[57]

3.2 Wireless and Mobile Threat Modeling

Recent works have classified the threats posed against mobile devices. Welch

provided an overview and created a taxonomy of wireless threats.[58] Biermann and

Cloette examined the necessity for prevention and detection of threats against mobile

devices.[59] Finally, Cache and Liu provided a comprehensive source of several wireless

threat models, attacks, and implementations.[22]

Several works examined particular Bluetooth attacks and demonstrated the ne-

cessity for a Bluetooth intrusion detection system. Most notably, the Trifinite Group

has implemented and released details of several Bluetooth attacks.[38, 34, 35] Ad-

ditionally, A. Wool provided a means of compromising the encryption scheme of
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Bluetooth.[32, 33] Haataja provided a comprehensive model for examining Bluetooth

attacks.[17] Finally, the National Institute of Standards and Technology (NIST) doc-

umented several the flaws in the security design of the Bluetooth protocol.[40]

Two recent works have attempted to provide a means of modeling and detect-

ing particular Bluetooth attacks. Yan et al. developed a model for the growth of

Bluetooth works that relied upon Markov Chains.[29] Buennemeyer et al. provided a

means of detecting Bluetooth battery depletion attacks using an anomaly detection

system that measured the power levels of a particular Bluetooth device.[28]

3.3 Current Related Tools

To capture and decode Blueetooth traffic, Spill and Bittau have provided an ex-

cellent means of recording Bluetooth traffic utilizing the Universal Software Defined

Radio.[20] Further, they have also provided the means to write firmware for Blue-

tooth dongles that perform custom sniffing. A custom firmware solution would prove

valuable in the further development of a Bluetooth IDS. Haataja demonstrated the

ability for the Lecroy Bluetooth protocol analyzer to record unencrypted and en-

crypted Bluetooth traffic.[17]

Combs developed the Wireshark (formerly Ethereal) as a utility to capture and

analyze packets.[60] Over 500 authors currently maintain the utility and it allows for

the dissection and decoding of hundreds of protocols, including the 802.11 wireless

protocols. It also uses the same libpcap decoding library as SNORT. The current

maintainers of the tool have already begun working on integrating and translating

Bluetooth Host Controller Interface (HCI) packets into a libpcap format.

Tools to assess the Bluetooth security of an organization exist for example, the

AirDefense BlueWatch.[24] This tool assesses the overall Bluetooth security; however,

it provides no means of intrusion detection or active response. The system proposed

by this thesis does both and can be incorporated with existing tools to increase the

overall security of an organization. For a further understanding, the next chapter

describes the design of the implemented Bluetooth IDS.
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Chapter 4

Bluetooth IDS Design

4.1 Overview

Packet Decoder Preprocessor IDS Engine

Alert Interface Response System

Bluetooth
traffic

Visualization Interface

Figure 4.1 : Design of Bluetooth Intrusion Detection System

This chapter explains the design of the Bluetooth intrusion detection system im-

plemented in this thesis. Figure 4.1 shows the arrangement of the key components

in the system. The implemented network IDS examines decoded Bluetooth traffic to

detect malicious behavior through the use of pattern matching and a set of plug-in

modules. Additionally, the IDS provides alert, visualization, and response systems

based on the output of the IDS engine. The following sections present the further

details regarding the key components of the system before describing the design of

signatures. Finally, the last sections examine some of the reconnaissance, denial of

service, and information theft attack signatures to detect particular Bluetooth at-

tacks.
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4.2 Packet Decoding and Preprocessing

The packet decoder captures Bluetooth packets and prepares the packets for the

preprocessor prior to usage by the IDS engine. The packet decoder listens to either

a specific frequency or specific piconet in order to capture packets. By synchronizing

with the master device on a piconet, the decoder follows the hopping sequence of a

particular piconet and exports decoded packets to the preprocessor.

Figure 4.2 : Packet Reassembly by the Preprocessor

Next, the preprocessor reassembles fragmented packets and modifies the data

packets to prevent signature evasion techiques. Figure 4.2 depicts the reassembly

of two packet fragments back into one logical packet. In addition to reassembly, the

preprocessor discards several of the baseband and radio layer packets such as the null,

polling, and device ID packets. These packets ensure the radio and baseband layer

are established but provide no helpful information to identify known attacks. By

reducing these packets, the preprocessor decreases the workload of the IDS engine.

Also, the preprocessor handles reassembly and stateful inspection of streams of

Bluetooth traffic similar to the Stream4 preprocessor employed by SNORT.[46] By

assembling packets into a particular Bluetooth traffic stream, the IDS engine can

detect more complex attacks through the use of plug-in modules. The preprocessor

uses a sliding window to manage the length of the stream exported. The system has a

fixed-length sliding window determined by the time required to detect most attacks.
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4.3 IDS Engine

This thesis implements a similar engine to SNORT. It has the capability to do

pattern matching as well as a set of plug-in modules to analyze and detect more-

complex Bluetooth attacks.[46] The author constructed a grammar for rules included

in the IDS Engine.

4.3.1 Pattern Matching

alert L2CAP M (SigLen=1;  msg="Nokia HeadOverFlow DOS";)

Figure 4.3 : Rule to Detect Malicious L2CAP Header Overflow Attack

The system uses a pattern matching scheme to match malicious packets against a

set of user-configurable rules. By matching signatures of known patterns of malicious

traffic, the system efficiently detects attacks. Signatures can match a packet against

a particular protocol layer, device, and specific fields of each packet.

For example, a signature can match the Signal Length field of an L2CAP layer

packet. Figure 4.3 demonstrates a rule to identify a Bluetooth Header Overflow

Attack. The rule matches any L2CAP layer packet, originating from a Bluetooth

master device, that has a Signal Length of 1 and flags it as a specific attack since the

Signal Length field contains an invalid value that causes some Bluetooth devices to

reference an invalid memory address.

Although signatures can only detect known attacks, the user can update signatures

when new types of Bluetooth attacks are discovered. The IDS provides an interface

for writing new rules to detect Bluetooth attacks. Further, the rules allow the user

to alert, log, or perform actions in response to a matched signature.
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4.3.2 Plug-in Modules

The IDS uses plug-in modules to detect more-complex attacks that require a

stateful inspection of the stream of Bluetooth traffic. Due to the fact that data is

organized into a stream by the preprocessor, the plug-in modules can find attacks that

use multiple Bluetooth packets. Plug-in modules in this work increase extensibility of

the system by allowing users to expand the number of attacks the system can detect.

For example, the user can write a plug-in module to detect if any unauthenticated

connections to a particular service or channel occurred by examining the stream for

the appropriate packets. The user can write a plug-in module to detect the count of a

particular packet type in a particular stream of traffic. Additionally, by aggregating

several modules that have similar characteristics, the system increases the efficiency

of the IDS engine. For further understanding of the plug-in modules implemented in

this work, Figure B.5 in Appendix B provides an example of a module used to detect

the Bluebugger attack.

4.3.3 IDS Engine Rule Grammar

Figure 4.4 lists the grammar for the Bluetooth Intrusion Detection System. The

grammar allows the user to detect attacks either through user-specified patterns or

the plug-in modules. For each rule the user can alert, log, or direct a specific response.

Plug-in modules exist for attacks that require stateful inspection. Each pattern rule

consists of a rule header that specifies the layer, direction bit for the rule, and a series

of chain rules. Each chain rule consists of a series of rules that match specific fields

of the packet. Finally, the last part of the rule is the action field, which directs the

specific action for alerting, logging, or action upon matching the rule.

4.4 Visualization Interface

The visualization interface of the system provides the administrator with the abil-

ity to observe events, traffic, and alerts in a manageable manner. Visualization allows

an administrator to distinguish between malicious activity and benign traffic with rel-
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Figure 4.4 : Bluetooth Intrusion Detection Grammar



30

ative ease. Within the field of intrusion detection, previous works have shown the

benefit of utilizing visualization to detect attacks. [51, 52] Since the employed system

does not have knowledge of zero-day attacks, a visualization tool proves beneficial in

allowing the administrator to detect anomalous and potentially malicious behavior.

The implemented visualization interface provides details about the deviation between

protocol layers, the specific operation codes for the LMP and L2CAP layers, and the

activity on the RFCOMM and PSM channels. Figures 4.5 and 4.6 provide examples

from the graphical user interface (GUI) of the implemented system.

Figure 4.5 : Visualization of RFCOMM Scan Attack

Figure 4.5 depicts the traffic deviation between protocol layers during an RF-

COMM scan attack on a Bluetooth target. The repeated pattern of traffic may give

an administrator cause for inspection. Thus, he can drill down and look at the specific

distribution of signaling codes on the L2CAP layer. By examining the specific L2CAP

signaling codes, the administrator can detect an attacker attempting to repeatedly

connect to RFCOMM channels.

Furthermore, Figure 4.6 shows the RFCOMM channel activity of Bluetooth traf-

fic captured during that period. In the previous 60 seconds, the attacker made 9
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Figure 4.6 : Visualization of Bluetooth Channel Activity

RFCOMM connection attempts. Examining all of this information enables the ad-

ministrator to suspect that the attacker is attempting an RFCOMM scan of a Blue-

tooth target. The next sections discusses the design of signatures to discover such

exploits.

4.5 Signature Development

Intrusion detection signatures for exploits can range from simple means, such as

checking the header value of a field, to a highly complex stateful inspection or protocol

analysis. Many Bluetooth attacks or exploits include purposely modified headers that

violate the Bluetooth Core Specifications. Many Bluetooth protocol stacks have been

written on the assumption that the specifications would not be violated, hence the

particular stacks perform poorly when handling such traffic. Appendix A.1.2 discusses

the protocol stack implementations and some of the discovered vulnerabilities. Thus,

the IDS signature can look for certain header fields or combinations of values to detect

such attacks.

For more complex stateful inspections, the signatures must use characteristics of
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an attack that are not easily evadable by an attacker. Suspicious but legitimate

packets are best used in combination with other values to detect an attack. For an

example, if a pattern of legitimate Bluetooth traffic causes a particular vulnerability

on a particular device, then the IDS signature must take into account the intended

device. Since Bluetooth devices perform feature requests that describe the capabilities

of each device, the IDS has this information at it’s disposal. Such is the case with

the HeloMoto attack that performs an attack by planting a particular file on affected

Motorola devices. By verifying that the intended target is a phone with certain feature

characteristics, the signature can reduce but not necessarily eliminate false positives.

The following sections describe the design for signatures for reconnaissance, denial

of service, and information theft attacks. In developing signatures for attacks, the

author adhered to two rules for designing signatures.

• Signatures must be based on attack details and if possible strengthened with

other characteristics to reduce the rate of false positives.

• Signatures must be written in a manner that an attacker attempting to evade

signature would essentially make the attack useless.

4.6 Signatures for Reconnaissance Attacks

This section examines some signatures and plug-ins for detecting reconnaissance

attacks. Detecting reconnaissance tools proves invaluable because reconnaissance

likely occurs prior to denial of service or information theft attacks. This section

describes the signatures for three reconnaissance attacks including Tbear, RFCOMM

Scan, and the Bluetooth Stack Smasher (BSS).

4.6.1 Signature of Device Discovery Attack

First, this section examines the signature of a device discovery reconnaissance

attack. Figure 4.7 depicts the flow of traffic while an attacker is employing the

Tbear reconnaissance tool. To begin the attack, the hacker broadcasts an inquiry
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Figure 4.7 : Model for Tbear Reconnaissance Attack

request to all targets. The attacker then listens to responses from the inquiry during

the inquiry timeout period. The attacker asks for each target’s name by sending a

Name Request. Each target responds by sending a Name Result. After the last target

response, the attacker again broadcasts a new inquiry. The same pattern repeats itself

as the attacker gathers new targets.

To discover such an attack, the IDS detects the pattern for the repeated inquiry

requests, followed by repeated name requests to multiple devices. Upon detecting this

repeated pattern of traffic over an extended period of time, the IDS then determines

the intrusive traffic to be a device discovery reconnaissance attack. Tools such as

Tbear and BTscanner implement this attack. However, each tool uses a different

time to collect inquiry responses. Therefore, the system can detect both a generic

device discovery attack and further classify the tool implementing the attack based

on the inquiry timeout value.

4.6.2 Signature of Service Discovery Attack

Next, this section examines the signature of a service discovery attack. Figure

4.8 shows a model for an RFCOMM Scan attack. In the figure, the attacker scans

a target for vulnerable RFCOMM channels by opening a sequence of connection to

different RFCOMM channels over an extended period of time. Furthermore, the at-

tacker accomplishes this attack by connecting to RFCOMM channels multiple times

without requesting any type of authentication or encryption. This behavior proves
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Figure 4.8 : Model for a RFCOMM Scan Reconnaissance Attack

similar to a TCP portscan where an attacker may attempt to connect to open TCP

ports. Additionally, when the attack succeeds, the target responds with an RF-

COMM CONN RES message indicating that the target allowed the attacker access

to the channel without authentication or encryption.

Thus, the pattern matches when an attacker repeatedly attempts to connect to

multiple RFCOMM channels without requesting any authentication or encryption.

A similar attack, PSM Scan, demonstrates the same behavior. However, PSM Scan

makes repeated attempts to connect to the PSM services without requesting any

authentication or encryption. Thus, the IDS detects the PSM scan in a similar manner

by looking for repeated connections to PSM services without any prior authentication

or encryption.

4.6.3 Signature of Exploit Discovery Attack

This section examines the signature of an exploit discovery attack. Figure 4.9

shows a captured Bluetooth Stack Smasher Attack that generated random L2CAP

packets in order to discover vulnerabilities on a target. The hexi-decimal signaling

codes for the L2CAP packets do not translate to logical commands because they have

been specially crafted by the attack. Thus, the signature for a BSS attack includes a

set of L2CAP packets with malformed signaling codes.
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Out-of-range L2CAP signal codes used 

to detect exploits

randomized data

for fuzzing devices

Figure 4.9 : Bluetooth Stack Smasher Reconnaissance Attack

4.7 Detection of Denial of Service Attacks

This section explains the implementations of some of the signatures for denial

of service attacks. Specifically, this section examines the BlueSpam, Nasty vCard,

Tanya, Nokia N70, and Header Overflow attacks.

4.7.1 Signature of BlueSpamming

First, this section examines the signature of the BlueSpam tool. The BlueSpam

tool repeatedly sends unsolicited traffic to targets discovered through the built-in

discovery features of Bluetooth. In a BlueSpam attack, the hacker repeatedly connects

to a target and initiates an unsolicited object transfer. To detect such an attack, the

IDS looks for repeated OBEX transfers and detects the behavior as a BlueSpam

attack.

In some instances, the attacker can craft and send objects with particular vul-

nerabilities. Thus, the IDS contains a rule for any unsolicited object transfer for

particular objects. Figure 4.10 shows a malicious payload sent by an attacker. The

particular vulnerability causes a buffer overflow error on certain devices by using a
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BEGIN:VCARD

VERSION:2.1

N:AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA \ 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA \ 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA \ 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA \ 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA;BIALOGLOWY

FN:AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA \ 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA \ 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA \ 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA \ 

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA;BIALOGLOWY

ORG:CHAOSTAL

TITLE:MUH

TEL;WORK;VOICE;

TEL;WORK;FAX;

ADR;WORK;ENCODING=QUOTED-PRINTABLE:;;Indonesia

LABEL;WORK;ENCODING=QUOTED-PRINTABLE:Indonesia

URL;WORK;

EMAIL;PREF;INTERNET;

REV:20050430T1958490

END:VCARD

In a nasty vCard exploit, the 
name field (N:) contains more than 245

characters.

Figure 4.10 : Capture of Nasty vCard Attack

string of 245 bytes for the name field in a vCard. Thus, the IDS contains a signature

for vCards with name fields equal to 245 bytes and detects the attack.

4.7.2 Signature of Tanya Attack

L2CAP echo request with additional

out-of-range signaling command = 0x44

and data field = 4068

Figure 4.11 : L2CAP Packet used in Tanya Attack

The Tanya exploit tool crafts and sends maliciously formed L2CAP quality of

service messages to degrade Bluetooth service on a mobile device. The tool repeat-

edly sends the same maliciously crafted message to a target device and limits the

throughput of the vulnerable device by forcing the device to continuously respond.

Similar tools include BlueSmack and Symbian Remote Restart, which both take ad-

vantage of the L2CAP quality of service messages to overwhelm vulnerable devices.
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To detect the use of these tools, the IDS looks for the specially crafted quality of

service messages. The Tanya attack uses a special packet depicted by Figure 4.11

. The packet has an additional out-of-range signaling command with a data field of

4068 bytes. This extra signaling command causes problems in decoding the packet

on some devices.

Further, to differentiate between the attacks, the IDS looks at the size of the data

field of the messages for Tanya, Symbian Remote Restart, and BlueSmack attacks.

Each tool uses different size quality of service messages including 20, 44, and 667 bytes

respectively. The different size messages cause vulnerabilities on different vendor

devices.

4.7.3 Signatures of Maliciously Formed Bluetooth Packets

specific out-of-range L2CAP signaling code causes exploit

Figure 4.12 : Nokia N70 Denial of Service Attack

To detect maliciously formed bluetooth packets, the IDS uses patterns that match

the malicious fields. Figure 4.12 shows an example of a malformed packet that causes

denial of service on certain Nokia N70 mobile devices. By sending an L2CAP packet

with an code of 7D, an attacker can crash certain Nokia N70 mobile device. 7D does

not indicate a reserved code and is therefore not a valid field. When an attacker

sends such a packet to a Nokia N70 Device, the IDS matches the known signature

and detects the traffic as a specific Nokia N70 attack.

Figure 4.13 shows a second malicious packet that causes an attack. By setting

the Signal Length to an invalid value greater than 12, an attacker forces a vulnerable

target to reference an invalid memory location. Thus, the IDS rule looks for any
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invalid value for signal length causes exploit

Figure 4.13 : L2CAP Header Overflow Denial of Service Attack

L2CAP packet with a malformed Signal Length and also flags it as a specific L2CAP

HeaderOverFlow Attack. Furthermore, the IDS detects a similar attack known as

HCIDump-Crash that uses a different invalid value for the Signal Length that forces

a crash on some versions of the Linux BlueZ protocol stack.

4.8 Detection of Information Theft Attacks

This section explains signatures used in the testbed to detect information theft

attacks. Specifically, it looks at the signatures for the Btcrack, CarWhisperer, Blue-

Bugger, HIDattack, and Helomoto attacks.

4.8.1 Signature of Btcrack

L2CAP packet with signaling code of "CMD REJ" 

that causes devices to delete pairing

Figure 4.14 : Capture of a Packet Used to Reset and a Connection for BTCrack

First, this section examines a signature to detect hackers using the Btcrack tool.

To observe the pairing process and discover the key used for encryption, attackers send

a specially crafted message, known as a Btcrack, to disrupt the connection. Figure
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4.14 shows the capture of the specially crafted packet. The signature for a Btcrack

attack involves detecting this L2CAP CMD REJ packet followed by immediate pair-

ing and mutual authentication of both Bluetooth devices. Such behavior allows an

attack access to enough information to execute the Btcrack attack to compromise the

linkkey.

4.8.2 Signature of CarWhisperer Attack

AU_RAND

SRES START_CRYPTMASTER

SLAVE

AU_RAND

SRES START_CRYPTMASTER

SLAVE

AU_RAND

SRES START_CRYPT

Expected Packet Transmission

CarWhisperer Packet Transmission

Challenge

Response Challenge

ResponseChallenge

Response Not Mutually Authenticated
But Start Encryption

Mutually 
Authenticated

Start Encryption

Figure 4.15 : CarWhisperer Packet Transmission

Figure 4.15 demonstrates the behavior during a CarWhisperer attack compared

to normal Bluetooth behavior. According to the protocol specification, both sides

should perform mutual authentication by challenging with an AU RAND message

and calculating an SRES response. Following mutual authentication by both parties,

both sides request that future transmission be encrypted with the START CRYPT

message. During the CarWhisperer attack, the attacker challenges the target with an

AU RAND and the target replies back with a calculated SRES response. However,
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the target does not authenticate the attacker. The attacker then initiates encryption

without performing authentication on the target. After the traffic is encrypted, the

attacker connects to the SCO channel and begins receiving the audio links. There-

fore, the signature for a CarWhisperer attack includes an incomplete authentication

followed by immediate encryption and encrypted SCO traffic.

4.8.3 Signature of BlueBug Attack

Unauthenticated Connection to RFCOMM Channel

AT Command and Response 

for the 2nd Address in the Phonebook

Figure 4.16 : BlueBug Attack Traffic Captured by IDS

The signature of a BlueBug attack involves detecting an unauthenticated or un-

encrypted RFCOMM connection to a mobile device, followed by RFCOMM-AT com-

mands that result in the theft of information from the device. Figure 4.16 demon-

strates a BlueBug attack. First, the attacker connects to an RFCOMM channel

without authentication. Next, the attacker issues a request for an address in the

phonebook. The unsuspecting target device responds with the information.

Unfortunately many manufacturers allow the connection to RFCOMM channels

without previous authentication or encryption. While this activity itself poses a

security risk, it is the actual theft of information that causes the IDS to raise an

alert and flag the behavior as intrusive. Furthermore, the IDS also detects BlueSnarf

attacks in the same manner. The BlueSnarf tool implements the attack in the same

manner but uses different AT commands to access the device. As such, the IDS

differentiates between the two different tools on the basis of the issued AT commands.
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4.8.4 Signature of HeloMoto attack
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Figure 4.17 : Pattern for HeloMoto Traffic

The HeloMoto attack grants access to an attacker on certain Motorola devices.

In order to implement the attack, the hacker initiates an RFCOMM connection to a

vulnerable device. The hacker then requests to transfer a file via OBEX. However,

the attacker then terminates the connection without completing the OBEX transfer.

This uncompleted transfer places the hacker as an authorized user on the vulnerable

device. Figure 4.17 depicts the the attack. Thus, to detect the attack, the IDS looks

for RFCOMM connections to a mobile phone where an OBEX transfer was requested

but not attempted or completed prior to a request to disconnect the connection.

4.8.5 Signature of HIDattack

Finally, this section examines the signature pattern for the HIDattack tool used to

implement attacks against Bluetooth HID devices. The HIDattack gives an attacker

the ability to connect to some Bluetooth-enabled computers to take over control of

devices such as the wireless keyboard and mouse. This attack takes advantage of the

fact that the protocol does not enforce authentication or encryption. To execute this

attack, a hacker simply connects to the HIDP interrupt and control channels of the

target and then has access to falsely act as the HID keyboard or mouse. Figure 4.18

demonstrates the traffic pattern for such an attack. Thus, the IDS simply defines an
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Figure 4.18 : Pattern for HIDattack Traffic

unauthenticated connection to the HIDP control and interrupt Channels followed by

a series of HID events. A separate method of implementing the HIDattack relies upon

passive capture of Bluetooth traffic. As such, the implemented intrusion detection

system cannot detect this. The next section also discusses some of the problems faced

in developing the system.

4.9 Response System

Once the system detects an attack signature, it has the capability to respond.

This section examines different responses for each attack classification, including re-

connaissance, denial of service, and information theft attacks. Directing responses

requires close scrutiny to avoid potential reflection attacks. This work does not ad-

dress the security of responses but rather suggests methods to prevent, disrupt, and

deny detected attacks.

4.9.1 Reconnaissance Response

For responding to a reconnaissance attack, this thesis presents a method of deploy-

ing decoys or honeypots.[61] By standing up honeypot targets, the system distracts

attackers from more valuable machines on the network.[61] For a wireless IDS, the

system should employ honeypots randomly in different locations so as not to give
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an attacker obvious knowledge of the boundaries of the wireless intrusion detection

system. This thesis implements the response system on a separate machine. By sepa-

rating the response system from the IDS engine, the author demonstrates the ability

to deploy multiple separate response nodes.

The Bluetooth IDS implementation employs a production honeypot system. Upon

detection of reconnaissance probes, the system responds by creating an array of fake

devices to overwhelm and distract the attacker. The system creates false targets by

randomly generating a name and physical address and flashing the information on

a USB Bluetooth dongle. Once the device contains the new address, it responds

to inquiries and name requests before burning a new randomly generated name and

physical address onto the chipset. By utilizing a limited set of USB dongles, the

system creates a mirage of several active Bluetooth devices to distract the attacker

from the legitimate Bluetooth devices.

4.9.2 Denial of Service Response

Next, this work implements a means of responding to denial of service attacks by

terminating the connection between the attacker and target. A. Wool originally pro-

posed the idea of using a false message to terminate legitimate Bluetooth traffic.[32]

However, this work uses a similarly crafted message to terminate an attacker. Upon

immediate discovery of a denial of service attack, the implemented IDS forges a mes-

sage to disrupt communication between the attacker and the target. By sending the

attacker an L2CAP CMD REJ message with a forged address of the target, the IDS

disrupts ongoing denial of service by the attacker.

4.9.3 Information Theft Response

Finally, this work implements a response to an information theft attack. Upon

detection of an information theft attack, the response node stands up a false target

device with the same physical address as the vulnerable device. By doing so, the

system provides a phony target device with similar services as the vulnerable device

to distract the attacker. Thus, the IDS prevents the attacker from connecting to any
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vulnerable targets to perform future attacks until the administrator can physically

locate the threat. To demonstrate the success of such a method, the next chapter

describes the implementation of the IDS and intrusion responses for this work.
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Chapter 5

Bluetooth IDS Implementation

5.1 Overview

This chapter provides an explanation of the implementation and testing of the

Bluetooth intrusion detection system. First, this chapter examines the testbed used

to record the metrics of the system. Next, this chapter presents some of the practical

problems and limitations faced when constructing the first network-based Bluetooth

intrusion detection system.

5.2 Bluetooth IDS Testbed

    
   Defense

  Node

Attack 

Node

Response Node
(3 CSR Bluetooth Radios)

Protocol Analyzer
(12 dBi Yagi Antenna)

USB

802.11g WiFiTarget Nodes

802.15.1 

Bluetooth

(5 Bluetooth Radios)

Figure 5.1 : Testbed Used for Bluetooth Intrusion Detection
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The testbed for this work included a defense node, response node, attack node,

and vulnerable target nodes. Figure 5.1 provides a graphical representation of the

experiment. The defense node maintained the responsibility of recording traffic and

identifying attacks initiated by the attack node on the target nodes. The response

node attempted to disrupt, deny, and prevent Bluetooth attacks as directed by the

defense node.

5.2.1 Attack Node

The attack node consisted of a notebook computer running the BackTrack2 live

Linux distribution from remote-exploit.org. Built on the Linux 2.6.20 kernel, the

distribution includes more than 300 different security tools. Hackers employ Back-

Track2 in order to penetrate computer security. The latest release includes exist-

ing support for 11 unique Bluetooth attacks. In addition, the testbed software in-

cluded the Bluediving (next-generation Bluetooth security tool) available from blue-

diving.sourceforge.net. The Bluediving tool includes applications capable of spoofing

Bluetooth addresses, generating L2CAP packets, and launching several of the attacks

outlined in Section 2.2. Furthermore, the attack software included the tools available

from trifinite.org, an organization that hosts a large repository of Bluetooth attack

tools. To augment the existing tools, the author wrote several small reconnaissance

programs to test the timing and frequency of differing reconnaissance probes for dis-

coverable and non-discoverable devices. Appendix C includes version information for

all tools used on the attack node. Table 5.1 lists the complete set of attacks launched

at the system to test the ability to evaluate the implemented IDS.

In addition to the Bluetooth radio included with the notebook computer, the

attack node included five Bluetooth USB dongles and a modified Linksys USB110

Bluetooth dongle running in parallel to increase the probability of successful attacks.
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5.2.2 Target Nodes

Table 5.2: Targeted Devices

Attack Target Description
BlueBug Attack Nokia 6310 Phone
BlueSnarf Attack Sony Ericsson T68i Phone
CarWhisperer Attack Plantronics M2500 Hands-Free-Audio Headset
HeloMoto Attack Motorola v600 Phone

The targets in the experiment included a variety of devices with well documented

manufacturer flaws. The experiment conducted reconnaissance and denial of service

on a wide array of devices in order to establish a baseline of metrics to evaluate

the implemented system. Furthermore, the experiment implemented specific attacks

on devices with disclosed vulnerabilities. Table 5.2 outlines some attacks and the

respective target devices.

5.2.3 Defense Node

The defense node consisted of a hardware protocol analyzer and a software IDS

application. The Merlin LeCroy Protocol Analyzer proved to be an excellent solution

for recording Bluetooth traffic because it can nonintrusively capture, display, and

analyze Bluetooth piconet data. Additionally, the Merlin Analyzer included support

for addressing the device via a scripting language. The scripting language for the

device enabled the author to listen to devices on a specific frequency or specific

piconet. Further, it allowed recording and logging of traffic on of all the Bluetooth

protocol layers. Intended for Bluetooth developers, the analyzer included the ability

to connect an external antenna. For purposes of this experiment, the system utilized

a 12 dBI gain antenna to record traffic with ranges up to 1 km.
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The defense node also included a software application that processed the captured

traffic and ran a set of preconfigured rules and plug-in modules to detect Bluetooth-

enabled attacks. The software application implemented the design of a Bluetooth

IDS engine outlined in Chapter 4. Additionally, the application included a graphical

interface that provided the alert and visualization interfaces. Furthermore, the ap-

plication provided the security administrator with the capability to further configure

rules and write add-on modules for future attack signatures. Appendix B.1 provides

more information about the use of the software application.

5.2.4 Intrusion Response Node

To demonstrate the response capabilities hypothesized earlier in this thesis, the

author constructed an intrusion response node with the responsibility to distract,

deter and terminate Bluetooth attacks. The response node contained three Cambridge

Silicon Radio (CSR) chip-based USB Bluetooth dongles. These devices contained

flash memory that permitted raw access to the device. As such, the chipsets enabled

writing false information to forge the identity of the Bluetooth MAC devices. Forging

the Bluetooth address proved essential since it enabled the response node to deploy

honeypots with false identities, disrupt ongoing attackers by spoofing an address of an

attacker, and prevent future attacks by forging the connection responses of vulnerable

targets.

5.3 Practical Problems Faced

Implementing the first network-based Bluetooth IDS included some practical prob-

lems. The system relied on a hardware protocol analyzer to capture and decode

Bluetooth packets. Therefore, the system faced some problems decoding particular

packets, and scheduling unique piconets.
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5.3.1 Protocol Analyzer Packet Decoding

Next, the hardware analyzer presented a problem in realtime testing of three spe-

cific attacks,because of the version of the analyzer. For the research, the author

utilized an older Merlin CATC LeCroy Protocol Analyzer that can decode Bluetooth

traffic compliant with the 1.1 Core Specification. Later versions of the Analyzer, in-

cluding the Merlin II, include support for the succeeding Bluetooth Core Specification.

The older analyzer presented a problem as the analyzer required additional specifi-

cations to decode a limited set of packets. Specifically, the analyzer required specific

channel decoding assignments to understand which protocol layer had generated RF-

COMM traffic for some packets during the BlueSnarfer, BlueBugger, and HeloMoto

attacks. Thus, the author could only record these attacks manually, because they

required the additional input to the analyzer. The author tested the remainder of the

attacks autonomously utilizing the scripting language of the analyzers.

5.3.2 Scheduling Between Bluetooth Piconets

Additionally, the protocol analyzer presented a problem in the fact that it can-

not simultaneously record all Bluetooth communication in a given area. Rather, it

records communication in only one unique piconet at a time. In theory, a Bluetooth

IDS could simultaneously listen to 79 different frequencies and then reorganize each

captured packet into a group for a particular piconet. Such a system would require

79 unique radios and a multiplexing scheme. Separately, a user could attempt to

synchronize with a unique piconet and hop in sequence with that particular piconet.

Alternating between piconets provides an efficient, but not optimal, picture of traffic.

The possibility does exist that one could miss an attacker during the swapping of

piconets. However, in the long term, the system would likely identify an aggressive

attacker. The testbed for this work employed a system that scheduled unique pi-

conets for recording in a round-robin algorithm. Appendix B.2 provides an example

script to record data in different piconets and upload the data to the IDS software

application.
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Chapter 6

Evaluation of Results

6.1 Overview

This chapter evaluates the implemented intrusion detection system in terms of the

Dense Advanced Research Projects Agency (DARPA) metrics for intrusion detections

and the implemented response capability.

6.2 Experiment Setup

The author derived the results in this chapter using the testbed explained in the

previous chapter. To test the probability of detection, the author generated traffic

on a testbed network as suggested by Mell et. al. [62] Using 20 different attack

tools, the attack node ran exploits against the series of vulnerable target nodes.

The author then recorded each attack with a LeCroy Bluetooth Protocol Analyzer.

Furthermore, the author built a special analyzer recording options file to reduce the

amount of traffic uploaded to the IDS. To increase the efficiency of the system, the

analyzer dropped all baseband and radio traffic. Additionally, the author specified

decoding assignments for RFCOMM AT traffic that the protocol analyzer could not

autonomously decode.The author then verified each signature with off-line recordings.

Next, the author tested 17 different attacks with on-line detection by streaming

the data from the protocol analyzer to the IDS preprocessor. During the on-line
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detection tests, the author controlled the analyzer via a scripting language and forced

it to autonomously upload decoded packets to the IDS preprocessor while the attack

node performed a series of attacks on the targets. During this time, the analyzer only

recorded data from the defense node instead of round robin scheduling.

To verify the probability of false alarms, the author used previously recorded be-

nign traffic from the LeCroy Corporation, consisting of 33 different devices, including

Bluetooth-enabled computers, headsets, phones, HID devices, and handheld comput-

ers. The benign traffic contained over 26,000 previously recorded packets. The IDS

then examined the entire collection of packets in less than 30 seconds.

To evaluate the response capability, the author built a Linux based response node

with the BlueZ protocol stack. The IDS then contacted the response node via TCP

sockets and issued commands based on attack identification. The author then verified

the results by examining the output and data recorded on the response node.

6.3 Evaluation of IDS Metrics

In 2007, DARPA defined metrics for intrusion detection systems, including record-

ing the Probability of False Alarms, Probability of Detection, Resistance to Attacks

Directed at the IDS, Ability to Detect Never Before Seen Attacks, Ability to Identify

an Attack, and Ability to Determine Attack Success.[62]

This paper utilizes these metrics to determine the success of the implemented

intrusion detection system. The results show the system has a low rate of false

alarms, a high rate of detection, a moderate resistance to IDS attacks, and the ability

to determine attack success.

6.3.1 Coverage

Coverage defines the attacks that an intrusion detection system can detect under

ideal conditions.[62] For signature-based systems, coverage defines the set of known,

defined signatures. The coverage of the implemented system consists of 20 known

attacks listed in Table 5.1 However, because the system has a configurable rule syntax
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and the user can add additional modules, the coverage can grow as the number of

discovered Bluetooth attacks grows.

6.3.2 Response Time

Table 6.1: Time Required for Detection of Attacks

Attack Category Avg. Required TWin
RFCOMM Scan (5 Conn. Requests) Reconnaissance 110.86 sec
PSM Scan (100 Conn. Requests) Reconnaissance 4.747 sec
HeaderOverFlow Denial of Service 0.0006 sec
Nasty vCard Denial of Service 1.1030 sec
BlueSnarf Information Theft 1.4696 sec
BlueBugger Information Theft 3.2566 sec
CarWhisperer Information Theft 0.2277 sec
HeloMoto Information Theft 3.2294 sec

Figure 6.1 shows the average time required (Twin) to detect different Bluetooth

attacks recorded by the system. Some attacks, such as the HeaderOverFlow attack,

occur very briefly in 625 milliseconds. Other attacks that require an inspection of

multiple packets take a longer time to report. Thus, some attacks such as an RF-

COMM Scan occur over a period of more than a minute. Based on these values,

the author selected a sliding window value of 120 seconds of traffic to ensure that

the IDS could always spot the patterns for the known attacks. The system detects

most attacks within a matter of seconds. Near realtime detection allows the system

to direct a quick response to prevent, disrupt, or deny ongoing attacks by a hacker.

6.3.3 Probability of Detection

The probability of detection measures the rate of attacks detected correctly by an

IDS in a given environment during a particular time frame.[62] To test the probability

of detection, the author attacked the target nodes with all 20 attacks listed in 5.1.

The IDS used the previously calculated sliding window of 120 seconds of traffic.

Furthermore, the author tested the system with both off-line and on-line detection,
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with the exception of three attacks that could only be tested offline. The IDS correctly

identified each of the 20 attacks in the tests.

6.3.4 Probability of False Alarms

False alarms incorrectly produce alerts on benign background traffic.[62] To test

the results of the system implemented here, the LeCroy corporation provided a base-

line of off-line recordings of 33 different devices, including Bluetooth-enabled com-

puters, headsets, phones, HID devices, and handheld computers. The recordings

consisted of a total of 26,031 logical packets of benign Bluetooth traffic. The author

ran the Bluetooth IDS with the offline recordings from the LeCroy Corporation to

determine a rate of false positives. The system did not produce any false-negative

alerts on any of the benign traffic.

6.3.5 Resistance to Attacks Directed at the IDS

Common intrusion detection evasion techniques include sending fragmented pack-

ets, crafting obfuscated payloads, and overwhelming the IDS with alerts to disguise

the actual attack.[62] All of these attacks attempt to overwhelm the IDS with data in

order to decrease its ability to make an intelligent decision. The limited throughput

of Bluetooth decreases the ability of such attacks. The use of a protocol analyzer

prevents fragmented packets and obfuscated payloads from overwhelming the IDS, as

the protocol analyzer handles the decoding of the Bluetooth packets to logical data.

Fragmented packets are reassembled by the protocol analyzer with transparency to

the IDS engine.

However, a separate problem exists if an attacker has access to a large number

of Bluetooth radios. The current proposed system detects devices and listens in a

round-robin fashion to each device for a specified period. Knowing this, an attacker

could use several devices to conceal his actual attack. However, this attack would

have a limited range, as an attacker would not likely have access to several long-

distance antennae. To avoid this problem, a system must simultaneously record and

multiplex all 79 frequencies used by the Bluetooth protocol.
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6.3.6 Ability to Identify an Attack

The ability to identify an attack depicts the accuracy that an IDS can identify an

attack with a specific common name or vulnerability name. [62] In the implemented

IDS, the system correctly identifies all defined attacks by name. Further, it can dis-

tinguish between different tools implementing the attacks. For example, the system

correctly differentiates between BTScanner and Tbear device reconnaissance tools.

Both tools scan for Bluetooth devices by continuously generating inquiry requests.

However, the tools utilize a different inquiry response timeout value. The IDS dis-

tinguished between these two tools performing a similar attack on the basis of the

inquiry timeout value.

6.3.7 Ability to Determine Attack Success

The proposed system correctly identifies the success of an attack. This section

presents two different examples to illustrate the attack success determination.

In the first example, the attack nodes crashed a Nokia phone by sending a ma-

licious packet. After the receipt of the malicious packet, the Bluetooth radio of the

Nokia phone ceased working and stopped sending acknowledgments for connection-

oriented packets. Seeing that the Bluetooth radio in the phone had ceased working,

the IDS identified the attack as successful. The author repeated the same experi-

ment with a Motorola phone not vulnerable to the attack. As expected, the Motorola

phone did not crash and continued to respond after the attack. The intrusion detec-

tion system recorded the packets of the invulnerable device and identified the attack

as unsuccessful.

In the second example, the attack node attempted to pull data out of a phone by

using a BlueBug attack. The data consisted of a phonebook with the names of the

top ten wanted terrorists. First, the attack node connected to a vulnerable phone

and issued the command to steal the phonebook. The intrusion detection system

correctly saw the packets relevant to the connection and the data packets of the

stolen phonebook. Thus, it identified the attack as successful. Figure 6.1 shows

the GUI alert. The author then repeated the same experiment with an invulnerable
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Figure 6.1 : Report of Data Stolen During BlueBug Attack

phone. The intrusion detection system saw the connection and attempt to pull the

phonebook. However, the attack failed to steal the phonebook, and the intrusion

detection successfully reported an unsuccessful attack, since it did not see any data

for the phonebook.

6.3.8 Processing Speed

Table 6.2: Off-line Processing Time

Traffic Description Traffic Length Packets Processing Time
BlueBugger Attack 30.02 sec 189 packets 21.0 ms
BSS Attack 367.20 sec 973 packets 144.0 ms
BlueSpam Attack 358.88 sec 1,756 packets 165.0 ms
PSM Scan Attack 47.85 sec 2,187 packets 292.0 ms

One measurement for determining the relative responsiveness of an intrusion de-

tection system is the speed at which the IDS can process traffic. Table 6.2 shows

traffic processed off-line by the IDS and time required to match the entire set of rules

against the different traffic sets. The results show that the system can process roughly

1,000 packets of data in roughly one second. It is important to note that the term

packet here describes logical packets, not physical packets, since the protocol analyzer

combines several packet fragments together and exports them as one logical packet.

Further, the analyzer does not export any baseband or radio layer traffic, since the
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IDS system is only concerned with identifying the malicious activity on the upper

layers of the Bluetooth protocol.

6.4 Evaluation of Response Capability

Finally, this section reports the results of testing the distraction and disruption

responses employed to prevent reconnaissance, denial of service, and information theft

attacks. Through the usage of flash-enabled Bluetooth radios, the system created

honeypots to distract attackers and sent falsified messages to terminate attacks.

6.4.1 Reconnaissance Response

Honeypots have been used effectively to distract attackers from IP targets.[61]

However, this section describes the results of using honeypots to distract mobile

attackers on the Bluetooth protocol. An advantage of Bluetooth attacks over typical

wireless attacks is the relatively quick time in which an attacker can find and comprise

a target. These results present the success of one method of aggressively responding

to a reconnaissance threat by flooding the attacker with false honeypot targets in

order to increase the time required for an attacker to find a target device.

To confuse an attacker, the IDS in this thesis implemented the following system.

Upon notification of a reconnaissance probe, the system responded by deploying three

Bluetooth radios that constantly changed their user-friendly names and physical MAC

addresses. Thus, it appeared to the attacker that there was a large volume of Blue-

tooth targets. In order to create the mirage of targets, the system must flash the

chipsets of each Bluetooth radio. On average, it took 5.7947 seconds to flash the

chipset, reboot the chip and change the device name after responding to an inquiry.

Thus, the system essentially created ten false targets per radio per minute.

To verify the results, the author wrote a reconnaissance program that recorded

the names of unique targets detected per minute. On average, the inquiry program

detected only 4 false targets per additional radio per minute. This lower value corre-

sponds to an inquiry period of 10.24 seconds plus the short period during which an
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attacker must ask for the user-friendly name of the Bluetooth device. At a cost of

$3 per Bluetooth radio, a production system could easily employ hundreds of Blue-

tooth radios to quickly distract an attacker. Further, the system could place these

throughout an organization to distract attackers.

6.4.2 Denial of Service Responses

The author further tested the IDS response system by attempting to break ongoing

denial of service attacks using falsified connection termination messages.[32] In order

to utilize this attack method, the attack must know both the physical addresses of the

attacker (master) and target device (slave) in the piconet. The system already had

knowledge of the master address from discovery by the protocol analyzer. Had the

system been implemented using another method, the master address would also have

been available as a field in FHS packet sent at the start of the connection. However,

gaining access to the target address proved more challenging. The packet header only

includes a 3-bit AMA address referring to the slave’s position in the piconet. Thus,

the response node scanned for all discoverable devices. The response system then

forged packets from all of those devices to the attacker.

Figure 6.2 : Attacker’s Console after Denial of Service Response

First, the system attempted to stop an attacker attacking via the BlueSmack At-

tack. The system successfully terminated a denial of service attack. At the attacker’s

console, the denial of service program reported a connection timeout and disconnected

from the target, stopping the attack. Figure 6.2 depicts the results on the attacker’s
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console. Further testing showed that the response capability disrupted similar attacks

such as Tanya, Ping of Death, and Symbian Remote Restart attacks.

6.4.3 Information Theft Responses

Next, the author tested the ability of the system to respond to information theft

attacks such as the BlueSnarf, BlueBug, CarWhisperer, and HeloMoto attacks, by

establishing false targets. Establishing false targets protects the vulnerable targets

by creating phony devices with the same physical address as the vulnerable target.

Figure 6.3 : Attacker’s Console after Information Theft Response

To test the defense, the author simply flashed a radio with the same physical

address as a vulnerable device. The author then attempted to perform an attack

against the vulnerable device. Because the flashed device had a higher power class,

it answered and generated replies for the traffic intended for the vulnerable target.

This caused the attack to fail on all four attack methods above. Figure 6.3 shows

the results of the failed attack. The more powerful phony-target-response device

responded to the message instead of the intended target. Based on the success of this

test, the implemented system could be further expanded by creating phony services

that supplied false information to attackers.
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Chapter 7

Conclusion

7.1 Summary

1. Bluetooth is emerging as a ubiquitous protocol. While standard applications

include smartphones, hands-free audio, global positioning devices, cameras, and

peripheral cable replacement, Bluetooth devices also exist in health care, mo-

bile banking, and military applications. Bluetooth-enabled devices now carry

sensitive information attracting hackers.

2. The lack of mandatory authentication, a weak encryption key scheme, and dif-

fering vender protocol implementations have created the possibility for several

attacks on Bluetooth devices. Recent trends have shown an increase in attacks

on Bluetooth-enabled devices and the combination of other attacks implemented

over Bluetooth. Furthermore, the ease of implementing Bluetooth attacks has

decreased with the proliferation of several tools and online repositories of infor-

mation.

3. This thesis implements a network intrusion detection system, based on a misuse

detection scheme, to detect Bluetooth traffic. This system contains the same

constraints of typical misuse detection schemes such as the lack of ability to

detect new attacks. However, the system provides an efficient and effective

means of detecting intrusive attacks. Furthermore, the system demonstrates
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the ability to determine the success of an attack and shows moderate resistance

to IDS attacks.

4. Finally, this work demonstrates that a Bluetooth intrusion detection system can

actively respond to threats. This work presents a means to distract attackers

via the use of a mirage of Bluetooth devices. Further, this work implements a

system for ceasing ongoing attacks through specially crafted messages.

7.2 Limitations and Future Work

7.2.1 Hybrid Model for Detection

The system presented in this thesis suffers from the same constraints of all misuse

detection engines. It cannot detect zero-day or unclassified attack behavior. Rather,

the system relies upon the system designer to develop and provide signatures for

known attacks. Future work could examine the usage of an anomaly-based intrusion

detection such as statistical analysis to detect anomalous and intrusive behavior.

Additionally, a hybrid model could potentially be utilized to find anomalous behavior.

7.2.2 Correlation of Multiple Bluetooth Sensors

The implemented IDS processes input from a single protocol analyzer. Thus, it

allows the IDS to observe behavior in only a single 1 km location. Further, the system

records unique piconets. A future system could take advantage of multiple protocol

analyzers to process data from several piconets in different locations. Similarly, a

future system could deploy 79 radios to listen to traffic on each unique Bluetooth fre-

quency in a given location. A future system could employ a specific custom firmware

for Bluetooth dongles. A specific firmware could improve the packet decoding and

preprocessing.
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7.2.3 Further Intrusion Response Development

This thesis presents some responses to denial of service attacks. In most cases,

end users will be able to determine a denial of service attack occurred. However, this

thesis develops signatures in order to determine the originating MAC address of the

attack. Work by Rodriguez et al. demonstrates how to determine the location of a

Bluetooth device based on the MAC address and received signal strength indicator

(RSSI).[63] Thus, a future system could ultimately identify the physical location of

the attacker. To defend against denial of service attacks, the IDS could target the

attacker with a denial of service attack.

The IDS could simply frequency jam the attacker by transmitting on the preamble

of each frequency during the hopping period. In either case, it would reduce the ability

of the attacker to perform a denial of service attack against targets while the hacker

spent time defending himself. Directing such a response requires careful scrutiny so

as not to disrupt the traffic of other users. A future work could examine the response

methods in greater detail.

This work has shown the ability to stand up false targets with the same physical

address as vulnerable devices. A future work could expand upon this by deploying a

firewall or screen to protect vulnerable devices when a hacker begins attacking devices.

The firewall could act as a relay by intercepting Bluetooth traffic and replaying only

benign traffic to and from the vulnerable devices.

7.2.4 Integration with Existing Defense Tools

This thesis presents an intrusion detection tool for the Bluetooth. Currently

tools exist to assess Bluetooth security in organizations by querying specific device

profiles, services, and channels. A future work could examine integrating an intrusion

detection tool into such Bluetooth security assessment tools. Using the knowledge of

weak or vulnerable devices, the IDS could direct specific responses to protect such

devices from attack.
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7.2.5 Integration with Existing Intrusion Detection Systems

Furthermore, a future work could integrate a Bluetooth IDS into an existing IDS

such as SNORT. Such a work would have to modify the packet capture library, packet

decoder, preprocessor, and detection engine components of the existing IDS. SNORT,

for example, uses a packet capture library that processes Data-Link (Layer 2 of the

OSI Model) packets. In order to integrate both IDSs, the system would require a

translation of Bluetooth packets to an OSI Layer 2 Form. The Wireshark Packet

Capture Tool available at wireshark.org has already begun working on integrating

and translating Bluetooth H4 HCI packets into a libpcap format.[60] A future work

could expand this work as SNORT uses the same packet capture library as Wireshark.

7.3 Speculation

Finally, this thesis examines two potential ways in which Bluetooth-enabled at-

tacks may progress in the near future, including attacks against the newest protocol

specification and attacks against more-critical targets in industry.

7.3.1 Attacks Against the 2.1 Protocol

The Bluetooth 2.1 Core Specification brings significant security improvements.

Most notably, the use of the Diffie-Helman Key Exchange prevents passive ease drop-

ping attacks from overhearing enough information to crack the linkkey used for en-

cryption. However, the Bluetooth 2.1 Core Specification ensures that 2.1 Core devices

remain compatible with previous devices that suffer from weaker encryption schemes.

The potential exists that an attacker may be able to rollback the encryption scheme

by crafting messages that make the communicating devices appear as 2.0 and below

devices instead of 2.1 devices. As such, the attacker can gain access to the encryption

key. Attackers have demonstrated similar rollback attacks on the SSL protocol with

success.
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7.3.2 Attacks Against Infrastructure

Because of the lack of a current security infrastructure to protect Bluetooth, it re-

mains only a matter of time before a significant attack occurs via Bluetooth. Imagine

a fictional attack. Because of the inherent discovery and object transfer functionalities

included in Bluetooth, the potential to mass-market Trojan horses exists. Outside

of the New York Stock Exchange, a Bluetooth-enabled attacker could discover and

distribute specially crafted images to unsuspecting targets. The images would simply

appear as advertisements for the latest coffee franchise but actually run executable

code by exploiting a buffer overflow in an image-handling library. The code would

instruct the device to upload the file contents of the device to a remote server for later

inspection. Or the code could instruct the device to infect other devices via another

protocol. Within a short time and with relative ease, the hacker would be able to

capture large amounts of sensitive financial and personal data.
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Appendix A

Bluetooth Primer

A.1 Bluetooth

A.1.1 Overview

For purposes of understanding the specific threats to Bluetooth devices, this thesis

reviews the design and specifications of the Bluetooth protocol. The Bluetooth Special

Interest Group (SIG) provides the core specification documents for the protocol.[47, 3]

This review specifically addresses the frequency spectrum, protocol layers, profiles,

methods for discovering devices, pairing, and security modes of the Bluetooth proto-

col.

Frequency-Hopping Scheme

Similar to the 802.11 wireless protocols, the Bluetooth protocol utilizes the unli-

censed 2.4 GHz frequency band. Unlike the IEEE 802.11 protocols that use a fixed

frequency in the 2.4 GHz band, Bluetooth utilizes frequency-hopping to avoid interfer-

ence with other devices operating at 2.4 GHz.[47] Communicating devices frequency

hop between 79 unique frequencies from 2.400 to 2.4835 GHz.[47] However, frequency-

hopping provides only minimal security because the communicating device broadcasts

the frequency-hopping sequence in an unencrypted format.[64] Rather than employ-

ing security at the physical layer, the designers included the security modes in the
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upper protocol layers and application profiles.

Piconet Establishment

SM

M

S S

S

S

Piconet A

Piconet B

Figure A.1 : Example of a Bluetooth Scatternet

A piconet is an ad-hoc collection of connected Bluetooth devices. Figure A.1

shows an example of two Bluetooth piconets. Each piconet consists of one master

device and a maximum of seven active slave devices. Thus, a 3 bit active member

address (AMA) represents each distinct device in the piconet. A device may serve as

a master in one piconet and a slave in another piconet at the same time. Multiple

piconets are known as a scatternet. The intrusion detection system proposed in this

thesis records and analyzes traffic from distinct piconets, searching for signatures of

malicious traffic.

The master device periodically synchronizes devices in the piconet by broadcast-

ing the clock offset and frequency-hopping sequence. The master broadcasts this

information in a frequency-hopping synchronization (FHS) control packet that also

contains the physical medium access control (MAC) address, forward error correction

and a CRC code.

In order to detect existing piconets, a device must receive the broadcasted FHS

packet. Once synchronized with the hopping sequence, a device may initiate a con-

nection to the master device. While it is possible to detect a Bluetooth device and
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piconet by overhearing transmitting packets, the intrusion detection system imple-

mented in this thesis relies on the fact that the master device is transmitting FHS

control packets.[20]

Packet Format

Access Code

Packet Header Payload

Figure A.2 : Example for a Bluetooth Baseband Packet

To explain the use of captured packets in the proposed intrusion detection system,

this section reviews the format of a Bluetooth baseband packet. The packet format

consists of three distinct parts: the access code, packet header, and data payload.

Figure A.2 shows an example of a Bluetooth baseband packet. The 72 bit access

code consists of a channel access code (CAC), that identifies the piconet, a device

access code for paging requests and response, and an inquiry access code to discover

devices. The 54 bit packet header consists of a member address, type code, flow con-

trol, acknowledgment, sequence number, and header error check. The data payload

is up to 2745 bits.

Bluetooth uses two types of connection links: the asynchronous connectionless link

(ACL) and the synchronous connection-oriented (SCO) link. ACL packets provide

data communication. In contrast, SCO links typically contain time-bounded traffic,

such as audio transmissions. An ACL packet may consist of one,three, or five time

slots and further carry a data-high (DH) or data-medium (DM) rating. In the next

section, this thesis examines how the different layers handle typical Bluetooth packets.
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A.1.2 Protocol Stack

This section examines the Bluetooth protocol stack. First, this section reviews the

specific protocol layers and their specific functionalities. Next, this section examines

why different protocol stack implementations have enabled some Bluetooth attacks.

Stack Design

Application Layer and Profiles

Object Exchange (OBEX)

Service Discovery
Protocol (SDP)

RFCOMM

Logical Link Control and Adaptation Protocol (L2CAP)

Host Control Interface (HCI) 

Link Manager Protocol (LMP)

Baseband

Radio

Lower
Layers

Upper
Layers

Figure A.3 : The Bluetooth Protocol Stack

Figure A.3 shows a model of the Bluetooth protocol layers. At the bottom of

the stack, the Radio Layer handles modulation and demodulation of data into radio

frequency signals.[65] Above that, the Baseband Layer allows Bluetooth devices to

operate in three different classes based on power constraints and distance require-

ments. Figure A.4 depicts the three classes.[47] According to the design, devices can

communicate up to a range of 100 meters.[47] However, commercial products provide

the means to communicate over 30km. This increased range presents some interesting

methods for attacking Bluetooth presented in Section 2.2.1.
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Next, the Link Manager Protocol (LMP) translates Baseband layer operations into

host commands.[65] Link Manager secures and configures the link of the established

Bluetooth network. The Host Controller Interface (HCI) provides a means of access-

ing the Baseband controller and Link Manager. Above the HCI Layer exists the upper

layers of the Bluetooth protocol stack. The Logical Link Control and Adaptation Pro-

tocol (L2CAP) Layer multiplexes the data for higher layer protocols, handles data

segmentation, and manages quality of service and transmission management.[64, 47]

The Service Discovery Protocol (SDP) handles discovering services on a Bluetooth-

enabled device. The RFCOMM layer handles Radio Frequency emulation of serial

communication. Lastly, the Object Exchange (OBEX) layer provides a means for

exchanging data objects. While the specification provides an overview for how to

implement the stack, each vendor provides a slightly different implementation.

CLASS POWER (mW) RANGE (Meters)

1 100 100

2 2.5 10

3 1 1

Figure A.4 : Link Manager Protocol (LMP) Classes of Bluetooth Power

Stack Implementations

Several different vendor implementations of the Bluetooth stack exist including

the Linux based BlueZ stack, Windows based Widcomm stack, and the MAC OS X

Bluetooth stack. Hackers have discovered and exploited security weaknesses in several

of the Bluetooth stacks. Table A.1 lists some of the reported vulnerabilities. Chapter

3 of this thesis provides a more in-depth look at these vulnerabilities.
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Table A.1: Bluetooth Protocol Stack Vulnerabilities

Stack Discovered Vulnerabilities
BlueZ Stack denial of service attack
Toshiba Bluetooth Stack buffer overflow, directory traversal
Widcomm remote audio eavesdropping, remote code execution
Sony Ericcson denial of service attacks
MAC OS X remote code execution, worms

A.1.3 Application Profiles

At the Application layer, the Bluetooth protocol defines generic application pro-

files. Profiles provide specifications in order to ensure device compatibility between

different vendors. Profiles include methods for distributing audio, networking, ex-

changing objects and accessing data. Abstracting profiles away from specific manu-

facturers ensures compatibility between different vendor devices.[47]

The Object Push Profile (OPP) serves as one example of a profile. The OPP

defines the requirements for exchange of data objects, typically business cards, over

Bluetooth. Because it does not require prior authentication on some vendor im-

plementations, the OPP proves to be a vulnerability in some Bluetooth-enabled

devices.[36]

Other profile implementations such as the Human Interface Device (HID) and

hands-free-audio, contain weaknesses in certain vendor implementations. Section

2.2.4 reviews particular attacks on the HID and hands-free-audio profile implementa-

tions on some machines..

A.1.4 Device Discovery

Physical Address

The Bluetooth Medium Access Control (MAC) address, a pivotal piece of infor-

mation to an attacker, identifies a unique device. Figure A.5 shows an example of a

MAC address. The 48-bit address consists of the 16-bit Non-Significant Address Part

(NAP), 8-bit Upper Address Part (UAP), and 24-bit Lower Address Part (LAP).[20]

The first 24 bits of the address, including the NAP and UAP, identify unique vendors.
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model

and device
vendor

A1 :  B2 : C3 : D4 : E5 : F6

24-bit LAP
16 bit NAP

+ 8 bit UAP 

Figure A.5 : Bluetooth MAC Address

The remaining 24-bits identify unique models and devices. The MAC address serves

as a vital starting point for an attack. With knowledge of the MAC address, the

attacker can gain access to the clock offset, supported profiles, and the device name,

and further prepare to exploit or deny service to a device.[20]

Inquiry Process

Prior to establishing a connection, a Bluetooth device must discover a communica-

tion partner. During device discovery, a device broadcasts a requests on a 32-channel

subset of the frequency range.[16] Discoverable Bluetooth devices respond to the de-

vice inquiry with a response containing their clock offsets and MAC addresses. In

contrast, non-discoverable devices discard the broadcast message and are not visible

to the inquiring device. The minimum time required to complete an inquiry request is

10.24 seconds, because the inquiry device listens for a response for 625 microseconds

on each frequency 512 unique times.[16] Additionally, the time to complete an inquiry

may extend due to corruption or lengthy responses.

A.1.5 Pairing and Authentication Process
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In order to communicate securely, Bluetooth devices require pairing. Pairing

requires that devices exchange protected passkeys in order to create a linkkey used

for encryption. The Simple Pairing protocol in the Core Specification 2.1 includes

significant improvements including a Diffie Helman key exchange.[47] However, over

1.8 billion Bluetooth-enabled devices exist that operate pre-2.1 specifications.

In the previous specifications, each device creates an initialization key based on the

Bluetooth MAC address, PIN passkey, and 128-bit random number.[3] Each device

then uses the initialization key to exchange random words used in the creation of

the linkeys. Following creation of the linkkeys, each device pair perform mutual

authentication. Figure A.6 depicts the pairing and authentication in the previous

specification. Should an attacker be able to observe the pairing process, he can

reconstruct the linkkeys to decrypt further traffic between paired devices.[32, 33]

MASTER SLAVE

PKa

COMPUTE DIFFIE HELAMN KEY

DHKey = P192(SKa, PKb)

PKb
COMPUTE DIFFIE HELMAN KEY

DHKey = P192(SKb, PKa)

GENERATE SECRET KEY SKa

AND PUBLIC KEY PKa

GENERATE SECRET KEY SKb

AND PUBLIC KEY PKb

Figure A.7 : Creation of Diffie Helman Key used for Secure Simple Pairing in Core
Specification 2.1

In response to the discovered protocol weaknesses, the Bluetooth Special Interest

Group developed Secure Simple Pairing. Simple Pairing uses the Elliptic Curve Diffie

Helman public key exchange to protect against passive eavesdropping.[47] Figure A.7

shows how the protocol creates a Diffie Helman key for authentication use. Initially,

each device computes a public and a private key. However, only the public keys are

transmitted over the radio. Thus, an easedropper only has access to the two public

keys and cannot compute either the private key or the shared Diffie-Helman key. Once
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each device is authenticated, the key is also used as one of the variables to create the

shared linkkey for encryption. In the latest Bluetooth specification, an encryption

key can be re-created for communication sessions that last longer than 24 hours.

Although Secure Simple Pairing provides protection against passive eavesdrop-

ping, it provides no additional protection against the existing man-in-the-middle

attacks.[66] Additionally, Secure Simple Pairing also introduces Near-Field-Communication

(NFC) cooperation. By bringing two devices within a close proximity, the algorithm

allows for automatic pairing. The conclusion of this thesis makes speculations about

attacks on NFC cooperation and potential roll back attacks.

A.1.6 Security

Security Modes

Mode 1 - No Security

Mode 2 - Enforced at L2CAP Layer

Mode 3 - Enforced at Baseband Layer

Mode 4 - Customizable

 Encrypted

 Authenticated

Figure A.8 : Link Manager Protocol Security Modes

While pairing provides the linkkey used for encryption and authentication, the

Link Manager Protocol (LMP) directs the security mode. Four modes exist for Blue-

tooth security.[47] Figure A.8 depicts these modes. In the first mode, a device does

not initiate security procedures. In the second mode, a device does not initiate se-

curity procedures prior to the establishment of the L2CAP connection. In the third

mode, the device must initiate security procedures prior to establishment of the LMP
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connection. In the fourth and final mode, the device can classify security requirements

based on authentication and security required.

Device security in Bluetooth has improved with each release of the Core Specification.[66,

47, 3] But with all new releases comes the potential for newer attacks. Although se-

curity design and implementation prove important, the next section addresses some

countermeasures a user can take to decrease the threat posed by Bluetooth-enabled

attacks.

Security Countermeasures

The National Institute of Standards and Technology (NIST) provides a thorough

overview on countermeasures to prevent Bluetooth attacks. For further reading, NIST

provides the following documentation available as a nist.gov.[40] NIST documents

the policies an organization must establish to protect Bluetooth users from malicious

attacks and increase the relative security of Bluetooth devices.

As described previously, the passkey aids in creation of the encryption key. As

such, the maximum size 16-bit passkey should always be used. Default passkeys that

come with devices should be modified to a sufficient length.[40] To additionally avoid

passive eavesdropping attacks, users must avoid pairing devices in public places.

Because security is optional in the Bluetooth specification, users must select the

highest level security modes, disable discoverable modes, turn off unnecessary services,

and turn off devices when not in use.[40] Additionally, users must enable encryption on

all broadcasted transmissions and use the maximum size encryption key. Application

layer security should be coupled with proper Bluetooth usage. And users should

frequently check vendor information for updated firmware for devices.

While countermeasures aid in protection of Bluetooth-enabled attacks, they cer-

tainly do not provide ultimate protection. The next section provides an overview of

Bluetooth-enabled attacks.
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Appendix B

User’s Manual

B.1 Intrusion Detection Graphical User Interface

Figure B.1 : Graphical User Interface

The Bluetooth Intrusion Detection System contains a graphical user interface.

Figure B.1 presents the interface. Using the interface, the administrator may select

between the alert, configuration, logging, response and statistics windows. Further-

more, the administrator may choose to import traffic either from a captured trace

file in packet-view format or by importing a live streaming feed of traffic. The status
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bar at the bottom of the application provides the details of the current actions of the

application. Further, the user may wish to disable statistics collection to increase the

overall performance and efficiency of the application.

B.1.1 Rule Confiuration

Figure B.2 : Graphical User Interface

The configuration settings allow the user to develop new signatures and write

specific rules to capture packets. Figure B.2 depicts the configuration interface.

Further, specific plug-in modules to detect specific attacks exist and the user may

simply just wish to make specific calls to these modules. These modules can detect

more complex attacks such as BlueSnarfer, BlueBugger, and CarWhisperer.

B.1.2 Response Actions

The response interface allows the user to implement the response capabilities, in-

cluding the ability to deploy false targets, deny service, and terminate the connection

of an attacker. A separate application, responsenode.jar must be running on a Linux

based machine to implement these capabilities and the be specified in the response

node text window.
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Figure B.3 : Graphical User Interface

B.1.3 Statistics Analysis

Figure B.4 : Graphical User Interface

The statistics interface allows the user to examine the current trace and previous

recordings to detect anomalies and statistics in the traffic. The user has a wide variety

of statistical options that will generate graphs for the data requested. Figure B.4

provides some of the graphs generated by the graphical user interface.
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Figure B.5 : Example of a Bluetooth Module
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B.2 Example of a Bluetooth Module

Figure B.5 provides an example Bluetooth plug-in module. The example module

detects a BlueBugger attack. All the modules have the same format and the system

allows future modules to be created and integrated into the system.

B.3 Script for Analyzer Control

The following code is a script to instruct the protocol analyzer to record, export,

and upload data to the IDS engine.

Set Analyzer = WScript.CreateObject(”CATC.Merlin”)

Set Neighborhood = Analyzer.GetBTNeighborhood

For Each Device In Neighborhood

Set Trace = Analyzer.MakeRecording (””)

Trace.ExportToText ”recording.txt”

Dim objSHE : Set objSHE = CreateObject(”WScript.Shell”)

Return = objSHE.Run(”java -jar StreamClient.jar 192.168.105.2 recording.txt

Next
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Appendix C

Bluetooth Attack Information

Software utilized in this testing included Merlin Software 2.01, Lecroy Automa-

tions API version 1.40, BackTrack 2.0, Bluebugger 0.1, Bluediving 0.8, Bluesnarfer

0.1, Bluetooth Stack Smasher 0.8, BTAudit 0.1., BTCrack, BTCrawler, BTScanner

2.1-3, Cabir-Worm-F, CarWhisperer 0.2, GreenPlaque 1.4G, Ghettotooth, HCIDump

Crash, Helomoto, HidAttack 0.1, PSM Scan 0.1.1, RFCOMM Scan 0.1.1, Tanya 1.5,

Tbsearch 1.5, L2CAP Packet Gen 0.8, BCCMD.

The Bluetooth attack software used in the testing came from the following websites:

http://trifinite.org/

http://bluetooth-pentest.narod.ru/

http://bluediving.sourceforge.net/


