

PCAn-Driver for Linux

V7.x User Manual

PCAN-Driver for Linux

Document version 2.1.1 (2014-10-14)

PCAN-Driver for Linux – User Manual

2

Product names mentioned in this document may be the trademarks or registered
trademarks of their respective companies. They are not explicitly marked by “™” and
“®”.

© 2014 PEAK-System Technik GmbH

PEAK-System Technik GmbH
Otto-Röhm-Straße 69
64293 Darmstadt
Germany

Phone: +49 (0)6151 8173-20
Fax: +49 (0)6151 8173-29

www.peak-system.com
linux@peak-system.com
Klaus.hitschler@gmx.de

Document version 2.1.1 (2014-10-14)

http://www.peak-system.com/�
mailto:linux@peak-system.com�
mailto:Klaus.hitschler@gmx.de�

PCAN-Driver for Linux – User Manual

3

Content

1 Disclaimer 6

2 Changed Compilation Target since Kernel 2.6.25 7

3 Changed Compilation Target since Kernel 3.6 8

4 Features of the 'pcan.o' or 'pcan.ko' Driver 9
4.1 Special Features of the “chardev driver” 10
4.2 Special Features of the “netdev driver” 10

5 Prelude 12

6 Installing Manually 13
6.1 Unpacking the Files 13
6.2 Prerequisites for Compilation of the Sources 15
6.3 Manual Compilation and Installation 16

7 Loading the Driver 17
7.1 Driver Loading Specifics for chardev 18
7.2 Driver Loading Specifics for netdev 20
7.3 Kernel Drivers 25
7.4 udev Support 26
7.5 pcan_make_devices 27
7.6 Specifics with the Driver Installation for

PCAN-USB 27
7.7 Specifics with the Driver Installation for

PCAN-PC Card 28

8 Customization of the modprobe Configuration
File 29

8.1 Interface Hardware Type 30

PCAN-Driver for Linux – User Manual

4

8.2 I/O-Port and Interrupt Settings 30
8.3 Initial Bit Rate 31
8.4 Assign Parameter (netdev only) 32
8.5 Alternate Device Numbering Method 32

9 Installation Test, Use of Test Programs
(chardev only) 35

10 Most Important chardev Header Files 39
10.1 Manual Installation of the chardev Header

Files 39

11 Most Important netdev Header Files 40

12 Compilation of the Driver Only 41
12.1 Use Cases 41
12.2 Support for Cross-Compilation 43

13 Features of the Shared Library 'libpcan.so'
(chardev only) 44

14 Manual Installation of the chardev Shared
Library 45

15 Message Filters (chardev only) 46

16 Error Handling 47

17 Socket-CAN Introduction and Basic Installation
(netdev only) 48

18 Real-time Support with Xenomai 51
18.1 Installation 51
18.2 Compilation Environment 51
18.3 Runtime Environment 52
18.4 Troubleshooting 53

PCAN-Driver for Linux – User Manual

5

19 FAQ 54

Appendix A Usage of the Driver with chardev Mode 62
A.1 Polling 62
A.2 Blocking Wait 63
A.3 Blocking Wait with Timeout 63
A.4 Waiting for an IO-event with Select() 64

Appendix B Historical Parts 67
B.1 devfs 67
B.2 Compilation of Kernel Greater Than 2.5.x 68
B.3 Obfuscation 68
B.4 History of the Document 69

PCAN-Driver for Linux – User Manual

6

1 Disclaimer

Part of this program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License or
LGPL Lesser General Public License as published by the Free
Software Foundation version 2 of the License. This program is
distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-
1301, USA

Attention! It is strictly prohibited to use the intellectual
property from the provided source code for developing or
producing a 'compatible' hardware. All rights are reserved by
PEAK-System Technik GmbH

PCAN-Driver for Linux – User Manual

7

2 Changed Compilation Target
since Kernel 2.6.25

Since kernel version 2.6.25 the default compilation target has
changed. Please take care if you have updated your target kernel.

The CAN Network subsystem PF_CAN (aka SocketCAN) became
part of the mainline Linux kernel since kernel version 2.6.25. For this
reason the PEAK driver automatically compiles with the
recommended netdev support, when CONFIG_CAN is set in the
kernel configuration.

The automatic configuration can furthermore be changed with
NET=NETDEV_SUPPORT to force netdev configuration or NET=NO
to force chardev configuration.

Attention! When using the netdev driver interface, the chardev
driver test tools ("cat /dev/pcanXX", "receivetest",
"transmittest") will not work correctly (receiving of messages
won't be possible).

To compile the PEAK Linux driver with the former (default) PEAK
chardev interface, please invoke:

make clean; make NET=NO

PCAN-Driver for Linux – User Manual

8

3 Changed Compilation Target
since Kernel 3.6

Since kernel version 3.6, PEAK-System has made the effort to
include in the SocketCAN Network subsystem of the mainline
kernel, the support of all the PEAK-System PCAN interfaces, while
continuing to update the pcan driver.

When running such a kernel, netdev driver users don't need to
install the pcan driver anymore, because all PEAK-System PCAN
interfaces are natively supported, as soon as their are plugged into
the PC. For example, setting the bitrate 500K to CAN interface can0
is now available using the ip tool command:

ip link set can0 type can bitrate 500000

Thus, when running such kernels, only chardev applications
configuration needs to install the pcan driver. Therefore, it is
strongly recommended in that case to build the pcan driver with
NET=NO option:

make clean; make NET=NO

PCAN-Driver for Linux – User Manual

9

4 Features of the 'pcan.o' or
'pcan.ko' Driver

The “pcan.o“ or “pcan.ko” driver is supporting PCAN-USB, PCAN-
USB Hub, PCAN-USB Pro, PCAN-PCI, PCAN-miniPCI, PCAN-PCI
Express, PCAN-cPCI, PCAN-ISA, PCAN-PC/104, PCAN-PC/104-Plus,
PCAN-PCI/104-Express, PCAN-Dongle, PCAN-PC Card as well as the
PCAN-ExpressCard. Depending on the type of hardware (PCI, ISA,
Dongle, PC Card, and USB) 8 channels for each type can be
supported. For PCAN-ISA, PCAN-PC/104 and PCAN-Dongle the base
address and the used interrupt are settable. If no parameters are
provided the driver uses factory defaults. A user program can
communicate with the driver in three different ways:

 ASCII formatted data can be provided or accepted over a
“read()“ or “write()“ interface. This data contains information
from received or transmitted messages or about channel
initializing parameters.

 With a “ioctl()“ interface. Through this interface user programs
are able to receive and to transmit CAN messages as well.
However it is possible to get information about the channel
status and to initialize the CAN-channel.

 As a network device with commonly used network socket calls.
This kind of interface is alternative to the previous kinds. It is
called the netdev drivers interface, in contrast to the chardev
drivers interface. To use the netdev drivers interface with kernels
before 2.6.25 you have to install the Socket-CAN support from
https://gitorious.org/linux-can/.

Most of this manuals content covers the usage of the chardev
driver, see chapter Special Features of the “chardev driver”. The
netdev driver usage and installation is considered in depth in the
chapter Special Features of the “netdev driver”. Parts of the
following chapters are different for chardev or netdev
implementations. Exceptions are marked to pinpoint the difference.

https://gitorious.org/linux-can/�

PCAN-Driver for Linux – User Manual

10

Since version 5.0 of the driver support for the XENOMAI real-time
add-on to the Linux kernel is available. You can get more
information in the chapter Real-time Support with Xenomai.

4.1 Special Features of the “chardev
driver”

 The driver can be used from more than one user program at the
same time and the simultaneous use of lots of interfaces and/or
CAN channels is supported.

 The reading or writing of messages can block if the receive
buffer doesn't contain data any more or if the write buffer is full.
This behavior can be disabled by opening the path as non-
blocking.

 If more than one user program communicates with the same
CAN-channel the input or output is shared. (e.g.: Many user
programs are accidentally sharing the received messages)

 The “select“-method is supported.

 The interface to the driver (constants and structures) is defined
in the header file pcan.h.

4.2 Special Features of the “netdev
driver”

The netdev driver interfaces to the kernels network modules via a so
called Socket-CAN framework. Socket-CAN aims to be a standard
interface for access of CAN devices. This kind of interface enhances
the features compared to the chardev driver. Especially it provides:

 Possibility for multiple paths reading/writing from/to the same
CAN channel

PCAN-Driver for Linux – User Manual

11

 Built-in filter capabilities, e.g. CAN-ID (range) filters with can-raw
sockets

 Built-in broadcast manager for cyclic sending of CAN messages
and content filtering in the CAN-data, e.g. updates to userspace
only on data change

 Simple user API accessible from mostly all programming
languages since normal network socket calls are used (creating
PF_CAN analogue to PF_INET)

 Local loopback of sent CAN frames for network transparent
applications

 Socket-CAN is accompanied from lots of useful tools and
utilities (please have look at https://gitorious.org/linux-can/)

The interface to the driver (constants and structures) is defined in
the header files can.h and error.h for kernels lower than 2.6.25.

Attention! Since kernel version 3.6, the netdev interface with all
of the PEAK-System PCAN interfaces is natively included in the
mainline kernel. So, there is no need to install the pcan driver
when planning to use the Socket-CAN interface in applications.

https://gitorious.org/linux-can/�

PCAN-Driver for Linux – User Manual

12

5 Prelude

Note: Before installing the software the hardware has to be
installed in or at the computer (Exception: PCAN-Dongle,
PCAN-PC Card or PCAN-USB i).

This manual is describing the installation process on an x86-Linux-
computer with installed kernel 2.6.x. and a SuSE 10.1 system.
Exceptions for kernel 2.4.x. and x86-RedHat systems are particularly
mentioned.

Since driver version 6.0 support for kernels 2.2.x has ceased. If you
need a driver for these kernels please have a look at the latest 5.x
driver version.

During the installation sometimes a console and perhaps an editor
as well will be used in the “root“- mode. If you want to login as
“root“-user within a console or xterm-session you can use the 'su'
command or the built in menu “file/root console“.

For Debian based systems (*ubuntu) you have to use the sudo
command instead or replace “su” with “sudo su”.

To start an editor in the “root“–mode, just invoke from the menu
“system/terminals/terminal (system manager mode)“ in KDE. From
the console command line you might invoke the editor “kwrite“,
“kate“ or “emacs“. For some distributions the standard path
doesn't include the “/sbin“ folder. Then installation commands have
to typed in with “/sbin/“ ahead.

Examples:

/sbin/modprobe ... instead of modprobe ...

/sbin/insmod ... instead of insmod ...

/sbin/rmmod ... instead of rmmod ...

/sbin/modinfo ... instead of modinfo ...

PCAN-Driver for Linux – User Manual

13

6 Installing Manually

6.1 Unpacking the Files

Unpack the file peak-linux-driver.x.y.tar.gz into an optional
folder into your home directory. Example:

tar -xzf peak-linux-driver.x.y.tar.gz

Within this directory you get following tree of files:

peak-linux-driver-x.y/
|-- Documentation Any documentary
| |-- COPYING GNU Public License
| |-- PCAN-Driver_for_Linux_eng.pdf this installation
instructions
| |-- template.c
| |-- template.h
| |-- template.make
| `-- todo.txt
|-- Makefile A ‘global’ makefile
|-- driver the driver and its sources
| |-- Makefile the makefile for the driver
| |-- pcan.h Application interface definitions of the driver
| |-- pcan_make_devices a script for generating device nodes
| |-- udev udev supporting stuff
| | `-- 45-pcan.rules udev rules to modprobe driver
 for hotplug devices
| |-- src the driver sources
| | |-- ...
| | |-- ...
| | |-- ...
| | `-- ...
| |-- test.txt
| `-- wstress
|-- lib the access library for (chardev)
| |-- Makefile the makefile of the library (chardev)
| |-- libpcan.h the library call prototypes (chardev)
| `-- src the sources of the library (chardev)
| `-- libpcan.c
`-- test the test programs
|-- Makefile the makefile to the test programs
|-- src The sources to the test programs

PCAN-Driver for Linux – User Manual

14

| |-- bitratetest.c to test bitrate calculations (chardev)
| |-- common.c
| |-- common.h
| |-- filtertest.cpp to test filter settings (chardev)
| |-- parser.cpp
| |-- parser.h
| |-- receivetest.c to receive test (chardev)
| |-- transmitest.cpp to transmit test (chardev)
| |-- pcan-settings.c a tool to set the PCAN-USB device
number
| |-- receivetest_rt.c to receive test, realtime variant
(chardev)
| `-- transmitest_rt.cpp to transmit test, realtime variant
 (chardev)
`-- transmit.txt Test transmit instructions

PCAN-Driver for Linux – User Manual

15

6.2 Prerequisites for Compilation of the
Sources

Before compiling the following prerequisites have to be
considered:

1. Up from kernel version 2.6.x the completely configured
kernel sources for your target system have to be installed. If
it is a standard installation the sources are located under
“/usr/src/linux“ in which this normally is a link e.g. to
“/usr/src/linux-2.6.6“. For every kernel smaller or equal than
2.4.x only the “kernel-headers“ have to be installed. (It's not
wrong to install the complete sources of the target system.)
The kernel-headers are installed if the invocation of “cat
/lib/modules/'uname -r'/build/include/linux/modversions.h“
is ending without an error. (“'uname -r'“ is a placeholder for
the result of the invocation “uname -r“.)

2. The “/lib/modules/'uname -r'/build/include/linux/version.h“
file has to exist or being copied before from the path
“/boot/vmlinuz.version.h“. With kernels 2.6.x this file is
created during the kernel compilation process.

3. Tools like make, gcc, etc. have to be installed. One of the
test programs uses the g++ compiler. The test programs
need installed “libpopt” and “libstdc++” with their header
files (-dev variants).

4. Your target kernel must have the proc-filesystem enabled.
Dependent of your CAN interface hardware PCI, USB and/or
PCCARD support must be enabled with your target kernel
configuration.

PCAN-Driver for Linux – User Manual

16

6.3 Manual Compilation and Installation

A semi-automatic installation with compilation can also be done
with little effort. Unpack the tar.gz-files to any directory and start
compilation and installation. Please note the prerequisites for
compilation of the sources.

As default the driver and its utilities are compiled for netdev usage
from kernel versions up from 2.6.25, otherwise for chardev usage
with support for all hardware interfaces from PEAK. If you need to
customize the driver or switch to netdev usage please look at the
chapter Compilation of the Driver Only.

cd peak-linux-driver-x.y

make clean

make

su -c “make install”

Installation itself needs to be root.

After building the sources and the following binary installation on
your target computer it's enough to type in

/sbin/modprobe pcan

to install the driver and any other useful modules. Depending on
your requirements you have to do this procedure every time you
start your computer or your application. (This may be done in a
startup script, too.)

PCAN-Driver for Linux – User Manual

17

7 Loading the Driver

Note: From kernel version 2.6.0 the kernel module extension is
“ko“.

If the driver to be loaded is applicable for PCAN-Dongle you may
need to load the parport subsystem support. To do this please
invoke as “root” user:

/sbin/modprobe parport

This command installs the “Parport Subsystem” with Linux. It is
necessary to support the PCAN-Dongle integration ii, iii.

Login as “root” user in a console e.g. console or xterm. Fork to the
“…/peak-linux-driver-x.y/driver” directory and type in:

/sbin/insmod pcan.o type=xxx,yyy,... io=0x300,0x378,... irq=10,7,...

or from kernel 2.6.0 on

/sbin/insmod pcan.ko type=xxx,yyy,... io=0x300,0x378,... irq=10,7,...

if you need USB support you have to do the same steps as in
Specifics with the Driver Installation for PCAN-USB. The place
holder “xxx,yyy,...“ are standing for “isa“, “sp“ or “epp“. The
parameter for “io“ and “irq“ can be left out, if the standard
assignments are configured with your hardware. PCI-channels,
USB-channels and PCCARD based channels are found and installed
without any special details but ISA (PC/104) and parallel-port
supported channels have to be registered.

The standard assignments for ISA and PC/104 interfaces are (io/irq):
0x300/10, 0x320/5. The standard assignments for Dongle in SP/EPP
mode are (io/irq): 0x378/7, 0x278/5.

PCAN-Driver for Linux – User Manual

18

7.1 Driver Loading Specifics for chardev

With the following command you can see any error report after
“insmod-ing” (as “root“ user):

tail /var/log/messages

Normally the output looks similar to this (depending on your
hardware interfaces and your configuration settings):

Mar 6 17:35:26 xxxx kernel: pcan: Release_20070221_n

Mar 6 17:35:26 xxxx kernel: pcan: driver config [mod] [isa] [pci] [dng] [usb]
[pcc]

Mar 6 17:35:26 xxxx kernel: pcan: pci device minor 0 found

Mar 6 17:35:26 xxxx kernel: pcan: pci device minor 1 found

Mar 6 17:35:26 xxxx kernel: pcan: usb hardware revision = 28

Mar 6 17:35:28 xxxx kernel: pcan: usb device minor 32 found

Mar 6 17:35:28 xxxx kernel: pcan: PEAK PC_CAN_CARD 001 A1

Mar 6 17:35:28 xxxx kernel: pcan: pccard device minor 40 found

Mar 6 17:35:28 xxxx kernel: pcan: pccard device minor 41 found

Mar 6 17:35:28 xxxx kernel: pcan: pccard firmware 1.5

Mar 6 17:35:28 xxxx kernel: pcan: major 253.

To check the correct installations of the driver please invoke:

cat /proc/pcan

You'll get a similar printout if there are no errors:

*------------ PEAK-Systems CAN interfaces (www.peak-system.com) -------------

*-------------------------- Release_20070221_n ----------------------------

*------------------- [mod] [isa] [pci] [dng] [usb] [pcc] --------------------

*--------------------- 8 interfaces @ major 253 found -----------------------

*n -type- ndev --base-- irq --btr- --read-- --write- --irqs-- -errors- status

 0 pci -NA- ec00b000 010 0x001c 00000000 00000000 00000000 00000000 0x0000

 8 isa -NA- 00000300 010 0x001c 00000000 00000000 00000000 00000000 0x0000

 9 isa -NA- 00000320 010 0x001c 00000000 00000000 00000000 00000000 0x0000

16 sp -NA- 00000378 007 0x001c 00000000 00000000 00000000 00000000 0x0000

32 usb -NA- ffffffff 255 0x001c 00000000 00000000 00000000 00000000 0x0000

33 usb -NA- 20003412 033 0x001c 00000000 00000000 00000000 00000000 0x0000

40 pccard -NA- 00000400 005 0x001c 00000000 00000000 00000000 00000000 0x0000

PCAN-Driver for Linux – User Manual

19

41 pccard -NA- 00000420 005 0x001c 00000000 00000000 00000000 00000000 0x0000

As default the driver is configured for the dynamic allocation of the
“major“ number iv.

Note: The contents of the ndev column. It differentiates
between chardev and netdev drivers. netdev drivers show the
network interface, chardev drivers do not have a network
interface (-NA-).

With a properly configured and running UDEV system all devices
files are generated on the fly. If your target system does not have a
running UDEV system you must create the device files manually
each time after driver installation. Please invoke the shell script for
this:

./pcan_make_devices 2

This script invocation installs two device files for each type of CAN
adapter. Please verify the result with the command:

ls -l /dev/pcan*

Note: When using the real-time flavor of the driver no device
file is created. For a netdev device the device file is created but
currently it is only necessary to set the bit rate for the interface.

PCAN-Driver for Linux – User Manual

20

Now you already can do your first test with your CAN hardware.
Just connect a CAN-transmitter to your CAN interface and send
messages with bit rate setting of 500 kbit/sec. Login on an user-
console and invoke:

 cat /dev/pcan0 for the first PCAN-PCI interface

 cat /dev/pcan8 for the first PCAN-ISA or PCAN-PC/104 interface

 cat /dev/pcan16 for the first PCAN-Dongle interface in SP-mode

 cat /dev/pcan24 for the first PCAN-Dongle interface in EPP-mode

 cat /dev/pcan32 for the first PCAN-USB interface v

 cat /dev/pcan40 for the first PCAN-PC Card interface

• The received messages should be shown vi. This invocation
can be made at more than one console for more than one
interface at the same time.

Output of data is already possible. With the call of:

echo „m s 0x234 2 0x11 0x22“ > /dev/pcan0

for example a CAN message with standard frame is transmitted
with the identifier 0x234 and two data bytes “0x11“ and “0x22“
from the first PCAN-PCI interface. The bit rate of the interface can as
well be set from the so called “write interface“.

7.2 Driver Loading Specifics for netdev

Attention! Since kernel version 3.6, the netdev interface with all
of the PEAK-System PCAN interfaces is natively included in the
mainline kernel. So, there is no need to install the pcan driver
when planning to use the Socket-CAN interface in applications.
See next paragraph to read some information about the native
PEAK kernel drivers.

PCAN-Driver for Linux – User Manual

21

Running an older kernel and using the netdev interface of the pcan
driver, with the following command you can see any error report
after “insmoding” (as “root“ user):

tail /var/log/messages

Normally the output looks similar to this (depending on your
hardware interfaces and your configuration settings):

Mar 6 17:39:51 xxxx kernel: pcan: Release_20070221_n

Mar 6 17:39:51 xxxx kernel: pcan: driver config [mod] [isa] [pci] [dng] [usb]
[pcc] [net]

Mar 6 17:39:51 xxxx kernel: pcan: pci device minor 0 found

Mar 6 17:39:51 xxxx kernel: pcan: pci device minor 1 found

Mar 6 17:39:51 xxxx kernel: pcan: usb hardware revision = 28

Mar 6 17:39:53 xxxx kernel: pcan: registered netdevice can0 for pcan usb hw
(minor 32)

Mar 6 17:39:53 xxxx kernel: pcan: usb device minor 32 found

Mar 6 17:39:53 xxxx kernel: usbcore: registered new driver pcan

Mar 6 17:39:53 xxxx kernel: pcan: PEAK PC_CAN_CARD 001 A1

Mar 6 17:39:53 xxxx kernel: pcan: pccard device minor 40 found

Mar 6 17:39:53 xxxx kernel: pcan: registered netdevice can1 for pcan pccard hw
(minor 40)

Mar 6 17:39:53 xxxx kernel: pcan: pccard device minor 41 found

Mar 6 17:39:53 xxxx kernel: pcan: registered netdevice can2 for pcan pccard hw
(minor 41)

Mar 6 17:39:53 xxxx kernel: pcan: pccard firmware 1.5

Mar 6 17:39:53 xxxx kernel: pcan: registered netdevice can3 for pcan pci hw
(minor 0)

Mar 6 17:39:53 xxxx kernel: pcan: registered netdevice can4 for pcan pci hw
(minor 1)

Mar 6 17:39:53 xxxx kernel: pcan: major 253.

After insmod you have to bring your network devices up, for
example:

ifconfig can0 up

Depending on the configuration of your system (hotplugging, etc.)
you might get a log entry like:

Mar 6 17:39:53 xxxx ifup: can0

PCAN-Driver for Linux – User Manual

22

Mar 6 17:39:53 xxxx ifup: No configuration found for can0

as the CAN network interface is currently not recognized and
handled by these 'hotplugging' scripts. It's save to ignore these kind
of log messages.

Before 'modprobing' the netdev prepared modules you should edit
your /etc/modprobe.conf (or /etc/modprobe.conf.local or
/etc/modules.conf, depending on your kernel version and
distribution) and add at least these lines:

protocol family PF_CAN
alias net-pf-29 can

protocols in PF_CAN
alias can-proto-1 can-raw
alias can-proto-2 can-bcm

protocol module options

option can-tpgen printstats=1

option can stats_timer=0

virtual CAN devices
alias vcan0 vcan
alias vcan1 vcan
alias vcan2 vcan
alias vcan3 vcan

CAN hardware (uncomment the currently used)

#> Peak System hardware (ISA/PCI/Parallelport Dongle, USB, PC Card)

#> to set initial BTR-values set and hardware dependent settings
alias can0 pcan
alias can1 pcan
alias can2 pcan
alias can3 pcan

#options pcan assign=peak

#options pcan type=isa,isa io=0x2C0,0x320 irq=10,5 btr=0x4914

#options pcan type=epp btr=0x4914

#options parport_pc io=0x378 irq=7

Depending on the desired target hardware interfaces and transport
protocols you may need more entries. Please look into the Socket-
CAN documentation for more information.

With the special 'assign=peak' module load parameter you can
assign the network device names of the CAN channels

PCAN-Driver for Linux – User Manual

23

corresponding to the assigned minor numbers, e.g. network device
name “can40” corresponds devices minor number 40.

If you omit this parameter the network device names are
automatically assigned in channel initialization order.

A third option allows assigning individual network device names.
To accomplish it please add a string similar to this:

assign=pcan32:can1,pcan41:can2

Note: With kernels 2.4.x you should use a plus (+) instead a
comma (,) to separate the entries.

To check the correct installation of the driver please invoke:

cat /proc/pcan

You'll get a similar printout if there are no errors:

*------------ PEAK-Systems CAN interfaces (www.peak-system.com) -------------

*-------------------------- Release_20070221_n ----------------------------

*---------------- [mod] [isa] [pci] [dng] [usb] [pcc] [net] -----------------

*--------------------- 6 interfaces @ major 253 found -----------------------

*n -type- ndev --base-- irq --btr- --read-- --write- --irqs-- -errors- status

 0 pci can2 f7d00000 209 0x001c 00000000 00000000 00000000 00000000 0x0000

 1 pci can3 f7d00400 209 0x001c 00000000 00000000 00000000 00000000 0x0000

32 usb can0 00000000 033 0x001c 00000000 00000000 000000a6 00000000 0x0000

33 usb can1 00000000 255 0x001c 00000000 00000000 00000000 00000000 0x0000

40 pccard can4 00000180 169 0x001c 00000000 00000000 00000000 00000000 0x0000

41 pccard can5 000001a0 169 0x001c 00000000 00000000 00000000 00000000 0x0000

The 'ndev' column shows the network device assignment. For
assignment of bitrates to network devices you can either set the
desired bit rate as module load parameter or you can assign the bit
rate after loading the driver with a simple command line invocation
like:

echo "i 0x4914 e" > /dev/pcan0

PCAN-Driver for Linux – User Manual

24

For this reason it is important to create the chardev-device-entries,
too. If your target does no create the device files automatically with
UDEV you have to run with the script

./pcan_make_devices 2

even if only the netdev driver is used.

To test the correct installation of the netdev driver you can use the
Socket-CAN utility “candump”.

$ candump

Usage: candump [can-interfaces]

 (use CTRL-C to terminate candump)

Options: -m <mask> (default 0x00000000)

 -v <value> (default 0x00000000)

 -i <0|1> (inv_filter)

 -e <emask> (mask for error frames)

 -t <type> (timestamp: Absolute/Delta/Zero)

 -c (color mode)

 -a (enable additional ASCII output)

 -s <level> (silent mode - 1: animation 2: nothing)

 -b <can> (bridge mode - send received frames to <can>)

 -l (log CAN-frames into file)

 -L (use log file format on stdout)

To receive from any CAN netdevice you might also invoke:

candump any

instead of working with specific CAN netdevices:

candump can0 can2

PCAN-Driver for Linux – User Manual

25

7.3 Kernel Drivers

Since Kernel v3.6, PEAK-System made the effort to include in the
SocketCAN subsystem of the Linux kernel all the drivers needed to
natively support the PCAN interfaces. Thus, when running such a
kernel or a more recent one, user doesn't need to install the pcan
driver anymore if he wants to build SocketCAN applications.

These Kernel drivers offer more than the so-called 'netdev' interface
of the pcan driver. These drivers are compatible with the "iproute2"
tool utility which is part of all modern Linux distributions.

This tool has been modified to handle CAN protocol specific
features so that setting a bitrate to a CAN interface is easier. The
help of the tool describes its usage:

$ ip link set can0 type can help

Usage: ip link set DEVICE type can

 [bitrate BITRATE [sample-point SAMPLE-POINT]] |

 [tq TQ prop-seg PROP_SEG phase-seg1 PHASE-SEG1

 phase-seg2 PHASE-SEG2 [sjw SJW]]

 [loopback { on | off }]

 [listen-only { on | off }]

 [triple-sampling { on | off }]

 [one-shot { on | off }]

 [berr-reporting { on | off }]

 [restart-ms TIME-MS]

 [restart]

 Where: BITRATE := { 1..1000000 }

 SAMPLE-POINT := { 0.000..0.999 }

 TQ := { NUMBER }

 PROP-SEG := { 1..8 }

 PHASE-SEG1 := { 1..8 }

 PHASE-SEG2 := { 1..8 }

PCAN-Driver for Linux – User Manual

26

 SJW := { 1..4 }

 RESTART-MS := { 0 | NUMBER }

Thus, setting the bitrate to a can interface is now possible using:

 the bitrate bit-timing parameters set (aka "sample-point", "tq",
"prop-seg", "phase-seg1", "phase-seg2" and "sjw"), or

 the "bitrate" option followed by the numeric value (if the kernel
configuration option CONFIG_CAN_CALC_BITTIMING was set).

For example, setting bitrate 500k to CAN interface "can0" might be
done with:

$ ip link set can0 type can bitrate 500000

The "restart-ms" option enables to define a timer in ms. after which
the CAN interface will be automatically restarted after a BUS-OFF
condition. If the given numeric value is 0, then the automatic restart
mechanism is disabled and user will have to manually call the "ip
link set can0 type can restart" command.

Last and complete version of how to use the "ip link" tool with CAN
networks is available on-line at:
https://www.kernel.org/doc/Documentation/networking/can.txt

7.4 udev Support

From the driver version 6.8 udev support is provided. When the
driver becomes installed the udev rules '45-pcan.rules' are copied
into the directory “/etc/udev/rules.d”. After that each time PCAN
device is recognized the driver is loaded and the device files are
created automatically.

The script to install device files for non-UDEV target
'pcan_make_devices' is still provided. This script should not used
together with udev.

https://www.kernel.org/doc/Documentation/networking/can.txt�

PCAN-Driver for Linux – User Manual

27

Note: The device nodes are removed also automatically when a
hotplug-device is removed. There is a compatibility issue with
updates of a modprobe configuration file and
'pcan_make_devices' and the udev installation. Please look at
'Customization of 'modules.conf' or 'modprobe.conf'' for
further details.

7.5 pcan_make_devices

Note: That pcan_make_devices is obsolete with systems
supporting udev

Help invocation of 'pcan_make_devices'

$pcan_make_devices –help

Usage: pcan_make_devices n [--help | -h]

Info: Create n device nodes for each PCAN-type.

...

You must be root to invoke pcan_make_devices. To use
'pcan_make_devices' a successful insmod/modprobe pcan.o or
pcan.ko must precede.

No device files must be created for Xenomai devices.

7.6 Specifics with the Driver Installation
for PCAN-USB

In order to use the driver the USB subsystem of the Linux kernel has
to be enabled. USB support for Linux was first introduced with
kernel 2.4. The use of PCAN-USB together with a Linux kernel
version less than 2.4.7 is deprecated through the driver developer.

PCAN-Driver for Linux – User Manual

28

7.7 Specifics with the Driver Installation
for PCAN-PC Card

The user side of the PCMCIA subsystem of the kernel has
undergone heavy changes through subsequent releases of kernel
2.6.x. So we have to distinguish between the implementations:

Up from kernel 2.6.13 the vendor and card IDs are not any more
registered in the configuration file /etc/pcmcia/config since the
relationship between manufacturer-ID and device-ID of the card and
the associated driver is registered inside the driver. The driver
should be loaded before card plug in.

With these kernel versions you can use the pccardctl utility from the
pcmcia-package, especially “pccardctl eject” and “pccardctl insert”
to prepare a card for ejection or to notify an inserted card. The
former utility to do the same was called cardctl.

For earlier kernel versions than 2.6.13 you need entries in
“/etc/pcmcia/config” like:

device “pcan”

class “none” module “pcan”

card “PCAN-PCCARD”

manfid 0x0377, 0x0001

bind “pcan”

With these entries you can use your configured hotplug system to
load the driver when the card is plugged in.

Also for kernels lower than 2.6.13 you can use the cardctl utility
from the pcmcia-package, especially “cardctl eject” and “cardctl
insert” to prepare a card for ejection or to notify an inserted card.

Note: Removing a card with still open channels is not
recommended.

PCAN-Driver for Linux – User Manual

29

8 Customization of the modprobe
Configuration File

Note: modprobe installation options are put into a modprobe
configuration file named either /etc/modprobe.conf or
/etc/modprobe.conf.local or /etc/modules.conf or
currently /etc/modprobe.d/pcan. The name depends on
kernel version and distribution.

Former modprobe installation options configured an invocation
of 'pcan_make_devices' in the modprobe configuration file.
These entries will not be modified by a fresher installation to
avoid overwriting user made entries. Please remove a potential
invocation of 'pcan_make_devices' inside this configuration
files if your system supports udev.

The current entry locates in '/etc/modprobe.d/pcan':

pcan - automatic made entry, begin --------

if required add options and remove comment

options pcan type=isa,sp

install pcan /sbin/modprobe --ignore-install pcan

pcan - automatic made entry, end ----------

At the end of the modprobe configuration file a marked addition is
added through the installation. The respective type and the
eventually non-standard base addresses and interrupt numbers are
to be given there, if the driver has to support the PCAN-ISA or
PCAN-Dongle interfaces. (Have a look at the description about the
manual loading of the driver)

Note: As soon as there already is an entry with the word 'pcan'
the current entry is not to be changed. If you wish to have a
new entry you have to delete the old one first. To do that you
have to use an editor as “root“ user.

PCAN-Driver for Linux – User Manual

30

8.1 Interface Hardware Type

To register non-hot pluggable devices permanently you have to use
these settings:

type=type1,type2[,...]

where type* is “isa”, or “sp”, or “epp” depending on your interface
hardware. Example:

type=isa,sp

8.2 I/O-Port and Interrupt Settings

If you like to use non-standard settings for IO-ports or interrupt
number assignments you have to add:

io=io1,io2[,...] irq=irq1,irq2[,...]

where io* is the hexadecimal number of the corresponding IO-port
and irq* is the decimal number of the assigned interrupt line.

Examples:

io=0x300,0x378 irq=10,7

The standard assignments for ISA and PC/104 interfaces are (io/irq):
0x300/10, 0x320/5.

The standard assignments for Dongle in SP/EPP mode are (io/irq):
0x378/7, 0x278/5.

PCAN-Driver for Linux – User Manual

31

8.3 Initial Bit Rate

To prevent a wrong initial bit rate when loading the driver we added
a driver load parameter which sets the initial bit rate of the related
interfaces. For example to set the initial bit rate to 1 Mbit/sec the
syntax is:

bitrate=0x0014

In order to make this setting persistent you have to modify
/etc/modules.conf or /etc/modprobe.conf (depending on your kernel
version).

Note: Please consider that all interfaces handled with this driver
get the same initial bit rate.

The corresponding (common) bit rate codes are:

#define CAN_BAUD_1M 0x0014 // 1 Mbit/s

#define CAN_BAUD_500K 0x001C // 500 kBit/s

#define CAN_BAUD_250K 0x011C // 250 kBit/s

#define CAN_BAUD_125K 0x031C // 125 kBit/s

#define CAN_BAUD_100K 0x432F // 100 kBit/s

#define CAN_BAUD_50K 0x472F // 50 kBit/s

#define CAN_BAUD_20K 0x532F // 20 kBit/s

#define CAN_BAUD_10K 0x672F // 10 kBit/s

#define CAN_BAUD_5K 0x7F7F // 5 kBit/s

PCAN-Driver for Linux – User Manual

32

8.4 Assign Parameter (netdev only)

There are three choices to assign a network device name to CAN
interfaces:

assign=peak

assign=device-node-name:network-device-name[, ...]

With the special 'assign=peak' module load parameter you can
assign the network device names of the CAN channels
corresponding to the assigned minor numbers, e.g.

Network device name “can40” corresponds devices minor number
40.

A third option allows assigning individual network device names.
To accomplish it please add a string similar to this:

assign=pcan32:can1,pcan41:can2

Note: With kernels 2.4.x you should use a plus (+) instead a
comma (,) to separate the entries.

If you omit this parameter the network device names are
automatically assigned in channel initialization order.

An alternate numbering method for the “canX” netdev interface
name does exist, since v7.13 and above. Please read the following
paragraph to learn more about the extension of the “assign=”
parameter.

8.5 Alternate Device Numbering Method

The Kernels always enumerate the devices in the same sequence
order, as long as the devices are plugged in the same sockets. But
as soon as a device is unplugged from a socket, then plugged into
another one, it will be assigned a different "number" by the Kernel.

PCAN-Driver for Linux – User Manual

33

Thus, when two PCAN-USB adapters are swapped, the "same"
device nodes will identify a different device.

Some PCAN devices offer the ability of writing a “number” in their
Flash memory, so that one PCAN device can be distinguished from
another and identical one. With this feature, for example, a PCAN-
USB will always be assigned the same “number”, whatever the
USB socket it is plugged on.

If the device id read from the PCAN device is not -1 (the default
value), then “pcan” environment automatically creates a new entry
under “/dev”, using this “number”. “pcan” driver suite is provided
with some Udev default rules that propose an example of what can
be done with this new and entirely dynamic system (see “driver/
udev/45-pcan.rules”).

Here is an example using a PCAN-USB adapter, which describes
how to set value 20 to the device id., and how things are handled by
the system next:

$ cat /proc/pcan

*n -type- -ndev- --base-- irq --btr- --read--

32 usb can0 ffffffff 255 0x001c 00000000

As usual, the first PCAN-USB is being assigned first value 32 by
“pcan” Udev system ("/dev/pcan32"). Its default device id value 255
(see column “irq” above) is then changed into 20:

$ pcan-settings –f=/dev/pcan32 –d 20

This has the following consequences:

$ ls -l /dev/pcan* | grep pcanusb

lrwxrwxrwx 1 root root 8 sept. 29 16:26 /dev/pcan32 -> pcanusb0

crw-rw-rw- 1 root root 180, 0 sept. 29 16:26 /dev/pcanusb0

/dev/pcanusb:

lrwxrwxrwx 1 root root 11 sept. 29 16:26 devid=20 -> ../pcanusb0

PCAN-Driver for Linux – User Manual

34

1. “/dev/pcan32” always exists (backward compatibility with
former versions of “pcan”) as a softlink to the real device
node “/dev/pcanusb0”.

2. A new sub-directory “/dev/pcanusb” is created, which
contains a new softlink (“devid=20”), which links to the real
device node “/dev/pcanusb0”.

The creation of the new sub-directory and the new softlink is
entirely handled by “45-pcan.rules”. This file is given as an example
and everyone is able to modify it (either the driver’s original one
under “driver/udev” or the one installed in the system's Udev
directory “/etc/udev/rules.d/”).

The device id can also be used for naming the "canX" interfaces
created by the driver, when the netdev mode is not deactivated. For
some backward compatibility reasons, this feature is not set by
default. To be able to use the flashed value of the device id of any
PCAN device, the "pcan" driver must be loaded with the
"assign=devid" parameter.

The “devid” keyword is compatible with all the other existing
options of the "assign=" parameter, described in 8.4.

For examples:

assign=devid

Requests “pcan” to use the device id value read from the PCAN
device as “X”, in the interface name “canX”. If the device id feature
is not supported by any PCAN device, then the default rule is used
instead (so “X” will be the next free linux-can number).

assign=devid,peak

Requests “pcan” to use the device id value read from the PCAN
device as “X”, in the interface name “canX”. Because of the
following "peak" option, if the device id feature is not supported by
any PCAN device, then the “peak” option rule is used instead (so
“X” will be the same than in “/dev/pcanX”).

PCAN-Driver for Linux – User Manual

35

9 Installation Test, Use of Test
Programs (chardev only)

Two test programs are attached for the initial test of the interfaces.
For using the programs please change to the directory “.../peak-
linux-driver-x.y/test“. Please invoke:

./receivetest --help

You get following response:

receivetest Version “Release_20040412_a” (www.peak-system.com)

--------- Copyright (C) 2004 PEAK System-Technik GmbH ---------

receivetest comes with ABSOLUTELY NO WARRANTY. This is free

software and you are welcome to redistribute it under certain

conditions. For details see attached COPYING file.

Receivetest – a small test program which receives and prints CAN messages.

Usage: receivetest{[-f=devicenode]|{[-t=type] [-p=port [-i=irq]]}}[-
b=BTR0BTR1][-e]

options: -f – devicenode – path to device file, default=/dev/pcan0

-t – type of interface, e.g. ‘pci’, ‘sp’, ‘epp’, ‘isa’ or ‘usb’ (default: pci).

-p – port in hex notation if applicable, e.g. 0X378 (default: 1st port of type).

-i – irq in dec notation if applicable, e.g. 7 (default: irq of 1st port).

-b – BTR0BTR1 code in hex, e.g. 0X001C (default: 500 Kbit).

-e – accept extended frames. (default: standard frames)

-? or --help – this help

receivetest: finished (0)

The default bit rate settings for all CAN-interfaces are set to 500
Kbit/sec. The bit rate can be customized through the command line
parameters.

For using an ISA or Dongle interface with the standard settings
following detail is enough:

receivetest -t=isa or receivetest -t=sp or receivetest -t=epp

or

http://www.peak-system.com/�

PCAN-Driver for Linux – User Manual

36

receivetest -f=/dev/pcan0

to get to the first PCAN-PCI-interface.

Every received message of the interface will be print out. Entering
Ctrl-C cancels the program.

The program “transmitest“ can be used to transmit data. Please
invoke:

./transmitest –help

You get following output similar to receivetest:

transmitest Version “Release_20040412_a” (www.peak-system.com)

--------- Copyright (C) 2004 PEAK System-Technik GmbH ---------

transmitest comes with ABSOLUTELY NO WARRANTY. This is free

software and you are welcome to redistribute it under certain

conditions. For details see attached COPYING file.

Transmitest – a small test program which sends CAN messages.

Usage: transmitest filename {[-f=devicenode]|{[-t=type][-p=port[-i=irq]]}} ...

options: filename – mandatory name of message description file.

-f – devicenode – path to device file, default=/dev/pcan0

-t – type of interface, e.g. ‘pci’, ‘sp’, ‘epp’ ,’isa’ or ‘usb’ (default: pci).

-p – port in hex notation if applicable, e.g. 0X378 (default: 1st port of type).

-i – irq in dec notation if applicable, e.g. 7 (default: irq of 1st port).

-b – BTR0BTR1 code in hex, e.g. 0X001C (default: 500 Kbit).

-e – accept extended frames. (default: standard frames)

-? or --help – this help

transmitest: finished (0)

This program expects similar parameters as receivetest with the
exception of a file name. In the file with this name the program
expects a list of message descriptions which are to be send. Those
messages will be send cyclic until the ending by pressing Ctrl-C.
The syntax of the description of the messages is:

http://www.peak-system.com/�

PCAN-Driver for Linux – User Manual

37

Descriptions of the first column of the message of the read/write
interface.

Tag / Column #1 Description

m Message string follows

r RTR-message string follows

i Initialization string follows (write only)

Comment follows (write only)

Descriptions of the following columns of 'normal' and RTR-
messages.

Column Description

2 s = Standard frame, e = Extended frame

3 Identifier (hex)

4 Length of message (dec)

5..12 Message bytes (hex)

13 Timestamp milliseconds (dec, read only)

14 Timestamp milliseconds (dec, read only)

13 Comment (write only)

Descriptions of the following columns for initializing strings.

Column Description

2 BTR0BTR1 Init data (hex, write only)

3 E = allow extended frames (write only)

For example:

a comment

a message, standard frame, id=0x123, 0 Data bytes

m s 0x123 0

a message, standard frame, id=0x123, 1 Data byte, Data

m s 0x123 1 0x11

a message, standard frame, id=0x123, 1 Data byte, Data

m s 0x123 2 0x11 0x22

a message, extended frame, id=0x123, 3 Data byte, Data

PCAN-Driver for Linux – User Manual

38

m e 0x123 3 0x11 0x22 0x33

a RTR, standard frame, id=0x123, 0 Data byte, comment

r s 0x123 0 # a comment

a RTR, extended frame, id=0x123, 0 Data byte, comment

r e 0x123 0 # a comment

initialize

i 0x1234 e

PCAN-Driver for Linux – User Manual

39

10 Most Important chardev Header
Files

Any sources of the driver, of the library and the test programs are fit
in underneath the “peak-linux-driver-x.y“ directory tree. Two files
are to be mentioned especially: The file .../peak-linux-
driver/driver/pcan.h describes the interface to the driver and
command constants. You have to include this file if you want to
have direct access to the driver with “open(), ioctl(), read(), close()
etc.“. The file .../peak-linux-driver/lib/libpcan.h
describes the interface to the dynamic linkable library libpcan.so.
You have to include this file if your application needs to use the
dynamic library.

Note: libpcan.h is including the pcan.h file

10.1 Manual Installation of the chardev
Header Files

Please copy the header files into the directory “/usr/include“ as
“root” user as followed and customize the access rights.

cp peak-linux-driver/driver/pcan.h /usr/include/pcan.h

chmod 644 /usr/include/pcan.h

cp peak-linux-driver/lib/libpcan.h /usr/include/libpcan.h

chmod 644 /usr/include/libpcan.h

PCAN-Driver for Linux – User Manual

40

11 Most Important netdev Header
Files

For kernel versions lower than 2.6.25 the header file can.h and
other includes important for application programs should be taken
from the Socket-CAN source. Appropriate Makefiles can be found,
e.g. at linux-can/can-utils and be downloaded using:

git clone git://gitorious.org/linux-can/can-utils

PCAN-Driver for Linux – User Manual

41

12 Compilation of the Driver Only

12.1 Use Cases

In some use cases the installed driver doesn’t fit to the
configured operating system. This could be following cases:

1. Your kernel sources are not to be found in the standard
directory /usr/src/linux. You still can compile with
following invocations:

cd ~/peak-linux-driver-x.y/driver

make clean

make KERNEL_LOCATION=<path-to-my-kernel>

2. You don't need or don't want support for some interface
types. Then you have to compile the driver with disabled
support for some interfaces. The makefile provides to
enable or disable partial compilation with this switches:

USB=USB_SUPPORT or USB=NO

PCI=PCI_SUPPORT or PCI=NO

DNG=DONGLE_SUPPORT or DNG=NO

ISA=ISA_SUPPORT or ISA=NO

PCC=PCCARD_SUPPORT or PCC=NO

NET=NETDEV_SUPPORT or NET=NO

As default all interfaces are enabled. For example if you
want to suppress PCAN-Dongle and PCAN-ISA Interfaces
you have to compile:

cd ~/peak-linux-driver-x.y/driver

make clean

make DNG=NO ISA=NO

As default for kernels lower than 2.6.25 the netdev driver is
disabled. If you like to use the netdev driver please compile
with

NET=NETDEV_SUPPORT.

PCAN-Driver for Linux – User Manual

42

3. The following section only applies to kernel versions 2.4.x or
lower: The driver is to be installed on RedHat Linux. RedHat
in contrast to SuSE as default uses the
“CONFIG_MODVERSIONS“ modifier to prohibit the
installation of improper drivers. If your operating system
was generated with enabled “CONFIG_MODVERSIONS“
you can see this easily by invoking “cat /proc/ksyms“. If
there is cryptic number-letter combinations at the end of the
symbols your system was generated with enabled
“CONFIG_MODVERSIONS“.

A simple new compilation on your system is enough:

cd ~/peak-linux-driver-x.y/driver

make clean

make

4. Your operating system doesn't support the
PARPORT_SUBSYSTEM or you have a parallel interface
which is unknown to the operating system and you like to
use a PCAN-Dongle with this interface. Here you have to
compile with the “PAR=NO“ switch:

cd ~/peak-linux-driver-x.y/driver

make clean

make PAR=NO_PARPORT_SUBSYSTEM

5. You get runtime errors and want to see more information
for diagnosis at “/var/log/messages“. Here you have to
translate with the “DBG=DEBUG“ switch:

cd ~/peak-linux-driver-x.y/driver

make clean

make DBG=DEBUG

Combinations of these switches are also possible.

PCAN-Driver for Linux – User Manual

43

12.2 Support for Cross-Compilation

The driver, its library and the test programs sometimes are used on
other systems than the development system. The process of
generating the binary driver for another target is called Cross-
Compilation. Partially the driver and its helper programs are
supporting Cross-Compilation. Therefore the driver has to be
compiled with the option.

make KERNEL_LOCATION=<path-to-my-kernel>

Whether the driver can be compiled for every possible target
system and is working there can’t be guaranteed because of so
many different architectures. The installation of the driver and the
library an on other target than the host system can’t be supported
through the given installation scripts. We are glad about hints how
to improve the Cross-Compilation support. Especially we are
looking for successful ports of the driver to document the
knowledge for other engineers.

PCAN-Driver for Linux – User Manual

44

13 Features of the Shared Library
'libpcan.so' (chardev only)

The “libpcan.so“ library is providing an easier interface for using
the features of the PCAN drivers. The library interface is similar to
the one from MS-Windows and makes the porting of applications
easier. There are also some calls which adapt better to the specifics
of Linux. They are marked with a 'LINUX_..' as prefix. (Example:
HANDLE LINUX_CAN_Open(char *szDeviceName, int nFlags);)

Figure 1: Calling hierarchy

The interface of the library is described within the C/C++-header file
libpcan.h. Please note that libpcan.h includes the pcan.h file.
The source code is under LGPL so it is for utilizing within
proprietary software without any exceptions.

PCAN-Driver for Linux – User Manual

45

14 Manual Installation of the
chardev Shared Library

Please change to the directory “../peak-linux-driver-x.y/lib“. Login as
“root“ user and invoke:

cp libpcan.so.0.1 /usr/lib/libpcan.so.0.1

ln -sf /usr/lib/libpcan.so.0.1 /usr/lib/libpcan.so.0

ln -sf /usr/lib/libpcan.so.0 /usr/lib/libpcan.so

This process is only necessary if you install this program for the first
time or if you want to update the library. To use the test programs
the library has to be installed.

Note: The version minor number of the library can change as a
result of minor or major improvements.

PCAN-Driver for Linux – User Manual

46

15 Message Filters (chardev only)

Up from driver version 6.0 message filters are supported for the
chardev device. With the netdev device message filters are part of
Socket-CAN.

To maintain backward compatibility, after first open of a path to a
device, no message filter is set. With the first time a message filter
is set or reset the message filter chain will be activated.

It is possible to set more than one filter condition in a message
chain for each path. After a message is received the filter chain is
walked trough to check for a pass condition. If no pass condition is
found the message is rejected.

PCAN-Driver for Linux – User Manual

47

16 Error Handling

The CAN error handling for the chardev driver has changed from
version 5.x to version 6.x of the driver. Now the handling is more
compatible to the PCAN-API implementation.

If a CAN error occurs a status message is enqueued into the
channels receive queue. A status message is marked with
MSGTYPE_STATUS set in the MSGTYPE field of the TPCANMsg
structure.

Depending on the kind of error detailed CAN_ERR_... information is
set in the DATA[3] field of the same structure.

Error handling with netdev devices is similar, however the error
information is fit into the can_frame structure. For details please
look into the Socket-CAN documentation.

PCAN-Driver for Linux – User Manual

48

17 Socket-CAN Introduction and
Basic Installation (netdev
only)

The Socket-CAN package is an implementation of CAN protocols
(Controller Area Network) for Linux. CAN is a networking
technology which has wide-spread use in automation, embedded
devices, and automotive fields. While there have been other CAN
implementations for Linux based on character devices, Socket-CAN
uses the Berkeley socket API, the Linux network stack and
implements the CAN device drivers as network interfaces. The CAN
socket API has been designed as similar as possible to the TCP/IP
protocols to allow programmers, familiar with network
programming, to easily learn how to use CAN sockets. (Taken from
the README file from the Socket-CAN package).

The development on Socket-CAN started end of 2002 at Volkswagen
AG to have a common CAN-IT-interface for HMI- and Car2Car
prototypes. Nowadays Socket-CAN is maintained by a group of
developers at https://gitorious.org/linux-can/. One of the Socket-
CAN maintainers, Oliver Hartkopp, did most of the netdev
integration into the plain PCAN driver.

Note: Socket-CAN modules are part of the mainline kernel since
version 2.6.25. So the generation of the socket-CAN modules
do not apply to newer kernels. For newer kernels you
appropriately have to configure your kernel (CONFIG_CAN,
CONFIG_CAN_RAW, CONFIG_CAN_BCM, CONFIG_CAN_VCAN)
to use the necessary modules.

To use Socket-CAN on older Kernels you first have to fetch the
Socket-CAN sources and compile and load them. To fetch the
sources you might invoke:

git clone git://gitorious.org/linux-can/can-modules.git

cd can-modules

https://gitorious.org/linux-can/�

PCAN-Driver for Linux – User Manual

49

Then please follow the instructions given in the README file to
compile and load Socket-CAN. With Socket-CAN you get a driver for
“virtual CAN channels”. They are called vcan0, vcan1 and so on.

To get the Socket-CAN loaded you can invoke as root-user:

modprobe can

modprobe can-raw

modprobe can-bcm

modprobe vcan

to load the necessary modules. You might look into your kernel-log
(e.g. /var/log/messages) to see the module banners printed at load
time.

After loading you’ll get this lsmod output

lsmod | grep can

can_bcm 16392 0

can_raw 9856 0

can 36072 2 can_bcm,can_raw

vcan 4360 0

Now you only have to bring up your new network nodes. For
example please invoke:

ifconfig vcan0 up

This starts the network device vcan0. To see if the network device is
installed please call:

ifconfig

vcan0 Link encap:UNSPEC HWaddr 00-00-00-00-00-00-00-00-00-00-00-00-...RX
packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0
dropped:0 ...carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 b) TX
bytes:0 (0.0 b)

eth0 ...

lo ...

With this basic installation you can test your Socket-CAN setup. To
test it you must have the Socket-CAN can-utilities compiled. In a
first console invoke:

PCAN-Driver for Linux – User Manual

50

./cangen vcan0

If you invoke in a second console “candump vcan0” then you’ll get
the generated (and loop backed) CAN messages from your first
invocation:

./candump vcan0

vcan0 567 [6] 69 98 3C 64 73 48

vcan0 451 [8] 4A 94 E8 2A EC 58 55 62

vcan0 729 [8] BA 58 1B 3D AB D7 7E 50

vcan0 1F2 [8] E3 A9 E2 79 46 E1 45 75

This output shows that your basic Socket-CAN installation was
successful. Next you have to install the PCAN netdev driver.

Note: Currently most of the Socket-CAN utilities can only be
used as root-user. Due to the standard NET-CAPABILITIES the
access to the RAW-sockets and to the BCM-sockets are only
granted to the user root (analogue to the promiscuous mode on
Ethernet devices). But you may define
CONFIG_CAN_RAW_USER and/or CONFIG_CAN_BCM_USER in
the Kconfig (when integrated into the kernel) to override this.

You may also try to put

#define CONFIG_CAN_RAW_USER

#define CONFIG_CAN_BCM_USER

into your local /usr/src/linux/include/linux/autoconf.h before
compiling the Socket-CAN source code or change the files raw.c
and bcm.c after downloading Socket-CAN. This is a disadvantage of
the 'external' module compilation.

For additional support on Socket-CAN you may also check the
mailing-lists at: http://vger.kernel.org/vger-lists.html#linux-can.

http://vger.kernel.org/vger-lists.html#linux-can�

PCAN-Driver for Linux – User Manual

51

18 Real-time Support with Xenomai

Since Release ‘release_20061029_*’ real-time support for the
Xenomai real-time environment (www.xenomai.org) was merged
from a previous rt-branch into the main branch. Most of the work
was done by Laurent Bessard and Edouard Tisserant.

The Xenomai project has been launched in August 2001. It has
merged in 2003 with the RTAI project [www.gna.org/projects/rtai] to
produce an industrial-grade real-time Free Software platform for
GNU/Linux called RTAI/fusion, on top of Xenomai’s abstract RTOS
core.

18.1 Installation

First of all, in order to install PCAN-rt-driver, a Xenomai real-time
environment must be installed on your workstation. Download the
Xenomai source code from the Xenomai website and install it by
following the installation manual provided. The Linux kernel of your
workstation must be patched for using Adeos (patches for a lot of
architectures are included in the source code).

Before using Xenomai, the list of dynamic libraries of your
workstation must be updated. If not, the driver compilation will
abort. For that, you can use ‘ldconfig’, ensuring that the path to
Xenomai libraries have been added to /etc/ld.so.conf file.

18.2 Compilation Environment

To compile the PCAN real-time driver, you must provide in the
make command the option RT=XENOMAI. By default, the PCAN
driver will be compiled for non-real-time environment.

http://www.xenomai.org/�
http://www.gna.org/projects/rtai/�

PCAN-Driver for Linux – User Manual

52

Because USB and PCCARD are still not supported on PCAN real-
time driver, it is highly recommended to not compile PCAN real-
time driver with USB_SUPPORT or PCCARD_SUPPORT flags.

An example of command for compiling PCAN real-time driver:

cd ~/peak-linux-driver/driver

make clean

make RT=XENOMAI

Possible other make switches are RT=RTAI for a RTAI skin or
RT=NO_RT for no 'real-time' support at all.

18.3 Runtime Environment

You can load PCAN real-time driver module as usual, there are no
changes compared to the standard loading procedure. The PCAN-
API is the same in real-time and non-real-time, so you can open,
close, read from or write to your PCAN device like usual. But be
careful, reading and writing must be made in a real-time task to be
really effective. For an example of how to use Xenomai for creating
and using a real-time task, please refer to the examples (transmitest
and receivetest) located in the ‘test’ folder. For compiling your
program, Xenomai libraries path and flags must be included in your
‘Makefile’. They can’t be obtained by using the ‘xeno-config’ script
provided with Xenomai. You can have an example of how using
‘xeno-config’ in the ‘Makefile’ file located in the ‘test’ folder.

PCAN-Driver for Linux – User Manual

53

18.4 Troubleshooting

Attention! On an old station, after compiling the kernel patched
for Adeos, a problem that makes the kernel couldn’t load can
appear. To solve this problem, you can add ‘lapic=1’ to the
kernel command line parameters in ‘grub.conf’ or ‘lilo.conf’ file,
depending on your bootloader.

If your kernel still crashes at start, a solution for finding what is
blocking your kernel is to compile it with Xenomai support in
module and try to insert it after kernel was loaded. It will then
indicate in the log messages what the problem is.

The most common mistake when using a real-time task is trying to
print some text in the user terminal with ‘printf’ command. It is
highly recommended to avoid doing that. In most cases, it will
result in a kernel crash.

PCAN-Driver for Linux – User Manual

54

19 FAQ

Q The compilation and installation worked well. I can write
messages to the CAN-Bus but I cannot read any message.

A Probably you have a kernel version greater or equal than 2.6.25
and you compiled for NET_DEV_SUPPORT since this is the default
compilation target for kernels greater and equal than 2.6.25.

Q The driver for my PCAN-ISA card is not being installed. What's
wrong?

A One possibility is that the SJA-1000 chip on the card is setting
back while checking the PeliCAN-mode. If the card with a PLD that
has got a red point and the jumper JP11 is set “on“ this may be the
reason. Remedy: To set the jumper to “off“.

Q My PCAN-ISA, CAN-PC/104 or PCAN-Dongle doesn't receive any
data though I can send. What's wrong?

A A possible reason is that a wrong interrupt is configured for the
device. Then single messages can be send however none can be
received. Not only the wrong assertion of the interrupt number but
often the missing release of the interrupt in BIOS („legacy ISA“) for
the PCAN-ISA card can be the reason.

Q My PCAN-Dongle is being rejected while using it even if the
installation was successful. What's wrong?

A Normally the reason is a not assigned interrupt for the
„parport_pc“ while using it together with the
PARPORT_SUBSYSTEM

Q What possibilities do I have to diagnose if I have problems?

A Linux has a variety of choices. First it's useful to look at recent
messages with:

PCAN-Driver for Linux – User Manual

55

“tail -f /var/log/messages“

If the driver is loaded you can see (as root) with:

„/sbin/lsmod | grep pcan“

More informations about the parameter of the driver can be asked
with:

„/sbin/modinfo pcan“

Closer information about assignment of major- and minor-numbers
and about the use of resources can be queried with:

“cat /proc/pcan“

Information about assignment of resources can be queried with:

“cat /proc/interrupts“

“cat /proc/ioports“

“cat /proc/iomem“

„cat /proc/pci“ or „cat /proc/bus/pci/devices“ depending on the kernel version.

„cat /proc/bus/usb/devices“

Note: The interrupts of the hardware aren't registered until its
use.

To diagnose USB there are also programs with a graphical user
interface like e.g. „USBView“.

With garbled installations sometimes paths for lation of the driver
are set wrong. That's why while translating the driver a message
like this appears:

*** Host machine kernel version=2.4.18-4GB, Driver kernel version=2.6.5, \ Path
to kernel sources=/mnt/usr/src/linux, use KBUILD=yes

With this message it is possible to compare if the driver is really
compiled for the used kernel. The “KBUILD“ mechanism is used
from kernel 2.6.x on.

Q How do I interpret the output of “cat /proc/pcan“?

PCAN-Driver for Linux – User Manual

56

A The second line gives information about the release of the driver.
In the third line the number of the found CAN-channels and the
assigned major-number are shown. From line four on the
characteristics of the each CAN-channel are described.

The first column shows the minor-number assignment of the
channel, the second column shows the type of the channel, the third
column shows the network device assigment available. The fourth
column shows the current BTR0BTR1 (bit rate) setting, the next 2
columns show the assignment to base addresses (ports) and
interrupt-numbers. The following four columns count the number of
processed read-, write-, interrupt- and errors transactions. The last
column shows the last occurred error status of the channel. The
status is a bit-field with an interpretation like this table:

Bit Description

0 Chip-send-buffer full

1 Chip-receive-buffer overrun

2 BUS warning

3 BUS passive

4 BUS off

5 Receive buffer is empty

6 Receive buffer overrun

7 Send-buffer is full

14 Illegal parameter

Both columns „base“ and „irq“ are misused with USB channel
types. „base“ is showing the serial number of the module and „irq“
the programmed device number of the module. The column ”irq“ in
case of type USB counts the number of received or sent USB-
packages.

Q What happens if I plug out the interface while using PCAN-USB?

A First of all your programs will stall and a re-plug-in of the PCAN-
USB doesn’t change anything. First you have to stop and after

PCAN-Driver for Linux – User Manual

57

plugging-in of the interface you can invoke your programs again.
It’s not guaranteed that the same minor number as the previous
PCAN-USB minor-number is allocated. Minor-number assignment
depends on the order of plug-ins of PCAN-USB devices.

Q How can I find out what minor-number the PCAN-USB is assigned
to?

A With help of the individual pre-programmed „device-number“,
which can be experienced with help of the „/proc/pcan“ interface, a
relationship to a special physical connection can be made.

Q I want to open my PCAN-USB device however I get an error
message. What’s wrong?

A There is more than one possibility: 1) The appropriate device is
not registered as „/dev/pcan...“. 2.) The appropriate device is not
plugged in.

Q The compilation on my system doesn’t work. What can be
wrong?

A The most common reason is not installed Linux kernel sources.
Often sources of another kernel than the one installed are used.
Sometimes both files

„/boot/vmlinuz.autoconf.h“ and

„/boot/vmlinuz.version.h“

of the distribution are not linked to the files they are assigned to

„/lib/modules/’uname-r’/build/include/linux/autoconf.h“ and

„/lib/modules/’uname -r’/build/include/linux/version.h“

Q The transmission performance of CAN-messages is low, if I send
a message with help of the write-interface out of a script. What is
the problem?

A Every line in a script opens the path to a device and immediately
closes this path again. This opening and closing take time. The

PCAN-Driver for Linux – User Manual

58

transmission performance can be improved by letting another path
open. For example:

cat /dev/pcan32 >/dev/null &

echo „m s 0x123 2 0x11 0x12“ > /dev/pcan32

echo „m s 0x123 2 0x11 0x12“ > /dev/pcan32

Q I got a lot of error messages when compiling the driver for a
kernel 2.6.x system. What’s wrong?

A To compile for kernel 2.6 target system you need to have a pre-
configured kernel. To accomplish this you need to install the target
kernel sources. Then do

cd /usr/src/linux # for example

su # you need to be root

make cloneconfig # create a configuration suitable for your running kernel

make scripts # create the necessary scripts

That’s all. Now you can – as ordinary user – compile your driver.

Q While compiling the driver following message appears:

*** “Can’t find /usr/src/linux-2.4.24.SuSE/include/linux/version.h !”. End.

What’s the problem?

A Within the driver makefile up from version 3.3 the target kernel
version is not being won out of the interpretation of the command
‘uname -r’, but extracted out of contents of the file
“$(KERNEL_LOCATION)/include/linux/include/version.h“. (If there
wasn’t any special “KERNEL_LOCATION“ given at the command
line of „make“ “KERNEL_LOCATION=/usr/src/linux“ is being used
as default.) While translating the kernel sources the file version.h
is generated. Normally this message has its cause in not translated
kernel sources. Until kernels 2.4.x it was enough if the distribution
had installed this file. From kernel 2.6.x on it is necessary that the
kernel sources for the target system are configured and translated
completely. Then the file version.h is being created.

PCAN-Driver for Linux – User Manual

59

With ubuntu systems you should set
KERNEL_LOCATION=/usr/src/Linux-headers-‘uname-r’.

Q I like to have interrupt sharing with PCAN-ISA or PCAN-PC/104

A No problem since version 3.30 of the driver. But you should be
aware that interrupt sharing with ISA-BUS is only possible with
devices which are supported from the same driver, e.g. the PCAN
driver. For example it is not possible to share a serial device with a
PCAN device but two PCAN devices can share the same interrupt
level.

Q I am trying to use the PCAN driver with Xenomai support. My
problem is, when I load the module it registers the device with
major 000 and doesn't do an entry into /proc/devices, only into
/proc/xenomai and /proc/pcan. Therefore pcan_make_devices
doesn't work. Is that an error or supposed to be like that?

A It seems you want to use the Xenomai RTDM driver as a standard
driver. You have to know that, with Xenomai's Real-time Driver
Model, there is no real /dev/pcanX device node created. This is the
RTDM skin that provide the appropriates syscalls to user space libs
(libnative, librtdm,...). The pcan_make_devices script is not needed
and do not work with Xeno.

pcanlib is also compiled differently with xenomai. It is linked with
xenomai user space libs, and does not use real /dev/pcanX, but calls
RTDM system calls.

In other world you have to fully recompile peak Linux-driver,
pcanlib and examples with RT=XENOMAI, reinstall and reload
module to be able to use PCAN with Xenomai. Do not expect to
have some real /dev/pcanX nodes working if PCAN have been
compiled with RT=XENOMAI, they only "virtually" exist for pcanlib
with RTDM.

You also have to notice that in real-time, tests are not as verbose as
in non-real-time. This is due to the fact that printing to screen is not

PCAN-Driver for Linux – User Manual

60

recommended from a real-time thread. Tests do just display
statistics at the end of the test (after Ctrl-C).

For a minimal “hello word” example see in “test/minimal_xenomai”
directory.

For a more concrete example of use of PEAK-Linux-driver with
Xenomai, please consult source code of the CanFestival project
(OpenSource CanOpen stack, www.canfestival.org).

Q I have problems to compile or load the driver. What can I do?

A First, read this manual to see if you got a well known problem.
Second, if it is a compiling problem then redirect your compiler
output into a file and send the contents to linux@peak-system.com.
If it is a loading problem do the same for the output of your loading
procedure. With loading or runtime problems it is very helpful to
run a driver with debug mode enabled. Then please attach the
relevant parts of “/var/log/messages”.

Q I got other questions or problems with the driver.

A Please consult linux@peak-system.com.

Q I am enthusiastic about the driver or the documentation and want
to contribute something to make it better. Who do I have to consult?

A Please also contribute linux@peak-system.com. PEAK-System
and the authors are happy about every positive response.

Q When the socketCAN driver “peak_pci.ko” was installed the driver
“pcan.ko” didn’t load anymore. What can I do?

A If your system runs udev you only need to copy the file
blacklist-peak_pci.conf into “/etc/modprobe.d”. The file
blacklist-peal_pci.conf is located in the Documentation
folder. You need to do this as “root” user, e.g. with

http://www.canfestival.org/�
mailto:linux@peak-system.com�
mailto:linux@peak-system.com�
mailto:linux@peak-system.com�

PCAN-Driver for Linux – User Manual

61

sudo cp Documentation/blacklist-peak_pci.conf /etc/modprobe.d

After copying please restart your computer and “peak_pci.ko” will
not load anymore. To remove this option you simply need to erase
“/etc/modules.d/blacklist-peak_pci.conf” and restart.

PCAN-Driver for Linux – User Manual

62

Appendix A Usage of the Driver
with chardev Mode

There are 4 options to ‘talk’ with the chardev driver. Some code
snippets explain the options.

A.1 Polling

Polling is the worst of all possibilities. But sometimes it becomes
the easiest choise.

To poll the driver path have to be opend with the option
O_NONBLOCK:

#include <fcntl.h>

#include <libpcan.h>

TPCANRdMsg msg;

int ret;

HANDLE h = LINUX_CAN_Open("/dev/pcan0", O_RDWR | O_NONBLOCK);

do

{

 ret = LINUX_CAN_Read(h, &msg);

} while (ret == -EAGAIN);

if (!ret)

{

 /* use 'msg' */

}

else

 ...

PCAN-Driver for Linux – User Manual

63

A.2 Blocking Wait

Blocking wait should be preferred because it preserves system
resources. Normally blocking wait must run inside a separate thread
to avoid blocking of the program.

#include <fcntl.h>

#include <libpcan.h>

TPCANRdMsg msg;

int ret;

HANDLE h = LINUX_CAN_Open("/dev/pcan0", O_RDWR);

/* at this point the thread blocks until a message is available */

/* or an error occurs */

ret = LINUX_CAN_Read(h, &msg);

if (!ret)

{

 /* use 'msg' */

}

else

 ...

A.3 Blocking Wait with Timeout

This method is a mix between the two predecessors. Reading of the
data blocks until a message is available, an error occurs or the given
timeout elapses. It is more or less a skyhook to create simple
programs without wasting system resources.

#include <fcntl.h>

#include <libpcan.h>

TPCANRdMsg msg;

http://dict.leo.org/ende?lp=ende&p=5tY9AA&search=predecessor�

PCAN-Driver for Linux – User Manual

64

int ret;

HANDLE h = LINUX_CAN_Open("/dev/pcan0", O_RDWR);

do

{

 /* at this point the thread blocks until a message is available, */

 /* an error occurs or the timout elapses */

 ret = LINUX_CAN_Read_Timeout(h, &msg, 1000000); /* one second */

} while (ret == CAN_ERR_QRCVEMPTY);

if (!ret)

{

 /* nutze 'msg' */

}

else

 ...

A.4 Waiting for an IO-event with Select()

Waiting for an IO-event with select() is very resource efficient but
complicated to use.

With select() you can wait for multiple read-, write- and exceptions
events simultaneously. Additionaly you can give a timeout as a
maximum waiting time.

You can get more information with ‘man select’.

The following example monitors 2 path’s for an input event:

#include <fcntl.h>

#include <unistd.h>

#include <libpcan.h>

TPCANRdMsg msg;

PCAN-Driver for Linux – User Manual

65

int ret;

int maxfd;

fd_set watchset, testset; /* create 2 sets to carry file descriptors;

HANDLE h = LINUX_CAN_Open("/dev/pcan0", O_RDWR);

/* request the associated file descriptor */

int fdpcan = LINUX_CAN_FileHandle(h);

FD_ZERO(&watchset); /* clear the set of file descriptors */

FD_SET(fdpcan, &watchset); /* add the pcan descriptor */

FD_SET(fdother, &watchset); /* add another input descriptor */

/* determine the highest used file descriptor */

maxfd = (fdpcan > fdother) ? fdpcan : fdother;

/* test if the file descriptors still in the set */

while ((FD_ISSET(fdpcan, &watchset) ||

 (FD_ISSET(fdother, &watchset)

{

 /* watchset will be used later on again */

 testset = watchset;

 /* wait until a input is ready */

 err = select(maxfd + 1, &testset, NULL, NULL, NULL);

 if (err < 0)

 {

 /* an error is occured */

 return ...;

 }

 if (FD_ISSET(fdpcan, &testset)

 {

 /* read a message */

 ret = LINUX_CAN_Read(h, &msg);

 if (!ret)

 {

PCAN-Driver for Linux – User Manual

66

 /* use 'msg' */

 }

 else

 ...

 }

 if (FD_ISSET(fdother, &testset)

 {

 /* do what has to be done to delete the IO-event */

 /* e.g. delete a file descriptor from the set */

 close(fdother);

 FD_CLR(fdother, &watchset);

 }

}

PCAN-Driver for Linux – User Manual

67

Appendix B Historical Parts

B.1 devfs

Up from Release_20030622_x the device file system is being
supported optionally. From kernel version 2.6.x the kernel
developers depreciate the use of devfs so for the time being the
driver is not supporting this. Up from release release_20060501_a
(version 4.0) the parts for supporting devfs are removed from the
driver.

Using the devfs it's not necessary to create device files manually
any more. This is taken over by the kernel in cooperation with the
driver and the daemon devfsd. The device file system has to be
enabled within the kernel.

Compiling for devfs-file system support. If you translate the sources
for a system with devfs-support (CONFIG_DEVFS_FS = y) this will be
considered automatically:

cd ~/peak-linux-driver/driver

make clean

make DEVFS=DEFS_SUPPORT

Q I compiled for device file system support. Though it’s not
working.

A Is your devfsd – the “device file system daemon“ – active? Please
check that.

PCAN-Driver for Linux – User Manual

68

B.2 Compilation of Kernel Greater Than
2.5.x

Q While translating kernel 2.6.x following warning appears:

*** Warning: Overriding SUBDIRS on the command line can cause

*** inconsistencies

Is something not right?

A I am afraid that the discussion within the kernel-developer
community about the right way of translating external modules
hasn’t found an end until this release. The current way generates
this warning and at worst translates all of the modules again.
Though there are approaches that the generation of external
modules like pcan.ko is getting easier. This message can be
ignored.

B.3 Obfuscation

Q The source code module “pcan_usb_kernel.c“ only contains
cryptic letters. Is the file destroyed?

A No, the contents of the files is obfuscated to save intellectual
property. Though it’s still a translatable source code. This feature
does only apply for releases earlier than 20061029.

Q During installation of the driver with USB-support I get following
message: “Warning: loading pcan.o will taint the kernel: non-GPL
license – Proprietary“. What’s the meaning of this message?

A This message points out that the driver for the PCAN-USB module
was not released under the GPL license. The use of the driver as a
module within Linux though is legal.

PCAN-Driver for Linux – User Manual

69

B.4 History of the Document

Text Date

First draft Hi 01/13/2002

Rescue after loss of data Hi 02/10/2002

Format revision, read/write tables Hi 02/20/2002

Removed typos Hi 02/21/2002

PCAN-USB integrated Hi 02/09/2003

Obfuscation of „pcan_usb_kernel.c“ is described Hi 02/23/2003

devfs, kernel-2.5 support, LGPL Hi 08/04/2003

1st revision for kernel 2.6.x driver Hi 05/02/2004

Enlarge FAQ, corrections Hi 05/13/2004

Simple correction for RPM make procedure Hi 08/14/2004

Additional compiler switches Hi 07/19/2005

Replaced cat “i ...” with echo “i ...” Hi 11/30/2005

Added a hint from Uwe Bonnes Hi 03/14/2006

Added PCAN-PC Card support, removed devfs Hi 05/14/2006

Corrected serious typographic error Hi 05/16/2006

Removed obfuscation, added real-time support Hi 10/29/2006

Minor improvements Hi 11/04/2006

netdev, message filters and error handling described Hi 02/27/2007

Added a special paragraf to explain NETDEV compilation target Hi 01/18/2009

udev support explained, support up to kernel 2.6.29 Hi 02/03/2009

udev issues detailed Hi 02/14/2009

Rework of the manual Hi 01/16/2010

Added a hint how to blacklist peak_pci.ko. Hi 03/28/2010

Added tips about linux-can mainline drivers and iproute2 tools,
changed old berlios to new gitorious links, set English language
to entire doc and fixed some typos

SG 04/28/2014

PCAN-Driver for Linux – User Manual

70

i CAN hardware is only accepted based on Philips chip SJA1000.
PCAN-ISA or -PCI hardware is immediately verified during
installation. In contrast to that the PCAN-Dongle hardware is not
verified until an „open()“ call. That's the reason why no error is
reported if a parallel port without plugged-in PCAN-Dongle is
recognized.

ii The „Parport Subsystem“ has to be configured to use a interrupt.
Therefore following lines have to be entered into the file
„/etc/modules.conf“ or „/etc/modprobe.conf“ depending on your
kernel version:

alias parport_lowlevel parport_pc

options parport_pc io=0x378 irq=7

Normally „irq=none“ stands in the „options“-line. The assigned
interrupt number must match the assigned interrupt number of the
device. Those works can only be done as 'root“. If the „Parport
Subsystem“ is already installed it can be removed with:

rmmod lp

rmmod pcan

rmmod parport_pc

rmmod parport
iii You are not forced to use the „Parport Subsystem“. Then the
alternately use of the parallel port through PCAN-Dongle and e.g. a
printer is not possible any more. For it the driver has to be
translated with the PAR=NO_PARPORT_SUBSYSTEM option. Then
the previous detail of „modprobe parport“ is not necessary while
installing.

iv In some cases the dynamic assignment of „major“- device
numbers are unwelcome. However this can be changed in the driver

PCAN-Driver for Linux – User Manual

71

sources (file „pcan_main.h“, constant „PCAN_MAJOR“). Afterwards
the driver has to be translated and installed again. The best is to use
the number „91“. This already is intended for CAN-devices. Please
note that conflicts to other installed CAN-drivers can be possible.

v From kernel version 2.6 on the behaviour during assignment of the „minor“-
numbers is being changed through the kernel parameter
„CONFIG_USB_DYNAMIC_MINORS“. When „CONFIG_USB_DYNAMIC_MINORS“
is set, the first free „minor“-number is assigned to from 0 on. Mandrake
distributions use this configuration.

vi The „read“- and „write“-interface of the driver print out ASCII
formatted data or accept ASCII formatted data as input. The format
of the messages for „read“ and „write“ is defined identically, so
that a redirection of data is possible:

cat /dev/pcan0 > /dev/pcan8

The format of the data is like the previously mentioned description
of the messages. Additionally to the description of the messages
the „read“-output supplies a time stamp in milliseconds and
microseconds. If there is a redirection like above the time stamp is
being ignored.

The „write“-output also accepts details about initializing:

echo „i 0x1234 e“ > /dev/pcan8

The first parameter pinpoints the initialization, the second
parameter names an input value for both BTR0/BTR1 registers of
the SJA1000 chip. The optional third parameter „e“, enables the
accept ion of extended frames.

Naturally a faster „ioctl()“-interface is also defined.

	Front page
	Imprint
	1 Disclaimer
	2 Changed Compilation Target since Kernel 2.6.25
	3 Changed Compilation Target since Kernel 3.6
	4 Features of the 'pcan.o' or 'pcan.ko' Driver
	4.1 Special Features of the “chardev driver”
	4.2 Special Features of the “netdev driver”

	5 Prelude
	6 Installing Manually
	6.1 Unpacking the Files
	6.2 Prerequisites for Compilation of the Sources
	6.3 Manual Compilation and Installation

	7 Loading the Driver
	7.1 Driver Loading Specifics for chardev
	7.2 Driver Loading Specifics for netdev
	7.3 Kernel Drivers
	7.4 udev Support
	7.5 pcan_make_devices
	7.6 Specifics with the Driver Installation for PCAN-USB
	7.7 Specifics with the Driver Installation for PCAN-PC Card

	8 Customization of the modprobe Configuration File
	8.1 Interface Hardware Type
	8.2 I/O-Port and Interrupt Settings
	8.3 Initial Bit Rate
	8.4 Assign Parameter (netdev only)
	8.5 Alternate Device Numbering Method

	9 Installation Test, Use of Test Programs (chardev only)
	10 Most Important chardev Header Files
	10.1 Manual Installation of the chardev Header Files

	11 Most Important netdev Header Files
	12 Compilation of the Driver Only
	12.1 Use Cases
	12.2 Support for Cross-Compilation

	13 Features of the Shared Library 'libpcan.so' (chardev only)
	14 Manual Installation of the chardev Shared Library
	15 Message Filters (chardev only)
	16 Error Handling
	17 Socket-CAN Introduction and Basic Installation (netdev only)
	18 Real-time Support with Xenomai
	18.1 Installation
	18.2 Compilation Environment
	18.3 Runtime Environment
	18.4 Troubleshooting

	19 FAQ
	Appendix A Usage of the Driver with chardev Mode
	A.1 Polling
	A.2 Blocking Wait
	A.3 Blocking Wait with Timeout
	A.4 Waiting for an IO-event with Select()

	Appendix B Historical Parts
	B.1 devfs
	B.2 Compilation of Kernel Greater Than 2.5.x
	B.3 Obfuscation
	B.4 History of the Document

