
White Paper

Best Practices for Native Code
Integration Between
C or C++ and Java™

Atego® optimizes the PERC Ultra Java Virtual Machine to accelerate the programming of
demanding embedded applications, especially in the fields of network infrastructure,
industrial automation and telematics. The majority of any of these applications can be
developed in the Java® programming language, by using PERC Ultra. Despite this, it is
common to also have code written in other programming languages, usually C or C++. PERC
Ultra provides several ways to access and interface to this so-called “native code”. Note
that PERC Ultra compiles Java down to the same kinds of native machine instructions that C
or C++ would, and, in this general sense, is just as “native” as C or C++. Conventional usage,
however, distinguishes between machine code compiled by a Java compiler, and “native
code”, compiled by non-Java compilers. This white paper outlines best practices for
integrating this native code, and especially with the code generated by the PERC Ultra
virtual machine.

Best Practices for Native Code
Integration Between

C or C++ and Java
This white paper describes recommended techniques
for integrating native code, typically written in C or
C++, with Java code. While generally applicable to any
Virtual Machine, examples presented relate to the
PERC Ultra virtual machine.

May 19, 2009

1Best Practices for Native Code Integration Between C or C++ and Java

Introduction

JNI

JNI, the Java Native Interface, is the most widely used and understood mechanism for
integrating Java code with native code. Source code written with JNI is portable across
different VMs that support JNI. Even JNI binaries for a given CPU/RTOS combination are
interoperable with any other Java VM supporting JNI for that platform.

JNI, in general, is well documented in the Addison-Wesley book, The Java
Native Interface, by Sheng Liang. This book does not cover the details of compiling

JNI

2

and running native code on an embedded system. The PERC Ultra User Manual provides
these details, giving the correct (and obscure!) compiler and linker flags and lists
example Makefiles, to use JNI on embedded targets. Both of these resources are must-
reads before designing or implementing JNI code.

Generally, JNI is the first and best design choice for integration with native code. JNI
provides a rich interface between native and Java code, and allows the programmer to
implement everything in native code that could be done in Java code. This richness,
though, opens up design pitfalls for the unaware — just because something can be
done, doesn’t mean that it should.

Prefer Java implementations over native ones whenever possible

This is the overarching design rule when using JNI. As with any rule, there are exceptions,
but when there is a choice to implement a feature in Java or native code, the former is
almost always the better design. Even if it takes awkward measures, the guideline usually
holds. For example, if a native method needs synchronization, it might seem natural to
use the JNI functions MonitorEnter and MonitorExit, to implement a mutual exclusion.
These functions can lead to subtle bugs, though. If an exception is thrown through
MonitorExit, the C code won’t automatically release the monitor, which can lead to
difficult-to-debug livelock and deadlock conditions. Not matching MonitorExit’s to
MonitorEnter’s causes the same problem, and is equally difficult to debug. A clean
solution to this is to hoist the monitor up and out of the native code, into the calling Java
code, and synchronize the whole of the native method call.

Another example concerns error handling. While it may seem natural to allocate,
construct and throw Java exceptions from native code, this is error prone, and difficult to
maintain. It is almost always better to have the native code just return an error status, as
is the usual practice for C code. The calling Java code can then check that error status,
and create and throw any exceptions as needed.

Treat the functions AttachCurrentThread and DetachCurrentThread similarly. These two
functions are responsible for more confusion and bugs in deployed JNI code than any
other. They should only be used when absolutely necessary. Do not write platform
dependent native code to create and manage threads, and then invoke these evil twins
to rendezvous with Java code. Instead, it is much cleaner and safer to create a new
thread in Java, as a subclass of java.lang.Thread, and enter native code from there.
Overall, there is much less native code. If the code needs enhancement later, say, by

Best Practices for Native Code Integration Between C or C++ and Java

JNI

JNI DESIGN
STRATEGIES

3

adding a thread pooling mechanism, it will be much easier to maintain and understand.

Chapter 10 of The Java Native Interface describes a number of other pitfalls to avoid
when writing JNI code. One more that is worth mentioning here has to do with
references to Java objects. Automatic garbage collection of unused objects is one of the
great strengths of Java, eliminating the risk of both dangling pointers and memory leaks.
Both risks reappear when writing native code. When a JNI function acquires a reference
to a Java object, the Java Virtual Machine has no way to know that the function is done
with the object until the function returns. A long-running function can thus keep an
object alive indefinitely; the PushLocalFrame and PopLocalFrame functions can be used
to advise the VM that a set of references is no longer needed. Most object references
used in JNI functions are “local” to the lifetime of the function call that acquires them;
any local reference can be converted to a “global” reference that will remail valid until it
is explicitly released. In order to share a reference between calls to the same or different
functions, a global reference must be acquired; otherwise the effect is similar to using a
pointer that is no longer valid. However, forgetting to eventually delete a global
reference will prevent the object from being garbage collected even after the JNI
function returns.

The JNI book warns about the different semantics a native programmer sees when using
a VM that uses native threads, as opposed to a “green threads” VM which performs its
own management of Java Threads within a single OS-level thread. The PERC Ultra VM
uses a hybrid approach, which combines the best features of both models. This strategy
allows the JNI programmer to issue calls that might block naturally, without taking any
special actions to prevent the other threads from blocking. That is, a JNI call in PERC
Ultra may call a blocking I/O function, without linking to any special libraries. If the call
blocks, any other runnable threads will run until the I/O returns.

The Liang book suggests three strategies for designing JNI based libraries: One-to-one
mapping, shared-stubs, and peers. The first, simply wrapping all C calls one-to-one with
Java calls, works very well in most cases. For small interfaces, this is the preferred
approach. The second method suggested, shared-stubs, involves writing one assembly
language routine which dispatches to a given C routine based on a name lookup. This is
an abomination, and should be avoided at all costs. In addition to being extremely non-
portable, and difficult to maintain, it introduces new security holes and creates
problems that are very tricky to debug. The final approach, using peers, is the way that
much of java.awt.* and java.io.* is implemented. It is probably best for larger
frameworks, but leads to bad object coupling, and is hard to debug and unit-test.

The JNI design strategy that Atego recommends is most famously implemented

Best Practices for Native Code Integration Between C or C++ and Java

in the SWT windowing toolkit, and documented at the link in the references section.
This design philosophy has two main tenets: First, to minimize the amount of native
code, as described above. The second is to retain the portability benefits of Java.
Developers of Java native code frequently forget this tenet, which leads to great loss.
The benefits of Java’s portability, especially for an embedded system, are legion. To
develop, debug, and unit test on a desktop machine, especially if target hardware is
unavailable or over utilized is a tremendous advantage. All too frequently, developers
throw away this advantage the moment the first line of native code is written.

JNI

4

It is OK (even desirable) to write platform-dependent code in Java,
as long as there is an implementation for each platform.

This maxim is the result of the merger of the above two design tenets. Using this design
strategy is straightforward. First, design a clean, pure-Java interface to the needed
functionality, using standard OOA&D techniques. Second, discover the minimum set of C
or C++ routines that are needed to implement this interface for each of the target
platforms. Note that for some platforms, especially simulators, no C code may be
needed at all. Wrap each of these C/C++ functions in a simple Java wrapper method,
which just calls the function, passes the arguments it requires and returns the return
value. Finally, implement in pure Java code the Object Oriented design from the first
step in terms of the primitives defined in the second step, for each platform. Use the
usual Gang-Of-Four patterns to link the top two layers—typically the factory pattern is
the way to go. Careful attention to this approach has many benefits. The greatest of
these is portability, for the value of running an embedded application on a desktop
simulator cannot be overestimated. Most embedded projects face significant delays in
the development of software because of this lack of portability. Ensuring that the bulk
of an embedded project’s Java code can run on a desktop machine is the single most
important thing a team can do to keep its project on schedule and under budget. This
also enables the continuous unit testing of the embedded software, running on a
desktop host. There are many Java tools to help with unit testing; Atego recommends
the JUnit tool.

If an embedded project uses this recommended approach to integrating native
code, JUnit can still be used to unit and regression test the bulk of the code. Just
as the factory pattern creates platform-specific instances of the native interface,
it can also create debug-specific, or testing-specific interfaces. Again, this is an
easy way to ensure good code coverage for the platform-independent code without
needing to run on a target. Another huge benefit is debugging. Often when
there is a bug, the Java and C teams play finger-pointing games, casting blame

Best Practices for Native Code Integration Between C or C++ and Java

JNI

at each other. When the C interfaces are small and well defined, it is trivial to
write all C, or all Java reproducer cases, which clearly illuminate the problem.

5

A real example best illustrates this design strategy. A large industrial facility has
embedded computers distributed widely throughout the plant. A proprietary network
connects these computers, sending timing signals, to precisely synchronize the
collection of data from each of the computers. The computers run both VxWorks® from
Wind River, and embedded Linux®. However, the software interface to the timing
network is very different for these two operating systems. On VxWorks, the device
driver for the network interface signals a semaphore when a timing event arrives. On
Linux, there is a device special file; reading this file blocks until the network receives the
timing event, then one byte is readable from the file. As there is no built-in support in
Java for this proprietary network, native code is needed to interface the Java code to
this network.

To simplify this example, there will be only one timing signal, a start signal, which
indicates that the computer should start monitoring. Following our design guidelines,
the first step is to create a Java interface for this. This will need just one method:

public interface TimingNetwork {
public static void waitForStartSignal() throws TimingNetworkException;

}

Note this is an interface, not a native code entry point. The naïve approach would be to
make this a concrete, native method, and to provide multiple native implementations,
one for each platform. But that leads to a proliferation of native code, which violates
the first tenet stated above.

The second step is to implement the smallest set of native code that the above interface
requires, once per platform. For VxWorks, this just boils down to waiting on a
semaphore. A reasonable implementation of this second step for VxWorks might look
like:

public class VxWorks {
public static native int semTake(int semId, int timeout);
public static native int semGive(int semID);

}

A REAL-WORLD
EXAMPLE

Best Practices for Native Code Integration Between C or C++ and Java

Note that the two methods have the same name as the VxWorks functions they wrap.
This underlines that these are not idealized, portable semaphores; rather, they are
exactly VxWorks semaphores, with all implied benefits and constraints. For Linux, the
minimal set of native code required to implement this interface is more interesting: it is
empty! The Linux implementation of TimingNetwork can be finished with pure Java
code, and no additional native methods.

The final step is to implement the interface in terms of the primitives just defined. For
VxWorks, this implementation gets the id of the semaphore from a configuration setting
(perhaps from a file), and calls into the SemTake method. The Linux implementation is
pure Java, and just does a blocking read on the device special file the device driver uses.

The most important implementation is the portable implementation, which will run on
any platform, even if it doesn’t have the special networking hardware. The code for this
could just be a no-op. Or, a more sophisticated implementation could simulate the
timing network over TCP. Granted, the timing would not be correct for the simulation,
but it allows for the code to run on any Java VM on any hardware. This portability, which
aids design and development is vitally important to retaining the full benefits of the Java
programming environment.

JNI

6

JNI has a reputation for being slow. And indeed, a call to a C function from Java through
JNI takes between fifteen and thirty times as long, depending on the number and type
of arguments, as a call from Java to Java (assuming AOT or JIT compilation). Keep in
mind though, the famous quote from Donald Knuth, “Premature optimization is the root

1of all evil” . Even though a call to JNI is much slower than a non-native call, it still runs
very quickly, in absolute terms. Even a slower PowerPC processor can execute millions of
JNI calls per second. Keep this number in mind when designing code that uses JNI — JNI
is slower than non-native code, but there is almost always plenty of speed available to
accomplish the task at hand. A common mistake is to fear the slow speed of JNI, and
break the above design rules, in an attempt to gain more performance. The most
common design rule broken is the “leaf function” rule, for many developers will think
that, “JNI calls are slow, so I best get as much work done possible per call”. Before
breaking these design guidelines, first calculate back-of-the-envelope estimation of how
many JNI calls the code needs to execute in a given timeframe. Measure the speed of a
JNI call on the target platform. In most cases, these measurements reveal that the
software design can afford the discipline of clean, maintainable code, as described
above. In fact, this is true for most code, not just JNI, for otherwise, we’d be writing all

1. Knuth, Donald: Structured Programming with Goto Statements. Computing Surveys 6:4
(1974), 261–301.

JNI PERFORMANCE

Best Practices for Native Code Integration Between C or C++ and Java

of our code in assembly language.

There are a number of techniques one can use that can improve JNI performance
without sacrificing clean design. A common pattern in JNI code is to copy a buffer from a
C function into a Java-accessible array or data structure. It is straightforward to allocate
this buffer in the C code called from JNI, as often, that is the only place that has the
correct size of the buffer. However, when allocating memory from JNI code, the JNI
routines must synchronize with the garbage collector and the other running Java
threads, which can be expensive. It is usually faster (and more maintainable) to allocate
the memory in the Java world, then pass the buffer into the C code. This is true, even if
it means preallocating a maximal sized buffer. Optimizing this example one step more
takes into consideration the common need to get an internal, “C” pointer out of the
allocated Java array or Object. Usually, JNI code will need to call
Get<Type>ArrayElements, or similar function to extract a real “C” pointer from the
Object. The implementation of Get<Type>Array elements (and similar functions) in the
PERC Ultra VM requires the garbage collector to make the object static temporarily. This
is so that the object won’t get moved by the garbage collector, for this would invalidate
the pointer. If the object or array is allocated in the Java side, it can be made static at
allocation time by using the AllocateStatic type tag. This will eliminate both the
synchronization overhead and any additional copy. Also, if only one buffer is allocated,
and reused over the course of many JNI calls, the work of the garbage collector will be
reduced, which will result in an added speedup.

JNI

7

As with any programming optimization or tuning situation, the first task should be to run
a profiler, to verify where the slowdowns are. Time and time again, slowdowns happen
in the most unexpected places. Remember—a few days spent profiling a program can
often save months of optimizing the wrong parts of it. Atego PERC Ultra integrates with
any profiling tool that uses the JVMPI protocol, including the Eclipse Workbench Test
and Performance Tools Platform (TPTP) which provides a very dynamic view of memory
and CPU usage by the Java application. Unfortunately, while very effective in a desktop
setting, the memory requirements for this type of profiling are unacceptably high for
many embedded targets.

Atego offers two ways to overcome this limitation. By using a “proxy” profiling agent,
the memory load can be placed on the host where the profiling tool is running instead
of on the target system. However, this can turn a memory problem into a bandwidth
problem since all the data must pass between target and host over the network.
Another alternative is the open-source batch-mode HPROF profiler published by Sun

A FINAL NOTE
ABOUT JNI
OPTIMIZATION
AND SPEEDUPS:

Best Practices for Native Code Integration Between C or C++ and Java

PNI

Microsystems and supported by Atego. Its lighter-weight approach provides less detail
than interactive profiles, but is usable in most embedded environments.

The pitfall with any profiling tool for Java is that every native method is opaque. That is,
once control enters a JNI method, what happens inside the method is invisible to the
profiler, until control returns or re-enters Java. This is another good reason to move as
much code as possible from JNI up into Java. If there is a small amount of JNI code, and
a need to get detailed timing information for short snippets of code, there is an easy
answer. Most modern CPUs, including the x86 and PowerPC have a high resolution clock
on chip, which is very cheap to read. On the x86, this is at the clock rate, while on the
PowerPC, it usually a small multiple of the clock rate. Atego Professional Services can
provide examples of inline assemble code, which can read these registers. By scattering
these calls throughout the JNI code, it is easy to get very precise timing measurements.

8

PNI

PNI, the PERC Native Interface, is the native interface of last resort, and comes into play
when JNI just isn’t fast enough. PNI runs faster than JNI, but requires great care to use it
safely.

PNI gains its speed from being tightly coupled to the PERC Ultra VM. While JNI is
portable across VMs, and across different versions of the same VM, PNI has changed
several times as the internals of the PERC Ultra VM evolve, and will probably continue to
do so. JNI cleanly handles most of the underlying VM machinery itself, but PNI does not.
For example, with JNI, the programmer does not need to worry about whether a native
call will block the calling thread. This is not the case for PNI — if a method called from
PNI might block, it must wrap that call with certain PNI functions. These ensure that the
whole virtual machine does not get stuck behind the one blocking call. JNI also shields
programmers from some details of interacting with Java code, such as the need to yield
the CPU periodically in order for high-priority tasks to meet their latency requirements,
and the possibility that objects may be relocated by the defragmenting garbage
collector. The PNI programmer is responsible for taking these possibilities into account.
The PERC Ultra User Manual contains the complete reference and guidelines for using
PNI. Be sure to be thoroughly familiar with this reference before writing PNI code. The
Atego Professional Services team can also assist with formal inspection and review of
customer-written PNI code.

PNI’s one benefit is that it does run faster than JNI. How much faster depends, of course

Best Practices for Native Code Integration Between C or C++ and Java

on the platform and the usage. Typically, PNI will run about three times faster than JNI,
again depending on the number and type of arguments. One can mix and match PNI
code and JNI code, so a common use is to first design and write all native methods in
JNI, and later, in the tuning and optimization phases of a project, rewrite those few
methods which absolutely need to in PNI.

Direct Memory

9

Direct Memory

The most common need for native access is to read or write to memory outside the Java
heap. This external memory may be a device, memory mapped into the address space,
memory shared with C threads, or the like. PERC Ultra provides a clean, optimal solution
to this common problem with support for DirectMemory. A single class, named

1COM.newmonics.pvm.DirectMemory , accesses this type of memory. DirectMemory
has straightforward static methods for reading and writing fundamental types from a
given raw memory address. These methods look like normal Java function calls (and are
so if called in interpreted mode), but they are handled specially by both the Atego AOT
and JIT compilers. Because the compiler understands what these functions do, instead
of generating instructions to call the methods, it can generate in-line instructions to
access the memory directly, optionally omitting array-bounds checking, and performing
processors-pecific optimizations. With these optimizations, the compiler can emit
machine instructions similar to what a C compiler would emit. This results in much faster
execution than a JNI call, or even a Java-to-Java call, and is by far the fastest way to read
and write external memory with the PERC Ultra virtual machine. Even so, it is very easy
to maintain this code, as it is trivial for the code maintainer to see the intent of the
original programmer. Array-bounds checks can be enabled during the testing and
debugging stage to detect errors, and turned off for production use. If embedded code
just needs to read or write foreign memory, Atego strongly recommends the use of the
DirectMemory class.

Standard Java provides a related facility in the form of “direct byte buffers.” A direct byte
buffer can be created by either the java.nio.ByteBuffer.allocateDirec method (which
gives no control over the address of the buffer) or with the JNI NewDirectByteBuffer
function (which does allow the address to be specified). Like DirectMemory, direct
ByteBuffers provide access to arbitrary memory addresses from Java code, but the
compiler optimizations described above apply only to DirectMemory. Direct ByteBuffers
are accessed through ordinary native method calls, with the associated performance
penalty.

1. The naming is historical. Atego acquired the PERC Ultra Virtual Machine technology from
NewMonics, Inc. in 2005.

Best Practices for Native Code Integration Between C or C++ and Java

Conclusion

10

Conclusion

There are many ways to integrate native code with PERC Ultra. The first choice for
programmers needing this integration should be the DirectMemory class, if applicable.
If not, using JNI, with the design pattern outlined above is the recommended approach.
Finally, if after profiling, JNI is too slow, consider using PNI for the most time-critical
loops. In any case, the Atego Professional Services team has many years of invaluable
experience working with native code, and can help projects meet their complex
requirements in this area of Java Programming.

References

The Java Native Interface, by Sheng Liang, ISBN 0-201-32577-2

The PERC Ultra User Manual (PDF file, ships with PERC Ultra; also available for
download)

SWT: The Standard Widget Toolkit PART 1: Implementation Strategy for Java™ Natives
(available at http://www.eclipse.org/articles/Article-SWT-Design-1/SWT-Design-1.html)

Best Practices for Native Code Integration Between C or C++ and Java

Atego White Paper

® ™© 2010 Atego. All rights reserved. Atego is a trademark of Atego. PERC is a registered trademarks or service mark of Atego. Java and all Java-based marks are trademarks or
registered trademarks of Sun Microsystems, Inc., in the US and other countries. All other company and product names are the trademarks of their respective companies.

™

North America

Phone: (888) 91-ATEGO
Fax: (858) 824-0212

E-mail: info@atego.com

France

Phone: +33 (0) 1 4146-1999
Fax: +33 (0) 1 4146-1990

E-mail: info@atego.com

United Kingdom

Phone: +44 (0) 1491 415000
Fax: +44 (0) 1491 575033

E-mail: info@atego.com

Germany

Phone: +49 7243 5318-0
Fax: +49 7243 5318-78

E-mail: info@atego.com

To obtain more information, please contact Atego at www.atego.com or call one of our sales offices

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12

