

Department of Computer Science and Engineering

The University of Texas at Arlington

Detailed Design Specification

Project: Virtual Reality Xplorer

Team Members:

Osuvaldo Ramos

Joseph Onwuchekwa

Sukuya Nakhaima

Chris Otterbine

Last Updated: 2/28/2014 1:18 PM

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 2 | P a g e Team VR-X

Table of Contents

TABLE OF CONTENTS 2

DOCUMENT REVISION HISTORY 4

LIST OF FIGURES 5

LIST OF TABLES 6

1. INTRODUCTION 7

1.1 PRODUCT CONCEPT 7

1.2 PRODUCT SCOPE 7

2. ARCHITECTURE OVERVIEW 8

2.1 UNREAL DEVELOPMENT KIT 8

2.2 MODULE DECOMPOSITION 8

2.3 DECOMPOSITION DIAGRAM 9

2.4 PRODUCER-CONSUMER RELATIONSHIP MATRIX 10

3. INPUT LAYER: USER INPUT SUBSYSTEM 11

3.1 PLAYER INPUT MODULE 11

3.2 PLAYER CONTROLLER MODULE 13

4. PROCESSING LAYER: GAME MAP SUBSYSTEM 15

4.1 PAWN MODULE 15

4.2 ACTORS MODULE 17

4.3 GAME EVENTS MODULE 19

4.4 PAUSE MENU MODULE 22

4.5 HUD MODULE 24

5. PROCESSING LAYER: GAME SUBSYSTEM 26

5.1 GAME INFO MODULE 26

5.2 SAVE GAME STATE MODULE 28

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 3 | P a g e Team VR-X

5.3 ACADEMIC REPORT MODULE 30

6. PROCESSING LAYER: USER INTERFACE MAPS 32

6.1 LOAD SCREEN MODULE 32

6.2 MAIN MENU MODULE 34

7. STORAGE LAYER: CONTENT SUBSYSTEM 36

7.1 TEXTURES MODULE 36

7.2 MATERIALS MODULE 37

7.3 STATIC MESH MODULE 38

7.4 AUDIO MODULE 39

8. QUALITY ASSURANCE 40

8.1 TEST PLANS AND PROCEDURES 40

8.2 MODULE TEST 40

8.3 COMPONENT TESTING 42

8.4 INTEGRATION TESTING 43

8.5 REQUIREMENT TESTING 43

9. REQUIREMENTS TRACEABILITY MATRIX 44

10. ACCEPTANCE PLAN 46

10.1 OVERVIEW 46

10.2 INSTALLATION AND PACKAGING 46

10.3 ACCEPTANCE TESTING 46

10.4 ACCEPTANCE CRITERIA 47

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 4 | P a g e Team VR-X

Document Revision History

Revision

Number

Revision

Date
Description Rationale

0.1 2/10/14 Initial Integration

1.0 2/10/14 Review-ready final version Added QA, Acceptance Plan, and

Traceability matrices

1.1 2/27/14 Re-review version Completely reworked modules and

revised Quality Assurance section.

Corrected list of figures and tables. Added

description of UDK and tools.

2.0 2/28/14 Baseline version Baseline submission

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 5 | P a g e Team VR-X

List of Figures

Figure # Title Page #

 2-1 Detailed Design Decomposition Diagram 9

 3-1 Player Input Module 11

 3-2 Player Controller Module 13

 4-1 Pawn Module 15

 4-2 Actors Module 17

 4-3 Game Events Module 19

 4-4 Kismet Visual Script 20

 4-5 Pause Menu Module 22

 4-6 HUD Module 24

 5-1 Game Info Module 25

 5-2 Save Game State Module 28

 5-3 Academic Report Module 30

 6-1 Load Screen Module 32

 6-2 Main Menu Module 34

 7-1 Textures Module 36

 7-2 Materials Module 37

 7-3 Static Mesh Module 38

 7-4 Audio Module 39

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 6 | P a g e Team VR-X

List of Tables

Table # Title Page #

 2-1 Producer-Consumer Relationship Matrix 10

 3-1 Input Module Interfaces 12

 3-2 Player Controller Module Interfaces 13

 4-1 Pawn Module Interfaces 15

 4-2 Actors Module Interfaces 17

 4-3 Game Events Module Interfaces 19

 4-4 Pause Menu Module Interfaces 22

 4-5 HUD Module Interfaces 24

 5-1 Game Info Module Interfaces 26

 5-2 Save Game State Module Interfaces 29

 5-3 Academic Report Module Interfaces 30

 6-1 Main Menu Module Interfaces 34

 9-1 Requirements Traceability Matrix 44

 10-1 Acceptance Criteria 47

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 7 | P a g e Team VR-X

1. Introduction

1.1 Product Concept

The Virtual Reality Xplorer is an educational video game that will employ the Oculus Rift virtual reality

device and an Xbox controller to immerse students in a virtual environment where they can learn and

explore different topics from their curriculum. Students will be presented different topics and learn how

to apply the knowledge they are learning in the virtual environment. Teachers will be able to see how

each student performed in the different virtual environments.

The Virtual Reality Xplorer is a product designed to simulate an environment while simultaneously

providing the user an entertaining and educational experience. The Virtual Reality Xplorer will be

installed on a PC. The program will be launched from the operating system and display the main menu.

Once the user starts a new game, they will be allowed to explore an open environment while the Virtual

Reality Xplorer displays information using the heads up display. The user will also encounter

intermittent puzzles and challenges.

The Virtual Reality Xplorer’s intended users will be 5th and 6th grade science students. The intended

consumer will be 5th and 6th grade science teachers that want an alternative method of teaching a

certain topic. Other audiences may consist of school districts or educational programs.

1.2 Product Scope

The Virtual Reality Xplorer sets out to provide an educational and entertaining experience through

virtual reality as to allow the user to gain more “sensory” knowledge.

The hardware component of this system accommodates the Oculus Rift, a piece of hardware needed for

virtual reality, an Xbox 360 controller for lateral movement, and a wireless headset for user freedom.

The user interface will feature a menu for selecting options such as new, save, quit, etc. While

navigating through the virtual environment, the user will see the environment as well as the HUD

(Heads-up Display). The HUD is a user interface that provides a crosshair, tool tips when you can

interact with objects, and statistics. The user sees the HUD in addition to the virtual environment.

This product is designed for 5th and 6th graders, although the system is informative to all ages.

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 8 | P a g e Team VR-X

2. Architecture Overview

2.1 Unreal Development Kit

The Unreal Development Kit (or UDK) is a development environment specifically for game

development. The UDK acts as an operating environment for our product. Every module is built on top

of the UDK. The UDK handles all input and outputs from the Oculus Rift and Xbox Controller as well

as rendering graphics and audio. The UDK also comes with a set of INI files that can be modified to

customize the functionality of the UDK. The UDK provides tools to make the game development

process easier. The Unreal Editor is a software application for building maps and managing content such

as textures, materials, static meshes, animations, lighting, and audio. UnrealScript is an object oriented

programming language for the UDK environment. The framework provides hundreds of utility and base

classes as a starting point. Kismet is a visual scripting language with built-in triggers, events, and actions

that can be connected to the map and actors in the game. Matinee is an animation scripting tool that

allows users to create custom animations easily. An actor is any object that can interact with the map

world. Actors can be cameras, sound actors that trigger sound events, objects that the player can interact

with, or static objects like walls and floors. Actors can be placed using the Unreal Editor or dynamically

with UnrealScript. A Pawn is a specific actor that represents the player’s physics presence in the map. A

heads-up display (or HUD) is the display drawn over the player’s view that displays information about

their gameplay.

2.2 Module Decomposition

A. User Input Subsystem

1. Player Input Module

2. Player Controller Module

B. Game Map Subsystem

1. Pawn Module

2. Actors Module

3. Game Events Module

4. Pause Menu Module

5. HUD Module

C. Game Subsystem

1. Game Info Module

2. Save Game State Module

3. Academic Report Module

D. User Interface Maps Subsystem

1. Load Screen Module

2. Main Menu Module

E. Content Subsystem

1. Textures Module

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 9 | P a g e Team VR-X

2. Materials Module

3. Static Mesh Module

4. Audio Module

2.3 Decomposition Diagram

Figure 2.1 Detailed Design Module Decomposition Diagram

In this diagram the UDK encompasses the entire system. Every module interacts with the UDK

in one way or another so it would not make sense to depict it as a subsystem/modules. The way it

is depicted in this diagram is meant to show how the UDK acts as an operating environment for

the subsystems and modules.

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 10 | P a g e Team VR-X

2.4 Producer-Consumer Relationship Matrix

P
la

y
e

r
In

p
u

t

P
la

y
e

r
C

o
n

tr
o
lle

r

P
a

u
s
e

 M
e
n

u

H
U

D

P
a

w
n

A
c
to

r

G
a

m
e

 E
v
e

n
ts

S
a

v
e

 G
a
m

e
 S

ta
te

G
a

m
e

 I
n
fo

A
c
a

d
e
m

ic
 R

e
p
o

rt

M
a

in
 M

e
n

u

L
o

a
d

 S
c
re

e
n

S
ta

ti
c
 M

e
s
h

e
s

M
a

te
ri
a

ls

A
u

d
io

T
e

x
tu

re
s

P
ro

d
u

c
e

r

Player Input

 UI2 UI1 UI3 UI5

Player Controller UI4

Pause Menu

 GM1

HUD

Pawn

 GM4

Actor GM5

Game Events

 GM5 GM7 GM6

Save Game State GM2 GM3 GM7

Game Info

 GS3

Academic Report

Main Menu

 UIM1

Load Screen

Static Meshes

Materials

 C2

Audio

Textures

 C1

Table 2.1 Producer-Consumer Relationship Matrix

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 11 | P a g e Team VR-X

3. Input Layer: User Input Subsystem

3.1 Player Input Module

Figure 3.1 Player Input Module

3.1.1 Description

Stores the player’s input in variables that are updated by the UDK. The UDK reads the

UDKInput.ini file and loads bindings from keyboard, mouse, and gamepad (Xbox Controller in

this case) to variables defined inside of the Player Input module. This module is a class that

extends the default UDK’s PlayerInput class.

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 12 | P a g e Team VR-X

3.1.2 Interfaces

Data Source Destination Description

- UDK Player Input The state of the buttons and axes on Xbox controller,

mouse buttons and movement, and keyboard key

presses.

UI2 Player Input Player Controller A floating point number between -1.0 and 1.0 for

each joystick axis. A byte with either 0 or 1 for not

pressed or pressed for each button.

UI3 Player Input Main Menu A floating point number between -1.0 and 1.0 for

each joystick axis. A byte with either 0 or 1 for not

pressed or pressed for each button.

UI1 Player Input Pause Menu A floating point number between -1.0 and 1.0 for

each joystick axis. A byte with either 0 or 1 for not

pressed or pressed for each button.

Table 3.1 Player Input Module Interfaces

3.1.3 Physical Data Structures and Data File Descriptions

/**

Defines the variables the UDK updates

**/

class VRXPlayerInput extends UDKPlayerInput

 var float gForward;

 var float gBack;

 var float gLeft;

 var float gRight;

 var input byte aRun;

 var input byte bInteract;

 var input byte yJump;

 var input byte xActivate;

3.1.4 Processing

/**

Acquires and binds buttons to certain actions

**/

function initializeInput(){

 InitializeBindings = (Name=" XboxTypeS_A",Command="Button aRun");

 InitializeBindings = (Name=" XboxTypeS_LeftX ",Command="Axis gLeft");

 //Additional bindings go here

}

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 13 | P a g e Team VR-X

3.2 Player Controller Module

Figure 3.2 Player Controller Module

3.2.1 Description

Reads the input values from the Player Input class and updates the player’s Pawn speed and

direction. The UDK reads the Oculus Rift settings from the UDKEngine.ini file and updates the

game camera

3.2.2 Interfaces

Data Source Module Destination Module Description

UI2 Player Input Player Controller A floating point number between -1.0 and 1.0 for

each joystick axis. A byte with either 0 or 1 for not

pressed or pressed for each button.

UI4 Player Controller Pawn Speed and direction of the player’s Pawn.

UI5 Player Controller HUD Player’s status to be displayed on the HUD.

Table 3.2 Player Controller Module Interfaces

3.2.3 Physical Data Structures and Data File Descriptions

None.

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 14 | P a g e Team VR-X

3.2.4 Processing

class VRXPlayerController extends UDKPlayerController{

 /**

 Translates certain values of the Xbox Controller into values that are easily calculated.

 **/

 function convertValues(float accelerationInput, float rotationRate,

 float tilt, float gravityInput){

 float sensitivity = VectorValue(accelerationInput, rotationRate,

 tilt, gravityInput);

 //VectorValue represents the amount of

 sensitivity generated by these four inputs via

 the control sticks

 float rotation = RotationValue(rotationRate,tilt);

 //FloatValue represents the rotation generated

 by rotating the control sticks. 0 represents

 no change while 65535 represents a full

 revolution

 }

}

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 15 | P a g e Team VR-X

4. Processing Layer: Game Map Subsystem

4.1 Pawn Module

Figure 4.1 Pawn Module

4.1.1 Description

The Pawn is an Actor that represents the player’s physical presence in the game. The pawn class

is specified in the Game Info module which is loaded when the map is loaded. The pawn is

assigned a static mesh which the UDK uses to calculate collisions and render the pawn.

4.1.2 Interfaces

Data Source Module Destination Module Description

UI4 Player Controller Pawn Speed and direction of the player’s Pawn.

GM2 Save Game State Pawn Serialized data to be de-serialized by the Pawn.

GM2 Pawn Save Game State Serialized Pawn data to be saved to save file.

GM4 Pawn Game Events Pawn triggers an event in a Kismet script.

Table 4.1 Pawn Module Interfaces

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 16 | P a g e Team VR-X

4.1.3 Physical Data Structures and Data File Descriptions

None

4.1.4 Processing

A Pawn is the player. This class stores and initializes all properties of the player.

**/

class VRXPawn extends Pawn{

 /**

 Takes in parameters representing the properties of the player and initializes them

 **/

 function initializeProperties(UTPawn pwn, Swimming swm, Camera cmr, ….){

 var UTPawn height = pwn.EyeHeight();

 var Swimming swimSpeed = swm.zSwimming();

 var Camera victoryCamera = cmr.HeroCamera();

 //More initializations

 }

}

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 17 | P a g e Team VR-X

4.2 Actors Module

Figure 4.2 Actors Module

4.2.1 Description

A map is made up of a collection of actors. The Actors module represents this collection of

actors. Objects in the environment are instances of the Actor class. Actors can be cameras, sound

actors that trigger sound events, objects that the player can interact with, or static objects like

walls and floors. Actors are placed in the map using the UDK Editor.

4.2.2 Interfaces

Data Source Module Destination Module Description

GM3 Save Game State Actors Serialized data to be de-serialized by the Actor.

GM3 Actors Save Game State Serialized Actor data to be saved to save file.

GM5 Actors Game Events Actors triggers an event in a Kismet script.

GM5 Game Events Actors Game Events can cause an Actor’s state to

change.

Table 4.2 Actors Module Interfaces

4.2.3 Physical Data Structures and Data File Descriptions

None

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 18 | P a g e Team VR-X

4.2.4 Processing

/**

Actors are game related objects that make up the overall structure of a game. Examples would be an object

that determines where a player spawns or adding a lighting effect.

This class initializes and spawns all actors that were created

**/

class VRXActor extends Actor{

 /**

 The function initializeActors takes in an array of Actors as well as a vector of their

 location and spawns them respectively in the world.

 **/

 function initializeActors(class <Actor> arrAct, class <Actor>(Vector) location){

 Spawn(arrAct,location);

 }

}

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 19 | P a g e Team VR-X

4.3 Game Events Module

Figure 4.3 Game Events Module

4.3.1 Description

The Game Events module consists of Kismet scripts that control specific game events and

Matinee scripts that control game animations. Kismet scripts are triggered by the player Pawn

and Kismet scripts can play and stop Matinee animations.

4.3.2 Interfaces

Data Source Module Destination

Module

Description

GM4 Pawn Game Events Pawn triggers an event in a Kismet script.

GS3 Game Info Game Events Game state data

GS3 Game Events Game Info Updates game state data

GM7 Game Events Save Game State Serialized Kismet and Matinee script data

that captures the state of each script

GM7 Save Game State Game Events Serialized Kismet and Matinee script data

to restore the state of each script

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 20 | P a g e Team VR-X

GM6 Game Events Academic Report Sends academic progress information to

be written to the report file

Table 4.3 Game Events Module Interfaces

4.3.3 Physical Data Structures and Data File Descriptions

None

4.3.4 Processing

Figure 4.4 Kismet Visual Script

The visual script above demonstrates a simple event. A trigger (Ex: switch) is assigned to an

object and sends the data to the Action Object “Toggle Hidden”. This object sends data to the

“Toggle” object in which upon success, triggers one more event which sends this data to the

Matinee object. The Matinee object functions as an animation and upon feedback from

Trigger_1, opens a door.

Begin Object Class=SeqVar_Object Name=SeqVar_Object_6

 ObjValue=InterpActor'InterpActor_4'

 ObjInstanceVersion=1

 ParentSequence=Sequence'Open_Door_Switch'

 ObjPosX=392

 ObjPosY=648

 DrawWidth=32

 DrawHeight=32

 Name="SeqVar_Object_6"

 ObjectArchetype=SeqVar_Object'Engine.Default__SeqVar_Object'

End Object

Begin Object Class=SeqAct_ToggleHidden Name=SeqAct_ToggleHidden_1

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 21 | P a g e Team VR-X

 InputLinks(0)=(DrawY=541,OverrideDelta=14)

 InputLinks(1)=(DrawY=562,OverrideDelta=35)

 InputLinks(2)=(DrawY=583,OverrideDelta=56)

 OutputLinks(0)=(DrawY=562,OverrideDelta=35)

VariableLinks(0)=(LinkedVariables=(SeqVar_Object'SeqVar_Object_6'),DrawX=422,Override

Delta=16)

 VariableLinks(1)=(DrawX=473,OverrideDelta=76)

 EventLinks(0)=(DrawX=522,OverrideDelta=119)

 ObjInstanceVersion=1

 ParentSequence=Sequence'Open_Door_Switch'

 ObjPosX=384

 ObjPosY=504

 DrawWidth=173

 DrawHeight=109

 Name="SeqAct_ToggleHidden_1"

 ObjectArchetype=SeqAct_ToggleHidden'Engine.Default__SeqAct_ToggleHidden'

End Object

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 22 | P a g e Team VR-X

4.4 Pause Menu Module

Figure 4.5 Pause Menu Module

4.4.1 Description

The Pause Menu is responsible for displaying the pause menu and invoking the process for

saving the game and exiting to the main menu. The UDK must be provided with a class to

display the pause menu. By default, the Escape key on the keyboard and the Start button on the

Xbox Controller are bound to toggle the pause menu.

4.4.2 Interfaces

Data Source Module Destination

Module

Description

UI1 Player Input Pause Menu Reads the input from the controller to

navigate the menu.

GM1 Pause Menu Save Game State Invokes the Save Game State object to

begin serializing all the game state data

and gives it the file name to save to.

Table 4.4 Pause Menu Module Interfaces

4.4.3 Physical Data Structures and Data File Descriptions

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 23 | P a g e Team VR-X

The Pause Menu Module implements Scaleform GFx, an external API that utilizes Flash in order

to create graphical user interfaces.

4.4.4 Processing

Processing is handled by a Kismet script that displays the menu items and responds to user input.

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 24 | P a g e Team VR-X

4.5 HUD Module

Figure 4.6 HUD Module

4.5.1 Description

The HUD is responsible for displaying the heads-up display over the camera view. The UDK

must also be provided with a class to draw the HUD and toggles between the Pause Menu and

the HUD automatically when the key bound to the pause menu is pressed.

4.5.2 Interfaces

Data Source Module Destination Module Description

UI5 Player Controller HUD Reads the player’s state to display on the HUD

Table 4.5 HUD Module Interfaces

4.5.3 Physical Data Structures and Data File Descriptions

The HUD Module implements Scaleform GFx, an external API that utilizes Flash in order to

create graphical user interfaces.

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 25 | P a g e Team VR-X

4.5.4 Processing

#import “GFx.lib”

/**

This class governs the Heads Up Display (HUD) that players will see during the actual gameplay. The GFx

library is needed as well as the Canvas for displaying images

**/

class UIHeadsUpDisplay extends GFxMoviePlayer{

 local GFxObject TimeImage;

 local GFxObject CompassImage;

 local GFxObject SpecialBarImage;

 local GFxObject CrosshairImage;

 /**

 Initializes and displays the HUD

 **/

 function drawHUD(){

 Canvas.ShowHUD = true;

 Canvas.HUDCanvasScale(1); //Adjusts the scale of the TV ratio

 assembleHUD();

 Super.drawHUD();

}

 /**

 The function assembleHUD places the images loaded into positions on a

 256 * 256 screen. Precision can be increased if necessary.

 **/

 function assembleHUD(){

 getImages();

 Canvas.SetPosition(TimeImage,256,256);

 Canvas.SetPosition(CompassImage, 128,256);

 Canvas.SetPosition(SpecialBarImage, 0,256);

 Canvas.SetPosition(CrosshairImage,128,128);

 }

 /**

 This function obtains images from the package specified

 **/

 function getImages(){

 TimeImage = GetObject(“TimeImage”); //Gets an object that references itself

 TimeImage.SetImage(“source”,”img://MyPackage.Interface.HUD.TimeClock”);

 CompassImage = GetObject(“CompassImage”);

 CompassImage.SetImage(“source”,”img://MyPackage.Interface.HUD.Compass”);

 SpecialBarImage = GetObject(“SpecialImage”);

 SpecialBarImage.SetImage(“source”,”img://MyPackage.Interface.HUD.SpecialMeterBar”);

 CrosshairImage = GetObject(“CrosshairImage”);

 CrosshairImage.SetImage(“source”,”img://MyPackage.Interface.HUD.CrosshairDefault”);

 }

}

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 26 | P a g e Team VR-X

5. Processing Layer: Game Subsystem

5.1 Game Info Module

Figure 5.1 Game Info Module

5.1.1 Description

The Game Info module consists of a class named VRXGame. This class is instantiated when the

game map is loaded. The Game Info module sets the Player Controller and Pawn to be used in

the map and tells the UDK what class to use for the HUD and Pause Menu.

5.1.2 Interfaces

Data Source Module Destination Module Description

GS3 Game Info Game Events Game state data

GS3 Game Events Game Info Updates game state data

Table 5.1 Game Info Module Interfaces

5.1.3 Physical Data Structures and Data File Descriptions

None

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 27 | P a g e Team VR-X

5.1.4 Processing

/**

This class initializes variables needed for the game to start

**/

class VRXGame extends UDKGame{

 struct InitSettings{

 var int setActors;

 var int time;

 var float progress;

 var bool playerSpawn;

 var Vector playerSpawnLocation;

 //Additional initializations are listed here

 }

 /**

 This function loads the game with proper values from the struct allowing the game to be played

 at a logical level

**/

 function InitGame(InitSettings init){

 // initialize game

 }

}

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 28 | P a g e Team VR-X

5.2 Save Game State Module

Figure 5.2 Save Game State Module

5.2.1 Description

The Save Game State module reads and writes the serialized actor and Kismet/Matinee scripts

from and to the save file. It also requests serialized data from all actors and Kismet and Matinee

scripts and sends the serialized data to be restored to all actors and scripts. This module uses the

UDK BasicSaveObject and BasicLoadObject to write and read to the save files. These objects

require a file name and the data to be saved.

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 29 | P a g e Team VR-X

5.2.2 Interfaces

Data Source Module Destination Module Description

GM2 Save Game State Pawn Serialized data to be de-serialized by the Pawn.

GM2 Pawn Save Game State Serialized Pawn data to be saved to save file.

GM3 Save Game State Actors Serialized data to be de-serialized by the Actor.

GM3 Actors Save Game State Serialized Actor data to be saved to save file.

GM1 Pause Menu Save Game State Invokes the Save Game State object to begin

serializing all the game state data and gives it

the file name to save to.

GS2 Save Game State File Writes the serialized save data to a file on the

hard drive.

GS2 File Save Game State Reads the serialized save data from a file on the

hard drive.

Table 5.2 Save Game State Module Interfaces

5.2.3 Physical Data Structures and Data File Descriptions

None

5.2.4 Processing

//This function takes a filename as input, serializes the data, and stores it on the disk.

function SaveGameState(String fileName) {

 WorldData = SerializeWorldData();

 ActorData = SerializeActors();

 KismetData = SerializeKismet();

 MatineeData = SerializeMatinee();

}

//This function takes a filename, reverses the serialization process, and loads the saved file.

function LoadGameState(String fileName) {

 WorldData = UnSerializeWorldData();

 ActorData = UnSerializeActors();

 KismetData = UnSerializeKismet();

 MatineeData = UnSerializeMatinee();

}

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 30 | P a g e Team VR-X

5.3 Academic Report Module

Figure 5.3 Academic Report Module

5.3.1 Description

The Academic Report module is responsible for writing the player’s academic progress to a plain

text and human readable file. This module uses the UDK FileWriter which provides an easy

interface to write lines of text to a file.

5.3.2 Interfaces

Data Source Module Destination Module Description

GS3 Game Info Game Events Game state data

GS3 Game Events Game Info Updates game state data

GS1 Academic Report File Writes the academic progress data to a file on

the hard drive.

Table 5.3 Academic Report Module Interfaces

5.3.3 Physical Data Structures and Data File Descriptions

None

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 31 | P a g e Team VR-X

5.3.4 Processing

 /**

 This function gets passed parameters from a level and stores the statistics in a .ini file.

 **/

 function createAcademicReport(float timeTaken, int retries,

 int grade){

 var FWFileVar cTimeTaken = timeTaken;

 var FWFileVar cRetries = retries;

 var FWFileVar cGrade = grade;

 var FWFileType acadReport;

 CreateFile(acadReport, FWFT_Files, .txt); //Creates a file with these statistics and stores

 it in the Files folder.

 }

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 32 | P a g e Team VR-X

6. Processing Layer: User Interface Maps

6.1 Load Screen Module

Figure 6.1 Load Screen Module

6.1.1 Description

The Load Screen module is the map that is loaded when transitioning from the main menu to a

new game or a saved game. This module does not interact with any other module but it is

automatically loaded by the UDK when another map is loaded. The map file to load is specified

in UDKEngine.ini.

6.1.2 Interfaces

 None.

6.1.3 Physical Data Structures and Data File Descriptions

The Load Screen Module implements Scaleform GFx, an external API that utilizes Flash in order

to create graphical user interfaces.

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 33 | P a g e Team VR-X

6.1.4 Processing

#import “GFx.lib”

/**

When a user triggers a certain event, this class loads the respective movie with the loadScreen function.

**/

class LoadingScreenMovie extends GFxMoviePlayer{

 /**

 Loads the screen given the proper index of the screen located in the array screen

 **/

 event bool loadScreen(LoadMap screen, index i){

 switch(i){

 case(0):

 LoadMapMovies(“C:\UDK\UDK-2013-09\UDKGame\Content\Screen0.bik”,i,screen);

 break;

 case(1):

 LoadMapMovies(“C:\UDK\UDK-2013-09\UDKGame\Content\Screen1.bik”,i,screen);

 break;

 //And so on

 default:

 LoadMapMovies(“C:\UDK\UDK-2013-09\UDKGame\Content\Default.bik”);

}

 }

}

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 34 | P a g e Team VR-X

6.2 Main Menu Module

Figure 6.2 Main Menu Module

6.2.1 Description

The Main Menu module is the default map loaded by the UDK. This is specified in the

UDKEngine.ini file.

6.2.2 Interfaces

Data Source Module Destination Module Description

UIM1 Player Input Main Menu A floating point number between -1.0 and 1.0

for each joystick axis. A byte with either 0 or 1

for not pressed or pressed for each button.

Table 6.1 Main Menu Module Interfaces

6.2.3 Physical Data Structures and Data File Descriptions

The Main Menu Module implements Scaleform GFx, an external API that utilizes Flash in order

to create graphical user interfaces.

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 35 | P a g e Team VR-X

6.2.4 Processing

#import “GFx.lib”

/**

This class contains code from the GFx library that implements the main menu.

**/

class UIMainMenu extends GFxMoviePlayer{

 var GFxCLIKWidget NewGameButton;

 var GFxCLIKWidget LoadGameButton;

 var GFxCLIKWidget OptionsButton;

 var GFxCLIKWidget QuitButton;

 function bool StartGame(){ //Starts the game

 Super.start();

 Advance(); //Advances objects initialized (Ex: Load up Movie)

 return true;

}

/**

This event features a switch statement that allows the program to

execute an event when a certain button is pressed

**/

event bool UICommandWidget(WidgetName name, Widget wdgt){

 switch(name){

 case ‘newGameButton’:

 //Equivalent to creating a new button and adding it

 NewGameButton = GFxCLIKWidget(wdgt);

 //Performs the action if the button is pressed

 NewGameButton.AddActionListener(‘CLIK_clik’,CreateNewGame);

 break;

 case ‘loadGameButton’:

 LoadGameButton = GFxCLIKWidget(wdgt);

 LoadGameButton.AddActionListener(‘CLIK_clik’,LoadSavedGame);

 break;

 case ‘optionsButton’:

 OptionsButton = GFxCLIKWidget(wdgt);

 OptionsButton.AddActionListener(‘CLIK_clik’,LoadOptionMovie);

 break;

 case ‘quitButton’:

 QuitButton = GFxCLIKWidget(wdgt);

 QuitButton.AddActionListener(‘CLIK_clik’,CloseMovie);

 break;

 default:

 return false;

 }

}

}

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 36 | P a g e Team VR-X

7. Storage Layer: Content Subsystem

The storage layer is a special layer because no other module directly interacts with it. The modules in

the processing layer tell the UDK what assets from the content subsystem and the UDK manages

loading and rendering the graphics and audio.

7.1 Textures Module

Figure 7.1 Textures Module

7.1.1 Description

Textures are 2D images that are stored and managed by the UDK Editor. Textures can be

rendered directly to the screen using the UDK Canvas interface or applied to materials in the

material editor of the UDK Editor. Most common image formats are supported.

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 37 | P a g e Team VR-X

7.2 Materials Module

Figure 7.2 Materials Module

7.2.1 Description

Materials are made up of layers of textures and can be applied to static meshes. Materials are

also stored in the UDK Editor and can be created and edited in the material editor.

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 38 | P a g e Team VR-X

7.3 Static Mesh Module

Figure 7.3 Static Mesh Module

7.3.1 Description

A Static Mesh is made up of a wireframe and a material. Static meshes can be applied to actors

in the world to be rendered. Static meshes are also stored in the UDK Editor and managed and

edited with the static mesh editor.

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 39 | P a g e Team VR-X

7.4 Audio Module

Figure 7.4 Audio Module

7.4.1 Description

The Audio files are also stored and managed by the UDK Editor. The UDK only supports

uncompressed little endian 16 bit wave files.

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 40 | P a g e Team VR-X

8. Quality Assurance

8.1 Test Plans and Procedures

Team VR-X will perform comprehensive testing in order to verify that the Virtual Reality Xplorer meets

all specified requirements detailed in the SRS, and depicted in the ADS. This comprehensive testing

will consist of module testing for each individual module, component testing for any hardware that will

be used, and integration testing for the overall functionality of the Virtual Reality Xplorer system.

8.2 Module Test

Since there is no Unit testing framework for testing Unreal script (UDK programming language), Team

VRX will write small programs to test the functionality of each individual module.

 Input Layer

o Player Input

Team VRX will write small programs to check if the key binding specified in the

“Default.ini file” are adequately read by the Player input subsystem.

o Player Controller

This subsystem will be tested by verifying if the buttons/keys mapped to a

specific action in the “Default.ini file” are actually initiating its corresponding

action.

 Processing Layer

o Pawn

During game play, specific actions like jump, picking up objects will be

performed to ensure that the Pawn is receiving the appropriate commands from

the Player Controller module.

o Pause Menu

During game play the Pause Menu module will be tested by hitting a button

bound to pause the current game play, which will then display the Pause menu.

o Actors

Team VRX will write scripts to trigger an Actor (object) in a scene to perform a

specific action. Based on this action, Team VRX will verify if the key binding

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 41 | P a g e Team VR-X

specified in Default.ini file are corresponding to the action performed by the

Actor.

o Game Events

This module contains all the script needed to control an object in order to perform

an action. Small programs or scripts will be written in this module to make sure

that Pawn and Actor are performing specific action based on the logic specified in

the Kismet script.

o HUD

The HUD provide most of the information and contents the player needs to

interact with objects during the game, so this module will be tested by writing

small programs to trigger the HUD during game play. The test must verify that

the information being passed to the HUD are being displayed at the appropriate

time.

o Academic Report

Modular programs will be written to check if XML or text files can be written to

within the Academic report class. Then after a game play, the Academic Files

folder will be checked to see if text files contain the data from Academic Report

class.

o Save Game State

When a previous saved game is loaded, the Game State should be able to pull all

data relating to that stage from the Scene folder. In order to test the Save Game

state, the player’s characters (Pawn) and actors (other stage objects) must start

from the last position before the game was saved.

o Game Info

Since this subsystem contains all variables related to the game state such as

players positions, calculated velocity, and scores. Functions will be written to

check if the values of the game variables are being updated based on the game

play. In addition to testing the variable, boundary checks will also be conducted to

avoid buffer overflow or infinite loops that could result in inaccurate behavior of

objects. The subsystem will also be tested to ensure that the Pawn and Player

Controller are given control to interact with objects in the scene.

o Main Menu

This subsystem will be tested after the game is started, it shall display a menu

containing the options to load game, save game.

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 42 | P a g e Team VR-X

o Load Screen

This subsystem will be tested during the loading of a stage; it is generally

supposed to appear during a loading phase. Adequate testing will be conducted to

ensure that Kismet scripts are proper mapped in the pipeline to produce the Load

Screen.

 Storage Layer

Most of the modules in the storage layer will be tested by verifying that the appropriate stored files are

easily viewable in their respective folders. The Storage layer should contain all the Static meshes and

Audio, materials and texture.

8.3 Component Testing

This section will define the procedures that will be performed to ensure adequate functionality of all the

hardware required for the use of the system.

 Oculus Rift

Whenever the Oculus Rift is being used, readings showing the angles of the player’s head

movement will be displayed in the configuration utility window. The configuration utility

window must be checked to make sure corresponding angles are generated during head

movements. The Oculus Rift will also be tested based on the player’s immersive feel during

game play.

 Xbox Controller

A basic key pressed event on the Xbox controller must be recognized by the Xbox controller

Driver which should be accessible from the Player Input module.

 Headphones

Before the game is loaded or started, the headphones should be properly tested by making sure

that the Operating System detects it. During game play, the headphone should be correctly

outputting the appropriate sounds generated in the game environment.

 Monitor

The monitor must be set to the display high quality image for the user, so the player’s view when

wearing the Oculus Rift must be similar to what is being displayed on the monitor excluding the

3D immersive depth.

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 43 | P a g e Team VR-X

8.4 Integration Testing

After rigorous testing of each individual module, a comprehensive test will be performed to

ensure adequate compliance and compatibility of each subsystem to create a complete functional

system. Complete inputs or actions will be supplied by team VR-X to ensure proper data flow

from between subsystems.

8.5 Requirement Testing

After Integration testing have been perform, an additional requirement testing will be conducted

to make sure every subsystem, and the system as a whole fulfills the requirements specified in

the SRS.

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 44 | P a g e Team VR-X

9. Requirements Traceability Matrix

 Input Layer

 Processing Layer

 Storage Layer

Requirements

3
.5

3
.6

3
.7

3
.8

3
.9

5
.1

5
.2

5
.3

5
.4

9
.5

A
ca

d
em

ic
 R

ep
o

rt
 G

en
er

at
io

n

En
te

rt
ai

n
in

g

In
te

ra
ct

iv
e

Se
m

an
ti

ca
lly

 R
ea

lis
ti

c

C
o

n
fi

gu
ra

b
le

 C
o

n
tr

o
ls

Fr
am

e
R

at
e

G
ra

p
h

ic
s

Q
u

al
it

y

In
st

al
la

ti
o

n

R
es

p
o

n
si

ve
n

e
ss

Sa
fe

ty

M
o

d
u

le
s

Player Input X X

Player Controller X

Pause Menu X

Pawn X

Actors X

HUD X X X X

Game Events X X X X

Academic Report X

Save Game State

Game Info X

Main Menu X

Load Screen X

Static Meshes X X X X

Material X X X X

Textures X X X X

Audio X X

Table 9.1 Requirements Traceability Matrix

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 45 | P a g e Team VR-X

9.1 Analysis:

The requirement traceability matrix shows that saving and loading do not play a large role in the

creation of our product. While the feature is more important than the “Other Requirements” section

listed in the SRS, this should not be a feature with high priority. Saving and loading will most likely be

implemented in an “Autosave” fashion. Autosave refers to developers forcing the game to save when a

certain event is triggered.

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 46 | P a g e Team VR-X

10. Acceptance Plan

10.1 Overview

This section will outline the requirements needed for the Virtual Reality Xplorer to be considered an

acceptable product.

10.2 Installation and Packaging

The Virtual Reality Xplorer will be an accumulation of products composed of the Oculus Rift, an Xbox

360 Controller, a wireless headset, and a CD.

10.2.1 Installation CD

This CD will contain all data and executables that will allow our software to run. It will also

include a user manual.

10.2.2 Oculus Rift

The Oculus Rift will come bundled with an HDMI/DVI cable for displaying visuals, a USB

cable to interface with the CPU, and a cord for power supply.

10.2.3 Xbox 360 Controller

A standard Xbox 360 Wireless Controller with a wireless receiver will be included.

10.2.4 Wireless Headset

Quality sound headphones will be included.

10.3 Acceptance Testing

Testing for the Virtual Reality Xplorer will be executed in several ways. Testing of various components

such as modules, layers, and subsystems will be conducted. Further details are included in the System

Test Plan.

Detailed Design Specification Virtual Reality Xplorer

2/28/2014 47 | P a g e Team VR-X

10.4 Acceptance Criteria

For the Virtual Reality Xplorer to be considered functional and acceptable, these criteria must be met:

Req. #

(SRS)

Requirement Name Description

3.1-3.4 Learning various

scientific subjects.

The user will learn different scientific subjects such as

force, environments, matter, refraction, etc.

3.5 Academic Report

Generation

Teachers will track statistics from a previously attempted

course such as time spent, number of retries, etc.

3.6 Entertaining The game must be able to capture and hold the student’s

attention with elements such as story and environments.

3.7 Interactive The environment allows the user to interface with the

Menu/HUD and control components within the

environment to an extent.

3.8 Semantically Realistic The game must be able to provide a sense of realism.

3.9 Configurable Controls The game must allow the user to customize their controls

as the user sees fit.

5.1 Frame Rate Frame rate of the Oculus Rift must be at minimum 60.

5.2 Graphics Quality Resolution must be at minimum 1280 * 800 (for the

Oculus Rift).

5.3 Installation The package must allow for a user friendly installation of

executables.

5.4 Responsiveness The game must be responsive to the user’s actions

through the controller at minimum 1/60ths of a second.

9.5 Safety The game must be created in such a way that the user’s

risk of nausea is reduced/eliminated.

Table 10.1 Acceptance Criteria

