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Project Abstract 
Applications of digital imaging range from amateur photography to machine vision.  This project 

shows how a CMOS ‘Camera On a Chip’ image sensor can be used to build a high resolution web camera.  

An I2C bus controls the image sensor, and the pixel data is buffered in SDRAM to be uploaded through the 

parallel port to be displayed on a PC.  The external hardware, FPGA design, and software application for 

the camera will be described in this paper.  Introduce myself 

 
 

System Overview 
 

Motivation for the design 
For my senior project at Oregon Institute of Technology, I wanted something creative and flashy that 

would challenge me as an engineer.  The design needed to demonstrate my skills to prospective employers 

in a job market that is centered on experience.  The original idea behind the project was to place a camera 

on a RC car. Then the car could be controlled much like a racing game from a computer. 

 
Appropriate technology and implementation style 
After much research on image sensors, the choice to use CMOS over CCD became clear.  CCD 

sensors typically offer superior image performance, CMOS sensors consume less power and are easier to 

interface and control. (http://www.dalsa.com/markets/ccd_vs_cmos.asp) The Kodak KAC-1310 CMOS 

sensor I chose integrates the analog to digital converters in the sensor, so all I/O ports to the sensor are 

digital. 

An FPGA was appropriate to control the sensor and buffer the data while minimizing component 

count.  I chose a XESS XSA-100 Spartan II development board to interface between the parallel port and 

the image sensor.  With 100k gates and 16Mb of storage, I had enough room and speed to implement 

everything I needed. 

 
Design methodology and why it methodology was chosen 
After short consideration, VHDL was chosen over Verilog to implement the design.  I prefer the strong 

type checking of the language, and it also eased the integration of two third party cores into my design. The 

general design mythology was to take large, already built components and assemble them together.  The

implemented the glue code and controllers myself. The task wa

n I 

s still daunting. Implementing someone 

else ng it from scratch. 

 a 

e limited bandwidth of the parallel port restricts the video frame rate, but this was certainly 

exp

’s code can be more difficult then writi

 
Satisfying the system requirements 
My project specification calls for capture of high resolution images through the parallel port. In the 

now completed design, the host PC can repeatedly capture an image from the camera and write it out to

bitmap.  Th

ected.  

http://www.dalsa.com/markets/ccd_vs_cmos.asp


Uniqueness 
Unique to other hardware senior projects at OIT for several years, I chose to use the Xilinx Spar

over an Altera 10k70.  At about four times the speed and area, the XC2S100 on the Xess XSA-100 

development board met the system requirements.  T

tan II 

his different choice of hardware also gave me the 

oppo

e 

ore.  With this solution, the SDRAM can be clocked 

inde

hree 

pict

 

s I2C 

cont ller, it was easily integrated into my design.  Also, the use of this design isn’t limited to a camera.  It 

has t emory at varying clock rates, and then upload the data for inspection.  

Ano

hile this was not a SOC design, there was still one HW/SW partitioning choice between the FPGA 

design and the PC software.  To capture color, image sensors use a Bayer RGB pattern where each pixel 

only  adjacent 

ally.  To implement this in hardware would require considerably more 

design time and would actually inflate the size of the resulting image.  The host PC software could easily 

decode the color data with much less code. 

rtunity to learn to use some new design tools. 

The core of my project is a unique method to handle simultaneous asynchronous accesses to the 

SDRAM.  New pixel data is coming from the image sensor at a max rate of 12.5MHz.  At the same tim

the host PC could be reading the pixel data at a rate of approximately 150kHz.  To make the SDRAM 

appear dual-port, a specialized memory controller was design with a read and write asynchronous FIFOs 

and access to the memory is controlled by a semaph

pendent of the image sensor and parallel port. 

To prevent an image from being updated before it is completely read out, the design keeps t

ures in memory and pages through them.  The newest image being read in is kept on one page.  The last 

complete image is kept on another page.  The third page keeps the image the parallel port is reading out.  

When new frames can be read in faster then they can be read out, this keeps each image intact. 

Finally, because of the hardware limitation on the XSA-100 board, the parallel port is limited to nibble

mode. To improve bandwidth through the port and reduce noise, four bits are transferred on every clock 

edge.  Making the parallel port DDR doubled my data rate and reduced noise in the data stream.  

 
Design Reuse and Testability 
Design reuse was an important aspect of this project.  Because of the flexibility of the Opencore

ro

he capability to capture data to m

ther application of this design would be a logic analyzer.  

Large steps were taken to ensure testability.  Sub-components were built and tested independently.  

Internal block ram was used to test the dataflow through the design before the SDRAM was added. 

 

HW/SW partitioning choices 
W

 captures a single color.  To fill in the missing color values for each pixel, one must use the

pixels, both horizontally and vertic



 

List software used with software analysis to include feedback on problems, obstacles 

encountered and workarounds. 

 wide variety of software tools were used for this project.  For the hardware design, tools were 

tion and place and route.  S he 

imag a

  Software & Etc 

 ModelSim 

• Visual C++ 6.0 

• Xess Tools 4.0 

A

needed for synthesis, simula oftware design tools were needed to create t

e c pture program.   

 

Hardware 

• Leonardo Spectrum 

•

• Xilinx ISE 

• Altera Max+plus II 

 

The primary tool used for creating the hardware design was Leonardo Spectrum.  The integrated plac

and route feature allowed me to go from VHDL to bitgen with one push of a button.  The RTL view 

visualized my 

e 

design and made finding problems easier. Leonardo’s buggy user interface was an annoying 

obst

 

 

nam ace 

able design took some searching. 

e.  The difficult 

part

fying a simple module easier and saved the time of writing a testbench.  

he parallel port is restricted and 

acle to productivity.  I also found that the Spartan 2 symbol IBUFG must not be buried in the design 

hierarchy, or the tool will place another incompatible buffer in front of it and the Xilinx place and route

tool will fail. 

Xilinx ISE was primary used through Leonardo spectrum to translate the design from electronic design

interchange format (EDIF) to a bitgen to program the FPGA.  Some incompatibilities with bussed net 

es in the EDIF file created problems.  Some tools use < > and others use ( ).  A simple find – repl

solved the problem.  The Xilinx core generator tool was used for creating RAMs, FIFOs and other blocks. 

Learning how to integrate these blocks into the simulation and synthesiz

Verifying the design using ModelSim proved invaluable. When the input patterns became more 

complex and the time to go from VHDL to bitgen increased, the testbench was saved tim

 is making sure the testbench inputs match the actual design inputs. 

For quick and dirty simulations, Altera’s Max+plus proved useful.  The editable waveform simulation 

tool made veri

Microsoft’s Visual C++ was used to create a camera controller application to run on the host pc.  The 

target platform for the application was Windows 2000, however access to t

requires a driver. While considering how to write my own device driver, I found the Xess tools provided a 

better option. 



The Xess Tools are a small collection of accessories to the Spartan 2 development board.  The tools are 

useful for loading the RAM, clock divider, FPGA, and CPLD on the board, as well as for testing.  The tools 

use the Unified I/O driver to access the parallel port under Windows NT. 

(http://www.bbdsoft.com/interface.html) The C++ source of these tools was used as a starting point for my 

camera capture application. 

 
FPGA Design 

 

 
Figure ? Top Level 

 

 



TOP LEVEL DESCRIPTION 

er cont

ted to 

C 

The FPGA is the main controller of the camera, handling 

data movement from the image sensor to the parallel port.  At the 

top level of the camera design, ports are arranged in the 

following groups: 

• Image Sensor 

• SDRAM 

• Parallel Port and XSA-100 Misc. I/O 

 

Image sensor ports connect to the development board with 

the KAC-1310 sensor to provide timing, control and to read the 

image data. SDRAM ports connect the address, bidirectional 

data, and control signals on the XSA-100 board. Other signals 

such as the clock and the parallel port connections are grouped in 

XSA-100 misc.   Some ports were added purely for testing, and 

could be removed for a final design. 

The top level design file primarily instantiates and connects sub components in the design.  There are 

also global buffers placed on clock input pins to help with fan-out and so they can be connected to delay 

lock loops.  Some of the component instantiations have generic mappings as well to define parameters for 

the modules.  Instantiated components at this level are: 

 

• clock_generation 

• LEDDecoder 

• Master_control_signal_genereator 

• KAC_i2c 

• KAC_data 

• pp_upload 

• ram_control 

 

 

 

I2C CONTROLLER 

rol signal generator component by I2C, a two wire 

bi-directional interface.  A control module was crea

simplify this interface and constrain it to the specific 

application.  Forty 8-bit control registers in the image 

sensor can be read and written to using a sequence of I2

events as described in section 8 of the KAC-1310 

datasheet.  

The image sensor is controlled by the mast



The KAC_i2c component is implemented with the simple i2c controller from Open Cores.  The author 

of th

 that completely 

hide

ion to how to use this component, it’s important to know how it works.  An internal state 

mac  idle 

 

 

ality 

t data 

LOCK GENERATION 
Board level deskew of the system clock was the 

goal

t data 

LOCK GENERATION 
Board level deskew of the system clock was the 

goal

e core, Richard Herveille also wrote a sample state machine for reading data from a Dallas 1621, a I2C 

temperature sensor.  This sample was starting point for building the KAC_i2c controller. 

The KAC_i2c module simplifies these sequences by providing a SRAM like interface

s the I2C implementation.  The controlling entity needs only to setup the address, data, direction, and 

assert the start signal to initiate a data transfer.  The cycle is completed when the done handshaking signal 

is asserted. 

In addit

hine handles two sequences, and an idle state.  The machine stays in the idle state, and asserts safe

conditions, until an access is requested.  Once a sequence starts, commands are issued in sequence to the 

instantiated I2C controller. Because these

acknowledge of the previous state 

before continuing.  The machine must

wait for the ack from the last state 

before returning to the idle state.  This 

was a source of some dysfunction

while creating the state machine. 

During the course of these states, the 

input address and data values are 

transferred.  The address and inpu

bus are not latched, so they must remain 

a constant value during the access. 

 

alues are 

transferred.  The address and inpu

bus are not latched, so they must remain 

a constant value during the access. 

 

states may take multiple clocks, the machine waits for an 

  
  
 
 
 

  
 

CC

 of the clock generation component.  This is 

described at http://www.xilinx.com/products 

 of the clock generation component.  This is 

described at http://www.xilinx.com/products 

/spartan2/recipes/rec004.htm.  The principle is

the internal logic to the same

 to sync 

n II, 

an internal clock which is phase shifted to decrease  

will not function correctly at 50Mhz. 

 clock that is seen by the 

external SDRAM, accounting for PCB and buffer 

delays.  The clock signal is routed out of the Sparta

then back in through a dedicated clock pin.  This delay 

is sampled by a pair of delay lock loops which output 

clock skew.  If the clock is not deskewed, the SDRAM

http://www.xilinx.com/products /spartan2/recipes/rec004.htm
http://www.xilinx.com/products /spartan2/recipes/rec004.htm


DLLs are also used as clock dividers.  The 12.5Mhz clock for the KAC-1310 image sensor is divided 

from the deskewed internal clock.  The image sensor clock does not have a feedback, and is slightly 

skew

d the 

, however, to use the locked signals and an internal reset. 

ASYNCRONOUS DISTRIBUTED MEMORY FIFO 

he FIFOs were produced using the Xilinx 

ent that needs access to the SDRAM, data 

can 

s 

ross 

e count is used for 

sign

 

ed, but at lower frequencies, clock skew is less of a problem. Alternatively, a simple counter could 

have been used as a clock divider.  However, using the DLLs to generate the slower frequency reduce

50Mhz to 12.5Mhz clock edge delay by 50%. 

Because it takes time for the DLLs to get lock, the board needs to be reset using the pushbutton after 

power-up.  The entire design could be modified

 

 

T

Core Generator.   By using a FIFO in each 

compon

be buffered if RAM access is blocked by 

another component.  Also, if SDRAM acces

locations are bunched together, the memory will 

respond faster then for accesses at addresses ac

bank boundaries.    

The write count output from the FIFO tells 

roughly how full it is.  Th

aling a need to dump, or receive more data.  The FIFO is asynchronous, so it has a clock for putting 

data in, and a clock for taking data out.  The enable signals allow writing or reading only when needed.  

They are highly preferred over gating the clock signals.   

• Wr_count vs rd_count 

• Distributed vs block ram



SDRAM CONTROLLER 

Xess has provided an SDRAM controller that 

makes the external 16Mx16 SDRAM look like simple 

SRAM.  It handles refresh and bank interleaving and 

was available in a VHDL version.  In its current state, 

the SDRAM controller does not support burst mode 

To provide pseudo dual port functionality with the 

SDRAM, read and write FIFO’s were added to the 

modules that read and write to the memory.  The FIFOs 

allow interleaved read and write operations to operate 

efficiently and independent of each other.  For instance, 

if the parallel port needs to read from RAM at a rate of 

100 kHz, it can pull data from a FIFO.  When the FIFO 

approaches almost empty, it can be filled with a burst 

read from SDRAM at 50 MHz.   

For testing, this component was replaced by 

onboard block SelectRAM+ in the Spartan.  Only 40k Bytes was available in the XC2S100. The block 

RAM worked for testing, but wasn’t big enough to hold even a small picture. 

The SDRAM controller provides an interface similar to the I2C controller.  There are busses for data 

in, data out, and address.  When the read or write signal is asserted, the done signal goes low until the end 

of the access. Valid data is read on the rising edge of the done signal.  The controller can address 16Mbytes 

and has a 16 bit wide data bus.  

The controller was modified slightly from the original Xess version.  All IBUFGs and DLLs were 

moved to the top level, and the clock generation component.  Also, a bug preventing correct setting

SDRAM’s mode

 of the 

 register was fixed.  For more information on this controller, please refer to Xess 

documentation. 



MEMORY CONTROLLER 
 

The most complex component of the design was the 

memory controller.  It handles arbitration between different 

components that access the memory, interleaving read and 

write operations.  

I/O ports for the memory controller divided in four 

groups. 

• SDRAM 

• Image Sensor 

• Parallel Port 

• Control 

 

 The memory controller instantiates the SDRAM 

controller, so all SDRAM side ports from the SDRAM 

controller go through the memory controller. In hindsight, a better approach would have been to instantiate 

the SDRAM at the top level, and connect it to the memory controller there.  This would have given the 

memory controller a more flexible interface to memory, so a different type of RAM could be used without 

requiring any changes to the memory controller.  

The image sensor group of ports controls dataflow from the KAC_data component to memory.  

Equally, the parallel port group of ports controls dataflow from memory to the pp_upload module.  These 

two groups include a request for access signal, a corresponding response signal. Additional control for the 

parallel port comes from the master control signal generator.   

 

FIFO CONTROL 

Access is controlled by a semaphore in the sem_control process.  The semaphore can be held by the 

SDRAM, parallel port, or nobody.  When a request for access is asserted on either pp_fifo_need_data or 

dump_data_req_KAC, the process checks if it can take the semaphore.  If it can’t, it is blocked until the 

semaphore is released.  If it can take the semaphore, it signals the FIFO and memory to start a transfer.  

When the FIFO approaches its limit, the request for access goes away, the transfer is stopped, and the 

sem

 extra 

 be empty, but the host PC might not be 

uplo e of the uploading signal. 

aphore is released.  

It is important to note, that each FIFO’s is set with enough extra room so they can continue while it is 

blocked. The time required for a complete FIFO and memory transfer matches the time allotted by the

room in the opposite FIFO.  Also, the parallel port FIFO may

ading data.  This is the purpos



ADDRESS GENERATION 

The memory controller also manages the memory addresses for both data in and data out.  The image 

is k  off a 

ncremented for every write to the SDRAM.  It is reset on the 

star  from 

inter, pp_addr_pointer is a little more complex.  It is also 

impl mented with a counter, but is set and reset on values passed from the master control signal generator.  

The e start address when start_upload is asserted, and it is clear when it reaches end 

addr

ept in a simple linear array in memory, so the current address for a read or write is generated

binary up counter with some added set and reset logic.   A separate address pointer is kept for the parallel 

port and image sensor. 

The signal addr_ptr_KAC is i

t_new_frame signal from the KAC_data component. Additionally, the address pointer is prevented

exceeding the maximum size of a picture and writing into the next frame.  Memory paging is described in 

the next section. 

Handling of the parallel port address po

e

pointer is set with th

ess or abort upload is asserted. 

 

FRAME PAGING 

Finally, the memory controller handles frame paging as well.  Paging ensures that the picture being 

uploaded does not update before it is completely read out.  Otherwise, the bottom of the picture would be 

more current then the top and moving objects would cause tearing in the image.   

 

 



The current page is determined by the high three address bits, and there are three page registers.  

When a page is swapped, the page registers exchange values.  The SDRAM address for a read or write i

made up of the current ram page concatenated with the ram address pointer. 

When a complete image has been read in, as indicated by the signal start_new_frame, ra

s 

m_page_KAC 

is sw

nd start 

upload occur in the same clock, ram_page_KAC is swapped directly with pp_ram_page. 

monstrated here.  The image read in and read out rates are 

 to comp

.   

o

ponent, the master clock is sent to 

the s

ory 

FO. 

he 16 bit 

e of the 

e 

chine controls the dump data request and 

star

 

The SDRAM 

requ es 50ns / write which allows for only 11 writes.  The timing here is very tight, thus the FIFO is set to 

apped with ram_page_full.  When a new parallel port upload is started, as indicated by the signal 

start_upload, ram_page_full is swapped with pp_ram_page.  In the event both start new frame a

An engineering goal of the project is de

independent.  Frames will be dumped, or duplicated

 

IMAGE SENSOR DATA READER 
The image sensor data reader handles the timing ge

A 64 deep by 16 bit wide asynchronous FIFO is used t

init_cycle_complete signal, incoming data is ignored un

ensate for different transfer rates. 

neration, and data transfer from the image sensor

 buffer incoming data.  Using the 

til startup operations have completed. Until this 

signal is asserted by the master control signal 

generator, no SDRAM writes are requested. 

In this com

ensor and video sync and pixel data are 

received.  Internal connections go to the mem

controller to handle handshaking and data transfer 

out of the FI

A design decision was made to reduce the 

color depth 8 bits per image sensor pixel.  Two 

successive pixels are placed together in t

wide SDRAM to reduce bandwidth requirements. 

The image sensor outputs a 8 bit color values at a 

rate of approximately 12 MHz for a bandwidth of 7.5Mbytes/s.  

Two state machines are used in this component. A simple state machine detects the rising edg

hclk signal to pack two 8 bit pixels together and stuff them into the FIFO. This state machine controls th

FIFO’s data in and write enable signals.  Another short state ma

t new frame signals.  When the FIFO approaches full or empty, dump data request is toggled 

appropriately.  Also, if a start of frame signal comes from the image sensor, the FIFO contents must be 

emptied and then the start new frame signal must be asserted.   

If the FIFO is not flushed on the start of a new frame, each frame will have part of the previous frame’s

data and the end of the current frame will be cut off.  Flushing the FIFO must occur in under 550ns, the 

time between the image sensor asserting start of frame and the first pixel of the new frame.  

ir



request to dump when it reaches 8 entries.  A more elegant solution would be to count pixels and generate 

an end of frame signal.  There is more time available to use between the EOF and the SOF. 

rol 

 

s 

emory controller.  

Start

M 

nt has connections to the 

KAC

ns 

mor

age 

sensor co pl mented, control of the image sensor is limited, but 

fully fun n ity sily be added to take advantage of the features in the sensor. 

A several step state machine reads commands from the parallel port.  Commands are 6-bits wide and 

thre

e registered and passed to the memory controller. The start_upload signal 

  ABORTUPLOAD asserts the abort upload signal, also 

 
 

 

MASTER CONTROL SIGNAL GENERATOR 

The MCSG provides status and cont

for top level components in the design.  For 

instance, commands from the parallel port are

decoded here, and then the control signal

initiate actions in the m

up procedures are also handled in the 

MCSG.  The image sensor and the SDRA

require a reset and a time delay before 

operation can begin.  

This compone

_i2c, KAC_data, the memory controller, and pp_upload.   Interaction with the I2C controller is 

accomplished with an 8-bit address, a pair of 8-bit data busses, and three handshaking signals. Connectio

to the memory controller include a start address bus, end address bus, start and abort upload signals.  Two 

e outputs reset the image sensor and signal completion of startup routines. 

Simplification of I2C to a simple SRAM like interface makes controlling register values in the im

m etely transparent at this level.  As imple

ctio al.  More functional  could ea

e are implemented. More details can be found in the diagram “Parallel Port Command Protocol.” 

• NOP  000000 

• STARTUPLOAD  000001 

• ABORTUPLOAD  000010 

 

The NOP command is a safe idle state, so no signals are affected.  STARTUPLOAD begins an eight 

step sequence to read in two 24 bit start and end addresses, the beginning and ending addresses of where to 

read in memory. The addresses ar

is asserted when both addresses have been received.

passed to the memory controller. 



The image sensor’s reset or init signal requires 1ms asserted, then 1ms de-asserted before the sensor 

can begin.  Also, the SDRAM requires 200us of startup time.  The init_cycle_complete signal indicates that  

star

l port.  The 

 

are also received and passed onto the MCSG. 

our bits 

is used to clock data through the port.  This limits the download data width to six bits. 

o increase upstream bandwidth through the port, nibbles are uploaded on both edges of the parallel 

port clock.  This design decision doubled bandwidth through the port, but added some complexity.  The 16 

bit FIFO output is broken into four pieces which are selected by the current edge of the parallel port clock 

and a toggle bit. 

Interaction with the memory controller to feed the FIFO is similar to what’s implemented in 

KAC_data.  When the FIFO approaches empty, it signals a request for data to the memory controller.  The 

memory controller will respond with the wr_en signal and will fill the FIFO until need_data is de-asserted. 

The parallel port upload component de-asserts need_data when the FIFO approaches full.  Because there is 

more then one clock delay between the de-asserting of need_data and wr_en, the FIFO’s almost full signal 

is not used. 

 

tup routines have completed. 

 

PARALLEL PORT INTERFACE 

An important component for sending the image, debugging and system control is the paralle

pp_upload component buffers data from the SDRAM

in a FIFO to send through the parallel port to the 

image capture program on the host PC.  Commands 

The port operates in nibble mode with f

for upload and eight for download. On the XSA-100 

prototype board, the high download bit is physically 

tied to the Spartan program pin.  This bit is pulled 

low to reconfigure the FPGA, otherwise it must be held high.  The lowest download bit, always driven by 

the host PC, 

T



ACCESSORY COMPENTS  

Several self explanatory accessory components are also used.  These are sprinkled throughout the 

design where needed.  LED Decoder converts 4 bit binary for display on a 7 segment.  Oneshot uses a state 

machine to output a one clock period long pulse on the positive edge of the input signal. The component ms 

delay asserts a done signal 1ms after start is asserted.  Signal debounce stops false triggering on a signal 

with dirty edges.  The number of clocks to wait for the bounces to stop is generic.  Clock divider is a 

replacement for the clock generation component, without the DLLs. 

 

• LED Decoder 

• Oneshot 

• ms Delay 

• Signal Debounce 

• Clock Divider 

 
 
Verification and Simulation  
 

A challenge equal to creating a design itself is proving that the design works as expected.  For my 

digital camera project, verification was done by simulation and in hardware testing.  Both methods require 

extra design considerations and overhead, but in turn can simplify the design process.   

 

SIMULATION 

Test benches were written to verify the design using ModelSim.  The testbench exercises the design at 

the top level simulating the parallel port and image sensor interactions.  The advantage of simulation is all 

intermediate signals in the design can be viewed.  For verifying the memory arbitrator and FIFO 

interactions, this became imperative.  The disadvantage of simulating this design was ensuring simulated 

input matched the actual inputs to the design when it was placed in hardware.  An inaccurate simulation 

may insist a bad design is actually functioning correctly. 

Timescale issues and missing models made simulation difficult.  The design was clocked at 50Mhz and 

to receive an entire picture through the parallel port required 10s.  The computational time to get 10s of 

simulation became unwieldy.  In response, the parallel port was simulated as 100x faster which effected the 

memory access timings.  Also, I didn’t have a model for the SDRAM for simulation, so once it was verified 

in hardware, correct functionality was assumed in simulation.  SDRAM accesses were observed at the 

SDRAM controller interface rather then the SDRAM to hardware interface. 

To simulate the Xilinx Coregen FIFOs and block RAMs, some libraries had to be added in modelsim.  

The Xilinx Libraries Aid TCL script (Xilinx_lib_4.tcl) was used to add the unisim and XilinxCoreLib 

libraries. 

 



IN HARDWARE 

Testing in hardware gives definitive decision if this design works or not.  When the design is placed in 

hardware, pins can be probed and real delays can be measured.  A logic analyzer and oscilloscope was 

used, as well as DIP switches and LEDs.  Also, the parallel port connect and image capture software was 

used for debugging.  Testing results could be stored to memory, transferred, and then written to a file for 

examination on the host PC.  The design has similarities to a logic analyzer and this was taken advantage 

of. 

The goal of the project was not merely the design, but a working camera.  To meet this goal, a small 

prototype board was built to house the image sensor.  Voltage regulators, capacitors, header pins and a 

socket for the sensor were placed on the board following the sample circuit in KAC-1310 datasheet.  The 

header pins on this board were then connected with wire wrap to the XSA-100 development board.  Signal 

connections are listed in the FPGA pin-out description.  

The most important in hardware testing was the testing the FIFOs and memory controller.  Transfer of 

data from the image sensor to the host PC is a four step process.  Working backwards through each of these 

steps, input data was simulated using a simple binary up counter.  For instance, to verify the parallel port 

link between the hardware and the host PC, a counter was placed to simulate the output of the parallel port 

FIFO.  Problems with byte order, FIFO overflow or FIFO underflow could be found here. This testing was 

performed at the following four areas: 

• Output of parallel port FIFO 

• Output of SDRAM 

• Input to SDRAM 

• Input to image sensor FIFO 

Use of Dallas temperature sensor to test I2C 
 
 
Problems and Workarounds 
 

Indeed there were many problems that put sections of the project on hold.  Most often the solution was 

simple yet novel.  

 False triggering on the parallel port clock caused by noise through the parallel port cable and signal 

bounce was one simple problem.  This was found by reading the value of a counter incrementing off the 

parallel port.  Correct clocking would cause an incrementing sequence to be written to the binary data file.  

When the clock would false trigger, the sequence in the file would skip several numbers at a time.  This 

was solved with a debounce circuit.  The solution was easy; finding the problem of the errors was more 

difficult. 

Some problems were not related to hardware, but the synthesis or place and route tools.  I found that 

global input buffers must be placed on the top level of the design or Leonardo Spectrum will place an 



illegal input buffer in front of the IBUFG.  Also, fanout grew too large on the parallel port clock signal and 

I had to manually place a buffer on the signal.  Usually, the tool will insert a buffer automatically. 

Finally, there is the problem that stumped me for four weeks to be solved in 5 minutes with a pog.  

According to the datasheet, and email responses from Robert McKeever and Grace Pigott at Kodak, the 

image sensor begins to output video and sync signals on power up.  However, when I would power it up, 

nothing would happen, in fact the device would not even draw any current.  I tested the pins at the socket 

contacts and found that all power, ground and necessary signals were correct.  I could not test the pins on 

the CLCC image sensor package because they were buried in the socket.  This led me to the problem. 

I found out the CLCC socket I had was made to place the IC in upside down, not real beneficial for 

camera applications.  The contacts in the socket were not touching all the recessed contacts on the image 

sensor because the glass lid hung over too 

far, as seen by the picture on the left.  The 

picture on the right shows where pins were 

making contact.  The contacts in the socket 

were shaped so that raising the sensor about 

1mm allowed all connects to make contact. 



Design statistics  
 

A good design functions correctly.  A better design functions correctly with fewer resources.   The 

Xilinx Spartan 2 was an excellent target device for the project.  Its size, speed and more then outweigh the 

extra complexity over an Altera 10K70.  Following is a summary of post place and route design statistics 

optimized for area. 

 

AREA 

FPGA Utilization 
Number of External GCLKIOBs         3 out of 4       75% 
Number of External IOBs             77 out of 92      83% 
Number of LOCed External IOBs    77 out of 77     100% 
Number of BLOCKRAMs                 1 out of 10      10% 
Number of SLICEs                   478 out of 1200   39% 
Number of DLLs                      2 out of 4       50% 
Number of GCLKs                     3 out of 4       75%  
Total equivalent gate count for design:   46,685 
 

SDRAM Useage 
3 Frames * 1280 Pixels * 1024 Lines * 8 bits = 3,840 Mbytes 

 
 
SPEED 
FPGA 

Minimum period:  15.088ns (Maximum frequency:  66.278MHz) 
 

SDRAM 
Operating frequency: 50Mhz 
Average write time:  50ns 
Average read time: 100ns  

 
Parallel Port 

Upload bandwidth: 100 - 150k bytes / sec 
 

Image Sensor 
Operating frequency: 5Mhz 

 
POWER 
FPGA 

Total current: 130mA 
Total power: 320mW 
 

SDRAM 
Operating current: 120mA 
Total power: 400mW  
 

Image Sensor 
Total current: 120mA 
Power at 13.5Mhz: 400mW



 
 

Summary 
 

For a senior project requirement at Oregon Institute of Technology, I created a digital camera.  The 

camera was built using the KAC-1310 CMOS image sensor from Kodak and the XSA-100 FPGA 

development board from Xess.  Control of the camera was written in VHDL, synthesized with Leonardo 

Spectrum and translated to a bitgen with Xilinx ISE.  The design was verified in hardware and with 

ModelSim.  The image is captured from the camera to the host PC with a small windows application. 

The VHDL design placed in the Spartan 2 FPGA on the development board has several functions.  The 

design controls the camera IC by I2C and transfers and image stream from the camera through buffers to 

SDRAM.  Commands are received from the host PC through the parallel port to read an image.  The image 

is then transferred from the SDRAM, through more buffers and out the parallel port. 

The design is unique in that it provides a simulated dual port interface to SDRAM. The image sensor 

can write to memory while the host PC is reading from it.  Images are stored in pages to preserve image 

integrity.  All pixels in a received image are from a single image capture by the sensor.  The use of a Xilinx 

FPGA makes this project unique among other OIT projects. 
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