

Mentor Graphics
2001 – 2002 Student Design Contest

CMOS Digital Camera Controller and
Frame Capture Device

By
Ryan Henderson

Oregon Institute of Technology

May 26, 2002

Project Abstract
Applications of digital imaging range from amateur photography to machine vision. This project

shows how a CMOS ‘Camera On a Chip’ image sensor can be used to build a high resolution web camera.

An I2C bus controls the image sensor, and the pixel data is buffered in SDRAM to be uploaded through the

parallel port to be displayed on a PC. The external hardware, FPGA design, and software application for

the camera will be described in this paper. Introduce myself

System Overview

Motivation for the design
For my senior project at Oregon Institute of Technology, I wanted something creative and flashy that

would challenge me as an engineer. The design needed to demonstrate my skills to prospective employers

in a job market that is centered on experience. The original idea behind the project was to place a camera

on a RC car. Then the car could be controlled much like a racing game from a computer.

Appropriate technology and implementation style
After much research on image sensors, the choice to use CMOS over CCD became clear. CCD

sensors typically offer superior image performance, CMOS sensors consume less power and are easier to

interface and control. (http://www.dalsa.com/markets/ccd_vs_cmos.asp) The Kodak KAC-1310 CMOS

sensor I chose integrates the analog to digital converters in the sensor, so all I/O ports to the sensor are

digital.

An FPGA was appropriate to control the sensor and buffer the data while minimizing component

count. I chose a XESS XSA-100 Spartan II development board to interface between the parallel port and

the image sensor. With 100k gates and 16Mb of storage, I had enough room and speed to implement

everything I needed.

Design methodology and why it methodology was chosen
After short consideration, VHDL was chosen over Verilog to implement the design. I prefer the strong

type checking of the language, and it also eased the integration of two third party cores into my design. The

general design mythology was to take large, already built components and assemble them together. The

implemented the glue code and controllers myself. The task wa

n I

s still daunting. Implementing someone

else ng it from scratch.

 a

e limited bandwidth of the parallel port restricts the video frame rate, but this was certainly

exp

’s code can be more difficult then writi

Satisfying the system requirements
My project specification calls for capture of high resolution images through the parallel port. In the

now completed design, the host PC can repeatedly capture an image from the camera and write it out to

bitmap. Th

ected.

http://www.dalsa.com/markets/ccd_vs_cmos.asp

Uniqueness
Unique to other hardware senior projects at OIT for several years, I chose to use the Xilinx Spar

over an Altera 10k70. At about four times the speed and area, the XC2S100 on the Xess XSA-100

development board met the system requirements. T

tan II

his different choice of hardware also gave me the

oppo

e

ore. With this solution, the SDRAM can be clocked

inde

hree

pict

s I2C

cont ller, it was easily integrated into my design. Also, the use of this design isn’t limited to a camera. It

has t emory at varying clock rates, and then upload the data for inspection.

Ano

hile this was not a SOC design, there was still one HW/SW partitioning choice between the FPGA

design and the PC software. To capture color, image sensors use a Bayer RGB pattern where each pixel

only adjacent

ally. To implement this in hardware would require considerably more

design time and would actually inflate the size of the resulting image. The host PC software could easily

decode the color data with much less code.

rtunity to learn to use some new design tools.

The core of my project is a unique method to handle simultaneous asynchronous accesses to the

SDRAM. New pixel data is coming from the image sensor at a max rate of 12.5MHz. At the same tim

the host PC could be reading the pixel data at a rate of approximately 150kHz. To make the SDRAM

appear dual-port, a specialized memory controller was design with a read and write asynchronous FIFOs

and access to the memory is controlled by a semaph

pendent of the image sensor and parallel port.

To prevent an image from being updated before it is completely read out, the design keeps t

ures in memory and pages through them. The newest image being read in is kept on one page. The last

complete image is kept on another page. The third page keeps the image the parallel port is reading out.

When new frames can be read in faster then they can be read out, this keeps each image intact.

Finally, because of the hardware limitation on the XSA-100 board, the parallel port is limited to nibble

mode. To improve bandwidth through the port and reduce noise, four bits are transferred on every clock

edge. Making the parallel port DDR doubled my data rate and reduced noise in the data stream.

Design Reuse and Testability
Design reuse was an important aspect of this project. Because of the flexibility of the Opencore

ro

he capability to capture data to m

ther application of this design would be a logic analyzer.

Large steps were taken to ensure testability. Sub-components were built and tested independently.

Internal block ram was used to test the dataflow through the design before the SDRAM was added.

HW/SW partitioning choices
W

 captures a single color. To fill in the missing color values for each pixel, one must use the

pixels, both horizontally and vertic

List software used with software analysis to include feedback on problems, obstacles

encountered and workarounds.

 wide variety of software tools were used for this project. For the hardware design, tools were

tion and place and route. S he

imag a

 Software & Etc

 ModelSim

• Visual C++ 6.0

• Xess Tools 4.0

A

needed for synthesis, simula oftware design tools were needed to create t

e c pture program.

Hardware

• Leonardo Spectrum

•

• Xilinx ISE

• Altera Max+plus II

The primary tool used for creating the hardware design was Leonardo Spectrum. The integrated plac

and route feature allowed me to go from VHDL to bitgen with one push of a button. The RTL view

visualized my

e

design and made finding problems easier. Leonardo’s buggy user interface was an annoying

obst

nam ace

able design took some searching.

e. The difficult

part

fying a simple module easier and saved the time of writing a testbench.

he parallel port is restricted and

acle to productivity. I also found that the Spartan 2 symbol IBUFG must not be buried in the design

hierarchy, or the tool will place another incompatible buffer in front of it and the Xilinx place and route

tool will fail.

Xilinx ISE was primary used through Leonardo spectrum to translate the design from electronic design

interchange format (EDIF) to a bitgen to program the FPGA. Some incompatibilities with bussed net

es in the EDIF file created problems. Some tools use < > and others use (). A simple find – repl

solved the problem. The Xilinx core generator tool was used for creating RAMs, FIFOs and other blocks.

Learning how to integrate these blocks into the simulation and synthesiz

Verifying the design using ModelSim proved invaluable. When the input patterns became more

complex and the time to go from VHDL to bitgen increased, the testbench was saved tim

 is making sure the testbench inputs match the actual design inputs.

For quick and dirty simulations, Altera’s Max+plus proved useful. The editable waveform simulation

tool made veri

Microsoft’s Visual C++ was used to create a camera controller application to run on the host pc. The

target platform for the application was Windows 2000, however access to t

requires a driver. While considering how to write my own device driver, I found the Xess tools provided a

better option.

The Xess Tools are a small collection of accessories to the Spartan 2 development board. The tools are

useful for loading the RAM, clock divider, FPGA, and CPLD on the board, as well as for testing. The tools

use the Unified I/O driver to access the parallel port under Windows NT.

(http://www.bbdsoft.com/interface.html) The C++ source of these tools was used as a starting point for my

camera capture application.

FPGA Design

Figure ? Top Level

TOP LEVEL DESCRIPTION

er cont

ted to

C

The FPGA is the main controller of the camera, handling

data movement from the image sensor to the parallel port. At the

top level of the camera design, ports are arranged in the

following groups:

• Image Sensor

• SDRAM

• Parallel Port and XSA-100 Misc. I/O

Image sensor ports connect to the development board with

the KAC-1310 sensor to provide timing, control and to read the

image data. SDRAM ports connect the address, bidirectional

data, and control signals on the XSA-100 board. Other signals

such as the clock and the parallel port connections are grouped in

XSA-100 misc. Some ports were added purely for testing, and

could be removed for a final design.

The top level design file primarily instantiates and connects sub components in the design. There are

also global buffers placed on clock input pins to help with fan-out and so they can be connected to delay

lock loops. Some of the component instantiations have generic mappings as well to define parameters for

the modules. Instantiated components at this level are:

• clock_generation

• LEDDecoder

• Master_control_signal_genereator

• KAC_i2c

• KAC_data

• pp_upload

• ram_control

I2C CONTROLLER

rol signal generator component by I2C, a two wire

bi-directional interface. A control module was crea

simplify this interface and constrain it to the specific

application. Forty 8-bit control registers in the image

sensor can be read and written to using a sequence of I2

events as described in section 8 of the KAC-1310

datasheet.

The image sensor is controlled by the mast

The KAC_i2c component is implemented with the simple i2c controller from Open Cores. The author

of th

 that completely

hide

ion to how to use this component, it’s important to know how it works. An internal state

mac idle

ality

t data

LOCK GENERATION
Board level deskew of the system clock was the

goal

t data

LOCK GENERATION
Board level deskew of the system clock was the

goal

e core, Richard Herveille also wrote a sample state machine for reading data from a Dallas 1621, a I2C

temperature sensor. This sample was starting point for building the KAC_i2c controller.

The KAC_i2c module simplifies these sequences by providing a SRAM like interface

s the I2C implementation. The controlling entity needs only to setup the address, data, direction, and

assert the start signal to initiate a data transfer. The cycle is completed when the done handshaking signal

is asserted.

In addit

hine handles two sequences, and an idle state. The machine stays in the idle state, and asserts safe

conditions, until an access is requested. Once a sequence starts, commands are issued in sequence to the

instantiated I2C controller. Because these

acknowledge of the previous state

before continuing. The machine must

wait for the ack from the last state

before returning to the idle state. This

was a source of some dysfunction

while creating the state machine.

During the course of these states, the

input address and data values are

transferred. The address and inpu

bus are not latched, so they must remain

a constant value during the access.

alues are

transferred. The address and inpu

bus are not latched, so they must remain

a constant value during the access.

states may take multiple clocks, the machine waits for an

CC

 of the clock generation component. This is

described at http://www.xilinx.com/products

 of the clock generation component. This is

described at http://www.xilinx.com/products

/spartan2/recipes/rec004.htm. The principle is

the internal logic to the same

 to sync

n II,

an internal clock which is phase shifted to decrease

will not function correctly at 50Mhz.

 clock that is seen by the

external SDRAM, accounting for PCB and buffer

delays. The clock signal is routed out of the Sparta

then back in through a dedicated clock pin. This delay

is sampled by a pair of delay lock loops which output

clock skew. If the clock is not deskewed, the SDRAM

http://www.xilinx.com/products /spartan2/recipes/rec004.htm
http://www.xilinx.com/products /spartan2/recipes/rec004.htm

DLLs are also used as clock dividers. The 12.5Mhz clock for the KAC-1310 image sensor is divided

from the deskewed internal clock. The image sensor clock does not have a feedback, and is slightly

skew

d the

, however, to use the locked signals and an internal reset.

ASYNCRONOUS DISTRIBUTED MEMORY FIFO

he FIFOs were produced using the Xilinx

ent that needs access to the SDRAM, data

can

s

ross

e count is used for

sign

ed, but at lower frequencies, clock skew is less of a problem. Alternatively, a simple counter could

have been used as a clock divider. However, using the DLLs to generate the slower frequency reduce

50Mhz to 12.5Mhz clock edge delay by 50%.

Because it takes time for the DLLs to get lock, the board needs to be reset using the pushbutton after

power-up. The entire design could be modified

T

Core Generator. By using a FIFO in each

compon

be buffered if RAM access is blocked by

another component. Also, if SDRAM acces

locations are bunched together, the memory will

respond faster then for accesses at addresses ac

bank boundaries.

The write count output from the FIFO tells

roughly how full it is. Th

aling a need to dump, or receive more data. The FIFO is asynchronous, so it has a clock for putting

data in, and a clock for taking data out. The enable signals allow writing or reading only when needed.

They are highly preferred over gating the clock signals.

• Wr_count vs rd_count

• Distributed vs block ram

SDRAM CONTROLLER

Xess has provided an SDRAM controller that

makes the external 16Mx16 SDRAM look like simple

SRAM. It handles refresh and bank interleaving and

was available in a VHDL version. In its current state,

the SDRAM controller does not support burst mode

To provide pseudo dual port functionality with the

SDRAM, read and write FIFO’s were added to the

modules that read and write to the memory. The FIFOs

allow interleaved read and write operations to operate

efficiently and independent of each other. For instance,

if the parallel port needs to read from RAM at a rate of

100 kHz, it can pull data from a FIFO. When the FIFO

approaches almost empty, it can be filled with a burst

read from SDRAM at 50 MHz.

For testing, this component was replaced by

onboard block SelectRAM+ in the Spartan. Only 40k Bytes was available in the XC2S100. The block

RAM worked for testing, but wasn’t big enough to hold even a small picture.

The SDRAM controller provides an interface similar to the I2C controller. There are busses for data

in, data out, and address. When the read or write signal is asserted, the done signal goes low until the end

of the access. Valid data is read on the rising edge of the done signal. The controller can address 16Mbytes

and has a 16 bit wide data bus.

The controller was modified slightly from the original Xess version. All IBUFGs and DLLs were

moved to the top level, and the clock generation component. Also, a bug preventing correct setting

SDRAM’s mode

 of the

 register was fixed. For more information on this controller, please refer to Xess

documentation.

MEMORY CONTROLLER

The most complex component of the design was the

memory controller. It handles arbitration between different

components that access the memory, interleaving read and

write operations.

I/O ports for the memory controller divided in four

groups.

• SDRAM

• Image Sensor

• Parallel Port

• Control

 The memory controller instantiates the SDRAM

controller, so all SDRAM side ports from the SDRAM

controller go through the memory controller. In hindsight, a better approach would have been to instantiate

the SDRAM at the top level, and connect it to the memory controller there. This would have given the

memory controller a more flexible interface to memory, so a different type of RAM could be used without

requiring any changes to the memory controller.

The image sensor group of ports controls dataflow from the KAC_data component to memory.

Equally, the parallel port group of ports controls dataflow from memory to the pp_upload module. These

two groups include a request for access signal, a corresponding response signal. Additional control for the

parallel port comes from the master control signal generator.

FIFO CONTROL

Access is controlled by a semaphore in the sem_control process. The semaphore can be held by the

SDRAM, parallel port, or nobody. When a request for access is asserted on either pp_fifo_need_data or

dump_data_req_KAC, the process checks if it can take the semaphore. If it can’t, it is blocked until the

semaphore is released. If it can take the semaphore, it signals the FIFO and memory to start a transfer.

When the FIFO approaches its limit, the request for access goes away, the transfer is stopped, and the

sem

 extra

 be empty, but the host PC might not be

uplo e of the uploading signal.

aphore is released.

It is important to note, that each FIFO’s is set with enough extra room so they can continue while it is

blocked. The time required for a complete FIFO and memory transfer matches the time allotted by the

room in the opposite FIFO. Also, the parallel port FIFO may

ading data. This is the purpos

ADDRESS GENERATION

The memory controller also manages the memory addresses for both data in and data out. The image

is k off a

ncremented for every write to the SDRAM. It is reset on the

star from

inter, pp_addr_pointer is a little more complex. It is also

impl mented with a counter, but is set and reset on values passed from the master control signal generator.

The e start address when start_upload is asserted, and it is clear when it reaches end

addr

ept in a simple linear array in memory, so the current address for a read or write is generated

binary up counter with some added set and reset logic. A separate address pointer is kept for the parallel

port and image sensor.

The signal addr_ptr_KAC is i

t_new_frame signal from the KAC_data component. Additionally, the address pointer is prevented

exceeding the maximum size of a picture and writing into the next frame. Memory paging is described in

the next section.

Handling of the parallel port address po

e

pointer is set with th

ess or abort upload is asserted.

FRAME PAGING

Finally, the memory controller handles frame paging as well. Paging ensures that the picture being

uploaded does not update before it is completely read out. Otherwise, the bottom of the picture would be

more current then the top and moving objects would cause tearing in the image.

The current page is determined by the high three address bits, and there are three page registers.

When a page is swapped, the page registers exchange values. The SDRAM address for a read or write i

made up of the current ram page concatenated with the ram address pointer.

When a complete image has been read in, as indicated by the signal start_new_frame, ra

s

m_page_KAC

is sw

nd start

upload occur in the same clock, ram_page_KAC is swapped directly with pp_ram_page.

monstrated here. The image read in and read out rates are

 to comp

.

o

ponent, the master clock is sent to

the s

ory

FO.

he 16 bit

e of the

e

chine controls the dump data request and

star

The SDRAM

requ es 50ns / write which allows for only 11 writes. The timing here is very tight, thus the FIFO is set to

apped with ram_page_full. When a new parallel port upload is started, as indicated by the signal

start_upload, ram_page_full is swapped with pp_ram_page. In the event both start new frame a

An engineering goal of the project is de

independent. Frames will be dumped, or duplicated

IMAGE SENSOR DATA READER
The image sensor data reader handles the timing ge

A 64 deep by 16 bit wide asynchronous FIFO is used t

init_cycle_complete signal, incoming data is ignored un

ensate for different transfer rates.

neration, and data transfer from the image sensor

 buffer incoming data. Using the

til startup operations have completed. Until this

signal is asserted by the master control signal

generator, no SDRAM writes are requested.

In this com

ensor and video sync and pixel data are

received. Internal connections go to the mem

controller to handle handshaking and data transfer

out of the FI

A design decision was made to reduce the

color depth 8 bits per image sensor pixel. Two

successive pixels are placed together in t

wide SDRAM to reduce bandwidth requirements.

The image sensor outputs a 8 bit color values at a

rate of approximately 12 MHz for a bandwidth of 7.5Mbytes/s.

Two state machines are used in this component. A simple state machine detects the rising edg

hclk signal to pack two 8 bit pixels together and stuff them into the FIFO. This state machine controls th

FIFO’s data in and write enable signals. Another short state ma

t new frame signals. When the FIFO approaches full or empty, dump data request is toggled

appropriately. Also, if a start of frame signal comes from the image sensor, the FIFO contents must be

emptied and then the start new frame signal must be asserted.

If the FIFO is not flushed on the start of a new frame, each frame will have part of the previous frame’s

data and the end of the current frame will be cut off. Flushing the FIFO must occur in under 550ns, the

time between the image sensor asserting start of frame and the first pixel of the new frame.

ir

request to dump when it reaches 8 entries. A more elegant solution would be to count pixels and generate

an end of frame signal. There is more time available to use between the EOF and the SOF.

rol

s

emory controller.

Start

M

nt has connections to the

KAC

ns

mor

age

sensor co pl mented, control of the image sensor is limited, but

fully fun n ity sily be added to take advantage of the features in the sensor.

A several step state machine reads commands from the parallel port. Commands are 6-bits wide and

thre

e registered and passed to the memory controller. The start_upload signal

 ABORTUPLOAD asserts the abort upload signal, also

MASTER CONTROL SIGNAL GENERATOR

The MCSG provides status and cont

for top level components in the design. For

instance, commands from the parallel port are

decoded here, and then the control signal

initiate actions in the m

up procedures are also handled in the

MCSG. The image sensor and the SDRA

require a reset and a time delay before

operation can begin.

This compone

_i2c, KAC_data, the memory controller, and pp_upload. Interaction with the I2C controller is

accomplished with an 8-bit address, a pair of 8-bit data busses, and three handshaking signals. Connectio

to the memory controller include a start address bus, end address bus, start and abort upload signals. Two

e outputs reset the image sensor and signal completion of startup routines.

Simplification of I2C to a simple SRAM like interface makes controlling register values in the im

m etely transparent at this level. As imple

ctio al. More functional could ea

e are implemented. More details can be found in the diagram “Parallel Port Command Protocol.”

• NOP 000000

• STARTUPLOAD 000001

• ABORTUPLOAD 000010

The NOP command is a safe idle state, so no signals are affected. STARTUPLOAD begins an eight

step sequence to read in two 24 bit start and end addresses, the beginning and ending addresses of where to

read in memory. The addresses ar

is asserted when both addresses have been received.

passed to the memory controller.

The image sensor’s reset or init signal requires 1ms asserted, then 1ms de-asserted before the sensor

can begin. Also, the SDRAM requires 200us of startup time. The init_cycle_complete signal indicates that

star

l port. The

are also received and passed onto the MCSG.

our bits

is used to clock data through the port. This limits the download data width to six bits.

o increase upstream bandwidth through the port, nibbles are uploaded on both edges of the parallel

port clock. This design decision doubled bandwidth through the port, but added some complexity. The 16

bit FIFO output is broken into four pieces which are selected by the current edge of the parallel port clock

and a toggle bit.

Interaction with the memory controller to feed the FIFO is similar to what’s implemented in

KAC_data. When the FIFO approaches empty, it signals a request for data to the memory controller. The

memory controller will respond with the wr_en signal and will fill the FIFO until need_data is de-asserted.

The parallel port upload component de-asserts need_data when the FIFO approaches full. Because there is

more then one clock delay between the de-asserting of need_data and wr_en, the FIFO’s almost full signal

is not used.

tup routines have completed.

PARALLEL PORT INTERFACE

An important component for sending the image, debugging and system control is the paralle

pp_upload component buffers data from the SDRAM

in a FIFO to send through the parallel port to the

image capture program on the host PC. Commands

The port operates in nibble mode with f

for upload and eight for download. On the XSA-100

prototype board, the high download bit is physically

tied to the Spartan program pin. This bit is pulled

low to reconfigure the FPGA, otherwise it must be held high. The lowest download bit, always driven by

the host PC,

T

ACCESSORY COMPENTS

Several self explanatory accessory components are also used. These are sprinkled throughout the

design where needed. LED Decoder converts 4 bit binary for display on a 7 segment. Oneshot uses a state

machine to output a one clock period long pulse on the positive edge of the input signal. The component ms

delay asserts a done signal 1ms after start is asserted. Signal debounce stops false triggering on a signal

with dirty edges. The number of clocks to wait for the bounces to stop is generic. Clock divider is a

replacement for the clock generation component, without the DLLs.

• LED Decoder

• Oneshot

• ms Delay

• Signal Debounce

• Clock Divider

Verification and Simulation

A challenge equal to creating a design itself is proving that the design works as expected. For my

digital camera project, verification was done by simulation and in hardware testing. Both methods require

extra design considerations and overhead, but in turn can simplify the design process.

SIMULATION

Test benches were written to verify the design using ModelSim. The testbench exercises the design at

the top level simulating the parallel port and image sensor interactions. The advantage of simulation is all

intermediate signals in the design can be viewed. For verifying the memory arbitrator and FIFO

interactions, this became imperative. The disadvantage of simulating this design was ensuring simulated

input matched the actual inputs to the design when it was placed in hardware. An inaccurate simulation

may insist a bad design is actually functioning correctly.

Timescale issues and missing models made simulation difficult. The design was clocked at 50Mhz and

to receive an entire picture through the parallel port required 10s. The computational time to get 10s of

simulation became unwieldy. In response, the parallel port was simulated as 100x faster which effected the

memory access timings. Also, I didn’t have a model for the SDRAM for simulation, so once it was verified

in hardware, correct functionality was assumed in simulation. SDRAM accesses were observed at the

SDRAM controller interface rather then the SDRAM to hardware interface.

To simulate the Xilinx Coregen FIFOs and block RAMs, some libraries had to be added in modelsim.

The Xilinx Libraries Aid TCL script (Xilinx_lib_4.tcl) was used to add the unisim and XilinxCoreLib

libraries.

IN HARDWARE

Testing in hardware gives definitive decision if this design works or not. When the design is placed in

hardware, pins can be probed and real delays can be measured. A logic analyzer and oscilloscope was

used, as well as DIP switches and LEDs. Also, the parallel port connect and image capture software was

used for debugging. Testing results could be stored to memory, transferred, and then written to a file for

examination on the host PC. The design has similarities to a logic analyzer and this was taken advantage

of.

The goal of the project was not merely the design, but a working camera. To meet this goal, a small

prototype board was built to house the image sensor. Voltage regulators, capacitors, header pins and a

socket for the sensor were placed on the board following the sample circuit in KAC-1310 datasheet. The

header pins on this board were then connected with wire wrap to the XSA-100 development board. Signal

connections are listed in the FPGA pin-out description.

The most important in hardware testing was the testing the FIFOs and memory controller. Transfer of

data from the image sensor to the host PC is a four step process. Working backwards through each of these

steps, input data was simulated using a simple binary up counter. For instance, to verify the parallel port

link between the hardware and the host PC, a counter was placed to simulate the output of the parallel port

FIFO. Problems with byte order, FIFO overflow or FIFO underflow could be found here. This testing was

performed at the following four areas:

• Output of parallel port FIFO

• Output of SDRAM

• Input to SDRAM

• Input to image sensor FIFO

Use of Dallas temperature sensor to test I2C

Problems and Workarounds

Indeed there were many problems that put sections of the project on hold. Most often the solution was

simple yet novel.

 False triggering on the parallel port clock caused by noise through the parallel port cable and signal

bounce was one simple problem. This was found by reading the value of a counter incrementing off the

parallel port. Correct clocking would cause an incrementing sequence to be written to the binary data file.

When the clock would false trigger, the sequence in the file would skip several numbers at a time. This

was solved with a debounce circuit. The solution was easy; finding the problem of the errors was more

difficult.

Some problems were not related to hardware, but the synthesis or place and route tools. I found that

global input buffers must be placed on the top level of the design or Leonardo Spectrum will place an

illegal input buffer in front of the IBUFG. Also, fanout grew too large on the parallel port clock signal and

I had to manually place a buffer on the signal. Usually, the tool will insert a buffer automatically.

Finally, there is the problem that stumped me for four weeks to be solved in 5 minutes with a pog.

According to the datasheet, and email responses from Robert McKeever and Grace Pigott at Kodak, the

image sensor begins to output video and sync signals on power up. However, when I would power it up,

nothing would happen, in fact the device would not even draw any current. I tested the pins at the socket

contacts and found that all power, ground and necessary signals were correct. I could not test the pins on

the CLCC image sensor package because they were buried in the socket. This led me to the problem.

I found out the CLCC socket I had was made to place the IC in upside down, not real beneficial for

camera applications. The contacts in the socket were not touching all the recessed contacts on the image

sensor because the glass lid hung over too

far, as seen by the picture on the left. The

picture on the right shows where pins were

making contact. The contacts in the socket

were shaped so that raising the sensor about

1mm allowed all connects to make contact.

Design statistics

A good design functions correctly. A better design functions correctly with fewer resources. The

Xilinx Spartan 2 was an excellent target device for the project. Its size, speed and more then outweigh the

extra complexity over an Altera 10K70. Following is a summary of post place and route design statistics

optimized for area.

AREA

FPGA Utilization
Number of External GCLKIOBs 3 out of 4 75%
Number of External IOBs 77 out of 92 83%
Number of LOCed External IOBs 77 out of 77 100%
Number of BLOCKRAMs 1 out of 10 10%
Number of SLICEs 478 out of 1200 39%
Number of DLLs 2 out of 4 50%
Number of GCLKs 3 out of 4 75%
Total equivalent gate count for design: 46,685

SDRAM Useage
3 Frames * 1280 Pixels * 1024 Lines * 8 bits = 3,840 Mbytes

SPEED
FPGA

Minimum period: 15.088ns (Maximum frequency: 66.278MHz)

SDRAM
Operating frequency: 50Mhz
Average write time: 50ns
Average read time: 100ns

Parallel Port

Upload bandwidth: 100 - 150k bytes / sec

Image Sensor
Operating frequency: 5Mhz

POWER
FPGA

Total current: 130mA
Total power: 320mW

SDRAM
Operating current: 120mA
Total power: 400mW

Image Sensor
Total current: 120mA
Power at 13.5Mhz: 400mW

Summary

For a senior project requirement at Oregon Institute of Technology, I created a digital camera. The

camera was built using the KAC-1310 CMOS image sensor from Kodak and the XSA-100 FPGA

development board from Xess. Control of the camera was written in VHDL, synthesized with Leonardo

Spectrum and translated to a bitgen with Xilinx ISE. The design was verified in hardware and with

ModelSim. The image is captured from the camera to the host PC with a small windows application.

The VHDL design placed in the Spartan 2 FPGA on the development board has several functions. The

design controls the camera IC by I2C and transfers and image stream from the camera through buffers to

SDRAM. Commands are received from the host PC through the parallel port to read an image. The image

is then transferred from the SDRAM, through more buffers and out the parallel port.

The design is unique in that it provides a simulated dual port interface to SDRAM. The image sensor

can write to memory while the host PC is reading from it. Images are stored in pages to preserve image

integrity. All pixels in a received image are from a single image capture by the sensor. The use of a Xilinx

FPGA makes this project unique among other OIT projects.

References

comp.arch.fpga

comp.lang.vhdl

XSBoard User Group xsboard-users@yahoogroups.com

Peter J. Ashenden, “The designers guide to VHDL.” Morgan Kaufmann Publishers, 1995.

Qualis Design Corporation, VHDL QUICK REFERENCE CARD. http://www.qualis.com

Photobit, PB-MV13 Product Specification, www.photobit.com

Photobit. PB-0300 Mini-EPPI Camera Development System User Manual, www.photobit.com

Agilent, Image Processing Chip HDCP-2010 (YUV/JPEG Output) Product Brief.
 www.semiconductor.agilent.com

Agilent, HDCS-1020, HDCS-2020 CMOS Image Sensors Data Sheet
 www.semiconductor.agilent.com

Agilent, HDCP-2000 Image Processor Data Sheet www.semiconductor.agilent.com

Agilent, An Image Processing Chip for the HDCS Family of CMOS Image Sensors.
 www.semiconductor.agilent.com

D. Vanden Bout, Xess Corp. XSA SDRAM Controller an-09260-sdramcntl.pdf www.xess.com

D. Vanden Bout, Xess Corp. XSA Parallel Port Interface an-111601-xsapport.pdf www.xess.com

D. Vanden Bout, Xess Corp. XSA Flash Programming and SpartanII Configuration
 an-111701-xsaflash.pdf www.xess.com

Atmel, 1-megabit (128K x 8) 5-volt Only Flash Memory AT49F001 www.atmel.com

Xess Corp, Introduction to WebPACK 4.1 for FPGAs. www.xess.com

Xess Corp, XSA Board V1.0 User Manual www.xess.com

Analog Devices, CMOS 80 MHz, Triple 8-Bit Video DAC ADV7120.pdf. www.analog.com

Charles Poynton, Frequently Asked Questions about Color. www.inforamp.net/~poynton

Tom Hill, Exemplar Logic. Inferring Virtex Block RAM with Leonardo Spectrum Leonardo Spectrum

www.exemplar.com/Xilinx Datasheets

Hynix Semiconductor. HV7131E CMOS IMAGE SENSOR System IC SBU With 8-bit ADC
 www.hynix.com

Hynix Semiconductor. HY57V281620A 4 Banks x 2M x 16bits Synchronous DRAM. Datasheet
 www.hynix.com

Hynix Semiconductor. SDRAM Device Operation www.hynix.com

mailto:xsboard-users@yahoogroups.com
http://www.mkp.com/
http://www.qualis.com/
http://www.photobit.com/
http://www.photobit.com/
http://www.semiconductor.agilent.com/
http://www.semiconductor.agilent.com/
http://www.semiconductor.agilent.com/
http://www.semiconductor.agilent.com/
http://www.xess.com/
http://www.xess.com/
http://www.xess.com/
http://www.atmel.com/
http://www.xess.com/
http://www.xess.com/
http://www.analog.com/
http://www.inforamp.net/~poynton
http://www.exemplar.com/Xilinx Datasheets
http://www.hynix.com/
http://www.hynix.com/
http://www.hynix.com/

Hynix Semiconductor. SDRAM Timing Diagrams www.hynix.com

Elpida Memory, How to use SDRAM User’s Manual E0123N10I. http://www.elpida.com

Richard Herveille, Opencores.org I2C-Master Core Specification www.opencores.org

 Zoran. ZR36060 INTEGRATED JPEG CODEC. www.zoran.com

Eastman Kodak Company KAC – 1310 1280 x 1024 SXGA CMOS Image Sensor.

http://www.kodak.com/US/en/digital/ccd/sensorsMain.shtml

Eastman Kodak Company Kodak KAC-ES001-A Evaluation System.

http://www.kodak.com/US/en/digital/ccd/sensorsMain.shtml

Motorola. Color SXGA Digital Image Sensor 1280 x 1024 pixel progressive scan solid state image sensor

with integrated CDS/PGA/ADC, digital programming, control, timing, and pixel correction features.
 e-www.motorola.com

Motorola, Optics: Sensor – Lens Selection AN1929.pdf e-www.motorola.com

Motorola , White Balance and Color Correction in Digital Cameras AN1904 e-www.motorola.com

Motorola, The Roadrunner Modular digital still camera reference design. AN1928.ppdf
 e-www.motorola.com

National Semiconductor, LM9627 Color CMOS Image Sensor VGA 30 FPS. www.national.com

Plastronics, LCC Socket 48-Lead 0.040 Square. P2048S. Mechanical Drawing. www.locknest.com

Xilinx, XC9572XL High Performance CPLDPreliminary Product Specification DS057. www.xilinx.com

Xilinx, CoolRunner XPLA3 I2C Bus Controller Implementation. XAPP333. www.xilinx.com

Xilinx, Synthesizable High Performance SDRAM Controller XAPP134 www.xilinx.com

Robert McKeever, robert.mckeever@kodak.com Eastman Kodak Company. Email correspondence.

Nicolas Matringe nicolas.matringe@ipricot.com comp.arch.fpga Email correspondence

Charles Petzold, Programming Windows. Microsoft Press. 1999

http://www.hynix.com/
http://www.elpida.com/
http://www.opencores.org/
http://www.zoran.com/
http://www.kodak.com/US/en/digital/ccd/sensorsMain.shtml
http://www.kodak.com/US/en/digital/ccd/sensorsMain.shtml
http://e-www.motorola.com/
http://e-www.motorola.com/
http://e-www.motorola.com/
http://e-www.motorola.com/
http://www.national.com/
http://www.locknest.com/
http://www.xilinx.com/
http://www.xilinx.com/
http://www.xilinx.com/
mailto:mrobert.mckeever@kodak.com
mailto:nicolas.matringe@ipricot.com

