COSP user's manual Version 1.3.1

A. Bodas-Salcedo Met Office Hadley Centre FitzRoy Rd., Exeter, EX1 3PB, United Kingdom

December 22, 2010

©British Crown Copyright 2010.

Contents

1	Introduction	1
2	Configuration: setting the COSP namelists	2
	2.1 COSP_INPUT namelist	3
	2.2 CMOR namelist	5
	2.3 COSP_OUTPUT namelist	6
3	Microphysical settings	8
	3.1 Effective radius	8
	3.2 Mixing ratios from precipitation fluxes	9
	3.3 Setting the microphysical constants	10
	3.4 Setting the HCLASS table	11
4	Configuration for CFMIP-2 experiments	12
5	Using your own cloud generator	12
6	Processing multiple time steps	12

1 Introduction

The Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP) is a modular piece of software whose main aim is to enable the simulation of data from several satellite-borne sensors from model variables. It is written almost entirely in Fortran 90 and it is conceptually divided into three steps. First, the gridbox-mean profiles are broken into subcolumns. Then, the vertical profiles of individual subcolumns are passed to individual

instrument simulators (e.g. lidar forward model, ISCCP similator). Finally, a statistical module gathers the outputs from all the instruments and builds statistics that can be compared to similar statistics from observations.

The scheme that we use to break the grid-box mean profiles of cloud water contents is the Subgrid Cloud Overlap Profile Sampler (SCOPS), a technique developed for the International Satellite Cloud Climatology Project (ISCCP) simulator [*Klein and Jakob*, 1999; *Webb et al.*, 2001]. SCOPS uses a pseudo-random sampling process, fully consistent with the maximum, random and maximum/random cloud overlap assumptions used in many models [e.g. *Pincus et al.*, 2005]. Maximum overlap is applied to the convective cloud, and maximum/random is used for large-scale cloud. *Zhang et al.* [2010] have developed a simple algorithm that provides sub-grid distribution of precipitation fluxes compatible with the cloud distribution output by SCOPS and the gridbox mean precipitation fluxes simulated by the model.

The current version of COSP includes simulators for the following instruments: CloudSat radar [*Haynes et al.*, 2007], CALIPSO lidar [*Chepfer et al.*, 2008], ISCCP [*Klein and Jakob*, 1999; *Webb et al.*, 2001], the Multiangle Imaging SpectroRadiometer (MISR), and the Moderate Resolution Imaging Spectroradiometer (MODIS). The fast radiative transfer code RTTOV [*Saunders et al.*, 1999] can also be linked to COSP to produce clear-sky brightness temperatures for many different channels of past and current infrared and passive microwave radiometers. The Climate Model Output Rewriter (CMOR) library is used to write the ouputs to NetCDF files that comply with the Climate and Forecast (CF) Metadata Convention and fulfill the requirements of the climate community's standard model experiments. The Coupled Model Intercomparison Project Phase 5 (CMIP5) has requested COSP outputs to be included into a subset of CMIP5 experiments¹. COSP is open source software and can be downloaded from the CFMIP website without charge². A description paper has been submitted to BAMS [*Bodas-Salcedo et al.*, submitted].

The document is organised as follows. Section 2 provides information on the namelists that are used to configure COSP. Section 3 discusses how to set up the microphysical settings. Section 4 gives some details on the configuration of COSP for CFMIP-2 experiments. Appendix A shows the structure of the NetCDF input data files. This document is still under development, and therefore is not complete, although I hope it will still be useful in its current form. It is encouraged to read the README.txt file that is included with COSP, along with this user's manual.

2 Configuration: setting the COSP namelists

The user interaction with COSP is done via namelists. This section provides information on the namelists that are used to configure COSP.

¹http://cmip-pcmdi.llnl.gov/cmip5/experiment_design.html

²http://www.cfmip.net

2.1 COSP_INPUT namelist

This namelist is located in file <code>cosp_input_nl.txt</code>, and it contains the input arguments for COSP and all the simulators. Table 1 contains a description of the variables in this namelist. For details on RTTOV variables, please refer to RTTOV documentation.

Table 1: COSP_INPUT namelist.

General configuration variables		
CMOR_NL Name of CMOR namelist (Section 2.2)		
NPOINTS	Number of gridpoints to be processed. This has to coincide	
	with the number of points of the NetCDF input file in 2D	
	mode (lat*lon). For 1D (curtain) mode, there is no restric-	
	tion.	
NPOINTS_IT	Maximum number of gridpoints to be processed in one iter-	
	ation. This helps to reduce the amount of memory used by	
	COSP. If you find memory faults, reduce this number.	
NCOLUMNS	Number of subcolumns used for each profile.	
NLEVELS	Number of levels. This must be the same number as in the input NetCDF file.	
USE_VGRID	If .false., the outputs are written on model levels. If this is	
OOL_VOITID	set to .true., then a vertical grid evenly spaced in altitude	
	is used. If .true., then you need to define number of levels	
	with NIr.	
NLR	Number of levels in statistical outputs (only used if	
	USE_VGRID = .true.)	
CSAT_VGRID	Set to .true. for CloudSat vertical grid. This is just a stan-	
	dard grid of 40 levels evenly spaced at CloudSat vertical	
	resolution, 480 m. This only applies if USE_VGRID=.true.)	
DINPUT	Directory where the input files are located. Useful when	
	processing multiple files. Leave blank (") if you are using	
	the full path in FINPUT.	
FINPUT	List input NetCDF files. Input file with all the input variables	
	to that your COSP executable will read and process.	
Inputs related to radar simulations		
RADAR_FREQ	Frequency (GHz) used in the radar simulations.	
SURFACE_RADAR	Radar position. surface=1, spaceborne=0	
use_mie_tables	Use a precomputed lookup table? yes = 1,no = 0	
use_gas_abs	Include gaseous absorption? yes = 1,no = 0.	
do₋ray	Calculate/output Rayleigh refl = 1, not = 0. This should be	
1. 1	set to 0, as the Rayleigh reflectivity is not output by COSP.	
melt_lay	Melting layer model off = 0 , on = 1	

k2	Dielectric factor of water. -1 = use frequency dependent
	default.
use_reff	True if you want effective radius to be used by radar simu-
	lator (always used by lidar)
use_precipitation_fluxes	.true., ! True if precipitation fluxes are input to the algorithm
ļ	nputs related to lidar simulations
Nprmts_max_hydro	Max number of parameters for hydrometeor size distributions
Naero	Number of aerosol species (Not used)
Nprmts_max_aero	Max number of parameters for aerosol size distributions
	(Not used)
lidar_ice_type	<pre>lce particle shape in lidar calculations (0 = ice-spheres ; 1 = ice-non-spherical)</pre>
OVERLAP	Overlap type: 1 = max, 2 = rand, 3 = max/rand
	puts related to ISCCP simulations
ISCCP_TOPHEIGHT	1 = adjust top height using both a computed infrared bright-
	ness temperature and the visible optical depth to adjust
	cloud top pressure. Note that this calculation is most ap-
	propriate to compare to ISCCP data during sunlit hours.
	2 = do not adjust top height, that is cloud top pres-
	sure is the actual cloud top pressure in the model.
	3 = adjust top height using only the computed infrared
	brightness temperature. Note that this calculation is most
	appropriate to compare to ISCCP IR only algortihm (i.e. you
	can compare to nighttime ISCCP data with this option)
ISCCP_TOPHEIGHT_DIRECT	
	with interpolated temperature equal to the
	radiance determined cloud-top temperature.
	1 = find the *lowest* altitude (highest pres-
	sure) level with interpolated temperature equal to
	the radiance determined cloud-top temperature.
	2 = find the *highest* altitude (lowest pressure) level
	with interpolated temperature equal to the radiance de-
	termined cloud-top temperature. This is the default value
	cinco VA A of the ISCOD cimulator ONLY ADDLICADIE IE
	since V4.0 of the ISCCP simulator. ONLY APPLICABLE IF
ln.	top_height EQUALS 1 or 3
	top_height EQUALS 1 or 3 puts related to RTTOV simulations
Platform	top_height EQUALS 1 or 3 puts related to RTTOV simulations Satellite platform number
Platform Satellite	top_height EQUALS 1 or 3 puts related to RTTOV simulations Satellite platform number Satellite
In Platform Satellite Instrument Nchannels	top_height EQUALS 1 or 3 puts related to RTTOV simulations Satellite platform number

Channels	Channel numbers (please be sure that you supply Nchan-
	nels)
Surfem	Surface emissivity (please be sure that you supply Nchan-
	nels)
ZenAng	Satellite Zenith Angle (degrees)
CO2	Mixing ratio of CO_2
CH4	Mixing ratio of CH_4
N2O	Mixing ratio of N_2O
CO	Mixing ratio of CO

2.2 CMOR namelist

The CMOR2 library is used to write the ouputs to NetCDF files that comply with the CF Metadata Convention and fulfill the requirements of the climate community's standard model experiments for CMIP5. The namelist CMOR is used to passed all the metadata that the calls to the CMOR library require. This namelist is located in file <code>cmor/cosp_cmor_nl.txt</code>, and Table 2 details its variables. It is expected that this namelist will be expanded in COSPv1.3, to include all the attributes that are required by the CMIP5.

Table 2: CMOR namelist.

INPATH	Directory where the MIP table is located.
OUTPATH	Directory where the outputs will be written.
START_DATE	Experiment start date.
MODEL_ID	String with your model name or id.
EXPERIMENT_ID	Type of experiment. This has to be one of those listed in
	the variable expt_id_ok in the MIP table.
INSTITUTION	Your institution.
SOURCE	Data source (e.g. model version, id of your model run).
CALENDAR	Calendar type used by the model.
REALIZATION	Realisation within an ensemble of runs for a given experi-
	ment.
CONTACT	Contact details.
HISTORY	What CMOR has done to the user supplied data (e.g.,
	transforming its units or rearranging its order to be consis-
	tent with the MIP requirements). You can live this blank.
COMMENT	Extra comments that may help the interpretation of the data.
REFERENCES	Papers or other references describing the model.

TABLE	Name of the MIP table. This has to be consistent with the		
	mode used to run COSP, which is defined by the input		
	file. Different tables are needed for 1D and 2D models.		
	The current list of table distributed with COSP a		
	COSP_table_1D: MIP table for 1D mode. This		
	is a modified version (with extra variables) of		
	the CMIP5_cf3hr distributed with the CMOR2		
	library for the off-line CFMIP2 experiment		
	COSP_table_1D.cmor1: the same as COSP_table_1D,		
	but to be used when linking COSP with CMOR1.3.		
	COSP_table_2D: table to be used in 2D mode.		
	COSP_table_2D.cmor1: same as COSP_table_2D, but		
	to be used when linking COSP with CMOR1.3.		
MAXTSTEPS	Maximum number of records that can be recorded to the		
	output files. CMOR will issue an error and stop if you try to		
	write more records.		

2.3 COSP_OUTPUT namelist

This is the namelist that sets up output-related variables (see Table 3). It controls the instrument simulators that are run and the list of variables to be written to file. If a simulator is switched off, then none of its outputs are written out, independently of the status of the logical flags of the output variables associated with that particular simulator.

Table 3: COSP_OUTPUT namelist.

Logical flags that control which simulators are run		
Lradar_sim		
Llidar_sim		
Lisccp_sim		
Lmisr_sim		
Lmodis_sim		
Lrttov_sim		
Variables only in 1D (curtain) mode		
Ltoffset	Time difference (days) between the time of each profile and	
	the value recorded in variable time.	
Flags for ISCCP simulator outputs		
Lalbisccp	ISSCP Mean Cloud Albedo	
Lboxptopisccp	Cloud Top Pressure in Each Column as Calculated by the	
	ISCCP Simulator	
Lboxtauisccp	Optical Depth in Each Column as Calculated by the ISCCP	
	Simulator	
Lclisccp	ISSCP Cloud Area Fraction	

Lcltisccp	ISSCP Total Cloud Fraction
Lmeantbclrisccp	Mean clear-sky 10.5 micron brightness temperature as cal-
	culated by the ISCCP Simulator
Lmeantbisccp	Mean all-sky 10.5 micron brightness temperature as calcu-
	lated by the ISCCP Simulator
Ltauisccp	Mean Optical Depth as Calculated by the ISCCP Simulator
Lpctisccp	ISSCP Mean Cloud Top Pressure
Flag	s for CALIPSO simulator outputs
Latb532	Lidar Attenuated Total Backscatter (532 nm)
LcfadLidarsr532	CALIPSO Scattering Ratio CFAD
Lclcalipso2	CALIPSO Cloud Fraction Undetected by CloudSat
Lclcalipso	CALIPSO Cloud Area Fraction
Lclhcalipso	CALIPSO High Level Cloud Fraction
Lcllcalipso	CALIPSO Low Level Cloud Fraction
LcImcalipso	CALIPSO Mid Level Cloud Fraction
Lcltcalipso	CALIPSO Total Cloud Fraction
LparasolRefl	PARASOL Reflectance
LlidarBetaMol532	Lidar Molecular Backscatter (532 nm)
Flag	s for CloudSat simulator outputs
Lcfaddbze94	CloudSat Radar Reflectivity CFAD
Ldbze94	CloudSat Radar Reflectivity
	Gloudout Hadai Helicolivity
	CALIPSO-CloudSat combined outputs
	· · · · · · · · · · · · · · · · · · ·
Flags for	CALIPSO-CloudSat combined outputs
Flags for	CALIPSO-CloudSat combined outputs Lidar and Radar Total Cloud Fraction
Flags for Lcltlidarradar Lfracout	CALIPSO-CloudSat combined outputs Lidar and Radar Total Cloud Fraction Flags for other outputs
Flags for Lcltlidarradar Lfracout	CALIPSO-CloudSat combined outputs Lidar and Radar Total Cloud Fraction Flags for other outputs Subcolumn output from SCOPS
Flags for Lcltlidarradar Lfracout Flags	CALIPSO-CloudSat combined outputs Lidar and Radar Total Cloud Fraction Flags for other outputs Subcolumn output from SCOPS ags for MODIS simulator outputs
Lfracout Elags for Loltlidarradar Lfracout Flat Lclhmodis	CALIPSO-CloudSat combined outputs Lidar and Radar Total Cloud Fraction Flags for other outputs Subcolumn output from SCOPS Igs for MODIS simulator outputs MODIS High Level Cloud Fraction
Lcltlidarradar Lfracout Fla Lclhmodis Lclimodis	CALIPSO-CloudSat combined outputs Lidar and Radar Total Cloud Fraction Flags for other outputs Subcolumn output from SCOPS Igs for MODIS simulator outputs MODIS High Level Cloud Fraction MODIS Ice Cloud Fraction
Lcltlidarradar Lfracout Flat Lclhmodis Lclimodis Lcllmodis	CALIPSO-CloudSat combined outputs Lidar and Radar Total Cloud Fraction Flags for other outputs Subcolumn output from SCOPS Igs for MODIS simulator outputs MODIS High Level Cloud Fraction MODIS Ice Cloud Fraction MODIS Low Level Cloud Fraction
Lcltlidarradar Lfracout Fla Lclhmodis Lclimodis Lclmodis Lclmodis Lclmodis Lclmodis Lclmodis Lclmodis	CALIPSO-CloudSat combined outputs Lidar and Radar Total Cloud Fraction Flags for other outputs Subcolumn output from SCOPS ags for MODIS simulator outputs MODIS High Level Cloud Fraction MODIS Ice Cloud Fraction MODIS Low Level Cloud Fraction MODIS Mid Level Cloud Fraction
Lcltlidarradar Lfracout Fla Lclhmodis Lclimodis Lclmodis Lclmodis Lclmodis Lclmodis	CALIPSO-CloudSat combined outputs Lidar and Radar Total Cloud Fraction Flags for other outputs Subcolumn output from SCOPS Igs for MODIS simulator outputs MODIS High Level Cloud Fraction MODIS Ice Cloud Fraction MODIS Low Level Cloud Fraction MODIS Mid Level Cloud Fraction MODIS Mid Level Cloud Fraction MODIS Cloud Area Fraction
Lcltlidarradar Lfracout Fla Lclhmodis Lclimodis Lclmodis Lclmodis Lclmodis Lclmodis Lclmodis Lclmodis	CALIPSO-CloudSat combined outputs Lidar and Radar Total Cloud Fraction Flags for other outputs Subcolumn output from SCOPS gs for MODIS simulator outputs MODIS High Level Cloud Fraction MODIS Ice Cloud Fraction MODIS Low Level Cloud Fraction MODIS Mid Level Cloud Fraction MODIS Cloud Area Fraction MODIS Cloud Fraction MODIS Total Cloud Fraction
Lcltlidarradar Lfracout Fla Lclhmodis Lclimodis Lclmodis Lclmodis Lclmodis Lclmodis Lclmodis Lclmodis Lclmodis Lclmodis	CALIPSO-CloudSat combined outputs Lidar and Radar Total Cloud Fraction Flags for other outputs Subcolumn output from SCOPS Igs for MODIS simulator outputs MODIS High Level Cloud Fraction MODIS Ice Cloud Fraction MODIS Low Level Cloud Fraction MODIS Mid Level Cloud Fraction MODIS Mid Level Cloud Fraction MODIS Cloud Area Fraction MODIS Total Cloud Fraction MODIS Total Cloud Fraction MODIS Liquid Cloud Fraction
Lcltlidarradar Lfracout Fla Lclhmodis Lclimodis Lclmodis Lclmodis Lclmodis Lclmodis Lclwmodis Lclwmodis Lclwmodis Lclwmodis Liwpmodis Liwpmodis Lpctmodis	Lidar and Radar Total Cloud Fraction Flags for other outputs Subcolumn output from SCOPS Igs for MODIS simulator outputs MODIS High Level Cloud Fraction MODIS Ice Cloud Fraction MODIS Low Level Cloud Fraction MODIS Mid Level Cloud Fraction MODIS Oloud Area Fraction MODIS Cloud Fraction MODIS Total Cloud Fraction MODIS Total Cloud Fraction MODIS Cloud Ice Water Path MODIS Cloud Liquid Water Path MODIS Cloud Top Pressure
Lcltlidarradar Lfracout Fla Lclhmodis Lclimodis Lclmodis Lclmodis Lclmodis Lcltmodis Lcltmodis Lcltmodis Lcltmodis Lcltmodis Lreffclimodis Lreffclimodis	Lidar and Radar Total Cloud Fraction Flags for other outputs Subcolumn output from SCOPS Igs for MODIS simulator outputs MODIS High Level Cloud Fraction MODIS Ice Cloud Fraction MODIS Low Level Cloud Fraction MODIS Mid Level Cloud Fraction MODIS Gloud Area Fraction MODIS Total Cloud Fraction MODIS Total Cloud Fraction MODIS Cloud Fraction
Lcltlidarradar Lfracout Fla Lclhmodis Lclimodis Lclmodis Lclmodis Lclmodis Lclmodis Lclmodis Lcltmodis Lcltmodis Lcltmodis Lcltmodis Lreffclimodis Lreffclimodis Lreffclwmodis	Lidar and Radar Total Cloud Fraction Flags for other outputs Subcolumn output from SCOPS Igs for MODIS simulator outputs MODIS High Level Cloud Fraction MODIS Ice Cloud Fraction MODIS Low Level Cloud Fraction MODIS Mid Level Cloud Fraction MODIS Cloud Area Fraction MODIS Total Cloud Fraction MODIS Total Cloud Fraction MODIS Cloud Ice Water Path MODIS Cloud Liquid Water Path MODIS Cloud Top Pressure MODIS Ice Cloud Particle Size MODIS Liquid Cloud Particle Size
Lcltlidarradar Lfracout Fla Lclhmodis Lclimodis Lclmodis Lclmodis Lclmodis Lcltmodis Lcltmodis Lcltmodis Lreffclimodis Lreffclimodis Lreffclymodis Ltauilogmodis	Lidar and Radar Total Cloud Fraction Flags for other outputs Subcolumn output from SCOPS Igs for MODIS simulator outputs MODIS High Level Cloud Fraction MODIS Ice Cloud Fraction MODIS Low Level Cloud Fraction MODIS Mid Level Cloud Fraction MODIS Gloud Area Fraction MODIS Total Cloud Fraction MODIS Total Cloud Fraction MODIS Cloud Fraction
Lcltlidarradar Lfracout Fla Lclhmodis Lclimodis Lclmodis Lclmodis Lclmodis Lclmodis Lclmodis Lcltmodis Lcltmodis Lcltmodis Lcltmodis Lreffclimodis Lreffclimodis Lreffclwmodis	Lidar and Radar Total Cloud Fraction Flags for other outputs Subcolumn output from SCOPS Igs for MODIS simulator outputs MODIS High Level Cloud Fraction MODIS Ice Cloud Fraction MODIS Low Level Cloud Fraction MODIS Mid Level Cloud Fraction MODIS Cloud Area Fraction MODIS Total Cloud Fraction MODIS Total Cloud Fraction MODIS Cloud Ice Water Path MODIS Cloud Liquid Water Path MODIS Cloud Top Pressure MODIS Ice Cloud Particle Size MODIS Liquid Cloud Particle Size

Ltautmodis	MODIS Total Cloud Optical Thickness	
Ltauwlogmodis	MODIS Liquid Cloud Optical Thickness (Log10 Mean)	
Ltauwmodis	MODIS Liquid Cloud Optical Thickness	
	Flags for RTTOV outputs	
	riags for trivey outputs	
Ltbrttov	Mean clear-sky brightness temperature as calculated by	

3 Microphysical settings

This section discusses how to set up the COSP microphysical settings. This is is particularly important for the computation of the radar reflectivities as they are strongly dependent on the paricle size. This section should be read in conjunction with Section 4 of the *QuickBeam* User's Guide³. In the following discussion, let's assume that the particle size distribution (PSD), $n_x(D)$, for a particle of diameter D, is defined as a gamma function:

$$n_x(D) = n_{ox} D^{\alpha_x} e^{-\lambda_x D},\tag{1}$$

where n_{0x} is the intercept parameter, λ_x is the slope parameter, α_x is the constant shape parameter (x can be either R for rain, a for aggregates, c for ice crystals or g for graupel). For a single moment scheme, the intercept parameter is assumed constant or a simple function of λ_x

$$n_{ox} = n_{ax} \lambda_r^{n_{bx}} \tag{2}$$

where n_{ax} and n_{bx} are constants.

The terminal fall velocity of a precipitating particle, $V_x(D)$ can be expressed as a function of diameter:

$$V_x(D) = c_x D^{d_x} \left(\frac{\rho_0}{\rho}\right)^{\mathcal{G}_x} \tag{3}$$

where c_x , d_x , h_x and \mathcal{G}_x are constants, ρ is the air density $[kg/m^3]$ and ρ_0 is a reference density of 1.29.

We assume a power law relating the mass of the particle to the diameter:

$$M_x(D) = a_x D^{b_x}. (4)$$

The mass-diameter relation for rain simply assumes a spherical drop with a density equal to that for liquid water, 1000 kg m^{-3} .

3.1 Effective radius

COSP requires effective radius as input for CALIPSO and CloudSat. Default values can be used, although it is recommended to use values that are consistent with the model's microphysics. You can use the default values by setting to zero the input array of effective radii. The defaults are 30 μm for the lidar, and the values defined in HCLASS_P1 for CloudSat (see

³http://reef.atmos.colostate.edu/haynes/radarsim/userguide.pdf

details below). In order to compute the effective radius it is necessary to be able to infer the particle size distribution. This requires to being able to obtain the parameter λ_x from the model variables (specific humidities or precipitation fluxes).

The *i*th moment of the PSD is given by:

$$\mu_x^i = \int_0^\infty D^i n_x(D) dD = n_{ox} \frac{\Gamma(\alpha_x + i + 1)}{\lambda_x^{\alpha_x + i + 1}}.$$
 (5)

When the hydrometeor mixing ratio is available, the value of λ_x is given by:

$$\lambda_x = \left(\frac{n_{ax}a_x\Gamma(b_x + 1 + \alpha_x)}{\rho q_x}\right)^{\frac{1}{b_x + 1 + \alpha_x - n_{bx}}}.$$
(6)

For precipitation fluxes, the flux can be related to the PSD by:

$$F_x = \int_0^\infty M_x(D)V_x(D)n_x(D)dD. \tag{7}$$

Using Eqs. (1, 2, 4), and solving this integral for λ_x gives:

$$\lambda_x = \left(\frac{a_x \ c_x \left(\frac{\rho_0}{\rho}\right)^{\mathcal{G}_x} n_{ax} \Gamma\left(\alpha_x + b_x + d_x + 1\right)}{F_x}\right)^{\frac{1}{\alpha_x + b_x + d_x - n_{bx} + 1}}.$$
(8)

The effective radius is then given by:

$$R_x = \frac{\mu_x^3}{2\mu_x^2} = \frac{\Gamma(\alpha_x + 4)}{2\Gamma(\alpha_x + 3)} \lambda_x^{-1} \tag{9}$$

3.2 Mixing ratios from precipitation fluxes

The radar reflectivities are computed from the hydormeteor mixing ratios. However, as large scale models typically diagnose precipitation fluxes, there exists the possibility of passing precipitation fluxes and let COSP convert them into mixing ratios before calling the radar simulator. The variable use_precipitation_fluxes in the COSP_INPUT namelist controls whether the COSP should do this conversion or use the input mixing ratios instead.

Expanding and integrating Eq. (3.1), the expression for the precipitation flux as a function of the mixing ratio and the parameters that define the PSD is given by:

$$F_x = \rho q_x \left(\frac{\rho_0}{\rho}\right)^{\mathcal{G}_x} c_x \frac{\Gamma(\alpha_x + b_x + d_x + 1)}{\Gamma(\alpha_x + b_x + 1)} \left(\frac{\rho q_x}{n_{ax} a_x \Gamma(\alpha_x + b_x + 1)}\right)^{\frac{d_x}{\alpha_x + b_x - n_{bx} + 1}}.$$
 (10)

Solving for the mixing ratio gives:

$$q_x = \rho^{-1} \left[F_x \left(\frac{\rho}{\rho_0} \right)^{\mathcal{G}_x} \sigma \right]^{\frac{1}{\xi+1}}, \tag{11}$$

where
$$\xi = \frac{d_x}{\alpha_x + b_x - n_{bx} + 1},$$

```
\Gamma_1 = \Gamma(\alpha_x + b_x + d_x + 1),
\Gamma_2 = \Gamma(\alpha_x + b_x + 1),
\Gamma_3 = \Gamma(\alpha_x + 3),
\Gamma_4 = \Gamma(\alpha_x + 4),
\sigma = \frac{\Gamma_2}{c_1 \Gamma_1} (n_{ax} a_x \Gamma_2)^{\xi}.
```

3.3 Setting the microphysical constants

The formulation presented here is available since COSP v1.3. The conversion is done by the subroutine <code>cosp_precip_mxratio</code>, which generalises the previous subroutine <code>pf_to_mr</code> that was only compatible with the method from *Khairoutdinov and Randall* [2003]. The microphysical constants needed for the precipitation are stored in <code>cosp_constants.F90</code>, along with the HCLASS table used for the reflectivity computations (see below). These two sets of constants have to be filled carefully with consistent constants. Table 4 lists the correspondence between FORTRAN names stored in <code>cosp_constants.F90</code> and the constants in used in this document.

FORTRAN name	COSP manual
N_ax	n_{ax}
N_bx	n_{bx}
alpha_x	$lpha_x$
c_x	c_x
d_x	d_x
g_x	g_x
a_x	a_x
b_x	b_x
gamma_1	Γ_1
gamma_2	Γ_2
gamma_3	Γ_3
gamma_4	Γ_4

Table 4. Correspondence between the FORTRAN names used in COSP and the formulation in used in this document. These values are defined in data statements in cosp_constants.F90.

If the formulation presented here is not compatible with your model's formulation, then you will have to set use_precipitation_fluxes=.false., do the conversion off-line following your model's fomulation, and fill in the arrays gbx%mr_hydro(:,:,i) with the precipitation mixing ratios in cosp_test (i is the index of each precipitation class: I_LSRAIN, I_LSSNOW, I_CVRAIN, I_CVSNOW, I_LSGRPL). The standard list of hydrometeors is defined in cosp_constants.F90:

```
integer,parameter :: I_LSCLIQ = 1
integer,parameter :: I_LSCICE = 2
integer,parameter :: I_LSRAIN = 3
integer,parameter :: I_LSSNOW = 4
integer,parameter :: I_CVCLIQ = 5
```

```
integer,parameter :: I_CVCICE = 6
integer,parameter :: I_CVRAIN = 7
integer,parameter :: I_CVSNOW = 8
integer,parameter :: I_LSGRPL = 9
```

3.4 Setting the HCLASS table

The microphysical assumptions for the radar simulation in COSP are stored in the HCLASS table, in <code>cosp_constants.F90</code>. The meaning of the HCLASS constants are given in the Quickbeam User's guide [Haynes, 2007]. For the sake of completeness, here we also give an overview and the settings. The HCLASS table consists of several lines, each one stored in a different variable. These variables are vectors with as many elements as number of hydrometeors so that the settings for each hydrometeor can be set up independently. These variables are:

- HCLASS_TYPE: Set to 1 for modified gamma distribution, 2 for exponential distribution, 3 for power law distribution, 4 for monodisperse distribution, 5 for lognormal distribution. Set to a negative number to ignore the hydrometeor class defined in that position.
- HCLASS_COL: Reserved for future use, value is ignored.
- HCLASS_PHASE: Set to 0 for liquid, 1 for ice.
- HCLASS_CP: Not used in COSP.
- HCLASS_DMIN: The minimum drop size for this class (μm), ignored for monodisperse.
- HCLASS_DMAX: The maximum drop size for this class (μm), ignored for monodisperse.
- HCLASS_APM: The a_x coefficient in the mass-diameter relationship. If used, then set HCLASS_RHO to -1.
- HCLASS_BPM: The b_x coefficient in the mass-diameter relationship. If used, then set HCLASS_RHO to -1.
- HCLASS_RHO: hydrometeor density [kgm³]. If used, then set HCLASS_APM and HCLASS_BPM to -1.
- HCLASS_P1, HCLASS_P2, HCLASS_P3: these parameters depend on the type of distribution. For the modified gamma distribution used in the UM, P1 is the total particle number concentration, P2 is the particle mean diameter $[\mu m]$, and P3 is the distribution width, $\alpha_x + 1$. One of the parameters (P1,P2) must be specified, and the other one should be set to -1. P3 must be specified.

The settings for DMIN and DMAX are ignored in the current version for all distributions except for power law. Except when the power law distribution is used, particle size is fixed to vary from zero to infinity.

Since COSP v0.2, a capability of Quickbeam to pass the effective radius as input parameter is used. In that case, the settings in HCLASS_P[1-3] are defaults. If the input R_{eff} is zero at any spatial or hydrometeor coordinate at which there is condensate, then the HCALSS default is used. Hence, if the effective radius is not zero when there is hydrometeor present, the values in HCLASS_P2 are not used.

The default values in the COSP HCLASS table reflect those used by Roj Marchand to run the simulator for the MMF [*Marchand et al.*, 2009].

4 Configuration for CFMIP-2 experiments

The directory ./cfmip2 contains the namelists with the configuration for the CFMIP-2 experiments. These files are also available on the CFMIP web site. There are two different configurations:

- Long time series (*long_inline.txt). This is the configuration for the 30 yr monthly and daily means from ISCCP and CALIPSO/PARASOL. These are global gridded data computed from model gridded inputs, with the simulators run inline. The production version for these experiments is COSP v1.3. Experiments already run with v1.2.2 should be fine as long as the outputs look ok. COSP v1.3 includes a bug fix in the ISCCP simulator that may cause problem in some circumstances.
- Short time series (*short_offline.txt). This is the configuration for the 1 yr time series, both for the curtain outputs and global gridded monthly means from curtain outputs. Outputs from CloudSat and CALIPSO/PARASOL are requested. Version 1.3 can be used as production version for these experiments, although the outputs will need some post-processing to make them compliant with the final data structure requested by CMIP5. Version 1.3.1 produces data in CMIP5-compliant mode. It's been tested with the MIP table CMIP5_cf3hr released on 30 November 2010, and only a minor modification in the values and bounds of the axis scatratio is needed. This should be fixed in later tables.

5 Using your own cloud generator

Currently, COSP only includes treatment for cloud/precipitation overlap, but not subgrid variability. Please see Section 6.5 of the README.txt file if you require this extra capability.

6 Processing multiple time steps

Processing multiple time steps with versions previous to v1.3.1 was not straight forward. Some modifications have been introduced in v1.3.1 to make this easier. The COSP_INPUT name list now includes a new variable, DINPUT, which is the directory where the input files are located. FINPUT can now contain a list of input files, up to a maximum number of N_MAX_INPUT_FILES.

This is currently set at 1000 in cosp_test, but it can be made bigger with no performance effects. A value of 10000 has been tested.

How the time is handled is still not ideal, as you have to make sure that the list of files that you pass in FINPUT is complete (i.e. there is no missing step). Future versions may include a time variable in the input file that will be used instead.

You may need to change a couple of things in cosp_test to adapt the program to your time step:

- Line time_step = 3.D0/24.D0. This is the time step in days. Currently set for 3-hourly time series.
- Line time = 8*1.D0/8.D0 ! First time step. This defines the time of the first time step.

The 'replace'/'append' logic worked with CMOR1, but it does not work with CMOR2. This is because of the file naming convention in CMIP5 includes the time limits, and this is handled by CMOR2. The file name changes when you add a new time step, and therefore it always opens a new file. In order to make it work I would have to change substantially the COSP output routines. Therefore, this will create one output file per time step. If you are outputting a long time series of several variables, then the number of files can be large, and it is convenient to merge the outputs in one file per variable. The script utils/append_cf3hr_files.sh uses the NetCDF Operators⁴ to merge the files and create one file per variable.

Acknowledgements

COSP is a collaborative effort, and many people have been involved in the development of the software. Thanks to: M. J. Webb, S. Bony, H. Chepfer, J.-L. Dufresne, S. A. Klein, Y. Zhang, R. Marchand, J. M. Haynes, R. Pincus, and V. O. John.

⁴http://nco.sourceforge.net/nco.html

Appendix A. Structure of the NetCDF input data files.

The structure of the input data NetCDF files are listed below. Examples of these files are distributed with COSP, namely, <code>cosp_input_um.nc</code> for 1D mode, and <code>cosp_input_um_2d.nc</code> for 2D mode. The 1D mode represents data along a trajectory, like the orbit track. The 2D mode is a gridded lat-lon input, suitable for model outputs.

This is the Common Data Language (CDL) structure of the COSP input NetCDF file in 1D mode:

```
netcdf cosp_input_um {
dimensions:
        point = 1236;
        level = 50;
        hydro = 9;
variables:
        short year(point) ;
                year:long_name = "year" ;
                year:_FillValue = -32767s ;
                year:units = "yr" ;
        byte month(point) ;
                month:long_name = "month" ;
                month:_FillValue = -127b ;
        byte day(point) ;
                day:long_name = "day" ;
                day:_FillValue = -127b ;
                day:units = "day" ;
        byte hour(point) ;
                hour:long_name = "hour" ;
                hour:_FillValue = -127b ;
                hour:units = "hr" ;
        byte minute(point) ;
                minute:long_name = "minute" ;
                minute:_FillValue = -127b ;
                minute:units = "min" ;
        float second(point) ;
                second:long_name = "second" ;
                second:_FillValue = -1.e+30f ;
                second:units = "s" ;
        float t(point) ;
                t:long_name = "t" ;
                t:_FillValue = -1.e+30f ;
                t:units = "min" ;
        float tUM(point) ;
```

```
tUM:long_name = "tUM" ;
        tUM:_FillValue = -1.e+30f ;
        tUM:units = "min" ;
float lst(point) ;
        lst:long_name = "lst" ;
        lst:_FillValue = -1.e+30f ;
        lst:units = "h" ;
float lon(point) ;
        lon:long_name = "longitude" ;
        lon:_FillValue = -1.e+30f ;
        lon:units = "degree_east" ;
float lat(point) ;
        lat:long_name = "latitude" ;
        lat:_FillValue = -1.e+30f ;
        lat:units = "degree_north" ;
float landmask(point) ;
        landmask:long_name = "landmask" ;
        landmask:_FillValue = -1.e+30f ;
        landmask:units = "1" ;
float orography(point) ;
        orography:long_name = "orography" ;
        orography:_FillValue = -1.e+30f ;
        orography:units = "m" ;
float psfc(point) ;
        psfc:long_name = "surface_pressure" ;
        psfc:_FillValue = -1.e+30f ;
        psfc:units = "Pa" ;
float height(level, point) ;
        height:long_name = "height_in_full_levels" ;
        height:_FillValue = -1.e+30f ;
       height:units = "m";
float height_half(level, point) ;
        height_half:long_name = "height_in_half_levels" ;
        height_half:_FillValue = -1.e+30f ;
        height_half:units = "m" ;
float T_abs(level, point) ;
        T_abs:long_name = "air_temperature" ;
        T_abs:_FillValue = -1.e+30f;
        T_abs:units = "K" ;
float qv(level, point) ;
        qv:long_name = "specific_humidity" ;
        qv:_FillValue = -1.e+30f ;
```

```
qv:units = "kg/kg" ;
float rh(level, point) ;
        rh:long_name = "relative_humidity_liquid_water" ;
        rh:_FillValue = -1.e+30f ;
        rh:units = "%" ;
float pfull(level, point) ;
        pfull:long_name = "p_in_full_levels" ;
        pfull:_FillValue = -1.e+30f ;
        pfull:units = "Pa" ;
float phalf(level, point) ;
        phalf:long_name = "p_in_half_levels" ;
        phalf:_FillValue = -1.e+30f ;
       phalf:units = "Pa" ;
float mr_lsliq(level, point) ;
        mr_lsliq:long_name = "mixing_ratio_large_scale_cloud_liquid" ;
        mr_lsliq:_FillValue = -1.e+30f ;
        mr_lsliq:units = "kg/kg" ;
float mr_lsice(level, point) ;
        mr_lsice:long_name = "mixing_ratio_large_scale_cloud_ice" ;
       mr_lsice:_FillValue = -1.e+30f ;
        mr_lsice:units = "kg/kg" ;
float mr_ccliq(level, point) ;
       mr_ccliq:long_name = "mixing_ratio_convective_cloud_liquid" ;
       mr_ccliq:_FillValue = -1.e+30f ;
       mr_ccliq:units = "kg/kg" ;
float mr_ccice(level, point) ;
        mr_ccice:long_name = "mixing_ratio_convective_cloud_ice" ;
        mr_ccice:_FillValue = -1.e+30f ;
       mr_ccice:units = "kg/kg" ;
float fl_lsrain(level, point) ;
        fl_lsrain:long_name = "flux_large_scale_cloud_rain" ;
        fl_lsrain:_FillValue = -1.e+30f ;
        fl_lsrain:units = "kg m^-2 s^-1";
float fl_lssnow(level, point) ;
        fl_lssnow:long_name = "flux_large_scale_cloud_snow" ;
        fl_lssnow:_FillValue = -1.e+30f ;
        fl_lssnow:units = "kg m^-2 s^-1";
float fl_lsgrpl(level, point) ;
        fl_lsgrpl:long_name = "flux_large_scale_cloud_graupel" ;
        fl_lsgrpl:_FillValue = -1.e+30f ;
        fl_lsgrpl:units = "kg m^-2 s^-1";
float fl_ccrain(level, point) ;
```

```
fl_ccrain:long_name = "flux_convective_cloud_rain" ;
        fl_ccrain:_FillValue = -1.e+30f ;
        fl_ccrain:units = "kg m^-2 s^-1" ;
float fl_ccsnow(level, point) ;
        fl_ccsnow:long_name = "flux_convective_cloud_snow";
        fl_ccsnow:_FillValue = -1.e+30f ;
        fl_ccsnow:units = "kg m^-2 s^-1";
float tca(level, point) ;
        tca:long_name = "total_cloud_amount" ;
        tca:_FillValue = -1.e+30f ;
        tca:units = "0-1";
float cca(level, point) ;
        cca:long_name = "convective_cloud_amount" ;
        cca:_FillValue = -1.e+30f ;
        cca:units = "0-1";
float Reff(hydro, level, point) ;
        Reff:long_name = "hydrometeor_effective_radius" ;
        Reff:_FillValue = -1.e+30f ;
        Reff:units = "m" ;
float dtau_s(level, point) ;
        dtau_s:long_name = "Optical depth of stratiform cloud at 0.67 micron";
        dtau_s:_FillValue = -1.e+30f ;
        dtau_s:units = "1" ;
float dtau_c(level, point) ;
        dtau_c:long_name = "Optical depth of convective cloud at 0.67 micron" ;
        dtau_c:_FillValue = -1.e+30f ;
        dtau_c:units = "1" ;
float dem_s(level, point) ;
        dem_s:long_name = "Longwave emissivity of stratiform cloud at 10.5 micron" ;
        dem_s:_FillValue = -1.e+30f;
        dem_s:units = "1" ;
float dem_c(level, point) ;
        dem_c:long_name = "Longwave emissivity of convective cloud at 10.5 micron" ;
        dem_c:_FillValue = -1.e+30f ;
        dem_c:units = "1" ;
float skt(point) ;
        skt:long_name = "Skin temperature" ;
        skt:_FillValue = -1.e+30f ;
        skt:units = "K" ;
float sunlit(point) ;
        sunlit:long_name = "Day points" ;
        sunlit:_FillValue = -1.e+30f ;
```

```
sunlit:units = "1" ;
        float u_wind(point) ;
                u_wind:long_name = "eastward_wind" ;
                u_wind:_FillValue = -1.e+30f;
                u_wind:units = "m s-1";
        float v_wind(point) ;
                v_wind:long_name = "northward_wind" ;
                v_{wind:}FillValue = -1.e+30f;
                v_wind:units = "m s-1";
        float mr_ozone(level, point) ;
                mr_ozone:long_name = "mass_fraction_of_ozone_in_air" ;
                mr_ozone:_FillValue = -1.e+30f ;
                mr_ozone:units = "kg/kg" ;
        float emsfc_lw ;
                emsfc_lw:long_name = "Surface emissivity at 10.5 micron (fraction)";
                emsfc_lw:_FillValue = -1.e+30f;
                emsfc_lw:units = "1" ;
// global attributes:
                :title = "COSP inputs UKMO N320L50";
                :Conventions = "CF-1.0";
                :description = "" ;
}
   This is the CDL structure of the COSP input NetCDF file in 2D mode:
netcdf cosp_input_um_2d {
dimensions:
    lon = 17;
    lat = 9;
    level = 38;
    bnds = 2;
    hydro = 9;
variables:
    float lon(lon) ;
        lon:axis = "X" ;
        lon:units = "degrees_east" ;
        lon:long_name = "longitude" ;
        lon:bounds = "lon_bnds" ;
    float lat(lat);
        lat:axis = "Y" ;
        lat:units = "degrees_north" ;
        lat:long_name = "latitude" ;
```

```
lat:bounds = "lat_bnds" ;
float lon_bnds(lon, bnds) ;
float lat_bnds(lat, bnds) ;
float height(level, lat, lon) ;
   height:units = "m" ;
   height:long_name = "height_in_full_levels" ;
   height:FillValue = -1.e+30f ;
float pfull(level, lat, lon) ;
   pfull:units = "Pa" ;
   pfull:long_name = "p_in_full_levels" ;
   pfull:FillValue = -1.e+30f ;
float phalf(level, lat, lon) ;
   phalf:units = "Pa" ;
   phalf:long_name = "p_in_half_levels" ;
   phalf:FillValue = -1.e+30f ;
float T_abs(level, lat, lon);
   T_abs:units = "K" ;
   T_abs:long_name = "air_temperature" ;
   T_abs:FillValue = -1.e+30f;
float qv(level, lat, lon) ;
   qv:units = "kg/kg";
    qv:long_name = "specific_humidity" ;
   qv:FillValue = -1.e+30f;
float rh(level, lat, lon) ;
   rh:units = "%";
   rh:long_name = "relative_humidity" ;
   rh:FillValue = -1.e+30f ;
float tca(level, lat, lon);
   tca:units = "1";
   tca:long_name = "total_cloud_amount" ;
   tca:FillValue = -1.e+30f;
float cca(level, lat, lon);
   cca:units = "1" ;
    cca:long_name = "convective_cloud_amount" ;
    cca:FillValue = -1.e+30f;
float mr_lsliq(level, lat, lon) ;
   mr_lsliq:units = "kg/kg" ;
   mr_lsliq:long_name = "mixing_ratio_large_scale_cloud_liquid" ;
   mr_lsliq:FillValue = -1.e+30f ;
float mr_lsice(level, lat, lon) ;
   mr_lsice:units = "kg/kg" ;
   mr_lsice:long_name = "mixing_ratio_large_scale_cloud_ice" ;
```

```
mr_lsice:FillValue = -1.e+30f ;
float mr_ccliq(level, lat, lon) ;
   mr_ccliq:units = "kg/kg" ;
   mr_ccliq:long_name = "mixing_ratio_convective_cloud_liquid" ;
   mr_ccliq:FillValue = -1.e+30f ;
float mr_ccice(level, lat, lon) ;
   mr_ccice:units = "kg/kg" ;
   mr_ccice:long_name = "mixing_ratio_convective_cloud_ice" ;
   mr_ccice:FillValue = -1.e+30f ;
float fl_lsrain(level, lat, lon);
   fl_lsrain:units = "kg m^-2 s^-1";
    fl_lsrain:long_name = "flux_large_scale_cloud_rain" ;
   fl_lsrain:FillValue = -1.e+30f ;
float fl_lssnow(level, lat, lon);
    fl_lssnow:units = "kg m^-2 s^-1";
    fl_lssnow:long_name = "flux_large_scale_cloud_snow" ;
    fl_lssnow:FillValue = -1.e+30f ;
float fl_lsgrpl(level, lat, lon);
   fl_lsgrpl:units = "kg m^-2 s^-1";
   fl_lsgrpl:long_name = "flux_large_scale_cloud_graupel" ;
    fl_lsgrpl:FillValue = -1.e+30f ;
float fl_ccrain(level, lat, lon);
    fl_ccrain:units = "kg m^-2 s^-1" ;
    fl_ccrain:long_name = "flux_convective_cloud_rain" ;
    fl_ccrain:FillValue = -1.e+30f ;
float fl_ccsnow(level, lat, lon);
    fl_ccsnow:units = "kg m^-2 s^-1";
   fl_ccsnow:long_name = "flux_convective_cloud_snow";
   fl_ccsnow:FillValue = -1.e+30f ;
float orography(lat, lon) ;
   orography:units = "m" ;
    orography:long_name = "orography" ;
   orography:FillValue = -1.e+30f ;
float landmask(lat, lon) ;
    landmask:units = "1" ;
    landmask:long_name = "land_mask" ;
    landmask:FillValue = -1.e+30f ;
float height_half(level, lat, lon) ;
   height_half:units = "m" ;
   height_half:long_name = "height_in_half_levels" ;
   height_half:FillValue = -1.e+30f ;
float psfc(lat, lon) ;
```

```
psfc:units = "Pa" ;
   psfc:long_name = "surface_pressure" ;
   psfc:FillValue = -1.e+30f ;
float Reff(hydro, level, lat, lon) ;
   Reff:units = "m" ;
   Reff:long_name = "hydrometeor_effective_radius" ;
    Reff:FillValue = -1.e+30f ;
float dtau_s(level, lat, lon) ;
    dtau_s:units = "1" ;
   dtau_s:long_name = "Optical depth of stratiform cloud at 0.67 micron" ;
   dtau_s:FillValue = -1.e+30f ;
float dtau_c(level, lat, lon) ;
   dtau_c:units = "1" ;
   dtau_c:long_name = "Optical depth of convective cloud at 0.67 micro";
    dtau_c:FillValue = -1.e+30f ;
float dem_s(level, lat, lon) ;
    dem_s:units = "1" ;
    dem_s:long_name = "Longwave emissivity of stratiform cloud at 10.5 micron" ;
    dem_s:FillValue = -1.e+30f ;
float dem_c(level, lat, lon) ;
    dem_c:units = "1" ;
   dem_c:long_name = "Longwave emissivity of convective cloud at 10.5 micron" ;
    dem_c:FillValue = -1.e+30f ;
float skt(lat, lon) ;
    skt:units = "K" ;
    skt:long_name = "Skin temperature" ;
    skt:FillValue = -1.e+30f ;
float sunlit(lat, lon) ;
   sunlit:units = "1" ;
    sunlit:long_name = "Day points" ;
   sunlit:FillValue = -1.e+30f ;
float emsfc_lw ;
   emsfc_lw:units = "1" ;
    emsfc_lw:long_name = "Surface emissivity at 10.5 micron (fraction)";
    emsfc_lw:FillValue = -1.e+30f ;
float mr_ozone(level, lat, lon) ;
   mr_ozone:units = "kg/kg" ;
   mr_ozone:long_name = "mass_fraction_of_ozone_in_air" ;
   mr_ozone:FillValue = -1.e+30f ;
float u_wind(lat, lon);
    u_wind:units = "m s-1";
   u_wind:long_name = "eastward_wind" ;
```

```
u_wind:FillValue = -1.e+30f ;
float v_wind(lat, lon) ;
   v_wind:units = "m s-1" ;
   v_wind:long_name = "northward_wind" ;
   v_wind:FillValue = -1.e+30f ;
}
```

References

- Bodas-Salcedo, A., et al., COSP: satellite simulation software for model assessment, *Bull. Am. Meteorol. Soc.*, submitted.
- Chepfer, H., S. Bony, D. Winker, M. Chiriaco, J.-L. Dufresne, and G. Sèze, Use of CALIPSO lidar observations to evaluate the cloudiness simulated by a climate model., *Geophys. Res. Lett.*, *35*, L15,704, doi:10.1029/2008GL034207, 2008.
- Haynes, J. M., *QuickBeam radar simulation software*, Colorado State University, Fort Collins, CO, USA, v1.1 ed., 2007.
- Haynes, J. M., R. T. Marchand, Z. Luo, A. Bodas-Salcedo, and G. L. Stephens, A multi-purpose radar simulation package: Quickbeam, *Bull. Am. Meteorol. Soc.*, *88*(11), 1723–1727, doi: 10.1175/BAMS-88-11-1723, 2007.
- Khairoutdinov, M. F., and D. A. Randall, Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities, *J. Atmos. Sci.*, 60(4), 607–625, doi:10.1175/1520-0469(2003)060;0607:CRMOTA;2.0.CO;2, 2003.
- Klein, S. A., and C. Jakob, Validation and sensitivities of frontal clouds simulated by the ECMWF model., *Mon. Weather Rev.*, *127*(10), 2514–2531, 1999.
- Marchand, R., J. Haynes, G. G. Mace, T. Ackerman, and G. Stephens, A comparison of simulated cloud radar output from the multiscale modeling framework global climate model with CloudSat cloud radar observations, *J. Geophys. Res.*, *114*, D00A20, doi: 10.1029/2008JD009790, 2009.
- Pincus, R., C. Hannay, S. A. Klein, K.-M. Xu, and R. Hemler, Overlap assumptions for assumed probability distribution function cloud schemes in large-scale models, *J. Geophys. Res.*, *110*, D15S09, doi:doi:10.1029/2004JD005100, 2005.
- Saunders, R., M. Matricardi, and P. Brunel, An improved fast radiative transfer model for assimilation of satellite radiance observations, *Q. J. R. Meteorol. Soc.*, *125*, 1407–1425, 1999.
- Webb, M., C. Senior, S. Bony, and J. J. Morcrette, Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models, *Clim. Dyn.*, *17*, 905–922, 2001.
- Zhang, Y., S. A. Klein, J. Boyle, and G. G. Mace, Evaluation of tropical cloud and precipitation statistics of CAM3 using CloudSat and CALIPSO data, *J. Geophys. Res.*, doi: 10.1029/2009JD012006, 2010.