

bdi

GDB

BDM interface for GNU Debugger

PowerPC MPC8xx/MPC5xx

User Manual

Manual Version 1.00 for BDI3000

©1997-2008 by Abatron AG

bdi

GDB

 for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 2

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

1 Introduction ... 3

1.1 BDI3000... 3
1.2 BDI Configuration .. 4

2 Installation ... 5

2.1 Connecting the BDI3000 to Target... 5
2.2 Connecting the BDI3000 to Power Supply... 7
2.3 Status LED «MODE»... 8
2.4 Connecting the BDI3000 to Host ... 9

2.4.1 Serial line communication .. 9
2.4.2 Ethernet communication .. 10

2.5 Installation of the Configuration Software .. 11
2.5.1 Configuration with a Linux / Unix host.. 12
2.5.2 Configuration with a Windows host .. 14
2.5.3 Configuration via Telnet / TFTP .. 16

2.6 Testing the BDI3000 to host connection .. 18
2.7 TFTP server for Windows .. 18

3 Using bdiGDB.. 19

3.1 Principle of operation... 19
3.2 Configuration File .. 20

3.2.1 Part [INIT]... 21
3.2.2 Part [TARGET] ...22
3.2.3 Part [HOST].. 25
3.2.4 Part [FLASH] .. 27
3.2.5 Part [REGS] ... 33

3.3 Debugging with GDB ... 35
3.3.1 Target setup.. 35
3.3.2 Connecting to the target... 35
3.3.3 Breakpoint Handling... 36
3.3.4 GDB monitor command.. 36
3.3.5 Target serial I/O via BDI ... 37
3.3.6 Embedded Linux MMU Support ... 38
3.3.7 PPC Interrupt Handling .. 40

3.4 Telnet Interface .. 41

4 Specifications.. 43

5 Environmental notice .. 44

6 Declaration of Conformity (CE).. 44

7 Warranty ... 45

Appendices

A Troubleshooting .. 46

B Maintenance.. 47

C Trademarks .. 47

bdi

GDB

 for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 3

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

1 Introduction

bdiGDB enhances the GNU debugger (GDB), with Background Debug Mode (BDM) debugging for
MPC8xx/MPC5xx based targets. With the built-in Ethernet interface you get a very fast code down-
load speed. No target communication channel (e.g. serial line) is wasted for debugging purposes.
Even better, you can use fast Ethernet debugging with target systems without network capability. The
host to BDI communication uses the standard GDB remote protocol.

An additional Telnet interface is available for special debug tasks (e.g. force a hardware reset,
program flash memory).

The following figure shows how the BDI3000 interface is connected between the host and the target:

1.1 BDI3000

The BDI3000 is the main part of the bdiGDB system. This small box implements the interface be-
tween the JTAG pins of the target CPU and a 10/100Base-T Ethernet connector. The firmware of the
BDI3000 can be updated by the user with a simple Linux/Windows configuration program or interac-
tively via Telnet/TFTP. The BDI3000 supports 1.2 – 5.0 Volts target systems.

UNIX / PC Host

GNU Debugger
(GDB)

BDI3000

AAAAbbbbaaaattttrrrroooonnnn AAAAGGGG SSSSwwwwiiiissssssss MMMMaaaaddddeeee

Target System

BDM Interface

Ethernet (10/100 BASE-T)

MPC
8xx

bdi

GDB

 for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 4

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

1.2 BDI Configuration

As an initial setup, the IP address of the BDI3000, the IP address of the host with the configuration
file and the name of the configuration file is stored within the flash of the BDI3000.
Every time the BDI3000 is powered on, it reads the configuration file via TFTP.

Following an example of a typical configuration file:

; bdiGDB configuration file for MPC860ADS board
; --
;
[INIT]
; init core register
WSPR 638 0x02200000 ;IMMR : internal memory at 0x02200000
WSPR 158 0x00000007 ;ICTRL:
; init SIU register
WM32 0x02200000 0x01632440 ;SIUMCR
WM32 0x02200004 0xFFFFFF88 ;SYPCR
WM16 0x02200200 0x0002 ;TBSCR
WM16 0x02200220 0x0102 ;RTCSC
WM16 0x02200240 0x0002 ;PTSCR
; init UPM
SUPM 0x02200168 0x0220017c ;set address for MCR and MDR
WUPM 0x00000000 0x8FFFEC24 ;UPMA single read
WUPM 0x00000001 0x0FFFEC04
WUPM 0x00000002 0x0CFFEC04
WUPM 0x00000003 0x00FFEC04

..........

WUPM 0x0000003C 0x33FFCC07 ;UPMA exception
WUPM 0x0000003D 0xFFFFFFFF
WUPM 0x0000003E 0xFFFFFFFF
WUPM 0x0000003F 0xFFFFFFFF
; init memory controller
WM32 0x02200104 0xFFE00D34 ;OR0 : 2MB, all accesses, 6ws, time relax
WM32 0x0220010C 0xFFFF8110 ;OR1
WM32 0x02200114 0xFFC00800 ;OR2
WM32 0x02200100 0x02800001 ;BR0
WM32 0x02200108 0x02100001 ;BR1
WM32 0x02200110 0x00000081 ;BR2
WM16 0x0220017A 0x0400 ;MPTPR : divide by 16
WM32 0x02200170 0x13A01114 ;MAMR

[TARGET]
CPUCLOCK 25000000 ;the CPU clock rate after processing the init list
BDIMODE AGENT ;the BDI working mode (LOADONLY | AGENT | GATEWAY)
BREAKMODE SOFT ;<AGENT> SOFT or HARD, HARD uses PPC hardware breakpoints

[HOST]
IP 151.120.25.114
FILE C:\cygnus\b19\demo\mpc860\vxworks
FORMAT ELF
LOAD MANUAL ;load code MANUAL or AUTO after reset
DEBUGPORT 2001
START 0x10000

Based on the information in the configuration file, the target is automatically initialized after every re-
set.

bdi

GDB

 for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 5

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

2 Installation

2.1 Connecting the BDI3000 to Target

The cable to the target system is a ten pin flat ribbon cable. In case where the target system has an
appropriate connector, the cable can be directly connected. The pin assignment is in accordance with
the Motorola specification.

In order to ensure reliable operation of the BDI (EMC, runtimes, etc.) the target cable length must not
exceed 20 cm (8").

For TARGET A connector signals see table on next page.

Warning:

Before you can use the BDI3000 with an other target processor type (e.g. PPC <--> ARM), a new
setup has to be done (see chapter 2.5). During this process the target cable must be disconnected
from the target system.

To avoid data line conflicts, the BDI3000 must be disconnected from the target system while
programming a new firmware for an other target CPU.

!

Target Connector

BDI3000

AAAAbbbbaaaattttrrrroooonnnn AAAAGGGG SSSSwwwwiiiissssssss MMMMaaaaddddeeee

Target System

MPC
8xx

The green LED «TRGT» marked light up when target is powered up

 1 - VFLS0
 2 - SRESET
 3 - GROUND
 4 - DSCK
 5 - GROUND
 6 - VFLS1
 7 - HRESET
 8 - DSDI
 9 - Vcc Target
10 - DSDO

 1

 9

 2 10

BDI TARGET A TARGET B

9 1

10 2

BD
I

TR
G

T

M
O

D
E

!

bdi

GDB

 for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 6

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

TARGET A Connector Signals

Mention of sources used: MPC860ADS User’s Manual, Revision A

Enhanced Debug Mode Detection:

For MPC8xx and MPC555 targets, debug mode (Freeze) detection also works when the BDM con-
nector pins VFLS0 and VFLS1 are not connected to the target. If not connected to VFLSx, this BDM
connector pins should be left open or tied to Vcc. The BDI uses the following algorithm to check if the
target is in debug mode (freezed):

BOOL PPC_TargetFreezed(void) {
 if ((VFLS0 != 1) | (VFLS0 != 1)) return FALSE;
 read debug port status;
 if (status == freezed) return TRUE;
 else return FALSE;

Pin Name Description

1 VFLS0 These pin and pin 6 (VFLS1) indicate to the debug port controller whether or not the MPC
is in debug mode. When both VFLS0 and VFLS1 are at "1", the MPC is in debug mode.

2 SRESET This is the Soft-Reset bidirectional signal of the MPC8xx. On the MPC5xx it is an output.
The debug port configuration is sampled and determined on the rising-edge of SRESET
(for both processor families). On the MPC8xx it is a bidirectional signal which may be driven
externally to generate soft reset sequence.

3+5 GND

System Ground

4 DSCK

Debug-port Serial Clock

During asynchronous clock mode, the serial data is clocked into the MPC according to the
DSCK clock. The DSCK serves also a role during soft-reset configuration.

6 VFLS1 These pin and pin 1 (VFLS0) indicate to the debug port controller whether or not the MPC
is in debug mode. When both VFLS0 and VFLS1 are at "1", the MPC is in debug mode.

7 HRESET This is the Hard-Reset bidirectional signal of the MPC. When this signal is asserted (low)
the MPC enters hard reset sequence which include hard reset configuration.

8 DSDI

Debug-port Serial Data In

Via the DSDI signal, the debug port controller sends its data to the MPC. The DSDI serves
also a role during soft-reset configuration.

9 Vcc Target

1.2 – 5.0V:

This is the target reference voltage. It indicates that the target has power and it is also used
to create the logic-level reference for the input comparators. It also controls the output logic
levels to the target. It is normally fed from Vdd I/O on the target board.

10 DSDO

Debug-port Serial Data Out

DSDO is clocked out by the MPC according to the debug port clock, in parallel with the
DSDI being clocked in. The DSDO serves also as "READY" signal for the debug port con-
troller to indicate that the debug port is ready to receive controller’s command (or data).

bdi

GDB

 for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 7

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

2.2 Connecting the BDI3000 to Power Supply

The BDI3000 needs to be supplied with the enclosed power supply from Abatron (5VDC).

Before use, check if the mains voltage is in accordance with the input voltage printed on power
supply. Make sure that, while operating, the power supply is not covered up and not situated near
a heater or in direct sun light. Dry location use only.

For error-free operation, the power supply to the BDI3000 must be between 4.75V and 5.25V DC.

The maximal tolerable supply voltage is 5.25 VDC. Any higher voltage or a wrong polarity
might destroy the electronics.

Please switch on the system in the following sequence:

• 1 –> external power supply

• 2 –> target system

!

!

RS232 POWER

+5 VDC GND

 TARGET A TARGET B

 BD
I

TR
G

T

M
O

D
E

The green LED «BDI» marked light up when 5V power is connected to the BDI3000

casing connected to ground terminal

bdi

GDB

 for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 8

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

2.3 Status LED «MODE»

The built in LED indicates the following BDI states:

MODE LED BDI STATES

OFF The BDI is ready for use, the firmware is already loaded.

ON The output voltage from the power supply is too low.

BLINK The BDI «loader mode» is active (an invalid firmware is loaded or loading firmware is active).

 TARGET A TARGET B

 BD
I

TR
G

T

M
O

D
E

bdi

GDB

 for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 9

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

2.4 Connecting the BDI3000 to Host

2.4.1 Serial line communication

Serial line communication is only used for the initial configuration of the bdiGDB system.

The host is connected to the BDI through the serial interface (COM1...COM4). The communication
cable (included) between BDI and Host is a serial cable. There is the same connector pinout for the
BDI and for the Host side (Refer to Figure below).

RS232 Connector
(for PC host)

BDI3000

AAAAbbbbaaaattttrrrroooonnnn AAAAGGGG SSSSwwwwiiiissssssss MMMMaaaaddddeeee

Target System

RS232

PC Host

1 - NC
2 - RXD data from host
3 - TXD data to host
4 - NC
5 - GROUND
6 - NC
7 - NC
8 - NC
9 - NC

PPC

RS232 POWER

54321

9876

bdi

GDB

 for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 10

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

2.4.2 Ethernet communication

The BDI3000 has a built-in 10/100 BASE-T Ethernet interface (see figure below). Connect an UTP
(Unshielded Twisted Pair) cable to the BD3000. Contact your network administrator if you have ques-
tions about the network.

The following explains the meanings of the built-in LED lights:

LED Function Description

LED 1
(green)

Link / Activity When this LED light is ON, data link is successful between the UTP port
of the BDI3000 and the hub to which it is connected.
The LED blinks when the BDI3000 is receiving or transmitting data.

LED 2
(amber)

Speed When this LED light is ON, 100Mb/s mode is selected (default).

When this LED light is OFF, 10Mb/s mode is selected

10/100 BASE-T

PC / Unix
Host

Target System

Ethernet (10/100 BASE-T)

 1 - TD+
 2 - TD-
 3 - RD+
 4 - NC
 5 - NC
 6 - RD-
 7 - NC
 8 - NC

Connector

BDI3000

AAAAbbbbaaaattttrrrroooonnnn AAAAGGGG SSSSwwwwiiiissssssss MMMMaaaaddddeeee

PPC

RS232 POWER

1 8

LED1 LED2

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 11

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

2.5 Installation of the Configuration Software

On the enclosed diskette you will find the BDI configuration software and the firmware required for
the BDI3000. For Windows users there is also a TFTP server included.

The following files are on the diskette.

b30ppcgd.exe Windows Configuration program

b30ppcgd.xxx Firmware for the BDI3000

tftpsrv.exe TFTP server for Windows (WIN32 console application)

*.cfg Configuration files

*.def Register definition files

bdisetup.zip ZIP Archive with the Setup Tool sources for Linux / UNIX hosts.

Overview of an installation / configuration process:

• Create a new directory on your hard disk

• Copy the entire contents of the enclosed diskette into this directory

• Linux only: extract the setup tool sources and build the setup tool

• Use the setup tool or Telnet (default IP) to load/update the BDI firmware
Note: A new BDI has no firmware loaded.

• Use the setup tool or Telnet (default IP) to load the initial configuration parameters
- IP address of the BDI.
- IP address of the host with the configuration file.
- Name of the configuration file. This file is accessed via TFTP.
- Optional network parameters (subnet mask, default gateway).

Activating BOOTP:
The BDI can get the network configuration and the name of the configuration file also via BOOTP.
For this simple enter 0.0.0.0 as the BDI’s IP address (see following chapters). If present, the subnet
mask and the default gateway (router) is taken from the BOOTP vendor-specific field as defined in
RFC 1533.

With the Linux setup tool, simply use the default parameters for the -c option:
[root@LINUX_1 bdisetup]# ./bdisetup -c -p/dev/ttyS0 -b57

The MAC address is derived from the serial number as follows:
MAC: 00-0C-01-xx-xx-xx , replace the xx-xx-xx with the 6 left digits of the serial number
Example: SN# 33123407 ==>> 00-0C-01-33-12-34

Default IP: 192.168.53.72
Before the BDI is configured the first time, it has a default IP of 192.168.53.72 that allows an initial
configuration via Ethernet (Telnet or Setup Tools). If your host is not able to connect to this default IP,
then the initial configuration has to be done via the serial connection.

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 12

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

2.5.1 Configuration with a Linux / Unix host

The firmware update and the initial configuration of the BDI3000 is done with a command line utility.
In the ZIP Archive bdisetup.zip are all sources to build this utility. More information about this utility
can be found at the top in the bdisetup.c source file. There is also a make file included.
Starting the tool without any parameter displays information about the syntax and parameters.

To avoid data line conflicts, the BDI3000 must be disconnected from the target system while
programming the firmware for an other target CPU family.

Following the steps to bring-up a new BDI3000:

1. Build the setup tool:
The setup tool is delivered only as source files. This allows to build the tool on any Linux / Unix host.
To build the tool, simply start the make utility.

[root@LINUX_1 bdisetup]# make
cc -O2 -c -o bdisetup.o bdisetup.c
cc -O2 -c -o bdicnf.o bdicnf.c
cc -O2 -c -o bdidll.o bdidll.c
cc -s bdisetup.o bdicnf.o bdidll.o -o bdisetup

2. Check the serial connection to the BDI:
With "bdisetup -v" you may check the serial connection to the BDI. The BDI will respond with infor-
mation about the current loaded firmware and network configuration.
Note: Login as root, otherwise you probably have no access to the serial port.

$./bdisetup -v -p/dev/ttyS0 -b115
BDI Type : BDI3000 (SN: 30000154)
Loader : V1.00
Firmware : unknown
MAC : ff-ff-ff-ff-ff-ff
IP Addr : 255.255.255.255
Subnet : 255.255.255.255
Gateway : 255.255.255.255
Host IP : 255.255.255.255
Config : ÿÿÿÿÿÿÿ........

3. Load/Update the BDI firmware:
With "bdisetup -u" the firmware is programmed into the BDI3000 flash memory. This configures the
BDI for the target you are using. Based on the parameters -a and -t, the tool selects the correct firm-
ware file. If the firmware file is in the same directory as the setup tool, there is no need to enter a -d
parameter.

$./bdisetup -u -p/dev/ttyS0 -b115 -aGDB -tMPC800
Connecting to BDI loader
Programming firmware with ./b30ppcgd.100
Erasing firmware flash
Erasing firmware flash passed
Programming firmware flash
Programming firmware flash passed

!

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 13

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

4. Transmit the initial configuration parameters:
With "bdisetup -c" the configuration parameters are written to the flash memory within the BDI.
The following parameters are used to configure the BDI:

BDI IP Address The IP address for the BDI3000. Ask your network administrator for as-
signing an IP address to this BDI3000. Every BDI3000 in your network
needs a different IP address.

Subnet Mask The subnet mask of the network where the BDI is connected to. A subnet
mask of 255.255.255.255 disables the gateway feature. Ask your network
administrator for the correct subnet mask. If the BDI and the host are in
the same subnet, it is not necessary to enter a subnet mask.

Default Gateway Enter the IP address of the default gateway. Ask your network administra-
tor for the correct gateway IP address. If the gateway feature is disabled,
you may enter 255.255.255.255 or any other value.

Config - Host IP Address Enter the IP address of the host with the configuration file. The configura-
tion file is automatically read by the BDI3000 after every start-up.

Configuration file Enter the full path and name of the configuration file. This file is read via
TFTP. Keep in mind that TFTP has it’s own root directory (usual /tftpboot).
You can simply copy the configuration file to this directory and the use the
file name without any path.
For more information about TFTP use "man tftpd".

$./bdisetup -c -p/dev/ttyS0 -b115 \
> -i151.120.25.102 \
> -h151.120.25.112 \
> -fe:/bdi3000/mytarget.cfg
Connecting to BDI loader
Writing network configuration
Configuration passed

5. Check configuration and exit loader mode:
The BDI is in loader mode when there is no valid firmware loaded or you connect to it with the setup
tool. While in loader mode, the Mode LED is blinking. The BDI will not respond to network requests
while in loader mode. To exit loader mode, the "bdisetup -v -s" can be used. You may also power-off
the BDI, wait some time (1min.) and power-on it again to exit loader mode.

$./bdisetup -v -p/dev/ttyS0 -b115 -s
BDI Type : BDI3000 (SN: 30000154)
Loader : V1.00
Firmware : V1.00 bdiGDB for MPC8xx/MPC5xx
MAC : 00-0c-01-30-00-01
IP Addr : 151.120.25.102
Subnet : 255.255.255.255
Gateway : 255.255.255.255
Host IP : 151.120.25.112
Config : /bdi3000/mytarget.cfg

The Mode LED should go off, and you can try to connect to the BDI via Telnet.

$ telnet 151.120.25.102

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 14

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

2.5.2 Configuration with a Windows host

First make sure that the BDI is properly connected (see Chapter 2.1 to 2.4).

To avoid data line conflicts, the BDI3000 must be disconnected from the target system while
programming the firmware for an other target CPU family.

dialog box «BDI3000 Update/Setup»

Before you can use the BDI3000 together with the GNU debugger, you must store the initial config-
uration parameters in the BDI3000 flash memory. The following options allow you to do this:

Port Select the communication port where the BDI3000 is connected during
this setup session. If you select Network, make sure the Loader is already
active (Mode LED blinking). If there is already a firmware loaded and run-
ning, use the Telnet command "boot loader" to activate Loader Mode.

Speed Select the baudrate used to communicate with the BDI3000 loader during
this setup session.

Connect Click on this button to establish a connection with the BDI3000 loader.
Once connected, the BDI3000 remains in loader mode until it is restarted
or this dialog box is closed.

Current Press this button to read back the current loaded BDI3000 firmware ver-
sion. The current firmware version will be displayed.

!

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 15

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

Erase Press this button to erase the current loaded firmware.

Update This button is only active if there is a newer firmware version present in the
execution directory of the bdiGDB setup software. Press this button to
write the new firmware into the BDI3000 flash memory.

BDI IP Address Enter the IP address for the BDI3000. Use the following format:
xxx.xxx.xxx.xxx e.g.151.120.25.101
Ask your network administrator for assigning an IP address to this
BDI3000. Every BDI3000 in your network needs a different IP address.

Subnet Mask Enter the subnet mask of the network where the BDI is connected to.
Use the following format: xxx.xxx.xxx.xxxe.g.255.255.255.0
A subnet mask of 255.255.255.255 disables the gateway feature.
Ask your network administrator for the correct subnet mask.

Default Gateway Enter the IP address of the default gateway. Ask your network administra-
tor for the correct gateway IP address. If the gateway feature is disabled,
you may enter 255.255.255.255 or any other value.

Config - Host IP Address Enter the IP address of the host with the configuration file. The configura-
tion file is automatically read by the BDI3000 after every start-up.

Configuration file Enter the full path and name of the configuration file. This name is trans-
mitted to the TFTP server when reading the configuration file.

Transmit Click on this button to store the configuration in the BDI3000 flash
memory.

Note:
Using this setup tool via the Network channel is only possible if the BDI3000 is already in Loader
mode (Mode LED blinking). To force Loader mode, enter "boot loader" at the Telnet. The setup tool
tries first to establish a connection to the Loader via the IP address present in the "BDI IP Address"
entry field. If there is no connection established after a time-out, it tries to connect to the default IP
(192.168.53.72).

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 16

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

2.5.3 Configuration via Telnet / TFTP

The firmware update and the initial configuration of the BDI3000 can also be done interactively via a
Telnet connection and a running TFTP server on the host with the firmware file. In cases where it is
not possible to connect to the default IP, the initial setup has to be done via a serial connection.

To avoid data line conflicts, the BDI3000 must be disconnected from the target system while
programming the firmware for an other target CPU family.

Following the steps to bring-up a new BDI3000 or updating the firmware.
Connect to the BDI Loader via Telnet.
If a firmware is already running enter "boot loader" and reconnect via Telnet.

$ telnet 192.168.53.72
or
$ telnet <your BDI IP address>

Update the network parameters so it matches your needs:

LDR>network
 BDI MAC : 00-0c-01-30-00-01
 BDI IP : 192.168.53.72
 BDI Subnet : 255.255.255.0
 BDI Gateway : 255.255.255.255
 Config IP : 255.255.255.255
 Config File :

LDR>netip 151.120.25.102
LDR>nethost 151.120.25.112
LDR>netfile /bdi3000/mytarget.cfg

LDR>network
 BDI MAC : 00-0c-01-30-00-01
 BDI IP : 151.120.25.102
 BDI Subnet : 255.255.255.0
 BDI Gateway : 255.255.255.255
 Config IP : 151.120.25.112
 Config File : /bdi3000/mytarget.cfg

LDR>network save
saving network configuration ... passed
 BDI MAC : 00-0c-01-30-00-01
 BDI IP : 151.120.25.102
 BDI Subnet : 255.255.255.0
 BDI Gateway : 255.255.255.255
 Config IP : 151.120.25.112
 Config File : /bdi3000/mytarget.cfg

In case the subnet has changed, reboot before trying to load the firmware

LDR>boot loader

!

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 17

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

Connect again via Telnet and program the firmware into the BDI flash:

$ telnet 151.120.25.102

LDR>info
 BDI Firmware: not loaded
 BDI CPLD ID : 01285043
 BDI CPLD UES: ffffffff
 BDI MAC : 00-0c-01-30-00-01
 BDI IP : 151.120.25.102
 BDI Subnet : 255.255.255.0
 BDI Gateway : 255.255.255.255
 Config IP : 151.120.25.112
 Config File : /bdi3000/mytarget.cfg

LDR>fwload e:/temp/b30ppcgd.100
erasing firmware flash ... passed
programming firmware flash ... passed

LDR>info
 BDI Firmware: 13 / 1.00
 BDI CPLD ID : 01285043
 BDI CPLD UES: ffffffff
 BDI MAC : 00-0c-01-30-00-01
 BDI IP : 151.120.25.102
 BDI Subnet : 255.255.255.0
 BDI Gateway : 255.255.255.255
 Config IP : 151.120.25.112
 Config File : /bdi3000/mytarget.cfg
LDR>

To boot now into the firmware use:

LDR>boot

The Mode LED should go off, and you can try to connect to the BDI again via Telnet.

telnet 151.120.25.102

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 18

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

2.6 Testing the BDI3000 to host connection

After the initial setup is done, you can test the communication between the host and the BDI3000.
There is no need for a target configuration file and no TFTP server is needed on the host.

• If not already done, connect the BDI3000 system to the network.

• Power-up the BDI3000.

• Start a Telnet client on the host and connect to the BDI3000 (the IP address you entered dur-
ing initial configuration).

• If everything is okay, a sign on message like «BDI Debugger for Embedded PowerPC» and a
list of the available commands should be displayed in the Telnet window.

2.7 TFTP server for Windows

The bdiGDB system uses TFTP to access the configuration file and to load the application program.
Because there is no TFTP server bundled with Windows, Abatron provides a TFTP server application
tftpsrv.exe. This WIN32 console application runs as normal user application (not as a system ser-
vice).

Command line syntax: tftpsrv [p] [w] [dRootDirectory]

Without any parameter, the server starts in read-only mode. This means, only read access request
from the client are granted. This is the normal working mode. The bdiGDB system needs only read
access to the configuration and program files.

The parameter [p] enables protocol output to the console window. Try it.
The parameter [w] enables write accesses to the host file system.
The parameter [d] allows to define a root directory.

tftpsrv p Starts the TFTP server and enables protocol output

tftpsrv p w Starts the TFTP server, enables protocol output and write accesses are
allowed.

tftpsrv dC:\tftp\ Starts the TFTP server and allows only access to files in C:\tftp and its
subdirectories. As file name, use relative names.
For example "bdi\mpc750.cfg" accesses "C:\tftp\bdi\mpc750.cfg"

You may enter the TFTP server into the Startup group so the server is started every time you login.

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 19

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

3 Using bdiGDB
3.1 Principle of operation

The firmware within the BDI handles the GDB request and accesses the target memory or registers
via the BDM interface. There is no need for any debug software on the target system. After loading
the code via TFTP debugging can begin at the very first assembler statement.

Whenever the BDI system is powered-up the following sequence starts:

Power On

initial
configuration

valid?

Get configuration file
via TFTP

Process target init list

via TFTP and set the PC
Load program code

Process GDB request

Power OFF

activate BDI3000 loader

Power OFF

no

yes

RUN selected?

Start loaded program code

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 20

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

Breakpoints:
There are two breakpoint modes supported. One of them (SOFT) is implemented by replacing appli-
cation code with a TRAP instruction. The other (HARD) uses the built in breakpoint logic. If HARD is
used, only up to 4 breakpoints can be active at the same time.
The following example selects SOFT as the breakpoint mode:

BREAKMODE SOFT ;<AGENT> SOFT or HARD, HARD uses PPC hardware breakpoints

All the time the application is suspended (i.e. caused by a breakpoint) the target processor remains
freezed.

3.2 Configuration File

The configuration file is automatically read by the BDI after every power on.
The syntax of this file is as follows:

; comment
[part name]
identifier parameter1 parameter2 parameterN ; comment
identifier parameter1 parameter2 parameterN
.....
[part name]
identifier parameter1 parameter2 parameterN
identifier parameter1 parameter2 parameterN
.....

etc.

Numeric parameters can be entered as decimal (e.g. 700) or as hexadecimal (0x80000).

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 21

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

3.2.1 Part [INIT]

The part [INIT] defines a list of commands which should be executed every time the target comes out
of reset. The commands are used to get the target ready for loading the program file. The SIM regis-
ters (chip select, clock, ...) are usually initialized with this command list.

WGPR register value Write value to the selected general purpose register.
register the register number 0 .. 31
value the value to write into the register
Example: WGPR 0 5

WSPR register value Write value to the selected special purpose register.
register the register number
value the value to write into the register
Example: WSPR 27 0x00001002 ; SRR1 : ME,RI

WREG name value Write value to the selected CPU register by name
name the register name (MSR,CR,XER,LR,CTR,DSISR,...)
value the value to write into the register
Example: WREG MSR 0x00001002

WM8 address value Write a byte (8bit) to the selected memory place.
address the memory address
value the value to write to the target memory
Example: WM8 0xFFFFFA21 0x04 ; SYPCR: watchdog disable ...

WM16 address value Write a half word (16bit) to the selected memory place.
address the memory address
value the value to write to the target memory
Example: WM16 0x02200200 0x0002 ; TBSCR

WM32 address value Write a word (32bit) to the selected memory place.
address the memory address
value the value to write to the target memory
Example: WM32 0x02200000 0x01632440 ; SIUMCR

SUPM cmdaddr dataaddr Starts a sequence of writes to the UPM RAM array.
cmdaddr the address of the UPM command register
dataaddr the address of the UPM data register
Example: SUPM 0x02200168 0x0220017c

WUPM command data Write indirect to the UPM RAM array. The data is always written first.
command this value is written to the UPM command register
data this value is written to the UPM data register
Example: WUPM 0x00000001 0x0FFFEC04

DELAY value Delay for the selected time. A delay may be necessary to let the clock PLL
lock again after a new clock rate is selected.

value the delay time in milliseconds (1...30000)
Example: DELAY 500 ; delay for 0.5 seconds

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 22

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

3.2.2 Part [TARGET]

The part [TARGET] defines some target specific values.

CPUTYPE type This value gives the BDI information about the connected CPU:
type The CPU type from the following list:

MPC500 or MPC800
Example: CPUTYPE MPC500

CPUCLOCK value The BDI needs to know how fast the target CPU runs after processing the
init list. The BDM communication speed is selected based on this value. If
this value defines a clock rate that is higher than the real clock, BDM com-
munication may fail. When defining a clock rate slower than possible, BDM
communication still works but not as fast as possible.
Important: When programming the MPC555 internal flash, this value is
used to calculate the appropriate timing parameters.

value the CPU clock in hertz
Example: CPUCLOCK 25000000 ; CPU clock is 25.0MHz

BDIMODE mode param This parameter selects the BDI debugging mode. The following modes are
supported:

LOADONLY Loads and starts the application core. No debugging via
BDM.

AGENT The debug agent runs within the BDI. There is no need
for any debug software on the target. This mode accepts
a second parameter. If RUN is entered as a second pa-
rameter, the loaded application will be started immedi-
ately, otherwise only the PC is set and BDI waits for GDB
requests.

Example: BDIMODE AGENT RUN

STARTUP mode [runtime]This parameter selects the target startup mode. The following modes are
supported:

RESET This default mode forces the target to debug mode im-
mediately out of reset. No code is executed after reset.

STOP In this mode, the BDI lets the target execute code for
"runtime" milliseconds after reset. This mode is useful
when monitor code should initialize the target system.

RUN After reset, the target executes code until stopped by the
Telnet "halt" command.

Example: STARTUP STOP 3000 ; let the CPU run for 3 seconds

WORKSPACE address In order to access the floating-point registers of a MPC5xx microproces-
sor, the BDI needs a workspace of 8 bytes in target RAM. Enter the base
address of this RAM area.

address the address of the RAM area
Example: WORKSPACE 0x00000000

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 23

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

BREAKMODE mode [op] This parameter defines how breakpoints are implemented. The current
mode can also be changed via the Telnet interface.

SOFT This is the normal mode. Breakpoints are implemented
by replacing code with a TRAP (default) or ILLEGAL in-
struction. The optional [op] parameter defines if a trap or
an illegal instruction is used.

HARD In this mode, the PPC breakpoint hardware is used.
Only 4 breakpoints at a time are supported.

Example: BREAKMODE HARD ; use hardware breakpoints
BREAKMODE SOFT ILLEGAL

STEPMODE mode This parameter defines how single step (instruction step) is implemented.
Use thealternate step mode (HWBP) if the default step mode (MSR[SE]
bit) causes problems.

TRACE This is the default mode. Single step is implemented by
setting the SE bit in MSR.

HWBP In this mode, one or two hardware breakpoints are used
to implement single stepping.

Example: STEPMODE HWBP

MMU XLAT [kb] In order to support Linux kernel debugging when MMU is on, the BDI
translates effective (virtual) to physical addresses. This translation is done
based on the current MMU configuration. Currently only the Linux model
with 4k pages is supported. If this configuration line is present and ad-
dress relocation active (MSR bits IR/DR), the BDI translates the address-
es received from GDB before it accesses physical memory. The optional
parameter defines the kernel virtual base address (default is
0xC0000000) and is used for default address translation. For more infor-
mation see also chapter "Embedded Linux MMU Support". Addresses en-
tered at the Telnet are never translated. Translation can be probed with the
Telnet command PHYS.
If kb is defined as 0x00000000 then the BDI uses only the current MPC8xx
TLB’s to translate a virtual address, there is no page table search in this
case. Useful for systems where a fixed MMU mapping is used.

kb The kernel virtual base address (KERNELBASE) or
0x00000000 for a translation based only on the current
TLB’s.

Example: MMU XLAT ;enable address translation

PTBASE addr This parameter defines the physical memory address where the BDI looks
for the address of the array with the two page table pointers. For more in-
formation see also chapter "Embedded Linux MMU Support".

addr Physical address of the memory used to store the virtual
address of the array with the two page table pointers.

Example: PTBASE 0xf0

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 24

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

REGLIST list With GDB version 5.0, the number of registers read from the target has
been increased. Additional registers like SR’s, BAT’s and SPR’s are re-
quested when you select a specific PowerPC variant with the "set proces-
sor" command (see GDB source file rs6000-tdep.c). In order to be
compatible with older GDB versions and to optimize the time spent to read
registers, this parameter can be used. You can define which register group
is really read from the target. By default only STD are read and transferred.
This default is compatible with older GDB versions. The following names
are use to select a register group:

STD The standard (old) register block. The FPR registers are
not read from the target but transferred. You can’t disable
this register group.

FPR The floating point registers are read and transferred.
SR not available for MPC8xx/5xx targets.
BAT not available for MPC8xx/5xx targets
SPR Some additional special purpose registers
AUX The debug module special purpose registers
ALL Include all register groups
Example: REGLIST STD ; only standard registers

REGLIST STD FPR SPR ; all except SR and BAT

SIO port [baudrate] When this line is present, a TCP/IP channel is routed to the BDI’s RS232
connector. The port parameter defines the TCP port used for this BDI to
host communication. You may choose any port except 0 and the default
Telnet port (23). On the host, open a Telnet session using this port. Now
you should see the UART output in this Telnet session. You can use the
normal Telnet connection to the BDI in parallel, they work completely inde-
pendent. Also input to the UART is implemented.

port The TCP/IP port used for the host communication.
baudrate The BDI supports 2400 ... 115200 baud
Example: SIO 7 9600 ;TCP port for virtual IO

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 25

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

3.2.3 Part [HOST]

The part [HOST] defines some host specific values.

IP ipaddress The IP address of the host.
ipaddress the IP address in the form xxx.xxx.xxx.xxx
Example: IP 151.120.25.100

FILE filename The default name of the file that is loaded into RAM using the Telnet ’load’
command. This name is used to access the file via TFTP. If the filename
starts with a $, this $ is replace with the path of the configuration file name.

filename the filename including the full path or $ for relative path.
Example: FILE F:\gnu\demo\mpc\test.elf

FILE $test.elf

FORMAT format [offset] The format of the image file and an optional load address offset. Currently
binary, S-record, a.out and ELF formats are supported. If the image is al-
ready stored in ROM on the target, select ROM as the format. The optional
parameter "offset" is added to any load address read from the image file.

format BIN, SREC, AOUT, ELF, IMAGE* or ROM
Example: FORMAT ELF

FORMAT ELF 0x10000

LOAD mode In Agent mode, this parameters defines if the code is loaded automatically
after every reset.

mode AUTO, MANUAL
Example: LOAD MANUAL

START address The address where to start the program file. If this value is not defined and
the core is not in ROM, the address is taken from the code file. If this value
is not defined and the core is already in ROM, the PC will not be set before
starting the program file. This means, the program starts at the normal re-
set address (0x0100).

address the address where to start the program file
Example: START 0x1000

* Special IMAGE load format:
The IMAGE format is a special version of the ELF format used to load a Linux boot image into target
memory. When this format is selected, the BDI loads not only the loadable segment as defined in the
Program Header, it also loads the rest of the file up to the Section Header Table. The relationship
between load address and file offset will be maintained throughout this process. This way, the com-
pressed Linux image and a optional RAM disk image will also be loaded.

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 26

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

DEBUGPORT port [RECONNECT]
The TCP port GDB uses to access the target. If the RECONNECT param-
eter is present, an open TCP/IP connection (Telnet/GDB) will be closed if
there is a connect request from the same host (same IP address).

port the TCP port number (default = 2001)
Example: DEBUGPORT 2001

PROMPT string This entry defines a new Telnet prompt. The current prompt can also be
changed via the Telnet interface.

Example: PROMPT MPC860>

DUMP filename The default file name used for the Telnet DUMP command.
filename the filename including the full path
Example: DUMP dump.bin

TELNET mode By default the BDI sends echoes for the received characters and supports
command history and line editing. If it should not send echoes and let the
Telnet client in "line mode", add this entry to the configuration file.

mode ECHO (default), NOECHO or LINE
Example: TELNET NOECHO ; use old line mode

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 27

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

3.2.4 Part [FLASH]

The Telnet interface supports programming and erasing of flash memories. The bdiGDB system has
to know which type of flash is used, how the chip(s) are connected to the CPU and which sectors to
erase in case the ERASE command is entered without any parameter.

CHIPTYPE type This parameter defines the type of flash used. It is used to select the cor-
rect programming algorithm.
Note: A workspace is necessary for STRATA, MIRROR, AT29, MPC5xx.

format AM29F, AM29BX8, AM29BX16, I28BX8, I28BX16,
AT49, AT49X8, AT49X16, STRATAX8, STRATAX16,
AT29X8, AT29X16,
MIRROR, MIRRORX8, MIRRORX16,
M58X32, AM29DX16, AM29DX32
AM29BDDX16, AM29BDDX32
MPC555, MPC555SHD, MPC565, MPC565SHD

Example: CHIPTYPE AM29F

CHIPSIZE size The size of one flash chip in bytes (e.g. AM29F010 = 0x20000). This value
is used to calculate the starting address of the current flash memory bank.
For MPC5xx internal flash, this parameter is not used.

size the size of one flash chip in bytes
Example: CHIPSIZE 0x80000

BUSWIDTH width Enter the width of the memory bus that leads to the flash chips. Do not en-
ter the width of the flash chip itself. The parameter CHIPTYPE carries the
information about the number of data lines connected to one flash chip.
For example, enter 16 if you are using two AM29F010 to build a 16bit flash
memory bank.
For MPC5xx internal flash, this parameter is not used.

with the width of the flash memory bus in bits (8 | 16 | 32)
Example: BUSWIDTH 16

FILE filename The default name of the file that is programmed into flash using the Telnet
’prog’ command. This name is used to access the file via TFTP. If the file-
name starts with a $, this $ is replace with the path of the configuration file
name. This name may be overridden interactively at the Telnet interface.

filename the filename including the full path or $ for relative path.
Example: FILE F:\gnu\xscale\bootrom.hex

FILE $bootrom.hex

FORMAT format [offset] The format of the file and an optional address offset. The optional param-
eter "offset" is added to any load address read from the program file.

format SREC, BIN, AOUT, ELF or IMAGE
Example: FORMAT SREC

FORMAT ELF 0x10000

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 28

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

WORKSPACE address If a workspace is defined, the BDI uses a faster programming algorithm
that runs out of RAM on the target system. Otherwise, the algorithm is pro-
cessed within the BDI. The workspace is used for a 1kByte data buffer and
to store the algorithm code. There must be at least 2kBytes of RAM avail-
able for this purpose. Programming MPC5xx internal flash also needs a
workspace in target RAM. A workspace is also required for the AT29 and
STRATA algorithm.

address the address of the RAM area
Example: WORKSPACE 0x00000000

ERASE addr [mode [wait]]The flash memory may be individually erased or unlocked via the Telnet
interface. In order to make erasing of multiple flash sectors easier, you can
enter an erase list. All entries in the erase list will be processed if you enter
ERASE at the Telnet prompt without any parameter. This list is also used
if you enter UNLOCK at the Telnet without any parameters.

address Address of the flash sector, block or chip to erase
mode BLOCK, CHIP, UNLOCK

Without this optional parameter, the BDI executes a sec-
tor erase. If supported by the chip, you can also specify
a block or chip erase. If UNLOCK is defined, the entry is
also part of the unlock list. This unlock list is processed
if the Telnet UNLOCK command is entered without any
parameters.

wait The wait time in ms is only used for the unlock mode. Af-
ter starting the flash unlock, the BDI waits until it pro-
cesses the next entry.

Example: ERASE 0xff040000 ;erase sector 4 of flash
ERASE 0xff060000 ;erase sector 6 of flash
ERASE 0xff000000 CHIP ;erase whole chip(s)
ERASE 0xff010000 UNLOCK 100 ;unlock, wait 100ms

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 29

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

MPC555 Internal Flash:

For the MPC555 internal flash, the BDI assumes the following structure of the address:

module address The 16 most significant bits of the flash module address.

C The censor bit. If this bit is set, the censor information is erased.

block The bit mask to select the flash block to erase. Bit ordering is the same as
in the CMFCTL register (see MPC555 manual).

MPC565 Internal Flash:

For the MPC565 internal flash, the BDI assumes the following structure of the address:

module address The 16 most significant bits of the flash module address.

C The censor bit. If this bit is set, the censor information is erased.

sbb* The bit mask to select the small blocks to erase. Bit ordering is the same
as in the UC3FCTL register (see MPC565 manual).

block The bit mask to select the flash block to erase. Bit ordering is the same as
in the UC3FCTL register (see MPC565 manual).

* The BDI does not write implicit any value to the UC3FMCRE registers. If small blocks are used, the
appropriate value has to be written to the UC3FMCRE registers via the BDI initialization list or via the
connected debugger.

module address C <reserved> block [0:7]
16 bit 1 bit 7 bit 8 bit

module address C block [0:7]
16 bit 1 bit 7 bit 8 bit

<reserved> sbb[0:1]
2 bit

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 30

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

Supported Flash Memories:
There are currently 3 standard flash algorithm supported. The AMD, Intel and Atmel AT49 algorithm.
Almost all currently available flash memories can be programmed with one of this algorithm. The
flash type selects the appropriate algorithm and gives additional information about the used flash.

For 8bit only flash: AM29F (MIRROR), I28BX8, AT49

For 8/16 bit flash in 8bit mode: AM29BX8 (MIRRORX8), I28BX8 (STRATAX8), AT49X8

For 8/16 bit flash in 16bit mode: AM29BX16 (MIRRORX16), I28BX16 (STRATAX16), AT49X16

For 16bit only flash: AM29BX16, I28BX16, AT49X16

For 16/32 bit flash in 16bit mode: AM29DX16, AM29BDDX16

For 16/32 bit flash in 32bit mode: AM29DX32, AM29BDDX32

For 32bit only flash: M58X32

Some newer Spansion MirrorBit flashes cannot be programmed with the MIRRORX16 algorithm be-
cause of the used unlock address offset. Use S29M32X16 for these flashes.

The AMD and AT49 algorithm are almost the same. The only difference is, that the AT49 algorithm
does not check for the AMD status bit 5 (Exceeded Timing Limits).
Only the AMD and AT49 algorithm support chip erase. Block erase is only supported with the AT49
algorithm. If the algorithm does not support the selected mode, sector erase is performed. If the chip
does not support the selected mode, erasing will fail. The erase command sequence is different only
in the 6th write cycle. Depending on the selected mode, the following data is written in this cycle (see
also flash data sheets): 0x10 for chip erase, 0x30 for sector erase, 0x50 for block erase.
To speed up programming of Intel Strata Flash and AMD MirrorBit Flash, an additional algorithm is
implemented that makes use of the write buffer. This algorithm needs a workspace, otherwise the
standard Intel/AMD algorithm is used.

The following table shows some examples:

Flash x 8 x 16 x 32 Chipsize

Am29F010 AM29F - - 0x020000

Am29F800B AM29BX8 AM29BX16 - 0x100000

Am29DL323C AM29BX8 AM29BX16 - 0x400000

Am29PDL128G - AM29DX16 AM29DX32 0x01000000

Intel 28F032B3 I28BX8 - - 0x400000

Intel 28F640J3A STRATAX8 STRATAX16 - 0x800000

Intel 28F320C3 - I28BX16 - 0x400000

AT49BV040 AT49 - - 0x080000

AT49BV1614 AT49X8 AT49X16 - 0x200000

M58BW016BT - - M58X32 0x200000

SST39VF160 - AT49X16 - 0x200000

Am29LV320M MIRRORX8 MIRRORX16 - 0x400000

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 31

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

Note:
Some Intel flash chips (e.g. 28F800C3, 28F160C3, 28F320C3) power-up with all blocks in locked
state. In order to erase/program those flash chips, use the init list to unlock the appropriate blocks:

WM16 0xFFF00000 0x0060 unlock block 0
WM16 0xFFF00000 0x00D0
WM16 0xFFF10000 0x0060 unlock block 1
WM16 0xFFF10000 0x00D0

....
WM16 0xFFF00000 0xFFFF select read mode

 or use the Telnet "unlock" command:

UNLOCK [<addr> [<delay>]]

addr This is the address of the sector (block) to unlock

delay A delay time in milliseconds the BDI waits after sending the unlock com-
mand to the flash. For example, clearing all lock-bits of an Intel J3 Strata
flash takes up to 0.7 seconds.

If "unlock" is used without any parameter, all sectors in the erase list with the UNLOCK option are
processed.

To clear all lock-bits of an Intel J3 Strata flash use for example:

BDI> unlock 0xFF000000 1000

To erase or unlock multiple, continuous flash sectors (blocks) of the same size, the following Telnet
commands can be used:

ERASE <addr> <step> <count>
UNLOCK <addr> <step> <count>

addr This is the address of the first sector to erase or unlock.

step This value is added to the last used address in order to get to the next sec-
tor. In other words, this is the size of one sector in bytes.

count The number of sectors to erase or unlock.

The following example unlocks all 256 sectors of an Intel Strata flash (28F256K3) that is mapped to
0x00000000. In case there are two flash chips to get a 32bit system, double the "step" parameter.

BDI> unlock 0x00000000 0x20000 256

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 32

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

Examples:

ADS860 flash memory:

[FLASH]
CHIPTYPE AM29F ;Flash type (AM29F | AM29BX8 | AM29BX16 | I28BX8 | I28BX16)
CHIPSIZE 0x80000 ;The size of one flash chip in bytes (e.g. AM29F010 = 0x20000)
BUSWIDTH 32 ;The width of the flash memory bus in bits (8 | 16 | 32)
FILE E:\ada\demo\mpc860\bootrom.hex ;The file to program
ERASE 0x02800000 ;erase sector 0 of flash SIMM (MCM29F040)
ERASE 0x02840000 ;erase sector 1 of flash SIMM
ERASE 0x02880000 ;erase sector 2 of flash SIMM
ERASE 0x028C0000 ;erase sector 3 of flash SIMM
ERASE 0x02900000 ;erase sector 4 of flash SIMM
ERASE 0x02940000 ;erase sector 5 of flash SIMM
ERASE 0x02980000 ;erase sector 6 of flash SIMM
ERASE 0x029C0000 ;erase sector 7 of flash SIMM

MPC555 internal flash:

[INIT]
...
WSPR 638 0x00000802 ;IMMR: InternalRegs to 0x00400000, Flash enabled
...

[TARGET]
CPUTYPE MPC500 ;CPU type (MPC800 | MPC500)
CPUCLOCK 20000000 ;the CPU clock rate, used for flash timing calculation
...

[FLASH]
CHIPTYPE MPC555 ;Select MPC555 internal CDR MoneT Flash
WORKSPACE 0x007FC000 ;use internal SRAM array B for workspace
FORMAT SREC
FILE D:\abatron\bdi360\ppc\pro\mpc555.sss ;The file to program
ERASE 0x004000FF ;Erase module A all sectors
ERASE 0x004400FC ;Erase module B all sectors

MPC565 internal flash:

[INIT]
...
WSPR 638 0x00000802 ;IMMR: InternalRegs to 0x00400000, Flash enabled
...

[FLASH]
CHIPTYPE MPC565 ;Select MPC565 internal CDR3 Flash
WORKSPACE 0x007F8000 ;use CALRAM A for workspace
FORMAT SREC
FILE D:\abatron\bdi360\ppc\pro\mpc565.sss ;The file to program
ERASE 0x004000FF ;Erase module A all sectors
ERASE 0x004800FF ;Erase module B all sectors

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 33

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

3.2.5 Part [REGS]

In order to make it easier to access target registers via the Telnet interface, the BDI can read in a
register definition file. In this file, the user defines a name for the register and how the BDI should
access it (e.g. as memory mapped, memory mapped with offset, ...). The name of the register defi-
nition file and information for different registers type has to be defined in the configuration file.
The register name, type, address/offset/number and size are defined in a separate register definition
file. This way, you can create one register definition file for the MPC860 that can be used for all pos-
sible positions of the internal memory map. You only have to change one entry in the configuration
file.

An entry in the register definition file has the following syntax:

name type addr size

name The name of the register (max. 12 characters)

type The register type
GPR General purpose register
SPR Special purpose register
MM Absolute direct memory mapped register
DMM1...DMM4 Relative direct memory mapped register
IMM1...IMM4 Indirect memory mapped register

addr The address, offset or number of the register

size The size (8, 16, 32) of the register

The following entries are supported in the [REGS] part of the configuration file:

FILE filename The name of the register definition file. This name is used to access the
file via TFTP. The file is loaded once during BDI startup.

filename the filename including the full path
Example: FILE C:\bdi\regs\mpc8260.def

DMMn base This defines the base address of direct memory mapped registers. This
base address is added to the individual offset of the register.

base the base address
Example: DMM1 0x01000

IMMn addr data This defines the addresses of the memory mapped address and data reg-
isters of indirect memory mapped registers. The address of a IMMn regis-
ter is first written to "addr" and then the register value is access using
"data" as address.

addr the address of the Address register
data the address of the Data register
Example: DMM1 0x02200000

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 34

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

Example for a register definition (MPC860):

Entry in the configuration file:

[REGS]
DMM1 0x02200000 ;Internal Memory Map Base Address
FILE E:\bdi\mpc860\reg860.def ;The register definition file

The register definition file:

;name type addr size
;---
;
gpr0 GPR 0
sp GPR 1
;
pc SPR 26 ; is SRR0
xer SPR 1
lr SPR 8
ctr SPR 9
sprg0 SPR 272
sprg1 SPR 273
sprg2 SPR 274
sprg3 SPR 275
;
;
; DMM1 must be set to the internal memory map base address
;
siumcr DMM1 0x0000 32
sypcr DMM1 0x0004 32
;
mstat DMM1 0x0178 16
padir DMM1 0x0950 16
papar DMM1 0x0952 16
paodr DMM1 0x0954 16
padat DMM1 0x0956 16

Now the defined registers can be accessed by name via the Telnet interface:

BDI> rd siumcr
BDI>rm padir 0xFF00

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 35

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

3.3 Debugging with GDB

Because the target agent runs within BDI, no debug support has to be linked to your application.
There is also no need for any BDI specific changes in the application sources. Your application must
be fully linked because no dynamic loading is supported.

3.3.1 Target setup

Target initialization may be done at two places. First with the BDI configuration file, second within the
application. The setup in the configuration file must at least enable access to the target memory
where the application will be loaded. Disable the watchdog and setting the CPU clock rate should
also be done with the BDI configuration file. Application specific initializations like setting the timer
rate are best located in the application startup sequence.

3.3.2 Connecting to the target

As soon as the target comes out of reset, BDI initializes it and loads your application code. If RUN is
selected, the application is immediately started, otherwise only the target PC is set. BDI now waits
for GDB request from the debugger running on the host.

After starting the debugger, it must be connected to the remote target. This can be done with the fol-
lowing command at the GDB prompt:

(gdb)target remote bdi3000:2001

bdi3000 This stands for an IP address. The HOST file must have an appropriate
entry. You may also use an IP address in the form xxx.xxx.xxx.xxx

2001 This is the TCP port used to communicate with the BDI

If not already suspended, this stops the execution of application code and the target CPU changes
to background debug mode.

Remember, every time the application is suspended, the target CPU is freezed. During this time no
hardware interrupts will be processed.

Note: For convenience, the GDB detach command triggers a target reset sequence in the BDI.
(gdb)...
(gdb)detach
... Wait until BDI has resetet the target and reloaded the image
(gdb)target remote bdi3000:2001

Note:
After loading a program to the target you cannot use the GDB "run" command to start execution.
You have to use the GDB "continue" command.

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 36

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

3.3.3 Breakpoint Handling

GDB versions before V5.0:
GDB inserts breakpoints by replacing code via simple memory read / write commands. There is no
command like "Set Breakpoint" defined in the GDB remote protocol. When breakpoint mode HARD
is selected, the BDI checks the memory write commands for such hidden "Set Breakpoint" actions.
If such a write is detected, the write is not performed and the BDI sets an appropriate hardware
breakpoint. The BDI assumes that this is a "Set Breakpoint" action when memory write length is 4
bytes and the pattern to write is 0x7D821008 (tw 12,r2,r2).

GDB version V5.x:
GDB version 5.x uses the Z-packet to set breakpoints (watchpoints). For software breakpoints, the
BDI replaces code with 0x7D821008 (tw 12,r2,r2). When breakpoint mode HARD is selected, the
BDI sets an appropriate hardware breakpoint.

User controlled hardware breakpoints:
The MPC8xx/5xx has a special watchpoint / breakpoint hardware integrated. Normally the BDI con-
trols this hardware in response to Telnet commands (BI, BDx) or when breakpoint mode HARD is
selected. Via the Telnet commands BI and BDx, you cannot access all the features of the breakpoint
hardware. Therefore the BDI assumes that the user will control / setup this breakpoint hardware as
soon as ICTRL, LCTRL1 or LCTRL2 is written to. This way the debugger or the user via Telnet has
full access to all features of this watchpoint / breakpoint hardware. A hardware breakpoint set via BI
or BDx gives control back to the BDI.

3.3.4 GDB monitor command

The BDI supports the GDB V5.x "monitor" command. Telnet commands are executed and the Telnet
output is returned to GDB. This way you can for example switch the BDI breakpoint mode from within
your GDB session.

(gdb) target remote bdi3000:2001
Remote debugging using bdi3000:2001
0x10b2 in start ()
(gdb) monitor break
Breakpoint mode is SOFT
(gdb) mon break hard

(gdb) mon break
Breakpoint mode is HARD
(gdb)

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 37

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

3.3.5 Target serial I/O via BDI

A RS232 port of the target can be connected to the RS232 port of the BDI3000. This way it is possible
to access the target’s serial I/O via a TCP/IP channel. For example, you can connect a Telnet session
to the appropriate BDI3000 port. Connecting GDB to a GDB server (stub) running on the target
should also be possible.

The configuration parameter "SIO" is used to enable this serial I/O routing.
The used framing parameters are 8 data, 1 stop and not parity.

[TARGET]
....
SIO 7 9600 ;Enable SIO via TCP port 7 at 9600 baud

Warning!!!
Once SIO is enabled, connecting with the setup tool to update the firmware will fail. In this case either
disable SIO first or disconnect the BDI from the LAN while updating the firmware.

Target System

Ethernet (10/100 BASE-T)

BDI3000

AAAAbbbbaaaattttrrrroooonnnn AAAAGGGG SSSSwwwwiiiissssssss MMMMaaaaddddeeee

PPC

R
S

23
2RS232 Connector

RS232 POWER

54321

9876
1 - NC
2 - RXD
3 - TXD
4 - NC
5 - GROUND
6 - NC
7 - NC
8 - NC
9 - NC

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 38

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

3.3.6 Embedded Linux MMU Support

The bdiGDB system supports Linux kernel debugging when MMU is on. The MMU configuration pa-
rameter enables this mode of operation. In this mode, all addresses received from GDB are assumed
to be virtual. Before the BDI accesses memory, it translates this address into a physical one based
on information found in the TLB’s or kernel/user page table. Default address translation is used if ad-
dress relocation is currently not active (MSR[DR] bit cleared) or the kernel page table pointer is still
zero.

In order to search the page tables, the BDI needs to know the start address(es) of the first level page
table(s). The configuration parameter PTBASE defines the physical address where the BDI looks for
the address of an array with two addresses of first level page tables. The first one points normally to
the kernel page table, the second one can point to the current user page table. As long as the base
pointer or the first entry is zero, the BDI does only TLB and default translation.

If PTBASE is not defined in the configuration file, the BDI does only TLB and default translation.

Default translation maps addresses in the range KERNELBASE...(KERNELBASE + 0x0FFFFFFF)
to 0x00000000...0x0FFFFFFF. The second page table is only searched if its address is not zero and
there was no match in the first one.

The pointer structure is as follows:

PTBASE (physical address) ->
PTE pointer pointer(virtual or physical address) ->

PTE kernel pointer (virtual or physical address)
PTE user pointer (virtual or physical address)

Newer versions of "arch/ppc/kernel/head_8xx.S" support the automatic update of the BDI page table
information structure. Search "head_8xx.S" for "abatron" and you will find the BDI specific exten-
sions.

Extract from the configuration file:

[INIT]
......
WM32 0x000000f0 0x00000000 ;invalidate page table base

[TARGET]
....
MMU XLAT ;translate effective to physical address
PTBASE 0x000000f0 ;here is the pointer to the page table pointers

Note:
The BDI can also handle L1 page tables where the entries are physical addresses instead of virtual
ones as used in Linux 2.4.x. For example Linux 2.6.x and NetBSD uses physical L1 page table en-
tries.

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 39

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

To debug the Linux kernel when MMU is enabled you may use the following load and startup se-
quence:

• Load the compressed linux image

• Set a hardware breakpoint with the Telnet at a point where MMU is enabled. This can be easily
achieved with the following hardware range breakpoint
BDI> BI 0xC0000000 0xC00FFFFF

• Start the code with GO at the Telnet

• The Linux kernel is decompressed and started

• The system should stop as soon as address translation is enabled (normally at start_here)

• Disable the hardware breakpoint with the Telnet command CI.

• Start GDB with vmlinux as parameter

• Attach to the target

• Now you should be able to debug the Linux kernel

There are of course other ways to begin kernel debugging. You may set a hardware breakpoint di-
rectly at a point of interest (e.g. start_kernel).

Note:
If PTBASE is used you should use a kernel that stores the virtual address of the first level page ta-
ble(s) to the appropriate place in memory. Of course this can be done manually, but then, set a hard-
ware breakpoint at "start_kernel" and use the Telnet to write the address of "swapper_pg_dir" to the
appropriate place.

BDI>bi 0xc0061550 /* set breakpoint at start_kernel */
BDI>go
.. /* target stops at start_kernel */
BDI>ci
BDI>mm 0xf0 0xc00000f8 /* Let PTBASE point to an array of two pointers*/
BDI>mm 0xf8 0xc0057000 /* write address of swapper_pg_dir to first pointer */
BDI>mm 0xfc 0x00000000 /* clear second (user) pointer */

Note:
The default value of DER is not suitable for Linux kernel debugging because almost all exceptions
lead to debug mode entry. Use the configuration file to set an appropriate value:

WSPR 149 0x0082000F ;DER: enable PRIE,TRE,LBRK,IBRK,EBRK,DPI

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 40

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

3.3.7 PPC Interrupt Handling

Almost all PPC interrupts causes an entry into debug mode. By default, the Debug Enable Register
(DER) is set as follows:

Debug Enable Register

If this is not appropriate for the application the default initialisation may be change with an entry in
the configuration file.

WSPR 149 0xFFE7400F ;DER: set debug enable register

Bit Mnemonic State Describtion

0 -

1 RSTE enabled Reset Interrupt

2 CHSTPE enabled Check Stop

3 MCIE enabled Maschine Check Interrupt

4-5 -

6 EXTIE External Interrupts

7 ALIE enabled Alignment Interrupt

8 PRIE enabled Program Interrupt

9 FPUVIE enabled Floating-Point Unavailable Interrupt

10 DECIE Decrementer Interrupt

11-12 -

13 SYSIE enabled System Call Interrupt

14 TRE enabled Trace Interrupt

15-16 -

17 SEIE enabled Software Emulation Interrupt

18 ITLBMSE Implementation Specific Instructuction TLB Miss

19 ITLBERE Implementation Specific Instructuction TLB Error

20 DTLBMSE Implementation Specific Data TLB Miss

21 DTLBERE Implementation Specific Data TLB Error

22-27 -

28 LBRKE enabled Load/Store Breakpoint Interrupt

29 IBRKE enabled Instruction Breakpoint Interrupt

30 EBRKE enabled External Breakpoint Interrupt

31 DPIE enabled Developement Port Nonmaskable Request

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 41

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

3.4 Telnet Interface

A Telnet server is integrated within the BDI. The Telnet channel is used by the BDI to output error
messages and other information. Also some basic debug commands can be executed.

Telnet Debug features:

• Display and modify memory locations

• Display and modify general and special purpose registers

• Single step a code sequence

• Set hardware breakpoints (for code and data accesses)

• Load a code file from any host

• Start / Stop program execution

• Programming and Erasing Flash memory

During debugging with GDB, the Telnet is mainly used to reboot the target (generate a hardware reset
and reload the application code). It may be also useful during the first installation of the bdiGDB sys-
tem or in case of special debug needs (e.g. setting breakpoints on variable access).

Multiple commands separated by a semicolon can be entered on one line.

Notes:
The Telnet command RESET does only reset the target system. The configuration file is not loaded
again. If the configuration file has changed, use the Telnet command BOOT to reload it.

The DUMP command uses TFTP to write a binary image to a host file. Writing via TFTP on a Linux/
Unix system is only possible if the file already exists and has public write access. Use "man tftpd" to
get more information about the TFTP server on your host.

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 42

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

Following a list of the available Telnet commands:

"PHYS <address> converts an effective to a physical address",
"MD [<address>] [<count>] display target memory as word (32bit)",
"MDH [<address>] [<count>] display target memory as half word (16bit)",
"MDB [<address>] [<count>] display target memory as byte (8bit)",
"DUMP <addr> <size> [<file>] dump target memory to a file",
"MM <addr> <value> [<cnt>] modify word(s) (32bit) in target memory",
"MMH <addr> <value> [<cnt>] modify half word(s) (16bit) in target memory",
"MMB <addr> <value> [<cnt>] modify byte(s) (8bit) in target memory",
"MT <address> <count> single word (32bit) memory test",
"MTH <address> <count> single half word (16bit) memory test",
"MTB <address> <count> single byte (8bit) memory test",
"MC [<address>] [<count>] calculates a checksum over a memory range",
"MV verifies the last calculated checksum",
"RD [<name>] display general purpose or user defined register",
"RDUMP [<file>] dump all user defined register to a file",
"RDS <number> display special purpose register",
"RM {<nbr>≠<name>} <value> modify general purpose or user defined register",
"RMS <number> <value> modify special purpose register",
"UPMS <MCR-addr> <MDR-addr> set address of register MCR and MDR",
"UPMA display UPMA setup",
"UPMB display UPMB setup",
"DTLB <from> [<to>] display data TLB entry",
"ITLB <from> [<to>] display inst TLB entry",
"DTAG <from> [<to>] display data cache tags",
"CBB display copyback buffer",
"RESET [HALT | RUN [time]] reset the target system, change startup mode",
"BREAK [SOFT | HARD] display or set current breakpoint mode",
"GO [<pc>] set PC and start target system",
"TI [<pc>] trace on instuction (single step)",
"TC [<pc>] trace on change of flow",
"HALT force target to enter debug mode",
"BI <from> [<to>] [<count>] set instruction hardware breakpoint",
"CI [<id>] clear instruction hardware breakpoint(s)",
"BD [R|W] <addr> [<count>] [<data>] set data breakpoint (32bit access)",
"BDH [R|W] <addr> [<count>] [<data>] set data breakpoint (16bit access)",
"BDB [R|W] <addr> [<count>] [<data>] set data breakpoint (8bit access)",
"BDR [R|W] <from> <to> [<count>] set data breakpoint on a range",
"CD [<id>] clear data breakpoint(s)",
"INFO display information about the current state",
"LOAD [<offset>] [<file> [<format>]] load program file to target memory",
"VERIFY [<offset>] [<file> [<format>]] verify a program file to target memory",
"PROG [<offset>] [<file> [<format>]] program flash memory",
" <format> : SREC or BIN or AOUT or ELF",
"ERASE [<address> [<mode>]] erase a flash memory sector, chip or block",
" <mode> : CHIP, BLOCK or SECTOR (default is sector)",
"ERASE <addr> <step> <count> erase multiple flash sectors",
"UNLOCK [<addr> [<delay>]] unlock a flash sector",
"UNLOCK <addr> <step> <count> unlock multiple flash sectors",
"FLASH <type> <size> <bus> change flash configuration",
"DELAY <ms> delay for a number of milliseconds",
"HOST <ip> change IP address of program file host",
"PROMPT <string> defines a new prompt string",
"CONFIG display or update BDI configuration",
"CONFIG <file> [<hostIP> [<bdiIP> [<gateway> [<mask>]]]]",
"HELP display command list",
"BOOT [loader] reboot the BDI and reload the configuration",
"QUIT terminate the Telnet session"

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 43

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

4 Specifications
Operating Voltage Limiting 5 VDC ± 0.25 V

Power Supply Current typ. 500 mA
max. 1000 mA

RS232 Interface: Baud Rates 9’600,19’200, 38’400, 57’600,115’200
Data Bits 8
Parity Bits none
Stop Bits 1

Network Interface 10/100 BASE-T

BDM/JTAG clock up to 32 MHz

Supported target voltage 1.2 – 5.0 V

Operating Temperature + 5 °C ... +60 °C

Storage Temperature -20 °C ... +65 °C

Relative Humidity (noncondensing) <90 %rF

Size 160 x 85 x 35 mm

Weight (without cables) 280 g

Host Cable length (RS232) 2.5 m

Electromagnetic Compatibility CE compliant

Restriction of Hazardous Substances RoHS 2002/95/EC compliant

Specifications subject to change without notice

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 44

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

5 Environmental notice

Disposal of the equipment must be carried out at a designated disposal site.

6 Declaration of Conformity (CE)

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 45

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

7 Warranty
ABATRON Switzerland warrants the physical CD, cable and BDI3000 to be free of defects in materi-
als and workmanship for a period of 3 years following the date of purchase when used under normal
conditions.

In the event of notification within the warranty period of defects in material or workmanship,
ABATRON will replace defective CD, cable or BDI3000. The remedy for breach of this warranty shall
be limited to replacement and shall not encompass any other damages, including but not limited loss
of profit, special, incidental, consequential, or other similar claims.
ABATRON Switzerland specifically disclaims all other warranties - expressed or implied, including but
not limited to implied warranties of merchantability and fitness for particular purposes - with respect
to defects in the CD, cable and BDI3000, and the program license granted herein, including without
limitation the operation of the program with respect to any particular application, use, or purposes. In
no event shall ABATRON be liable for any loss of profit or any other commercial damage, including
but not limited to special, incidental, consequential, or other damages.

Failure in handling which leads to defects are not covered under this warranty. The warranty is void
under any self-made repair operation.

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 46

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

Appendices

A Troubleshooting
Problem
The firmware can not be loaded.

Possible reasons

• The BDI is not correctly connected with the Host (see chapter 2).

• A wrong communication port is selected (Com 1...Com 4).

• The BDI is not powered up

Problem
No working with the target system (loading firmware is okay).

Possible reasons

• Wrong pin assignment (BDM/JTAG connector) of the target system (see chapter 2).

• Target system initialization is not correctly –> enter an appropriate target initialization list.
• An incorrect IP address was entered (BDI3000 configuration)

• BDM/JTAG signals from the target system are not correctly (short-circuit, break, ...).

• The target system is damaged.

Problem
Network processes do not function (loading the firmware was successful)

Possible reasons
• The BDI3000 is not connected or not correctly connected to the network (LAN cable or media

converter)
• An incorrect IP address was entered (BDI3000 configuration)

bdiGDB for GNU Debugger, BDI3000 (MPC8xx/MPC5xx) User Manual 47

© Copyright 1997-2008 by ABATRON AG Switzerland V 1.00

B Maintenance
The BDI needs no special maintenance. Clean the housing with a mild detergent only. Solvents such
as gasoline may damage it.

C Trademarks
All trademarks are property of their respective holders.

