Route Finding Using Geographic Information System

Abstract

The main goal of this work is to find shortest route between one building to another first
at the desktop environment and then using the Web map service. The research part of this
work will comprise of a look at Geographic Information systems (GIS) technologies
including advantage of using GIS. GIS Web services, and how these interact with each
other will also be discussed. Following this, the GIS standards will be discussed with a
more detailed discussion on OGC simple feature specification ,WMS and WFS

The practical part of this work will comprise of setting up a hardware and software
environment. Components integrated in the system include a spatial database PostGIS,
OpenJump, a GIS server GeoServer and front end technology OpenLayer. Following this,
an exploration of the environment will take place in the form of practical hands on use of
the software to build an understanding of how the research can be applied in a practical
way. The streets use OSM data from CloudMade and the buildings data are a subset of
the Geodirectory from An Post originally.

Keywords: Open Source, pgRouting, GeoServer, OpenLayers, route finding

TaDIE OF FIGUIES ...eevviiiiieiieeie ettt ettt ettt et et e e sbe e teeesseessaeenseessseenseensnas 5

Chapter 1. INtrOdUCTION c...oueiiiriiiiieieiiee ettt et 8
1.1 AATINL ot ettt ettt et e b et eae e 8
L2 ODBJECIIVES weeuiiiiiniieiieeieeie ettt ettt ettt sttt st s sbe e eaees 8
| B € 4 0T OSSP 9
1.4 MeEthOAOLOZY ...couviiiiiiiieeie ettt et 10
1.5 Project Managementcceeeueerieeriienieeeieenieeeieeteesreesseesaseesseessneeseesssessseennns 11
1.6 Overview of the architecture Usedccccoevieriiiiiiiniiieceee e 11
1.7 REPOTt OVETVIEW ...ttt et ettt e e esnaeeens 12

2. RESCAICH ATCAS...cueiiiieiiiieiie ettt ettt et 13
2.1 Geographic Information SYSTEMSccevvieeiiiieiiieeiieeeiieeeiee e e eiee e 13
2.2 Components Of GIS......cccoooiiiiiiiii e 14
2.3 WY USE GIS? ..ottt st et sbe e 15
2.4 Spatial Databasescccerierieriiirienieeienit ettt 15
2.5 SPAtial Data.....cccuiieiiiciieieece e e enne 16

2.5.1 RaASter data.....cooueiiiieiiieiiee e et 16
2.5.2 VECIOT ALA....eeieieiieieeiiectiee ettt ettt et nae e 16
2.6 SPAtial JOIN c.eeiuiiiiiiiiiicc ettt 17
2.7 OPENSIIEEIMAPveeeiiieeiiie ettt ettt e et e e e e st e e ssbaeeebaeessseeesaseesenseeenns 17
2.7.1 Data FOIMALc..oeiiiiiiiiiieiieee ettt st 18
2.8 WED SETVICES ..uveiieiieniieiieeiiete ettt sttt ettt sttt ettt et eaeesaeenne s 19
2.9 Industry Standardscocooeriiiiini e 20
2.9.1 OGC Simple Features Specificationccceeeveerieeciienieeiienieeieesee e 20

2.9.2 Features Table ATCRITECTUIES ...uvevueenaees 22

2.9.3 OGC web map service and web feature ServiCes.........ccvevveerrveereveessneeennne 23
2,10 SUITIMATY ceniiiieiiie ettt ettt ettt e et e ettt e st e e st eesatteesabeeesabeeenaseeesaseesnnseesnns 30
T) 1 1<) 10 B 10| o PSSR 31
3.1 HATAWALC.....iiiiiiiiieieeee ettt sttt e 31
3.2 SOTEWATE ...ttt sttt 32
32,1 POStEIESQL ..o e 32
3.3 POSEGIS ettt 33
3.3.1 Testing PostGIS functionality..........cccceeeeuieriieiiiinieeiieie et 34
3.3.1 Standard COmMPUANCEccueeeiiieeiiieeciieeciee ettt eeeaeeeraeeeneeees 34
33 OPENIUIMIP ..ttt ettt e et e e et e e st eesabeeesabeeennseeeanes 35
3.3.1 Standard ComplancCe..........coevuiieiiiieiiieeciee ettt 35
34 PEIOULINE ..ceviieiieiie et et ettt e ettt e et e esete et e e sate e bt e sabeenseesaseesseesnseeseesnseenseennne 36
3.5 PL/PESQL ettt ne e enes 37
3.5.1 Why use PL/PESQL ...cniiiiiieieeeee ettt 37
R I I O S £0): O O TP PRUPROPPION 38
3.7 GEOSEIVET 2.1.0 i 38
3.0.1 TeStING GEOSETVETvveeeeviieeiieeeiieeeieeesteeesteeestaeesseaeeesseessreessseeessseeensseeensseens 39
3.7 OPCNLAYETS ...eeiniiieiiiie ettt et et et e et e et e st e e st et e et e e nanes 43
3.7.1 Openlayers and Web Mapping..........cccueeevieeeiieeeiieeeiie e e eree e 44
3.8 SUMMATY ...ttt et e et e et e et e e e bt e e s nbeeesaneeenasee s 45
Chapter 4 Routing AIOTItRIMooiiiiiiiii e 46
4.1 Shortest Path DiJKStraccceeiiiiiiiiiiiiieciiee et 46
4.2 Principle of the algorithmcccoooiiiiiiieeeeeee e 46
i B = € 1111 o (OSSP RPRUPRPR 47
4.4 UML for Dijkstra’s shortest path algorithmccccoeeviiiiiiiiiiiiiiiecee e, 50
4.5 FUNCHION ..eiiiiiiicieeecee ettt e e e et e e e e e eabeesssaeeessaeesnsaeesanneesnseeenns 51
4.6 Arguments (INPUL)....c.ueeeiiieiiiie ettt e e e e s erneeees 51
4.0 OULPUL ..ttt sttt et s 53
477 QUETY EXAMPIES .uvieiiieiiieiieeiieiie et eite ettt e et e eteeeebeebeeeaaeebeessaeenseesssesnseenens 53
4.8 SUMIMATY ..ttt ettt e sbee e e saee e 54
Chapter 5 Loading data , setting data for routing and putting postgis data into Geoserver
... 55
5.1 Loading Data.......ccciieiiiiiiieiiecieeieeee ettt s 55
5.2 Setting data fOr PErOULINGcccvevuieiiiriiriiiieeiee ettt 58
5.2.1 Add INAICES ..enviiiiiieiieie ettt sttt sttt 60
5.3 Example of Spatial SQL qUETIES.......cceeuirieriiriiniiiiicienieceeeieee e 61
5.4 Putting PostGIS data into GEOSEIVETc.eevvieriieeieeiieeieeiie et eiee e v 62
5.5 SUMIMATY <.ttt st e et sae e saneesaee e 68
CRAPLET 6 COAE ...oonvieiiieiieeie ettt ettt et et e et e e b e e seeensaessaeenseesssesnsaensseenne 69
6.1 PL/PESQL COUC....cueiiiiiiiiiiiiiteee ettt 69
6.2 OPENLAYET COUCviiiiiiiieiiieiieciie ettt ettt sttt steeteesiaeebeeesaeensaesaseenseenens 73
Chapter 7 CONCIUSIONScc.ueiuiiriiiiieiieiterte ettt ettt e 84
7.1 OVErview Of ODJECHIVESeccuvieiiiiiiieiieeie ettt ettt ere et eve e e e aeeteeseseeneeenne 84
7.4 Benefits of undertaking this project..........ccovieeiieiiiiiieneee e 86
7.5 Future research could be doneccccooevieiiiiiinieniieeeeeceeee 86

I NS () 4 4 (o1 1T 88

LN o) 153 116 . USSR 92
9.1 Appendix A Using OpenJump with PostgreSQL/PostGIS..........cccccoevvinennnne 92
9.2 Appendix B- pgRouting Installation.............cccceeeviieniiieiiiiieieeceeceeeee 93
0.3 APPENAIX C oo ettt enbe e 94

List of Figures

Figure 1
Figure 1
Figure 1

Figure 2
Figure 2
Figure 2
Figure 2
Figure 2
Figure 2
Figure 2

Figure 3
Figure 3
Figure 3
Figure 3

Figure 4
Figure 4
Figure 4
Figure 4
Figure 4
Figure 4

. 1: Gantt chart showing the project plan.........c.ccocevieniininiinicninniniccee 11
.2:Listing of the task name and duration from Gantt Chart.............cccceveenenene. 11
3: Three Tier ATChItECTUIEveiieeiieeiieeeie e e 12
. 1: Parts Of Gis(Longely 2007) ..c..cooeiririiniiienienieieeteee e 15
. 2: RASET ANA VECTOT ...ttt 16
. 3:The Blue Blazer represented as node(Bennett, 2010).ccccceeveeriieniennne 18
. 4: Parliament Street in London represented as way(Bennett, 2010). 19
. 5:0penGIS Geometry Class Hierarchies (OGCSFS 1.1, p2-2)..c.cccccevvvveiennenne. 22
. 6: Schema for feature tables under SQL92 (OGCSFSI1.1, p2-20)cceevvvenneenne 23
. 7 The OGC web service architecture (OWS, 2002)ccceeverveerrieerieeeieeenen. 24
. 12 Openjump USET INEETTACEccvveeeeiieeeiie ettt e e e e avee s 36
. 2: The Geoserver Web Admin Toolc.ooveviiiiiiiniiiiiiecceccceeee 39
. 3: The GeoServer DemO PAZEceevveeeiiieeiieeeiiieeie et eve et svee e aee e s 40
. 4: Result of the WMS_getMap.url test........ccceeviieriiiniieniieeieeiecieeee e 41
. 1: Dijkstra shortest path algorithm example.........c..ccoceevirieninniniiniiiiiene 46
. 2 Initialisation in Dijkstra shortest path algorithm with source vertex a........... 47
+ 3 FIrst TEETAtION ..ottt e 48
41 SeCONd TEETAtION.eiiiiiiiieeie ettt 48
o5 Third TEeTAtION. ..c..eetiiiiiiiieiieiee ettt 49
. 6: Fourth Tteration........coouiiiiiiiiieee e 49

Figure 4. 7(a) UML for Dijkstra’s shortest path algorithm(Lecture 6,2011).................... 50

Figure 5. 1:0verview of SyStem iNteZrationcccceeeieeiiierieeniienieeieeeieeieeeveeseeeseeens 55
Figure 5. 2: GeoServer datastOragececvveeerireerireeiieeeiieeeiieesereesaeeesseeesaeeessseeessseens 62
Figure 5. 3Adding new workspace Ireland............cocceeriiiiiiiiiieiiieniececeee e 63
Figure 5. 4: WOTKSPACE VIEWceecuiiiiiiieeiiieeiie ettt e e s 63
FIgUIE 5. 51 LaAYET VIEW ..eutiiiiieiieiiieeieeeiie ettt ettt ettt ae e s beesaaesabeessneenseesneaens 65
Figure 5. 6 Computing bounding boxes in Irish National Grid..........ccccceevveverieerciieennnnn. 66
Figure 5. 7 Result after the coordinate system was set to Irish National Grid(29900)..... 66
Figure 5. 8 Adding two different geometry table in one group name highwaybuildings. 67
Figure 5. 9 Displaying group map in openlayer format............cccceoceevirienennienienenniennns 68
Figure 6. 1:showing the the shortest path between two buildings with gids 1375 and 59 in

L0075 111111 T SRR URPPP 73
Figure 6. 2 Showing the road and buildings table as a layerccccoceeveriiniincniennns 80
Figure 6. 3 Showing the features of the road and building data.cccoeveiienneennenn. 81
Figure 6. 4 showing the Layer switcher containing layers name............ccocevceevverveneennnene 82
Figure 6. 5 showing the start and end point as a layer..........ccceeevveevcieeecieenieecee e 83

List of Tables

Table 1. 1:List 0f GlOSSAry TteMScc.eeviiriiiiiriiriieieetere et 10
Table 2. 1: The parameters of a GetCapabilities requesttOGCWMS1.3, p21) 26
Table 2. 2 The Parameters of a GetMap request (OGCWMSI1.3, p33) .ccceeevvievieeiiennnne 27
Table 2. 3: The parameters of a GetFeaturelnfo request. (OGCWMSI1.3, p39)............... 28
Table 3. TTHATAWATE......ccc.eiiiiiiieie ettt et e 32
Table 3. 2:Software Applications used in SYStEM.......cceereieriieriieiiieiieeieeeee e eee e 32
Table 7. 1: Objectives and their corresponding Deliverables of the project.................... 85

Listings

Listing 3. 1:Verifying PostgreSQL database is working properly...........cccccvevvirrirennnnnns 33
Listing 3. 2: Verfying PostGIS functionality.........c.cccccuveeviiiieiiiieiiiecieeeeeeee e 34
Listing 3. 3: Showing the version of POStGIScccoviiiiriiniiniiieiceeeeeee 34
Listing 4. 1:Shortest path function declaration..........cc.cceceeeieveniieniininiinieecesceeee 51
Listing 4. 2: Verfying all of the arguments from shortest path function are displayed as a
result of query from road data dublin_highwayl..........ccccoieiiiniiiniinii 52
Listing 4. 3: Verifying shortest path function query successfully runs in psql................ 53
Listing 4. 4: Output from the shortest path function query..........ccccceeveeviieiieniieiiienens 53
Listing 5. 1: Verifying successful data imports t0 pOSt@iS........coceevververeenierrieneeneniennns 56
Listing 5. 2: Verifying successful data imports t0 pOStZIS.......ccevvvrererrreriuveeririeeriieennnnen. 57
Listing 5. 3: shows that the table was successfully altered. Now road data contains source
, target and length COIUMN..........ccooiiiiiiiiicc e 58
Listing 5. 4: Verfying table dublin_highway1 was successfully altered adding source,
target and length COIUMMN............ooooiiiiiiiii e 59
Listing 5. 5: Verfying the network topology was successfully created in psql 60
Listing 5. 6: Verifying the network topology was successfully created..............cc.c........ 60
Listing 5. 7: Verifying the lengths column has updated successfully.........c.cccceveeniennnen. 60
Listing 5. 8 Command to create index for the geometrycccoeevveveiieecieeecieecieeeen 60
Listing 5. 9 Filling out the form for the new data SOUICecccceverieriininiiinienicnienene 64

Listing 6. 1:find nearest road fUNCtION..........cccveeriviieiiiieeiiie e 69

Listing 6. 2 calling find nearest road function with gid as argumentc.ccccceevuennee 70
Listing 6. 3 calling find nearest road function again with another gid as argument....... 70
Listing 6. 4 find_route fUNCHONcccuiiiiiiiiiiiii ettt ens 71
Listing 6. 5 calling the find route function with two different gid as arguments 72

Chapter 1. Introduction

1.1 Aim

The aim of this project is to research and develop an open source geographical
information system that allows to find the shortest route between two points .i.e
buildings. Find route from one building to another building using PostgreSQL/PostGIS
(initally display result in OpenJump). Key to achieving this aim is the successful
integration of database technology, a GIS server and front-end web technology to display

information to the end user through a browser.

1.2 Objectives

By choosing my main objective was to:
e Research, install and configure a spatial database.
e Research, install and configure client that act as gis viewer to perform analysis of

datasets, query the database.

Research, install and configure software to act as the client interface in conjuction
with the user’s browser

Research, install and configure coding language that interact with spatial
database.

Acquire competency using the tool OpenJump, PostgreSql and GeoServer.

To acquire the data which will be used for the route finding

To load the database with valid data

To design the systems that integrates all the components

To create a queries that will allow the user to initially interact with the data in
OpenJump

To create an interface that allows the user to interact with the system .

1.3 Glossary
AJAX Asynchronous JavaScript and XML
Bounding Box This is a rectangle that is used to identify the
area we are interested in, whether that is
finding geometries in a database or telling a
map server the area of the map we wish to see
Clientside Client side referrs to the user's computer,
specifically their web browser.
EPSG European Petroleum Survey Group. This is the
standards group for the naming of projections.
The two we are interested in are 4326
(WGS84) and 29900 (Irish Grid)
DIV This is a HTML instruction for dividing the
layout of a web page
GIS
Geography Information System

GML Geographic Markup Language. This is
based on XML and is used to describe
geographic features in respect to their
location, shape and height

OoGC Open Geospatial Consortium, which is the
standards body for geospatial information like
web based services, spatial databases

OpenJump This is a Java based product for exploring
spatial information

OWS OGC web service
URL Uniform Resource Locator
WES Web Feature Service. This is a service given by

a Map Server to return features in GML and
also allow transactions (WFS-T) on the feature.

WKB Well Known Binary. This is how a database
often stores a geographic feature in the
database

WMS Web Map Service. This is a service provided

by the Map Server to return map images to the
client for a specified area and sometimes
conditions using filtering

Table 1. 1:List of Glossary items

1.4 Methodology

This project involves only one resource (me) however traditional life cycle models
requires many specialist So iterative style approach i.e. prototype method would be
suitable for this project where all the requirements are defined then design the system and
then implement rather then developed the whole product and move to the another area

that is not well known.

10

1.5 Project Management

Project management is very important activity that overlaps many phases of system
methodology. According to Whitten et al (2001) project management is the process of
defining, planning, directing, monitoring and controlling a project to develop a system
within allocated time and budget . Figure 1.1 is the gantt chart showing the project plan to
be followed.

harch 2011 April 2011 May 2011 [une 2011 Muly 2011 August 2011 Septer

et February 2011

Name Duratien | |5 |a ‘7 ‘a ‘g 10 |m ‘12 ‘13 ‘14 |15 |w5 ‘17 18 ‘19 |2u |21 ‘22 pe} ‘24 |25 ‘25 el ‘za ‘29 |3u ‘31 32 ‘33 ‘34 |35 =&
Routing using open sou... 152 i]
-Research 32 []

Software 18

Instal & test software 4]

~Design 22 []

Complete [PR 21 |

Implementation 43 I

- Project Report £ [1
- Deliver 1

Presentation 3 [

=

Figure 1. 1: Gantt chart showing the project plan

Routing using open source software 152

Research 3z
Softwara 18
Install & test software 4
Design 22
Complete IPR 21
Implementation 43
Project Report 44
Deliver 1
Fresentation 3

Figure 1.2:Listing of the task name and duration from Gantt Chart

1.6 Overview of the architecture used

The diagram below illustrates the different components needs to build the system and the
interaction between them. Each of these and their installation and usage will be discussed

later in document.

11

WEB BROWSER

% ROUTING INTERFAGCE }% OPENLAYER API

Middle Tier OPEMNJUMP GEOSERVER
Analysis and Server

Processes

Presentation

Data Tier % SHFZFGSGL LOADER __% POSTGRESAL _% FOSTGIS
% ROAD SHAPE FILE

Figure 1.3: Three Tier Architecture

1.7 Report Overview

Chapter 1: Introduction
Chapter 1 provides the aim and objectives of the project. It also list the glossary terms

used in this project and describes the chosen development method.

Chapter 2: Background
Chapter 2 provides background information on GIS technology ,its advantages in our
daily life. Also provides information on the specific aspects of GIS technology and

standard related to the project.

Chapter3: Technology requirement
Chapter 3 discusses and evaluate the different technologies and application needs, and

underlines the reason for the choosing tool to support the implementation of this project.
Chapter4: Shortest path algorithm

Chapter 4 explains the Dijkstra shortest path routing algorithm which was chosen for this

project.

12

Chapter 5: Loading data, setting for pgrouting and putting postgis data into geoserver
Chapter 5 deals with procedures how the data was loaded and store in the database and
outlines the integration between PostGIS and Geoserver. This chapter focuses on how the

individual components are brought together.

Chapter6: Code
Chapter 6 Explains the code written in PL/pgSQL language and OpenLayer format.

Chapter7: Conclusion
Chapter 7 Summarizes the whole project and outlines the learning outcomes, the benefit

the application and further work.

2. Research Areas

This chapter presents the research areas that were crucial for this project. It begins by
describing what geographic information system is and those elements that makes the GIS
possible. It also point outs the various standards of Open Geospatial Consortium and their

relevance to the web mapping services.

2.1 Geographic Information Systems

Geographic Information Systems is neither a single thing nor a single analysis(ISS,
2006), the primary thing that makes GIS difference is location, the place where almost
everything that happens, happens somewhere (Longley et al. 2010).Whether it's the
regular delivery of morning newspaper, the synchronization of traffic lights on way to
work, or the convenient location of favorite park, GIS make these things happen
(ESRI,2011a), so “GIS is a computerized tool for solving geographic problems” (Longley
et al. 2010, p.16). In today’s 21* century organizations all over the world are using GIS to
manage the environment, work more efficiently, provide better customer service and save
money. A geographic information system (GIS) is the integration of hardware, software,
and data for capturing, managing, analyzing, and displaying all forms of geographically

referenced information (GIS.com, 2011).

13

Many historians and historical geographers regard GIS as primarily being concerned with
mapping. Although mapping is one of the key abilities of GIS is a specialized form of
database because each item of data, be it a row of statistics, a string of text, an image,or a
movie, is linked to a coordinate-based representation of the location that the data refer to
(Geogray & Healy ,2007). Thus GIS combines spatial data in the form of points, lines,
polygons, or grid cells, with the attribute data held in conventional database form. This
provides a structure that is able to answer queries not only about what features are in the

database, but also about where they are located. This is what makes GIS unique

GIS maps are interactive. On the computer screen, map users can scan a GIS map in any
direction, zoom in and out to see different areas with more or less detail, they can decide
what features they want to see and how they are symbolized, and, most importantly, they

can access a database of information about all the features shown on the map (GIS,

2008).

2.2 Components of GIS

The following diagram illustrates the six component parts the geographic information

systems

L N gottware

Hardware

14

Figure 2. 1: Parts Of Gis(Longely 2007)

2.3 Why use GIS?

GIS provides numerous benefits and advantages in our daily life. According Longley et

al. (2010) GIS

2.4

Affects each of us, every day for example the energy to power the alaram comes
from the local energy company which makes the use of GIS to manage all its
assets.

Can be used to make effective decision making

Has great practical importance

Encourage public participation in decision making

Supports mapping, measurement, management, monitoring and modeling
operations for example one can combine the location of mobile workers, located
in real-time by GPS devices, in relation to customers' homes, located by address
and derived from your customer database. GIS maps this data, giving dispatchers
a visual tool to plan the best routes for mobile staff or send the closest worker to a
customer. This saves tremendous time and money(GIS.com)

Provides a challenging and stimulating educational experience for students..

Spatial Databases

Some sort of data is needed to be GIS useful. Spatial databases are such systems designed

specifically to include data with spatial attributes, such as geographical location, distance,

and extent (Winstanley, 2009). Giiting (1994) defines spatial database system as:

I.

A spatial database system is a database system

2. It offers spatial data types in its data model and query language

3.

It supports spatial data types in its implementation, providing at least spatial

indexing and efficient algorithms for spatial join2.

15

2.5 Spatial Data

The fundamental ways of representing geography data in digital computers are Raster and

Vector.

2.5.1 Raster data

Raster data as shown in the figure geography information is represented as an array of
square cells. Remote sensing satellite is one of most common form of raster which
capture information in raster form (Longley et al. 2010).A raster data associates attributes

with grid cells.

2.5.2 Vector data

Vector data as shown in the figure is a coordinate-based data model which represents
geographic features as points, lines, and polygons. Each point feature is represented as a
single coordinate pair, while line and polygon features are represented as ordered lists of

vertices (ESRI, 2011b). This project makes a use of vector data.

, raster data
urban area

river

vector data

Figure 2. 2: Raster and vector

16

2.6 Spatial join

A spatial join is done between road and buildings table dataset used in this project with
respect to a spatial predicate. A spatial join links two or more tables based on a spatial
relationship, rather than the classic non-spatial relational attribute (Lecture2, 2011).
Predicates can be a combination of directional, distance, and topological spatial relations
(e.g. overlap, contains). In case of non-spatial join, the joining attributes must of the same
type, but for spatial join they can be of different types (Lecture2, 2011).

Example:

Query: For all the rivers listed in the River table, find the counties through which they

pass.

SELECT r.name, r.name
FROM river AS r, county AS ¢
WHERE crosses(r.the_geom,c.the geom)=True

The spatial predicate “Cross” is used to join River and Country tables

2.7 OpenStreetMap

OpenStreetMap data was used for the road data required for this project so it was
necessary to understand about OpenStreetmap data. OpenStreetMap is a free editable
map of the world (OSM). Its aim is to create a set of map data that’s free to use, editable,
and licensed under new copyright schemes (Haklay, & Weber, 2008). First this started
with mapping streets, now it has already gone far beyond which include footpaths,
buildings, waterways, pipelines, woodland, beaches, postboxes, and even individual trees.
The project also includes administrative boundaries, details of land use, bus routes, and

other abstract ideas that aren't visible from the landscape itself.

17

2.7.1 Data Format
OpenStreetMap uses three basic primitive data models: nodes, ways and relations.In

mathematical terms openstreetmap data model is mixed graphs which consits of vertices
and edges (Bennett,2010).

The default format for representing the data model is XML.

There are several attributes common to every primitive type. Each has a numerical

ID, but these are only unique within each type, so there could be a node, way, and

relation all with the same ID number(Bennett,2010).

2.7.1.1 Nodes
Nodes represents points in space which provides position information and all other

primitives rely on nodes for their location. In the figure the The Blue Blazer is

represented as a node which is a pub in Edinburg (Bennett,2010).

. Kingfisher Ch

The Blue Blazer ~
= Mair

Bread Street

B / _‘ﬂ—"’%
wss/ﬁ-"“\ N/

Figure 2. 3:The Blue Blazer represented as node(Bennett, 2010).

pEAgl | emdlay Strag.
"'. @oF e ﬁ o By e

2.7.1.2 Ways

Ways are ordered list of nodes which represents a polyline or polygon such as roads,

paths and waterways (Bennett,2010). They can also be closed to form areas. Where

18

they're used to describe linear features, the way should normally be placed down the
center line of the physical feature, and at the perimeter for an area. Figure 2.5 shows the

way which is the southern end of Parliament Street in London.

Figure 2. 4: Parliament Street in London represented as way(Bennett, 2010).

2.7.1.3 Relations

Relations are groups of nodes, ways and other relations which can be assigned certain
properties (Bennett, 2010). Relations allow mappers to model features that can't be
described using a single node or way, or where two of the same type of feature overlap.
Examples include complex, branching streets, long distance routes, or the turn restrictions

at junctions.

2.8 Web services

W3C Web Services architecture(WSA) (2004)specification defines a web service

technically as follows:

“A Web service is a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in a machine-

processable format (specifically WSDL). Other systems interact with the Web service in a

19

manner prescribed by its description using SOAP messages, typically conveyed using

HTTP with an XML serialization in conjunction with other Web-related standards”.

Web services are frequently used by web application programming interfaces (API’s) that

can be accessed over a network and executed on a remote system hosting the requested

GIS web services are one of the invention of the web service. Google Maps and Yahoo
Maps are the examples of the GIS web services. GIS web services provides geospatial
data on the web and as well as allow people to ask question based on the location

(Deoliveira).

This project is also based on GIS web services which is concerned with bringing World
Wide Web Consortisum and Open Geospatial Consortium (OGC) together to provide

GIS web service i.e to find the shortest route between two houses.

2.9 Industry Standards

The Open Geospatial Consortium was founded by small group of member in 1994 (OGC
History) with a vision to “Achieve the full societal, economic and scientific benefits of
integrating location resources into commercial and institutional processes worldwide”
(Reed, 2011).

This project adherence to the OpenGIS Simple Features Specification For SQL to support
storage and query and OGC compliant GeoServer web map service(WMS) and web
feature service (WFS).

2.9.1 OGC Simple Features Specification

A simple feature is defined by the OpenGIS as an abstract specification which have both
spatial used for shape file and non-spatial attributes suitable to use when manipulating
row data. Spatial attributes are geometry valued, and simple features are based on 2D

geometry with linear interpolation between vertices [OGCSFS1.1,].

20

Feature specifications schema was appropriate for used in order to return the list of

feature tables from a database, the list of geometry columns for any feature table in the

database and the spatial reference system for any geometry column in the database

The following basic functions were used to manipulate geometry object:

SRID (): Integer—used to manipulate the Spatial Reference System ID of the
geometric object

AsBinary():Binary-allow well-known binary representation of Geometry to their
boundaries.

AsText():String-allow well-known text representation of Geometry

The following methods were used for testing Spatial Relations between geometric objects

and to support spatial analysis respectively.

Contains(anotherGeometry:Geometry):Integer- Returns (True) if this Geometry °
spatially contains’ another Geometry.

Buffer(distance:Double):Geometry-Returns a geometry that represents all
pointswhose distance from this Geometry is less than or equal to

distance.Calculations are based in the Spatial Reference System of the Geometry.

The following diagram illustrates the representation of geographic object and how they

are connected on the space representing as point, polygon or multipoint.

21

Geometry ul Spatia|Reference System

Foint Curve Burface GeometryCollection
[]
1% | 2+ A

—
LineString = Palygon MiltiSurface MultiCurve MultiP oint
1+
14 ¢
“/ Line LinearRing ™ MultiP olygen MultiLineString
1+

Figure 2. 5:0penGIS Geometry Class Hierarchies (OGCSFS 1.1, p2-2)

As it can be seen from figure that there are many different types of spatial information
that can be stored in a compliant system, we will be mainly concerned with points and
lines. Points have only an X and Y value in respect to a spatial object, for buildings
Whereas lines are a set of points that are grouped together in a particular sequence to give

a line, these would be the routes from one building to another.

2.9.2 Features Table Architectures
As this project data are taken in PostGIS it was necessary to understand the table

structure of OpenGIS Simple Feature Specification for SQL how the geographic object
are presented.
The figure below describes the database schema necessary to support the OpenGIS

simple feature data model. A feature table or view corresponds to an OpenGIS feature

22

class. Each feature view contains some number of features represented as rows in the
view. Each feature contains some number of geometric attribute values represented as
columns in the feature view. Each geometric column in a feature view is associated with
a particular geometric view or table that contains geometry instances in a single spatial
reference system. The correspondence between the feature instances and the geometry
instances was accomplished through a foreign key that is stored in the geometry column

of the feature table.

GEOMETRY COLUMNE SFATIAL REFERENCE EYSTEME

FF_TABLE CATALOS
—E- F_TABLE_ECHEMA
-F_TAELE HAME
[~ [F_GEOMETEY_COLUMN

G_TRABLE CATALOS

8RID
AUTH_HAME
AUTH_ERID
SETEXT

G_TABLE EBECHEMA

G_TRELE HAME

STORARGE_TYFE
GEOMETRY_TYFE
COORD_DIMEHEICOH
MAX EFR

BRI

GEOMETRY COLOMHS

GEOMETRY COLUMHE

=11 Fealture TablaView

<Attributess.

—t 310 (Geometry Column)
<Attributess.

Figure 2. 6: Schema for feature tables under SQL92 (OGCSFSL1.1, p2-20)

EID
EEEQ
ETYPE
SEQ
xl

¥l

XK«<MAX PFR»
Y<HAX PFR»

ar

GID

MMIN

YTHIN

MAX

THAX
WEB_GECMETEY

2.9.3 OGC web map service and web feature services

23

GeoServer forms a core component of the Geospatial Web by providing the reference
implementation of the Open Geospatial Consortium (OGC) Web Feature Service (WFS)
and Web Coverage Service (WCS) standards, as well as a high performance certified
compliant Web Map Service (WMS)(GeoServer, 2011). However for this project we are
only concerned with the Web Map Service and Web Feature Service. Figure 2.10.3 below
shows the OGC Web Service Architecture which displays how the specifications are

related to each other and also the operations that each one defines.

Symbols
] e o— T _
i Operati
] Service peration Generalization
GetCapabilities O——
QG0 Weh
Sarvice

1 1 1 1
Web Web Web Web
Registry Map Feature Coverage
Service Service Service Service
l GetDescriptor GetMap l l GetFeature GetCoverage

RegisterService GetFeaturelnfo DescribeFeatureType
1
Styled Layer C
Descriptor Transaction]
WMS WFS
GeoCoder
Service
DescribelLayer
LockFeature J’

Transaction GeocodeFeature

Figure 2. 7 The OGC web service architecture (OWS, 2002)

Generally, the interaction between the Client and Server in both the Web Feature Service
and Web Map Service as defined in their respective specification documents function in
similar ways. Both services provide public interfaces through which clients can request
information about the feature types and the operations on those feature types that it stores

and both services respond to those requests with XML documents.

24

The communication between client and server is achieved via the HTTP protocol over a
heterogenous network, such as the World Wide Web. HTTP supports both GET or POST
methods (OGC, 2002). Both services have a GetCapabilities request that provides service
level information available about the WMS/WFS. In a GET request, the service that the
client requires is specified through key value pairs (KVPs) in the URL of the request. In a
POST request, the content of the request is encoded in XML and passed to the server
through the POST-BODY of the request header.

2.9.3.1 Web map Service (WMS)

WMS is a standard for displaying map images. WMS can register and overlay maps from
multiple remote sources. A map is not the data itself. WMS-produced maps are generally
rendered in a pictorial format such as PNG, GIF or JPEG, or occasionally as vector-based
graphical elements in Scalable Vector Graphics (SVG) or Web Computer Graphics
Metafile (WebCGM) formats (OGCWMS 1.3.0, p5).

WMS is fine for presentation and a delivery mechanism, but not good for user interaction

The OGC Web Map Service Standard supports the 3 following basic interfaces:
GetCapabilities,
GetMap and GetFeaturelnfo.

2.9.3.1.1 GetCapabilities

GetCapabilities is a request from a client to a service that gives back the capabilities or
services that this service provides for maps (OGCWMSI1.3, p21). This is an XML
document that gives the metadata of the information available. The metadata is readable by a
machine and the human eye and contains a description of the server’s information content
and the acceptable request parameter values. Listed below are the possible parameters of

a GetCapabi Ities request.

25

Request Parameter Mg:gzt:arrf Description
VERSION=version (0] Request version
SERVICE=WMS M Service type
REQUEST=GetCapabilities M Request name
FORMAT=MIME_type (0] Output format of service metadata
UPDATESEQUENCE=string 0} Sequence number or string for cache control

Table 2. 1: The parameters of a GetCapabilities request(OGCWMSL.3, p21)

The GetCapabilities response is an XML document which contains the service metadata.
The metadata will appear in a human readable format in the client application. In the case

of this work that is a web browser (OGCWMSI1.3, p22).

The contents of the metadata that is returned can include:

e Service information such as a name, title, URL and other optional information

such as contact information, fees, access constraints.

e (apability information which lists the operations supported by the server,

their output formats and also the URL prefix for each of these operations.

e Layers and styles metadata which outlines the layers and styles that are

available from the server.

Format specifiers which include valid output formats for an operation,

supported exception formats and the format of context at URLs .

2.9.3.1.2 GetMap
The GetMap operation allows to return a map to the user’s client application. The

GetMap operation provides the parameters which are outlined in table 2.2 to allow the

26

user to send a GetMap request to a web map server to retrieve a map (OGCWMS1.3,
p32).
The response of which is a map of spatially referenced information based on the

parameters specified in the request.

Request Parameter Mandatory/ Description
Optional

VERSION=1.3.0 M Request version.

REQUEST=GetMap M Request name.

LAYERS=layer_list M Comma-separated list of one or more map layers.

STYLES=style_list M Comma-separated list of one rendering style per requested
layer.

CRS=namespace:identifier M Coordinate reference system.

BBOX=minx,miny,maxx, maxy M Bounding box corners (lower left, upper right) in CRS units.

WIDTH=output_width M Width in pixels of map picture.

HEIGHT=output_height M Height in pixels of map picture.

FORMAT=output_format M Output format of map.

TRANSPARENT=TRUE|FALSE 0 Background transparency of map (default=FALSE).

BGCOLOR=color_value 0 Hexadecimal red-green-blue color value for the background
color (default=0xFFFFFF).

EXCEPTIONS=exception_format 0 The format in which exceptions are to be reported by the
WMS (default=XML).

TIME=time 0 Time value of layer desired.

ELEVATION=elevation 0 Elevation of layer desired.

Other sample dimension(s) 0 Value of other dimensions as appropriate.

Table 2. 2 The Parameters of a GetMap request (OGCWMSL.3, p33)

The response to a valid GetMap request is a map which corresponds to spatially
referenced information layer requested, in the desired style, and having the specified
coordinate reference system, bounding box, size, format and transparency
(OGCWMSI1.3, p37).

An invalid GetMap request shall yield an error output in the requested Exceptions format

(or a network protocol error response in extreme cases).

2.9.3.1.3 GetFeaturelnfo

GetFeaturelnfo allows to get information about previous map requests. An example
of this is that when a user sees a map, they can click on a point on this map to obtain

more information (OGCWMSI1.3, p38). It provides the possibility of the client to request

27

the details of geometry in the map through a mouse click at an XY coordinate on the
active map layer on screen.

The parameters of a GetFeatureInfo request are listed in Table 2.3.

Request Parameter Mandatory/ Description
Optional
VERSION=1.3.0 M Request version.
REQUEST=GetFeaturelnfo M Request name.
map request part M Partial copy of the Map request parameters that generated
the map for which information is desired.
QUERY_LAYERS=layer_list M Comma-separated list of one or more layers to be queried.
INFO_FORMAT=output_format M Return format of feature information (MIME type).
FEATURE_COUNT=number 0 Number of features about which to return information
(default=1).
I=pixel_column M i coordinate in pixels of feature in Map CS.
J=pixel_row M j coordinate in pixels of feature in Map CS.

EXCEPTIONS=exception_format 0 The format in which exceptions are to be reported by the
WMS (default= XML).

Table 2. 3: The parameters of a GetFeaturelnfo request. (OGCWMSL1.3, p39)

29.3.2 WFS

The OGC Web Map Service allows a client to overlay map images for display served
from multiple Web Map Services on the whereas the OGC Web Feature Service allows a
client to retrieve and update geospatial data encoded in Geography Markup Language
(GML) across the Web using platform independent calls (OGC 1.1.0, p12).

The WFS standard defines interfaces and operations for data access and manipulation on

a set of geographic features, including (OGC 1.1.0, p7):

Get or Query features based on spatial and non-spatial constraints
Create a new feature instance

Get a description of the properties of features

Delete a feature instance (WFS-T)

Update a feature instance (WFS-T)

Lock a feature instance (WFS-T)

28

By default, the specified feature encoding for input and output is the Geography Markup
Language (GML) which in turn is written in XML.

A WEFS specification provides 3 basic interfaces that allow it to service the requests that it
receives from clients. These are: GetCapabilities, DescribeFeatureType, and GetFeature.

These are considered as a READ-ONLY web feature service (OGCWES 1.1, p17).

2.9.3.2.1 GetCapabilities

A web feature service must be able to describe its capabilities. Specifically, it must
indicate which feature types it can service and what operations are supported on each
feature type(pl16). The request can be sent as either GET or POST request. The GET
request URL looks like this:

http://hostname[:port]/path/ows?service=WFS&request=GetCapabilities

The same service can also be requested by sending the request encoded in XML in the

POST body:

2.9.3.2.2 DescribeFeatureType
A web feature service must be able, upon request, to describe the structure of any feature
type it can service (OGCWEFS 1.1 ,p16).The response schema describes the feature types

available and the operations allowed on those feature types.

2.9.3.2.3 GetFeature

A web feature service must be able to service a request to retrieve feature instances.
In addition, the client should be able to specify which feature properties to fetch and
should be able to constrain the query spatially and non-spatially.

29

2.10 Summary

This project researches and integrates the components of GIS i.e hardware, software,data,

procedures and people.

Gis data can be stored as a point , lines and polygon in the spatial database. Some sort of
data is needed for the GIS to be useful ,this project uses open street map data (which is
free editable data) for the street data which are stored as a lines buildings data which is

stored as points.
Processing geographic data was originally only available through desktop applications

but now is available over the Internet either via client-server interaction . This project is

based on both desktop and client server model.

30

3

System setup

There is no definitive set of components to use when creating a GIS. This chapter details

the system that has been chosen for this project.

3.1

Hardware

All applications are installed on a single machine, in this case an HP laptop running

Windows 7 which has the following specifications (Windows 7).

CPU

2.20 GHz

RAM

4.00 GB

31

| Operating System

| Windows 7

3.2 Software

Table 3. 1:Hardware

Table 3.2 shows the main list of the software chosen for this project.

Version Function
PostgreSQL 8.4 Database
Postgis 1.4 Database
pgRouting 1.0.3 Routing
OpenJump 1.3.1 Client,desktop gis
Geoserver 2.1.0 Mapserver
Openlayers 2.8 Web client,front end
Firefox 5.0 Web browser
PL/pgSQL Procedural language

Table 3. 2:Software Applications used in system

3.2.1 PostgreSQL

PostgreSQL is a powerful, open source object-relational database system which has more

than 15 years of active development and a proven architecture because of its strong

reputation for reliability, data integrity, and correctness (PostgreSQL, 1996-2010).

PostgreSQL with the spatial addon PostGIS was chosen as the author has previous
experience with the software and it integrates easily with other software used in the

project. It was the ideal to for dataset storage, as is a free and open source application and

it easy to install and use.

PostgreSQL is a database server product when request are made to the database the server

processes the request, prepares the data and returns result to the application (Mitchell,

2005).

Listing below shows the database service is running.

erver [localhost]l: localhost
atabaze [postgresl: postgres

ort [5432]1: 5432

sername [postgresl: postgres
assword for user postgres:

sgl ¢8.4.2)

ARNING: Console code page 437> differs from Windows code page (1252
8-hit characters might not work correctly. See pzgl reference

page "Motes for UWindows users" for details.

ype "help" for help.

ostgres=H#

32

Listing 3. 1:Verifying PostgreSQL database is working properly

3.2.1.1 Standard Compliance

PostgreSQL includes most SQL which strongly conforms to ANSI-SQL:2008 standard
and has full support for subqueries (including subselects in the FROM clause), read

committed and serializable transaction isolation levels (PostgreSQL, 1996-2010).

3.2.1.2 Features

PostgreSQL runs on all major platforms. Its data integrity feature provides support for
foreign keys, joins, views, triggers, and stored procedures (in multiple languages). It

includes most SQL: 2008 data types, it also supports storage of binary large objects.

It supports compound, unique, partial, and functional indexes which can use any of its B-

tree, R-tree, hash, or GiST storage methods.

This project makes use of procedural language feature of PostgreSQL and PL/pgSQL
language was selected which installs by default within PostgreSQL

3.3 PostGIS

PostGIS is the most powerful open source spatial database which spatially enables the
PostgreSQL open source relational database management system (Obe & Hsu, 2010).
PostGIS is an extension to the PostgreSQL object-relational database system which
allows Geographic Information Systems objects to be stored in the database.

PostGIS includes support for GiST-based R-Tree spatial indexes, and functions for
analysis and processing of GIS objects (PostGIS).

It adds to PostgreSQL several spatial data types and over 300 functions for working with
these spatial types. geometry/geography types packaged in Microsoft SQL Server 2008+
do for SQL Server.

PostGis was installed for this project to stored the spatial data such that it was possible to
do interaction from openjump, openlayer and server .i.e geoserver which was used

through test face to implementation phase of this project.

33

3.3.1 Testing PostGIS functionality

Some simple tests can be done to connect to the postgis database using psql command.
The psql command lists the databases and runs scripts and also provides an interface for
typing in SQL commands and shows query results. This is done by starting psql followed
by the name of a database to connect to (Mitchell, 2005).

When psql start up tells the version of the program, gives few lines of helpful tips to start
the program and then leaves with the prompt the prompt is the name of the database

followed by =#

postgres=H “c postgis

psgl <B.4.2>

HARNIMG: Console code page ©437>» differs from Windows code page (12522
8-hit characters might not work correctly. See psgl reference
page "Motes for Windows users' for details.

You are now connected to database "postgis'.

Listing 3. 2: Verfying PostGIS functionality

ostgis=# select postgis_version{);
postgis_version

1.4 USE_GEOS=1 USE_PROJ=1 USE_STATS=1
1 rowd

Listing 3. 3: Showing the version of PostGIS

The output tells the version of PostGIS being used is 1.4 and also shows that it can use
GEOS and PROJ libraries as part of PostGIS. Proj libraries are used to reproject or
transform coordinates and GEOS is an advanced geometry engine that allows a whole

suit of manipulations and analysis of geometry data types (Mitchell, 2005).

3.3.1 Standard Compliance

PostGIS/PostgreSQL was the first open source database to support OGC compliant
spatial SQL, PostGIS supports many of the OGC/ISO SQL/MM compliant spatial

34

functions you will find in these other OGC compliant databases as well as numerous

additional ones that are unique to PostGIS.

3.3 OpenJump

OpenJUMP is an open source Geographic Information System (GIS) written in the Java
programming language (openJUMP). It is a vector GIS that can read raster as

well(SourceForge).

SQL queries can be issued and view directly from OpenJump which act as a client for
PostgreSQL/PostGIS (Lecture 4, 2010). However PostgreSQL/PostGIS queries bring a
layer into OpenJump, they do not update PostgreSQL/PostGIS (Lecture 4 ,2010).

Openjump was used through this project to perform analysis of datasets, query the

database, add layer and attribute.

3.3.1 Standard Compliance

openJUMP supports OGC standard like simple feature interface standards(SFS)
geographic markup language (GML), web map service(WMS), and web feature
service(WFS) .The openjump interface can be seen in figure 3.1. The data that can be

seen in figure 3.1 is dublin_highway1 and buildings geodir.

35

¥ OpenlUMP

File Edit View Layer Customize Tools Window Help
BN ARESQPE D XS O A

¥ Project 1

- Working
P M [¥] buidings_geadir

System

| gn e® ||]

Figure 3. 1: Openjump user interface

The installation process was very easy to perform and it is supported by windows, Mac
OS and Linux platform,it requires java 1.5 or later there is a great documentation on this
website and growing user’s community.

It can be use as GIS data viewer but has limits in reading very large data files and has

limited support for cartographic projections [Informer] .

3.4 pgrouting

This project is based on route finding, PostgreSQL/PostGIS doesn’t automatically
provides the routing functionality so pgRouting was installed for that. pgRouting is an
extension of PostgreSQL and PostGIS. It adds a geospatial routing functionality to
PostGIS (FOSS4G, 2011). pgRouting is open source available under GPLv2 license.

pgRouting includes three types of shortest path search algorithm(FOSS4G,2011):

36

e Dijkstra,
e A-Star,

e Shooting Star

As author had previous knowledge of shortest path queries using Dijkstra shortest path so

it was chosen among those three algorithms. Dijkstra algorithm is explained in chapter 4.

3.5 PL/PgSQL

PL/pgsSQL is a extension to SQL (Geschwinde & Schonig, 2001). This language initially
written by Jan Wieck offers the programmer far more execution potential than SELECT,
INSERT, or UPDATE commands.

It is a loadable, procedural language. A procedural language is a programming language
where sequence of steps are specified and followed to produce an intended programmatic
result (CMD, 1997).

PL/pgSQL is the only "PL" language installed by default for PostgreSQL so no extra
effort was required to install this language as a part of this project, but many others are
available, including PL/Java, PL/Perl, plPHP, PL/Python, PL/R, PL/Ruby, PL/sh, and
PL/Tcl(PostgreSQL, 2011).

3.5.1 Why use PL/pgSQL

PostgreSQL is compatible with all data types, operators, and functions within PL/pgSQL
code. The "SQL" in PL/pgSQL is indicates of the fact that allows to directly use the SQL
language from within PL/pgSQL code (PostgreSQL, 2011).

PL/pgSQL was chosen as because multiple SQL statements can be executed from a
PL/pgSQL code block, the statements are processed at one time, instead of the normal
behavior of processing a single statement at a time as a result, this increases the power,

flexibility and performance of the program

37

Another important aspect of using PL/pgSQL is its portability; it is platform independent
its functions are compatible with all platforms that can operate the PostgreSQL database
system.

Disadvantage is that inserting function in the database doesn’t guarantee that function can

be called (Geschwinde & Schonig, 2001).

3.6 Firefox

Mozilla Firefox is the open source web browser developed by Mozilla Corporation and
was the browser of choice during development of the prototype. Firefox, was downloaded
from http://getfirefox.com. uses the Gecko layout engine to render XHTML markup and
CSS, is currently the most W3C open standards compliant browser (Mozilla.com).

Many extensions are available in firefox to enhance its capabilities firebug version 1.7.3
was downloaded from http:/getfirebug.com . Firebug as an addon on firefox makes the web
development process much easier and quicker. With these tools, anything on the site can
be change on the fly, without editing or saving any files. So firebug provides an
invaluable aid by providing developer level debug tools such as the JavaScript and CSS
live edit feature and the ability to troubleshoot the HTTP request and response headers

when working with Geoserver for this project.

3.7 GeoServer 2.1.0

GeoServer is an Java Enterprise Edition open source software server Java that allows
users to share and edit geospatial data (Geoserver 2.1.0).

GeoServer is Open Geospatial Consortium (OGC) Web Feature Service (WFS) and Web
Coverage Service (WCS) standards, as well as a high performance certified compliant
Web Map Service (WMS).

Windows Installer version of GeoServer: geoserver-2.1.0-ng.exe was downloaded
from http://geoserver.org/display/GEOS/GeoServer+2.1.0 and set up manually.

Users can create maps in a variety of output formats, as OpenLayers which is an
integrated part of its structure, map generator will be quick and easy, and will be easy to
establish connection with traditional GIS architectures.

It easy to install and to use, it supported by many OS platform and have great document

38

support on his website, make it the perfect open source web map sever to use.
It also has a constraint for implementing extra feature on a standalone earth client; as user

will have to know java scripting language to programmatically control it.

3.6.1 Testing Geoserver

At first need to start GeoServer by going to the Start Menu, and clicking Start GeoServer
in the GeoServer folder. Then, to load the Geoserver web admin tool, the following URL

1s used:

http://localhost:8080/geoserver/web/

S —— — S
1| L filet#/CoPr.terd_ext bamd = | || T5264paperpaf (spplica.. = | |_| Web Senvices Architecture = | 82 Web Map Service | 0GCR) = | L GeoServer Demo requests = | || Geoserver ion = | 1§ SWecome x| 4|
T T ———— - | [Q- AVG Serure seurcr Pla D -
| BRAVG - O - | prominent exsrmples of web map ser v | B3 Sessch | [Page Status || EXN Mews + | 2 - () Eemail - 2 15°C- B -
¥ GeoServer : l e S
Welcome _
About & Status Welcome
48 About GeoServer
This GecSenver belongs te The ancent geographes INC. Sarvice Capabilities
pata
wes
e g wersion 2.1.0. Far mare if | o
111
Demos WFS
i
3.0
x zotero & |

Figure 3. 2: The Geoserver Web Admin Tool

To run some of the sample requests that can be used to test the installation, the
Geoserver demo page was loaded :

http://localhost:8080/geoserver/web/?wicket:bookmarkablePage=:org.geoserver.web.De
moPage

39

I Usemame

GeoServer

Demo requests

Example requests for GeoServer (using the TestServlet). Select a request from the
reguest url (and body if an xml request). Hit submit to send the request to GeoSen

About & Status
& About GeoServer

Data E i |

= i Request (WMS getMap.url hd

2| Layer Praview

SVErTTEE WFS_getFeatureBetweenCQL. url -

Demos URL WFS_getFeatureFid.url 166,508 styles=

WFS_getFeatureFidFilter.url
WFS_getFeaturelntersects-1.0xml
WFS_getFeaturelntersects-1.7.xml
WFS_getFeaturelntersects.url
WFS_getFeatureMultiFilter.url
WFS_mathGetFeature.url
WFS_mathGetFeature xml
WFS_transactionDelete xml
WFS_transactionlnsertxml
WFS_transactionUpdate. xml
WFS_transactionlUpdateGeom xmil
WMS_GetlLegendGraphic-SLD.url
WMS_GetLegendGraphic-SLD_BODY .url
WMS_GetlLegendGraphic.url
WMS_describeLayer.ur

Body WMS_featurelnfo url
WMS_getCapabilities.url
WMS_getMap.url -

m

Figure 3. 3: The GeoServer Demo page

The three tests to run are the tests that correspond with the three web map operations
that were researched and discussed in chapter 2. The tests are:

WMS getMap.url

WMS getCapabilities.url
WMS featureinfo.url

40

Test WMS getMap.url
After choosing the WMS_getMap . url test and hitting submit, the following result

displayed.

TestWfsPost (PNG Image, 550x250 pixels)

Figure 3. 4: Result of the WMS_getMap.url test

Test WMS _featureinfo.url

41

Resultzs for FeatureType 'states': .
the geom = [GEOMETRY (MultiPolygon) with 153 points]
STATE NAME = Arizona

STATE FIPS = 04

SUB_REGION Mtn

STATE LBER = A7

LAND FM = 294333.462

WATER FM = 5942.772

PERSCHS = 3665228.0

FAMTLIES = 54010&6.0

HOUSHOLD = 1368843.0

MATFE = 18106591.0

FEMALE = 1854537.0

WORKERS = 1358263.0

DREVALONE = 1178320.0

CARPCOL = 239083.0

BUBTRAHNS 32856.0

EMPLOYED 16038596.0

UNEMPLOY = 123902.0

SERVICE = 455896.0

MAWNUOAT. = 18510%9.0

P MALE = 0.494 i

P FEMALE = 0.506

SaMP POF = 468178.0 -

e

m

Figure 3. 5: Result of the WMS_getCapabilities.url test

42

—<WNMIS_Capabilities version="1.3_0" updateSequence="108"

xsi:schemal.ocation="http/www opengis net'wms hittp:/localhost:8080/geoserver
/schemas/wms/l 3 0/capabilities 1 3 0xsd">
—<Service>

<Name>WMS</Name>
<Title>GeoServer Web Map Service</Title>
—<Abstract>
A compliant implementation of WMS plus most of the SLD extension (dynamic
styling). Can also generate PDF, SVG, KML, GeoR5S5S
</Abstract>
—<KeyvwordList>
<Kevword>WFS</Kevword>
<Kevword=WMS</Keyword>
<Kevword>GEOSERVER</Kevword>
</KeywordList>
<OnlineR esource xlink:tvpe="simple"
xlink:href="http://geoserver sourceforge net’html/index php"/>
—<ContactInformation>

— =l b D wnm o an D aviann o™

T I

3.7

Figure 3. 6: Result of the WMS_getCapabilities.url test

OpenLayers

The traditional front-end technologies of HTML and CSS are used to generate content

along with OpenLayers. OpenLayers is an open source, clientside JavaScript project that allows

the connection to any OGC, WMS or WFS web compliant service, such as GeoServer

(OpenLayers). According to the Hazzard (2010) openlayer allows to make interactive

web maps, viewable in nearly any web browser.Since it is a client side library, it requires

no special server side software or settings it can be used without even download

anything.

43

3.7.1 Openlayers and web mapping

OpenLayers is client side mapping library. The figure below is Client/Server model
which is the core of how all web applications operate. In the case of a web map
application, some sort of map client (e.g.,OpenLayers) communicates with some sort of

web map server (e.g., geoserver)

Sener Side

Client Side Web Map Client

Figure 3.7: Client/Server Model

3.7.1.1 Web map Client

OpenLayer as a client handles to ask a mapserver what a user wants to look at and all this
is possible through asynchronous JavaScript (AJAX) calls to a map server. OpenLayers
sends requests to a map server for map images every time a user interact with the map,
then OpenLayers pieces together all the returned map images so it looks like one big,

consistent map.

3.7.1.2 Web map Server

A map server (or map service) provides the map itself. There are many different
mapserver backends. For example WMS, Google Maps, Yahoo! Maps, ESRI ArcGIS,
WES, and OpenStreet Maps. With OpenLayers, user can use as many different backends
for map server. For this project I am using OGC, WMS server. However the basic
principle behind all those map service is that they allow to specify the area of the map the
user is interested in by sending a request, and then the map servers response by sending
the map image. OpenLayer is not a web map server; it only consumes data from them. To

work with map server using OpenLayers just supplying a URL in it is enough.

44

3.8 Summary

There are many different options that can be used for each component of the GIS.

However a GIS will always contain an integration of hardware, software, data and

procedures.

45

Chapter 4 Routing Algorithm

There are many options for routing algorithm. This chapter explains the routing algorithm

chosen for this project.

4.1 Shortest Path Dijkstra

Dijkstra's algorithm, developed by Dutch computer scientist Edsger Dijkstra in 1959 is
often used in routing. It is a graph search algorithm that solves the single-source shortest
path problem for a graph with non negative edge path costs, outputting a shortest path
tree (Sutskever, 2008).

A path from a source vertex v to a target vertex u is said to be the shortest path if its total
cost is minimum among all v-to-u paths. Dijkstra’s algorithm is based on the following
assumptions (Chen,2003):

e All edge costs are non-negative.

e The number of vertices is finite.

e The source is a single vertex, but the target may be all other vertices.

4.2 Principle of the algorithm

The graph is made of two entities vertices or nodes, and edges which link vertices
together. Edges are directed and have an associated distance, sometimes called the weight
or the cost. The distance between the vertex u and the vertex v is noted [u, v] which is
shown in figure 3.1and is always positive (Renaud Waldura,2007) .

Dijkstra's algorithm defines vertices in two distinct sets, the set of unsettled vertices and
the set of settled vertices. A vertex is considered settled, and moved from the unsettled
set to the settled set, once its shortest distance from the source has been found. Initially

all vertices are unsettled, and the algorithm ends once all vertices are in the settled set.

[uv] =5 [v.w] =3
[wu] =2

Figure 4. 1: Dijkstra shortest path algorithm example

46

4.3 Example

According to Wladura (2007) the following data structures are used for this algorithm.
d stores the best estimate of the shortest distance from the source to each vertex.

n stores the predecessor of each vertex on the shortest path from the source.

S the set of settled vertices, the vertices whose shortest distances from the source have
been found

Q the set of unsettled vertices

Figure 4.2 shows the graph of Dijkstra shortest path algorithm starting at the source

vertex a.

Figure 4. 2 Initialisation in Dijkstra shortest path algorithm with source vertex a

First iteration is done by adding source vertex a to the set Q. Q isn't empty, its minimum

is extracted, a again. Then a is added to S and its neighbour is relaxed.

47

Figure 4. 3: First Iteration

Vertices adjacent to a, are b and ¢ (in green in figure 3.3). At first the best distance
estimate from a to b is computed. d(b) was initialized to infinity, therefore the calculation

will be :

d(b) =d() + [a,b] =0+ 4 =14
7(b) is set to a, and b is added to Q. Similarily for ¢, d(c) is assigned to 2, and z(c) to a.

Now Q contains b and c¢. As seen in figure 3.3, ¢ is the vertex with the current shortest
distance of 2. It is extracted from the queue and added to S, the set of settled nodes. Then

the neighbours of the c, a, b and d are relaxed.
4 1

./“‘“/\

3 1 d

N o~

) 5

Figure 4. 4: Second Iteration

a is ignored because it is found in the settled set.The first pass of the algorithm had
concluded that the shortest path from a to b was direct. But when looking at c's neighbor

b, shorter path going through c exits between a and b i.e.

d(b) =4 >d(c) + [c,b] =2 +1 =3
d(b) is updated to 3, and z(b) updated to c. b is added again to Q. The next adjacent

vertex is d, which haven't covered yet. d(d) is set to 7 and #(d) to c.

48

The unsettled vertex with the shortest distance is extracted from the queue, it is now b. It

is added to the settled set and its neighbors ¢ and d are relaxed.

Figure 4. 5: Third Iteration

c 1s skipped because it has already been settled. But a shorter path is found for d:

dd) =7 >d(b) + [b,d] =3 +1 =14
Therefore d(d) is updated to 4 and 7n(d) to b. Then d is added to the Q set.

At this point the only vertex left in the unsettled set is d, and all its neighbors are settled.
The algorithm ends. The final results are displayed in red below in figure 3.6:

e 1 - the shortest path, in predecessor fashion

e d - the shortest distance from the source for each vertex

Figure 4. 6: Fourth Iteration

49

4.4 UML for Dijkstra’s shortest path algorithm

Figure 4.7(a) and 4.7(b) corresponds the UML class diagrm for dijkstra’s shortest path
algorithm. UML class diagrams are used to describe the static view of an application
(Rumbaugh et al. 1999): the main constituents are classes and their relationships. A class
is a description of a concept, and may have attributes and operations associated with it
(Purchase et al. 2001).
Here the class diagram are represented with boxes which contain three parts

e The upper part holds the name of the class.

e The middle part contains the attributes of the class.

e The bottom part gives the methods or operations the class can take or undertake.

GraphConstants Edpe
IMFIRITY Infeger node - GraphMode
cost | Integer

==raales= Edge(nodeTa | GraphMode, cost | Inbegen)
Qethoded) : GraphMNode
el Costl | Irdeger

Dijkstra

graph - Graph
whrinrityy * GraphhndgPriory Quesue
distance | Hashtable

1 Q PriartyQue
==traale== Dijketralp - Graph) e s S

GraphiModePriontyQ usue

gof) void ==zgraale== GraphModaPriority Queue)
Prird SlatusCiPriorky Q4 : void addin - GraphMode) - void
addinodeCallection . Coleckion) | void
TasiDijkstra hasM ore() - Boolean

removel) | Graphiode
updateGraphModeDistancein . GraphMode) | void

tnan{aids . Stringl | void PrimConterts() . void
R Sthing) . void

Figure 4. 7(a) UML for Dijkstra’s shortest path algorithm(Lecture 6,2011)

50

Graphiode

nodeCownt ; int
oulGongEdges . ArayList
val : Biring

10 Integer

visiied - boolean
distance : Infeger

==cf@ale== GraphMode(vaue | 5ring)
==cragle== GraphModa(
inilinoday al | Sring) © void

prim © woid

selfistedivisled | boolean) - vaid
AddDulgoingEdpainode | GraphMode cosl | Integer) | void
el DulGoingEdges]) @ ArrayLisl
getval . Slring

safalival | String) - void

eIl © Infeger

compareTo(agl | GraphMode) | int
getDistance]) Integer
selDistanceldistance | Integer) - vaid

Figure 4. 7(b) UML for Dijkstra’s shortest path algorithm(Lecture 6,2011).

4.5 Function
The Dijkstra shortest path algorithm is implemented as shown in Listing 3.1.The shortest

path function has the following declaration (pgRouting, 2011).

CREATE OR REPLACE FUNCTION shortest path|

=gl text,
source id integer,

target id integer,
directed boolean,
has reverse cost

boolean)
RETURNS SETOF path result

Listing 4. 1:Shortest path function declaration

4.6 Arguments (Input)

A sql query should return the set of the column with the following columns(pgRouting,
2011).

SQL: SELECT gid, source, target, length FROM
dublin_highwayl;

51

testdbh=# SELECT gid. source, target, length FROM dublin_highwavyl;
gid | source | target | length
11 11 2 1 8065.43884257229
il 13 | 14 | 3992.76AB88836A37
8 1 i5 | 16 | 122 311192867977
21 17 1 18 | 14.1815912173981
ia | 19 1 280 | 66.467752121359%4
i1 | 21 1 22 1 16.5825862115612
12 | 23 1 24 | 186 .825A36781141
13 | 25 | 26 1 3J68.782985A11811
14 | 27 1 28 1 29.5%661372136787
i5 | 29 1 28 1 138.413531476338
i6 | ia i ch 475 41876238508
17 4 321 331 56.3397853724588

Listing 4. 2: Verfying all of the arguments from shortest_path function are displayed as a result of
guery from road data dublin_highway1

e id: an int identifier of the edge

e source: an int identifier of the source vertex

e target: an int identifier of the target vertex

e cost: an float8 value, of the edge traversal cost. (a negative cost will prevent the
edge from being inserted in the graph).

e reverse cost (optional): the cost for the reverse traversal of the edge. This is only
used when the directed and has_reverse cost parameters are true (see the above

remark about negative costs).

source_id: int id of the start point

directed: true if the graph is directed

has_reverse_cost: if true, the reverse cost column of the SQL generated set of rows will

be used for the cost of the traversal of the edge in the opposite direction.

52

4.6 Output

The function returns a set of rows. There is one row for each crossed edge, and an
additional one containing the terminal vertex. The columns of each row are(pgRouting,

2011):

o vertex id: the identifier of source vertex of each edge. There is one more row
after the last edge, which contains the vertex identifier of the target path.

e edge id: the identifier of the edge crossed

e cost: The cost associated to the current edge. It is O for the row after the last edge.
Thus, the path total cost can be computated using a sum of all rows in the cost

column.

4.7 Query examples

This query examples is based on the open street map road data named dublin_highway1.

estdbh=# SELECT * FROM shortest_path{’
estdbh’# SELECT gid as id.

estdbh’# source::integer.

estdb’#f target::iinteger.

estdbh’# length::doubhle precision as cost
estdb’# FROM dublin_highuwayl’ .,

estdbh(it 434, 12348, false. falsel;

Listing 4. 3: Verifying shortest_path function query successfully runs in psql

Output from the shortest path function query is shown in listing 4.4

testdh<#t 434, 12348, false,. falsel;
vertex_id | edge_id | cost

434 | 223 | 20.5853994168966
435 | 83380 | 167.215846445198
12851 | 8261 | 352.8110802783644
12655 | 8068 | 220.913699536223
12348 | -1 1 a

5 rows?

Listing 4. 4: Output from the shortest_path function query

53

4.8 Summary

This project uses Dijkstra shortest path algorithm. Dijkstra shortest path algorithm slove
the single source shortest path algorithm for a graph with non negative edge path costs.

So this project also only returns the shortest path from the single source route.

54

Chapter 5 Loading data, setting data for routing and
putting postgis data into Geoserver

This chapter explains about how the data was loaded and stored in spatial database which
is a part of procedures in GIS and the system integration between PostgreSQL/PostGIS
,openJump, Geoserver and openlayer. The figure 5.1 shows the overview of system

integration.

PostResponse

(I select Festures (\\-‘y\

i =
A _,_:—H—'_
- Y

reinfoi
Gethlap

GetRegust .
L e it GetCepabilities

Web festure and Web map serace layer

Figure 5. 1:Overview of system integration

5.1 Loading Data

The streets use OSM data from CloudMade.The OSM data was transformed to Irish
National Grid (IGN).The buildings are a subset of the Geodirectory from An Post
originally in IGN. The road data and buildings data are loaded to postgresql using “psql”

SQL terminal monitor(Postgis manual) from the command prompt.
psql -d testdb -U postgres -f dublin_highwayl.sql

psql -d testdb -U postgres -f buildings_geodir.sql

—-d name of the database

-U (user)

55

The username to use when connecting to database
-f (file name)

The table named buildings geodir contains the following attributes

testdbh=# “d buildings_geodir
Tabhle 'public.buildings_geodir"

Column i Type Modifiers

gid integer i not null default nextval{’'buildings_geodir
| gid_seq’ = :regclass)

building_i higint

group_id bigint

thorfare_i higint

post_touwn_ bigint

data_src_1i bhigint

changed_da character varying<8>

presort_id higint

postaim_id bigint

ed_id bigint

name character varying<4@>

character varying<4a

no
building_u character varyping<l)

derelict character varyingtl)
vacant character varying<l)
invalid character varyingtl)

under_cons character varying<l)

. E EE EE EE EE R e R R EE EE e mE O mE mm e mm mmme mm L =

residentia bhigint

commercial higint

county_id bigint

tland_id bhigint

east numeric

north numeric

locality_1i bigint

secondary_ bhigint

veprified character varying<l)
itm_east numeric

itm_north numeric

guality_co character varyingtlh?
create_dat character varying<8>
the_geom geometry
Indexes:

"huildings_geodir_pkey" PRIMARY KEY, btree <(gid?
Check conztraints:
"enforce_dims_the_geom” CHECK (st_ndims<{the_geom}» = 22
“"enforce_geotype_the_geom" CHECK {geometrytype{the_geom) = *POINT’::text OR
the_geom IS NULL>
“"enforce_srid_the_geom'" CHECK {(st_srid{the_geon)> = 29988>

Listing 5. 1: Verifying successful data imports to postgis

Listing 5.1 shows the attributes in the buildings geodir table. Each column is listed and
shows the datatype that each column can hold. PostgreSQL database can handle all these
types without PostGIS , except for the geometry data.

Only one column in the table contains geometry data and can be seen in the listing that it
is of type point geometry: the the geom column has geometry listed as its type:

The geom| geometry

56

The table named dublin_highway1 containing road network data has the following
attributes

Table "public.dublin_highwayl™
1

postgiz=# “d dublin_highwayl

Co 1lumn i Type Modifiers
gid i integer i not null default nextvald{'dublin_highwayl
| gid_seq’ ::regclass)
_ gid ! bigint i
gid i character varying<5> |
gid i character varying<5> |
gid | character varying<h> |
type i character varying<13> |
name i character varying<34> |
oneway | character varvingt4> |
the_geon i geometry H
Indexes =

"dublin_highwavyl_pkey' PRIMARY KEY. btree (gid>
Check constraints:
"enforce_dims_the_geom'" CHECK (st_ndims<(the_geom>» = 2>
"enforce_geotype_the_geom' CHECK {geometrytypetthe_geom? = ‘MULTILIMESTRING’
titext OR the_geom IS5 HNULL>
"enforce_sprid_the_geom'" CHECK <(st_srid<(the_geom) = 29984>

Listing 5. 2: Verifying successful data imports to postgis
Listing 5.2 shows the attributes in the dublin_highway] table. Each column is listed and

shows the datatype that each column can hold.PostgreSQL database can handle all these
types without PostGIS , except for the geometry data.

Only one column in the table contains geometry data and can be seen in the listing that it
is of type MULTLINESTRING geometry: the the geom column has geometry listed as
its type:

The geom| geometry

The network data dublin_highway1 provides the following information

e Road link id(gid)
e Road type(for ex primary, secondary,tertiary)
¢ Road name(name)

e Road geometry(the geom)

57

However this data allows to display the road data as a PostGIS layer for example in
openJump which I am using for this project. But for the routing function to work the
network data should contain a network topology information. The steps for creating

network topology is explained in section 5.2

5.2 Setting data for pgrouting

After the data is imported in spatial database usually requires one more step for
pgRouting to work. For pgRouting to work edges table should contain the network
topology or connectivity information data should provide the network topology which
consists of links to source and target id each. So first source, target and length column is
added as shown in listing 5.3 and then the assign vertex id function is ran. This function
assigns a source and a target ID to each link and it can “snap” nearby vertices within a

certain tolerance.

ALTER TABLE dublin highwayl ADD COLUMN source integer;

ALTER TABLE dublin highwayl ADD COLUMN target integer;

ALTER TABLE dublin highwayl ADD COLUMN length double
precision;

Listing 5. 3: shows that the table was successfully altered. Now road data contains source , target and
length column

58

testdh=# “d dublin_highwayl
Tabhle '"public.dublin_highwayl™

Column i Tupe Modifiers
gid i integer i not null default nextvald(’dublin_highuayl

| gid_seq’ = :regclassd

_qgid i bhigint i

gid | character varying¢hly |

gid i character varying(s> |

gid | character varying<h> |

type i character varying(i3d>» |

name | character varyingCld> |

oneway i character varyingd4d |

the_geom | geometry H

source i integer i

target ! integer H

length i double precision i

Indexes:

"dublin_highwayl_pkey' PRIMARY KEY. bhtree <(gid>

"geom_idx" gist (the_geoml

"source_idx" btree C(sourcel

“"target_idx"" btree (target)
Check constraints:

“"enforce_dims_the_geom'" CHECK {(st_ndims{the_geom> = 2}

"enforce_geotype_the_geom' CHECHK <geometrytype(the_geom?» = ‘MULTILINESTRING’
iitext OR the_geom IS NULLY»

"enforce_srid_the_geom'" CHECK <st_srid{(the_geom) = 29788>

Listing 5. 4: Verfying table dublin_highwayl was successfully altered adding source, target and
length column

After this step assign_vertex_id function was ran to create network topology in
dublin_highwayl table containing road data. Listing 5.5 shows that the
assign_vertex_id was successfully run to create network topology(connectivity

information).

Lkestdb=% s=select gagign vertex id('dublin highwayl®, cast (1.5 as
float), 'BhE.dS

om', 'gid'h;

HNOTICE: CREATE TABLE will create implicit sequence

5ial colum "Yerkies. MR id"

CONTEXT: 35QL statement "CREATE TABLE wyertices . rmp (id serial)”

FL/pg3QL function "gg3ign vertex id" line 14 at EXECUTE statement
) i

Ok

(1 row)

59

Listing 5. 5: Verfying the network topology was successfully created in psql
For dublin_highway1 table

After these steps testdb database looks like this:

public ! vertices_tmp ~ i tahle
public | vertices_tmp_id_seq i segquence

ﬁustﬁres

1
1
i postgres

Listing 5. 6: Verifying the network topology was successfully created

The following SQL command populates the “length” field which will be used as the edge
cost in the network topology.

UPDATE dublin_highwayl SET length = length(the_geom);

Test the lengths have been calculated

estdb=# zelect length{the_geom? from dublin_highwayi:
length

8865.43884257229
399.76A8888366A39
122,311 22867977
14_16815912173981

Listing 5. 7: Verifying the lengths column has updated successfully

5.2.1 Add indices

Adding indices speeds up the data access so it improves the query performance. This is
done using the CREATE INDEX command . The command to create an index for the
geometry in the dublin_highway1 table looks like this.

CREATE INDEX gource idx ON dublin highwayl (source);

CREATE INDEX target 1dx CH dublin highwavl (target);

CREATE INDEX geom idx ON dublin highwayl TUSING GIST (the oeom
GIST_GEOMETRY OFS5):

Listing 5. 8 Command to create index for the geometry
The source_idx, target idx and geom. idx is used for the name of the index. The second
parameter dublin_highway1 is the name of the table for which indexes are being created.
The field that hold geometry data is identified as the geom. The rest of the command
consists of keywords needed for indexing functions to run and must be used as shown

(Mitchell, 2005).

60

5.3 Example of Spatial SQL queries

rustgis=ﬂ zelect sum{ST_Length{the_geom}>-108A As km_roads FROM dublin_highwayl ;

kn_roads

4337 _88288135471
1 rowl)

This spatial query is selecting the total length of the roads in dublin_highway1 table,

expressed in kilometres.

ostgis=# select count<*) from buildings_geodir;
count

ifze
(1 rour

This query reports the number of features in the buildings geodir table

estdb=# SELECT count<{distinct gid>» FROM buildings_geodir;
count

1635
1 rowd

This query counts the total number of distinct buildings in buildings_geodir table.

gid ='1375%' and contains{(huffer{r.the_geom. 38> . h._the_geom);

restdh=ﬂ SELECT r.name FROM dublin_highwayl as ¥, buildings_geodir as b WHERE b
name

Kevin Street Louwer
(1 vowd

This query is selecting the road name in dublin_highwayl table which is within 30 m
distance from the buildings with gid ‘1375’ in buildings_geodir table. So two table are
joined together pair at time using topology and set comparison operator ‘contains’

and spatial analysis operator ‘buffer’.

61

estdb=#f select source from dublin_highwayl wvhere name= 'Kevin Street Lower’;
SOuUrce

12348
1 row)

This query is selecting the source of the road named ‘Kevin Street Lower’ in

dublin_highway]1 table

estdb=# select source from dublin_highwayl where name= ‘Mercer Street’;
SOUFrCEe

This query is selecting the source of the road name ‘Mercer Street’ in dublin_highwayl

table which returns three source as an output

5.4 Putting PostGIS data into Geoserver

There is a certain order to which data must be loaded to GeoServer. First a workspace

must be created, then the data store and finally the individual layer must be loaded.

Workspace
Data Store
Layer 1 Layer 2 Layer 3

Figure 5. 2: Geoserver datastorage

Stepl: Login to GeoServer

The defaults are username=admin, password=geoserver.

62

Step2: Create Workspace

Workspaces is a container which is used to organise layer. A Workspaces consists of a
name and a Namespace URI In GeoServer, a workspace is often used to group similar
layers together. Individual layers are often referred to by their workspace name, colon,
then store. (Ex: topp:states) Two different layers having the same name can exist as long

as they exist in different workspaces. (Ex: sf:states, topp:states) (Geoserver,2009).

New Workspace

Configure a new workspace

Name

|Ire|and

Namespace URL

Ihttp:ﬂww.apenplans.urgfsushma
The namespace uri associated with this workspace

Default Workspace

[

Submit Cancel

Figure 5. 3Adding new workspace Ireland

After clicking submit the newly created workspace appears as follows:

Workspaces

Manage GeoServer workspaces
& Add new workspace
& Remove selected workspace(s)

Results 1 to 8 (out of 8 tems) - Sea

[wWorkspace Name default
[Ireland

Figure 5. 4: Workspace view

63

Step 3: Add new store

A store connects to a data source that contains raster or vector data. A data source can be
a file or group of files such as a table in a database, a single file (such as a shapefile), or a
directory (such as Vector Product Format library). The store construct is used so that
connection parameters are defined once, rather than for each piece of data in a source. As
such, it is necessary to register a store before loading any data.

Select Stores | New data source | PostGIS then the form was filled out as follows;

New Vector Data Source

Add a new vector data source

PaostGIS
PostGIS Database

Basic Store Info
Workspace *

Ireland |E|

Data Source Name ¥

dublin_highway1
Drescription

Enabled

Connection Parameters
host *
localhost

port *
5432

database
testdb

schema

public

user ¥

postgres
passwd

Hamespace *
http:/ [www.openplans.org/ sushma

=1

Listing 5. 9 Filling out the form for the new data source

64

On Saving was presented with a list of all the tables in the testdb database

New Layer
Add 2 new layer

You can create 2 new festure type by manually configuring the attribute names and types. Create new feature type...
On datsbases you can also create 2 new festure type by configuring a native SQL statement. Canfigurs new SQL v
Here is a list of resources contained in the store 'dublin_highay1'. Click on the layer you wish to configure

Results 1 to 18 (out of 18 items) . Search
Published Layer name
buildings_geodir Publish
builidingl_building2 Publish
county Publish
department Publish
dijsktra_result Publish
dublin_eds Publish
dubdin_highway1 Publish
dublin_historical Publish
dublin_routs Publish
edges Publish
employes Pukblish
find_routs Publish
rec Publish
routs Publish
routel Publish
route? Publish
route 1 Publish
wertices_tmp Publish

Figure 5. 5: Layer view

Step 4: Publish
Clicked on publish for dublin_highway1
Then it returned detailed layer information for the dubl in_highway1l table/layer.

65

Coordinate Reference Systems

Native SRS
|EF’SG:29’QDD EPSG:TMSS [Irish Mational Grid...
Declared SRS
|EF’SG:29’QDD Find... |EPSG:TM&S (Irish National Grid...
SRS handling
Force declared IE'

Bounding Boxes

Native Bounding Box

Min X Min ¥ Max X Max ¥
|29?.?3D.3?5 |2‘I?.955.328 330,136.625 |260,573.453
Compute from data

Lat/Lon Bounding Box
Min X Min ¥ Max X Max ¥

6538 53.196 -6.026 53,526
Compute from native bounds

Figure 5. 6 Computing bounding boxes in Irish National Grid

Figure 5.6 shows system computing the bounding boxes by clicking on “Computer from
data” and “Compute from native bounds”.
When clicked Save, got:

Layers

Manage the layers being published by GeoServer
& Add a new resource
&) Remove selected resources

Results 1 to 1 (out of 1 matches from 21items) 4 dublin_highway1|

] Type Workspace Store Layer Name Enabled? Native SRS

[% Ireland dublin_highway1 dublin_highway1 L EPSG:29900

Results 1to 1 (out of 1 matches from 21 items)

Figure 5. 7 Result after the coordinate system was set to Irish National Grid(29900).

66

Again the step3 and step4 was repeated to add the buildings data to GeoServer but this
time Data Source name is buildings geodir.

Step5: Add a layer group
This step was done to display the road table and buildings table together

New Layer Group

Add & new layer grouping

Hame

highwaybuildings

Bounds

Min X Min ¥ Max X Max ¥
[207.730.375 [217.955.328 [330.136.625 [260.573.453
Coordinate Reference System

|EPSG:2990EI Find... | 2PSG:TMES / Inish MNasional Grid...
Generate Bounds
=) Add Layer...
Layers
Position Layer Default Style Style Remove
Ireland:dublin_highway 1 Ol line =)
| Ireland:buildings_geodir | paint (=)

Results 0 to 0 (out of O items)

Sawve Cancel

Figure 5. 8 Adding two different geometry table in one group name highwaybuildings

By viewing the highwaybuildings group map in Layer Preview selecting OpenLayer
format got both data were displayed as shown in figure

67

Scale =1 : 595K 315015.72778, 24792471277
Click on the map to get feature info

Figure 5. 9 Displaying group map in openlayer format

Figure 5.9 shows the both data dublin_highway1 and buildings geodir from postgis
spatial database were successfully integrated with GeoServer.

5.5 Summary

Creating a GIS involves integrating multiple technologies. Each of these has to be
configured to communicate with each other to allow automated flow of data throughout
the system.

68

Chapter 6 Code

The main aim of this project is to find route from one building to another building using
PostgreSQL/PostGIS ,initially display the routes in OpenJump and then display the routes
using openlayers. I have already explained how the data were loaded in database. Now
this chapter explains the languages that were used in this project to meet the main

objectives of this project.

6.1 PL/pgSQL code

PL/pgSQL programming language was used to put the queries together. By using this
language first the small function named as find nearest road was created and this
function was passed as a variable in another function named find route which is

described in section 6.1.2.

6.1.1 find_nearest_road function

1 CREATE OR REPLACE FUNCTION find nearest road(gid int, out nearest_road int)
2 AS

3 £% —— dollar guoting approach

4 DECLARE

£ BEGIN

nearest_road =(select h.source from dublin highwayl as h, buildings geodir as b where
8 b.gid = gid and contains(buffer(h.the geom,), b.the geom) order by source LIMIT b
E —-—end of the block structure

10 END ; £% LANGUAGE plpgsgl

Listing 6. 1:find_nearest_road function

Line 1 Creates the function named find nearest road and states its argument gid as
integer and states the OUT parameter named nearest road of type integer. This OUT
parameter allows to return outputs from a function without having to declare a
PostgreSQL type as output of the function.

In Line 3 the dollar sign represents the dollar quoting approach. Dollar quoting approach
is used beacause ‘CREATE FUNCTION’ call that creates the PL/pgSQL function is

specified as a string literal. If the string literal is written in ordinary way with single

69

quotes, then any single quotes inside the function body must be doubled; likewise any
backslashes must be doubled. In dollar quoting approach there is no need to double any
quote marks.

In Line 7 and Line 8 “SELECT” clause selects desired column source from table
dublin_highway1

--“WHERE” clause specifies the required condition for rows here the condition is
buildings gid from the table buildings geodir which should match with the argument gid
at the time of function call

--This query involves spatial join between two tables

--spatial join is done between two spatial table dublin_highway1 and buildings geodir
--spatial predicate “Contains” is used for spatial join to test wheather the
dublin_highwayl geometry contains another geometry buildings geodir

--spatial operator “Buffer” is used to buffer within the 30m of the building with gid and
then finally through this query find nearest_road function returns the source of the road

order by source and limiting the result to return only one row

After calling this function passing building gid as an argument find nearest road in psql
shell returns the source of the road from the dublin_ighway]1 street table. Listings below
shows the function find nearest road returning the source 12348 and 433 of the buildings

with gid 1375 and 59 respectively

estdb=# select find_nearest_road<{1375>;
find_nearest_road

12348
1 rowd

Listing 6. 2 calling find_nearest_road function with gid as argument

estdb=# zelect find_nearest_road<{59>;
find_nearest_road

433
1l rouwd

Listing 6. 3 calling find_nearest_road function again with another gid as argument

70

6.1.2 find route function

CREATE OR EEPLACE FUNCTION find route(source building gid int,

L RS e

~END ;
£z

LANGUAGE plpgsgl !

target building gid int, OUT INTEGEE, OUT INTEGER,QUT FLOAT)

g RETURNS SETCF record

5 AS

& £

8 DECLARE

g 2 int := find nearest road(scurce building gid):
11 f int := find nearest_road(target_building gid):’
12

15 [FBEGIN

16

17 [HERETURH QUERY (SELECT * FROM shortest path
138 [C("SELECT gid as id
20
21 source: :integer
22
23 target::integer
24
25 length: :double precision as cost
26
27T " FROM dublin highwayl', = , £, fal=e, false)):;
28
25 ——end of the block

[TV =

Listing 6. 4 find_route function
In line 1 and 2 CREATE FUNCTION call creates the PL/pgSQL function in the
PostgreSQL database. --This CREATE FUNCTION command names the new function
find route, states its argument source building gid and target building gid as integers

types, OUT parameter allows to return outputs from a function without having to declare

71

a PostgreSQL type as output of the function.The function's main code block then starts

with a declaration section.

Line 4 defines return type which is set of record, “RETURNS SETOF record” returns
the multiple rows
Line 9 and 10 declares the variable as int and another PL/pgSQL function find nearest

_road function is assigned as a variables within this function

Line 17 to 27 -- return query returns out value of the function through Dijkstra shortest
path core function
--source and target ids are vertex ids

--source and target is cast into integer and length to double precision
--s and f'is passed as variable which came from declaration section

--false,false means has_reverse cost is set to false

After calling this function find nearest road in psql shell got the shortest path between
the two buildings with gid 1375 and 59 .

testdb=# select * from Find_routef1375.5%2>;

columnl § column2 | column3

12348 | 8857 | 247._.737584252945
12654 | 8286 | 219_425248073402
12992 | 8613 | 123.6Y1322795878
13192 | 8699 | LL_ 2201869018148
13433 | 8734 | 186.426985819356
433 | -1 1 a

Ch rowsl)

Listing 6. 5 calling the find_route function with two different gid as arguments
e Then the view was created to see the shortest path between buildings with gid 1375

and 59. Listing below shows how the view was created in psql shell.

72

testdb=# CREATE OR REPLACE UIEY route AS <

testdb{#f SELECT = FROM shortest_path ('

testdb’# SELECT gid as 4id.

testdbh’'#f source::integer.

testdb’'#f target::iinteger.,

testdbh’'# length::doubhle precision as cost

testdb’'#f FROM dublin_highwayl’ 12348 , 433 | false. falsel>;

CREATE UIEUW

e - JL 8

e The view was then can be viewed from the OpenJump and for that the following
query was passed from the OpenJump query tool

select asbinary(h.the _geom) from route r, dublin_highwayl h where h.gid = r.edge id;

3 , Working L) ‘E) : : .,i:un) T .
| route r, dublin_highwa . g " : a Lh
e L . - .
[[] route r, dublin_highwa . - = == = E P " . :m.,n}
L] L]
W duiblin_highway 1.) ", .
L]]
i e [[V buildings_geodir ::d::ﬂ’ n - . q.: fa g
B m B
o | System I . ﬂ:‘ CEoon E B o . un
. . L] .]
L] : "] L] -
a L] m B
am " j - Dn nunu b
" E o R
= e
B a LI ﬂu
E%] E " "
L]
L] . ﬂn o - " L]
L] L] = 1 . L] -] a
EmE g,
E 5 me pog [] a
Ta - " m 2: . 4 m - :?r
?auﬂ = "o g% o § .
a L] = %ﬂ Ié L] L]
la' - " % L a

Figure 6. 1:showing the the shortest path between two buildings with gids 1375 and 59 in OpenJump.

6.2 OpenLayer Code
This section explains interface design code. It includes HTML, CSS and javascript code.
JavaScript was selected as it’s provides functionality need to keep track of mouse

position or capture when someone clicks the mouse, or execute something when the page

is fully loaded.
Therefore JavaScript was used in conjunction with OpenLayer API to load the map and

enable user interaction.

73

<div id="map" ></div>
This <div> element will serve as the container for map viewport..

<style type="text/css" >
#map {

width: 500px;

height: 500px;

border: 1px solid black;
}

</style>

In this case, we’re using the map containers value as a selector, and map is specified with
the width (512px) and the height (256px) for the map container and 1 px for the border.

<script src="openlayers/OpenLayers.js" ></script>

This includes the OpenLayers library. The location of the file is specified by the
src='openlayers/OpenLayers.js' attribute. Here, I am using a relative path. As the
index.html page is in the same folder as the OpenLayers.js file

An absolute path can also be used that is it can be pass in a URL that the script is located
at. OpenLayers.org hosts the script file as well; the following line of code can be used to
link to the library file directly:

<script type="text/javascirpt' src="http://openlayers.org/api/

OpenLayers.js™></script>

The advantage of using absolute path is that you do not need to maintain a local copy of
the JavaScript library on your own web server ensuring that you always have the most
up-to-date product on offer. The disadvantage of this is that you must always have
internet connectivity to access their functionality. So I have chosen to use the localcopy

for this project.

<script> starts a block where all our code is set up inside it to create map.
var map;

global variable called map is created. In JavaScript, anytime a variable is created it is

needed to place var in front of it to ensure that we don't run into scope issues (what

74

functions can access which variables). When accessing a variable, no need to put var in

front of it.

<!----init() used to initialize the map using the onload="init” in the body of the HTML
page, therefore telling the web browser to run this function at the same time as the
webpage body is loaded---1>

function init(){

// creates a new openlayers.Bounds object, Bound sets the geographic limit of the display
layer
var bounds = new OpenLayers.Bounds(
297730.375, 217955.328,
330136.625, 260578.453

);

//In this example, we set some custom map options. First, we set controls: [new
OpenLayers.Control.PanZoom() ,],

Next the map units to "m" for meters was set, and projection was set in 29900 Irish
national grid .

var options = {
controls: [new OpenLayers.Control.PanZoom() ,],

maxExtent: bounds,
maxResolution: 166.49658203125,
projection: "EPSG:29900",

units: 'm'

// ' The OpenLayers.Layer. WMS constructor requires 3 arguments and an optional fourth.
dublin = new OpenLayers.Layer. WMS("dublin historical" ,

"http://localhost:8080/geoserver/wms?" ,

{layers: 'Ireland:buildings_geodir', transparent:true});

75

The first argument, "dublin™, is a string name for the layer. This is only used by
components that display layer names (like a layer switcher) and can be anything of

choosing.

The second argument, "http://localhost:8080/geoserver/wms?" is the string URL for a
Web Map Service.

The third argument, {layers: “lreland:buildings _geodir"} is an object
literal with properties that become parameters in our WMS request. In this case, we’re
requesting images rendered from a single layer identified by the name

"Ireland:buildings_geodir-.

//add layers to the map can be done together but here I have done it separetly

map.addLayer(counties);
map.addLayer(dublin);
map.addLayer(start);
map.addLayer(stop);

// support GetFeaturelnfo
<! Capture mouse events and pass request to function to be execute, so that an
user can click on the map to get map information of the area of interest !>

map.events.register(‘click’, map, function (e) {

//define the result of getfeaturelnfo, the parameters are listed below
var params = {
REQUEST: "GetFeaturelnfo",
EXCEPTIONS: "application/vnd.ogc.se_xml",
BBOX: map.getExtent().toBBOX(),
X: e.Xy.x,

76

Y: e.xy.y,
INFO FORMAT: 'text/html’,
//get map query retrieve information from the database
QUERY_ LAYERS=Ireland:dublin_highway1,buildings geodir,
//set maximum number of return feature
FEATURE COUNT: 5,
LAYERS=Ireland:dublin_highway1,buildings geodir,
Styles: ",
//set Irish coordinate
Srs: 'EPSG:29900',
WIDTH: map.size.w,
HEIGHT: map.size.h,

format: format};

//' If you activate a radio-buttion, eg. for the startpoint

// the function toggleControl is activated.

]

<input type="radio" name="control" value="start" id="startToggle"
onclick="toggleControl(this);" />

<label for="startToggle">set start point</label>

// draw feature control is created
this creates an OpenLayers.Control .DrawFeature control . We construct this layer

with an OpenLayers.Handler .Point to allow drawing of point.

controls = {
start: new OpenLayers.Control. DrawFeature(start, SinglePoint),
stop: new OpenLayers.Control. DrawFeature(stop, SinglePoint)

}

77

for (var key in controls) {

map.addControl(controls[key]);

// This section deals with vector layers - where the data is rendered for viewing in your

browser. The two vector layer is given a title Start point and End point respectively.

start = new OpenLayers.Layer.Vector("Start point", {style: start style});
stop = new OpenLayers.Layer.Vector("End point", {style: stop style});

// these code provides style to the vector layer Start point and End point
var start_style = OpenLayers.Util.applyDefaults({

externalGraphic: "marker-green.png",

graphicWidth: 18,

graphicHeight: 26,

graphicY Offset: -26,

graphicOpacity: 1

}+, OpenLayers.Feature.Vector.style['default']);

var stop_style = OpenLayers.Util.applyDefaults({
externalGraphic: "marker.png",
graphicWidth: 18,
graphicHeight: 26,
graphicY Offset: -26,
graphicOpacity: 1
}+, OpenLayers.Feature.Vector.style['default']);

78

OpenLayers provides controls for drawing and modifying vector features. The
OpenLayers.Control .DrawFeature control can be used in conjunction with an
OpenLayers.Handler.Point, an OpenLayers.Handler.Path, or an
OpenLayers.Handler.Polygon instance to draw points, lines, polygons, and their multi-
part counterparts. The OpenLayers.Control .ModifyFeature control can be used to
allow modification of geometries for existing features.

openlayer uses event listener to handle the mouse events.

var SinglePoint = OpenLayers.Class.create();
SinglePoint.prototype = OpenLayers.Class.inherit(OpenLayers.Handler.Point, {
createFeature: function(evt) {
this.control.layer.removeFeatures(this.control.layer.features);

OpenLayers.Handler.Point.prototype.createFeature.apply(this, arguments);

1)

Finally, behavior was added to the <input> element in order to activate and deactivate
the draw control when the user clicks the checkbox. We’ll also call the toggle function
when the page loads to synchronize the checkbox and control states. Add the following to

your map initialization code:

function toggleControl(element) {

for (key in controls) {
if (element.value == key && element.checked) {

controls[key].activate();
} else {
controls[key].deactivate();

}
}

79

In order that users can also navigate with the mouse, we don’t want this control to be
active all the time. We need to add some elements to the page that will allow for control
activation and deactivation. In the <body> of your document, add the following markup.
<input type="radio" name="control" id="noneToggle"
onclick="toggleControl(this);" checked="checked" />
<label for="noneToggle">navigate</label>

Finally figure below shows the two tables dublin_highway1 and buildings_geodir
displayed as a layer through openlayers.

-ll.-
a]
u L] == EE—
s [
SORL C
I.] .l.-.... |
l=. 5 n 5]
n b '..l
L [|
[
[] u]
L]]
]] .l
g\ Em . "
|] | |

5120, 234P85 90058

Figure 6. 2 Showing the road and buildings table as a layer

80

@ GeuserverGeiFeature[nfomi]ml—Mtﬂa_ I B R
I Go to a Web Site]_

fid _gid _ gid gid gid tvpe name O0neway source target length o
dublin_highway1 8061 8038 8034 8034 8051 unclassified Peter Street 12636 12637 136 22086679420044

BUILDINGS_GEODIR

fid building_i group_id thorfare_i post_town_ data_src_i changed da presort_id postaim_id ed_id name no building u
o iz - - ADELAIDE
buildings_geodir243 36943402 40239 3 1 2005-08- 108 93 263140 CHAMBERS [+

* @ navigate
e (O set start point
e ([set stop point

Figure 6. 3 Showing the features of the road and building data.

81

Figure 6. 4 showing the Layer switcher containing layers name

[
-ll.-
. =
u L] I __—-—-
[[|
s L
[.... . .I
L |
I.I 'l-...-l
l;' n - n
n h '..l
LR []
I. . u u
[] u L
“\%m . el

40475, 233053.84413

s @ pavigate
e () set start point
e () set stop point

Figure 6. 5 showing the start and end point as a layer

83

Chapter 7 Conclusions

However achieving the aims of this project was very challenging since technical and non

technical Challenges needed to be addressed. Personal Research and reading where

essential in order to succeed. Most Importantly understand the concept of spatial database

and Web mapping.

A lot of time and resources were used to investigate, testing and integrating the different

tools needed to support the implementation process of this project, because it was

difficult to implement extra features on standalone earth client without previous

knowledge of PL/pgSQL, OpenLayers, GeoServer and javascript language.

7.1 Overview of objectives

Objective Deliverables
Research, install and configure a spatial | PostGIS
database.

Research, install and configure coding | PL/pgSQL

language that interact with spatial database.

Acquire competency using the tool

OpenJump, PostgreSql and GeoServer.

These tools were successfully downloaded
and integrated

Research, install and configure software to
act as the client interface in conjuction with

the user’s browser

openLayers

Research, install and configure client that
act as gis viewer to perform analysis of

datasets, query the database.

OpenJump

84

To acquire the data which will be used for

the route finding

The streets wuse OSM data from
CloudMade.The OSM data was
transformed to Irish National Grid

(IGN).The buildings are a subset of the
Geodirectory from An Post originally in
IGN.

To load the database with valid data

Database was loaded with both data i.e
street data and buildings data

To design the systems that integrates all the

components

Integrated system is designed in chapter 5

To create a queries that will allow the user
to initially interact with the data in GIS
client

OpenJump

To create an interface that allows the user

to interact with the system

Only the part of the interface was designed
Using HTML, CSS, OpenLayers and
Geoserver.

Table 7. 1: Objectives and their corresponding Deliverables of the project

There were other emergent benefits that were a consequence of the planning and

preparation that went into preparing this work:

e project management
e work planning

e project report making / writing

The following points illustrate the main learning outcomes.

e [I’ve also improved my research skills. The assignments from my previous studies had

given me an introduction into having to perform research to find answers. For this

project it was on a much grander scale. By the end of the project I found that I had

learned how to evaluate sources better and how to better pick the information that was

relevant to my aims.

¢ Building the client side component gave the author a working understanding of the

OGC’s standards and specifications in general. Detailed knowledge of the OGC Web

85

Map and the Simple Features was also gained through their practical application in
the prototype.

e Data is freely available from a variety of sources. The main source of data for this
project was open street map data from cloudmade and the buildings are a subset of
the Geodirectory from An Post originally in IGN.

e Becoming familiar with so many different applications and technologies has an initial
steep learning curve but the knowledge attained provides a strong foundation for
building similar systems in the future

e Lastly, I also learned a lot about the Open Source software world. Previous to this
project, my knowledge of the open source world was almost zero. By working
withopen source software on this project, I learned how the open source projects are

typically run and how one can make a contribution.

7.4 Benefits of undertaking this project

This project has been personally very beneficial from the point of view of acquiring in-
depth knowledge into integrating a system that includes an Postgis database, a GIS
server, and front-end technology to display geographic data. Each of these had to be
researched so in addition of gaining hands-on experience with the chosen software,
information was also learned about other similar applications and the functionality they
offer.

The underlying services of PostGis combined with GeoServer can be used for deploying
any geographic data and allow the use of this information in many ways i.e. using
OpenJump to access either the database directly or through GeoServer to process the
data. It makes viewing this geographic data very easy over the web using a product such

as OpenLayers.

7.5 Future research could be done

The software developed in this work performs to show routes between one building to

another building in OpenJump using dijkstra shortest path algorithm and can display the

86

layers in openlayer format and javascript was written two pick up the two points as a
layer.
The following features could be added:
e C(Create table dynamically after picking the two points and display features as a
layer
e C(Create the routes from one name place to another
e Create a web service where the routing algorithm runs on the web server and
accepts queries from web clients.The server performs all required computations
and generates images with recommended routes that are sent back to the client.

e Create route based on more than one routing algorithms.

87

8 References

GeoServer,(2009) Web Administration Interface — GeoServer 2.1.0 User Manual.
Available at: http://docs.geoserver.org/2.1.0/user/webadmin/index.html [Accessed
August 11, 2011].

Chen ,C.J, "Dijkstra’s Shortest Path Algorithm”, JOURNAL OF FORMALIZED
MATHEMATICS Volume 15, Released 2003, Published 2003
Inst. of Computer Science, Univ. of Bialystok

pgRouting, 2011, Shortest Path Dijkstra — Open Source Routing Library. Available at:
http://www.pgrouting.org/docs/1.x/dijkstra.html [Accessed July 18, 2011].

Sutskever.V,2008, Dijkstra Algorithm implementation in Java. Available at:
http://www.cs.nyu.edu/~vs667/development/~DijkstraAlgorithm/ [Accessed July
18, 2011].

Waldura.R, 2007 ,Dijkstra’s Shortest Path Algorithm in Java. Available at:
http://renaud.waldura.com/doc/java/dijkstra/ [Accessed July 18, 2011].

Lecture 6,2011, spatial databases lectures. Available at:
http://www.comp.dit.ie/pbrowne/Spatial%20Databases%20SDEV4005/Spatial %2
ODatabases%20SDEV4005.htm [Accessed July 18, 2011].

RUMBAUGH, J. JACOBSON, I. and BOOCH, G.(1999): The Unified Modeling
Language Reference Manual. Reading, Mass, Addison Wesley Longman Inc.

Purchase, H.C., Colpoys, L., McGill, M., Carrington, D., and Britton, C. (2001): UML
class diagram syntax: an empirical study of comprehension
School of Information Technology and Electrical Engineering
University of Queensland

Obe ,0.R and Hsu, S.Leo (2010)/ PostGIS in Action, Manning publications

FOSS4G ,(2011). Shortest Path search for real road networks with pgRouting | Free and
Open Source Software for Geospatial. Available at:
http://2011.foss4g.org/sessions/shortest-path-search-real-road-networks-pgrouting
[Accessed July 17, 2011].

Geoserver 2.1.0, Overview — GeoServer 2.1.0 User Manual. Available at:
http://docs.geoserver.org/2.1.0/user/introduction/overview.html [Accessed August
13, 2011].

88

OpenJUMP, OpenJUMP GIS. Available at:
http://www.openjump.org/index.html [Accessed July 21, 2011].

Informer, OpenJUMP Software Informer: version 1.2 information. Available at:
http://openjump.software.informer.com/1.2/ [Accessed July 21, 2011].

PostGIS, PostGISLI: Home. Available at:
http://postgis.refractions.net/ [Accessed May 14, 2011].

PostgreSQL, (1996-2010). PostgreSQL: About. Available at:
http://www.postgresql.org/about/ [Accessed July 21, 2011].

SourceForge, SourceForge.net: What is OpenJUMP - jump-pilot. Available at:
http://sourceforge.net/apps/mediawiki/jump-
pilot/index.php?title=What is OpenJUMP [Accessed July 21, 2011].

Windows 7, Windows 7 - Microsoft Windows. Available at:
http://windows.microsoft.com/en-US/windows7/products/home [Accessed July
21,2011].

Mitchell, T(2005) Web mapping illustrated - Google Books. Available at:
http://books.google.com/books?hl=en&lr=&id=IdGoy2rZSylC&oi=fnd&pg=PR3
&dg=web+mapping&ots=toVZFMkbMN&sig=kuqnTOEeCPBpSSXKnjNSDVX
64RQ#v=onepage&q&f=false [Accessed August 1, 2011].

Hazzard,E (2011) Openlayers 2.10 Beginners Guide, Packt publishing

Mozilla, Mozilla.com | Mobile. Available at:
http://www.mozilla.com/en-US/m/faq [Accessed August 13, 2011].

OGCWMS 1.3. Web Map Service | OGC(R). Available at:
http://www.opengeospatial.org/standards/wms [Accessed August 3, 2011].

GeoServer, (2011). Welcome - GeoServer. Available at:
http://geoserver.org/display/ GEOS/Welcome [Accessed August 2, 2011].

WSA, (2004). Web Services Architecture. Available at:
http://www.w3.org/TR/ws-arch/ [Accessed August 2, 2011].

OGC ,(2002) Web Map Service Implementation Specification. Available at:

http://cite.opengeospatial.org/OGCTestData/wms/1.1.1/spec/wms1.1.1.html
[Accessed August 2, 2011].

Deoliveira. J, GeoServer: Uniting the “GeoWeb” and Spatial Data Infrastructures

89

http://www.gsdi.org/gsdiconf/gsdil0/papers/TS26.4paper.pdf

OGCWES 1.1.0, (2005) Web Feature Service | OGC(R). Available at:
http://www.opengeospatial.org/standards/wts [Accessed August 7, 2011].

OSM, (2011a):OpenStreetMap. Available at:
http://www.openstreetmap.org/ [Accessed July 28, 2011].

Haklay,M. & Weber,P , OpenStreetMap: User-Generated Street Maps. Pervasive
computing, IEEE vol.7,no.4, 2008 , pp.12-18

Bennett, J. (2010) OpenStreetMap. Birmingham :Packt publishing

ESRI, (2011a).ESRI Virtual Campus. Available at:
http://training.esri.com/Courses/LearnArcGIS/index.cfm?c=188 [Accessed May
21,2011a].

GIS, (2008). Essays on Geography and GIS. Available
at:http://www.esri.com/library/bestpractices/essays-on-geography-gis.pdf

Longley, P.A. et al., 2010. Geographic Information Systems and Science, John Wiley &
Sons. Available at: http://books.google.com/books?id=wUkKZQAAACAAI.

Ian N. Gregory and Richard G. Healey Historical GIS: structuring, mapping and analysing
geographies of the past
DOI: 10.1177/0309132507081495

Prog Hum Geogr 2007 31: 638
http://0-phg.sagepub.com.ditlib.dit.ie/content/31/5/638.full.pdf+html

ISS (2006). Information Software Systems. Available at:
http://www.informationsoftwaresystems.com/ [Accessed June 4, 2011].

ESRI (2011b): vector. Available at:
http://training.esri.com/Courses/ Shared2003/vc/ deftemplate.cfm?Term=vector
&CourseKbaselD=-1 [Accessed June 5, 2011b].

Guting.R.H. 1994. An introduction to spatial database systems. The VLDB Journal 3, 4
(October 1994), 357-399.

90

FOSSA4G, (2011). Shortest Path search for real road networks with pgRouting | Free and
Open Source Software for Geospatial. Available at:
http://2011.foss4g.org/sessions/shortest-path-search-real-road-networks-pgrouting
[Accessed July 17, 2011].

pgRouting, pgRouting Project — Open Source Routing Library. Available at:
http://www.pgrouting.org/ [Accessed July 17, 2011].

Lecture 2. (2011) spatial databases lectures. Available at:
http://www.comp.dit.ie/pbrowne/Spatial%20Databases%20SDEV4005/Spatial %2
ODatabases%20SDEV4005.htm [Accessed July 18, 2011].

GIS.com |. Available at:
http://gis.com/ [Accessed May 14, 2011].

OGCSEFS 1.1, OpenGIS Simple Features Specification For SQL ref: 99-049
http://portal.opengeospatial.org/files/?artifact id=829[Accessed 15th August
2011]

OGC ,(2002) Web Map Service Implementation Specification. Available at:
http://cite.opengeospatial.org/OGCTestData/wms/1.1.1/spec/wms1.1.1.html
[Accessed August 2, 2011].

OWS (2003). Open GIS Consortium Inc.
portal.opengeospatial.org/files/?artifact id=1320

OGC History, OGC History (abbreviated) | OGC(R). Available at:
http://www.opengeospatial.org/ogc/history [Accessed August 14, 2011].

Carl N. Reed (2011). Geospatial Web Services: Advances in Information Interoperability
http://www.igi-global.com/viewtitlesample.aspx?1id=51480 [Accessed August 14,
2011].

Whitten J. L., Bentley L. D., Dittman K. C. (2001) Systems Analysis and
DesignMethods, 5* Ed., McGraw Hill

OpenLayers, OpenLayers: Home. Available at:
http://openlayers.org/ [Accessed August 29, 2011].

91

9. Appendix

9.1 Appendix A Using OpenJump with PostgreSQL/PostGIS

To add a PostGIS table to OpenJump select
e Layer | Run Datastore Query

The first time you do this you will have to establish a connection with
PostgreSQL/PostGIS.

||“ v B |
= .

w

Caching! 7] Cache festures

L [gence |

e In the Run Datastore Query Window click on the icon on the top right (2 small
disks)

e This will open the Connection Manager
Click Add

sl Add Connection

Mame |testu:||:u| |

Diriver

Server |||:-ca|h|:|st |

Instance |testu:||:u |

ser ||:u:|stgres |

Password |-------- |

[04 H Cancel]

92

9.2 Appendix B- pgRouting Installation

The Zip contains source SQL files and Windows DLL files

&) WinZip Pro - pgRouting-1.03_pg-8.4.2.zip

Eile Actions View Jobs Options Help
e > ,@ “ @ A N e X =
i =2 - n e lj:j e S
< T3 = 8 W J & ¢ @ G
Mew Open Favorites Add Extract Encrypt Wiew CheckOut ‘Wizard Wiew Style
Type Modified Siee Ratio | Pac
I application E... 27/01/2010 10:30 8,589,251 86% 1,17
g_dd.dil Application €., 27/01/201011:21 8,937,540 86% 1,
é]\ihrnuting_tsp‘d\l application E... 27f01f2010 11:11 2,147,750 74% 566,
| README. routing ROUTING File 04/09/2008 13:21 19,286 69% 6,
E] routing_core,sql SeL File 0e4/09/2008 13:21 3,592 67% B
E] rauting_care_wrappers.sql SQL File 04/09/2008 13:21 32,608 90% 3,
E] routing_topology.sgl 50U File 0409/2008 13:21 2,983 62% 1,
< >
Selected 0 Files, O bytes Takal 7 files, 19,271KB 80

e Unzip (extract) to a folder (say pgTemp).

e The extraction process will make two sub-folders called “lib”” and “share”

e You should copy the DLLs and SQL files provided in these folders the correct
location under your PostgreSQL installation, which should be:

e Copy the DLL files to C:\Program Files\PostgreSQL\8.4\lib

e Copy the SQL files to C:\Program Files\PostgreSQL\8.4\share\contrib

e These folders are shown below:

93

1 priss_files
) processPINSign, files Thes filex are UNZIPed to any

temporary folder.

=l Ch 8.4

1 bin
+) data
| doc
(2 include Lbse
& 4-3 installer ,’_u-:l librouting, dil

Ldbe Tpe DTT files go heye!, [%)librouting_dd.di 8,729 KB
2 =2 2| librouting_ksp.dl

1 plugins

= logs
+ |1 poddmin III -
* |7 scripts [Z].rorifing_core 4 KE
=l I share ’| routing_core_wrappers 32 KB 30L File

=| routing_kopalogy

=) postais
The 0L files go here

9.3 Appendix C

I had created separate database named testdb and postGIS functionality was added to it. It
is described below how it was done.

Start pgAdmin III, a graphical tool for administering PostgreSQL databases .

Step 2: Create a database called “testdb” using pgAdmin III and add PostGIS
functionality via the default template. A template can be used to construct many database
with the same properties.

e Open pgAdmin III from the Windows Start Menu (“Start->Programs-
>PostgreSQL 8.4->pgAdmin I11”).

e Connect to your database by double clicking it in the object browser. You may
need to enter password information.

e In pgAdmin III, right click on “Databases” in the table and click “New
Database...”.

94

A pgAdmin ITT

File Edit View Tools Help

FOARE WER/

Object browser
E Servers (1) M
2--[1 PostgresqL Database Server 8.3 {localhost: 5432) B

=] Databases (g

I Tablespaces Refresh

o
Group Roles New Database...

B4 Login Roles

Reports v

= Name the database “testdb” and for the template, select “template postgis”.
= Click “OK”.

x

Properties | variables | Privileges| sQL |

Name [testdb

ol |

omer | =]
Encoding [wmi12s2 ~|
Template [template_postgis ~|
Tablespace | <default tablespace> |

Schema restriction I

Comment ;I
=
Help oK Cancel |

Your pgAdmin should look something like this:

95

? 4% pgAdmin I
File Edit Plugins Yiew Tools Help

FO-%T

Chiject browser

g Servers (7]
=] PostareaCL 5.4 (localhost:5432)
|| Databases (3)
Tablespaces (2)
Group Roles (00
A Login Roles (1)
=] PostgreaC)L Database Server 8.2 (localhost 5432
=/ | Databases (4)
(8¢ postgis
| postgres
(3¢ template_poskgis
3
Tablespaces (2)
Group Roles (00
A Login Roles (1)

2

Step 3: Add the core pgRouting functionality to the newly created database.

* In pgAdmin III, select the newly created “testdb” database in the object browser.

= Look at the top toolbar in pgAdmin III. There is a SQL query tool. Click on this
tool to open it, or click “Tools->Query Tool” from the application menu.

» In the SQL query tool window, click “File->Open” and select

“C:\Program Files\PostgreSQL\8.4\share\contrib\routing_core.sql”

= To execute this query, click the green “play” button or navigate the application
menu by clicking “Query->Execute”.

= Repeat the same process for

“C:\Program Files\PostgreSQL\8.4\share\contrib\routing core wrappers.sql”.

“C:\Program Files\PostgreSQL\8.4\share\contrib\routing_topology.sql”.

96

97

