
----..----------...--_.._----..
1fTANDEMCOMPUTERS

-

I
L

I

- NonStop SQL, A Distributed, .
High-Performatlce, High-Availability
Implementatibl:1"of SQL

I

L

The Tandem Database Group

,

i.....

1,
'-

Technical Report 87.4
April 1987
Part Number 83061

I..-

.....

.....

NonStop SQL, A Distributed, High-Performance, High
Availability Implementation of SQL

The Tandem Database Group

April 1987

Abstract: NonStop SQL is an implementation of ANSI SQL on Tandem
Computer Systems. It provides distributed data and distributed execution. It can
run on small computers and has been benchmarked at over 200 transactions per
second on a large system. Hence, it is useable in both the information center and in
production environments. NonStop SQL provides high-availability through a
combination of NonStop device support and transaction mechanisms. The
combination of SQL semantics and a message-based distributed operating system
gives a surprising result: the message savings of a relational interface pay for the
extra semantics of the SQL language when compared to record-at-a-time interfaces.

This paper presents the system's design rational, and contrasts it to previous
research prototypes and to other SQL implementations.

The follOWing is a trademark of Bell Telephone Laboratories Incorporated: Unix.
The follOWing are trademarks or service marks of International Business Machines Incorporated: CICS, DB2, and
SQUDS.
The follOWing are trademarJcs or service marks of Tandem Computers Incorporated: Encompass, Enform, Enscribe,
FastSoft, Guardian, NonStop, NonStop SQI... Pathway, Pathmalcer, SafeGuard and Tal.

TABLE OF CONfENTS

INTRODUCTION 1
AN OVERVIEW OF THE TANDEM SYSTEM 3

Hardware Architectu.re 3
Operating System and Network 3
][)CltJi M~~eIIl~Ilt ~

Transaction Management 6
Wh.y SQL? 7

NonStop SQL LANGUAGE FEATURES 8
NClIIlill~ ~

Logical Names for Location Independence 8
Dictionary and Catalogs 10

Unifying Logical and Physical DDL 12
Logical Table Attributes 13
Physical Table Attributes 14
Views 14

][)ata Manipulation 15
Transaction Management 16
Local Autonomy 17
Conversational Interface 18
Programmatic SQL 19

Host Language Features 20
Integrating SQL Programs With Object Programs 21
Static and][)ynamic Compilation 22
Run Time Statistics and Error Reporting 22

IMPLEMENTATION 23
The SQL Compiler 26
Subcontracting Single-Variable Queries to Disk Processes 27
Sequential Block Buffering or Portals 28
Compilation and Local Autonomy 28
Invalidating Compiled Statements 28
Table Opens vs Cursor Opens 30
NonStop Operation 31

I'E~O~ANCE :3~

Single-variable Query Processing Performance 32
Performance on the DebitCredit Benchmark 32
Perform.ance Observations 35

The Halloween Problem 35
Group support 36
Parameters at Compile time 36
Update Statistics 37

~l.J~M~Y :3~

~~~l'l<:~s :3~





INTRODUcnON

NonStop SQL is an implementation of ANSI SQL [ANSI]. In addition to the ease
of-use implicit in SQL, NonStop SQL is a high-performance, distributed SQL
which can be used both in the information center and in production on-line
transaction processing applications. It has the performance, integrity,
administrative, and utility features required to support hundreds of transactions per
second running against hundreds of gigabytes of database.

Prior SQL implementations are marketed as information center tools or as
productivity tools. Their easy-of-use is accompanied by a significant performance
penalty. These vendors typically offer a second, non-SQL, system for production
applications. Tandem rejected this "dual database" strategy as being too expensive
to support, and too expensive and cumbersome for customers to use. A major goal
was to produce a system that could be used on large and small systems and in the
information center as well as for production on-line transaction processing
applications.

NonStop SQL had several other design goals:
1) To be integrated with the Tandem networking and transaction processing

system.
2) To provide NonStop access to data -- in case of a fault, only the affected

transactions are aborted and restarted: data is never unavailable.
3) To support modular hardware growth, and as a consequence support tens of

processors executing hundreds of transactions per second.
4) To allow data and execution to be distributed in a local and long-haul

network.
These goals are related. Tandem's existing support for networking and transactions
gave a good basis for distributed data and execution. .NonStop operation is
Tandem's hallmark. The challenge was to integrate the SQL language with this
preexisting Tandem system architecture.

Just as importantly, some goals were excluded from the fIrst release. There was
little attempt to exploit the parallel architecture of the Tandem system to get
parallelism within a transaction in the style of Teradata [Teradata]; rather,
parallelism is exploited by having multiple independent transactions executing at
once. The implementation did not focus on solving the heterogeneous database
problem. In addition, beyond an interactive SQL interface and a report writer, not
much work was devoted to end-user tools like QBE or a fourth-generation
language. Rather, work focused on the SQL engine and features to help application
programmers build systems in conventional ways.

Now that NonStop SQL is available, we are seriously considering projects in each
of these neglected areas. The NonStop SQL design provides an excellent base for a

1



highly parallel SQL implementation. In addition, SQL is a natural base for data
sharing among heterogeneous systems, because most systems support SQL. It is
also an excellent base for end-user and fourth generation languages.

2



AN OVERVIEW OF THE TANDEM SYSTEM

Tandem builds a single-fault-tolerant, distributed system for on-line transaction
processing. The system can be grown in small increments by adding processors and
disks to a cluster, and clusters to a network.

Hardware Architecture

The Tandem hardware architecture consists of conventional processors each with
up to 16Mb of main memory and a 5Mb/sec burst multiplexor io channel. The
processors do not share memory. Dual 20Mb/sec local networks can connect up to
16 processors. A fiber-optic extender allows four-plexed 1Mb/sec interconnect of
up to 224 processors (see Figure 1).

Communication and disk device controllers are dual ported and attach to two
processors so that there are dual paths to the storage and communication media.

Disk modules come in two styles -- low-cost-per-actuator and low-cost-per
megabyte. These modules are packaged 2, 4, 6, or 8 to a cabinet Typically, each
disk is duplexed so that media and electronic failures of a disk will not interrupt
servIce.

Operating System and Network

Processes are the software analog of hardware modules. They are the unit of
functionality, failure, and growth. Messages are used to communicate among
processes. Shared memory communication is avoided because it gives poor fault
containment and because it limits the ability of processes to reside anywhere in the
network. The operating system kernel provides processes, process pairs, and a
reliable datagram service among nodes in the cluster [Bartlett]. A privileged layer
of software uses these datagrams to provide a session-oriented message system
among processes in the cluster, and transparently extends the message system to a
long haul net based on leased lines, X.25, SNA, and other protocols.

Above the message system, everything looks like a process. A device is a process, a
file is a process and a running program is a process. An application OPENs a
process by name. Then the application operates on the object with procedure calls
in conventional Cobol style. The underlying message system turns these into
remote procedure calls. Typical operations are READ and WRITE, but different
object types support a variety of other operations.

3



RIO

§§§§§§§§

Figure 1. A schematic of a distributed Tandem system showing three sites. Two of
the sites are large clusters of 32 processors and associated disks linked by a high
speed local network. One site is a small two-processor system. The sites are linked
via a public or leased network.

Objects are named by "site.process.directory.object". Security is checked at open
(and purge, rename, secure,...) by the message system to see that the requester has
access to the site, and by the process to see that the requester has access to the object.
A conventional access-control list scheme is used to control security [Safeguard]. It
optionally provides logging of accesses or access violations.

Data Management

The majority of applications built on Tandem systems are programmed in Cobol.
Most of the data management tools, generically called Encompass, are built to
support that development style. Encompass is built around the concept of an

4



application dictionary which holds the definitions of all data structures used by
programs, files, reports, and display screens [Pathmaker].

File creation may be driven off this dictionary.

A relational query product, a database browser, and an application generator are all
built atop this dictionary.

The underlying file system, called Enscribe, is of particular interest here because
NonStop SQL co-exists with it and has a similar design. Enscribe supports
unstructured (Unix like) files which are used to store programs and text. It also
supports three kinds of structured files: key-sequenced (B-tree), relative (direct
access), and entry-sequenced (insert only at end). Any structured file may have
multiple secondary indices on it.

Enscribe files and indices may be partitioned among disks of the network based on
key ranges. This horizontal partitioning is transparent to the application. The
division of labor in file management is instructive (see Figure 2). Each fragment of
a file has a label describing the file. When the file system (client) opens the file, the
disk process (server) returns this descriptor. Based on information in this
descriptor, the file system then opens all related partitions of the file, and all indices
on the file and their partitions. When a read or write request is presented to the file
system, it uses the record key to decide which disk process can service the request.
If the request involves reading via an index, the file system first sends a read to the
disk process managing the appropriate index and, based on the index record, sends
a request to the appropriate base-file disk process. Similarly, the file system is
responsible for issuing inserts and deletes on alternate indices when records are in
serted, updated or deleted in the base table. The disk server is responsible for
authorization, media management, locking, logging, management of file structures
(B-trees, end of file, etc), and management of a main memory cache of recently
used disk pages.

In addition, the disk servers provide fault tolerance by executing as NonStop
process pairs which tolerate single faults of media, paths, and processors. The disk
process supports a DOIUNDOIREDO protocol for transaction protection.

5



APPLICAnON PROCESS

APPLICAnON

PROTECI'ION
Files

Partitions
Indices

Transactions
Buffering

DISK SERVERS

ADMINISTRAnON
Authorization

Fll.E SlRUCTURES
B-tree, relative,...
locking
logging

MEDIA MANAGEMENT
space allocation
duplexing
main memory cache

DUPLEXED DISK

Figure 2. The division of labor in Enscribe between the application process, the file
system, and the disk server processes. The file system runs as a protected subsystem
of the application process. Disk servers run in a processor connected to the disk
they manage. In general, the file system communicates with many disk processes
and the corresponding disks. This figure can be compared to Figure 6 which shows
the division of labor in the NonStop SQL system.

Transaction Management

Files may be designated as audited (transaction protected), either when they are
created or at a later time. Updates to audited files are automatically protected by
locks belonging to the ti"arisaction aild bfundo and redo log records.

An application program can issue BeginTransaction, which allocates a unique
transaction identifier. This identifier is automatically included in all messages sent
by the application and its servers. All updates to audited files generate log records
and locks tagged with this transaction identifier. Eventually, the application calls
EndTransaction, which commits the transaction if possible, or it calls
AbortTransaction, which undoes the audited updates of the transaction [Borr].

6



The underlying mechanism provides transaction back out, distributed transactions
with a commit protocol implemented with the grouped, two-phase, and presumed
abort protocols [Mohan]. A single transaction log (audit trail) is maintained at each
site. This audit trail provides undo, redo, and media recovery for both old
(Enscribe) and new (SQL) data.

The Tandem system tolerates any single fault without interrupting service. If there
is a double fault or an extended power outage, the transaction recovery system
recovers data by aborting all uncommitted transactions and redoing recently
committed transactions. In case of double media failure, the transaction manager
supports media recovery from an archive copy of the data and the transaction log
by redoing recently committed transactions. Archive dumps of the database can be
captured while the database is being updated -- that is, media recovery can work
from fuzzy dump.

WhySQL?

Perhaps the most controversial decision o~NonStop SQL project was to abandon
compatibility with Tandem's existing data base products and adopt a SQL interface
instead. After all, Encompass was the fIrst commercial distributed database system.
It has many strong features and a loyal follow~g.

In retrospect, the choice of SQL seems less courageous since SQL has become the
standard data management interface. At the time, the rationale for adopting SQL
was that the Encompass dictionary is passive and proprietary. Encompass provided
a record-at-a-time interface for programmers and little data independence. Like
most such systems, it was built on top of the file and security system, rather than
being integrated with it. Customers were asking for an integrated and active
dictionary -- one which had no "back-doors" and one which assured consistency
between the dictionary and applications. In addition, customers were asking for
support of views and assertions. SQL provides views and a standard data defInition
and manipulation language. NonStop SQL provides views, assertions, and an active
and integrated dictionary. Tandem is now evolving its application development
environment to a dictionary based on SQL.

After settling on SQL, the build-vs-buy decision had to be made. Several software
houses were willing to port their SQL systems to Tandem hardware. This
alternative offered a low-cost and low-risk solution. It also offered low-benefit.
Tandem wanted SQL to be integrated, fault-tolerant, high-performance, and
distributed. So, a second courageous decision was made: to start from scratch.
Fortunately, several Tandem developers and managers had experience on other
SQL implementations. This considerably reduced the risk of a new
implementation.

7



NonStop SQL LANGUAGE FEATURES

The NonStop SQL language is based on SQL as documented in the System R papers
[Astrahan], the SQUDS manuals [SQUDS], the DB2 manuals [DB2], and the ANSI
SQL definition [ANSI]. Extensions and variations were added to support
distributed data, high-performance, operational interfaces, and integration with
the Tandem system. When development began, the ANSI SQL standard [ANSI] did
not exist. Fortunately, only minor changes were required to comply with the ANSI
standard.

Naming

The first chore was to decide how naming, directories, and security should work.
Standard SQL naming has the form "user.table". This is inadequate for a
distributed system with local autonomy. In such a system, user names are qualified
by site name and table names need to be more complex so that names may be created
without consulting any other site [Lindsay].

NonStop SQL names objects like any other objects in the Tandem system. That
naming convention is "site.process.dir.object". These names are used to name
tables, indices, views, and programs. Naming of columns follows the ANSI SQL
conventions. Assertions are named by ANSI SQL identifiers so that diagnostic
messages can explain which assertion is violated.

Considerable care was taken to make catalogs and naming automatic. The Tandem
default naming works for SQL objects. Programs, tables, views, and all other
system objects are named in the same way. The concept of logical and physical
schema is almost invisible (automatic) because table names and their corresponding
file names are the same. Our goal was that most SQL examples from Date [Date]
should work without change when entered from a terminal.

Having one naming convention for the whole Tandem system simplifies learning
and operating the system.

Logical Names for Location Independence

System administrators and application designers need the ability to bind a program
to new tables without altering the source code. In production systems, a program is
typically created and tested in a test environment and then moved to a production
environment. In a distributed system a program may be duplicated at many
different sites. Running a report against many instances of a generic table is
another common situation. With most SQL systems, each of these situations require
editing the program and changing the table names to reference the desired tables.
Imbedding literal file names, or any kind of literals, in programs or reports is a

8



cardinal sin. JCL DD statements plus Cobol FD statements solved this problem in
1964. But most SQL implementations reintroduce the problem.

NonStop SQL offers logical names, called "defines", which allow users to rebind a
program's table names at SQL compile or run time without altering the source
program. Defmes are similar in function to OS/360 DD cards, TSO ALLOCATEs,
and CMS FILEDEFs. They associate a logical name with a physical name and its
attributes.

Defines are used for many other purposes within the Tandem system. For example,
they may carry label tape attributes. The define statement is supported by all
command interpreters. In addition, a process may programmatically interrogate
and alter its defines. This programmatic interface differentiates defines from their
counterparts in other systems.

Logical names are used as follows by NonStop SQL. Consider the simple example
of:

SELECT dept
FROM emp
WHERE empno = :empno

If this is developed in a test environment, then 'emp' will be bound to a particular
table. When the program is moved to a production environment, it should run with
the 'emp' bound to the production 'emp' table. In NonStop SQL this is done by
coding:

SELECT dept
FROM =emp -- the "=" implies a logical name
WHERE empno = :empno

The statement is bound to a particular table or view by issuing a define like:
DEFINE =emp, FILE site.process.test.emp

After the program has been tested, it may be moved to production by simply
changing the defme to:

DEFINE =emp, FILE site.process.production.emp

When a compiled SQL program is invoked with a different derme for "=emp", the
new define overrides the compile-time define and causes temporary recompilation
of that statement. Process creation propagates defines so that the child process has
the same naming environment (context) as its parent.

Defines provide a synonym mechanism for both data definition and data
manipulation. They work uniformly in the conversational and programmatic
environment. They are supported as a standard part of the Tandem system naming
mechanism and so provide a general tool that works for all files, tables, devices and
processes.

9



Dictionary and Catalogs

The descriptive infonnation representing the logical schema is kept in a SQL
database called the dictionary. Infonnation about a table is replicated at every site
having a fragment of the table, so that the local parts of the table can be accessed
even if the site is disconnected from the network. This design rule, called local
autonomy, implies that the dictionary be partitioned into catalogs -- each catalog
acting as a local dictionary for tables at that site. The transaction mechanism is used
to protect updates to catalogs and so maintain the consistency among catalogs at
different sites. A somewhat simplified diagram for the catalogs is shown in Figure
3.

A site can have a single catalog, a catalog per project or application, or a catalog per
individual. It all depends on the organization's management. The CREATE
CATALOG <directory> command creates the catalog tables described by Figure 2
in the designated directory. The command also registers the catalog in a site
directory so that all catalogs may easily be found.

When an SQL object is created, it is registered in the dictionary. Creation
commands can explicitly specify a catalog; otherwise, the default catalog of the
executing process is used. For example, the table creation command:
CREATE TABLE sitel.diskl.dir.emp (emp_no INTEGER, dep_no INTEGER)

KEYemp_no
PARTITION site2.disk2.dir.emp START KEY 10000
CATALOG site2.disk3.dir4;

creates a table partitioned across two sites of the network. Local autonomy requires
that the definition be replicated in catalogs at each participating site. So in the
example above, the second partition is registered in a catalog at site2. Executing
this create statement makes entries in the process' default local catalog and also in
the explicit remote catalog named site2.disk3.dir. Compiled versions of the table
descriptions are stored in the file labels as part of the file manager's disk directory.
All necessary information about a table can be read from the file label as part of the
file system's OPEN step. Consequently, the catalogs are only examined at SQL
compile time. This point will be amplified later. A program using this table from
site3 will be registered in a catalog at site3. The programs usage of the table will be
recorded in the USAGES table at sitel and site3. Figure 3 gives a schematic of the
catalogs.

10



TABLES

name ,~
·u

"owner VIEWS ca.uMNS
security

name tablename
createtime

protected colnumber
recompiletime

withcheck colname
text datatype

statistics

1,
BASETABS .... FILES .- INDEXES... ~

tablename filename tablename
filename fil etype indexname
rowcount blocksize filename
rowsize extentsizes column count

end-of-file unique

~J " ,~

" "
ASSERTIONS PARTITIONS KEYS

tablename filename indexname
assertname partitionname key field no
text catalog name table field no

startkey ordering

PROGRAMS

programname
security
createtime
recompiletime
valid

COMMENTS

objectname
subname
type
text

Figure 3. ~ schematic of the catalog tables.

11

USAGES

used name
used catalog
using name
using catalog
type of use



The catalog tables shown in Figure 4 have the following semantics
* TABLES has the name, owner, and security of each table or view.
* VIEWS has the view definition stored as a character string.
* COLUMNS has a description of each column of each table or view.
* BASETABS has information that applies to tables but not to views.
* ASSERTS has the text of assertions attached to tables..
* FILES describes the physical files that support tables and indices.
* PARTITIONS has references to all partitions of a file giving the file name and

its catalog.
* INDEXES describes an index file, its key and whether it is unique.
* KEYS describes the permutation of the index columns to the base table columns.
* PROGRAMS describes programs which contain SQL. It tells when each

program was last compiled, and whether the compilation has since been
invalidated by changes to the database.

* COMMENTS stores user provided descriptive text about objects.
* USAGES is a concordance which shows who uses what. It is used to generate

where-used reports and to direct the invalidation of programs when a relevant
table or view definition changes.

Unifying Logical and Physical DDL

The SQL language integrates data definition and data manipulation in one language.
This is a nice simplification when compared to the DBTG separation of data
definition from data manipulation [DBTG]. NonStop SQL continues this trend by
merging the defipition of logical schema (tables) with the definition of physical
schema (files). It hides the logical-physical distinction from the user, but the
underlying implementation makes a clear distinction between logical and physical
attributes. To give a specific example, a table named EMP (short names are used
here) with several keys, comments and assertions along with other table attributes
is stored in the dictionary describing the logical schema. In addition, the table
content is represented by a physical file named EMP which may be partitioned
across multiple disks and each key is represented by a separate index file. One way
of saying this for the DB2 user is that NonStop SQL eliminates the concept of
DBSPACE [DB2] or individual DATABASEs in Ingres [Ingres] or Informix
[Informix].

In NonStop SQL, when-a table is created the user can specify its physical attributes.
Any attributes not specified will be defaulted. To be compatible with ANSI SQL,
all physical attributes have defaults. For example the default organization is
indexed, and the default block size is 4k bytes. The naive user can be completely
unaware of the logical-physical distinction. In addition, this distinction is only
visible at data definition time. Data manipulation statements are completely
insulated from the physical attributes of files; they operate on logical tables.

12



LOGICAL SCHEMA

PHYSICAL SCHEMA

Figure 4. NonStop SQL implements a two schema architecture. The logical
schema is described by the dictionary. The physical schema is described by the
dictionary and the file labels.

Logical Table Attributes

NonStop SQL implements all the logical attributes of Level 2 ANSI SQL DDL
[ANSI] with the exception of reals, nulls, and users. The omission of nulls was
based on Date's compelling arguments against nulls and for defaults [Date].
Defaults are implemented as specified in ANSI SQL. Each type has a default value
which the user can override.

Users may add assertions to a table. Assertions are named, single variable queries.
The assertion is validated against the table at definition time. Thereafter any insert
or update which violates the assertion will be rejected. Assertions are enforced by
the disk process (file server). This removes many integrity checks from the
application program. Since assertions are named and may be added or dropped at
any time, NonStop SQL's implementation is slightly more general than the ANSI
SQL defmition of <check constraint> [ANSI].

The ANSI SQL numeric types of INTEGER, NUMERIC, and DECIMAL up to 64
bits are supported. Fixed and variable length character strings are supported.
FLOAT is not supported in the first release.

13



Records cannot span blocks and so are limited to 4K bytes in the initial release.
Indices involving multiple fields, ascending and descending, may be defined on
tables.

Comments on all objects are supported. Referential integrity will be implemented
when the ANSI proposal is approved.

Physical Table Attributes

Tables and indices can be horizontally partitioned in the network. Each partition
resides on a particular disk volume. The partitioning criteria are user-specified
low-key values. New partitions can be added to the end of a table. Although
partitioning tables in a network is much discussed, NonStop SQL is the first SQL
system to offer partitioning of tables across multiple sites of a network with full
transaction recovery.

For performance, various file organizations are supported. The standard file
organization is a B-tree based on the table's primary key. Sophisticated users can
specify a relative file (directly addressable records), or an entry sequence file
(ins~rt only at the end, records cannot grow once inserted). If the user does not
specify an organization or key when the table is created, then the system provides a
key based on GMT julian timestamp of the inserts. System generated keys for
relative, entry sequenced, and default files appear in the table as a column named
SYSKEY.

By default, tables are covered by transaction protection (logging and locking), but
this is a user option. Each table has a default lock granularity which can be set or
changed. The default is record granularity, but the designer can request generic
locking on a key range. As mentioned later, these defaults can be overridden by a
program or statement.

Views

As the R* designers pointed out, implementing views in a distributed system with
local autonomy is not straightforward. The ideas of "shorthand view" and
"protection view" were bo~owed from the R* project [Williams]. On closer
inspection, only the names were borrowed. In NonStop SQL, any view which is a
simple projection and selection ofa single_table_may be declared to be a protection
view. A protection view inherits the organization, indices and partitioning of its
underlying table. In addition, protection views are updateable. To simplify
authorization, only the table owner can define (and own) a protection view. The
accessor is authorized to the view.

Protection views are implemented by the SQL kernel and consequently really do
provide protection -- one can grant access to the view without gran~ing access to the

14



underlying tables. This differs from other implementations which place a security
mechanism on top of the operating system protection mechanism. There are no
"back-doors" to this protection mechanism. The protection kernel knows about
tables and views and there is no "lower-level" access to the "underlying" files.
This is one of the benefits of integrating SQL with the operating system.

By contrast, a shorthand view is simply a macro defmition. When the view name
is invoked, the view definition is substituted and the authorization and query
optimization is as though the macro body had been entered directly. So the user of a
shorthand view must be authorized to the view and to its underlying views and
tables. Shorthand views are very general. They allow combinations of tables and
views via projection, selection, joins and aggregates; but, they do not provide
protection and are not updateable. They can be used to denormalize the database or
subset it in convenient ways.

Data Manipulation

NonStop SQL supports Level 2 ANSI DML with the exceptions of unions, nulls,
and the partital backout of failed set operations. The data manipulation interface
was extended in the areas of naming, concurrency control, and dynamic SQL. As
already mentioned, naming was extended to work in the Tandem style of network
naming and of logical tab~e names. INSERT, SELECT, UPDATE, DELETE,
nesting, aggregates, correlation, group by, functions, and cursors, are provided as
in the standard. UNION is not implemented in the first release. Dynamic SQL is
supported in the style of SQUDS or DB2 with some innovations to handle
description of input and output variables.. The major DML innovations were in the
areas of locking and consistency.

As in most other SQL implementations, NonStop SQL requires cursors used for
update to be declared "FOR UPDATE ON <field list>". This allows SQL to avoid
the Halloween Problem (see page 37). In addition it tells the SQL executor to get an
exclusive lock and avoid the most common form of deadlock - two processes read·
and then try to update a hotspot. Unfortunately, this is not part of the SQL
standard.

All update operations on transactional files automatically acquire exclusive locks
held to end of transaction.(degree 1 consistency is automatic). For selections, the
programmer is given the option of dirty data (no lock), cursor stability (test lock),
repeatable reads.(keep lock). These correspond to degree 1, 2, and 3 consistency
[Gray]. In addition, the statement can specify the desired lock granularity and
mode. These options are an extension to the SELECT' statement syntax. Cursor
stability is the default.

15



Rather than clutter SQL syntax with Tandem extensions, the CONTROL TABLE
verb was added. This verb allows the programmer/user to modify the defaults
associated with all tables or with a particular table. For example, to change the
timeout to one second on all requests, the user may execute:

CONTROL TABLE *TIMEOUT 1 SECOND;
When encountered by the compiler, this statement affects all subsequent statements
until another CONTROL TABLE is encountered. When executed dynamically, this
statement overrides dynamic compile-time settings.

In the frrst release, the CONTROL TABLE command allows a program to specify
the lock granularity, lock protocol, and style of lock waits. Later releases will have
additional options.

This design is in contrast to other SQL systems which associate control with the
transaction or program rather than with the statement. Finer granularity control
on a statement-by-statement basis or table basis is essential for tuning high
performance applications.

Degree 3 consistency was sacrificed in one case to avoid hotspots. When inserting
at the end of an entry sequenced or relative file, NonStop SQL locks the inserted
record but does not lock the end-of-file. This gives only degree 2 consistency
[Gray], since insert order may differ from commit order unless a table lock is
acquired. Locking the end of the table (file) for the duration of a transaction is
equivalent to a table lock for sequential files -- a well known bottleneck in high
performance systems. IMS/FastPath solves this problem by deferring sequential
inserts until transaction commit [Gawlick]. The FastPath design has more complex
semantics and also sacrifices degree 3 consistency since the records do not appear in
the file when they are inserted.

. Transaction Management

Tandem's Encompass data management system provides a transaction mechanism
that includes transaction back out and distributed transactions. Nonstop SQL is
integrated with this transaction manager [Borr]. A single transaction log (audit
trail) is maintained at each site. This log provides undo, redo, and media recovery
for old (Enscribe) and new (SQL) data. A single transaction can contain both
Enscribe and SQL calls, and is recorded in a _~!ngle log per site. Having one trans
action log per site eases sysiem- management when compared with the non
integrated log-per-subsystem of other designs.

When a table is created, it is audited by default Updates to audited tables are
automatically protected by locks belonging to the transaction and by undo and redo
log records. The user may declare it to be non-audited by altering the audit
attribute.

16



Any program locking or updating an audited table must be part of a transaction
(must do a BEGIN WORK or be servicing a request from some process that did a
BEGIN WORK). As explained earlier, the operating system message kernel
manages the propagation of transaction identifiers as part of the requester-server
(remote procedure call) flow within the transaction.

The locking features include file, generic, and record granularities, automatic
escalation to coarser granularity, implicit or explicit shared and exclusive lock
modes, three degrees of consistency, selectable on a per statement basis, and a
LOCK TABLE verb. Deadlock detection is via timeout. The default timeout is
sixty seconds.

The CONTROL TABLE verb allows the user to specify the handling of lock waits.
The user may request "bounce" locks which never wait for a busy resource; rather,
they return an exception. In addition, NonStop SQL supports read-through locks
(nolock), which allow reading dirty data (uncommitted updates). The CONTROL
TABLE command allows a program to alter these attributes on a table-by-table or
statement-by-statement basis.

Non-audited objects complicated the design, since non-transactional locking is
explicit and has complex semantics. In particular, the state of locks and cursors
after a COMMIT WORK verb is confusing. NonStop SQL defined some rules
which seem consistent. A FREE RESOURCES verb was introduced to free locks
and cursors on non-audited tables. The COMMIT WORK and ROLLBACK
WORK verbs implicitly issue a FREE RESOURCES verb. But this design has
proved difficult to explain. For simplicity, design experts recommend against the
use of non-audited tables for anything but temporary files.

Non-audited tables are useful for batch applications using the old-master new
master recovery protocol. Non-audited tables are used as scratch files for sort, and
the query evaluator. In addition, to reduce log activity, indices are created non
audited and then altered to be audited.

Local Autonomy

Local autonomy requires that NonStop SQL offer access to local data even if part of
it is unavailable and even if the site is isolated from the rest of the network. For
compiled SQL plans this means that the SQL compiler must automatically pick a
new plan if a chosen access path (Le. index) becomes unavailable. This
recompilation is automatic and transparent to the user.

Data definition operations pose more difficult problems. If a table is partitioned
among several nodes of a network, then dropping the table requires work at each of
those nodes -- both updates to the catalogs and deletion of the files. Changing table
attributes has similar requirements. In general NonStop SQL requires that all

17



nodes related to a table participate in the DDL operation. If any relevant node,
catalog, or disk server is unavailable then the DDL operation is denied. This
violates local autonomy. There are no attractive alternatives here. NonStop SQL
takes the following approach. The local owner can DISCONNECT a table to break
all linkages of the table with unavailable sites. This is a unilateral operation.
Thereafter, the user can operate on the table without complaint. At a later time the
user can run a utility which attempts to CONNECT the pieces of a disconnected
table back together.

Conversational Interface

Almost all SQL systems come with a program which executes any SQL statement
entered from a terminal. This is an easy program to write since most SQL
implementations provide dynamic SQL: a facility to PREPARE, DESCRIBE and
EXECUTE any SQL statement (much like EVAL in LISP).

Systems differ in the bells and whistles they provide with this basic facility. The
NonStop SQL conversational interface (SQLCI) includes extensive documentation
via on-line help text and it includes an iterative report writer.

The NonStop SQL manual is written so that it may be accessed by the con
versational interface. The user can ask for help on any topic in the manual. For
example, HELP CREATE TABLE will display the syntax, semantics, and examples
from the manual. This imbedded documentation is very convenient.

The report writer features included headings, footings, breaks, data display
formats for numbers and dates, windowing, margins, folding, and if-then-else
controls on data display. Report writer commands are separated from the SQL
commands. The answer set is defined with SQL and a report defined with the
report writer syntax, then the report is displayed. The report defmition is iterative,
the report format can be altered and then the report regenerated.

Dynamic SQL can be exercised from the conversational interface. Parameters can
be included in SQL statements. Statements can be PREPARED and EXECUTED.
Parameters can be varied after the prepare and before the execution of the prepared
(compiled) statement.

The user can define transaction boundaries with BEGIN WORK and COMMIT
WORK or ROLLBACK WORK. If no transaction is specified, the conversational
interface starts and ends one for each SQL statement.

In addition, the conversational interface can execute program files, gives complete
statistics on the cost (cpu, records examined, records affected, messages, lock waits,
and 10) of queries, produces detailed diagnostic messages in case of error,

18



EXPLAINs the query execution plan chosen by the SQL compiler, and has in
terfaces to the foIIowing utilities:
* Convert to and from "old" Enscribe files.
* Duplicated and copy sets of objects
* Display table definitions
* Describe sets of flies and tables
* Update the statistics for a table
* Load and unload data for interchange or reorganization
* Verify and correct dictionary consistency
* Generate "where-used" reports on programs, views, and tables
* Text editor

Last but not least, the interface is always listening to the terminal so the user can
interrupt the query execution at any time and cancel the transaction. Surprisingly,
this is not typical for SQL conversational interfaces. It certainly caused some
trouble. A dedicated process was introduced just to listen to the terminal.

Programmatic SQL

NonStop SQL had four goals: ease-of-use, distribution, high availability, and high
performance. Since the SQL language is non-procedural, the key to high
performance is good compilation of the SQL statements and efficient
communication of data between programs written in Cobol85 and the SQL database
system.

As is standard with SQL systems [ANSI-2], SQL statements are imbedded in the
host language, bracketed by EXEC SQL and END-EXEC keywords. A SQL
preprocessor scans the program text and produces a host language program
(Cobol) with the SQL statements replaced by calls to the SQL executor. In
addition, the preprocessor produces a file containing the SQL statements. The
Cobol85 program is compiled by the Cobol85 compiler to produce an object
program. The SQL compiler transforms SQL statements to a set of execution
plans, one for each SQL statement in the source program (see figure SA).

19



cosa.. + SOL PROORAM

COBOL + 'CAllS TO Sal

LEGBlD: (::::=~) SOURCE FILE
c:: > PROCESS
~ I OBJECT FilE

SQlSOURCE

.1

BINDER

Sal COMPILER

COBOL OBJECT +
SOL RCE

COBOL OBJECT +
SOL SOURCE + Sal OBJECT

Figure 5A: Compilation of a Cobol85 plus SQL program. Cobol85 and SQL source
is separated by SQL preprocessor which produces a Cobol85 source program and a
object file containing the SQL source. The Cobol85 compiler feeds the object
program to the binder. The binder combines this with the SQL source sections.
The SQL compiler reads these source sections and the SQL dictionary to produce an
SQL object program which is included in the "whole" object file and registered in a
catalog. This object file is executable by the hardware and SQL executor.

Host Language Features

NonStop SQL's programmatic interface has many features to ease programming,
including comprehensive diagnostics imbedded in output listings, ability to invoke
data declarations of tables from the catalogs, support for WHENEVER (exception
handling), support for multiple levels of copy libraries, and generation of tracing
information so that application programmers can trace errors back to source
language statements.

20



In addition, NonStop SQL supports separate compilation. Cursors may be split
across compilations. That is, a cursor may be defined in one compilation and used
in another. Program "B" can use cursor "C" of program "A" by referring to
cursor"A.C".

Only a Cobol85 preprocessor is provided in the beta release. Pascal, C, and Tal
language support is being developed .

Integrating SQL Prognum With Object Programs

Tandem's implementation of program compilation is similar to the original System
R implementation [Astrahan]. An innovation lies in the binding of the SQL source
and object programs with the Cobol85 (or other host language) object modules.
The resulting object program is a single object which can be moved, copied,
archived, or purged without having to manipulate one or more separate "access
modules". By contrast, most other SQL systems store the SQL program in the
catalogs separate from the object program and unavailable to user commands other
than DROP PROGRAM.

The Tandem binder (aka link editor) was modified to support SQL source program
sections and SQL object sections and the dependency between the object program
and its SQL sections. The binder combines code sections, data sections, symbol
table sections (for the symbolic debugger), and other types of sections from
various compilations to produce an executable object program file. The SQL
preprocessor produces a SQL source section for each program unit which the
Cobol85 compiler tells the binder to include as a section of the Cobol85 object
program. The user can bind several object programs together and present the
result to the SQL compiler. The binder automatically includes the SQL source
sections.used by the object programs into a new object file. The SQL compiler
takes any object program as input, extracts all the SQL source sections from the
object program, and choses a plan for each statement. The combined plans are
stored in a SQL object section of the object program (see Figure 5A).

If a SQL statement needs to be recompiled, the SQL compiler reads it from the
SQL source section of the executing object program file.

This design allows programs to be archived and moved without accessing the SQL
source. It greatly simplifies the management of SQL programs. The recurring
theme here is that close integration of SQL with standard system tools has
considerable benefits in simplicity and functionality.

21



Static and Dynamic Compilation

An SQL program must be compiled and registered in a catalog before it may be
run. This step is called static compilation and is part of the macro step of SQL +
Cobol85 compilation.

If the program is moved or renamed, the new program will not be registered in a
catalog and so it must be statically SQL compiled before it may be used.

Once compiled, a SQL program will be automatically recompiled when the
database changes or the plans become invalid. Adding or dropping an index to a
table, updating statistics on a table, adding columns to a table or changing some
attributes of the table are examples of changes which can invalidate a program.

If a program is invoked with logical names that override the compile time logical
names, it will be recompiled. In addition, if a needed access path is inaccessible
because the network or media is down, then the program will be recompiled to
work with the available data.

As the name suggests, automatic recompilation is transparent to the application
program. It happens when the invalid statement is first invoked. A statement may
become invalid during the program execution. If so, the statement is recompiled
on the fly as part of the user's transaction and then executed with the new plan.

Run Time Statistics and Error Reporting

The NonStop SQL programmatic interface has two control blocks which feed
information back to the application program. Detailed diagnostics are provided in
the SQL Communications Area (SQLCA) in case of error. Any SQL error is
reported by an error code along with up to seven diagnostic messages. A routine is
provided to format these messages in a specified national language and display them
to a diagnostic stream or to a buffer.

In addition, the SQL executor returns detailed statistics in the SQL statistics area
(SQLSA). These include a table-by-table count of records used, records examined,
disk reads, messages, message bytes, waits, time-outs, escalations, and busy times.
Designers can either instrument their programs by reading these counters or they
can use the operating system's measurement facility to read these SQL counters
along with other system counters [Measure].

22



IMPLEMENTAnON

The NonStop SQL system and its utilities are about .5 million lines of code
implemented by up to 25 developers over 3 years. This was the sixth SQL
implementation for one developer. Five others had done it at least once before.
Many of the developers had implemented other relational systems. We tried not to
repeat our earlier mistakes.

Implementing SQL itself took only a few people; most of the effort went into
integration with the rest of the system, and into utilities. The quality assurance,
performance assurance, documentation, marketing, education, and beta test efforts
involved many more people in the product.

The system is integrated with the operating system. When the system is up,
NonStop SQL is up. One does not bring up a SQL database; it is just there. This
contrasts with most other designs. In addition, because the operating system and
SQL authorization are integrated, there is no "logon" to SQL; one logs on to the
system. Once on the system, the entire network provides a single system image.

Users can access SQL databases from a conversational interface or they can write
Cobol85 plus SQL programs to access the data. These programs can be installed as
servers in a Pathway transaction processing system to provide a high-performance
application [Pathway].

Figure 6 shows the structure of an executing application program. The program
has a code segment and a data segment (232 bytes). The program's SQL statements
invoke the SQL executor, a set of library routines which run in the "application's
environment.

The executor has its own data space. The executor manages query execution by
managing logical names, collecting records from various tables via the file system,
combining them, and returning the results to host language variables in the user
program. It calls the file system with single-variable requests. The executor sends
data definition statements to a separate process (not shown in Figure 6) which
manages the catalogs. The catalog manager is implemented as a separate process
for authorization reasons -- only the catalog manager process can write catalog
tables.

23



APPLICATION PROCESS

APPLICATION

Host Interface
Execution of plans

joins
aggregates

subcontract ddl
subcontract compile

PROTECTION
Tables-> Files

Partitions
Indices

Transactions
Buffering

DISK SERVERS

ADMINISTRATION
Authorization
Plan invalidation chec
Protection views

_--rrttSQL OPERATIONS
Select/update subset
Check assertions

FlLE STRUCfURES
B-tree, relative,...
locking
logging

MEDIA MANAGEMENT
space allocation
duplexing
main memory cache

DUPLEXED DISK

Figure 6A. The division of labor within a compiled and executing Cobol plus SQL
program. The application calls the SQL executor which handles the SQL plansy
and subcontracts single variable queries to the files system and disc process. The
file system manages the physical schema. The disc ·process manages subsets and
assertions on table fragments (partitions). Se also figure 6B.

24



APPLICATION PROCESS

DATA

USER
PR03AAM

sa.. SOL PLANS +
EXEOJTOA DATABUFFERS

DISK SERVERS

LOCKS

SlRJCTUREO TRANSAC~
FILES 1OO

and
B-TREES

DISK
BUFFERS

DATA

SET
__..;t1"'" EVALUATOR

ALE OPENS
AND

MESSAGE
BUFFERS

SOL
FILE

SYSTEM

DISK
DRIVER

DUPLEXED DISK

Figure 6b. The structure of a compiled and executing program. The application
calls the SQL executor which in tum calls the file system. The file system sends
single-variable query requests to disk processes. The disk process does projections
and selections on tables and protection views to produce a record subset This subset
is returned to the file system and executor or is updated or deleted by the disk
process.

25



The file system manages the physical schema. It handles opens of files and indices,
partitioning, and sends requests to appropriate disk servers, and buffers the replies.
When a table is updated, the file system manages the updates to the base file and to
all the secondary indices on the file. When a record is retrieved via an index, the
file system frrst looks in the index and then in the base file. This is because the index
may well be on a disk separate from the base table, so the disk process cannot do
index maintenance in general. If a retrieval can be entirely satisfied by the index,
the base table is not accessed -- this is called semi-join by Palermo [palermo].

Each disk volume is managed by a set of disk servers. These server processes have
a common request queue and a shared buffer pool which they coordinate via
semaphores. The disk servers implement file fragments. They manage disk space,
access paths, locks, log records, and a main memory buffer pool of recently used
blocks. A disk server operates on the single-variable query, scanning the database
(usually via the primary index) to find records which satisfy the selection
expression. Once the records are found, the disk process either operates on the
records (update expression or delete), or the projected records are returned to the
file system. If the request is a very long one (more than 10 ios), the disk server
returns to the file system asking it to continue the request by reissuing it. This
prevents the servers from being monopolized by a particular requester if other
work is queued.

The file system is one protection domain (it is privileged). Each disk process is a
separate protection domain (a process). Each disk process authorizes the
application process to the table when the file system sends the file open request. An
open to a protection view is authorized by the disk process, which checks that the
requester has the needed authority to the view.

The SQL Compiler

The NonStop SQL compiler, which includes an optimizer, uses the standard tricks
of a distributed query compiler. It picks an SQL statement execution plan which
minimizes a cost function, combining io cost, cpu cost, and message cost. Single
variable queries are subcontracted to the disk servers storing the data partitions, but
otherwise the entire query is executed by the application program process. In
particular, all joins are computed by moving the projected and selected fragments
to the SQL executor in the application process. The compiler has two join strategies
~n~sted and merge). It sorts a table if no appropriate access path is available for a
Jom.

NonStop SQL's approach to distributed query execution is controversial. Other
systems, notably R* [Williams], devote considerable effort to optimizing the
distributed execution of join queries. We believe that these optimizations make
little sense in a local network where communication is fast and cheap, and that joins

26



in a long-haul network are infeasible for tables of credible size. Consequently, not
much effort was devoted to this problem. When the high priority features have
been implemented, more effort will be devoted to the transcontinental join
problem.

The compiler composes shorthand views and treats protection views just like
ordinary tables. It handles logical names (does name binding), and resolves
partially qualified names within the process' working directory.

In the style of DB2, the compiler generates a set of control blocks which are
interpreted by the SQL executor, rather than generating machine language code.
It was felt that the control block intelface was more maintainable and that the only
critical path of the SQL executor is expression evaluation, which is highly
optimized.

As explained earlier, the CONTROL TABLE statement allows the sophisticated
user to give the SQL compiler hints concerning lock granularity, and lock protocol.
The verb applies to both static and dynamic SQL. With time, many other hints will
likely be added to the CONTROL TABLE directive to allow sophisticated users to
tune their SQL statements.

The compiler invokes the parallel sorter, FastSort, using multiple processors if the
user has provided defines requesting a parallel sort [FastSort]. FastSort gets
considerable speedup on large files (over 1MB) by using multiple processors and
disks.

The unique features of the compiler are detailed below.

Subcontracting Single-Variable Queries to Disk Processes

The NonStop SQL disk process will execute any selection, update, or delete
involving a single-variable query -- one involving only column names, relational
operators, and literals. For example, only a single message is needed to execute the
command:

UPDATE =account
SET balance = balance * 1.07
WHERE balance> 0;

which pays 7% interest to all positive accounts. The use of a single message to do
set updates, deletes and, selections is the key optimization of NonStop SQL. As will
be seen in the performance section, the consequent reduction of message traffic and
message volume gives NonStop SQL a performance advantage over record-at-a
time database interfaces.

27



Sequential Block ButTering or Portals

Data specified by a single-variable query may be returned to the SQL executor in a
block of records rather than a record-at-a-time -- this is the concept of portals
described by Rowe [Rowe]. Two forms of blocking are supported, "physical" in
which a physical disk page is returned, and "virtual" in which a projection and
selection of the data is returned. Clearly, if the single-variable query is very
selective, virtual blocking will have much reduced message cost and consequently
be very attractive. Much of the performance advantage of NonStop SQL over its
Tandem predecessor (Enform) derives from intelligent use of virtual buffering.
Enform had only physical buffering. Physical buffering gives a factor of three
over the record-at-a-time interface. Virtual buffering gives NonStop SQL an
additional factor of 3 over physical buffering on many Wisconsin benchmark
queries [Bitton]. Initially, the compiler's use of buffering was conservative
because it implied course granularity (file) locking. But once the benefits of
buffering were quantified, a form of block locking was implemented so that almost
all sequential queries can use buffering without locking the entire table.

Compilation and Local Autonomy

Data unavailability can invalidate a compiled plan. For example, if the index for a
table is unavailable because its disk or communication line is down, then a plan
using that index will be invalid. Local autonomy requires that the SQL statement
be recompiled and executed to use the available data and access paths. The NonStop
SQL compiler implements this requirement .by using the partial information in the
local catalog.

Invalidating Compiled Statements

When the database design changes or the table statistics change, compiled plans
become invalid. NonStop SQL's approach to invalidation differs from other
systems in two ways. First, NonStop SQL invalidates plans whenever there is a
chance that the change may affect the plan. For example, most SQL systems do not
automatically recompile when an index is added. This could confuse a user who
added an index and noticed that it did not help performance at all. NonStop SQL
will automatically recompile the program in this case and in any other case where
the plan may change.

NonStop SQL also differs in the way it invalidates programs. Most SQL systems
invalidate SQL compilations by clearing the valid bit of the plan in the catalog. In
such systems, whenever a program executes a transaction, it fIrSt reads the valid bit
from the catalog to assure that it is still valid and then proceeds. If the bit is off,
the program automatically re-SQL-compiles itself.

28



NonStop SQL rejected this approach because the valid bit can become a bottleneck
if every transaction must access it, and because local autonomy implies that the
database may change while some program is inaccessible. So NonStop SQL
maintains the program valid bit only as a hint of what programs need
recompilation.

NonStop SQL adopted a timestamp scheme to invalidate compiled statements.
Associated with every table and view is a timestamp called the "redefinition"
timestamp. This timestamp is bumped every time the table defmition changes.
Sample changes are add/drop index, update statistics, add partition, and alter file
attributes (e.g. transaction protection). These timestamps are stored in the catalog
and in each fue label.

When a statement is compiled, the redefinition times of all tables and protection
views used by the plan are saved as part of the compiled object program. When the
program executes, it sends an OPEN message containing the redefInition time to
each fragment of the table. The disk process checks the program's authorization to
the table and rejects the OPEN if the requester is not authorized. In addition, the
disk process checks the redefinition time of the fragment against the redefinition
time presented by the requester. If they do not match, the requester has an invalid
plan and must recompile.

These OPENs remain valid for the life of the process. There is no additional check
by the program when it runs subsequent transactions. If the definition changes
while the table is open, then the disk process invalidates any opens on that table.
The next time a request arrives for that table, the disk process informs the opener
that its plan is invalid and must be recompiled (see Figure 7).

When the SQL executor senses an invalid statement, it launches an automatic
recompilation of the statement, and then executes the resulting plan. This in tum
causes a new OPEN of the table with a more modem table redefmition time.

29



TIME T1

111"1 :::

file
- ""'".......sal

OBJECT

~
~

SOL COMPILER

TIME T2
/

"""'
SQLOBJECT

~ :.
OPEN (T1)

.. 11...
READIWRITE ~ ~ file

~ ""'"

'- ~

Figure 7. Plan validation and invalidation in NonStop SQL is done with timestamps.
The plan records the redefinition timestamp of each table. When the plan opens the
table it presents this timestamp which is matched with the timestamp in the file
label. If the timestamps don't match, the plan is invalid. If the table changes, the
open is invalidated. This design reduces catalog access when compared to other
implementations.

Table Opens vs Cursor Opens

The Tandem system is designed for on-line transaction processing. In such
systems, early binding is the watchword. Programs are compiled, installed and the
system is brought up. Thereafter, the system might run for several months without
change or interruption of service.

The ground rule in such systems is to do all the checking at startup so that there are
no extra instructions in the "normal" path for the next few months. As a
consequence, the NonStop SQL executor OPENs tables when they are first
referenced by the application, and keeps the tables OPEN until the execution plan is
invalid and a new OPEN with a new redefinition time is needed. Subsequent

30



references to the table by any statement of the process will share this single OPEN.
In particular, if many cursors are defined on the table, they will all use the same
OPEN. The OPEN selVes three purposes: it covers the redefinition/invalidation
issue; it authenticates the requester; and it provides a virtual circuit between the
SQL requester and the SQL server.

When a transaction commits, all its locks are released and all its cursors are
invalidated. But the OPENs persist to support the next transaction.

NonStop Operation

As the name suggests, NonStop SQL provides NonStop operation. Not only is the
application program protected by transaction locking and logging. In addition, all
device drivers and system processes run in NonStop mode so that they tolerate any
single hardware failure and many ~<:)~t~~e fai~ures 'Y~!hout disruj)J~g seIVice.

The disk processes maintain mirrored disks so that a disk failure will not disrupt
seIVice. One disk can be repaired and revived while the mirror disk is operating.

If a process or processor fails, all transactions involved in that process or processor
are aborted (undone), but unrelated transactions are unaffected by the failure.
Ownership of all devices (disks and communications lines) is automatically
switched to other processors.

The network hides link failures as long as an alternate path is available.

If some partitions of a file are inaccessible, all available partitions are still
accessible. Partitions are reopened on demand when they become available.

31



PERFORMANCE

Single-variable Query Processing Performance

Pushing single~variable queries (ones involving only literals, host variables, and
record fields) out to the disk processes is a major optimization. For sequential ac
cess, the disk servers can filter at the rate of 240KB/s, or 2400 hundred-byte
records per second on a VLX processor. This is very competitive. For updates, it
can update a column at 600 records per second. Deletes run at a similar speed (all
these are transaction audited).

Performance on the DebitCredit Benchmark

We expected the benefits of remote execution of single-variable queries for set
operations, but did not anticipate the benefits for single record operations. The
original goal was to match the performance of the Cobol record-at-a-time interface
to within 25% when executing the DebitCredit transaction, a simple on-line
transaction processing application which updates three tables by key and inserts a
record in a third table [Anon]. But when the application was coded and measured,
the SQL application used less cpu time and the same number of ios as the record-at
a-time interface. This is surprising. No one would believe that CICS plus SQIlDS
would have shorter pathlength than CICS accessing the native CICS data
management routines; yet that is the analogous statement.

Certainly it costs more to execute SQL statements -- the'y have quite a bit more
semantics. On the other hand, each statement does more, so there is a possibility
that fewer statements can be used. That is the key to understanding the surprising
result that the DebitCredit transaction is faster on SQL than on Enscribe. To see
this in detail, consider the two programs. Ignoring errors, the database aspects of
the code for the two applications are:

COBOL RECORD AT A TIME

READ account WTI1i LOCK
KEY IS act-number.

ADD delta TO accountbalance.
REWRITE account

READ teller WTI1i LOCK
KEY IS teller-num.

ADD delta TO teller.balance.
REWRITE teller.

32

COBOL+SQL

UPDATE account
SET balance =balance + delta
WHERE number = :act-number;

UPDATE teller
SET balance =balance + delta
WHERE number = :teller-num;



UPDAm branch
SET balance =balance + delta
WHERE number=:branch-number;

INSERT INTO HISTORY VALUES (
:timestamp,
:act-number,
:teller-num,
:delta);

READ branch wrm LOCK
KEY IS branch-number.

ADD delta TO branch.balance.
REWRITE branch.

MOVE timestamp TO history.timestamp.
MOVE act-number TO history.act-number.
MOVE teller-number TO history.teller-number.
MOVE delta TO history.delta.
WRITE history.

The record-at-a-time interface has seven calls - 3 reads, 3 writes, and an insert. An
IMS or DBTG interface would have seven similar calls. But SQL is able to do the
application in four calls -- 3 updates and an insert. This economy translates into a
three message savings on a base of seven, a 40% savings in messages! Such savings
make SQL a wonderful interface for message based systems.

As a consequence of these savings, the SQL cpu cost is slightly smaller than the
record-at-a-time cost (about 4% less over all and about 10% reduction in the
database path-length). This savings is achieved while still providing the added
functionality of SQL.

Tandem's smallest system, the EXTIO was benchmarked at 4TPS. The benchmark
was then scaled up to 4, 8, 16 and 32 VLX cpus to demonstrate modular growth of
the system and transparent data distribution between the EXT 10 and the VLX
complex. A plot of the TPS rating of the VLX system as processors were added is
shown in Figure 8.

The beta release of the software (March 1987) was benchmarked at 208 DebitCredit
transactions per second (TPS) on a 32VLX processor cluster. At this high rate,
each transaction does one physical read and one mirrored write on average; all
other ios are buffered across many transactions. This configuration showed no
bottlenecks and so could have been grown much larger. The price performance of
NonStop SQL is competitive with the very best transaction processing systems.

There are still many opportunities to improve performance of NonStop SQL in
later releases. In particular, SQL lends itself to the IMS FastPath techniques of
Field Calls and optimistic locking hidden under the SQL language interface
[Gawlick].

33



200

TPS
100

TRANSACTIONS PER SECOND
vs

PROCESSORS

•106

•58

•208

o 8 CPUs 16 24 32

Figure 8. A chart showing the TPS rating of NonStop SQL as VLX processors and
disks are added in increments of 8 processors. The third configuration is shown in
Figure 1. Not shown in that figure is a 12 processor system simulating the 25,000
tenninal network which is submitting the transactions to the measured system.

This performance and price performance came as a surprise to us. It hinges on the
unexpected synergy between message-based systems and distributed databases
which allow modular growth, and SQL, which saves lots of messages and so
improves performance and functionality at the same time. In fairness, Ted Codd
had predicted that relational systems would make distributed databases possible
[Codd]. Codd was right

Ad Hoc Query Performance

NonStop SQL was also benchmarked on the Wisconsin benchmark to test its
performance on ad hoc queries [Bitton]. Considerable performance data is
available for other relational systems running on processors ranging from a
M68000 to a IBM 4381-P13 and a Teradata machine. It is difficult to compare
these data to NonStop SQL1s performance since the Tandem hardware and software
is quite different from the other systems.

The only direct comparison possible is between NonStop SQL and Enform, the
Tandem relational query product which is part of Encompass. As a median,
NonStop SQL performs twice as well as its predecessor on the same hardware.
This speedup comes from better plans in some cases, but most of the speedup comes
from the 'distributed query execution implicit in subcontracting single-variable
queries to the disk process.

34



Indirect comparisons suggest that NonStop SQL does about as well as the best
centralized relational systems when run on comparable hardware.

Performance Observations

The performance assurance of NonStop SQL exposed some language features
which have inherently bad performance and which require language extension to
correct. These are discussed in the following sections.

The Halloween Problem

Several SQL implementations have a famous performance bug called the Halloween
problem bug. The Halloween problem was discovered one trick-or-treat eve,
hence the name. It applies to queries of the form

UPDATE payroll
SET salary = salary +1;

If this query uses an access path ascending on salary, then it will try to give all
employees an infmite raise. First it will increment all the zero salary people giving
them a salary of 1. Then it will give everyone with a salary of 1 a raise, and so on.

As a consequence, many SQL systems refuse to use an index on a field mentioned in
the update clause. This implementation gives very poor performance on common
queries. Consider the query:

UPDATE employee
SET department = 100
WHERE department =55;

the idea of not using the index on department number is a poor decision. It implies
scanning the entire table. This is not acceptable for tables of credible size. In
addition, this is not an instance of the Halloween problem.

NonStop SQL can use an index for an update statement if:
The value clauses (right hand side of assignments) do not involve fields of the

index or,
The where clause fully specifies the index key as equal to literals or host

language variables.

35



These are special cases but they cover some very common situations. The example
above qualifies twice since it satisfies both of these criteria for an index on
department.

In addition, when a cursor is defmed for update, NonStop SQL insists that the clause
FOR UPDATE ON <field list> be included. This tells" the compiler what fields
might be involved in the Halloween problem, and consequently which indices to
avoid. The SQL executor refuses to update undeclared fields via such a cursor.

Group support

SQL treats each field of a record as an individual entity. So the Cobol group
03 DATE.

04 MM PIC(99).
04 DD PIC(99).
04 YY PIC(99).

cannot be called DATE in SQL. Rather each field must be individually named by
the program and moved by SQL. Typical applications have 100 such fields per
record on average, and 1000 fields per record is not unusual.

An INSERT or FETCH statement must specify all 1000 values in the correct order
for such a table. This is error-prone and inconvenient.

As defined in "the ANSI standard, the SQL executor must move each field to and
from individual host language variables. So, if the programmer wants to insert or
fetch a record with 1000 fields, the field move logic is exercised 1000 times for
each record select or insert. No matter how well that logic is optimized, it will have
a difficult time competing with the record-at-a-time interface which treats the
entire record as a string of bytes and moves it with a single instruction.

The solution to this is to provide group support in the SQL language.

Parameters at Compile time

If the SQL optimizer is presented with literals in a selection statement, it can
generally make a reasonable estimate of the selectivity of the predicate. If, on the
other hand, it is presented with host variables, it assumes that a fraction of the
domain will be selected. The fraction is inversely proportional to table size. This
wild guess may lead to a poor plan. For example, consider the query:

SELECf customer .
FROM accounts
WHERE account_number BETWEEN :min AND :max;

Suppose that there are a million accounts. The optimizer will guess that this query
will select 333,333 records. If, on the other hand, it sees the query:

36



SELECf customer
FROM accounts
WHERE account number BETWEEN 50000 AND 60000;

then the optimizer will guess that 10,000 records will be selected. This disparity
may result in bad query execution plans. To our knowledge, all relational systems
suffer from this illness. This problem is serious for SQL programs; almost all
SQL statements will involve host-language variables rather than literals. It is trou
blesome that SQL optimizers are unable to guess set cardinalities in this case.

There are three proposals (not implemented) to deal with this problem. The frrst is
to let the user give the compiler hints.

The second idea is to execute the program in "training mode" with sample pa
rameters, compile the statements on the fly, and save the plans used for the
presented literals as the plan to be used in production.

A second scheme is to set a threshold for guesses. If the compiler cannot fmd a
cheap plan when host language variables are present, it would simply not compile at
static compilation time. At run time, the statement would be compiled dynamically
on frrst invocation with the literals bound in for the host variables. This is similar
to the frrst scheme but is more automatic.

Update Statistics

The SQL compiler picks execution plans based on estimated table sizes, record
sizes, index selectivity, and other table statistics. All these indicators are collected
by a utility SQL command called UPDATE STATISTICS.

For the 20GB database used in the DebitCredit benchmark, the fIrst implementation
of this utility would have taken about a day to collect all the statistics on the various
tables. Since NonStop SQL is intended for databases far in excess of 20GB,
something had to be done. As it stands, UPDATE STATISTICS now samples the
database and estimates the statistics. Now its maximum running time is a few
minutes. But this solution seems ad hoc. A well understood and fast algorithm for
estimating table statistics is needed. Surprisingly, our search of the literature and
query among the database community has not produced any solution better than this
ad hoc one.

37



SUMMARY

Virtually every commercial computer vendor has built or bought a SQL system in
the last few years. NonStop SQL is unique in that it is:

*

*

*

* The fIrSt distributed SQL - it offers distributed data, distributed execution,
and distributed transactions.

A data management system that runs on small (30K$) computers and on large
(30M$) computers and on many sizes in between.

A NonStop SQL -- it tolerates any single fault without interrupting service.

The first high-performance SQL -- it has been benchmarked at over 200TPS
with no bottlenecks in sight

An SQL with a cost per transaction comparable to the ugliest record-at-a-time
high-performance data management systems.

As a consequence, it is useable in both the information center and in production
environments.

*

NonS~op SQL disposes of the myth that relational systems are inherently slow,
much as Fortran disposed of the myth that assembly language was required for
efficient code.

The combination of SQL semantics and a message-based distributed operating
system gives a surprising result: the message savings of a high-level interface pay
for the extra semantics of the SQL language when compared to record-at-a-time
interfaces.

NonStop SQL is the first SQL system to be integrated with an operating system.
The SQL executor and file system were designed together. The disc server directly
executes single-variable SQL queries. The Tandem naming mechanism was
extended to support default catalogs; the authorization mechanism was extended to
cover tables, views and other SQL objects; object programs were extended to
include SQL sections; and the measurement facility was extended to measure SQL
counters. In addition-, the implementation integrated SQL objects and verbs with -.
the Tandem transaction manager, network and NonStop mechanisms.

This integration comes at some cost: it is not portable to other machines. On the
other hand it has considerable benefits in usability, simplicity and performance.

38



REFERENCES

[Anon] Anon et aI., It A Measure of Transaction Processing Power",
Datamation, V. 31.7, April 1985, pp. 112-118.

[ANSI] "Database Language -SQL", American National Standard XZ3.l35
1986.

[ANSI-2] "Database Language SQL 2 (ANSI working draft),', ANSI X3H2 87
8. December 1986.

[Astrahan] M. Astrahan et al., "System R: a Relational Approach to Database
Management", ACM TODS 1.2, June 1986.

[Bartlett] J. Bartlett, "A NonStop Kernel", Proc 8th ACM SOSP, Dec 1981.

[Bitton] D. Bitton, et aI., "Benchmarking Database Systems: A Systematic
Approach", Proc. 9th VLDB, Nov 1983.

[Borr] A. Borr, "Transaction Monitoring in Encompass", VLDB, Sept. 1981.

[Codd] "Relational Database: A Practical Foundation for Productivity",
CACM 25.2, Feb. 1982.

[Date] An Introduction to Database Systems, Volume 1, Addison Wesley,
April 1986.

[DB2] IBM Database 2 General Information Manual, mM Form No. GC 26
4073-2, Armonk, NY, Feb. 1986.

[FastSort] A. Tsukerman et aI., " FastSort: An External Sort Using Parallel
Processing", Tandem Technical Report 86.3, Cupertino, CA, May
1986.

[GawIick] D. Gawlick, "Processing Hot Spots in High Performance Systems",
Proc. IEEE Compeon, Feb. 1985.

[Gray] J. Gray, et al. "Granularity of Locks and Degrees of Consistency in a
Shared Database", Modeling in Database Management Systems, G.M.
Nijssen ed., Jan 1976.

[Informix] Informix SQL Relational Database System, Users Guide, Part No.
200-41-1015-8, Relational Database Systems Inc., Menlo Park, CA,
June 1986.

39



[Pathway]

[lngres] The INGRES Papers: The Anatomy of a Relational Database
Management System, M. Stonebraker ed., Addison Wesley, May 1985.

[Lindsay] B. Lindsay, "Object Naming' and Catalog Management for a
Distributed Database Management System", 2nd lnt. Conf. on
Distributed Computer Systems, IEEE, April 1981.

[Mohan] C. Mohan et aI., "Transaction Management in the R* Distributed
Database Management System", ACM TODS, V11.4, Dec. 1986.

[Measure} Measure User's Guide, Part No. 82440, Tandem Computers Inc,
Cupertino, CA, Dec. 1986..

Introduction to Pathway, Part No. 82339, Tandem Computers Inc,
•Cupertino, CA, June 1985. - -. ~ ~.

[Pathmaker] Introduction to Pathmaker, Part No. 84070, Tandem Computers Inc,
Cupertino, CA, March 87.' :

[Palermo] F. Palermo, "A Database Search Problem", Information Systems:
COINS N, J. Tou ed., PlenuJti, 1974. ~

/

[Rowe] L. Rowe, "Database Portals: A New Application Programming
Interface" VLDB, Aug 1984.

[SafeGuard] SafeGuard User's Manual, Part No. 82539, Tandem Computers Inc,
Cupertino, CA, Feb. 1987.

[SQUDS] SQLIData System Concepts and Facilities, IBM Form No GH24-5013,
Armonk, NY, Feb. 1982.

[Teradata] "The Genesis of a Database Computer: A Conversation with Jack
Shemer and Phil Neches of Teradata Corporation", IEEE Computer,
V??, Nov. 1984.

[Williams] R. Williams et aI., "R*: An Overview of the Architecture", IBM
Research Report RJ3325, San Jose, CA, Dec 1981.

40



Distributed by
AJlTANDEMCOMPUTERS

Corporate Information Center
19333 Valleo Parkway MS3-07
Cupertino, CA 95014-2599



"-

I
-J

I
-.I

I

1......

I.....


