
Texts in Computing
Volume 4

The Haskell Road to Logic,

Maths and Programming



Volume 1
Programming Languages and Operational Semantics
Maribel Fernández

Volume 2
An Introduction to Lambda Calculi for Computer Scientists
Chris Hankin

Volume 3
Logical Reasoning: A First Course
Rob Nederpelt and Fairouz Kamareddine

Volume 4
The Haskell Road to Logic, Maths and Programming
Kees Doets and Jan van Eijck

Texts in Computing Series Editor
Ian Mackie, King’s College London



The Haskell Road to Logic,

Maths and Programming

Kees Doets
ILLC, Amsterdam

Jan van Eijck
CWI, Amsterdam ILLC, Amsterdam



c© Individual authors and King’s College 2004. All rights reserved.

ISBN 0-9543006-9-6
King’s College Publications
Scientific Director: Dov Gabbay
Managing Director: Jane Spurr
Department of Computer Science
Strand, London WC2R 2LS, UK
kcp@dcs.kcl.ac.uk

Cover design by Richard Fraser, www.avalonarts.co.uk
Printed by Lightning Source, Milton Keynes, UK

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system or transmitted, in any form, or by any means, electronic, mechanical,
photocopying, recording or otherwise, without prior permission, in writing, from the
publisher.



Contents

i



ii CONTENTS



Preface

Purpose
Long ago, when Alexander the Great asked the mathematician Menaechmus
for a crash course in geometry, he got the famous reply “There is no royal
road to mathematics.” Where there was no shortcut for Alexander, there is
no shortcut for us. Still, the fact that we have access to computers and
mature programming languages means that there are avenues for us that
were denied to the kings and emperors of yore.

The purpose of this book is to teach logic and mathematical reasoning in
practice, and to connect logical reasoning with computer programming. The
programming language that will be our tool for this is Haskell, a member of
the Lisp family. Haskell emerged in the last decade as a standard for lazy
functional programming, a programming style where arguments are evaluated
only when the value is actually needed. Functional programming is a form
of descriptive programming, very different from the style of programming
that you find in prescriptive languages like C or Java. Haskell is based on
a logical theory of computable functions called the lambda calculus.

Lambda calculus is a formal language capable of expressing
arbitrary computable functions. In combination with types it
forms a compact way to denote on the one hand functional
programs and on the other hand mathematical proofs. [Bar84]

Haskell can be viewed as a particularly elegant implementation of the
lambda calculus. It is a marvelous demonstration tool for logic and maths
because its functional character allows implementations to remain very close
to the concepts that get implemented, while the laziness permits smooth
handling of infinite data structures.

Haskell syntax is easy to learn, and Haskell programs are constructed
and tested in a modular fashion. This makes the language well suited for
fast prototyping. Programmers find to their surprise that implementation

iii



iv

of a well-understood algorithm in Haskell usually takes far less time than
implementation of the same algorithm in other programming languages.
Getting familiar with new algorithms through Haskell is also quite easy.
Learning to program in Haskell is learning an extremely useful skill.

Throughout the text, abstract concepts are linked to concrete representations
in Haskell. Haskell comes with an easy to use interpreter, Hugs. Haskell
compilers, interpreters and documentation are freely available from the
Internet [HT]. Everything one has to know about programming in Haskell
to understand the programs in the book is explained as we go along, but
we do not cover every aspect of the language. For a further introduction to
Haskell we refer the reader to [HFP96].

Logic in Practice

The subject of this book is the use of logic in practice, more in particular
the use of logic in reasoning about programming tasks. Logic is not taught
here as a mathematical discipline per se, but as an aid in the understanding
and construction of proofs, and as a tool for reasoning about formal
objects like numbers, lists, trees, formulas, and so on. As we go along,
we will introduce the concepts and tools that form the set-theoretic basis
of mathematics, and demonstrate the role of these concepts and tools in
implementations. These implementations can be thought of as representations
of the mathematical concepts.

Although it may be argued that the logic that is needed for a proper
understanding of reasoning in reasoned programming will get acquired more
or less automatically in the process of learning (applied) mathematics and/or
programming, students nowadays enter university without any experience
whatsoever with mathematical proof, the central notion of mathematics.

The rules of Chapter ?? represent a detailed account of the structure of
a proof. The purpose of this account is to get the student acquainted with
proofs by putting emphasis on logical structure. The student is encouraged
to write “detailed” proofs, with every logical move spelled out in full. The
next goal is to move on to writing “concise” proofs, in the customary
mathematical style, while keeping the logical structure in mind. Once the
student has arrived at this stage, most of the logic that is explained in
Chapter ?? can safely be forgotten, or better, can safely fade into the
subconsciousness of the matured mathematical mind.



PREFACE v

Pre- and Postconditions of Use
We do not assume that our readers have previous experience with either
programming or construction of formal proofs. We do assume previous
acquaintance with mathematical notation, at the level of secondary school
mathematics. Wherever necessary, we will recall relevant facts. Everything
one needs to know about mathematical reasoning or programming is
explained as we go along. We do assume that our readers are able to
retrieve software from the Internet and install it, and that they know how
to use an editor for constructing program texts.

After having worked through the material in the book, i.e., after having
digested the text and having carried out a substantial number of the
exercises, the reader will be able to write interesting programs, reason about
their correctness, and document them in a clear fashion. The reader will
also have learned how to set up mathematical proofs in a structured way,
and how to read and digest mathematical proofs written by others.

How to Use the Book
Chapters 1–7 of the book are devoted to a gradual introduction of
the concepts, tools and methods of mathematical reasoning and reasoned
programming.

Chapter 8 tells the story of how the various number systems (natural
numbers, integers, rationals, reals, complex numbers) can be thought of as
constructed in stages from the natural numbers. Everything gets linked to
the implementations of the various Haskell types for numerical computation.

Chapter 9 starts with the question of how to automate the task of
finding closed forms for polynomial sequences. It is demonstrated how this
task can be automated with difference analysis plus Gaussian elimination.
Next, polynomials are implemented as lists of their coefficients, with the
appropriate numerical operations, and it is shown how this representation
can be used for solving combinatorial problems.

Chapter 10 provides the first general textbook treatment (as far as we
know) of the important topic of corecursion. The chapter presents the proof
methods suitable for reasoning about corecursive data types like streams
and processes, and then goes on to introduce power series as infinite
lists of coefficients, and to demonstrate the uses of this representation for
handling combinatorial problems. This generalizes the use of polynomials
for combinatorics.

Chapter 11 offers a guided tour through Cantor’s paradise of the infinite,
while providing extra challenges in the form of a wide range of additional



vi

exercises.
The book can be used as a course textbook, but since it comes with

solutions to all exercises (electronically available from the authors upon
request) it is also well suited for private study. Courses based on the book
could start with Chapters 1–7, and then make a choice from the remaining
Chapters. Here are some examples:

Road to Numerical Computation Chapters 1–7, followed by 8 and 9.

Road to Streams and Corecursion Chapters 1–7, followed by 9 and 10.

Road to Cantor’s Paradise Chapters 1–7, followed by 11.

Study of the remaining parts of the book can then be set as individual
tasks for students ready for an extra challenge. The guidelines for setting
up formal proofs in Chapter 3 should be recalled from time to time while
studying the book, for proper digestion.

Exercises
Parts of the text and exercises marked by a * are somewhat harder than
the rest of the book. All exercises are solved in the electronically available
solutions volume. Before turning to these solutions, one should read the
Important Advice to the Reader that this volume starts with.

Book Website and Contact
The programs in this book have all been tested with Hugs98, the version
of Hugs that implements the Haskell 98 standard. The full source code of
all programs is integrated in the book; in fact, each chapter can be viewed
as a literate program [Knu92] in Haskell. The source code of all programs
discussed in the text can be found on the website devoted to this book, at
address http://www.cwi.nl/~jve/HR. Here you can also find a list of
errata, and further relevant material.

Readers who want to share their comments with the authors are
encouraged to get in touch with us at email address jve@cwi.nl.

Acknowledgments
Remarks from the people listed below have sparked off numerous
improvements. Thanks to Johan van Benthem, Jan Bergstra, Jacob



PREFACE vii

Brunekreef, Thierry Coquand (who found the lecture notes on the internet
and sent us his comments), Tim van Erven, Wan Fokkink, Evan Goris,
Robbert de Haan, Sandor Heman, Eva Hoogland, Rosalie Iemhoff, Dick de
Jongh, Anne Kaldewaij, Breanndán Ó Nualláin, Alban Ponse, Vincent van
Oostrom, Piet Rodenburg, Jan Rutten, Marco Swaen, Jan Terlouw, John
Tromp, Yde Venema, Albert Visser and Stephanie Wehner for suggestions
and criticisms. The beautiful implementation of the sieve of Eratosthenes in
Section ?? was suggested to us by Fer-Jan de Vries. Jack Jansen, Hayco
de Jong and Jurgen Vinju provided instant support with running Haskell on
non-Linux machines.

The course on which this book is based was developed at ILLC
(the Institute of Logic, Language and Computation of the University of
Amsterdam) with financial support from the Spinoza Logic in Action initiative
of Johan van Benthem, which is herewith gratefully acknowledged. We also
wish to thank ILLC and CWI (Centrum voor Wiskunde en Informatica, or
Centre for Mathematics and Computer Science, also in Amsterdam), the
home institute of the second author, for providing us with a supportive
working environment. CWI has kindly granted permission to reuse material
from [Doe96].

It was Krzysztof Apt who, perceiving the need of a deadline, spurred
us on to get in touch with a publisher and put ourselves under contract.
Finally, many thanks go to Ian Mackie, Texts in Computing Series Editor,
of King’s College, London, for swift decision making, prompt and helpful
feedback and enthousiastic support during the preparation of the manuscript
for the Text in Computing series.



viii



Chapter 1

Getting Started

Preview

Our purpose is to teach logic and mathematical reasoning in practice, and
to connect formal reasoning to computer programming. It is convenient to
choose a programming language for this that permits implementations to
remain as close as possible to the formal definitions. Such a language is the
functional programming language Haskell [HT]. Haskell was named after
the logician Haskell B. Curry. Curry, together with Alonzo Church, laid
the foundations of functional computation in the era Before the Computer,
around 1940. As a functional programming language, Haskell is a member
of the Lisp family. Others family members are Scheme, ML, Occam,
Clean. Haskell98 is intended as a standard for lazy functional programming.
Lazy functional programming is a programming style where arguments are
evaluated only when the value is actually needed.

With Haskell, the step from formal definition to program is particularly
easy. This presupposes, of course, that you are at ease with formal
definitions. Our reason for combining training in reasoning with an
introduction to functional programming is that your programming needs will
provide motivation for improving your reasoning skills. Haskell programs
will be used as illustrations for the theory throughout the book. We will
always put computer programs and pseudo-code of algorithms in frames
(rectangular boxes).

The chapters of this book are written in so-called ‘literate programming’
style [Knu92]. Literate programming is a programming style where the
program and its documentation are generated from the same source. The
text of every chapter in this book can be viewed as the documentation of

1



2 CHAPTER 1. GETTING STARTED

the program code in that chapter. Literate programming makes it impossible
for program and documentation to get out of sync. Program documentation
is an integrated part of literate programming, in fact the bulk of a literate
program is the program documentation. When writing programs in literate
style there is less temptation to write program code first while leaving the
documentation for later. Programming in literate style proceeds from the
assumption that the main challenge when programming is to make your
program digestible for humans. For a program to be useful, it should be
easy for others to understand the code. It should also be easy for you to
understand your own code when you reread your stuff the next day or the
next week or the next month and try to figure out what you were up to
when you wrote your program.

To save you the trouble of retyping, the code discussed in this book
can be retrieved from the book website. The program code is the text in
typewriter font that you find in rectangular boxes throughout the chapters.
Boxes may also contain code that is not included in the chapter modules,
usually because it defines functions that are already predefined by the
Haskell system, or because it redefines a function that is already defined
elsewhere in the chapter.

Typewriter font is also used for pieces of interaction with the Haskell
interpreter, but these illustrations of how the interpreter behaves when
particular files are loaded and commands are given are not boxed.

Every chapter of this book is a so-called Haskell module. The following
two lines declare the Haskell module for the Haskell code of the present
chapter. This module is called GS.

module GS

where

1.1 Starting up the Haskell Interpreter
We assume that you succeeded in retrieving the Haskell interpreter hugs
from the Haskell homepage www.haskell.org and that you managed to
install it on your computer. You can start the interpreter by typing hugs
at the system prompt. When you start hugs you should see something like
Figure 1.1. The string Prelude> on the last line is the Haskell prompt
when no user-defined files are loaded.



1.2. IMPLEMENTING A PRIME NUMBER TEST 3

__ __ __ __ ____ ___ _________________________________________

|| || || || || || ||__ Hugs 98: Based on the Haskell 98 standard

||___|| ||__|| ||__|| __|| Copyright (c) 1994-2003

||---|| ___|| World Wide Web: http://haskell.org/hugs

|| || Report bugs to: hugs-bugs@haskell.org

|| || Version: November 2003 _________________________________________

Haskell 98 mode: Restart with command line option -98 to enable extensions

Type :? for help

Prelude>

Figure 1.1: Starting up the Haskell interpreter.

You can use hugs as a calculator as follows:

Prelude> 2^16

65536

Prelude>

The string Prelude> is the system prompt. 2^16 is what you type. After
you hit the return key (the key that is often labeled with Enter or ←↩), the
system answers 65536 and the prompt Prelude> reappears.

Exercise 1.1 Try out a few calculations using * for multiplication, + for
addition, - for subtraction, ^ for exponentiation, / for division. By playing
with the system, find out what the precedence order is among these
operators.

Parentheses can be used to override the built-in operator precedences:

Prelude> (2 + 3)^4

625

To quit the Hugs interpreter, type :quit or :q at the system prompt.

1.2 Implementing a Prime Number Test
Suppose we want to implement a definition of prime number in a procedure
that recognizes prime numbers. A prime number is a natural number
greater than 1 that has no proper divisors other than 1 and itself. The
natural numbers are 0, 1, 2, 3, 4, . . . The list of prime numbers starts with
2, 3, 5, 7, 11, 13, . . . Except for 2, all of these are odd, of course.



4 CHAPTER 1. GETTING STARTED

Let n > 1 be a natural number. Then we use LD(n) for the least natural
number greater than 1 that divides n. A number d divides n if there is
a natural number a with a · d = n. In other words, d divides n if there
is a natural number a with n

d = a, i.e., division of n by d leaves no
remainder. Note that LD(n) exists for every natural number n > 1, for the
natural number d = n is greater than 1 and divides n. Therefore, the set of
divisors of n that are greater than 1 is non-empty. Thus, the set will have
a least element.

The following proposition gives us all we need for implementing our
prime number test:

Proposition 1.2

1. If n > 1 then LD(n) is a prime number.

2. If n > 1 and n is not a prime number, then (LD(n))2 6 n.

In the course of this book you will learn how to prove propositions like
this.

Here is the proof of the first item. This is a proof by contradiction (see
Chapter ??). Suppose, for a contradiction that c = LD(n) is not a prime.
Then there are natural numbers a and b with c = a · b, and also 1 < a and
a < c. But then a divides n, and contradiction with the fact that c is the
smallest natural number greater than 1 that divides n. Thus, LD(n) must
be a prime number.

For a proof of the second item, suppose that n > 1, n is not a prime
and that p = LD(n). Then there is a natural number a > 1 with n = p · a.
Thus, a divides n. Since p is the smallest divisor of n with p > 1, we
have that p 6 a, and therefore p2 6 p · a = n, i.e., (LD(n))2 6 n.

The operator · in a · b is a so-called infix operator. The operator is written
between its formal arguments. If an operator is written before its formal
arguments we call this prefix notation. The product of a and b in prefix
notation would look like this: · a b.

In writing functional programs, the standard is prefix notation. In an
expression op a b, op is the function, and a and b are the formal
arguments. The convention is that function application associates to the left,
so the expression op a b is interpreted as (op a) b.

Using prefix notation, we define the operation divides that takes two
integer expressions and produces a truth value. The truth values true and
false are rendered in Haskell as True and False, respectively.



1.2. IMPLEMENTING A PRIME NUMBER TEST 5

The integer expressions that the procedure needs to work with are called
the formal arguments of the procedure. The truth value that it produces is
called the value of the procedure.

Obviously, m divides n if and only if the remainder of the process of
dividing n by m equals 0. The definition of divides can therefore be
phrased in terms of a predefined procedure rem for finding the remainder
of a division process:

divides d n = rem n d == 0

The definition illustrates that Haskell uses = for ‘is defined as’ and ==
for identity. (The Haskell symbol for non-identity is /=.)

A line of Haskell code of the form foo t = ... (or foo t1 t2 = ...,
or foo t1 t2 t3 = ..., and so on) is called a Haskell equation. In such
an equation, foo is called the function, and t its formal argument.

Thus, in the Haskell equation divides d n = rem n d == 0, divides
is the function, d is the first formal argument, and n is the second formal
argument.

Exercise 1.3 Put the definition of divides in a file prime.hs. Start the
Haskell interpreter hugs (Section 1.1). Now give the command :load prime
or :l prime, followed by pressing Enter. Note that l is the letter l, not
the digit 1. (Next to :l, a very useful command after you have edited a
file of Haskell code is :reload or :r, for reloading the file.)

Prelude> :l prime

Main>

The string Main> is the Haskell prompt indicating that user-defined files are
loaded. This is a sign that the definition was added to the system. The
newly defined operation can now be executed, as follows:

Main> divides 5 7

False

Main>

What appears after the Haskell prompt Main> on the first line is what you
type. When you press Enter the system answers with the second line,
followed by the Haskell prompt. You can then continue with:

Main> divides 5 30

True



6 CHAPTER 1. GETTING STARTED

It is clear from the proposition above that all we have to do to implement
a primality test is to give an implementation of the function LD. It is
convenient to define LD in terms of a second function LDF, for the least
divisor starting from a given threshold k, with k 6 n. Thus, LDF(k)(n) is
the least divisor of n that is > k. Clearly, LD(n) = LDF(2)(n). Now we
can implement LD as follows:

ld n = ldf 2 n

This leaves the implementation ldf of LDF (details of the coding will be
explained below):

ldf k n | divides k n = k

| k^2 > n = n

| otherwise = ldf (k+1) n

The definition employs the Haskell operation ^ for exponentiation, > for
‘greater than’, and + for addition.

The definition of ldf makes use of equation guarding. The first line of
the ldf definition handles the case where the first argument divides the
second argument. Every next line assumes that the previous lines do not
apply. The second line handles the case where the first argument does not
divide the second argument, and the square of the first argument is greater
than the second argument. The third line assumes that the first and second
cases do not apply and handles all other cases, i.e., the cases where k does
not divide n and k2 < n.

The definition employs the Haskell condition operator | . A Haskell
equation of the form

foo t | condition = ...

is called a guarded equation. We might have written the definition of ldf
as a list of guarded equations, as follows:

ldf k n | divides k n = k

ldf k n | k^2 > n = n

ldf k n = ldf (k+1) n



1.2. IMPLEMENTING A PRIME NUMBER TEST 7

The expression condition, of type Bool (i.e., Boolean or truth value),
is called the guard of the equation.

A list of guarded equations such as

foo t | condition_1 = body_1

foo t | condition_2 = body_2

foo t | condition_3 = body_3

foo t = body_4

can be abbreviated as

foo t | condition_1 = body_1

| condition_2 = body_2

| condition_3 = body_3

| otherwise = body_4

Such a Haskell definition is read as follows:

• in case condition_1 holds, foo t is by definition equal to body_1,

• in case condition_1 does not hold but condition_2 holds, foo t
is by definition equal to body_2,

• in case condition_1 and condition_2 do not hold but condition_3
holds, foo t is by definition equal to body_3,

• and in case none of condition_1, condition_2 and condition_3
hold, foo t is by definition equal to body_4.

When we are at the end of the list we know that none of the cases
above in the list apply. This is indicated by means of the Haskell reserved
keyword otherwise.

Note that the procedure ldf is called again from the body of its own
definition. We will encounter such recursive procedure definitions again and
again in the course of this book (see in particular Chapter ??).

Exercise 1.4 Suppose in the definition of ldf we replace the condition
k^2 > n by k^2 >= n, where >= expresses ‘greater than or equal’. Would
that make any difference to the meaning of the program? Why (not)?

Now we are ready for a definition of prime0, our first implementation
of the test for being a prime number.

prime0 n | n < 1 = error "not a positive integer"

| n == 1 = False

| otherwise = ld n == n



8 CHAPTER 1. GETTING STARTED

Haskell allows a call to the error operation in any definition. This is used
to break off operation and issue an appropriate message when the primality
test is used for numbers below 1. Note that error has a parameter of
type String (indicated by the double quotes). The definition employs the
Haskell operation < for ‘less than’.

Intuitively, what the definition prime0 says is this:

1. the primality test should not be applied to numbers below 1,

2. if the test is applied to the number 1 it yields ‘false’,

3. if it is applied to an integer n greater than 1 it boils down to checking
that LD(n) = n. In view of the proposition we proved above, this is
indeed a correct primality test.

Exercise 1.5 Add these definitions to the file prime.hs and try them out.

Remark. The use of variables in functional programming has much
in common with the use of variables in logic. The definition
divides d n = rem n d == 0 is equivalent to divides x y = rem y x == 0.
This is because the variables denote arbitrary elements of the type over
which they range. They behave like universally quantified variables, and just
as in logic the definition does not depend on the variable names.

1.3 Haskell Type Declarations
Haskell has a concise way to indicate that divides consumes an integer,
then another integer, and produces a truth value (called Bool in Haskell).
Integers and truth values are examples of types. See Section 2.1 for more
on the type Bool. Section 1.6 gives more information about types in
general. Arbitrary precision integers in Haskell have type Integer. The
following line gives a so-called type declaration for the divides function.

divides :: Integer -> Integer -> Bool

Integer -> Integer -> Bool is short for Integer -> (Integer -> Bool).
A type of the form a -> b classifies procedures that take an argument of
type a to produce a result of type b. Thus, divides takes an argument
of type Integer and produces a result of type Integer -> Bool, i.e., a
procedure that takes an argument of type Integer, and produces a result
of type Bool.



1.3. HASKELL TYPE DECLARATIONS 9

The full code for divides, including the type declaration, looks like this:

divides :: Integer -> Integer -> Bool

divides d n = rem n d == 0

If d is an expression of type Integer, then divides d is an expression
of type Integer -> Bool. The shorthand that we will use for

d is an expression of type Integer

is: d :: Integer.

Exercise 1.6 Can you gather from the definition of divides what the type
declaration for rem would look like?

Exercise 1.7 The hugs system has a command for checking the types of
expressions. Can you explain the following (please try it out; make sure
that the file with the definition of divides is loaded, together with the
type declaration for divides):

Main> :t divides 5

divides 5 :: Integer -> Bool

Main> :t divides 5 7

divides 5 7 :: Bool

Main>

The expression divides 5 :: Integer -> Bool is called a type judgment.
Type judgments in Haskell have the form expression :: type.

In Haskell it is not strictly necessary to give explicit type declarations.
For instance, the definition of divides works quite well without the
type declaration, since the system can infer the type from the definition.
However, it is good programming practice to give explicit type declarations
even when this is not strictly necessary. These type declarations are an
aid to understanding, and they greatly improve the digestibility of functional
programs for human readers. A further advantage of the explicit type
declarations is that they facilitate detection of programming mistakes on the
basis of type errors generated by the interpreter. You will find that many
programming errors already come to light when your program gets loaded.
The fact that your program is well typed does not entail that it is correct,
of course, but many incorrect programs do have typing mistakes.

The full code for ld, including the type declaration, looks like this:



10 CHAPTER 1. GETTING STARTED

ld :: Integer -> Integer

ld n = ldf 2 n

The full code for ldf, including the type declaration, looks like this:

ldf :: Integer -> Integer -> Integer

ldf k n | divides k n = k

| k^2 > n = n

| otherwise = ldf (k+1) n

The first line of the code states that the operation ldf takes two integers
and produces an integer.

The full code for prime0, including the type declaration, runs like this:

prime0 :: Integer -> Bool

prime0 n | n < 1 = error "not a positive integer"

| n == 1 = False

| otherwise = ld n == n

The first line of the code declares that the operation prime0 takes an
integer and produces (or returns, as programmers like to say) a Boolean
(truth value).

In programming generally, it is useful to keep close track of the nature of
the objects that are being represented. This is because representations have
to be stored in computer memory, and one has to know how much space
to allocate for this storage. Still, there is no need to always specify the
nature of each data-type explicitly. It turns out that much information about
the nature of an object can be inferred from how the object is handled
in a particular program, or in other words, from the operations that are
performed on that object.

Take again the definition of divides. It is clear from the definition
that an operation is defined with two formal arguments, both of which are
of a type for which rem is defined, and with a result of type Bool (for
rem n d == 0 is a statement that can turn out true or false). If we check
the type of the built-in procedure rem we get:

Prelude> :t rem

rem :: Integral a => a -> a -> a



1.4. IDENTIFIERS IN HASKELL 11

In this particular case, the type judgment gives a type scheme rather than
a type. It means: if a is a type of class Integral, then rem is of type
a -> a -> a. Here a is used as a variable ranging over types.

In Haskell, Integral is the class (see Section ??) consisting of the two
types for integer numbers, Int and Integer. The difference between Int
and Integer is that objects of type Int have fixed precision, objects of
type Integer have arbitrary precision.

The type of divides can now be inferred from the definition. This is
what we get when we load the definition of divides without the type
declaration:

Main> :t divides

divides :: Integral a => a -> a -> Bool

1.4 Identifiers in Haskell
In Haskell, there are two kinds of identifiers:

• Variable identifiers are used to name functions. They have to start
with a lower-case letter. E.g., map, max, fct2list, fctToList,
fct_to_list.

• Constructor identifiers are used to name types. They have to start
with an upper-case letter. Examples are True, False.

Functions are operations on data-structures, constructors are the building
blocks of the data structures themselves (trees, lists, Booleans, and so on).

Names of functions always start with lower-case letters, and may contain
both upper- and lower-case letters, but also digits, underscores and the
prime symbol ’. The following reserved keywords have special meanings
and cannot be used to name functions.

case class data default deriving do else
if import in infix infixl infixr instance
let module newtype of then type where

The use of these keywords will be explained as we encounter them. at
the beginning of a word is treated as a lower-case character. The underscore
character all by itself is a reserved word for the wildcard pattern that
matches anything (page ??).

There is one more reserved keyword that is particular to Hugs: forall,
for the definition of functions that take polymorphic arguments. See the
Hugs documentation for further particulars.



12 CHAPTER 1. GETTING STARTED

1.5 Playing the Haskell Game
This section consists of a number of further examples and exercises to get
you acquainted with the programming language of this book. To save you
the trouble of keying in the programs below, you should retrieve the module
GS.hs for the present chapter from the book website and load it in hugs.
This will give you a system prompt GS>, indicating that all the programs
from this chapter are loaded.

In the next example, we use Int for the type of fixed precision integers,
and [Int] for lists of fixed precision integers.

Example 1.8 Here is a function that gives the minimum of a list of
integers:

mnmInt :: [Int] -> Int

mnmInt [] = error "empty list"

mnmInt [x] = x

mnmInt (x:xs) = min x (mnmInt xs)

This uses the predefined function min for the minimum of two integers. It
also uses pattern matching for lists . The list pattern [] matches only the
empty list, the list pattern [x] matches any singleton list, the list pattern
(x:xs) matches any non-empty list. A further subtlety is that pattern
matching in Haskell is sensitive to order. If the pattern [x] is found before
(x:xs) then (x:xs) matches any non-empty list that is not a unit list. See
Section ?? for more information on list pattern matching.

It is common Haskell practice to refer to non-empty lists as x:xs, y:ys,
and so on, as a useful reminder of the facts that x is an element of a list
of x’s and that xs is a list.

Here is a home-made version of min:

min’ :: Int -> Int -> Int

min’ x y | x <= y = x

| otherwise = y

You will have guessed that <= is Haskell code for 6.

Objects of type Int are fixed precision integers. Their range can be
found with:



1.5. PLAYING THE HASKELL GAME 13

Prelude> primMinInt

-2147483648

Prelude> primMaxInt

2147483647

Since 2147483647 = 231 − 1, we can conclude that the hugs implementation
uses four bytes (32 bits) to represent objects of this type. Integer is
for arbitrary precision integers: the storage space that gets allocated for
Integer objects depends on the size of the object.

Exercise 1.9 Define a function that gives the maximum of a list of integers.
Use the predefined function max.

Conversion from Prefix to Infix in Haskell A function can be converted
to an infix operator by putting its name in back quotes, like this:

Prelude> max 4 5

5

Prelude> 4 ‘max‘ 5

5

Conversely, an infix operator is converted to prefix by putting the operator
in round brackets (p. 20).

Exercise 1.10 Define a function removeFst that removes the first occurrence
of an integer m from a list of integers. If m does not occur in the list,
the list remains unchanged.

Example 1.11 We define a function that sorts a list of integers in order of
increasing size, by means of the following algorithm:

• an empty list is already sorted.

• if a list is non-empty, we put its minimum in front of the result of
sorting the list that results from removing its minimum.

This is implemented as follows:

srtInts :: [Int] -> [Int]

srtInts [] = []

srtInts xs = m : (srtInts (removeFst m xs)) where m = mnmInt xs



14 CHAPTER 1. GETTING STARTED

Here removeFst is the function you defined in Exercise 1.10. Note that
the second clause is invoked when the first one does not apply, i.e., when
the argument of srtInts is not empty. This ensures that mnmInt xs never
gives rise to an error.

Note the use of a where construction for the local definition of an
auxiliary function.

Remark. Haskell has two ways to locally define auxiliary functions,
where and let constructions. The where construction is illustrated in
Example 1.11. This can also expressed with let, as follows:

srtInts’ :: [Int] -> [Int]

srtInts’ [] = []

srtInts’ xs = let

m = mnmInt xs

in m : (srtInts’ (removeFst m xs))

The let construction uses the reserved keywords let and in.

Example 1.12 Here is a function that calculates the average of a list of
integers. The average of m and n is given by m+n

2 , the average of a list
of k integers n1, . . . , nk is given by n1+···+nk

k . In general, averages are
fractions, so the result type of average should not be Int but the Haskell
data-type for fractional numbers, which is Rational. There are predefined
functions sum for the sum of a list of integers, and length for the length
of a list. The Haskell operation for division / expects arguments of type
Rational (or more precisely, of a type in the class Fractional, and
Rational is in that class), so we need a conversion function for converting
Ints into Rationals. This is done by toRational. The function
average can now be written as:

average :: [Int] -> Rational

average [] = error "empty list"

average xs = toRational (sum xs) / toRational (length xs)

Again, it is instructive to write our own homemade versions of sum and
length. Here they are:



1.5. PLAYING THE HASKELL GAME 15

sum’ :: [Int] -> Int

sum’ [] = 0

sum’ (x:xs) = x + sum’ xs

length’ :: [a] -> Int

length’ [] = 0

length’ (x:xs) = 1 + length’ xs

Note that the type declaration for length’ contains a variable a. This
variable ranges over all types, so [a] is the type of a list of objects of
an arbitrary type a. We say that [a] is a type scheme rather than a type.
This way, we can use the same function length’ for computing the length
of a list of integers, the length of a list of characters, the length of a list
of strings (lists of characters), and so on.

The type [Char] is abbreviated as String. Examples of characters are
’a’, ’b’ (note the single quotes) examples of strings are "Russell" and
"Cantor" (note the double quotes). In fact, "Russell" can be seen as an
abbreviation of the list

[’R’,’u’,’s’,’s’,’e’,’l’,’l’].

Exercise 1.13 Write a function count for counting the number of occurrences
of a character in a string. In Haskell, a character is an object of type
Char, and a string an object of type String, so the type declaration should
run: count :: Char -> String -> Int.

Exercise 1.14 A function for transforming strings into strings is of type
String -> String. Write a function blowup that converts a string

a1a2a3 · · ·

to
a1a2a2a3a3a3 · · · .

blowup "bang!" should yield "baannngggg!!!!!". (Hint: use ++ for
string concatenation.)



16 CHAPTER 1. GETTING STARTED

Exercise 1.15 Write a function srtString :: [String] -> [String] that
sorts a list of strings in alphabetical order.

Example 1.16 Suppose we want to check whether a string str1 is a prefix
of a string str2. Then the answer to the question prefix str1 str2
should be either yes (true) or no (false), i.e., the type declaration for
prefix should run: prefix :: String -> String -> Bool.

Prefixes of a string ys are defined as follows:

1. [] is a prefix of ys,

2. if xs is a prefix of ys, then x:xs is a prefix of x:ys,

3. nothing else is a prefix of ys.

Here is the code for prefix that implements this definition:

prefix :: String -> String -> Bool

prefix [] ys = True

prefix (x:xs) [] = False

prefix (x:xs) (y:ys) = (x==y) && prefix xs ys

The definition of prefix uses the Haskell operator && for conjunction.

Exercise 1.17 Write a function substring :: String -> String -> Bool
that checks whether str1 is a substring of str2.

The substrings of an arbitrary string ys are given by:

1. if xs is a prefix of ys, xs is a substring of ys,

2. if ys equals y:ys’ and xs is a substring of ys’, xs is a substring
of ys,

3. nothing else is a substring of ys.



1.6. HASKELL TYPES 17

1.6 Haskell Types
The basic Haskell types are:

• Int and Integer, to represent integers. Elements of Integer are
unbounded. That’s why we used this type in the implementation of
the prime number test.

• Float and Double represent floating point numbers. The elements of
Double have higher precision.

• Bool is the type of Booleans.

• Char is the type of characters.

Note that the name of a type always starts with a capital letter.
To denote arbitrary types, Haskell allows the use of type variables. For

these, a, b, . . . , are used.
New types can be formed in several ways:

• By list-formation: if a is a type, [a] is the type of lists over a.
Examples: [Int] is the type of lists of integers; [Char] is the type
of lists of characters, or strings.

• By pair- or tuple-formation: if a and b are types, then (a,b) is the
type of pairs with an object of type a as their first component, and
an object of type b as their second component. Similarly, triples,
quadruples, . . . , can be formed. If a, b and c are types, then
(a,b,c) is the type of triples with an object of type a as their first
component, an object of type b as their second component, and an
object of type c as their third component. And so on (p. ??).

• By function definition: a -> b is the type of a function that takes
arguments of type a and returns values of type b.

• By applying a type constructor. E.g., Rational is the type that
results from applying the type constructor Ratio to type Integer.

• By defining your own data-type from scratch, with a data type
declaration. More about this in due course.

Pairs will be further discussed in Section ??, lists and list operations in
Section ??.

Operations are procedures for constructing objects of a certain types b
from ingredients of a type a. Now such a procedure can itself be given a
type: the type of a transformer from a type objects to b type objects. The
type of such a procedure can be declared in Haskell as a -> b.



18 CHAPTER 1. GETTING STARTED

If a function takes two string arguments and returns a string then this
can be viewed as a two-stage process: the function takes a first string
and returns a transformer from strings to strings. It then follows that
the type is String -> (String -> String), which can be written as
String -> String -> String, because of the Haskell convention that ->
associates to the right.

Exercise 1.18 Find expressions with the following types:

1. [String]

2. (Bool,String)

3. [(Bool,String)]

4. ([Bool],String)

5. Bool -> Bool

Test your answers by means of the Hugs command :t.

Exercise 1.19 Use the Hugs command :t to find the types of the following
predefined functions:

1. head

2. last

3. init

4. fst

5. (++)

6. flip

7. flip (++)

Next, supply these functions with arguments of the expected types, and try
to guess what these functions do.



1.7. THE PRIME FACTORIZATION ALGORITHM 19

1.7 The Prime Factorization Algorithm
Let n be an arbitrary natural number > 1. A prime factorization of n is a
list of prime numbers p1, . . . , pj with the property that p1 · · · · · pj = n. We
will show that a prime factorization of every natural number n > 1 exists
by producing one by means of the following method of splitting off prime
factors:

WHILE n 6= 1 DO BEGIN p := LD(n); n :=
n

p
END

Here := denotes assignment or the act of giving a variable a new value.
As we have seen, LD(n) exists for every n with n > 1. Moreover, we have
seen that LD(n) is always prime. Finally, it is clear that the procedure
terminates, for every round through the loop will decrease the size of n.

So the algorithm consists of splitting off primes until we have written n
as n = p1 · · · pj , with all factors prime. To get some intuition about how
the procedure works, let us see what it does for an example case, say
n = 84. The original assignment to n is called n0; successive assignments
to n and p are called n1, n2, . . . and p1, p2, . . ..

n0 = 84
n0 6= 1 p1 = 2 n1 = 84/2 = 42
n1 6= 1 p2 = 2 n2 = 42/2 = 21
n2 6= 1 p3 = 3 n3 = 21/3 = 7
n3 6= 1 p4 = 7 n4 = 7/7 = 1
n4 = 1

This gives 84 = 22 · 3 · 7, which is indeed a prime factorization of 84.
The following code gives an implementation in Haskell, collecting the

prime factors that we find in a list. The code uses the predefined Haskell
function div for integer division.

factors :: Integer -> [Integer]

factors n | n < 1 = error "argument not positive"

| n == 1 = []

| otherwise = p : factors (div n p) where p = ld n

If you load the code for this chapter, you can try this out as follows:

GS> factors 84

[2,2,3,7]

GS> factors 557940830126698960967415390

[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71]



20 CHAPTER 1. GETTING STARTED

1.8 The map and filter Functions
Haskell allows some convenient abbreviations for lists: [4..20] denotes
the list of integers from 4 through 20, [’a’..’z’] the list of all lower
case letters, "abcdefghijklmnopqrstuvwxyz". The call [5..] generates
an infinite list of integers starting from 5. And so on.

If you use the Hugs command :t to find the type of the function map,
you get the following:

Prelude> :t map

map :: (a -> b) -> [a] -> [b]

The function map takes a function and a list and returns a list containing
the results of applying the function to the individual list members.

If f is a function of type a -> b and xs is a list of type [a], then
map f xs will return a list of type [b]. E.g., map (^2) [1..9] will
produce the list of squares

[1, 4, 9, 16, 25, 36, 49, 64, 81]

You should verify this by trying it out in Hugs. The use of (^2) for the
operation of squaring demonstrates a new feature of Haskell, the construction
of sections.

Conversion from Infix to Prefix, Construction of Sections If op is an
infix operator, (op) is the prefix version of the operator. Thus, 2^10 can
also be written as (^) 2 10. This is a special case of the use of sections
in Haskell.

In general, if op is an infix operator, (op x) is the operation resulting
from applying op to its right hand side argument, (x op) is the operation
resulting from applying op to its left hand side argument, and (op) is the
prefix version of the operator (this is like the abstraction of the operator
from both arguments).

Thus (^2) is the squaring operation, (2^) is the operation that computes
powers of 2, and (^) is exponentiation. Similarly, (>3) denotes the property
of being greater than 3, (3>) the property of being smaller than 3, and
(>) is the prefix version of the ‘greater than’ relation.

The call map (2^) [1..10] will yield

[2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]

If p is a property (an operation of type a -> Bool) and xs is a list of
type [a], then map p xs will produce a list of type Bool (a list of truth
values), like this:



1.8. THE MAP AND FILTER FUNCTIONS 21

Prelude> map (>3) [1..9]

[False, False, False, True, True, True, True, True, True]

Prelude>

The function map is predefined in Haskell, but it is instructive to give
our own version:

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = (f x) : (map f xs)

Note that if you try to load this code, you will get an error message:

Definition of variable "map" clashes with import.

The error message indicates that the function name map is already part of
the name space for functions, and is not available anymore for naming a
function of your own making.

Exercise 1.20 Use map to write a function lengths that takes a list of
lists and returns a list of the corresponding list lengths.

Exercise 1.21 Use map to write a function sumLengths that takes a list of
lists and returns the sum of their lengths.

Another useful function is filter, for filtering out the elements from
a list that satisfy a given property. This is predefined, but here is a
home-made version:

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

Here is an example of its use:

GS> filter (>3) [1..10]

[4,5,6,7,8,9,10]



22 CHAPTER 1. GETTING STARTED

Example 1.22 Here is a program primes0 that filters the prime numbers
from the infinite list [2..] of natural numbers:

primes0 :: [Integer]

primes0 = filter prime0 [2..]

This produces an infinite list of primes. (Why infinite? See Theorem ??.)
The list can be interrupted with ‘Control-C’.

Example 1.23 Given that we can produce a list of primes, it should be
possible now to improve our implementation of the function LD. The
function ldf used in the definition of ld looks for a prime divisor of n
by checking k|n for all k with 2 6 k 6

√
n. In fact, it is enough to check

p|n for the primes p with 2 6 p 6
√
n. Here are functions ldp and ldpf

that perform this more efficient check:

ldp :: Integer -> Integer

ldp n = ldpf primes1 n

ldpf :: [Integer] -> Integer -> Integer

ldpf (p:ps) n | rem n p == 0 = p

| p^2 > n = n

| otherwise = ldpf ps n

ldp makes a call to primes1, the list of prime numbers. This is a first
illustration of a ‘lazy list’. The list is called ‘lazy’ because we compute
only the part of the list that we need for further processing. To define
primes1 we need a test for primality, but that test is itself defined in
terms of the function LD, which in turn refers to primes1. We seem to
be running around in a circle. This circle can be made non-vicious by
avoiding the primality test for 2. If it is given that 2 is prime, then we
can use the primality of 2 in the LD check that 3 is prime, and so on,
and we are up and running.



1.9. HASKELL EQUATIONS AND EQUATIONAL REASONING 23

primes1 :: [Integer]

primes1 = 2 : filter prime [3..]

prime :: Integer -> Bool

prime n | n < 1 = error "not a positive integer"

| n == 1 = False

| otherwise = ldp n == n

Replacing the definition of primes1 by filter prime [2..] creates
vicious circularity, with stack overflow as a result (try it out). By running
the program primes1 against primes0 it is easy to check that primes1 is
much faster.

Exercise 1.24 What happens when you modify the defining equation of ldp
as follows:

ldp :: Integer -> Integer

ldp = ldpf primes1

Can you explain?

1.9 Haskell Equations and Equational Reasoning
The Haskell equations f x y = ... used in the definition of a function
f are genuine mathematical equations. They state that the left hand side
and the right hand side of the equation have the same value. This is very
different from the use of = in imperative languages like C or Java. In
a C or Java program, the statement x = x*y does not mean that x and
x ∗ y have the same value, but rather it is a command to throw away the
old value of x and put the value of x ∗ y in its place. It is a so-called
destructive assignment statement: the old value of a variable is destroyed
and replaced by a new one.

Reasoning about Haskell definitions is a lot easier than reasoning about
programs that use destructive assignment. In Haskell, standard reasoning
about mathematical equations applies. E.g., after the Haskell declarations
x = 1 and y = 2, the Haskell declaration x = x + y will raise an error
"x" multiply defined. Because = in Haskell has the meaning “is by



24 CHAPTER 1. GETTING STARTED

definition equal to”, while redefinition is forbidden, reasoning about Haskell
functions is standard equational reasoning. Let’s try this out on a simple
example.

a = 3

b = 4

f :: Integer -> Integer -> Integer

f x y = x^2 + y^2

To evaluate f a (f a b) by equational reasoning, we can proceed as
follows:

f a (f a b) = f a (a2 + b2)
= f 3 (32 + 42)
= f 3 (9 + 16)
= f 3 25
= 32 + 252

= 9 + 625
= 634

The rewriting steps use standard mathematical laws and the Haskell
definitions of a, b, f . In fact, when running the program we get the same
outcome:

GS> f a (f a b)

634

GS>

Remark. We already encountered definitions where the function that is
being defined occurs on the right hand side of an equation in the definition.
Here is another example:

g :: Integer -> Integer

g 0 = 0

g (x+1) = 2 * (g x)

Not everything that is allowed by the Haskell syntax makes semantic
sense, however. The following definitions, although syntactically correct, do
not properly define functions:



1.10. FURTHER READING 25

h1 :: Integer -> Integer

h1 0 = 0

h1 x = 2 * (h1 x)

h2 :: Integer -> Integer

h2 0 = 0

h2 x = h2 (x+1)

The problem is that for values other than 0 the definition of h1 does not
give a recipe for computing a value, and similary for h2, for values greater
than 0. This matter will be taken up in Chapter ??.

1.10 Further Reading
The standard Haskell operations are defined in the file Prelude.hs, which
you should be able to locate somewhere on any system that runs
hugs. Typically, the file resides in /usr/lib/hugs/libraries/Hugs/,
on Unix/Linux machines. On Windows machines, a typical location
is C:\Program files\Hugs98\libraries\Hugs\. Windows users, take
care: in specifying Windows path names in Haskell, the backslash \ has
to be quoted, by using \\. Thus, the Haskell way to refer to the
example directory is C:\\Program files\\Hugs98\\libraries\\Hugs\\.
Alternatively, Unix/Linux style path names can be used.

In case Exercise 1.19 has made you curious, the definitions of these
example functions can all be found in Prelude.hs. If you want to quickly
learn a lot about how to program in Haskell, you should get into the
habit of consulting this file regularly. The definitions of all the standard
operations are open source code, and are there for you to learn from. The
Haskell Prelude may be a bit difficult to read at first, but you will soon
get used to the syntax and acquire a taste for the style.

Various tutorials on Haskell and Hugs can be found on the Internet:
see e.g. [HFP96] and [JR+]. The definitive reference for the language is
[Jon03]. A textbook on Haskell focusing on multimedia applications is
[Hud00]. Other excellent textbooks on functional programming with Haskell
are [Tho99] and, at a more advanced level, [Bir98]. A book on discrete
mathematics that also uses Haskell as a tool, and with a nice treatment of
automated proof checking, is [HO00].



26 CHAPTER 1. GETTING STARTED



Chapter 2

Talking about Mathematical
Objects

Preview

To talk about mathematical objects with ease it is useful to introduce
some symbolic abbreviations. These symbolic conventions are meant to
better reveal the structure of our mathematical statements. This chapter
concentrates on a few (in fact: seven), simple words or phrases that are
essential to the mathematical vocabulary: not, if, and, or, if and only if,
for all and for some. We will introduce symbolic shorthands for these
words, and we look in detail at how these building blocks are used to
construct the logical patterns of sentences. After having isolated the logical
key ingredients of the mathematical vernacular, we can systematically relate
definitions in terms of these logical ingredients to implementations, thus
building a bridge between logic and computer science.

The use of symbolic abbreviations in specifying algorithms makes it
easier to take the step from definitions to the procedures that implement
those definitions. In a similar way, the use of symbolic abbreviations in
making mathematical statements makes it easier to construct proofs of those
statements. Chances are that you are more at ease with programming than
with proving things. However that may be, in the chapters to follow you
will get the opportunity to improve your skills in both of these activities
and to find out more about the way in which they are related.

27



28 CHAPTER 2. TALKING ABOUT MATHEMATICAL OBJECTS

module TAMO

where

2.1 Logical Connectives and their Meanings
Goal To understand how the meanings of statements using connectives
can be described by explaining how the truth (or falsity) of the statement
depends on the truth (or falsity) of the smallest parts of this statement. This
understanding leads directly to an implementation of the logical connectives
as truth functional procedures.

In ordinary life, there are many statements that do not have a definite
truth value, for example ‘Barnett Newman’s Who is Afraid of Red, Yellow
and Blue III is a beautiful work of art,’ or ‘Daniel Goldreyer’s restoration
of Who is Afraid of Red, Yellow and Blue III meets the highest standards.’

Fortunately the world of mathematics differs from the Amsterdam
Stedelijk Museum of Modern Art in the following respect. In the world of
mathematics, things are so much clearer that many mathematicians adhere
to the following slogan:

every statement that makes mathematical sense is either true or
false.

The idea behind this is that (according to the adherents) the world of
mathematics exists independently of the mind of the mathematician. Doing
mathematics is the activity of exploring this world. In proving new theorems
one discovers new facts about the world of mathematics, in solving exercises
one rediscovers known facts for oneself. (Solving problems in a mathematics
textbook is like visiting famous places with a tourist guide.)

This belief in an independent world of mathematical fact is called
Platonism, after the Greek philosopher Plato, who even claimed that our
everyday physical world is somehow an image of this ideal mathematical
world. A mathematical Platonist holds that every statement that makes
mathematical sense has exactly one of the two truth values. Of course, a
Platonist would concede that we may not know which value a statement
has, for mathematics has numerous open problems. Still, a Platonist would
say that the true answer to an open problem in mathematics like ‘Are there
infinitely many Mersenne primes?’ (Example ?? from Chapter ??) is either



2.1. LOGICAL CONNECTIVES AND THEIR MEANINGS 29

‘yes’ or ‘no’. The Platonists would immediately concede that nobody may
know the true answer, but that, they would say, is an altogether different
matter.

Of course, matters are not quite this clear-cut, but the situation is certainly
a lot better than in the Amsterdam Stedelijk Museum. In the first place,
it may not be immediately obvious which statements make mathematical
sense (see Example ??). In the second place, you don’t have to be a
Platonist to do mathematics. Not every working mathematician agrees with
the statement that the world of mathematics exists independently of the
mind of the mathematical discoverer. The Dutch mathematician Brouwer
(1881–1966) and his followers have argued instead that mathematical reality
has no independent existence, but is created by the working mathematician.
According to Brouwer the foundation of mathematics is in the intuition of the
mathematical intellect. A mathematical Intuitionist will therefore not accept
certain proof rules of classical mathematics, such as proof by contradiction
(see Section ??), as this relies squarely on Platonist assumptions.

Although we have no wish to pick a quarrel with the intuitionists, in this
book we will accept proof by contradiction, and we will in general adhere
to the practice of classical mathematics and thus to the Platonist creed.

Connectives In mathematical reasoning, it is usual to employ shorthands
for if (or: if. . . then), and, or, not. These words are called connectives.
The word and is used to form conjunctions, its shorthand ∧ is called the
conjunction symbol. The word or is used to form disjunctions, its shorthand
∨ is called the disjunction symbol. The word not is used to form negations,
its shorthand ¬ is called the negation symbol. The combination if. . . then
produces implications; its shorthand ⇒ is the implication symbol. Finally,
there is a phrase less common in everyday conversation, but crucial if one
is talking mathematics. The combination . . . if and only if . . . produces
equivalences, its shorthand ⇔ is called the equivalence symbol. These
logical connectives are summed up in the following table.

symbol name
and ∧ conjunction
or ∨ disjunction
not ¬ negation
if—then ⇒ implication
if, and only if ⇔ equivalence



30 CHAPTER 2. TALKING ABOUT MATHEMATICAL OBJECTS

Remark. Do not confuse if. . . then (⇒) on one hand with thus, so,
therefore on the other. The difference is that the phrase if. . . then is used
to construct conditional statements, while thus (therefore, so) is used to
combine statements into pieces of mathematical reasoning (or: mathematical
proofs). We will never write ⇒ when we want to conclude from one
mathematical statement to the next. The rules of inference, the notion of
mathematical proof, and the proper use of the word thus are the subject of
Chapter ??.

Iff. In mathematical English it is usual to abbreviate if, and only if to iff.
We will also use ⇔ as a symbolic abbreviation. Sometimes the phrase just
in case is used with the same meaning.

The following describes, for every connective separately, how the truth
value of a compound using the connective is determined by the truth values
of its components. For most connectives, this is rather obvious. The cases
for ⇒ and ∨ have some peculiar difficulties.

The letters P and Q are used for arbitrary statements. We use t for
‘true’, and f for ‘false’. The set {t, f} is the set of truth values.

Haskell uses True and False for the truth values. Together, these form
the type Bool. This type is predefined in Haskell as follows:

data Bool = False | True

Negation

An expression of the form ¬P (not P , it is not the case that P , etc.) is
called the negation of P . It is true (has truth value t) just in case P is
false (has truth value f).

In an extremely simple table, this looks as follows:

P ¬P
t f
f t

This table is called the truth table of the negation symbol.
The implementation of the standard Haskell function not reflects this

truth table:



2.1. LOGICAL CONNECTIVES AND THEIR MEANINGS 31

not :: Bool -> Bool

not True = False

not False = True

This definition is part of Prelude.hs, the file that contains the predefined
Haskell functions.

Conjunction

The expression P ∧ Q ((both) P and Q) is called the conjunction of P
and Q. P and Q are called conjuncts of P ∧ Q. The conjunction P ∧ Q
is true iff P and Q are both true.

Truth table of the conjunction symbol:

P Q P ∧ Q
t t t
t f f
f t f
f f f

This is reflected in definition of the Haskell function for conjunction, &&
(also from Prelude.hs):

(&&) :: Bool -> Bool -> Bool

False && x = False

True && x = x

What this says is: if the first argument of a conjunction evaluates to
false, then the conjunction evaluates to false; if the first argument evaluates
to true, then the conjunction gets the same value as its second argument.
The reason that the type declaration has (&&) instead of && is that && is
an infix operator, and (&&) is its prefix counterpart (see page 20).

Disjunction

The expression P ∨ Q (P or Q) is called the disjunction of P and Q. P
and Q are the disjuncts of P ∨ Q.



32 CHAPTER 2. TALKING ABOUT MATHEMATICAL OBJECTS

The interpretation of disjunctions is not always straightforward. English
has two disjunctions: (i) the inclusive version, that counts a disjunction
as true also in case both disjuncts are true, and (ii) the exclusive version
either. . . or, that doesn’t.

Remember: The symbol ∨ will always be used for the inclusive version
of or.

Even with this problem out of the way, difficulties may arise.

Example 2.1 No one will doubt the truth of the following:

for every integer x, x < 1 or 0 < x.

However, acceptance of this brings along acceptance of every instance. E.g.,
for x := 1:1

1 < 1 or 0 < 1.

Some people do not find this acceptable or true, or think this to make no
sense at all since something better can be asserted, viz., that 0 < 1. In
mathematics with the inclusive version of ∨ , you’ll have to live with such
a peculiarity.

The truth table of the disjunction symbol ∨ now looks as follows.

P Q P ∨ Q
t t t
t f t
f t t
f f f

Here is the Haskell definition of the disjunction operation. Disjunction is
rendered as || in Haskell.

(||) :: Bool -> Bool -> Bool

False || x = x

True || x = True

What this means is: if the first argument of a disjunction evaluates to
false, then the disjunction gets the same value as its second argument. If
the first argument of a disjunction evaluates to true, then the disjunction
evaluates to true.

1:= means: ‘is by definition equal to’.



2.1. LOGICAL CONNECTIVES AND THEIR MEANINGS 33

Exercise 2.2 Make up the truth table for the exclusive version of or.

Implication

An expression of the form P ⇒ Q (if P , then Q; Q if P ) is called the
implication of P and Q. P is the antecedent of the implication and Q the
consequent.

The truth table of ⇒ is perhaps the only surprising one. However, it
can be motivated quite simply using an example like the following. No one
will disagree that for every natural number n,

5 < n ⇒ 3 < n.

Therefore, the implication must hold in particular for n equal to 2, 4 and
6. But then, an implication should be true if

• both antecedent and consequent are false (n = 2),

• antecedent false, consequent true (n = 4),

and

• both antecedent and consequent true (n = 6).

Of course, an implication should be false in the only remaining case that
the antecedent is true and the consequent false. This accounts for the
following truth table.

P Q P ⇒ Q
t t t
t f f
f t t
f f t

If we want to implement implication in Haskell, we can do so in terms
of not and ||. It is convenient to introduce an infix operator ==> for this.
The number 1 in the infix declaration indicates the binding power (binding
power 0 is lowest, 9 is highest). A declaration of an infix operator together
with an indication of its binding power is called a fixity declaration.

infix 1 ==>

(==>) :: Bool -> Bool -> Bool

x ==> y = (not x) || y



34 CHAPTER 2. TALKING ABOUT MATHEMATICAL OBJECTS

It is also possible to give a direct definition:

(==>) :: Bool -> Bool -> Bool

True ==> x = x

False ==> x = True

Trivially True Implications. Note that implications with antecedent false
and those with consequent true are true. For instance, because of this, the
following two sentences must be counted as true: if my name is Napoleon,
then the decimal expansion of π contains the sequence 7777777, and: if the
decimal expansion of π contains the sequence 7777777, then strawberries
are red.

Implications with one of these two properties (no matter what the values
of parameters that may occur) are dubbed trivially true. In what follows
there are quite a number of facts that are trivial in this sense that may
surprise the beginner. One is that the empty set ∅ is included in every set
(cf. Theorem ?? p. ??).

Remark. The word trivial is often abused. Mathematicians have a habit of
calling things trivial when they are reluctant to prove them. We will try to
avoid this use of the word. The justification for calling a statement trivial
resides in the psychological fact that a proof of that statement immediately
comes to mind. Whether a proof of something comes to your mind will
depend on your training and experience, so what is trivial in this sense
is (to some extent) a personal matter. When we are reluctant to prove a
statement, we will sometimes ask you to prove it as an exercise.

Implication and Causality. The mathematical use of implication does not
always correspond to what you are used to. In daily life you will usually
require a certain causal dependence between antecedent and consequent of
an implication. (This is the reason the previous examples look funny.) In
mathematics, such a causality usually will be present, but this is quite
unnecessary for the interpretation of an implication: the truth table tells
the complete story. (In this section in particular, causality usually will
be absent.) However, in a few cases, natural language use surprisingly
corresponds with truth table-meaning. E.g., I’ll be dead if Bill will not show



2.1. LOGICAL CONNECTIVES AND THEIR MEANINGS 35

up must be interpreted (if uttered by someone healthy) as strong belief that
Bill will indeed turn up.2

Converse and Contraposition. The converse of an implication P ⇒ Q is
Q⇒ P ; its contraposition is ¬Q⇒ ¬P . The converse of a true implication
does not need to be true, but its contraposition is true iff the implication
is. Cf. Theorem 2.10, p. 45.

Necessary and Sufficient Conditions. The statement P is called a sufficient
condition for Q and Q a necessary condition for P if the implication
P ⇒ Q holds.

An implication P ⇒ Q can be expressed in a mathematical text in a
number of ways:

1. if P , then Q,

2. Q if P ,

3. P only if Q,

4. Q whenever P ,

5. P is sufficient for Q,

6. Q is necessary for P .

Equivalence

The expression P ⇔ Q (P iff Q) is called the equivalence of P and Q.
P and Q are the members of the equivalence. The truth table of the
equivalence symbol is unproblematic once you realize that an equivalence
P ⇔ Q amounts to the conjunction of two implications P ⇒ Q and Q⇒ P
taken together. (It is sometimes convenient to write Q ⇒ P as P ⇐ Q.)
The outcome is that an equivalence must be true iff its members have the
same truth value.

Table:

P Q P ⇔ Q
t t t
t f f
f t f
f f t

2‘If Bill will not show up, then I am a Dutchman’, has the same meaning, when
uttered by a native speaker of English. What it means when uttered by one of the authors
of this book, we are not sure.



36 CHAPTER 2. TALKING ABOUT MATHEMATICAL OBJECTS

From the discussion under implication it is clear that P is called a
condition that is both necessary and sufficient for Q if P ⇔ Q is true.

There is no need to add a definition of a function for equivalence to
Haskell. The type Bool is in class Eq, which means that an equality
relation is predefined on it. But equivalence of propositions is nothing other
than equality of their truth values. Still, it is useful to have a synonym:

infix 1 <=>

(<=>) :: Bool -> Bool -> Bool

x <=> y = x == y

Example 2.3 When you are asked to prove something of the form P iff
Q it is often convenient to separate this into its two parts P ⇒ Q and
P ⇐ Q. The ‘only if’ part of the proof is the proof of P ⇒ Q (for
P ⇒ Q means the same as P only if Q), and the ‘if’ part of the proof is
the proof of P ⇐ Q (for P ⇐ Q means the same as Q ⇒ P , which in
turn means the same as P , if Q).

Exercise 2.4 Check that the truth table for exclusive or from Exercise 2.2
is equivalent to the table for ¬(P ⇔ Q). Conclude that the Haskell
implementation of the function <+> for exclusive or in the frame below is
correct.

infixr 2 <+>

(<+>) :: Bool -> Bool -> Bool

x <+> y = x /= y

The logical connectives ∧ and ∨ are written in infix notation. Their
Haskell counterparts, && and || are also infix. Thus, if p and q are
expressions of type Bool, then p && q is a correct Haskell expression of
type Bool. If one wishes to write this in prefix notation, this is also
possible, by putting parentheses around the operator: (&&) p q.



2.1. LOGICAL CONNECTIVES AND THEIR MEANINGS 37

Although you will probably never find more than 3–5 connectives
occurring in one mathematical statement, if you insist you can use as many
connectives as you like. Of course, by means of parentheses you should
indicate the way your expression was formed.

For instance, look at the formula

¬P ∧ ((P ⇒ Q)⇔ ¬(Q ∧ ¬P )).

Using the truth tables, you can determine its truth value if truth values
for the components P and Q have been given. For instance, if P has
value t and Q has value f, then ¬P has f, P ⇒ Q becomes f, Q ∧ ¬P : f;
¬(Q ∧ ¬P ): t; (P ⇒ Q) ⇔ ¬(Q ∧ ¬P ): f, and the displayed expression
thus has value f. This calculation can be given immediately under the
formula, beginning with the values given for P and Q. The final outcome
is located under the conjunction symbol ∧, which is the main connective of
the expression.

¬ P ∧ ((P ⇒ Q) ⇔ ¬ (Q ∧ ¬ P ))
... t

... t
... f

...
... f

...
... t

f
... f

...
...

... f
...

...
... f

...
... t

... f
f

In compressed form, this looks as follows:

¬ P ∧ ((P ⇒ Q) ⇔ ¬ (Q ∧ ¬ P ))
f t f t f f f t f f f t

Alternatively, one might use a computer to perform the calculation.

p = True

q = False

formula1 = (not p) && (p ==> q) <=> not (q && (not p))



38 CHAPTER 2. TALKING ABOUT MATHEMATICAL OBJECTS

After loading the file with the code of this chapter, you should be able
to do:

TAMO> formula1

False

Note that p and q are defined as constants, with values True and False,
respectively, so that the occurrences of p and q in the expression formula1
are evaluated as these truth values. The rest of the evaluation is then just a
matter of applying the definitions of not, &&, <=> and ==>.

2.2 Logical Validity and Related Notions

Goal To grasp the concepts of logical validity and logical equivalence,
to learn how to use truth tables in deciding questions of validity and
equivalence, and in the handling of negations, and to learn how the truth
table method for testing validity and equivalence can be implemented.

Logical Validities. There are propositional formulas that receive the value
t no matter what the values of the occurring letters. Such formulas are
called (logically) valid.

Examples of logical validities are: P ⇒ P , P ∨ ¬P , and P ⇒ (Q⇒ P ).

Truth Table of an Expression. If an expression contains n letters P,Q, . . .,
then there are 2n possible distributions of the truth values between these
letters. The 2n-row table that contains the calculations of these values is
the truth table of the expression.

If all calculated values are equal to t, then your expression, by definition,
is a validity.

Example 2.5 (Establishing Logical Validity by Means of a Truth Table)

The following truth table shows that P ⇒ (Q⇒ P ) is a logical validity.

P ⇒ (Q ⇒ P )
t t t t t
t t f t t
f t t f f
f t f t f



2.2. LOGICAL VALIDITY AND RELATED NOTIONS 39

To see how we can implement the validity check in Haskell, look at the
implementation of the evaluation formula1 again, and add the following
definition of formula2:

formula2 p q = ((not p) && (p ==> q) <=> not (q && (not p)))

To see the difference between the two definitions, let us check their
types:

TAMO> :t formula1

formula1 :: Bool

TAMO> :t formula2

formula2 :: Bool -> Bool -> Bool

TAMO>

The difference is that the first definition is a complete proposition (type
Bool) in itself, while the second still needs two arguments of type Bool
before it will return a truth value.

In the definition of formula1, the occurrences of p and q are interpreted
as constants, of which the values are given by previous definitions. In
the definition of formula2. the occurrences of p and q are interpreted as
variables that represent the arguments when the function gets called.

A propositional formula in which the proposition letters are interpreted as
variables can in fact be considered as a propositional function or Boolean
function or truth function. If just one variable, say p occurs in it,
then it is a function of type Bool -> Bool (takes a Boolean, returns a
Boolean). If two variables occur in it, say p and q, then it is a function of
type Bool -> Bool -> Bool (takes Boolean, then takes another Boolean,
and returns a Boolean). If three variables occur in it, then it is of type
Bool -> Bool -> Bool -> Bool, and so on.

In the validity check for a propositional formula, we treat the proposition
letters as arguments of a propositional function, and we check whether
evaluation of the function yields true for every possible combination of
the arguments (that is the essence of the truth table method for checking
validity). Here is the case for propositions with one proposition letter (type
Bool -> Bool).

valid1 :: (Bool -> Bool) -> Bool

valid1 bf = (bf True) && (bf False)



40 CHAPTER 2. TALKING ABOUT MATHEMATICAL OBJECTS

The validity check for Boolean functions of type Bool -> Bool is suited
to test functions of just one variable. An example is the formula P ∨ ¬P
that expresses the principle of excluded middle (or, if you prefer a Latin
name, tertium non datur, for: there is no third possibility). Here is its
implementation in Haskell:

excluded_middle :: Bool -> Bool

excluded_middle p = p || not p

To check that this is valid by the truth table method, one should consider
the two cases P := t and P := f, and ascertain that the principle yields t
in both of these cases. This is precisely what the validity check valid1
does: it yields True precisely when applying the boolean function bf to
True yields True and applying bf to False yields True. Indeed, we get:

TAMO> valid1 excluded_middle

True

Here is the validity check for propositional functions with two proposition
letters, Such propositional functions have type Bool -> Bool -> Bool), and
need a truth table with four rows to check their validity, as there are four
cases to check.

valid2 :: (Bool -> Bool -> Bool) -> Bool

valid2 bf = (bf True True)

&& (bf True False)

&& (bf False True)

&& (bf False False)

Again, it is easy to see that this is an implementation of the truth
table method for validity checking. Try this out on P ⇒ (Q⇒ P ) and on
(P ⇒ Q)⇒ P , and discover that the bracketing matters:

form1 p q = p ==> (q ==> p)

form2 p q = (p ==> q) ==> p



2.2. LOGICAL VALIDITY AND RELATED NOTIONS 41

TAMO> valid2 form1

True

TAMO> valid2 form2

False

The propositional function formula2 that was defined above is also of
the right argument type for valid2:

TAMO> valid2 formula2

False

It should be clear how the notion of validity is to be implemented for
propositional functions with more than two propositional variables. Writing
out the full tables becomes a bit irksome, so we are fortunate that Haskell
offers an alternative. We demonstrate it in valid3 and valid4.

valid3 :: (Bool -> Bool -> Bool -> Bool) -> Bool

valid3 bf = and [ bf p q r | p <- [True,False],

q <- [True,False],

r <- [True,False]]

valid4 :: (Bool -> Bool -> Bool -> Bool -> Bool) -> Bool

valid4 bf = and [ bf p q r s | p <- [True,False],

q <- [True,False],

r <- [True,False],

s <- [True,False]]

The condition p <- [True,False], for “p is an element of the list
consisting of the two truth values”, is an example of list comprehension
(page ??).

The definitions make use of Haskell list notation, and of the predefined
function and for generalized conjunction. An example of a list of Booleans
in Haskell is [True,True,False]. Such a list is said to be of type
[Bool]. If list is a list of Booleans (an object of type [Bool]),
then and list gives True in case all members of list are true,
False otherwise. For example, and [True,True,False] gives False, but
and [True,True,True] gives True. Further details about working with
lists can be found in Sections ?? and ??.

Leaving out Parentheses. We agree that ∧ and ∨ bind more strongly
than ⇒ and ⇔. Thus, for instance, P ∧ Q⇒ R stands for (P ∧ Q)⇒ R
(and not for P ∧ (Q⇒ R)).



42 CHAPTER 2. TALKING ABOUT MATHEMATICAL OBJECTS

Operator Precedence in Haskell In Haskell, the convention is not quite
the same, for || has operator precedence 2, && has operator precedence
3, and == has operator precedence 4, which means that == binds more
strongly than &&, which in turn binds more strongly than ||. The operators
that we added, ==> and <=>, follow the logic convention: they bind less
strongly than && and ||.

Logically Equivalent. Two formulas are called (logically) equivalent if, no
matter the truth values of the letters P,Q, . . . occurring in these formulas,
the truth values obtained for them are the same. This can be checked by
constructing a truth table (see Example 2.6).

Example 2.6 (The First Law of De Morgan)

¬ (P ∧ Q) (¬ P ∨ ¬ Q)
f t t t f t f f t
t t f f f t t t f
t f f t t f t f t
t f f f t f t t f

The outcome of the calculation shows that the formulas are equivalent: note
that the column under the ¬ of ¬(P ∧ Q) coincides with that under the
∨ of ¬P ∨ ¬Q.

Notation: Φ ≡ Ψ indicates that Φ and Ψ are equivalent.3 Using this
notation, we can say that the truth table of Example 2.6 shows that
¬(P ∧Q) ≡ (¬P ∨ ¬Q).

Example 2.7 (De Morgan Again)
The following truth table shows that ¬(P ∧Q) ⇔ (¬P ∨ ¬Q) is a logical
validity, which establishes that ¬(P ∧Q) ≡ (¬P ∨ ¬Q).

¬ (P ∧ Q) ⇔ (¬ P ∨ ¬ Q)
f t t t t f t f f t
t t f f t f t t t f
t f f t t t f t f t
t f f f t t f t t f

3The Greek alphabet is on p. 71.



2.2. LOGICAL VALIDITY AND RELATED NOTIONS 43

Example 2.8 A pixel on a computer screen is a dot on the screen that can
be either on (i.e., visible) or off (i.e., invisible). We can use 1 for on and
0 for off. Turning pixels in a given area on the screen off or on creates a
screen pattern for that area. The screen pattern of an area is given by a
list of bits (0s or 1s). Such a list of bits can be viewed as a list of truth
values (by equating 1 with t and 0 with f), and given two bit lists of the
same length we can perform bitwise logical operations on them: the bitwise
exclusive or of two bit lists of the same length n, say L = [P1, . . . , Pn]
and K = [Q1, . . . , Qn], is the list [P1 ⊕Q1, . . . , Pn ⊕Qn], where ⊕ denotes
exclusive or.

In the implementation of cursor movement algorithms, the cursor is made
visible on the screen by taking a bitwise exclusive or between the screen
pattern S at the cursor position and the cursor pattern C. When the cursor
moves elsewhere, the original screen pattern is restored by taking a bitwise
exclusive or with the cursor pattern C again. Exercise 2.9 shows that this
indeed restores the original pattern S.

Exercise 2.9 Let ⊕ stand for exclusive or. Show, using the truth table from
Exercise 2.2, that (P ⊕Q)⊕Q is equivalent to P .

In Haskell, logical equivalence can be tested as follows. First we give a
procedure for propositional functions with 1 parameter:

logEquiv1 :: (Bool -> Bool) -> (Bool -> Bool) -> Bool

logEquiv1 bf1 bf2 =

(bf1 True <=> bf2 True) && (bf1 False <=> bf2 False)

What this does, for formulas Φ,Ψ with a single propositional variable, is
testing the formula Φ⇔ Ψ by the truth table method.

We can extend this to propositional functions with 2, 3 or more
parameters, using generalized conjunction. Here are the implementations of
logEquiv2 and logEquiv3; it should be obvious how to extend this for
truth functions with still more arguments.



44 CHAPTER 2. TALKING ABOUT MATHEMATICAL OBJECTS

logEquiv2 :: (Bool -> Bool -> Bool) ->

(Bool -> Bool -> Bool) -> Bool

logEquiv2 bf1 bf2 =

and [(bf1 p q) <=> (bf2 p q) | p <- [True,False],

q <- [True,False]]

logEquiv3 :: (Bool -> Bool -> Bool -> Bool) ->

(Bool -> Bool -> Bool -> Bool) -> Bool

logEquiv3 bf1 bf2 =

and [(bf1 p q r) <=> (bf2 p q r) | p <- [True,False],

q <- [True,False],

r <- [True,False]]

Let us redo Exercise 2.9 by computer.

formula3 p q = p

formula4 p q = (p <+> q) <+> q

Note that the q in the definition of formula3 is needed to ensure that it
is a function with two arguments.

TAMO> logEquiv2 formula3 formula4

True

We can also test this by means of a validity check on P ⇔ ((P ⊕Q)⊕Q),
as follows:

formula5 p q = p <=> ((p <+> q) <+> q)

TAMO> valid2 formula5

True

Warning. Do not confuse ≡ and ⇔. If Φ and Ψ are formulas,
then Φ ≡ Ψ expresses the statement that Φ and Ψ are equivalent. On
the other hand, Φ ⇔ Ψ is just another formula. The relation between
the two is that the formula Φ ⇔ Ψ is logically valid iff it holds that
Φ ≡ Ψ. (See Exercise 2.19.) Compare the difference, in Haskell, between
logEquiv2 formula3 formula4 (a true statement about the relation between
two formulas), and formula5 (just another formula).



2.2. LOGICAL VALIDITY AND RELATED NOTIONS 45

The following theorem collects a number of useful equivalences. (Of
course, P , Q and R can be arbitrary formulas themselves.)

Theorem 2.10 1. P ≡ ¬¬P (law of double negation),

2. P ∧ P ≡ P ; P ∨ P ≡ P (laws of idempotence),

3. (P ⇒ Q) ≡ ¬P ∨ Q;

¬(P ⇒ Q) ≡ P ∧ ¬Q,

4. (¬P ⇒ ¬Q) ≡ (Q⇒ P );

(P ⇒ ¬Q) ≡ (Q⇒ ¬P );

(¬P ⇒ Q) ≡ (¬Q⇒ P ) (laws of contraposition),

5. (P ⇔ Q) ≡ ((P ⇒ Q) ∧ (Q⇒ P ))

≡ ((P ∧ Q) ∨ (¬P ∧ ¬Q)),

6. P ∧ Q ≡ Q ∧ P ; P ∨ Q ≡ Q ∨ P (laws of commutativity),

7. ¬(P ∧ Q) ≡ ¬P ∨ ¬Q;

¬(P ∨ Q) ≡ ¬P ∧ ¬Q (DeMorgan laws).

8. P ∧ (Q ∧ R) ≡ (P ∧ Q) ∧ R;

P ∨ (Q ∨ R) ≡ (P ∨ Q) ∨ R (laws of associativity),

9. P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R);

P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R) (distribution laws),

Equivalence 8 justifies leaving out parentheses in conjunctions and
disjunctions of three or more conjuncts resp., disjuncts. Non-trivial
equivalences that often are used in practice are 2, 3 and 9. Note how you
can use these to re-write negations: a negation of an implication can be
rewritten as a conjunction, a negation of a conjunction (disjunction) is a
disjunction (conjunction).

Exercise 2.11 The First Law of De Morgan was proved in Example 2.6.
This method was implemented above. Use the method by hand to prove
the other parts of Theorem 2.10.



46 CHAPTER 2. TALKING ABOUT MATHEMATICAL OBJECTS

test1 = logEquiv1 id (\ p -> not (not p))

test2a = logEquiv1 id (\ p -> p && p)

test2b = logEquiv1 id (\ p -> p || p)

test3a = logEquiv2 (\ p q -> p ==> q) (\ p q -> not p || q)

test3b = logEquiv2 (\ p q -> not (p ==> q)) (\ p q -> p && not q)

test4a = logEquiv2 (\ p q -> not p ==> not q) (\ p q -> q ==> p)

test4b = logEquiv2 (\ p q -> p ==> not q) (\ p q -> q ==> not p)

test4c = logEquiv2 (\ p q -> not p ==> q) (\ p q -> not q ==> p)

test5a = logEquiv2 (\ p q -> p <=> q)

(\ p q -> (p ==> q) && (q ==> p))

test5b = logEquiv2 (\ p q -> p <=> q)

(\ p q -> (p && q) || (not p && not q))

test6a = logEquiv2 (\ p q -> p && q) (\ p q -> q && p)

test6b = logEquiv2 (\ p q -> p || q) (\ p q -> q || p)

test7a = logEquiv2 (\ p q -> not (p && q))

(\ p q -> not p || not q)

test7b = logEquiv2 (\ p q -> not (p || q))

(\ p q -> not p && not q)

test8a = logEquiv3 (\ p q r -> p && (q && r))

(\ p q r -> (p && q) && r)

test8b = logEquiv3 (\ p q r -> p || (q || r))

(\ p q r -> (p || q) || r)

test9a = logEquiv3 (\ p q r -> p && (q || r))

(\ p q r -> (p && q) || (p && r))

test9b = logEquiv3 (\ p q r -> p || (q && r))

(\ p q r -> (p || q) && (p || r))

Figure 2.1: Defining the Tests for Theorem 2.10.



2.2. LOGICAL VALIDITY AND RELATED NOTIONS 47

We will now demonstrate how one can use the implementation of the
logical equivalence tests as a check for Theorem 2.10. Here is a question
for you to ponder: does checking the formulas by means of the implemented
functions for logical equivalence count as a proof of the principles involved?
Whatever the answer to this one may be, Figure 2.1 defines the tests for
the statements made in Theorem 2.10, by means of lambda abstraction
The expression \ p -> not (not p) is the Haskell way of referring to the
lambda term λp.¬¬p, the term that denotes the operation of performing a
double negation. See Section 2.4.

If you run these tests, you get result True for all of them. E.g.:

TAMO> test5a

True

The next theorem lists some useful principles for reasoning with > (the
proposition that is always true; the Haskell counterpart is True) and ⊥ (the
proposition that is always false; the Haskell counterpart of this is False).

Theorem 2.12 1. ¬> ≡ ⊥; ¬⊥ ≡ >,

2. P ⇒ ⊥ ≡ ¬P ,

3. P ∨ > ≡ >; P ∧ ⊥ ≡ ⊥ (dominance laws),

4. P ∨ ⊥ ≡ P ; P ∧ > ≡ P (identity laws),

5. P ∨ ¬P ≡ > (law of excluded middle),

6. P ∧ ¬P ≡ ⊥ (contradiction).

Exercise 2.13 Implement checks for the principles from Theorem 2.12.

Without proof, we state the following Substitution Principle: If Φ and
Ψ are equivalent, and Φ′ and Ψ′ are the results of substituting Ξ for every
occurrence of P in Φ and in Ψ, respectively, then Φ′ and Ψ′ are equivalent.
Example 2.14 makes clear what this means.

Example 2.14 From ¬(P ⇒ Q) ≡ P ∧ ¬Q plus the substitution principle it
follows that

¬(¬P ⇒ Q) ≡ ¬P ∧ ¬Q

(by substituting ¬P for P ), but also that

¬(a = 2b − 1⇒ a is prime) ≡ a = 2b − 1 ∧ a is not prime

(by substituting a = 2b − 1 for P and a is prime for Q).



48 CHAPTER 2. TALKING ABOUT MATHEMATICAL OBJECTS

Exercise 2.15 A propositional contradiction is a formula that yields false for
every combination of truth values for its proposition letters. Write Haskell
definitions of contradiction tests for propositional functions with one, two
and three variables.

Exercise 2.16 Produce useful denials for every sentence of Exercise 2.31.
(A denial of Φ is an equivalent of ¬Φ.)

Exercise 2.17 Produce a denial for the statement that x < y < z (where
x, y, z ∈ R).

Exercise 2.18 Show:

1. (Φ⇔ Ψ) ≡ (¬Φ⇔ ¬Ψ),

2. (¬Φ⇔ Ψ) ≡ (Φ⇔ ¬Ψ).

Exercise 2.19 Show that Φ ≡ Ψ is true iff Φ⇔ Ψ is logically valid.

Exercise 2.20 Determine (either using truth tables or Theorem 2.10) which
of the following are equivalent, next check your answer by computer:

1. ¬P ⇒ Q and P ⇒ ¬Q,

2. ¬P ⇒ Q and Q⇒ ¬P ,

3. ¬P ⇒ Q and ¬Q⇒ P ,

4. P ⇒ (Q⇒ R) and Q⇒ (P ⇒ R),

5. P ⇒ (Q⇒ R) and (P ⇒ Q)⇒ R,

6. (P ⇒ Q)⇒ P and P ,

7. P ∨ Q⇒ R and (P ⇒ R) ∧ (Q⇒ R).

Exercise 2.21 Answer as many of the following questions as you can:

1. Construct a formula Φ involving the letters P and Q that has the
following truth table.

P Q Φ
t t t
t f t
f t f
f f t



2.3. MAKING SYMBOLIC FORM EXPLICIT 49

2. How many truth tables are there for 2-letter formulas altogether?

3. Can you find formulas for all of them?

4. Is there a general method for finding these formulas?

5. What about 3-letter formulas and more?

2.3 Making Symbolic Form Explicit
In a sense, propositional reasoning is not immediately relevant for
mathematics. Few mathematicians will ever feel the urge to write down a
disjunction of two statements like 3 < 1 ∨ 1 < 3. In cases like this it is
clearly “better” to only write down the right-most disjunct.

Fortunately, once variables enter the scene, propositional reasoning
suddenly becomes a very useful tool: the connectives turn out to be quite
useful for combining open formulas. An open formula is a formula with
one or more unbound variables in it. Variable binding will be explained
below, but here is a first example of a formula with an unbound variable
x. A disjunction like 3 < x ∨ x < 3 is (in some cases) a useful way of
expressing that x 6= 3.

Example. Consider the following (true) sentence:

Between every two rational numbers there is a third one. (2.1)

The property expressed in (2.1) is usually referred to as density of the
rationals. We will take a systematic look at proving such statements in
Chapter ??.

Exercise 2.22 Can you think of an argument showing that statement (2.1)
is true?

A Pattern. There is a logical pattern underlying sentence (2.1). To make
it visible, look at the following, more explicit, formulation. It uses variables
x, y and z for arbitrary rationals, and refers to the ordering < of the set Q
of rational numbers.

For all rational numbers x and z, if x < z, then some (2.2)
rational number y exists such that x < y and y < z.

You will often find ‘x < y and y < z’ shortened to: x < y < z.



50 CHAPTER 2. TALKING ABOUT MATHEMATICAL OBJECTS

Quantifiers Note the words all (or: for all), some (or: for some,
some. . . exists, there exists. . . such that, etc.). They are called quantifiers, and
we use the symbols ∀ and ∃ as shorthands for them.

With these shorthands, plus the shorthands for the connectives that we
saw above, and the shorthand . . . ∈ Q for the property of being a rational,
we arrive at the following compact symbolic formulation:

∀x∈Q ∀z∈Q ( x < z ⇒ ∃y∈Q ( x < y ∧ y < z ) ). (2.3)

We will use example (2.3) to make a few points about the proper use
of the vocabulary of logical symbols. An expression like (2.3) is called a
sentence or a formula. Note that the example formula (2.3) is composite:
we can think of it as constructed out of simpler parts. We can picture its
structure as in Figure 2.2.

∀x ∈ Q∀z ∈ Q(x < z ⇒ ∃y ∈ Q(x < y ∧ y < z))

∀z ∈ Q(x < z ⇒ ∃y ∈ Q(x < y ∧ y < z))

(x < z ⇒ ∃y ∈ Q(x < y ∧ y < z))

x < z ∃y ∈ Q(x < y ∧ y < z)

(x < y ∧ y < z)

x < y y < z

Figure 2.2: Composition of Example Formula from its Sub-formulas.

As the figure shows, the example formula is formed by putting the
quantifier prefix ∀x ∈ Q in front of the result of putting quantifier prefix
∀z ∈ Q in front of a simpler formula, and so on.

The two consecutive universal quantifier prefixes can also be combined
into ∀x, z∈Q. This gives the phrasing

∀x, z ∈ Q( x < z ⇒ ∃y∈Q ( x < y ∧ y < z ) ).

Putting an ∧ between the two quantifiers is incorrect, however. In other
words, the expression ∀x∈Q ∧ ∀z∈Q(x < z ⇒ ∃y∈Q(x < y ∧ y < z)) is
considered ungrammatical. The reason is that the formula part ∀x ∈ Q is



2.3. MAKING SYMBOLIC FORM EXPLICIT 51

itself not a formula, but a prefix that turns a formula into a more complex
formula. The connective ∧ can only be used to construct a new formula
out of two simpler formulas, so ∧ cannot serve to construct a formula
from ∀x ∈ Q and another formula.

The symbolic version of the density statement uses parentheses. Their
function is to indicate the way the expression has been formed and thereby
to show the scope of operators. The scope of a quantifier-expression is
the formula that it combines with to form a more complex formula. The
scopes of quantifier-expressions and connectives in a formula are illustrated
in the structure tree of that formula. Figure 2.2 shows that the scope of
the quantifier-expression ∀x ∈ Q is the formula

∀z ∈ Q(x < z ⇒ ∃y ∈ Q (x < y ∧ y < z)),

the scope of ∀z ∈ Q is the formula

(x < z ⇒ ∃y ∈ Q(x < y ∧ y < z)),

and the scope of ∃y ∈ Q is the formula (x < y ∧ y < z).

Exercise 2.23 Give structure trees of the following formulas (we use
shorthand notation, and write A(x) as Ax for readability).

1. ∀x(Ax⇒ (Bx⇒ Cx)).

2. ∃x(Ax ∧Bx).

3. ∃xAx ∧ ∃xBx.

The expression for all (and similar ones) and its shorthand, the symbol
∀, is called the universal quantifier; the expression there exists (and similar
ones) and its shorthand, the symbol ∃, is called the existential quantifier.
The letters x, y and z that have been used in combination with them are
variables. Note that ‘for some’ is equivalent to ‘for at least one’.

Unrestricted and Restricted Quantifiers, Domain of Quantification
Quantifiers can occur unrestricted: ∀x(x > 0), ∃y∀x(y > x), and restricted:
∀x ∈ A(x > 0), ∃y ∈ B(y < a) (where A and B are sets).

In the unrestricted case, there should be some domain of quantification
that often is implicit in the context. E.g., if the context is real analysis,
∀x may mean for all reals x. . . , and ∀f may mean for all real-valued
functions f . . . .



52 CHAPTER 2. TALKING ABOUT MATHEMATICAL OBJECTS

Example 2.24 R is the set of real numbers. The fact that the R has no
greatest element can be expressed with restricted quantifiers as:

∀x ∈ R∃y ∈ R(x < y).

If we specify that all quantifiers range over the reals (i.e., if we say that R
is the domain of quantification) then we can drop the explicit restrictions,
and we get by with ∀x∃y(x < y).

The use of restricted quantifiers allows for greater flexibility, for it permits
one to indicate different domains for different quantifiers.

Example 2.25

∀x ∈ R∀y ∈ R(x < y ⇒ ∃z ∈ Q (x < z < y)).

Instead of ∃x(Ax ∧ . . .) one can write ∃x ∈ A(. . .). The advantage when
all quantifiers are thus restricted is that it becomes immediately clear that
the domain is subdivided into different sub domains or types. This can
make the logical translation much easier to comprehend.

Remark. We will use standard names for the following domains: N for
the natural numbers, Z for the integer numbers, Q for the rational numbers,
and R for the real numbers. More information about these domains can be
found in Chapter ??.

Exercise 2.26 Write as formulas with restricted quantifiers:

1. ∃x∃y(x ∈ Q ∧ y ∈ Q ∧ x < y).

2. ∀x(x ∈ R⇒ ∃y(y ∈ R ∧ x < y)).

3. ∀x(x ∈ Z⇒ ∃m,n(m ∈ N ∧ n ∈ N ∧ x = m− n)).

Exercise 2.27 Write as formulas without restricted quantifiers:

1. ∀x ∈ Q∃m,n ∈ Z(n 6= 0 ∧ x = m/n).

2. ∀x ∈ F∀y ∈ D(Oxy ⇒ Bxy).



2.3. MAKING SYMBOLIC FORM EXPLICIT 53

Bound Variables. Quantifier expressions ∀x, ∃y,. . . (and their restricted
companions) are said to bind every occurrence of x, y,. . . in their scope.
If a variable occurs bound in a certain expression then the meaning of that
expression does not change when all bound occurrences of that variable are
replaced by another one.

Example 2.28 ∃y ∈ Q(x < y) has the same meaning as ∃z ∈ Q(x < z).
This indicates that y is bound in ∃y ∈ Q(x < y). But ∃y ∈ Q(x < y) and
∃y ∈ Q(z < y) have different meanings, for the first asserts that there exists
a rational number greater than some given number x, and the second that
there exists a rational number greater than some given z.

Universal and existential quantifiers are not the only variable binding
operators used by mathematicians. There are several other constructs that
you are probably familiar with which can bind variables.

Example 2.29 (Summation, Integration.) The expression
∑5

i=1 i is nothing
but a way to describe the number 15 (15 = 1 + 2 + 3 + 4 + 5), and clearly,
15 does in no way depend on i. Use of a different variable does not
change the meaning:

∑5
k=1 k = 15. Here are the Haskell versions:

Prelude> sum [ i | i <- [1..5] ]

15

Prelude> sum [ k | k <- [1..5] ]

15

Similarly, the expression
∫ 1

0
xdx denotes the number 1

2 and does not depend
on x.

Example 2.30 (Abstraction.) Another way to bind a variable occurs in the
abstraction notation { x ∈ A | P }, cf. (??), p. ??. The Haskell counterpart
to this is list comprehension:

[ x | x <- list, property x ]

The choice of variable does not matter. The same list is specified by:

[ y | y <- list, property y ]



54 CHAPTER 2. TALKING ABOUT MATHEMATICAL OBJECTS

The way set comprehension is used to define sets is similar to the way
list comprehension is used to define lists, and this is similar again to the
way lambda abstraction is used to define functions. See Section 2.4.

Bad Habits. It is not unusual to encounter our example-statement (2.1)
displayed as follows.

For all rationals x and y, if x < y, then both x < z and z < y
hold for some rational z.

Note that the meaning of this is not completely clear. With this expression
the true statement that ∀x, y ∈Q ∃z ∈Q (x < y ⇒ (x < z ∧ z < y))
could be meant, but what also could be meant is the false statement that
∃z∈Q ∀x, y∈Q (x < y ⇒ (x < z ∧ z < y)).

Putting quantifiers both at the front and at the back of a formula results
in ambiguity, for it becomes difficult to determine their scopes. In the
worst case the result is an ambiguity between statements that mean entirely
different things.

It does not look too well to let a quantifier bind an expression that is
not a variable, such as in:

for all numbers n2 + 1, . . .

Although this habit does not always lead to unclarity, it is better to avoid
it, as the result is often rather hard to comprehend. If you insist on
quantifying over complex terms, then the following phrasing is suggested:
for all numbers of the form n2 + 1, . . .

Of course, in the implementation language, terms like n + 1 are important
for pattern matching.

Translation Problems. It is easy to find examples of English sentences
that are hard to translate into the logical vernacular. E.g., in between two
rationals is a third one it is difficult to discover a universal quantifier and
an implication.

Also, note that indefinites in natural language may be used to express
universal statements. Consider the sentence a well-behaved child is a
quiet child. The indefinite articles here may suggest existential quantifiers;
however, the reading that is clearly meant has the form

∀x ∈ C (Well-behaved(x) ⇒ Quiet(x)).

A famous example from philosophy of language is: if a farmer owns a



2.3. MAKING SYMBOLIC FORM EXPLICIT 55

donkey, he beats it. Again, in spite of the indefinite articles, the meaning is
universal:

∀x∀y((Farmer(x) ∧ Donkey(y) ∧ Own(x, y))⇒ Beat(x, y)).

In cases like this, translation into a formula reveals the logical meaning that
remained hidden in the original phrasing.

In mathematical texts it also occurs quite often that the indefinite article a
is used to make universal statements. Compare Example 2.43 below, where
the following universal statement is made: A real function is continuous if
it satisfies the ε-δ-definition.

Exercise 2.31 Translate into formulas, taking care to express the intended
meaning:

1. The equation x2 + 1 = 0 has a solution.

2. A largest natural number does not exist.

3. The number 13 is prime (use d|n for ‘d divides n’).

4. The number n is prime.

5. There are infinitely many primes.

Exercise 2.32 Translate into formulas:

1. Everyone loved Diana. (Use the expression L(x, y) for: x loved y,
and the name d for Diana.)

2. Diana loved everyone.

3. Man is mortal. (Use M(x) for ‘x is a man’, and M’(x) for ‘x is
mortal’.)

4. Some birds do not fly. (Use B(x) for ‘x is a bird’ and F (x) for ‘x
can fly’.)

Exercise 2.33 Translate into formulas, using appropriate expressions for the
predicates:

1. Dogs that bark do not bite.

2. All that glitters is not gold.

3. Friends of Diana’s friends are her friends.

4.*The limit of 1
n as n approaches infinity is zero.



56 CHAPTER 2. TALKING ABOUT MATHEMATICAL OBJECTS

Expressing Uniqueness. If we combine quantifiers with the relation = of
identity, we can make definite statements like ‘there is precisely one real
number x with the property that for any real number y, xy = y’. The
logical rendering is (assuming that the domain of discussion is R):

∃x(∀y(x · y = y) ∧ ∀z(∀y(z · y = y)⇒ z = x)).

The first part of this formula expresses that at least one x satisfies the
property ∀y(x · y = y), and the second part states that any z satisfying the
same property is identical to that x.

The logical structure becomes more transparent if we write P for the
property. This gives the following translation for ‘precisely one object has
property P ’:

∃x(Px ∧ ∀z(Pz ⇒ z = x)).

Exercise 2.34 Use the identity symbol = to translate the following sentences:

1. Everyone loved Diana except Charles.

2. Every man adores at least two women.

3. No man is married to more than one woman.

Long ago the philosopher Bertrand Russell has proposed this logical format
for the translation of the English definite article. According to his theory of
description, the translation of The King is raging becomes:

∃x(King(x) ∧ ∀y(King(y)⇒ y = x) ∧ Raging(x)).

Exercise 2.35 Use Russell’s recipe to translate the following sentences:

1. The King is not raging.

2. The King is loved by all his subjects. (use K(x) for ‘x is a King’,
and S(x, y) for ‘x is a subject of y’).

Exercise 2.36 Translate the following logical statements back into English.

1. ∃x ∈ R(x2 = 5).

2. ∀n ∈ N∃m ∈ N(n < m).

3. ∀n ∈ N¬∃d ∈ N(1 < d < (2n + 1) ∧ d|(2n + 1)).

4. ∀n ∈ N∃m ∈ N(n < m ∧ ∀p ∈ N(p 6 n ∨ m 6 p)).



2.4. LAMBDA ABSTRACTION 57

5. ∀ε ∈ R+∃n ∈ N∀m ∈ N(m > n⇒ (|a− am| 6 ε)). (R+ is the set of
positive reals; a, a0, a1, . . . refer to real numbers .)

Remark. Note that translating back and forth between formulas and plain
English involves making decisions about a domain of quantification and
about the predicates to use. This is often a matter of taste. For instance,
how does one choose between P (n) for ‘n is prime’ and the spelled out

n > 1 ∧ ¬∃d ∈ N(1 < d < n ∧ d|n),

which expands the definition of being prime? Expanding the definitions of
mathematical concepts is not always a good idea. The purpose of introducing
the word prime was precisely to hide the details of the definition, so that
they do not burden the mind. The art of finding the right mathematical
phrasing is to introduce precisely the amount and the kind of complexity
that are needed to handle a given problem.

Before we will start looking at the language of mathematics and its
conventions in a more systematic way, we will make the link between
mathematical definitions and implementations of those definitions.

2.4 Lambda Abstraction
The following description defines a specific function that does not depend
at all on x:

The function that sends x to x2.

Often used notations are x 7→ x2 and λx.x2. The expression λx.x2 is called
a lambda term.

If t is an expression of type b and x is a variable of type a then λx.t
is an expression of type a→ b, i.e., λx.t denotes a function. This way of
defining functions is called lambda abstraction.

Note that the function that sends y to y2 (notation y 7→ y2, or λy.y2)
describes the same function as λx.x2.

In Haskell, function definition by lambda abstraction is available. Compare
the following two definitions:

square1 :: Integer -> Integer

square1 x = x^2

square2 :: Integer -> Integer

square2 = \ x -> x^2



58 CHAPTER 2. TALKING ABOUT MATHEMATICAL OBJECTS

In the first of these, the function is defined by means of an unguarded
equation. In the second, the function is defined as a lambda abstract.
The Haskell way of lambda abstraction goes like this. The syntax is:
\ v -> body, where v is a variable of the argument type and body an
expression of the result type. It is allowed to abbreviate \ v -> \ w -> body
to \ v w -> body. And so on, for more than two variables. E.g., both of
the following are correct:

m1 :: Integer -> Integer -> Integer

m1 = \ x -> \ y -> x*y

m2 :: Integer -> Integer -> Integer

m2 = \ x y -> x*y

And again, the choice of variables does not matter.
Also, it is possible to abstract over tuples. Compare the following

definition of a function that solves quadratic equations by means of the
well-known ‘abc’-formula

x =
−b±

√
b2 − 4ac

2a
.

solveQdr :: (Float,Float,Float) -> (Float,Float)

solveQdr = \ (a,b,c) -> if a == 0 then error "not quadratic"

else let d = b^2 - 4*a*c in

if d < 0 then error "no real solutions"

else

((- b + sqrt d) / 2*a,

(- b - sqrt d) / 2*a)

To solve the equation x2 − x − 1 = 0, use solveQdr (1,-1,-1), and
you will get the (approximately correct) answer (1.61803,-0.618034).
Approximately correct, for 1.61803 is an approximation of the golden ratio,
1+
√

5
2 , and −0.618034 is an approximation of 1−

√
5

2 .
One way to think about quantified expressions like ∀xPx and ∃yPy is as

combinations of a quantifier expression ∀ or ∃ and a lambda term λx.Px
or λy.Py. The lambda abstract λx.Px denotes the property of being a P .



2.5. DEFINITIONS AND IMPLEMENTATIONS 59

The quantifier ∀ is a function that maps properties to truth values according
to the recipe: if the property holds of the whole domain then t, else f. The
quantifier ∃ is a function that maps properties to truth values according to
the recipe: if the property holds of anything at all then t, else f. This
perspective on quantification is the basis of the Haskell implementation of
quantifiers in Section 2.8.

2.5 Definitions and Implementations
Here is an example of a definition in mathematics. A natural number n is
prime if n > 1 and no number m with 1 < m < n divides n.

We can capture this definition of being prime in a formula, using m|n
for ‘m divides n’, as follows (we assume the natural numbers as our
domain of discourse):

n > 1 ∧ ¬∃m(1 < m < n ∧m|n). (2.4)

Another way of expressing this is the following:

n > 1 ∧ ∀m((1 < m < n)⇒ ¬m|n). (2.5)

If you have trouble seeing that formulas (2.4) and (2.5) mean the same,
don’t worry. We will study such equivalences between formulas in the
course of this chapter.

If we take the domain of discourse to be the domain of the natural
numbers N = {0, 1, 2, . . .}, then formula (2.5) expresses that n is a prime
number.

We can make the fact that the formula is meant as a definition explicit
by introducing a predicate name P and linking that to the formula:4

P (n) :≡ n > 1 ∧ ∀m((1 < m < n)⇒ ¬m|n). (2.6)

One way to think about this definition is as a procedure for testing
whether a natural number is prime. Is 83 a prime? Yes, because none
of 2, 3, 4, . . . , 9 divides 83. Note that there is no reason to check 10, . . .,
for since 10 × 10 > 83 any factor m of 83 with m > 10 will not be the
smallest factor of 83, and a smaller factor should have turned up before.

The example shows that we can make the prime procedure more efficient.
We only have to try and find the smallest factor of n, and any b with
b2 > n cannot be the smallest factor. For suppose that a number b with

4:≡ means: ‘is by definition equivalent to’.



60 CHAPTER 2. TALKING ABOUT MATHEMATICAL OBJECTS

b2 > n divides n. Then there is a number a with a× b = n, and therefore
a2 6 n, and a divides n. Our definition can therefore run:

P (n) :≡ n > 1 ∧ ∀m((1 < m ∧m2 6 n)⇒ ¬m|n). (2.7)

In Chapter 1 we have seen that this definition is equivalent to the following:

P (n) :≡ n > 1 ∧ LD(n) = n. (2.8)

The Haskell implementation of the primality test was given in Chapter 1.

2.6 Abstract Formulas and Concrete Structures

The formulas of Section 2.1 are “handled” using truth values and tables.
Quantificational formulas need a structure to become meaningful. Logical
sentences involving variables can be interpreted in quite different structures.
A structure is a domain of quantification, together with a meaning for
the abstract symbols that occur. A meaningful statement is the result of
interpreting a logical formula in a certain structure. It may well occur
that interpreting a given formula in one structure yields a true statement,
while interpreting the same formula in a different structure yields a false
statement. This illustrates the fact that we can use one logical formula for
many different purposes.

Look again at the example formula (2.3), now displayed without reference
to Q and using a neutral symbol R. This gives:

∀x ∀y ( xRy =⇒ ∃z ( xRz ∧ zRy ) ). (2.9)

It is only possible to read this as a meaningful statement if

1. it is understood which is the underlying domain of quantification,

and

2. what the symbol R stands for.

Earlier, the set of rationals Q was used as the domain, and the ordering
< was employed instead of the —in itself meaningless— symbol R. In the
context of Q and <, the quantifiers ∀x and ∃z in (2.9) should be read as:
for all rationals x . . . , resp., for some rational z . . . , whereas R should be
viewed as standing for <. In that particular case, the formula expresses the
true statement that, between every two rationals, there is a third one.



2.6. ABSTRACT FORMULAS AND CONCRETE STRUCTURES 61

However, one can also choose the set N = {0, 1, 2, . . .} of natural numbers
as domain and the corresponding ordering < as the meaning of R. In
that case, the formula expresses the false statement that between every two
natural numbers there is a third one.

A specification of (i) a domain of quantification, to make an unrestricted
use of the quantifiers meaningful, and (ii) a meaning for the unspecified
symbols that may occur (here: R), will be called a context or a structure
for a given formula.

As you have seen here: given such a context, the formula can be “read”
as a meaningful assertion about this context that can be either true or false.

Open Formulas, Free Variables, and Satisfaction. If one deletes the first
quantifier expression ∀x from the example formula (2.9), then the following
remains:

∀y ( xRy =⇒ ∃z ( xRz ∧ zRy ) ). (2.10)

Although this expression does have the form of a statement, it in fact is
not such a thing. Reason: statements are either true or false; and, even if a
quantifier domain and a meaning for R were specified, what results cannot
be said to be true or false, as long as we do not know what it is that the
variable x (which no longer is bound by the quantifier ∀x) stands for.

However, the expression can be turned into a statement again by replacing
the variable x by (the name of) some object in the domain, or —what
amounts to the same— by agreeing that x denotes this object.

For instance, if the domain consists of the set N ∪ {q ∈ Q | 0 < q < 1}
of natural numbers together with all rationals between 0 and 1, and the
meaning of R is the usual ordering relation < for these objects, then the
expression turns into a truth upon replacing x by 0.5 or by assigning x
this value. We say that 0.5 satisfies the formula in the given domain.

However, (2.10) turns into a falsity when we assign 2 to x; in other
words, 2 does not satisfy the formula.

Of course, one can delete a next quantifier as well, obtaining:

xRy =⇒ ∃z ( xRz ∧ zRy ).

Now, both x and y have become free, and, next to a context, values have
to be assigned to both these variables in order to determine a truth value.

An occurrence of a variable in an expression that is not (any more) in
the scope of a quantifier is said to be free in that expression. Formulas
that contain free variables are called open.



62 CHAPTER 2. TALKING ABOUT MATHEMATICAL OBJECTS

An open formula can be turned into a statement in two ways: (i) adding
quantifiers that bind the free variables; (ii) replacing the free variables by
(names of) objects in the domain (or stipulating that they have such objects
as values).

Exercise 2.37 Consider the following formulas.

1. ∀x∀y(xRy),

2. ∀x∃y(xRy).

3. ∃x∀y(xRy).

4. ∃x∀y(x = y ∨ xRy).

5. ∀x∃y(xRy ∧ ¬∃z(xRz ∧ zRy)).

Are these formulas true or false in the following contexts?:

a. Domain: N = {0, 1, 2, . . .}; meaning of R: <,

b. Domain: N; meaning of R: >,

c. Domain: Q (the set of rationals); meaning of R: <,

d. Domain: R (the set of reals); meaning of xRy: y2 = x,

e. Domain: set of all human beings; meaning of R: father-of,

f. Domain: set of all human beings; meaning of xRy: x loves y.

Exercise 2.38 In Exercise 2.37, delete the first quantifier on x in formulas
1–5. Determine for which values of x the resulting open formulas are
satisfied in each of the structures a–f.

2.7 Logical Handling of the Quantifiers

Goal To learn how to recognize simple logical equivalents involving
quantifiers, and how to manipulate negations in quantified contexts.



2.7. LOGICAL HANDLING OF THE QUANTIFIERS 63

Validities and Equivalents. Compare the corresponding definitions in
Section 2.2.

1. A logical formula is called (logically) valid if it turns out to be true
in every structure.

2. Formulas are (logically) equivalent if they obtain the same truth value
in every structure (i.e., if there is no structure in which one of them
is true and the other one is false).

Notation: Φ ≡ Ψ expresses that the quantificational formulas Φ and Ψ
are equivalent.

Exercise 2.39 (The propositional version of this is in Exercise 2.19 p. 48.)
Argue that Φ and Ψ are equivalent iff Φ⇔ Ψ is valid.

Because of the reference to every possible structure (of which there are
infinitely many), these are quite complicated definitions, and it is nowhere
suggested that you will be expected to decide on validity or equivalence
in every case that you may encounter. In fact, in 1936 it was proved
rigorously, by Alonzo Church (1903–1995) and Alan Turing (1912–1954)
that no one can! This illustrates that the complexity of quantifiers exceeds
that of the logic of connectives, where truth tables allow you to decide on
such things in a mechanical way, as is witnessed by the Haskell functions
that implement the equivalence checks for propositional logic.

Nevertheless: the next theorem already shows that it is sometimes very
well possible to recognize whether formulas are valid or equivalent — if
only these formulas are sufficiently simple.

Only a few useful equivalents are listed next. Here, Ψ(x), Φ(x, y) and
the like denote logical formulas that may contain variables x (or x, y) free.

Theorem 2.40

1. ∀x∀yΦ(x, y) ≡ ∀y∀xΦ(x, y);

∃x∃yΦ(x, y) ≡ ∃y∃xΦ(x, y),

2. ¬∀xΦ(x) ≡ ∃x¬Φ(x);

¬∃xΦ(x) ≡ ∀x¬Φ(x);

¬∀x¬Φ(x) ≡ ∃xΦ(x);

¬∃x¬Φ(x) ≡ ∀xΦ(x),

3. ∀x(Φ(x) ∧ Ψ(x)) ≡ (∀xΦ(x) ∧ ∀xΨ(x));

∃x(Φ(x) ∨ Ψ(x)) ≡ (∃xΦ(x) ∨ ∃xΨ(x)).



64 CHAPTER 2. TALKING ABOUT MATHEMATICAL OBJECTS

Proof. There is no neat truth table method for quantification, and there is
no neat proof here. You just have to follow common sense. For instance
(part 2, first item) common sense dictates that not every x satisfies Φ if,
and only if, some x does not satisfy Φ.

Of course, common sense may turn out not a good adviser when things
get less simple. Chapter ?? hopefully will (partly) resolve this problem for
you.

Exercise 2.41 For every sentence Φ in Exercise 2.36 (p. 56), consider its
negation ¬Φ, and produce a more positive equivalent for ¬Φ by working
the negation symbol through the quantifiers.

Order of Quantifiers. Theorem 2.40.1 says that the order of similar
quantifiers (all universal or all existential) is irrelevant. But note that this is
not the case for quantifiers of different kind.

On the one hand, if you know that ∃y∀xΦ(x, y) (which states that there
is one y such that for all x, Φ(x, y) holds) is true in a certain structure,
then a fortiori ∀x∃yΦ(x, y) will be true as well (for each x, take this same
y). However, if ∀x∃yΦ(x, y) holds, it is far from sure that ∃y∀xΦ(x, y)
holds as well.

Example 2.42 The statement that ∀x∃y(x < y) is true in N, but the
statement ∃y∀x(x < y) in this structure wrongly asserts that there exists a
greatest natural number.

Restricted Quantification. You have met the use of restricted quantifiers,
where the restriction on the quantified variable is membership in some
domain. But there are also other types of restriction.

Example 2.43 (Continuity) According to the “ε-δ-definition” of continuity,
a real function f is continuous if (domain R):

∀x ∀ε > 0 ∃δ > 0 ∀y ( |x− y| < δ =⇒ |f(x)− f(y)| < ε ).

This formula uses the restricted quantifiers ∀ε > 0 and ∃δ > 0 that enable a
more compact formulation here.



2.7. LOGICAL HANDLING OF THE QUANTIFIERS 65

Example 2.44 Consider our example statement (2.3). Here it is again:

∀y∀x(x < y =⇒ ∃z(x < z ∧ z < y))

This can also be given as

∀y∀x < y∃z < y(x < z),

but this reformulation stretches the use of this type of restricted quantification
probably a bit too much.

Remark. If A is a subset of the domain of quantification, then

∀x∈A Φ(x) means the same as ∀x(x ∈ A⇒ Φ(x)),

whereas

∃x∈A Φ(x) is tantamount with ∃x(x ∈ A ∧ Φ(x)).

Warning: The restricted universal quantifier is explained using ⇒, whereas
the existential quantifier is explained using ∧ !

Example 2.45 ‘Some Mersenne numbers are prime’ is correctly translated
as ∃x(Mx ∧ Px). The translation ∃x(Mx⇒ Px) is wrong. It is much too
weak, for it expresses (in the domain N) that there is a natural number x
which is either not a Mersenne number or it is a prime. Any prime will do
as an example of this, and so will any number which is not a Mersenne
number.

In the same way, ‘all prime numbers have irrational square roots’ is
translated as ∀x ∈ R(Px⇒

√
x /∈ Q). The translation ∀x ∈ R(Px∧

√
x /∈ Q)

is wrong. This time we end up with something which is too strong, for
this expresses that every real number is a prime number with an irrational
square root.

Restricted Quantifiers Explained. There is a version of Theorem 2.40
that employs restricted quantification. This version states, for instance, that
¬∀x∈A Φ is equivalent to ∃x∈A ¬Φ, and so on. The equivalence follows
immediately from the remark above. We now have, e.g., that ¬∀x∈AΦ(x)
is equivalent to ¬∀x(x ∈ A ⇒ Φ(x)), which in turn is equivalent to
(Theorem 2.40) ∃x¬(x ∈ A ⇒ Φ(x)), hence to (and here the implication
turns into a conjunction — cf. Theorem 2.10) ∃x(x ∈ A ∧ ¬Φ(x)), and,
finally, to ∃x∈A¬Φ(x).



66 CHAPTER 2. TALKING ABOUT MATHEMATICAL OBJECTS

Exercise 2.46 Does it hold that ¬∃x∈AΦ(x) is equivalent to ∃x 6∈AΦ(x)?
If your answer is ‘yes’, give a proof, if ‘no’, then you should show this
by giving a simple refutation (an example of formulas and structures where
the two formulas have different truth values).

Exercise 2.47 Is ∃x 6∈A¬Φ(x) equivalent to ∃x∈A¬Φ(x)? Give a proof if
your answer is ‘yes’, and a refutation otherwise.

Exercise 2.48 Produce the version of Theorem 2.40 (p. 63) that employs
restricted quantification. Argue that your version is correct.

Example 2.49 (Discontinuity Explained) The following formula describes
what it means for a real function f to be discontinuous in x:

¬ ∀ε > 0 ∃δ > 0 ∀y ( |x− y| < δ =⇒ |f(x)− f(y)| < ε ).

Using Theorem 2.40, this can be transformed in three steps, moving the
negation over the quantifiers, into:

∃ε > 0 ∀δ > 0 ∃y ¬ ( |x− y| < δ =⇒ |f(x)− f(y)| < ε ).

According to Theorem 2.10 this is equivalent to

∃ε > 0 ∀δ > 0 ∃y ( |x− y| < δ ∧ ¬ |f(x)− f(y)| < ε ),

i.e., to
∃ε > 0 ∀δ > 0 ∃y ( |x− y| < δ ∧ |f(x)− f(y)| > ε ).

What has emerged now is a clearer “picture” of what it means to be
discontinuous in x: there must be an ε > 0 such that for every δ > 0
(“no matter how small”) a y can be found with |x − y| < δ, whereas
|f(x) − f(y)| > ε; i.e., there are numbers y “arbitrarily close to x” such
that the values f(x) and f(y) remain at least ε apart.

Different Sorts. Several sorts of objects, may occur in one and the same
context. (For instance, sometimes a problem involves vectors as well
as reals.) In such a situation, one often uses different variable naming
conventions to keep track of the differences between the sorts. In fact, sorts
are just like the basic types in a functional programming language.

Just as good naming conventions can make a program easier to understand,
naming conventions can be helpful in mathematical writing. For instance:
the letters n,m, k, . . . are often used for natural numbers, f, g, h, . . . usually
indicate that functions are meant, etc.



2.8. QUANTIFIERS AS PROCEDURES 67

The interpretation of quantifiers in such a case requires that not one, but
several domains are specified: one for every sort or type. Again, this is
similar to providing explicit typing information in a functional program for
easier human digestion.

Exercise 2.50 That the sequence a0, a1, a2, . . . ∈ R converges to a, i.e., that
limn→∞ an = a, means that ∀δ > 0∃n∀m > n(|a−am| < δ). Give a positive
equivalent for the statement that the sequence a0, a1, a2, . . . ∈ R does not
converge.

2.8 Quantifiers as Procedures
One way to look at the meaning of the universal quantifier ∀ is as a
procedure to test whether a set has a certain property. The test yields t
if the set equals the whole domain of discourse, and f otherwise. This
means that ∀ is a procedure that maps the domain of discourse to t and all
other sets to f. Similarly for restricted universal quantification. A restricted
universal quantifier can be viewed as a procedure that takes a set A and a
property P , and yields t just in case the set of members of A that satisfy
P equals A itself.

In the same way, the meaning of the unrestricted existential quantifier ∃
can be specified as a procedure. ∃ takes a set as argument, and yields t
just in case the argument set is non-empty. A restricted existential quantifier
can be viewed as a procedure that takes a set A and a property P , and
yields t just in case the set of members of A that satisfy P is non-empty.

If we implement sets as lists, it is straightforward to implement these
quantifier procedures. In Haskell, they are predefined as all and any (these
definitions will be explained below):

any, all :: (a -> Bool) -> [a] -> Bool
any p = or . map p
all p = and . map p

The typing we can understand right away. The functions any and all
take as their first argument a function with type a inputs and type Bool
outputs (i.e., a test for a property), as their second argument a list over type
a, and return a truth value. Note that the list representing the restriction is
the second argument.



68 CHAPTER 2. TALKING ABOUT MATHEMATICAL OBJECTS

To understand the implementations of all and any, one has to know that
or and and are the generalizations of (inclusive) disjunction and conjunction
to lists. (We have already encountered and in Section 2.2.) They have type
[Bool] -> Bool.

Saying that all elements of a list xs satisfy a property p boils down to:
the list map p xs contains only True (see Section 1.8). Similarly, saying
that some element of a list xs satisfies a property p boils down to: the list
map p xs contains at least one True. This explains the implementation of
all: first apply map p, next apply and. In the case of any: first apply
map p, next apply or.

The action of applying a function g :: b -> c after a function
f :: a -> b is performed by the function g . f :: a -> c , the
composition of f and g. See Section ?? below.

The definitions of all and any are used as follows:

Prelude> any (<3) [0..]

True

Prelude> all (<3) [0..]

False

Prelude>

The functions every and some get us even closer to standard logical
notation. These functions are like all and any, but they first take the
restriction argument, next the body:

every, some :: [a] -> (a -> Bool) -> Bool

every xs p = all p xs

some xs p = any p xs

Now, e.g., the formula ∀x ∈ {1, 4, 9}∃y ∈ {1, 2, 3} x = y2 can be
implemented as a test, as follows:

TAMO> every [1,4,9] (\ x -> some [1,2,3] (\ y -> x == y^2))

True

But caution: the implementations of the quantifiers are procedures, not
algorithms. A call to all or any (or every or some) need not terminate.
The call

every [0..] (>=0)



2.9. FURTHER READING 69

will run forever. This illustrates once more that the quantifiers are in
essence more complex than the propositional connectives. It also motivates
the development of the method of proof, in the next chapter.

Exercise 2.51 Define a function unique :: (a -> Bool) -> [a] -> Bool
that gives True for unique p xs just in case there is exactly one object
among xs that satisfies p.

Exercise 2.52 Define a function parity :: [Bool] -> Bool that gives
True for parity xs just in case an even number of the xss equals True.

Exercise 2.53 Define a function evenNR :: (a -> Bool) -> [a] -> Bool
that gives True for evenNR p xs just in case an even number of the xss
have property p. (Use the parity function from the previous exercise.)

2.9 Further Reading
If you find that the pace of the introduction to logic in this chapter is
too fast for you, you might wish to have a look at the more leisurely
paced [NK04]. Excellent books about computer science applications of logic
are [Bur98] and [HR00]. A good introduction to mathematical logic is
Ebbinghaus, Flum and Thomas [EFT94].



70 CHAPTER 2. TALKING ABOUT MATHEMATICAL OBJECTS



The Greek Alphabet

Mathematicians are in constant need of symbols, and most of them are very
fond of Greek letters. Since this book might be your first encounter with
this new set of symbols, we list the Greek alphabet below.

name lower case upper case
alpha α
beta β
gamma γ Γ
delta δ ∆
epsilon ε
zeta ζ
eta η
theta θ Θ
iota ι
kappa κ
lambda λ Λ
mu µ
nu ν
xi ξ Ξ
pi π Π
rho ρ
sigma σ Σ
tau τ
upsilon υ Υ
phi ϕ Φ
chi χ
psi ψ Ψ
omega ω Ω

71



72



Bibliography

[Bar84] H. Barendregt. The Lambda Calculus: Its Syntax and Semantics
(2nd ed.). North-Holland, Amsterdam, 1984.

[Bir98] R. Bird. Introduction to Functional Programming Using Haskell.
Prentice Hall, 1998.

[Bur98] Stanley N. Burris. Logic for Mathematics and Computer Science.
Prentice Hall, 1998.

[Doe96] H.C. Doets. Wijzer in Wiskunde. CWI, Amsterdam, 1996. Lecture
notes in Dutch.

[EFT94] H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic.
Springer-Verlag, Berlin, 1994. Second Edition.

[HFP96] P. Hudak, J. Fasel, and J. Peterson. A gentle introduction to
Haskell. Technical report, Yale University, 1996. Online version:
http://www.haskell.org/tutorial/.

[HO00] C. Hall and J. O’Donnell. Discrete Mathematics Using A Computer.
Springer, 2000.

[HR00] M. Huth and M. Ryan. Logic in Computer Science: Modelling
and Reasoning about Systems. Cambridge University Press, 2000.

[HT] The Haskell Team. The Haskell homepage. http://www.haskell.
org.

[Hud00] P. Hudak. The Haskell School of Expression: Learning Functional
Programming Through Multimedia. Cambridge University Press,
2000.

[Jon03] S. Peyton Jones, editor. Haskell 98 Language and Libraries; The
Revised Report. Cambridge University Press, 2003.

73



74 BIBLIOGRAPHY

[JR+] Mark P. Jones, Alastair Reid, et al. The Hugs98 user manual.
http://cvs.haskell.org/Hugs/pages/hugsman/index.html.

[Knu92] D.E. Knuth. Literate Programming. CSLI Lecture Notes, no. 27.
CSLI, Stanford, 1992.

[NK04] R. Nederpelt and F. Kamareddine. Logical Reasoning: A First
Course, volume 3 of Texts in Computing. King’s College
Publications, London, 2004.

[Tho99] S. Thompson. Haskell: the craft of functional programming (second
edition). Addison Wesley, 1999.



Index

Symbols
32
:≡59
∧29, 31
∨29, 31
⇔29, 35
¬29, 30
⇒29, 33
**

@<8
**”:l@":l2
**”:r@":r5
**”:t@":t9
**@&&16, 31
**(.)@(.)68
**(op x)@(op x)20
**(x op)@(x op)20
**+@+6
**-

@-\efill
8

**.@.68
**/@/14
**::@::8
**¡

@<\efill
36

**¡+
@<+\efill

36
**[a]@[a]17

**
@\47

**⊥47
**λx.t@λx.t57
**>47
**@^6

A
abc-formula@‘abc’-formula58
Alexander the Greatiii
all@all67
and@and41
any@any67
Apt, K.R.vii
assignment statement23
average@average14

B
Benthem, J. vanvi
Bergstra, J.vi
binding power of operators33
Bool@Bool8, 30
Boolean function39
Brouwer, L.E.J29
Brunekreef, J.vii

C
Church, A.1, 63
composition of functions68
conjunction31
constructor11
constructor identifier11
continuity64

75



76 INDEX

contradiction47, 48
contraposition35
converse35
conversion14
Coquand, T.vii
Curry, H.B.1
CWIvii

D
data@data30
destructive assignment23
disjunction31
div@div19
divides@divides5
Double@Double17

E
equation guarding6
equational reasoning23
equivalence35
error@error8
Erven, T. vanvii
every@every68

F
False@False4, 30
filter@filter21
fixity declaration33
Fokkink, W.vii
forall@forall11
function composition68

G
Goldreyer, D.28
Goris, E.vii
guard7
guarded equation6

H
Haan, R. devii
Haskell1
Heman, S.vii

Hoogland, E.vii

I
Iemhoff, R.vii
iff30
ILLCvii
implication33
in@in14
infix4
infix notation20
infix@infix33
Int@Int11
Integer@Integer8, 11
Integral@Integral11
intuitionism29

J
Jansen, J.vii
Jong, H. devii
Jongh, D. devii

K
Kaldewaij, A.vii

L
lambda abstraction47, 57
lambda term57
lawassociativity45
lawcommutativity45
lawcontraposition45
lawDeMorgan45
lawdistribution45
lawdominance47
lawdouble negation45
lawexcluded middle47
lawidempotence45
lawidentity47
lazy list22
LD4
ldp@ldp22
ldpf@ldpf22
length@length14



INDEX 77

let@let14
Linux25
list15
list comprehension41, 53
load Haskell file2

M
Mackie, I.vii
Main@Main\efill

5

map@map20
Menaechmusiii
min@min12
mnmInt@mnmInt12
module@module2

N
necessary condition35
negation30
Newman, B.28
not@not30
Nualláin, B. Óvii

O
Oostrom, V. vanvii
operator precedence42
otherwise@otherwise7

P
pattern matching12
Platonism28
Ponse, A.vii
prefix4
prefix notation20
prefix@prefix16
Prelude@Prelude2, 25
prime factorization algorithm19
prime0@prime07
prime@prime22
primes0@primes022
primes1@primes122
primesdefinition59

propositional function39

R
Rational@Rational14
recursive definition7
reload Haskell file5
rem@rem5
removeFst@removeFst13
reserved keywords11
Rodenburg, P.vii
royal road to mathematicsiii
Russell, B.56
Rutten, J.vii

S
sections20
solveQdr@solveQdr58
solving quadratic equations58
some@some68
sqrt@sqrt58
srtInts@srtInts14
String@String15
sub domain52
substitution principle47
sufficient condition35
sum@sum14, 53
Swaen, M.vii

T
Terlouw, J.vii
toRational@toRational14
trivially true statements34
Tromp, J.vii
True@True4, 30
truth function39
Turing, A.63
type8, 17, 52
typeconversion14
typedeclaration8
typejudgment9
typevariables17



78 INDEX

U
Unix25

V
Van Benthem, J.vii
variable identifier11
Venema, Y.vii
Vinju, J.vii
Visser, A.vii
Vries, F.J. devii

W
Wehner, S.vii
where@where2, 14
Who is Afraid of Red, Yellow

and Blue28
wildcard11
Windows25










