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Abstract. Computer programs can only run reliably if the underlying
operating system is free of errors. In this paper we evaluate, from a
practitioner’s point of view, the utility of the popular software model
checker BLAST for revealing errors in Linux kernel code. The emphasis is
on important errors related to memory safety in and locking behaviour
of device drivers. Our conducted case studies show that, while BLAST’s
abstraction and refinement techniques are efficient and powerful, the tool
has deficiencies regarding usability and support for analysing pointers,
which are likely to prevent kernel developers from using it.

1 Introduction

Today’s application software critically depends on the reliability, safety and secu-
rity of the underlying operating system (OS). However, due to their complicated
task of managing a system’s physical resources, OSs are difficult to develop and
even more difficult to debug. Quite frequently major errors stay undiscovered
until they are exploited in security attacks or are found "by accident".

In recent years, automatic approaches to discover OS bugs via runtime checks
or source code analysis have been explored. Despite the fact that many of these
approaches do not focus on an exhaustive analysis, they still helped developers
to detect hundreds of safety problems in the Linux and BSD OS kernels. Most
of the programming errors found were either related to memory safety or in-
correct locking behaviour |6]. Here, "memory safety" typically is interpreted as
the property that an OS component never de-references an invalid pointer, since
this would cause the program to end up in an undefined state. "Correct locking
behaviour" means that functions that ensure mutual exclusion on the physical
resources of a system are called in a way that is free of deadlocks and starvation.
Both classes of problems are traceable by checking whether an OS component
complies with basic usage rules of the program interface provided by the kernel.

Software model checking. By having the potential of being exhaustive and
fully automatic, model checking, in combination with abstraction and refinement,
is a successful technique used in software verification [7]. Intensive research in
this area has resulted in software model checkers like Bandera [9] for Java pro-
grams or SLAM/SDV [1], MAGIC [5] and BLAST [16] (Berkeley Lazy Abstraction
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Software verification Tool) for analysing C source code. The major advantage
of these tools over model-based model checkers such as Spin [17] is their ability
to automatically abstract a model from the source code of a given program.
User interaction should then only be necessary in order to provide the model
checker with a specification, against which the program can be checked. Since
complete formal specifications are not available for most programs, verification
will usually be relative to a partial specification that covers the usage rules of the
Application Program Interface (API) used by the program. However, up to now
all releases of SLAM are restricted to verifying properties for Microsoft Win-
dows device drivers and do not cover memory safety problems [19], while BLAST
and MAGIC are able to verify a program against a user defined temporal safety
specification and thus allows checking of arbitrary C source code.

The BLAST toolkit . This popular toolkit implements an advanced abstraction
algorithm, called "lazy abstraction" [15], for building a model of some C source
code, and model-checking algorithm for checking whether some specified label
placed in the source code is reachable. This label can either be automatically
introduced by instrumenting the source with an explicit temporal safety specifi-
cation, be added via assert() statements, or be manually introduced into the
source. In any case, the input source file needs to be preprocessed using a stan-
dard C preprocessor like gcc. In this step, all header and source files included
by the input file under consideration are merged into one file. It is this prepro-
cessed source code that is passed to BLAST to construct and verify a model using
predicate abstraction.

This paper. In this paper we investigate to which extent software model check-
ing as implemented in BLAST can aid a practitioner during OS software develop-
ment. To do so, we analyse whether BLAST is able to detect errors that have been
reported for recent releases of the Linux kernel. We consider programming errors
related to memory safety (cf. Sec. 3) and locking behaviour (cf. Sec. 4). The code
examples utilised in this paper are taken from releases 2.6.13 and 2.6.14 of the
Linux kernel. They have been carefully chosen by searching the kernel’s change
log for fixed memory problems and fixed deadlock conditions, in a way that the
underlying problems are representative for memory safety and locking behaviour
as well as easily explainable without referring to long source code listings.! Our
studies use version 2.0 of BLAST, which was released in October 2005.

The focus of our work is on showing at what scale a give problem statement
and a program’s source code need to be adapted in order to detect an error.
We discuss how much work is required to find a certain usage rule violation in
a given snippet of a Linux driver, and how difficult this work is to perform in
BLAST. Due to space constraints, we cannot present all of our case studies in
full here; however, all files necessary to reproduce our results can be downloaded
from www.cs.york.ac.uk/ muehlber/blast/.

L All source code used is either included or referenced by a commit key as provided by
the source code management system git which is used in the Linux kernel community;
see www.kernel.org for further information on g¢it and Linux.



Related studies with BLAST. BLAST has been applied for the verification of
memory safety as well as locking properties before [3,13,16,14]. In [3], the use
of CCURED [21] in combination with BLAST for verifying memory safety of C
source code is explained. This is done by inserting additional runtime checks at
all places in the code where pointers are de-referenced. BLAST is then employed
to check whether the introduced code is reachable or can be removed again. The
approach focuses on ensuring that only valid pointers are de-referenced along
the execution of a program, which is taken to mean that pointers must not equal
NULL at any point at which they are de-referenced. However, invalid pointers in
C do not necessarily equal NULL in practise. In contrast to [3], we will interpret
pointer invalidity in a more general way and conduct our studies on real-world
examples rather than constructed examples.

A methodology for verifying and certifying systems code on a simple locking
problem is explained in [16], which deals with the spinlock interface provided by
the Linux kernel. Spinlocks ensure that a kernel process can spin on a CPU with-
out being preempted by another process. The framework studied in [16] is used
to prove that calls of spin_lock() and spin_unlock() in Linux device drivers
always alternate. In contrast to this work, our case studies will be more detailed
and thereby will be providing further insights into the usability of BLAST.

2 Programming Errors in OS Code

There is quite a long list of commonly found OS errors. While most of them
mainly affect a system’s safety, others have a security-related background. An
insightful study of OS errors has been published in [6]; see Table 1 for a summary
of its results. The study shows that the majority of programming errors in OS
code can be found in device drivers. Its authors highlight that most errors are
related to problems causing either deadlock conditions or driving the system into
undefined states by de-referencing invalid pointers.

Although memory safety problems have a direct impact on an OS’s reliability,
APT rules for OS kernels are usually described in an informal way. For example,
in the Linux device driver handbook [8, p. 61] it is stated that one "should never
pass anything to kfree that was not obtained from kmalloc" since, otherwise, the
system may behave in an undefined way. The functions kmalloc () and kfree()
are kernel-space functions which are used to dynamically allocate and de-allocate
memory, respectively. Another common example are buffer overrun errors, where
data is written beyond the size of an allocated area of memory, thus overwriting
unrelated data.

Correct locking of resources is another major issue causing problems in OS
code. As shown in [6], deficiencies resulting in deadlocks in the Linux and BSD
kernels make up a large amount of the overall number of errors found. In the
documentation explaining the API of the Linux kernel, quite strict rules about
the proper use of functions to lock various resources are stated. For example, in
[8, p. 121], one of the most basic rules is given as follows: "Neither semaphores
nor spinlocks allow a lock holder to acquire the lock a second time; should



Table 1. Results of an empirical study of OS errors [6]

[% of Bugs|Rule checked

63.1% Bugs related to memory safety
38.1%|Check potentially NULL pointers returned from routines.

9.9%|Do not allocate large stack variables (> 1K) on the fixed-size
kernel stack.
6.7%|Do not make inconsistent assumptions about whether a pointer is
NULL.
5.3%|Always check bounds of array indices and loop bounds derived from
user data.
1.7%|Do not use freed memory.
1.1%|Do not leak memory by updating pointers with potentially NULL
realloc return values.

0.3%|Allocate enough memory to hold the type for which you are allocating.
33.7% Bugs related to locking behaviour
28.6%|To avoid deadlock, do not call blocking functions with interrupts
disabled or a spinlock held.
2.6%|Restore disabled interrupts.
2.5%|Release acquired locks; do not double-acquire locks.
3.1% Miscellaneous bugs
2.4%|Do not use floating point in the kernel.
0.7%|Do not de-reference user pointers.

you attempt to do so, things simply hang." The rational for this lies in the
functionality provided by spinlocks: a kernel thread holding a lock is spinning on
one CPU and cannot be preempted until the lock is released. Another important
rule is that any code holding a spinlock cannot relinquish the processor for
anything except for serving interrupts; especially, the thread must never sleep
because the lock might never be released in this case [8, p. 118].

3 Checking Memory Safety

This section focuses on using BLAST for checking usage rules related to mem-
ory safety, for which we have analysed several errors in different device drivers.
The examples studied by us include use-after-free errors in the kernel’s SCSI?
and InfiniBand? subsystems. The former is the small computer system interface
standard for attaching peripheral devices to computers, while the latter is an
industry standard designed to connect processor nodes and 1/0O nodes to form
a system area network. In each of these examples, an invalid pointer that is not
NULL is de-referenced, which causes the system to behave in an undefined way.
This type of bug is not covered by the work on memory safety of Beyer et al. in
[3] and cannot easily be detected by runtime checks.

2 Commit 2d6eac6c4fdaab9656d66c80754d267be233cc3E.
3 Commit d0743a5b7b837334cb414b773529d51de3de0471.



The example we will study here in detail is a use-after-free error spotted by
the Coverity source code analyser (www.coverity.com) in the 120 subsystem
of the Linux kernel (cf. Sec. 3.1). To check for this bug in BLAST we first spec-
ify a temporal safety specification in the BLAST specification language. Taking
this specification, BLAST is supposed to automatically generate an instrumented
version of the C source code for analysis (cf. Sec. 3.2). However, due to an appar-
ent bug in BLAST, this step fails for our example, and we are therefore forced to
manually instrument our code by inserting ERROR labels at appropriate positions
(cf. Sec. 3.3). However, it will turn out that BLAST does not track important
operations on pointers, which is not mentioned in BLAST’s user manual and
without which our example cannot be checked (cf. Sec. 3.4).

3.1 The I20 Use-After-Free Error

The 120 subsystem bug of interest to us resided in lines 423-425 of the source
code file drivers/message/i20/pci.c. The listing in Fig. 1 is an abbreviated
version of the file pci.c before the bug was fixed. One can see that function
i20_iop_alloc() is called at line 330 of the code extract. This function is
defined in drivers/message/i20/iop.c and basically allocates memory for an
i20_controller structure using kmalloc (). At the end of the listing, this mem-
ory is freed by i20_iop_free(c). The bug in this piece of code arises from the
call of put_device() in line 425, since its parameter c->device.parent causes
an already freed pointer to be de-referenced. The bug has been fixed in commit
d2b0e84d195a341clccbbdbec2098ee23bclfe9d, by simply swapping lines 424
and 425 in the source file.

drivers/message/i2o0/pci.c: 330 ¢ = i2o_iop_alloc();
300 static int __devinit
i20_pci_probe( 423  free_controller:
struct pci_dev *pdev, 424 i20_iop_free(c);
301 const struct pci_device_id 425 put_device(
*id) c->device.parent);
302 {
303 struct i2o_controller *c; 432 }

Fig. 1. Extract of drivers/message/i20/pci.c.

This bug offers various different ways to utilise BLAST. A generic temporal
safety property for identifying bugs like this would state that any pointer that
has been an argument to kfree() is never used again unless it has been re-
allocated. A probably easier way would be to check whether the pointer c in
120_pci_probe() is never used again after i2o_iop_free() has been called
with c as its argument. Checking the first, more generic property would require
us to put function definitions from other source files into pci.c, since BLAST
considers only functions that are available in its input file. Therefore, we focus
on verifying the latter property.



Checking for violations even of the latter, more restricted property will lead
to a serious problem. A close look at the struct i2o0_controller and its initiali-
sation in the function i20_iop_alloc() reveals that i20_controller contains a
function pointer which can be used as a "destructor". As is explained in BLAST’s
user manual, the "current release does not support function pointers"; they are
ignored completely. Further, the manual states that "correctness of the analy-
sis is then modulo the assumption that function pointer calls are irrelevant to
the property being checked." This assumption is however not always satisfied in
practise, as we will see later in our example.

3.2 Verification With a Temporal Safety Specification

Ignoring the function pointer limitation, we developed the temporal safety spec-
ification presented in Fig. 2. The specification language used by BLAST is easy
to understand and allows the assignment of status variables and events. In our
specification we use a global status variable allocstatus_c to cover the possible
states of the struct ¢ of our example, which can be set to 0 meaning "not allo-
cated" and 1 meaning "allocated". Furthermore, we define three events, one for
each of the functions i20_iop_alloc(), i20_iop_free() and put_device().
All functions have special preconditions and calling them may modify the status
of c. The special token $7 matches anything. Intuitively, the specification given
in Fig. 2 states that i20_iop_alloc() and i2o0_iop_free() must be called
alternately, and put_device() must only be called when ¢ has not yet been
freed. Note that this temporal safety specification does not cover the usage rule
for i20_iop_free() and put_device() in general. We are using one status
variable to guard calls of i20_iop_free() and put_device() regardless of its
arguments. Hence, the specification will work only as long as there is only one
pointer to an i20_controller structure involved.

global int allocstatus_c = O; event
{
event pattern { i2o0_iop_free($?7); }
{ guard { allocstatus_c == 1 }
pattern { $? = i20_iop_alloc(); } action { allocstatus_c = 0; }
guard { allocstatus_c == 0 } }
action { allocstatus_c = 1; }
} event
{
pattern { put_device($7); }
guard { allocstatus_c == 1 }
}

Fig. 2. A temporal safety specification for pci.c.

Using the specification of Fig. 2, BLAST should instrument a given C input
file by adding a global status variable and error labels for all violations of the



preconditions. The instrumentation is done by the program spec.opt which is
part of the BLAST distribution. For our example taken from the Linux kernel,
we first obtained the command used by the kernel’s build system to compile
pci.c with gcc. We appended the option -E to force the compilation to stop
after preprocessing, resulting in a C source file containing all required parts of
the kernel headers. This step is necessary since BLAST cannot know of all the
additional definitions and include paths used to compile the file. Unfortunately,
it expands pci.c from 484 lines of code to approximately 16k lines, making it
difficult to find syntactical problems which BLAST cannot deal with. Despite
spending a lot of effort in trying to use spec.opt, we never managed to get this
work. The program mostly failed with unspecific errors such as Fatal error:
exception Failure("Function declaration not found"). Finding such an
error in a huge source without having a line number or other hint is almost
impossible, especially since gcc compiles the file without any warning. We con-
structed several simplifications of the preprocessed file in order to trace the
limitations of spec.opt, but did not get a clear indication of what the source
is. We suspect it might be a problem with parsing complex data structures and
inline assembly imported from the Linux headers.

Given the bug in BLAST and in order to demonstrate that our specification
indeed covers the programming error in pci.c, we developed a rather abstract
version of pci.c which is shown in Fig. 3. Using this version and the specification
of Fig. 2, we were able to obtain an instrumented version of our source code
without encountering the bug in spec.opt. Running BLAST on the instrumented
version then produced the following output:

$ spec.opt test2.spc test2.c

[...]
$ pblast.opt instrumented.c
[...]

Error found! The system is unsafe :-(

In summary, the example studied here shows that the specification used in
this section is sufficient to find the bug. However, the approach required by
BLAST has several disadvantages. Firstly, it is not automatic at all. Although we
ended up with only a few lines of code, it took quite a lot of time to produce this
code by hand and to figure out what parts of the original pci.c are accepted
by BLAST. Secondly, the methodology only works if the bug is known before-
hand, hence we did not learn anything new about unwanted behaviour of this
driver’s code. We needed to simplify the code to an extent where the relation to
the original source code may be considered as questionable. The third problem
lies in the specification used. Since it treats the allocation and de-allocation as
something similar to a locking problem, we would not be able to use it in a
piece of code that refers to more than one dynamically allocated object. A more
generic specification must be able to deal with multiple pointers. According to
[2], such a generic specification should be possible to write by applying a few
minor modifications such as defining a "shadow" control state and replacing $?



test2.h:
#include <stdio.h>
#include <stdlib.h>

typedef struct device
{

int parent;
} device;

typedef struct i2o_controller
{

struct device device;
} i20_controller;

i20_controller *i2o0_iop_alloc
(void) ;

void i2o_iop_free
(i20_controller *c);

void put_device (int 1i);

test2.c:
#include "test2.h"

i2o0_controller *i2o_iop_alloc
(void)
{ i20_controller *c;
¢ = malloc(
sizeof (struct i2o_controller));
return (c); }

void i2o_iop_free
(i20_controller *c)
{ free (c); }

void put_device (int i) { }
int main (void)

{ i20o_controller *c;
c = i20_iop_alloc O);

i2o_iop_free (c);
put_device (c->device.parent);
return (0); 7

Fig. 3. Manual simplification of pci.c.

with $1. However, in practise the program generating the instrumented C source
file failed with obscure error messages.

3.3 Verification Without a Temporal Safety Specification

Since BLAST could not deal with verifying the original pci.c using an explicit
specification of the use-after-free property, we will now try and manually instru-
ment the source file so that our bug can be detected whenever an ERROR label is
reachable.

When conducting our instrumentation, the following modifications were ap-
plied by hand to pci.c and related files:

1. A variable unsigned int alloc_status was added to the definition of
struct i2o_controller in include/linux/i20.h.

2. The prototypes of i20_iop_alloc() and i20_iop_free() were removed
from drivers/message/i20/core.h.

3. The prototype of put_device () was deleted frominclude/linux/device.h.

4. C source code for the functions put_device(), i20_iop_free(), i20_iop_
release() and i20_iop_alloc() was copied from iop.c and drivers/base
/core.c into pci.c. The functions were modified such that the new field
alloc_status of a freshly allocated struct i2o_controller is set to 1 by
i20_iop_alloc(). i20_iop_free() no longer de-allocates the structure but
checks whether alloc_status equals 1 and sets it to 0; otherwise, it jumps



to the ERROR label. put_device() was modified to operate on the whole
struct i2o_controller and jumps to ERROR if alloc_status equals 0.

By feeding these changes into the model checker it is possible to detect duplicate
calls of i20_iop_free() on a pointer to a struct i2o_controller, as well as
calls of put_device() on a pointer that has already been freed. Even calls of
i20_iop_free() and put_device() on a pointer that has not been allocated
with i20_iop_alloc(), should result in an error report since nothing can be
said about the status of alloc_status in such a case.

After preprocessing the modified source files and running BLAST, we get the
output "Error found! The system is unsafe :-(". Even after we reduced
the content of i20_pci_probe() to something quite similar to the main () func-
tion shown in Fig. 3 and after putting the erroneous calls of put_device() and
i20_iop_free() in the right order, the system was still unsafe from BLAST’s
point of view. It took us some time to figure out that BLAST does not appear to
consider the content of pointers at all.

3.4 The Problem with BLAST and Pointers

We demonstrate this apparent shortcoming of BLAST regarding handling point-
ers by means of another simple example, for which BLAST fails in tracing values
behind pointers over function calls.

testb.c: 17
1 #include <stdlib.h> 18 int main (void)
2 19 {
3 typedef struct example_struct 20 example_struct pil;
4 { 21
5 void  *data; 22 init (&pl);
6 size_t size; 23 if (pl.data != NULL ||
7 )} example_struct; pl.size != 0)
8 24 { goto ERROR; }
9 25 else
10 void init (example_struct *p) 26 { goto END; };
11 { 27
12 p->data = NULL; 28 ERROR:
13 p->size = 0; 29 return (1);
14 30
15 return; 31 END:
16 } 32 return (0);
33 }

Fig. 4. An example for pointer passing.

As can be seen in the code listing of Fig 4, label ERROR can never be reached
in this program since the values of the components of our struct are explicitly
set by function init (). However, BLAST produces the following output:



$ gcc -E -o test5.i testb.c

$ pblast.opt testb5.i

[...]

Error found! The system is unsafe :-(
Error trace:

23 :: 23: Pred((pl@main).data!=0) :: 29

-1 :: -1: Skip :: 23

10 :: 10: Block(Return(0);) :: -1

12 :: 12: Block(* (p@init ).data = 0;* (p@init ).size = 0;) :: 10
22 :: 22: FunctionCall(init(&(pl@main))) :: -1

-1 :: -1: Skip :: 22

0 :: 0: Block(Return(0);) :: -1

0 :: O0: FunctionCall (__BLAST_initialize_test5.i()) :: -1

This counterexample shows that BLAST does not correlate the pointer p used in
init () and the struct pl used in main(), and assumes that the if statement
in line 23 evaluates to true. After adding a line "pl.data = NULL; pl.size =
0;" before the call of init (), BLAST claims the system to be safe, even if we
modify init () to reset the values so that they differ from NULL (and 0).

We were able to reproduce this behaviour in similar examples with pointers
to integer values and arrays. Switching on the BDD-based alias analysis im-
plemented in BLAST also did not solve the problem. The example shows that
BLAST does not only ignore function pointer calls as stated in its user manual,
but appears to assume that all pointer operations have no effect. This limitation
is not documented in the BLAST manual and renders BLAST almost unusable
for the verification of properties related to our understanding of memory safety.

3.5 Results

Our experiments on memory safety show that BLAST is able to find the pro-
gramming error discovered by the Coverity checker. Out of eight examples, we
were able to detect two problems after minor modifications to the source code,
and three after applying manual abstraction. Three further programming errors
could not be traced by using BLAST. Indeed, BLAST has some major restrictions.
The main problem is that BLAST ignores variables addressed by a pointer. As
stated in its user manual, BLAST assumes that only variables of the same type
are aliased. Since this is the case in our examples, we initially assumed that our
examples could be verified with BLAST, which is not the case. Moreover, we en-
countered bugs and deficiencies in spec.opt which forced us to apply substantial
and time consuming modifications to source code. Most of these modifications
and simplifications would require a developer to know about the error in ad-
vance. Thus, from a practitioner’s point of view, BLAST is not of much help in
finding unknown errors related to memory safety. However, it needs to be men-
tioned that BLAST was designed for verifying API usage rules of a different type
than those required for memory safety. More precisely, BLAST is intended for
proving the adherence of pre- and post-conditions denoted by integer values and
for ensuring API usage rules concerning the order in which certain functions are
called, regardless of pointer arguments, return values and the effects of aliasing.



4 Checking Locking Properties

Verifying correct locking behaviour is something used in almost all examples
provided by the developers of BLAST [2,16]. In [16], the authors checked parts
of the Linux kernel for correct locking behaviour while using the spinlock API
and stated that BLAST showed a decent level of performance during these tests.
Spinlocks provide a very simple but quite efficient locking mechanism to ensure,
e.g., that a kernel thread may not be preempted while serving interrupts. The
kernel thread acquires a certain lock by calling spin_lock(1l), where 1 is a
previously initialised pointer to a struct spinlock_t identifying the lock. A
lock is released by calling spin_unlock() with the same parameter. The kernel
provides a few additional functions that control the interrupt behaviour while the
lock is held. By their nature, spinlocks are intended for use on multiprocessor
systems where each resource may be associated with a special spinlock, and
where several kernel threads need to operate independently on these resources.
However, as far as concurrency is concerned, uniprocessor systems running a
preemptive kernel behave like multiprocessor systems.

global int lockstatus = 2; event
{
event pattern { spin_unlock($?7); }
{ guard { lockstatus == 1 }
pattern { spin_lock_init($7?); } action { lockstatus = 0; }
guard { lockstatus == 2 } }
action { lockstatus = 0; }
} event
{
event pattern { $7 = sleep($7); }
{ guard { lockstatus == 0 }
pattern { spin_lock($7?); } }
guard { lockstatus == 0 }
action { lockstatus = 1; }
}

Fig. 5. A temporal safety specification for spinlocks.

Finding examples for the use of spinlocks is not difficult since they are widely
deployed. While experimenting with BLAST and the spinlock functions on sev-
eral small components of the Linux kernel we experienced that it performs well
with functions using only one lock. We focused on functions taken from the USB
subsystem in drivers/usb/core. Due to further unspecific parse errors with the
program spec.opt we could not use a temporal safety specification directly on
the kernel source. However, in this case we were able to generate the instrumented
source file and to verify properties by separating the functions under considera-
tion from the remaining driver source and by providing simplified header files.



In Fig. 5 we provide our basic temporal safety specification for verifying
locking behaviour. Variable lockstatus encodes the possible states of a spinlock;
the initial value 2 represents the state in which the lock has not been initialised,
while 1 and 0 denote that the lock is held or has been released, respectively. The
pattern within the specification varies for the different spinlock functions used
within the driver source under consideration, and the specification can easily be
extended to cover forbidden functions that may sleep. An example for a function
sleep() is provided in the specification of Fig. 5.

Difficulties arise with functions that acquire more than one lock. Since all
spinlock functions use a pointer to a struct spinlock_t in order to identify a
certain lock, and since the values behind pointers are not sufficiently tracked in
BLAST, we were forced to rewrite parts of the driver’s source and the kernel’s
spinlock interface. Instead of the pointers to spinlock_t structs we utilise global
integer variables representing the state of a certain lock. We have used this
methodology to verify an example of a recently fixed deadlock? in the Linux
kernel’s SCSI subsystem. In Fig. 6 we provide an extract of one of the functions
modified in the fix. We see that the spinlocks in this example are integrated in
more complex data structures referenced via pointers. Even worse, this function
calls a function pointer passed in the argument done in line 1581, which was
the source of the deadlock before the bug was fixed. To verify this special case,
removing the function pointer and providing a dummy function done () with a
precondition assuring that the lock on shost->host_lock is not held is needed.
However, we were able to verify both the deadlock condition before the fix had
been applied, as well as deadlock freedom for the fixed version of the source.

1664 int ata_scsi_queuecmd(struct [1571 ap = (struct ata_port *)
scsi_cmnd *cmd, void &shost->hostdatal[0];
(*done) (struct scsi_cmnd *)) |1573 spin_unlock(shost->host_lock);
1565 { 1574 spin_lock(&ap->host_set->lock);
1666 struct ata_port *ap;
1567 struct ata_device *dev; 1581 done(cmd) ;
1568 struct scsi_device
*scsidev = cmd->device; 1597 spin_unlock(&ap->host_set->lock);
1669 struct Scsi_Host 1598 spin_lock(shost->host_lock);
*shost = scsidev->host; 1600 }

Fig. 6. Extract of drivers/scsi/libata-scsi.c.

During our experiments we analysed several other examples of deadlock con-
ditions. The more interesting examples are the spinlock problem explained above,
and another one in the SCSI subsystem,® as well as a bug in a IEEE1394 driver®.
We were able to detect the locking problems in all of these examples and proved
the fixed source files to be free of these bugs.

4 Commit d7283d61302798c0c57118e53d7732bec94£8d42
5 Commit fe2el17a405a58ec8a7138feedebe101858b636e0
6 Commit 910573c7c4aced8fd5£45c334cc67862e3424d92.



Results. Out of eight examples for locking problems we were able to detect
only five. However, when comparing our results with the conclusions of the pre-
vious section, BLAST worked much better for the locking properties because it
required fewer modifications to the source code. From a practitioner’s point of
view, BLAST performed acceptable as long as only one lock was involved. After
considerable efforts in simplifying the spinlock API — mainly removing the use
of pointers and manually adding error labels to the spinlock functions — we
also managed to deal with multiple locks. However, we consider it as fairly dif-
ficult to preserve the behaviour of functions that may sleep and therefore must
not be called under a spinlock. Even for large portions of source code, BLAST
returned its results within a few seconds or minutes, on a PC equipped with
an AMD Athlon 64 processor running at 2200 MHz and 1 GB of RAM. Hence,
BLAST’s internal slicing and abstraction techniques work very well.

We have to point out that the code listing in Fig. 6 represents one of the easily
understandable programming errors. Many problems in kernel source code are
more subtle. For example, calling functions that may sleep is something that
needs to be avoided. However, if a driver calls a function not available in source
code in the same file as the driver under consideration, BLAST will only be able
to detect the problem if there is an event explicitly defined for this function.

5 Issues with BLAST

This section highlights various shortcomings of the BLAST toolkit which we
experienced during our studies. We also present ideas on how BLAST could be
improved in order to be more useful for OS software verification.

Lack of documentation. Many problems while experimenting with BLAST
were caused by the lack of consistent documentation. For example, a significant
amount of time could have been saved in our experiments with memory safety,
if the BLAST manual would state that almost all pointer operations are ignored.
An in-depth discussion of the features and limitations of the alias analysis im-
plemented in BLAST would also be very helpful to have.

Non-support of pointers. The fact that BLAST does not properly support the
use of pointers, in the sense of Sec. 3.4, must be considered as a major restriction,
and made our experiments with the spinlock API rather difficult. The restriction
forces one to carry out substantial and time consuming modifications to source
code. Furthermore, it raises the question whether all important predicates of a
given program can be preserved in a manual step of simplification. In some of
our experiments we simply replaced the pointers used by the spinlock functions
with integers representing the state of the lock. This is obviously a pragmatic
approach which does not reflect all possible behaviour of pointer programs. How-
ever, it turned out that it is expressive enough to cover the usage rules of the
spinlock API. As such modifications could be introduced into the source code
automatically, we consider them as an interesting extension for BLAST.



The missing support of function pointers has already been mentioned in
Sec. 3. It is true that function pointers are often used in both application space
and OS development. In most cases their effect on the program execution can
only be determined at run-time, not statically at compile-time. Therefore, we
assume that simply skipping all calls of function pointers is acceptable for now.

Usability. There are several issues regarding BLAST’s usability which are prob-
ably easy to fix, but right now they complicate the work with this tool. Basically,
if a piece of C source is accepted by an ANSI C compiler, it should be accepted
by BLAST rather than raising uninformative error messages.

A nice improvement would be to provide wrapper scripts that automate pre-
processing and verification in a way that BLAST can be used with the same
arguments as the compiler. It could be even more useful if functions that are
of interest but from other parts of a given source tree, would be copied in au-
tomatically. Since we obviously do not want to analyse the whole kernel source
in a single file, this should be integrated into BLAST’s abstraction/model check-
ing/refinement loop.

6 Related Work

Much work on techniques and tools for automatically finding bugs in software
systems has been published in recent years.

Runtime analysis. A popular runtime analysis tool which targets memory
safety problems is Purify (www-306.ibm.com/software/awdtools/purify/). It
mainly focuses on detecting and preventing memory corruption and memory
leakage. However, Purify and other such tools, including Electric Fence (perens.
com/FreeSoftware/ElectricFence/) and Valgrind (valgrind.org), are meant
for testing purposes and thereby only cover the set of program runs specified by
the underlying test cases. An exhaustive search of a programs state space, as is
done in model checking, is out of the scope of these tools.

Static analysis and abstract interpretation. Static analysis is another pow-
erful technique for inspecting source code for bugs. Indeed, most of the mem-
ory safety problems within the examples of this paper had been detected ear-
lier via an approach based on system-specific compiler extensions, known as
meta-level compilation [11]. This approach is implemented in the tool Coverity
(www.coverity.com) and was used in [6]. A further recent attempt to find bugs
in OS code is based on abstract interpretation [10] and presented in [4]. The au-
thors checked about 700k lines of code taken from recent versions of the Linux
kernel for correct locking behaviour. The paper focuses on the kernel’s spinlock
interface and problems related to sleep under a spinlock. Several new bugs in the
Linux kernel were found during the experiments. However, the authors suggest
that their approach could be improved by adopting model checking techniques.
An overview of the advantages and disadvantages of static analysis versus model
checking can be found in [12].



Case studies with BLAST. We have already referred to some such case studies
in the introduction. Two project reports of graduate students give further de-
tails on BLAST’s practical use. In [20], Mong applies BLAST to a doubly linked
list implementation with dynamic allocation of its elements and verifies correct
allocation and de-allocation. The paper explains that BLAST was not powerful
enough to keep track of the state of the list, i.e., the number of its elements.
Jie and Shivkumar report in [18] on their experience in applying BLAST to a
user level implementation of a virtual file system. They focus on verifying cor-
rect locking behaviour for data structures of the implementation and were able
to successfully verify several test cases and to find one new error. However, in
the majority of test cases BLAST failed due to documented limitations, e.g., by
not being able to deal with function pointers, or terminated with obscure error
messages. Both studies were conducted in 2004 and thus based on version 1.0 of
BLAST. As shown in this paper, BLAST’s current version has similar limitations.

7 Conclusions and Future Work

We exposed BLAST to analysing 16 different OS code examples of program-
ming errors related to memory safety and locking behaviour. Details of the ex-
amples which we could not show here due to a lack of space, can be found
at www.cs.york.ac.uk/ muehlber/blast/. In our experience, BLAST is rather
difficult to apply by a practitioner during OS software development. This is be-
cause of (i) its limitations with respect to reasoning about pointers, (ii) several
issues regarding usability, including bugs in spec.opt, and (iii) a lack of consis-
tent documentation. Especially in the case of memory safety properties, massive
changes to the source code were necessary which essentially requires one to know
about a bug beforehand. However, it must be mentioned that BLAST was not
designed as a memory debugger. Indeed, BLAST performed considerably better
during our tests with locking properties; however, modifications on the source
code were still necessary in most cases.

BLAST performed nicely on the modified source code in our examples for
locking properties. Even large portions of C code — up to 10k lines with several
locks, status variables and a relatively complex program structure — were parsed
and model checked within a few minutes on a modern PC. Hence, the techniques
for abstraction and refinement as implemented in BLAST are quite able to deal
with most of the problems analysed in this paper. If its limitations are ironed
out, BLAST is likely to become a very usable and popular tool with OS software
developers in the future.

Regarding future work we propose that our case study is repeated once the
most problematic errors and restrictions in BLAST are fixed. An analysis allow-
ing one to draw quantitative conclusions concerning BLAST’s ability of finding
certain programming problems could then give results that are more interest-
ing to kernel developers. To this end, metrics for the evaluation of BLAST are
required, as is a more precise classification of the chosen examples.
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