

BootROM User Manual

V 2.60, 2012-05

Automot ive Power

 TLE983x BC-Step

Edition 2012-05
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2012.
All Rights Reserved.

Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values
stated herein and/or any information regarding the application of the device, Infineon Technologies hereby
disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-
infringement of intellectual property rights of any third party.

Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).

Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.

http://www.infineon.com

TLE983x BC- Step BootROM

3 V 2.60, 2012-05

Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™,
CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™,
EconoBRIDGE™, EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™,
eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™,
MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™,
POWERCODE™; PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™,
PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™,
SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™,
TriCore™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-
ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited,
UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of
Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble
Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium.
HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique
Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of
INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of
MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™,
NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of
MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO.,
MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of
OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red
Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc.
SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™
of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of
CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA.
UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design
Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND
RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.
Last Trademarks Update 2011-11-11

Table 0-1 Revision History
Version Date Comments Authors
Previous Version: V 2.12
V2.60 02 May 12 Initial Release IFX Technologies

TLE983x BC- Step BootROM
1 Introduction . 7
1.1 Purpose . 7
1.2 Scope . 7
1.3 Abbreviations and special terms . 7

2 Overview . 8
2.1 Firmware architecture . 8
2.2 Program structure . 9

3 Startup procedure . 11
3.1 Program structure . 11
3.1.1 Test and initialisation of IRAM and XRAM . 11
3.1.2 NVM initialisation routine . 12
3.1.3 NVM map-RAM initialisation . 12
3.1.4 Oscillator trimming and system clock selection 12
3.1.5 Analog module trimming . 13
3.1.6 User configuration data download . 13
3.1.7 User / BSL mode entry . 14
3.1.7.1 NAC definition . 14

4 LIN BSL mode . 17
4.1 LIN BSL features . 17
4.2 LIN BSL mode overview . 17
4.3 Phase I: Automatic synchronization to the host . 20
4.3.1 General description . 20
4.3.2 Calculation of BR_VALUE and PRE values . 21
4.4 Phase II: LIN BSL communication protocol and the working modes 23
4.4.1 Node Address for Diagnostic (NAD) . 23
4.4.2 Block type . 24
4.4.3 Checksum . 24
4.4.3.1 Classic / LIN checksum . 24
4.4.3.2 Programming checksum . 24
4.4.4 Mode selection . 25
4.4.4.1 Receiving the header block . 25
4.4.4.2 The activation of working mode 0, 2 and 8 . 26
4.4.4.3 The activation of working mode 1, 3 and 9 . 29
4.4.4.4 The activation of working mode 4 . 29
4.4.4.5 The activation of working mode 6 . 31
4.4.4.6 The activation of working mode A . 31
4.5 Phase III: Response protocol to the host . 34
4.5.1 Acknowledgement response . 34
4.5.2 Error response . 35
4.5.2.1 Block Type Error (FFH) . 35
4.5.2.2 Checksum Error (FEH) . 35
User Manual 4 V 2.60, 2012-05

TLE983x BC- Step BootROM
4.5.2.3 Protection Error (FDH) . 35
4.5.2.4 Response overview . 35
4.5.3 Mode A response . 37
4.6 Fast LIN BSL . 37
4.6.1 Entering Fast LIN BSL . 38
4.7 After-Reset conditions . 38
4.8 User defined parameters for LIN BSL . 40
4.8.1 Programming NAC and NAD . 41
4.9 WDT1 refreshing . 41

5 UART BSL mode . 42
5.1 Phase I: Automatic serial synchronization to the host 42
5.1.1 General description . 43
5.1.2 Calculation of BR_VALUE and PRE values . 43
5.2 Phase II: Serial communication protocol and the working modes 44
5.2.1 Serial communication protocol . 44
5.2.1.1 Transfer block structure . 45
5.2.1.2 Transfer block type . 45
5.2.1.3 Response codes to the host . 46
5.2.2 The selection of working modes . 48
5.2.2.1 Receiving the header block . 49
5.2.2.2 The activation of working mode 0 . 49
5.2.2.3 The activation of working mode 1 . 51
5.2.2.4 The activation of working mode 2 . 52
5.2.2.5 The activation of working mode 3 . 53
5.2.2.6 The activation of working mode 4 . 54
5.2.2.7 The activation of working mode 6 . 56
5.2.2.8 The activation of working mode A . 57
5.3 User defined parameters for UART mode . 61
5.3.1 Programming NAC . 62
5.4 WDT1 refreshing . 63

6 NVM . 64
6.1 NVM overview . 64
6.1.1 NVM organisation . 64
6.2 NVM configuration sectors organisation . 66
6.2.1 100 Time Programmable data . 66
6.2.2 One-Time Programmable (OTP) . 72
6.3 NVM user routines organisation . 72
6.3.1 Opening assembly buffer routine . 74
6.3.2 NVM programming routine . 75
6.3.3 NVM page erasing routine . 76
6.3.4 Abort NVM programming routine . 77
6.3.5 Read NVM status routine . 78
User Manual 5 V 2.60, 2012-05

TLE983x BC- Step BootROM
6.3.6 Read user calibration data . 78
6.3.7 Read NVM config status routine . 79
6.3.8 Read NVM ECC2 address routine . 79
6.3.9 Read NVM protection status routine . 80
6.3.10 Set NVM program protection (code) routine . 81
6.3.11 Clear NVM program protection (code) routine . 81
6.3.12 Set NVM read protection (code) routine . 82
6.3.13 Clear NVM read protection (code) routine . 82
6.3.14 Set NVM program protection (data) routine . 83
6.3.15 Clear NVM program protection (data) routine . 83
6.3.16 Set NVM read protection (data) routine . 84
6.3.17 Clear NVM read protection (data) routine . 84
6.3.18 Read OTP data routine . 85
6.3.19 Program OTP routine . 86
6.3.20 LIN autobaud routine . 87
6.3.21 UART autobaud routine . 87
6.3.22 User XRAM download routine . 88
6.3.23 Read 100 Time Programmable parameter data routine 88
6.3.24 Program 100 Time Programmable routine . 89
6.3.25 Sector Erasing Routine . 89
6.3.26 User clock setting routine . 90
6.3.27 NVMCLKFAC setting routine . 90
6.3.28 XRAM MBIST starting routine . 91
6.3.29 XRAM MBIST check routine . 91
6.4 NVM user applications . 92
6.4.1 NVM integrity handling (Service Algorithm) . 92
6.4.2 Supporting background NVM operation . 93
6.4.3 Emergency operation handling . 94
6.4.3.1 Emergency operation handling - Type 1 routines 94
6.4.3.2 Emergency operation handling - Type 2 routines 95
6.4.3.3 Emergency operation handling timing . 96
6.4.4 NVM user routines operation . 98
6.4.4.1 NVM user programming operation . 98
6.4.4.2 Tearing-safe Programming . 99
6.4.4.3 NVM user erase operation . 99
6.4.4.4 NVM user programming abort operation . 100
6.4.5 Protection mechanism on NVM . 100
User Manual 6 V 2.60, 2012-05

TLE983x BC- Step BootROM

Introduction

User Manual 7 V 2.60, 2012-05

1 Introduction
This document specifies the BootROM firmware behavior for the TLE983x family. The
specification is organised into the following major sections:
• BootROM Overview
• Startup Procedure
• LIN and UART BSL features
• NVM structure and user routines description.

1.1 Purpose
The document describes the functionalities of the BootROM firmware.

1.2 Scope
The BootROM firmware for the TLE983x family will provide the following features
• Startup procedure for stable operation of TLE983x chip
• BSL mode for users to download and run code from NVM and XRAM
• NVM organization and operation

1.3 Abbreviations and special terms
List of terms and abbreviations used throughout the document:
• BSL BootStrap Loader
• CS Configuration Sector
• DAP Device Access Port
• EOT End of Transmission
• EVR Embedded Voltage Regulator
• NAC No Activity Count
• NAD Node address for diagnostic
• NVM Non Volatile Memory
• OCDS On-Chip Debug Support
• PEM Program Execution Mode
• SA Service Algorithm
• WDT WatchDog Timer

TLE983x BC- Step BootROM

Overview
2 Overview
This specification includes the description of the operations and tasks defined to support
the general startup behaviour and various boot options

2.1 Firmware architecture
TLE983x on-chip BootROM consists of the startup procedure, the bootstrap loader via
LIN, the bootstrap loader via UART, NVM user routines, NVM integrity handling routines
and on-chip debug support.
The BootROM in TLE983x, is located at 0000H in Bank 0 during active memory map 1
and 9000H in Bank 2 at active memory map 0. Upon a hardware reset, microcontroller
will always be in the active memory map 1 (by default) and execute the BootROM code.
The beginning of the startup procedure changes the memory map setting and does a
long jump (ljmp) to the subroutine, MAIN. This instruction will then capture the absolute
address of subroutine MAIN, do a swap to active memory map 0 and execute the
remaining BootROM code at 9000H in Bank 2 in active memory map 0. Active memory
map 1 will be just a stepping stone to active memory map 0, all other instructions will be
executed in the active memory map 0.
The startup procedure also includes the EVR calibration, map-RAM initialisation, on-chip
oscillator configurations, NVM protection enabling and branching to the different modes.
The deciding factor will be on the latch values of TMS, P0.0 and P0.2 upon a reset.
During reset, these signals are latched at the rising edge of RESET pin.
There are generally 2 operation modes in the BootROM:
• User / BSL mode
• OCDS mode
For user mode, it will just execute the startup procedure and finally jumping to 0000H to
execute the user program.

Table 2-1 lists the boot options available in the TLE983x.
User Manual 8 V 2.60, 2012-05

TLE983x BC- Step BootROM

Overview
2.2 Program structure
The different sections of the BootROM provide the following basic functionalities.

Startup procedure
The startup procedure is the main control program in the BootROM. It is the first software
controlled operation in the BootROM that is executed after any reset.
The startup procedure will perform configuration sector verification, EVR calibration, on-
chip oscillator trimming, map-RAM initialisation, BootROM protection, NVM protection
and decode the pin-latched values of the TMS, P0.0 and P0.2 to determine which mode
it will jump to.

User mode
It is used to support user code execution at NVM address 0000H.

LIN BSL mode
It is used to support BSL via LIN like protocol. Downloading of code/data to XRAM and
NVM related programming is supported in this mode.

UART BSL mode
It is used to support BSL via UART protocol. Downloading of code/data to XRAM and
NVM related programming is supported in this mode.

Table 2-1 TLE983x Boot options
TMS1)/DAP1

1) When TMS is latched 1 (i.e. high) upon reset, DAP pins will be enabled by hardware. When TMS = 1, P0.0
must be 1. The hardware enable of DAP pins with these boot configuration must not be changed by port
control.

P0.0
/DAP0

P0.2 Mode / Comment

0 X X User mode / BSL mode 2)3)

2) On-chip OSC is selected as PLL input. System is running on LP_CLK until firmware switches to PLL output
before jumping to user code. Exception is with hardware reset where user settings are retained.

3) Boot in user mode or BSL mode depends on the NAC word in user memory (NVM).

1 0 X Device test mode4)

4) Power up with special internal settings. At completion, device runs in endless loop. No flash code execution
is performed.

1 1 0 OCDS mode with DAP port
1 1 1 Device test mode4)
User Manual 9 V 2.60, 2012-05

TLE983x BC- Step BootROM

Overview
OCDS mode
To support the OCDS, a portion of the BootROM is used to store the OCDS initialization,
and a Monitor program which will interact with the external debugger. By default, through
the OCDS mode, the DAP interface is enabled.
User Manual 10 V 2.60, 2012-05

TLE983x BC- Step BootROM
Startup procedure
3 Startup procedure
This chapter describes the BootROM startup procedure in TLE983x.
The startup procedure is the first software-controlled operation in the BootROM that is
automatically started after every reset. Certain operations are skipped depending on the
type of reset and the error which might occur. Refer to Section 3.1 for further details.

3.1 Program structure
First task executed by the startup firmware is switching to active memory map 0.
Afterwards, the type of reset is checked. For power-on reset or brown-out reset or wake-
up reset from sleep mode, XRAM and IRAM memory tests and initialization are started
while they are skipped for the other resets. Anyhow, in the startup code monitor IRAM is
used to avoid destroying the user IRAM content.
After that, depending on the type of reset, the firmware will do NVM protection, NVM
map-RAM initialisation, on-chip oscillator trimming, PLL setting and analog module
trimming. It will decode the pin-latched values of the TMS, P0.0 and P0.2 to determine
which mode it will jump to.
If bootup mode is OCDS mode, the WDT1 is disabled. For entry to user mode, the WDT1
remains active. Next, it will wait for NVM module to be ready.
For software, or watchdog reset, the following steps are skipped:
• NVM Map-RAM initialisation
• Setting of oscillator and PLL
• Download of analog modules trimming parameters from first 100TP page
• Download of user configuration data from OTP or 100TP page into the XRAM
• Switching system clock input to PLL output
• Clearing of NMI status and presupply warning status before exit to user mode or

OCDS mode

3.1.1 Test and initialisation of IRAM and XRAM
A functional test on IRAM (both user IRAM and monitor IRAM) and XRAM (optional) is
executed after power on reset, brown out reset or wake-up reset from sleep mode. The
test consists of a linear write/read algorithm using alternating data.
In case an error is detected the device is set to loop endlessly. Moreover, in case the test
is completed successfully, XRAM and IRAMs are initialised to zero with proper ECC
status. This is needed to prevent an ECC error during user code execution due to a write
operation to an un-initialised location (with invalid ECC code).
While IRAM tests are automatically started after every power on reset, brown out reset
or wake-up reset from sleep mode, the XRAM test is optional. It can be enabled and
controlled by proper programming of the bytes stored in first 100TP page as described
in the Table 6-4.
User Manual 11 V 2.60, 2012-05

TLE983x BC- Step BootROM
Startup procedure
In particular the relevant parameters are:
• CS_XRAM_MBIST_STARTUP_EN (offset=74H): When set to C3H it enables the

XRAM test after a power on reset, brown out reset or wake-up reset from sleep mode.
All other values will be ignored and XRAM test at startup will not be enabled.

• CS_XRAM_MBIST_LOW_BOUND_H: (offset=75H): It defines the high Byte of the
starting address of the XRAM range to be tested. This Byte is ignored if XRAM test is
not enabled.

• CS_XRAM_MBIST_LOW_BOUND_L: (offset=76H): It defines the low Byte of the
starting address of the XRAM range to be tested. This Byte is ignored if XRAM test is
not enabled.

• CS_XRAM_MBIST_HIGH_BOUND_H: (offset=77H): It defines the high Byte of the
ending address of the XRAM range to be tested. This Byte is ignored if XRAM test is
not enabled.

• CS_XRAM_MBIST_HIGH_BOUND_L: (offset=78H): It defines the low Byte of the
ending address of the XRAM range to be tested. This Byte is ignored if XRAM test is
not enabled.

Once the user IRAM test, IRAM initialisation and the optional XRAM test are done,
monitor IRAM is selected and the startup procedure proceeds to check on the NVM
status while XRAM initialisation is still running. The firmware will wait for XRAM
initialization to be completed before exiting to user code.

3.1.2 NVM initialisation routine
This routine will set the NVM protection according to the password in the configuration
sector.

3.1.3 NVM map-RAM initialisation
The map-RAM initialisation operation is triggered to restore the map-RAM contents. If
one or more errors are detected in the map-RAM initialisation, the service algorithm
routine is called to do the repair (refer to Section 6.4.1).

3.1.4 Oscillator trimming and system clock selection
After every power on reset, brown out reset or wake-up reset from sleep mode the
system runs with an internal low precision clock (nominally 20 MHz). During the start up
procedure, the internal oscillator and PLL are trimmed to a fixed standard value of
24 MHz. In order to reduce the boot time, the start up procedure continues to run with
the low precision clock while the PLL is locking. System clock will be switched to PLL
output before jumping to user or BSL mode in case of successful lock. Once user mode
is entered, user is allowed to set the final desired frequency by proper register setting or
by means of the dedicated user routine (refer to Section 6.3.26).
User Manual 12 V 2.60, 2012-05

TLE983x BC- Step BootROM
Startup procedure
3.1.5 Analog module trimming
In this routine, the trimming values of voltage regulators, LIN module, temperature
sensor, LS switch, HS switch and other analog modules are read from the configuration
sector and written into the respective external SFR. Protected Bits of the addressed
external SFRs will not be affected by this operation. For user mode or OCDS mode,
checksum on 100TP page is evaluated. In case of error, default values are used. Refer
to Table 6-4 for a list of user parameters in 100TP page.

3.1.6 User configuration data download
The firmware provides a routine to download data stored in user accessible configuration
sector pages (OTP and 100TP) during the startup flow. In particular, the routine copies
a specified number of Bytes from a selected CS page (starting always from first Byte in
the page) into the XRAM (starting at a given address). The routine is by default disabled
and can be enabled and controlled by proper programming of the Bytes stored in first
100TP page (refer to Figure 6-1) as described in the Table 6-4. This routine is anyhow
not performed after a software or watchdog reset.
Relevant parameters for routine control are:
• CS_USER_CAL_STARTUP_EN (offset=79H): When set to C3H it enables the user

data download from an OTP or 100TP page into the XRAM during startup flow. All
other values will be ignored and the routine will not be executed at startup.

• CS_USER_CAL_XADDH: (offset=7AH): It defines the high Byte of the XRAM starting
address where to copy data downloaded from CS. This Byte is ignored if the routine
is not enabled.

• CS_USER_CAL_XADDL: (offset=7BH): It defines the low Byte of the XRAM starting
address where to copy data downloaded from CS. This Byte is ignored if the routine
is not enabled.

• CS_USER_CAL_CS_PAGE: (offset=7CH): It defines the CS page where data has to
be downloaded from (refer to Figure 6-1). This Byte is ignored if the routine is not
enabled.

• CS_USER_CAL_NUM: (offset=7DH): It defines the number of Bytes to be
downloaded starting from the first Byte of the selected CS page. This Byte is ignored
if the routine is not enabled.

The routine has been developed to support downloading of the ADC1 calibration
parameters stored at the beginning of the first 100TP page (see Table 6-4) into the
XRAM for an easy access but can be more generally used for all other CS user
parameters. If the routine is enabled, firmware will wait for XRAM initialization completion
before copying the data. Moreover, independent of startup setting, a similar routine is
provided as NVM user routine (refer to Section 6.3.6)
User Manual 13 V 2.60, 2012-05

TLE983x BC- Step BootROM
Startup procedure
3.1.7 User / BSL mode entry
Entry to user mode is determined by the No Activity Count (NAC) value which is defined
in the user code.
If NVM double Bit error occurs when reading the NAC value, the system goes into
endless loop.
Before exiting to user mode, the system clock frequency is switched to PLL output
previously set by default to 24 MHz. In case PLL has not locked within 1 ms, the CPU
clock source LP_CLK (low precision clock running nominally at 20 MHz) will be used. All
SFRs are reset to default values and the user internal ram is selected.
Note: User mode is entered jumping to NVM starting address. This can happen directly

from startup routine, after a waiting time for possible BSL communication, or as a
result of BSL commands. In all these cases, jump to user mode will only occur
either (1) when NVM is not protected and NVM content at 0000H is not FFH or (2)
when NVM is protected. In all other cases, firmware will put the device in sleep
mode.

3.1.7.1 NAC definition
The NAC value specifies the duration of delay before jumping to user mode measured
from the reset release. The Bit 7 of the NAC will determine which BSL mode to enter. In
particular, the device will enter LIN BSL mode if the NAC Bit 7 is equal to zero and UART
BSL mode if it is equal to one.
After ending the start up procedure, the program will detect any activities on the LIN bus
/ UART for a period of time, determined by (((NAC & 7FH) -1H) * 5) ms reduced by the
time already spent to perform the start up procedure. When nothing is detected on the
LIN bus / UART and (((NAC & 7FH) -1H) * 5) ms is passed from reset going high, the
microcontroller will jump to user mode. Anyhow, if NAC is 1H or 81H, user mode is
entered immediately.
NAC value is restricted to CH as the first open WDT1 window is worst case 65 ms. The
firmware has to either refresh the WDT within the 65 ms or jump to user mode. If NAC is
not valid, BootROM code will switch off the WDT and wait for a LIN frame indefinitely.
Table 3-1 gives an overview of the action of the microcontroller with respect to No
Activity Count (NAC) values
Note: Timer 0 is initialized to have 5 ms overflow and is used to create the delay.
User Manual 14 V 2.60, 2012-05

TLE983x BC- Step BootROM
Startup procedure
The NAC value is stored, together with the NAD value, in the last 4 Bytes of the linearly
mapped NVM region. The Table 3-2 shows the addresses for the all the available family
devices. To ensure the parameter validity, the 2 parameters actual values and their
inverted values are checked. In case the stored value and inverted value are not
consistent (value + inverted value + 1 not equal to 0) the parameter is considered to be
invalid and the default value will be used.

Table 3-1 Type of action w.r.t. No Activity Count (NAC) values
NAC Value Action
01H, 81H 0 ms delay. Jump to user mode immediately
02H, 82H 5 ms delay before jumping to user mode1)

1) If a LIN frame/UART frame is received within the delay period, the following actions occur; (1) the remaining
delay is ignored, (2) it will not enter user mode anymore (3) it will process the LIN / UART frame accordingly

03H, 83H 10 ms delay before jumping to user mode 1)

04H, 84H 15 ms delay before jumping to user mode 1)

05H, 85H 20 ms delay before jumping to user mode 1)

06H, 86H 25 ms delay before jumping to user mode 1)

07H, 87H 30 ms delay before jumping to user mode 1)

08H, 88H 35 ms delay before jumping to user mode 1)

09H, 89H 40 ms delay before jumping to user mode1)
0AH, 8AH 45 ms delay before jumping to user mode1)
0BH, 8BH 50 ms delay before jumping to user mode1)
0CH, 8CH 55 ms delay before jumping to user mode1)
0DH - 7FH, 00H, Invalid Wait forever for the first LIN frame
8DH - FFH, 80H Wait forever for the first UART frame
User Manual 15 V 2.60, 2012-05

TLE983x BC- Step BootROM
Startup procedure
Table 3-2 NAC and NAD parameters details
Address User Defined Value Criteria / Range Default
YFFCH

1)

1) Y is equal to 4, 7, A or E for the 24, 36, 48 or 64 kByte respectively

NAC 01H - 0CH for LIN BSL
81H - 8CH for UART BSL

7FH

YFFDH
1) NAC Inverted NAC value

YFFEH
1) NAD (for LIN BSL

only)
01H - FFH (00H is reserved) 7FH

YFFFH
1) NAD (for LIN BSL

only)
Inverted NAD value -
User Manual 16 V 2.60, 2012-05

TLE983x BC- Step BootROM
LIN BSL mode
4 LIN BSL mode
LIN BSL is a LIN like protocol based on LIN 2.0 but for security reason the checksum is
inverted for most of the supported modes. Standard LIN protocol can support a max.
baud rate of 20 kBaud. FastLIN BSL protocol is an enhanced feature implemented in
TLE983x device. This is introduced to support baud rates of 20 kBaud to 57.6 kBaud and
115.2 kBaud via a single-wire UART using UART BSL protocol (See Section 4.6).

4.1 LIN BSL features
Features that are implemented include:
1. Re-synchronization to the transfer speed (baud rate) of the communication partner

upon receiving every frame
2. Using Diagnostic Frame (Master Request and Slave Response)
3. Usage of user values (NAD and NAC) stored in uppermost linearly mapped NVM
4. Non standard LIN checksum (Programming checksum, see Section 4.4.3.2)
5. Fast LIN BSL using UART protocol on single-wire UART (LIN)

4.2 LIN BSL mode overview
The LIN BSL mode consists of three functional phases described below:
• Phase I: To establish a connection with every frame (Master Request or Slave

Response frame) received by automatically synchronizing to the transfer speed (baud
rate) of the communication partner (host).

• Phase II: To execute the host specified command. In order to execute the commands,
host needs to send a Master Request Header first, followed by a Command frame.
The selected mode information is embedded in the Command frame.

• The possible modes are:
– Mode 0 (00H): Transfer a user program from the host to XRAM1)

– Mode 1 (01H): Execute a user program in the XRAM2)

– Mode 2 (02H): Transfer a user program from the host to NVM1)

– Mode 3 (03H): Execute a user program in the NVM2)

– Mode 4 (04H): Erase NVM1)

– Mode 6 (06H): NVM Protection mode enabling/disabling Scheme2)

– Mode 8 (08H): Transfer a user program from the host to XRAM using classic LIN
checksum3)

– Mode 9 (09H): Execute a user program in the XRAM using classic LIN checksum4)

– Mode A (0AH): Get info (based on Option Byte)1)

1) The microcontroller returns to the beginning of Phase I/II and wait for the next command from the host
2) LIN BSL and serial communication are exited.
3) Similar to mode 0. mode 8 uses classic LIN checksum instead of Programming checksum.
4) Similar to mode 1. mode 9 uses classic LIN checksum instead of Programming checksum.
User Manual 17 V 2.60, 2012-05

TLE983x BC- Step BootROM
LIN BSL mode
LIN BSL supports Fast Programming through modes 0, 2 and 8 with the selection of Fast
Programming Option. Refer to Section 4.4.4.2 for more details.
• Phase III: To send microcontroller status to host. In order to receive the

microcontroller status, host needs to send a Slave Response Header first.
Re-synchronization and setup of baud rate (Phase I) are done at all times (before
Phases II and III). Thus, different baud rates can be supported. Phase II is entered when
its Master Request Header is received, otherwise Phase III is entered (Slave Response
Header). The Master Request Header has a Protected ID of 3CH while the Slave
Response Header has a Protected ID of 7DH. The Command and Response frames are
identified as Diagnostic LIN frame which has a standard 8 data Byte structure (instead
of 2 or 4).
Figure 4-1 shows the relationship between the PC host and the microcontroller for the
3 phases, while Figure 4-2 shows the Master Request Header, Slave Response
Header, Command and Response frames.

Figure 4-1 LIN mode - Phases I, II and III

Host TLE983x

Master Request Header

Command

Slave Response Header

Response

Phase I: Synchronize and
Setup Baud rate

Phase II: Selection of
Working Mode for valid
command

Phase III: Report its status to
the host

Phase I: Synchronize and
Setup baud rate
User Manual 18 V 2.60, 2012-05

TLE983x BC- Step BootROM
LIN BSL mode
Figure 4-2 LIN mode - Frames

For all modes’ entry, the Master Request Header is transmitted from host to
microcontroller, followed by the command, which is the header block. The Slave
Response Header is transmitted to check the status of the operation. For mode 0, 2 and
8, there is no need to send a Slave Response Header after every data block. The
microcontroller supports multiple data block transfers (up to 256 data blocks) without
sending a Slave Response Header, which saves overhead. As the commands are sent
one after another without waiting for any status indication, a certain delay is required as
shown in Figure 4-3 to ensure sufficient time is provided for the microcontroller to
execute the desired operations.

SYN Break
(At least 13

bit low)

SYN Char
55H

Protected ID
3CH

Host TLE983x

8 Data bytes for Command Checksum
(1 byte)

SYN Break
(At least 13

bit low)

SYN Char
55H

Protected ID
7DH

Master Request Header Command

Slave Response Header

8 Data bytes for Response Checksum
(1 byte)

Response
User Manual 19 V 2.60, 2012-05

TLE983x BC- Step BootROM
LIN BSL mode
Figure 4-3 Communication structure of the LIN BSL modes

4.3 Phase I: Automatic synchronization to the host
Upon entry to LIN mode, a connection is established. The transfer speed (baud rate) of
the device is automatically synchronized to the serial communication partner (host) in the
following steps:
STEP 1: Initialize LIN interface for reception and timer 2 for baud rate measurement
STEP 2: Wait for an incoming frame from host
STEP 3: Synchronize the baud rate to the host
STEP 4: Enter Phase II (for Master Request Frame) or Phase III (for Slave Response

Frame)
Note: Re-synchronization and setup of baud rate are always done for every Master

Request Header or Slave Response Header frame.

4.3.1 General description
The LIN baud rate detection feature provides the capability to detect the baud rate within
the LIN protocol using timer 2. Initialization consists of:
• Serial port of the microcontroller set to mode 1 (8-bit UART, variable baud rate) for

communication

Host TLE983x

Header Block* (Mode 0/2/8)

Data Block * / **

EOT Block*

HOST

Mode 0, 2, 8

Mode 1, 3, 4, 6, 9, A

TLE983x

Master Request Header

Slave Response Header

Data Block * / **

Header Block * (Mode 1/3/4/6/9/A)

Response Block* (Acknowledge)

Delay 1

Delay 1

Delay 2

Delay3

Delay is implemented to ensure that sufficient time is provided for the microcontroller to
execute the operations.
Delay1 is approximately 500 us (1 ms max).
Delay2 is approximately 500 us (1 ms max) for mode 0 and 8 while it is approximately 8
ms (15 ms max) for mode 2 (NVM programming time).
Delay3 is approximately 500 us (1 ms max) for mode 1, 3 and 9 and it is max 50 ms for
Mode 4, 6 and A.
**The number of Data Block to be sent is indicated at No. of Data Blocks field in the
Header Block
* All blocks follow LIN BSL protocol; 9 bytes of data, including a NAD and a checksum

Slave Response Header

Master Request Header

Response Block* (Acknowledge)

Master Request Header

Master Request Header

Master Request Header

Slave Response Heade r

Response Block* (Acknowledge)

Delay 1
User Manual 20 V 2.60, 2012-05

TLE983x BC- Step BootROM
LIN BSL mode
• baud rate range for detection, controlled by the field BGSEL of the BCON, set to
“5.5 to 166.7 kBaud”.

• Capture Timer 2 data register contents on negative transition at pin T2EX
• Timer 2 external events are enabled (EXF2 flag is set when a negative transition

occurs at pin T2EX)
• fT2=fPCLK / 8 (T2PRE=011B)
As shown in Figure 4-2, the LIN Header frame consists of the:
• synch Break (13 Bits time low)
• synch Byte (55H)
• Protected ID field
The Break is used to signal the beginning of a new frame and must be at least 13 Bits of
dominant value. When negative transition is detected at pin T2EX at the beginning of
Break, the Timer 2 External Start Enable Bit (T2MOD.T2RHEN) is set. This will
automatically start Timer 2 at the next negative transition of pin T2EX. Finally, the end of
synch Byte flag (LINST.EOFSYN) is polled. When this flag is set, Timer 2 is stopped. T2
Reload/Capture register (RC2H/L) is the time taken for 8 Bits. Then the LIN routine
calculates the actual baud rate, sets the PRE and BG values and activates baud Rate
Generator. The baud rate detection for LIN is shown in Figure 4-4

Figure 4-4 LIN autobaud rate detection

4.3.2 Calculation of BR_VALUE and PRE values
To set up auto baud rate detection, the BG and PRE values must be calculated. As there
are two unknown values, two formulas are therefore needed. Firstly, the correlation

00 01 02 03 04

Captured Value (8 bits)

Synch Break Synch Char (55H)

1st negative transition,
set T2RHEN bit

T2 automatically
starts

EOFSYN bit is set,
T2 is stopped

Last captured value of T2
upon negative transition

Start
Bit

Stop
Bit
User Manual 21 V 2.60, 2012-05

TLE983x BC- Step BootROM
LIN BSL mode
between the baud rate (baud) and the reload value BR_VALUE (stored in the registers
BGL and BGH) depends on the internal peripheral frequency (fPCLK):

[4.1]

The previous reported formula is valid in the hypothesis that the use of fractional divider
is not required.
Secondly, the relation between the baud rate (baud) and the captured value of Timer 2
(T2) depends on the T2 peripheral frequency (fT2) and the number of received Bits (Nb):

[4.2]

Combining Equation [4.1] and Equation [4.2] with Nb=8, fT2=fPCLK / 8 (T2PRE=011B)
results in the following:

[4.3]

By simplifying Equation [4.3], the following is obtained:

[4.4]

After setting BR_VALUE and PRE, the baud rate generator will then be enabled, and the
subsequent Command frame or Response frame will follow this baud rate.

115.2 kBaud for FAST LIN
To support FAST LIN with baud rate 115.2 kBaud, fractional divider needs to be enabled.
The detection of 115.2 kBaud is determined by the T2 timing. If T2H and T2L is less than
154H (i.e. baud rate roughly above 70 kBaud), baud rate will be set to 115.2 kBaud.
In such a case, the correlation between the baud rate, the reload value BR_VALUE, the
fractional divider setting and the internal peripheral frequency (fPCLK) is:

[4.5]

As a consequence, the settings for 115.2 kBaud are:

baud
fPCLK

16 PRE× BR_VALUE()×
---=

baud
fT2 Nb×

T2
--------------------=

fPCLK
16 PRE× BR_VALUE()×

fPCLK
8

--------------- 8×

T2
------------------------=

PRE BR_VALUE()× T2
16
-------=

baud
fPCLK

16 PRE× BR_VALUE FDSEL
32

-------------------+⎝ ⎠
⎛ ⎞×

--=
User Manual 22 V 2.60, 2012-05

TLE983x BC- Step BootROM
LIN BSL mode
• BR_VALUE = 13 (SFR BGL.BR_VALUE = 101B and SFR BGH = 1H)
• PRE (SFR BCON.BRPRE) = 000B
• Read FD_SEL value from configuration sector and store into SFR BGL. FD_SEL

4.4 Phase II: LIN BSL communication protocol and the working
modes

Once successful synchronization to the host is completed (with a Master Request
Header), the routine enters Phase II. Here, the host communicates to the microcontroller
the desired working mode.
A simple transfer protocol is defined for the communication between the host and
TLE983x. The protocol data is performed in information blocks. The information block
follows a specified block structure and termed transfer block. Each transfer block is
9 Bytes long. A transfer block has the following structure:

• NAD: Node Address for Diagnostic, specifies the address of the active slave node.
See Section 4.4.1.

• Block Type: This field determines the type of the message (See Section 4.4.2).
• Data Area: This is the data of the block. The length is fixed at 6 Bytes.
• Checksum: This checksum is calculated based on the NAD, Block Type and Data

Area. See Section 4.4.3.

4.4.1 Node Address for Diagnostic (NAD)
This field specifies the address of the active slave node. Only slave nodes have an
address. The NAD address range supported in TLE983x is listed in Table 4-1.

Note: LIN block with Broadcast NAD (7FH) is ignored if valid NAD value is programmed
in NVM linear area.

Table 4-1 NAD address range
NAD Value Description
00H Invalid Slave Address
7FH Default Address (NAD value is invalid or it is not programmed in NVM

linear area)
01H to 7EH
80H to FFH

Valid Slave Address

NAD
(1 byte)

Block Type
(1 byte)

Data Area
(6 bytes)

Checksum
(1 byte)
User Manual 23 V 2.60, 2012-05

TLE983x BC- Step BootROM
LIN BSL mode
Note: For NAD address and details refer to Table 3-2.

4.4.2 Block type
This field determines the types of transfer blocks. There are 3 transfer block types shown
in Table 4-2.

4.4.3 Checksum
Diagnostic LIN frame always uses classic checksum where checksum calculation is over
the data Bytes only. The Checksum is the last field of Command and Response LIN
frames. For TLE983x, there are 2 types of checksum implemented, Classic (LIN) and
Programming checksum. Both Programming and LIN Checksum are supported and are
indicated in the respective modes.

4.4.3.1 Classic / LIN checksum
The classic checksum is a standard LIN checksum used for communication with LIN 2.0
slaves. The classic checksum contains the inverted eight Bits sum with carry1) over all
data Bytes.

4.4.3.2 Programming checksum
The programming checksum, or Inverted Classic checksum is a non-LIN standard
checksum. This is implemented in TLE983x to allow other slaves (not in TLE983x BSL
mode) on the LIN bus to ignore this Programming frame. The inversion of the classic
checksum yields the programming checksum.

Table 4-2 Type of transfer block
Block Name Block Type Description
Header block 00H Special information is contained in the data area

of the block, which is used to select different
working modes.

Data block 01H This block is used in working modes 0, 2 and 8 to
transfer a portion of program code. The program
code is in the data area of the block.

End of Transmission
(EOT) block

02H This block is the last block in data transmission in
working modes 0, 2 and 8. The last program code
to be transferred is in the data area of the block.

1) the checksum is calculated summing all values (8-bit sum with carry) and subtracting 255 every time the sum
is greater or equal to 256 (which is not the same as modulo-255 or modulo-256).
User Manual 24 V 2.60, 2012-05

TLE983x BC- Step BootROM
LIN BSL mode
An example of the calculation of the Programming checksum is provided in Table 4-3.
For this example, data of 4AH, 55H, 93H and E5H is considered. The calculated
programming checksum is 19H. The classic checksum is an inversion of the
programming checksum value (i.e. E6H).

4.4.4 Mode selection
When Phase II is entered, TLE983x waits for the Command frame and the header block
from the host containing indication about the desired mode to be selected.

4.4.4.1 Receiving the header block
The header block is always the first transfer block to be sent by the host during each data
communication process. It contains the mode number and special information on the
related mode (referred to as “Mode Data”). The general structure of a header block is
shown below.

Description:
• NAD: Node Address for Diagnostic. See Section 4.4.1
• Block Type 00H: The Block Type, which marks the block as a header block
• Mode: The mode to be selected. The implemented modes are covered in Section 4.2
• Mode Data: Five Bytes of special information to activate corresponding mode.
• Checksum: The programming or LIN checksum of the header block.
Note: Mode 8 and mode 9 support LIN checksum, while mode 0 - 4, 6, and A support

Programming checksum.

4.4.4.2 The activation of working mode 0, 2 and 8
Mode 0, 2 and 8 are used to transfer a user program from host to microcontroller. Mode
0 and 8 allow XRAM transfers, while mode 2 allows NVM transfers.

Table 4-3 Programming checksum
Addition of data HEX Result CARRY Addition with CARRY
4AH 4AH 4AH 0 4AH

(4AH) + 55H 9FH 9FH 0 9FH

(9FH) + 93H 0132H 32H 1 33H

(33H) + E5H 0118H 18H 1 19H

Block Type
00H

(Header Block)
Mode

(1 byte)
Mode Data

(5 bytes)

Checksum
(1 byte)

Data Area
NAD

(1 byte)
User Manual 25 V 2.60, 2012-05

TLE983x BC- Step BootROM
LIN BSL mode
The header block has the following structure:

The header block

Mode Data Description:
Start Addr High, Low: 16-bit Start Address, which determines where to copy the
received program codes in the XRAM/NVM1).
No. of data blocks used: Total number of data blocks to be sent, maximum 256 (FFH)
for mode 0 and 8 and maximum 21 (15H) for mode 2. It is verified when EOT block is
received. If number does not match, microcontroller will send a Block Type Error. PC
host will then have to re-send the whole series of blocks (header, data and EOT blocks).
Not used: This Byte is not used and will be ignored in mode 0/2/8.
Fast_Prog: Indication Byte to enter Fast LIN BSL2)

• 01H: Enter Fast LIN BSL
• Other values: Ignored. Fast LIN BSL is not entered.
Note: The programming of NVM in mode 2 will be started after 128 Bytes or EOT are

received. All Bytes sent during the program operation will be lost.

When this Command frame (header block) is used for entering Fast LIN BSL, no other
Master Request Header and Command frames (for data block or EOT block) should be
sent. Instead, the microcontroller expects a Slave Response Header frame and sends a
Response frame to Acknowledge receiving correct header block to enter Fast LIN BSL
where UART BSL protocol is used. See Section 4.6
On successful receipt of the header block, the microcontroller enters mode 0/2/8,
whereby the program code is transmitted from the host to the microcontroller by data
block and EOT block, which are described below.

1) NVM address should be aligned to the Page address (low Byte of the start address equal to 00H or 80H). If the
data starts in a non-page address, PC host should fill up the beginning vacancies with 00H and provide the
start address of that page address.

2) In the case NVM is protected, entry to FastLIN BSL is not possible.

00H
(Header
Block)

Start
Addr
High

(1 byte)

Checksum
(1 byte)

Mode Data (5 bytes)
00H/02H/08H
(Mode 0/2/

8)
Fast_
Prog

(1 byte)

Not
Used

(1 byte)

Start
Addr
Low

(1 byte)

NAD
(1 byte)

No of Data
Blocks
Used

(1 byte)
User Manual 26 V 2.60, 2012-05

TLE983x BC- Step BootROM
LIN BSL mode
The data block

Data area Description:
Program Code: The program code has a fixed length of 6 Bytes per data block.

The EOT block

Data area Description:
Last_Codelength: This Byte indicates the length of the program code in this EOT block.
Program Code: The last program code (valid data) to be sent to the microcontroller.
Not used: The length is (6 - 1 - Last_Codelength). These Bytes are not used and they
can be set to any value.
Note:

1. NVM programming needs to be performed in multiples of page, 1 page is 128 Bytes.
Host is expected to introduce a delay of 15 ms after 128 Bytes of program code are
sent. Refer to example given below on mode 2 downloading.

2. To prevent external access, once the NVM is protected, modes 0, 2 and 8 are not
accessible.

01H
(Data Block

1 byte)

Checksum
(1 byte)

Data Area (6 bytes)

Program Code
(6 bytes)

NAD
(1 byte)

02H
(EOT Block

1 byte)

Checksum
(1 byte)

Data Area (6 bytes)

Program Code
(Last_Codelength

bytes)

NAD
(1 byte)

Last_Code
length

(1 byte)

Not Used
(6-1-Last_Codelength

bytes)
User Manual 27 V 2.60, 2012-05

TLE983x BC- Step BootROM
LIN BSL mode
Table 4-4 Example for 200 Bytes downloading using mode 0/8 and mode 2
Mode 0/8 - (XRAM download) Mode 2 - (NVM download)

Send Master Request Header Send Master Request Header
Send header block

• No of data blocks used = 33
• Start address (e.g. F000H)

Send header block
• No of data blocks used = 21
• Start address (e.g. 0100H)

Delay Delay
Send Slave Response Header Send Slave Response Header
Check for Acknowledge Check for Acknowledge
Send 33 times (Master Request Header +
data blocks)
(Delay after each data block required)

Send 21 times (Master Request Header +
data blocks)
(Delay after each data block required)

Send Master Request Header Send Master Request Header
Send EOT block
• Last_Codelength = 2

Send EOT Block
• Last_Codelength = 2

Delay Delay
Send Slave Response Header Send Slave Response Header

Check for Acknowledge Check for Acknowledge
Send Master Request Header
Send header block

• No of data blocks used = 12
• Start address (e.g. 0180H)

Delay
Send Slave Response Header
Check for Acknowledge
Send 12 times (Master Request Header +
data blocks)
(Delay after each data block required)
Send Master Request Header
Send EOT block

• Last_Codelength = 0
Delay
Send Slave Response Header
Check for Acknowledge

33 blocks * 6 Bytes + 2 Bytes = 200 Bytes
User Manual 28 V 2.60, 2012-05

TLE983x BC- Step BootROM
LIN BSL mode
4.4.4.3 The activation of working mode 1, 3 and 9
Mode 1, 3 and 9 are used to trigger execution of a user program by the microcontroller.
Mode 1 and 9 trigger execution of user program in XRAM at address F000H. Mode 3
triggers execution of user program in NVM at address 0000H.The header block for this
working mode has the following structure:

The header block

Mode Data Description:
Not used: The five Bytes are not used and will be ignored in mode 1/3/9.
For modes 1, 3 and 9, the header block is the only transfer block to be sent by the host
followed by a Slave Response Header. The microcontroller will send a response block
(Acknowledgement code, 55H), exit the LIN BSL and jump to the XRAM address at
F000H (mode 1 and mode 9) or jump to NVM address at 0000H (mode 3) respectively.
Note: For mode 3, jump to NVM will only occur either (1) when NVM is not protected and

NVM content at 0000H is not FFH; or (2) when NVM is protected. In all other cases,
firmware will put the device in sleep mode.

4.4.4.4 The activation of working mode 4
Mode 4 is used to erase the NVM. 3 different options are supported:
• Option 00H: Page Erase
• Option 40H: Sector Erase
• Option C0H: Mass Erase

The header block for Option = 00H has the following structure:

The header block for page erase (Option = 00H)

Mode Data Description:
Start Addr High, Low: 16-bit address of the NVM page to be erased.

00H
(Header Block)

Mode Data Checksum
(1 byte)

01H/03H/09H
(Mode 1/3/9) Not Used (5 bytes)

NAD
(1 byte)

00H
(Header
Block)

Checksum
(1 byte)

Mode Data (5 bytes)
04H

(Mode 4)
Option
= 00H

(1 byte)

Addr
Low
byte

(1 byte)

Not
Used

(1 byte)

Addr
High
byte

(1byte)

Not
Used

(1byte)

NAD
(1 byte)
User Manual 29 V 2.60, 2012-05

TLE983x BC- Step BootROM
LIN BSL mode
Not used: This Byte is not used and will be ignored in mode 4.
Option: set to 00H to enable page erase.
When the Option Byte is 00H, the NVM page selected by the address provided in the
Mode Data field is erased. The address should be aligned with the beginning of the
chosen page.

The header block for sector erase (Option = 40H)
The header block for Option = 40H has the following structure:

Mode Data Description:
Start Addr High, Low: 16-bit address of the NVM sector to be erased.
Not used: This Byte is not used and will be ignored in mode 4.
Option: set to 40H to enable sector erase.
When the Option Byte = 40H, the NVM sector selected by the address provided in the
Mode Data field is erased. The address should be aligned with the beginning of the
chosen sector.

The Header for mass erase (Option = C0H)
The header block for Option = C0H has the following structure:

Mode Data Description:
Not used: This Byte is not used and will be ignored in mode 4.
Option: set to C0H to enable mass erase.
When the Option Byte = C0H, mass erase on all the sectors in the NVM unit is performed.

Note: Not Used Bytes should be set to 0.

Note: When NVM is protected, mode 4 is not accessible and so NVM cannot be erased.

00H
(Header
Block)

Mode Data (5 bytes)
04H

(Mode 4)
Option
= 40H

(1 byte)

Not
Used

(1 byte)

Addr
High
byte

(1 byte)

Addr
Low
byte

(1 byte)

Not
Used

(1 byte)

Checksum
(1 byte)

NAD
(1 byte)

00H
(Header
Block)

Mode Data (5 bytes)
04H

(Mode 4)
Option
= C0H

(1 byte)

Not Used
(4 bytes)

Checksum
(1 byte)

NAD
(1 byte)
User Manual 30 V 2.60, 2012-05

TLE983x BC- Step BootROM
LIN BSL mode
4.4.4.5 The activation of working mode 6
Mode 6 is used to enable or disable the NVM protection mode (read and write protection
of the Linearly and Non-Linearly mapped sectors) via the given user-password. The
header block for this working mode has the following structure:

The header block

Mode Data Description

User-password: This Byte is given by user to enable or disable NVM protection mode.
Not used: The four Bytes are not used and will be ignored in mode 6.

In mode 6, the header block is the only transfer block to be sent by the host. If device is
unprotected, the provided user-password will be set as NVM_PASSWORD and
internally stored. No further commands will be accepted until a power up or hardware
reset. Afterwards, protection mode will be enabled.
However, if the NVM is already protected, the microcontroller will deactivate the
Protection and erase the NVM if the user-password Byte matches the stored
NVM_PASSWORD Byte. If MSB of the NVM_PASSWORD is 0, only NVM Linearly
mapped sectors are erased. If the Bit is 1, both NVM Linearly and Non-linearly mapped
regions are erased. No further commands will be accepted until a power up or hardware
reset. Afterwards, protection mode will be disabled.
In case NVM is protected and the given user-password does not match the stored
NVM_PASSWORD, no actions will be triggered and a Protection Error Byte will be
returned instead of Acknowledge.
Note:

1. Password value has to be different from 00H and FFH.
2. When disabling NVM protection, together with NVM, the NAC and NAD values are

erased too. As a result, after next reset, default NAD will be used and chip waits for
ever for the first BSL LIN frame.

4.4.4.6 The activation of working mode A
Mode A is used to get 4 Bytes Chip ID data, NVM page or CS page or mass NVM
checksum check info depending on the Option Byte value in the header block.
Different options are supported:

00H
(Header
Block)

Checksum
(1 byte)

Mode Data (5 bytes)
06H

(Mode 6) User-password
(1 byte)

Not Used
(4 bytes)

NAD
(1 byte)
User Manual 31 V 2.60, 2012-05

TLE983x BC- Step BootROM
LIN BSL mode
• Option 00H: Get 4 Bytes Chip ID
• Option 10H: NVM page checksum check
• Option 18H: Mass NVM checksum check
• Option 50H: Configuration sector page checksum check

The header block - Get 4 Bytes Chip ID (Option = 00H)

The header block for Option = 00H has the following structure:

Mode Data Description:
Not used: These Bytes are not used and will be ignored.
Option: set to 00H to enable get 4 Bytes Chip ID info.
When the Option Byte = 00H, the 4 Byte Chip ID Number will be returned (see
Chapter 4.5.3).

The header block - NVM page checksum check (Option = 10H)

The header block for Option = 10H has the following structure:

Mode Data Description:
Start Addr High, Low: Address of the NVM page for checksum check. (Address should
be page aligned).
Exp. CHKS High, Low: Expected checksum High/Low Byte.
Option: set to 10H to enable NVM page checksum check.

This option will trigger a checksum calculation (16 bits inverted XOR) over the whole
page pointed by the address given in the header block and the result will then be
compared with the expected checksum (provided as well by the user in the header

00H
(Header
Block)

Checksum
(1 byte)

Mode Data (5 bytes)
0AH

(Mode A)
Option
= 00H

(1 byte)

Not Used
(4 bytes)

NAD
(1 byte)

00H
(Header
Block)

Checksum
(1 byte)

Mode Data (5 bytes)
0AH

(Mode A)
Option
= 10H

(1 byte)

Start
Addr
Low

(1 byte)

Exp
CHKS
Low

(1 byte)

Start
Addr
High

(1 byte)

Exp
CHKS
High

(1 byte)

NAD
(1 byte)
User Manual 32 V 2.60, 2012-05

TLE983x BC- Step BootROM
LIN BSL mode
frame). The response frame will then return an Acknowledge followed by four data Bytes.
These Bytes are, in sequential order, pass/fail indication (00H if the calculated and
expected checksum match, 80H if they differ), calculated checksum High Byte,
calculated checksum Low Byte, and a final Byte equal to 00H.
The input address should always be aligned with a page. In case the provided address
is not a valid NVM address, the microcontroller will return a Block Type Error (FFH)
instead of an Acknowledge (55H) followed by no further Bytes.

The header block - Mass NVM checksum check (Option = 18H)

The header block for Option = 18H has the following structure:

Mode Data Description:
Not used: These Bytes are not used and will be ignored.
Exp. CHKS High, Low: Expected checksum High/Low Byte.
Option: set to 18H to enable Mass NVM checksum check.

Checksum (16 Bits inverted XOR) on the whole linearly and non-linearly mapped sectors
(configuration sector pages not included) is calculated and then compared with the
expected values (provided as well as an input). The response frame will then give back
a pass or fail indication plus the calculated checksum.

The header block - Configuration sector page checksum check (Option = 50H)

The header block for Option = 50H has the following structure:

Mode Data Description:

00H
(Header
Block)

Checksum
(1 byte)

Mode Data (5 bytes)
0AH

(Mode A)
Option
= 18H

(1 byte)

Not
Used

(1 byte)

Exp
CHKS
Low

(1 byte)

Not
Used

(1 byte)

Exp
CHKS
High

(1 byte)

NAD
(1 byte)

00H
(Header
Block)

Checksum
(1 byte)

Mode Data (5 bytes)
0AH

(Mode A)
Option
= 50H

(1 byte)

Not
Used

(1 byte)

Exp
CKSum

Low
(1 byte)

CS
Page

(1 byte)

Exp
CHKS
High

(1 byte)

NAD
(1 byte)
User Manual 33 V 2.60, 2012-05

TLE983x BC- Step BootROM
LIN BSL mode
CS Page: Selection of the CS Page to be checked (refer to Figure 6-1).
Not used: This Byte is not used and will be ignored.
Exp. CHKS High, Low: Expected checksum High/Low Byte.
Option: set to 50H to enable configuration sector page checksum check.

Checksum (16 Bits inverted XOR) on the selected configuration sector page is
calculated and then compared with the expected values (provided as well as an input).
The response frame will then give back a pass or fail indication plus the calculated
checksum. In case the provided CS address is not valid, the microcontroller will return a
Block Type Error (FFH) followed by no further Bytes.

For mode A, the header block is the only transfer block to be sent by the host followed
by a Slave Response Header. In case of valid header block, the microcontroller will send
a response block (Acknowledgement code, 55H) followed by the 4 Bytes data. The
response for mode A is described in Section 4.5.3.

4.5 Phase III: Response protocol to the host
The microcontroller status is sent to the host only when a Slave Response Header frame
is received. The microcontroller status is always sent in a transfer block of 9 Bytes.
A typical transfer block consists of four parts:

• NAD: Node Address for Diagnostic, specifies the address of the active slave node.
• Response: Response code indicating Acknowledge or Error status. See Table 4-7.
• Response Data: These 6 Bytes are generally not used and set to 00H. An exception

is mode A response which is described in detail in Section 4.5.3.
• Checksum: The checksum is calculated based on NAD, Response and Response

Data Bytes. All responses sent by microcontroller will adopt classic checksum. See
Section 4.4.3.1.

4.5.1 Acknowledgement response
The Acknowledge response code (55H) is sent by microcontroller to host to indicate that
a block has been successfully received.

Response
(1 byte)

Checksum
(1 byte)

Response Data
(6 bytes)

NAD
(1 byte)
User Manual 34 V 2.60, 2012-05

TLE983x BC- Step BootROM
LIN BSL mode
4.5.2 Error response
There are 3 error responses indicated by microcontroller.

4.5.2.1 Block Type Error (FFH)
This error can occur in the following conditions.
1. A Block Type other than the implemented ones was received. See Table 4-2.
2. An incorrect sequence of transfer blocks was received. For example, in mode 0

operation upon receiving a header block, a slave response request is expected.
However, if another header block is received, this will result in a Block Type Error.

4.5.2.2 Checksum Error (FEH)
This error occurs when the checksum comparison fails. Microcontroller will reject the
transfer block by sending back a Checksum Error code (FEH) to the host.

4.5.2.3 Protection Error (FDH)
This error occurs when selected NVM sectors, for programming or erasing, are
protected. As the selected NVM sectors are protected, no programming or erasing is
allowed. In this special error case, the LIN routine will abort current command and wait
for the next header block from the host again.

4.5.2.4 Response overview
Table 4-5 shows a tabulated summary of the possible responses the device may
transmit following the reception of a header, data or EOT block.

Table 4-5 Possible responses for various block types
 Mode Header block Data block EOT block
 0, 2, 8 Acknowledge, Block Type

Error, Checksum Error,
Protection Error

Acknowledge, Block
Type Error, Checksum
Error

Acknowledge, Block
Type Error,
Checksum Error

 1, 3, 9 Acknowledge, Block Type
Error, Checksum Error

 4, 6 Acknowledge, Block Type
Error, Checksum Error,
Protection Error

 A Acknowledge, Block Type
Error, Checksum Error
User Manual 35 V 2.60, 2012-05

TLE983x BC- Step BootROM
LIN BSL mode
The responses are defined in Table 4-6, which lists the possible reasons and/or
implications for error and suggests the possible corrective actions that the host can take
upon notification of the error.

Table 4-7 gives a summary of the response code to be sent back to the host by the
microcontroller.

Table 4-6 Definitions of responses
Response Value Description

Block
Type

BSL
Mode

Reasons / Implications Corrective
Action

Acknow-
ledge

55H Header 1, 3, 9 The requested operation will
be performed once the
response is sent.

 A The requested operation has
been performed and is
successful. 4 Byte data
transmission follows.

 6 The requested operation has
been performed and is
successful.

 EOT 0, 2, 4,
8

All other
combinations

Reception of the Block is
successful. Ready to receive
the next block.

Block
Type Error

FFH Header 2, 4 NVM start address out of
range.

Retransmit a
valid header
block.

All other
combinations

Either the block Type is
undefined or the flow is
invalid (see Figure 4-2).

Retransmit a
valid block

Checksum
Error

FEH All combinations There is a mismatch between
the calculated and the
received Checksum (see
Section 4.4.3).

Retransmit the
block

Protection
Error

FDH Header 0, 2, 4,
6, 8

Protection against external
access enabled, i.e.
NVM_PASSWORD is valid.

Disable
protection
User Manual 36 V 2.60, 2012-05

TLE983x BC- Step BootROM
LIN BSL mode
4.5.3 Mode A response
This response frame is only applicable for mode A. The response frame depends on the
option Byte value used.
Option Byte = 00H:

Option Byte = 10H, 18H, 50H:

Error indicator:
• 00H: the calculated checksum and the expected one (provided as an input in the

header frame) are equal.
• 80H: the calculated checksum and the expected one (provided as an input in the

header frame) differ.

4.6 Fast LIN BSL
Fast LIN BSL is an enhanced feature in TLE983x device, supporting higher baud rate up
to 57.6 kBaud or 115.2 kBaud. This is higher than Standard LIN, which supports only a
baud rate of up to 20 kBaud. This mode is especially useful during back-end
programming, where faster programming time is desirable.

Table 4-7 Type of Response Code
Communication status Response code to the host
 Acknowledge (Success) 55H

 Block Type Error FFH

 Checksum Error FEH

 Protection Error FDH

ACK
Response

55H

Checksum
(1 byte)

Not Used
(2 bytes)

NAD
(1 byte)

ID
(1 bytes)

CHIP_ID_2
(1 bytes)

CHIP_ID_1
(1 bytes)

CHIP_ID_0
(1 bytes)

ACK
Response

55H

Checksum
(1 byte)

Not Used
(3 bytes)

NAD
(1 byte)

Error
indicator

(1 bytes)

Calculated
CHKS High

(1 bytes)

Calculated
CHKS Low

(1 bytes)
User Manual 37 V 2.60, 2012-05

TLE983x BC- Step BootROM
LIN BSL mode
4.6.1 Entering Fast LIN BSL
User can enter Fast LIN BSL by sending TLE983x device a command frame with
Fast_Prog set to 1. See Section 4.4.4.2. (The Fast_Prog option Byte is supported in LIN
BSL modes 0, 2 and 8). In case Fast_Prog option is set, all other information sent with
the frame will be ignored. The baud rate, used for the Fast LIN BSL, is calculated based
on the LIN frame received. The LIN transceiver slope mode is set to Flash mode, a
specific setting of the internal slew rate control that allows transmission up to
115.2 kBaud, and it is set to normal mode before it exits to user code through mode 1
and mode 3. Once entered to Fast LIN BSL, the protocol used will be the same as UART
BSL (refer to Chapter 5 for transfer protocol). The Fast LIN BSL entry is shown in
Figure 4-5.

Figure 4-5 Fast LIN BSL mode entry

4.7 After-Reset conditions
When more than one parameter in the transfer block is invalid, different actions are
performed. The different scenarios, and its consequent actions, are listed in Table 4-8.

Synch
Break

(At least
13 bit low)

Synch
Char
55H

Protected
ID

3CH

Host TLE983x

8 Data bytes for Command
NAD, Header, Mode,, Fast_Prog

xxH,00H,yyH,xxH,xxH,xxH,xxH,01H

yy = 00, 02, 08

Checksum
(1 byte)

Master Request Header Command

Slave Response Header

Synch
Break

(At least
13 bit low)

Synch
Char
55H

Protected
ID

7DH

8 Data bytes for Command
NAD, Response (ACK),.....not used…

xxH,55H,00H,00H,00H,00H,00H,00H

Checksum
(1 byte)

Response

<<<<<<<<<<<<<< UART BSL Mode protocol >>>>>>>>>>>>

LIN
 Fast M

ode
entered

LIN
 M

ode
User Manual 38 V 2.60, 2012-05

TLE983x BC- Step BootROM
LIN BSL mode
Table 4-8 LIN BSL After-Reset conditions
First
Frame

ID Check
sum

NAD Block
Type
(Header
only)

Mode Action

Yes Invalid Don’t
care

Don’t
care

Don’t
care

Don’t
care

Save LIN Message to XRAM and
jump to NVM 0000H

1)2).

1) Jump to user mode will only occur either (1) when NVM is not protected and NVM content at 0000H is not FFH;
or (2) when NVM is protected.

2) Up to max 10 Bytes are saved into the XRAM. In case less than 10 Bytes are received, firmware proceeds to
user code after a time out of 35 ms.

No Invalid Don’t
care

Don’t
care

Don’t
care

Don’t
care

Message is ignored. Wait for next
frame.

Yes 7DH N.A. N.A. N.A. N.A. Save LIN ID to XRAM and jump to
NVM 0000H

1)2)

No 7DH N.A. N.A. N.A. N.A. Reply if there is a previous valid
Master Request (Command
Frame) else wait for next frame

Yes 3CH LIN Don’t
care

Invalid Valid3)

3) Valid modes for LIN checksum are mode 8 and mode 9. Other modes are considered invalid.

Error flag is triggered. Wait for
Response frame to reflect error

Yes 3CH LIN Don’t
care

Don’t
care

Invalid
3)

Save LIN message to XRAM and
jump to NVM 0000H

1)2)

Yes 3CH LIN Valid Valid Valid3) Execute command
Yes 3CH LIN Invalid Valid Valid3) Message is ignored. Wait for next

frame.
Yes 3CH Prog Invalid Don’t

care
Don’t
care

Message is ignored. Wait for next
frame.

Yes 3CH Prog Valid Invalid Valid4)

4) Valid modes for programming checksum are mode 0-6 and A. Other modes are considered invalid.

Error flag is triggered. Wait for
Response frame to reflect error

Yes 3CH Prog Valid Valid Invalid
4)

Error flag is triggered. Wait for
Response frame to reflect error

Yes 3CH Prog Valid Valid Valid4) Execute command
Yes 3CH Invalid Don’t

care
Don’t
care

Don’t
care

Save LIN message to XRAM and
jump to NVM 0000H

1)2)
User Manual 39 V 2.60, 2012-05

TLE983x BC- Step BootROM
LIN BSL mode
4.8 User defined parameters for LIN BSL
There are 2 programmable parameters in the uppermost linearly mapped NVM Bank that
are used in LIN BSL. The parameter values are specified by the user:
1. No Activity Count (NAC): Number of delay (in multiple of 5 ms) before jumping to user

mode, measured from reset release.
2. Node Address for Diagnostic (NAD): Contains the address of the active slave node.
Note: Timer 0 is initialized to have 5 ms overflow and is used to create the delay.
The program will detect any activities on the LIN bus for a period of time, determined by
(((NAC & 7FH) -01H) * 5) ms. When nothing is detected on the LIN bus during this time,
it will jump to user mode.
NAC value is restricted to 0CH as the first open WDT1 window is worst case 65 ms. The
firmware has to either refresh the WDT within the 65 ms or jump to user mode. If NAC
value is bigger than 0CH, BootROM code will refresh the WDT and wait for a LIN frame
indefinitely.
Table 4-9 gives an overview of the action of the microcontroller with respect to No
Activity Count (NAC) values:

Table 4-9 Type of action w.r.t. No Activity Count values
NAC Value Action
01H 0 ms delay. Jump to user mode immediately1)
02H 5 ms delay before jumping to user mode1) 2)

1) Jump to user mode will only occur either (1) when NVM is not protected and NVM content at 0000H is not FFH;
or (2) when NVM is protected

2) If a valid LIN frame is received within the delay period, the following actions occur: (1) the remaining delay is
ignored, (2) it will not enter user mode anymore (3) it will process the LIN frame accordingly

03H 10 ms delay before jumping to user mode1) 2)

04H 15 ms delay before jumping to user mode1) 2)

05H 20 ms delay before jumping to user mode1) 2)

06H 25 ms delay before jumping to user mode1) 2)

07H 30 ms delay before jumping to user mode1) 2)

08H 35 ms delay before jumping to user mode1) 2)

09H 40 ms delay before jumping to user mode1) 2)

0AH 45 ms delay before jumping to user mode1) 2)

0BH 50 ms delay before jumping to user mode1) 2)

0CH 55 ms delay before jumping to user mode1) 2)

0DH - 7FH, 00H Wait forever for the first LIN frame
User Manual 40 V 2.60, 2012-05

TLE983x BC- Step BootROM
LIN BSL mode
4.8.1 Programming NAC and NAD
User needs to program the NAC and NAD in the format listed in Table 3-2. To ensure
the parameter validity, the 2 parameters actual values and their inverted values are
checked.

If the NAD parameter is not valid nor within the range, the default value is used in the
LIN BSL.

4.9 WDT1 refreshing
After a reset the WDT1 is starting with a long open window. WDT1 keeps on running
while waiting for first LIN frame. In case during the LIN BSL waiting time, defined by NAC,
a LIN communication is detected, WTD1 is disabled and its status frozen.
Subsequently, before exiting to XRAM or NVM in LIN BSL modes 1, 3 and 9 the
watchdog is re-enabled and starts from the previously frozen state. The WDT1 is then
still in long open window and the remaining valid time is equal to Long open window
minus the time between reset release and first LIN communication. User program needs
to trigger the WDT1 refresh accordingly.
User Manual 41 V 2.60, 2012-05

 TLE983x BC- Step BootROM
UART BSL mode
5 UART BSL mode
UART BSL mode consists of two functional parts that present two phases as described
below:
• Phase I: Establish a serial connection and automatically synchronize to the transfer

speed (baud rate) of the serial communication partner (host).
• Phase II: Perform the serial communication with the host. The host controls the

communication by sending special header information which selects one of the
working modes. These modes are:
– Mode 0 (00H): Transfer a user program from the host to XRAM or write 100TP and

OTP pages1)

– Mode 1 (01H): Execute a user program in the XRAM2)

– Mode 2 (02H): Transfer a user program from the host to NVM1)

– Mode 3 (03H): Execute a user program in the NVM2)

– Mode 4 (04H): Erase NVM1)

– Mode 6 (06H): NVM protection mode enabling/disabling Scheme2)

– Mode A (0AH): Get Info (based on Option Byte)1)

Except mode 1, mode 3 and mode 6, the microcontroller would return to the beginning
of Phase II and wait for the next command from the host after executing all other modes.
The serial communication, which is activated in Phase II, is performed with the full-
duplex serial interface (UART) of the TLE983x. The microcontroller is connected to the
serial port of the host via a serial cable (RS232).
The serial transfer is working in asynchronous mode with the serial parameters 8N1
(eight data Bits, no parity and one stop Bit). The host can vary the baud rate in a wide
range because the microcontroller does an automatic synchronization with the host in
Phase I.
The following section provides detailed information on these two UART BSL phases.

5.1 Phase I: Automatic serial synchronization to the host
Upon entering UART BSL mode, a serial connection is established and the transfer
speed (baud rate) of the serial communication partner (host) is automatically
synchronized in the following steps:
• STEP 1: Initialize serial interface for reception and timer for baud rate measurement
• STEP 2: Wait for test Byte (80H) from host
• STEP 3: Synchronize the baud rate to the host
• STEP 4: Send Acknowledge Byte (55H) to the host
• STEP 5: Enter Phase II

1) The microcontroller returns to the beginning of phase II and waits for the next command from the host
2) UART BSL and serial communication are exited.
User Manual 42 V 2.60, 2012-05

 TLE983x BC- Step BootROM
UART BSL mode
5.1.1 General description
The microcontroller will set the serial port to mode 1 (8-bit UART, variable baud rate) for
communication. Timer 2 will be set in auto-reload mode (16-bit timer) for baud rate
measurement. In the process of waiting for the test Byte (80H), microcontroller will start
the timer on reception of the start Bit (0) and stop it on reception of the last Bit of the test
Byte (1). Then the UART BSL routine calculates the actual baud rate, sets the PRE and
BR_VALUE values and activates baud rate generator. When the synchronization is
done, the microcontroller sends back the Acknowledge Byte (55H) to the host. If the
synchronization fails, the baud rates for the microcontroller and the host are different,
and the Acknowledge code from the microcontroller cannot be received properly by the
host. In this case, on the host side, the host software may give a message to the user,
e.g. asking the user to repeat the synchronization procedure. On the microcontroller
side, the UART BSL routine cannot judge whether the synchronization is correct or not.
It always enters phase II after sending the Acknowledge Byte. Therefore, if
synchronization fails, a reset of the microcontroller has to be invoked, to restart it for a
new synchronization attempt.

5.1.2 Calculation of BR_VALUE and PRE values
For the baud rate synchronization of the microcontroller to the fixed baud rate of the host,
the UART BSL routine waits for a test Byte (80H), which has to be sent by the host. By
polling the receive port of the serial interface (P0_DATA.1/RxD Pin), the Timer 2 is
started on the reception of the start Bit (0) and stopped on the reception of the last Bit of
the test Byte (1). Hence the time recorded is the receiving time of 8 Bits (1 start Bit plus
7 least significant Bits of the test Byte). The resulting timer value is 16-bit (T2). This value
is used to calculate the 11-bit auto-reload value (BR_VALUE stored in the BGH and BGL
SFRs) and PRE, with T2PRE predefined as 011. This calculation needs two formulas.
First, the correlation between the baud rate (baud) and the reload value (BG) depends
on the internal peripheral frequency (fPCLK)

[5.1]

Second, the relation between the baud rate (baud) and the recording value of Timer 2
(T2) depends on the T2 peripheral frequency (fT2) and the number of received Bits
(fT2Nb)

[5.2]

baud
fPCLK

16 PRE× BR_VALUE×
--=

baud
fT2 Nb×

T2
--------------------=
User Manual 43 V 2.60, 2012-05

 TLE983x BC- Step BootROM
UART BSL mode
Combining Equation [5.1] and Equation [5.2] with Nb=8, fT2=fPCLK/ 8 (T2PRE=011),

[5.3]

Simplifying Equation [5.3], we get

[5.4]

After setting BR_VALUE and PRE, the baud rate generator will then be enabled, and the
UART BSL routine sends an Acknowledge Byte (55H) to the host. If this Byte is received
correctly, it will be guaranteed that both serial interfaces are working with the same baud
rate.

5.2 Phase II: Serial communication protocol and the working modes
After the successful synchronization to the host, the UART BSL routine enters Phase II,
during which it communicates with the host to select the desired working modes. The
detailed communication protocol is explained as follows:

5.2.1 Serial communication protocol
The communication between the host and the UART BSL routine is done by a simple
transfer protocol. The information is sent from the host to the microcontroller in blocks.
All the blocks follow the specified block structure. The communication is nearly
unidirectional: The host is sending several transfer blocks and the UART BSL routine is
just confirming them by sending back single Acknowledge or error Bytes. The
microcontroller itself does not send any transfer blocks.
However, the above regulation does not apply to some modes where the microcontroller
might need to send the required data to the host besides the Acknowledge or error Byte
(e.g. mode A).

fPCLK
16 PRE× BR_VALUE×
--

fPCLK
8

--------------- 8×

T2
------------------------=

PRE BR_VALUE× T2
16
-------=
User Manual 44 V 2.60, 2012-05

 TLE983x BC- Step BootROM
UART BSL mode
5.2.1.1 Transfer block structure
A transfer block consists of three parts:

• Block Type: the type of block, which determines how the Bytes in the data area are
interpreted. Implemented block types are:
– 00H type “Header”
– 01H type “Data”
– 02H type “End of Transmission” (EOT)

• Data area: A list of Bytes, which represents the data of the block. The length of data
area cannot exceed 128 Bytes for mode 0 and 2. For mode 2, the length of data area
must always be 128 Bytes. This is due to the fact that NVM is written page-wise.

• Checksum: the XOR checksum of the Block Type and data area.
The host will decide the number of transfer blocks and their respective lengths during
one serial communication process. For safety purpose, the last Byte of each transfer
block is a simple checksum of the Block Type and data area. The host generates the
checksum by XOR-ing all the Bytes of the Block Type and data area. Every time the
UART BSL routine receives a transfer block, it recalculates the checksum of the received
Bytes (Block Type and data area) and compares it with the attached checksum.
Note: If there is less than one page to be programmed to NVM, the PC host will have to

fill up the vacancies with 00H, and transfer data in the length of 128 Bytes.

5.2.1.2 Transfer block type
There are three types of transfer blocks depending on the value of the Block Type.
Table 5-1 provides the general information on these block types. More details will be
described in the corresponding sections later.

Block Type
(1 byte)

Checksum
(1 byte)

Data Area
(X bytes)
User Manual 45 V 2.60, 2012-05

 TLE983x BC- Step BootROM
UART BSL mode
5.2.1.3 Response codes to the host
The microcontroller communicates to the host whether a block has been successfully
received by sending out a response code. If a block is received correctly, an
Acknowledge Code (55H) is sent. In case of failure, an error code is returned. There are
two possible error codes, FFH or FEH, reflecting the two possible types of fail, Block Type
or Checksum Error. A Block Type Error occurs when either a not implemented Block
Type or transfer blocks in wrong sequence are received. For example, if in working mode
0 two consecutive header blocks are received a Block Type Error is detected and a Block
Type Error (FFH) indication is returned. A Checksum Error occurs when the checksum
comparison on a received block fails. In such a case, the transfer is rejected and a
Checksum Error (FEH) indication is returned. In both error cases the UART BSL routine
awaits the actual block from the host again.
When program and erase operation of NVM is restricted due to enabled NVM protection,
only modes 1, 3 and some options of mode A are allowed. All other modes are blocked
and a Protection Error code (FDH) will be sent to host. This will indicate that NVM is
protected and no programming and erasing are allowed. In this error case, the UART
BSL routine will wait for the next header block from the host again.

Table 5-1 Type of transfer block
Block Name Block Type Description
Header block 00H This block has a fixed length of 8 Bytes. Special

information is contained in the data area of the block,
which is used to select different working modes.

Data block 01H This block length depends on the special information
given in the previous header block. This block is used in
working mode 0 and 2 to transfer a portion of program
code. The program code is contained in the data area of
the block.

EOT block 02H This block length depends on the special information
given in the previous header block. This block is the last
block in data transmission in working mode 0 and 2. The
last program code to be transferred is in the data area of
the block.
User Manual 46 V 2.60, 2012-05

 TLE983x BC- Step BootROM
UART BSL mode
Table 5-2 gives a summary of the response codes to be sent back to the host by the
microcontroller after it receives a transfer block.

Table 5-3 shows a tabulated summary of the possible responses the device may
transmit following the reception of a header, data or EOT block.

The responses are defined in Table 5-4, which lists the possible reasons and/or
implications for error and suggests the possible corrective actions that the host can take
upon notification of the error.

Table 5-2 Type of response codes
Communication status Response code to the host
 Acknowledge (Success) 55H

 Block Type Error FFH

 Checksum Error FEH

 Protection Error FDH

Table 5-3 Possible responses for various block types
Mode Header block Data block EOT block
 0 Acknowledge, Block Type

Error, Checksum Error,
Protection Error

Acknowledge, Block
Type Error, Checksum
Error

Acknowledge, Block
Type Error,
Checksum Error

 1 Acknowledge, Block Type
Error, Checksum Error

 2 Acknowledge, Block Type
Error, Checksum Error,
Protection Error

Acknowledge, Block
Type Error, Checksum
Error

Acknowledge, Block
Type Error,
Checksum Error

 3 Acknowledge, Block Type
Error, Checksum Error

 4 Acknowledge, Block Type
Error, Checksum Error,
Protection Error

 6 Acknowledge, Block Type
Error, Checksum Error,
Protection Error

 A Acknowledge, Block Type
Error, Checksum Error,
Protection Error
User Manual 47 V 2.60, 2012-05

 TLE983x BC- Step BootROM
UART BSL mode
5.2.2 The selection of working modes
When the UART BSL routine enters Phase II, it first waits for an 8-byte long header block
from the host. The header block contains the information for the selection of the working
modes. Depending on this information, the UART BSL routine selects and activates the
desired working mode. If the microcontroller receives an incorrect header block, the
UART BSL routine sends, instead of an Acknowledge code, a Checksum or Block Type
Error code to the host and awaits the header block again. In this case the host may react
by re-sending the header block or by releasing a message to the user.

Table 5-4 Definitions of responses
Response Value Description

Block
Type

BSL
Mode

Reasons / Implications Corrective
Action

Acknow-
ledge

55H Head
er

1, 3 The requested operation will
be performed once the
response is sent.

 A The requested operation has
been performed and was
successful. Requested data
transmission follows.

 6 The requested operation has
been performed and was
successful.

 EOT 0, 2, 4

All other
combinations

Reception of the block was
successful. Ready to receive
the next block.

Block
Type Error

FFH Head
er

2, 4, A Start Address in Mode Data is
not within NVM address
range or invalid CS Page.

Retransmit a valid
header block.

All other
combinations

Either the Block Type is
undefined or option is invalid
or the flow is invalid.

Retransmit a valid
block

Checksum
Error

FEH All
combinations

There is a mismatch between
the calculated and the
received Checksum.

Retransmit a valid
block

Protection
Error

FDH Head
er

0, 2,
4, 6, A

Protection against external
access enabled, i.e. user-
password is valid.

Disable protection
User Manual 48 V 2.60, 2012-05

 TLE983x BC- Step BootROM
UART BSL mode
5.2.2.1 Receiving the header block
The header block is always the first transfer block to be sent by the host during one data
communication process. It contains the working mode number and special information
on the related mode (referred to as “Mode Data”). The general structure of a header
block is shown below.

Description:
• Block Type 00H: The Block Type, which marks the block as a header block
• Mode: The mode to be selected. The implemented modes are covered in Section 5
• Mode Data: Five Bytes of special information, which are necessary to activate

corresponding working mode.
• Checksum: The checksum of the header block.

5.2.2.2 The activation of working mode 0
Mode 0 is used to transfer a user program or data from the host to the XRAM of the
microcontroller via serial interface. Selecting the proper mode option, this mode can be
used to transfer data into the user configuration sector pages. In this case, user has to
transfer data to the XRAM in accordance with the format reported in the Table 6-6 and
after EOT block has been received, data is automatically copied with proper offset in the
target page. If NVM protection is installed, programming to XRAM is not allowed.
Different option supported are:
• Option 00H: XRAM download
• Option F0H: XRAM download and Configuration sector page programming
The header block for this working mode has the following structure:

Block Type
00H

(Header Block)
Mode

(1 byte)
Mode Data
(5 bytes)

Checksum
(1 byte)

Data Area
User Manual 49 V 2.60, 2012-05

 TLE983x BC- Step BootROM
UART BSL mode
The header block for XRAM download (Option = 00H)

Mode Data Description:
Start Addr High, Low: 16-bit Start Address, which determines where to copy the
received program codes into the XRAM.
Block Length: The length of the following data blocks or EOT block.
Not Used: this Byte is not used and will be ignored.
Option: Set to 00H for XRAM download.

In option 00H start address can be each valid XRAM address. Data sent in the following
data/ EOT blocks will be copied into the XRAM at the specified address.

The header block for XRAM download and CS page programming (Option = F0H)

Mode Data Description:
Start Addr High, Low: 16-bit Start Address, which determines where to copy the
received program codes in the XRAM.
Block Length: The length of the following data blocks or EOT block.
CS Page: This Byte is used to select the desired user configuration sector page to be
programmed. This Byte is relevant only in case option F0H is used. CS page is selected
according to the addressing scheme reported in Figure 6-1.
Option: Set to F0H for XRAM download and CS page programming

Using this option, user can write data into the user CS pages (OTP and 100TP pages).
In this case, data has to be sent to the XRAM according to the Table 6-6 and therefore
start address has to be equal to F000H. In case a different starting address is provided,

00H
(Header
Block)

StartAddr
High

(1 byte)

Checksum
(1 byte)

Mode Data (5 bytes)
00H

(Mode 0) StartAddr
Low

(1 byte)

Block
Length
(1 byte)

Option
= 00H

(1 byte)

Not Used
(1 byte)

00H
(Header
Block)

StartAddr
High

(1 byte)

Checksum
(1 byte)

Mode Data (5 bytes)
00H

(Mode 0) StartAddr
Low

(1 byte)

Block
Length
(1 byte)

Option
= F0H

(1 byte)

CS Page
(1 byte)
User Manual 50 V 2.60, 2012-05

 TLE983x BC- Step BootROM
UART BSL mode
the operation will result in a Block Type Error indication. When this option is selected a
proper CS page has to be provided.

Note: All other options will be treated as option 00H.

Note: The Block Length refers to the whole length (Block Type, data area and
checksum) of the following transfer block (data block or EOT block).

After successfully receiving the header block, the microcontroller enters mode 0, during
which the program codes are transmitted from the host to the microcontroller by data
block and EOT block, which are described as below.

The data block

Description:
Program Code: The program code has a length of ((Block Length) - 2) Byte, where the
Block Length is provided in the previous header block.

The EOT block

Description:
Last Codelength: This Byte indicates the length of the program code in this EOT block.
Program Code: The last program code to be sent to the microcontroller
Not used: The length is ((Block Length) - 3 - (Last Codelength)) bytes and should be
filled with zeros.

5.2.2.3 The activation of working mode 1
Mode 1 is used to execute a user program in the XRAM of the microcontroller at F000H.
The header block for this working mode has the following structure:

01H
(Data
Block)

Checksum
(1 byte)

Program Code
(((Block Length) - 2) bytes)

Program Code
(Last Codelength

bytes)

Not Used
(((Block Length) – 3 – (Last

Codelength)) bytes)

Last
Codelength

(1 byte)

02H
(EOT
Block)

Checksum
(1 byte)
User Manual 51 V 2.60, 2012-05

 TLE983x BC- Step BootROM
UART BSL mode
The header block

Mode Data Description:
Not used: The five Bytes are not used and will be ignored in mode 1.
In working mode 1, the header block is the only transfer block to be sent by the host, no
further serial communication is necessary. The microcontroller will exit the UART BSL
mode and jump to the XRAM address at F000H.

5.2.2.4 The activation of working mode 2
Mode 2 is used to transfer a user program from the host to the NVM of the microcontroller
via serial interface. This mode is not accessible if NVM protection is installed.
The header block for this working mode has the following structure:

The header block

Mode Data Description:
Start Addr High, Low: 16-bit Start Address, which determines where to copy the
received program codes in the NVM. This address must be aligned to the page address.
Block Length: The length of the following data blocks or EOT block. If data blocks are
to be sent, the block length has to be 130 (128+2) Bytes. If only EOT block is sent, the
block length has to be 131 (128+3) Bytes.
Not used: 2 Bytes, these Bytes are not used and will be ignored in mode 2.
Note: If the data starts in a non-page address, PC host must fill up the beginning

vacancies with 00H and provide the start address of that page. For e.g., if data
starts in 0F82H, the PC host will fill up the addresses 0F80H and 0F81H with 00H
and provide the Start Address 0F80H to microcontroller. Moreover, if data is only
8 Bytes, the PC host will also fill up the remaining addresses with 00H and transfer
128 data Bytes.The Block Length refers to the whole length (Block Type, data
area and Checksum) of the following transfer block (data block or EOT block).

00H
(Header
Block)

Checksum
(1 byte)

Mode Data (5 bytes)
01H

(Mode 1) Not Used

00H
(Header
Block)

StartAddr
High

(1 byte)

Checksum
(1 byte)

Mode Data (5 bytes)
02H

(Mode 2) StartAddr
Low

(1 byte)

Block
Length
(1 byte)

Not Used

(2 bytes)
User Manual 52 V 2.60, 2012-05

 TLE983x BC- Step BootROM
UART BSL mode
Since the data area is 128 Bytes, the Block Length is 130 Bytes for data blocks
and 131 Bytes for EOT blocks.

After successfully receiving the header block, the microcontroller enters mode 2, during
which the program codes are transmitted from the host to the microcontroller by data
block and EOT block, which are described as below.

The data block

Description:
Program Codes: The program codes have a length of ((Block Length) - 2) Byte, where
the Block Length is provided in the previous header block.

The EOT block

Description:
Last Codelength: This Byte indicates the length of the program codes in this EOT block.
Note: If data blocks are sent, this Byte should be zero. If this Byte is not zero, additional

undesired Bytes will be programmed and this will affect the verification.

Program Codes: The last program codes to be sent to the microcontroller
Not used: The length is ((Block Length) - 3 - (Last Codelength)) bytes and should be
filled with zeros.

5.2.2.5 The activation of working mode 3
Mode 3 is used to execute a user program in the NVM of the microcontroller at 0000H.
The header block for this working mode has the following structure:

01H
(Data
Block)

Checksum
(1 byte)

Program Codes
(((Block Length) - 2) bytes)

Last
Codelength

(1 byte)

02H
(EOT
Block)

Checksum
(1 byte)

Program Code
(Last Codelength

bytes)

Not Used
(((Block Length) – 3 – (Last

Codelength)) bytes)
User Manual 53 V 2.60, 2012-05

 TLE983x BC- Step BootROM
UART BSL mode
The header block

Mode Data Description:
Not used: The five Bytes are not used and will be ignored in mode 3.
In working mode 3, the header block is the only transfer block to be sent by the host, no
further serial communication is necessary. The microcontroller will exit the UART BSL
mode and jump to the NVM address at 0000H.
Note: Jump to NVM will only occur either (1) when NVM is not protected and NVM

content at 0000H is not FFH; or (2) when NVM is protected. In all other cases,
firmware will put the device in sleep mode.

5.2.2.6 The activation of working mode 4
Mode 4 is used to erase different areas of the NVM. It supports mass erase of all the
NVM sectors, individual erase of the sectors for linear area or for non-linear area and
single page erase. This is determined by the Option Byte. This mode is not accessible if
the NVM protection is enabled.
Different options supported are:
• Option 00H : NVM page erase
• Option 40H : NVM sector erase
• Option C0H : NVM Mass erase

The header block for NVM page erase (with Option = 00H)

Mode Data Description:
Start Addr High, Low: 16-bit Start Address, which determines which NVM page to be
erased. Address should be page aligned.
Not used: The two Bytes are not used and will be ignored in option 00H.
Option: Set to 00H for page erase

00H
(Header
Block)

Checksum
(1 byte)

Mode Data (5 bytes)
03H

(Mode 3) Not Used

00H
(Header
Block)

StartAddr
High

(1 byte)

Checksum
(1 byte)

Mode Data (5 bytes)
04H

(Mode 4) StartAddr
Low

(1 byte)

Option
=00H

(1 byte)

Not Used

(2 bytes)
User Manual 54 V 2.60, 2012-05

 TLE983x BC- Step BootROM
UART BSL mode
When the Option Byte = 00H, this mode performs an erase of the NVM page specified
by the provided address.

The header block for NVM sector erase: (with Option = 40H)

Mode Data Description:
Start Addr High, Low: 16-bit Start Address, which determines which NVM sector to be
erased. Address should be sector aligned.
Not used: The two Bytes are not used and will be ignored in option 40H.
Option: Set to 40H for sector erase
When the Option Byte = 40H, this mode performs an erase of the NVM sector specified
by the provided address. The time taken to erase a sector is 4 ms.

The header block for NVM mass erase: (with Option = C0H)

Mode Data Description:
Not used: The four Bytes are not used and will be ignored in option C0H.
Option: Set to C0H for mass erase
When the Option Byte = C0H, this mode performs a mass erase of all the NVM sectors.
The time taken will be, 4ms * number of sectors, as the erase operation is done
sequentially.

Note:

1. In mode 4, a Block Type Error will be sent, if an invalid option Byte is received. Once
password is set, no access to mode 4 is allowed and Protection Error will be sent.

2. NAC and NAD values will also be erased and the device will no longer be accessible
in UART BSL, because NAC is invalid and default NAC will be used.

00H
(Header
Block)

StartAddr
High

(1 byte)

Checksum
(1 byte)

Mode Data (5 bytes)
04H

(Mode 4) StartAddr
Low

(1 byte)

Option
= 40H

(1 byte)

Not Used

(2 bytes)

00H
(Header
Block)

Checksum
(1 byte)

Mode Data (5 bytes)
04H

(Mode 4) Option
=C0H

(1 byte)

Not Used

(4 bytes)
User Manual 55 V 2.60, 2012-05

 TLE983x BC- Step BootROM
UART BSL mode
5.2.2.7 The activation of working mode 6
Mode 6 is used to enable or disable the NVM Protection Mode by the given user-
password. The header block for this working mode has the following structure:

The header block

Mode Data Description

User-password: This Byte is given by user to enable or disable NVM protection mode.
Not used: The four Bytes are not used and will be ignored in mode 6.

In mode 6, the header block is the only transfer block to be sent by the host. If device is
unprotected, the provided user-password will be set as NVM_PASSWORD and
internally stored. No further commands will be accepted until a power up or hardware
reset. Afterwards, protection mode will be enabled.
However, if the NVM is already protected, the microcontroller will deactivate the
Protection and erase the NVM if the user-password Byte matches the stored
NVM_PASSWORD Byte. If MSB of the NVM_PASSWORD is 0, only NVM Linearly
mapped sectors are erased. If the Bit is 1, both NVM Linearly and Non-linearly mapped
regions are erased. No further commands will be accepted until a power up or hardware
reset. Afterwards, protection mode will be disabled.
In case NVM is protected and the given user-password does not match the stored
NVM_PASSWORD, no actions will be triggered and a Protection Error (FDH) will be
returned instead of Acknowledge.
Note:

1. Password value has to be different from 00H and FFH.
2. When disabling NVM protection, together with NVM, the NAC and NAD values are

erased too. As a result, after next reset, default NAD will be used and chip waits for
ever for the first BSL LIN frame.

00H
(Header
Block)

User-
password

(1 byte)

Checksum
(1 byte)

Mode Data (5 bytes)
06H

(Mode 6) Not Used

(4 bytes)
User Manual 56 V 2.60, 2012-05

 TLE983x BC- Step BootROM
UART BSL mode
5.2.2.8 The activation of working mode A
Mode A is used to get 4 Bytes Chip ID data, NVM or CS page read out, NVM or CS page
or NVM mass checksum check depending on the Option Byte value in the header block.
Different options are supported:
• Option 00H: Get 4 Bytes Chip ID
• Option 10H: NVM page checksum check
• Option 18H: Mass NVM checksum check
• Option 50H: Configuration sector page checksum check
• Option C0H: NVM page read
• Option F0H: Configuration sector page read

The header block for Get 4 Byte Chip ID (Option = 00H)

Mode Data Description:
Not Used: These Bytes are not used and will be ignored for Option 00H.
Option: Set to 00H for Get 4 Byte Chip ID.
If this command is successfully received, microcontroller will return an Acknowledge
followed by 4 data Bytes. The order of the 4 Bytes of data are SFR ID, CHIP_ID2,
CHIP_ID1 and CHIP_ID0.

Table 5-5 Erase NVM during unprotection
NVM_PASSWO
RD Bit7

Description

0 Only linearly mapped NVM is erased.
1 Both linearly and non-linearly mapped NVM are erased.

00H
(Header
Block)

Checksum
(1 byte)

Mode Data (5 bytes)
0AH

(Mode A) Not Used

(4 bytes)

Option
=00H

(1 byte)
User Manual 57 V 2.60, 2012-05

 TLE983x BC- Step BootROM
UART BSL mode
The header block for NVM page checksum check (Option = 10H)

Mode Data Description:
Start Addr High, Low: Address of the NVM page for checksum check. (Address should
be page aligned).
Expected CHKSum High, Low: Expected checksum High/Low Byte.
Option: set to 10H to enable NVM page checksum check.

This option will trigger a checksum calculation (16 bits inverted XOR) over the whole
page pointed by the address given in the header block and the result will then be
compared with the expected checksum (provided as well by the user in the header
frame). If the given address is a valid NVM address, the microcontroller will return an
Acknowledge followed by four data Bytes. The Bytes are, in sequential order, pass/fail
indication (00H if the calculated and expected checksum match, 80H if they differ),
calculated checksum High Byte, calculated checksum Low Byte, and a final Byte equal
to 00H.
The input address should always be page aligned. In case it is not aligned, the address
will be internally changed to point to the beginning of the addressed page so that
checksum is always evaluated on a complete page.
In case the provided address is not a valid NVM address, the microcontroller will return
a Block Type Error (FFH) instead of an Acknowledge (55H) followed by no further Bytes.

00H
(Header
Block)

StartAddr
High

(1 byte)

Checksum
(1 byte)

Data Area
0AH

(Mode A) StartAddr
Low

(1 byte)

Option
=10H

(1 byte)

Expected
CHKSum

High
(1 byte)

Expected
CHKSum

Low
(1 byte)
User Manual 58 V 2.60, 2012-05

 TLE983x BC- Step BootROM
UART BSL mode
The header block for Mass checksum check (Option = 18H)

Mode Data Description:
Not Used: These Bytes are not used and will be ignored for Option 18H.
Expected CHKSum High, Low: Expected checksum High/Low Byte.
Option: set to 18H to enable mass checksum check.

This option will trigger a checksum calculation (16 bits inverted XOR) over the whole
NVM (both linearly and not linearly mapped regions not including CS pages) and the
result will then be compared with the expected checksum (provided by the user in the
header frame). The microcontroller will return an Acknowledge followed by four data
Bytes. The Bytes are, in sequential order, pass/fail indication (00H if the calculated and
expected checksum match, 80H if they differ), calculated checksum High Byte,
calculated checksum Low Byte, and a final Byte equal to 00H.

The header block for CS page checksum check (Option = 50H)

Mode Data Description:
CS Page: Selection of the CS Page to be checked (refer to Figure 6-1).
Not Used: This Byte is not used and will be ignored for Option 50H.
Expected CHKSum High, Low: Expected checksum High/Low Byte.
Option: set to 50H to enable CS page checksum check.

00H
(Header
Block)

Checksum
(1 byte)

Mode Data (5 bytes)
0AH

(Mode A) Option
=18H

(1 byte)

Expected
CHKSum

High
(1 byte)

Expected
CHKSum

Low
(1 byte)

Not Used
(1 byte)

Not Used
(1 byte)

00H
(Header
Block)

Checksum
(1 byte)

Mode Data (5 bytes)
0AH

(Mode A) Option
=50H

(1 byte)

Expected
CHKSum

High
(1 byte)

Expected
CHKSum

Low
(1 byte)

CS Page
(1 byte)

Not Used
(1 byte)
User Manual 59 V 2.60, 2012-05

 TLE983x BC- Step BootROM
UART BSL mode
This option will trigger a checksum calculation (16 bits inverted XOR) over the whole CS
page pointed by the address given in the header block and the result will then be
compared with the expected checksum (provided as well by the user in the header
frame). CS page address has to be in accordance with the configuration sector address
scheme described in the Figure 6-1. If the given address is valid, the microcontroller will
return an Acknowledge followed by four data Bytes. The Bytes are, in sequential order,
pass/fail indication (00H if the calculated and expected checksum match, 80H if they
differ), calculated checksum High Byte, calculated checksum Low Byte, and a final Byte
equal to 00H.
In case the provided address is not valid, the microcontroller will return a Block Type
Error (FFH) instead of an Acknowledge (55H) followed by no further Bytes.

The header block for NVM page read out (Option C0H)

Mode Data Description:
Start Addr High, Low: Address of the NVM page to be read out (Address should be
page aligned).
Not Used: These Bytes are not used and will be ignored for Option C0H.
Option: set to C0H to enable NVM page read.

This option will trigger a read of the addressed NVM page. Microcontroller will return an
Acknowledge (55H) followed by the 128 NVM page data Bytes (starting from first Byte in
the page).
The input address should always be aligned with a page. In case it is not aligned, the
address will be internally changed to point to the beginning of the addressed page so
that the page Byte are always returned ordered from the first to the last Byte.
In case the provided address is not a valid NVM address, the microcontroller will return
a Block Type Error (FFH) instead of an Acknowledge (55H) followed by no further Bytes.
To prevent user code to be read out, this option is disabled if NVM is protected and only
a Protection Error Byte (FDH) will be returned.

00H
(Header
Block)

StartAddr
High

(1 byte)

Checksum
(1 byte)

Mode Data (5 bytes)
0AH

(Mode A) StartAddr
Low

(1 byte)

Option
=C0H

(1 byte)

Not Used
(1 byte)

Not Used
(1 byte)
User Manual 60 V 2.60, 2012-05

 TLE983x BC- Step BootROM
UART BSL mode
The header block for user configuration sector page read out (Option = F0H)

Mode Data Description:
Not Used: These Bytes are not used and will be ignored for Option F0H.
CS Page: Selection of the CS Page to be checked (refer to Figure 6-1).
Option: set to F0H to enable configuration sector page read.

This option will trigger a read of the addressed configuration sector page. Microcontroller
will return an Acknowledge (55H) followed by the 128 CS page data Bytes (starting from
first Byte in the page).
Configuration Sector page to be read out is selected by the CS Page Byte according to
the scheme shown in Figure 6-1.
In case an invalid CS page is selected the microcontroller will return a Block Type Error
(FFH) instead of an Acknowledge (55H) followed by no further Bytes.
To prevent user code to be read out, this option is disabled if NVM is protected (NVM
password installed) and only a Protection Error Byte (FDH) will be returned.

All other values for option Byte
Block Type Error indication (FFH) is sent back.
In mode A, the header block is the only transfer block to be sent by the host. The
microcontroller will return an Acknowledge followed by data Bytes if the header block is
received successfully. If an invalid option is received, the microcontroller will return a
Block Type Error indication (FFH) and no further Bytes.

5.3 User defined parameters for UART mode
There is 1 programmable parameter in the uppermost linearly mapped NVM Bank that
is used in UART mode. The parameter value is specified by the user:
• No Activity Count (NAC): Number of delay (in multiple of 5 ms1)) before jumping to

user mode measured from reset release.

1) Delay ranges from 0 ms to 55 ms, derived from equation (((NAC & 7FH) -01H) * 5) ms. In case of invalid or
bigger values the device waits forever for the first UART frame.

00H
(Header
Block)

Checksum
(1 byte)

Mode Data (5 bytes)
0AH

(Mode A) Option
=F0H

(1 byte)

Not Used
(1 byte)

CS Page
(1 byte)

Not Used
(1 byte)

Not Used
(1 byte)
User Manual 61 V 2.60, 2012-05

 TLE983x BC- Step BootROM
UART BSL mode
Note: Timer 0 is initialized to have 5 ms overflow and is used to create the delay.
The program will detect any activities on the UART bus for a period of time, determined
by (((NAC & 7FH) - 01H) * 5) ms. When nothing is detected on the UART bus during this
time, it will jump to user mode.
For UART BSL NAC Bit 7 has to be set to 1 and (NAC & 7FH) value is restricted to 0CH
as the first open WDT1 window is worst case 65 ms. The firmware has to either refresh
the WDT within the 65 ms or jump to user mode. If (NAC & 7FH) value is bigger than 0CH,
BootROM code will refresh the WDT and wait for a UART frame indefinitely.
Table 5-6 gives an overview of the action of the microcontroller with respect to No
Activity Count (NAC) values:

5.3.1 Programming NAC
User needs to program the NAC in the format listed in Table 3-2. To ensure the
parameter validity, the actual value and its inverted value are checked.

Table 5-6 Type of action w.r.t. No Activity Count values
NAC Value Action
81H 0 ms delay. Jump to user mode immediately1)

82H 5 ms delay before jumping to user mode1) 2)

1) Jump to user mode will only occur either (1) when NVM is not protected and NVM content at 0000H is not FFH;
or (2) when NVM is protected

2) If a valid UART synchronization frame is received within the delay period, the following actions occur: (1) the
remaining delay is ignored, (2) it will not enter user mode anymore (3) it will wait for next UART frame.

83H 10 ms delay before jumping to user mode1) 2)

84H 15 ms delay before jumping to user mode1) 2)

85H 20 ms delay before jumping to user mode1) 2)

86H 25 ms delay before jumping to user mode1) 2)

87H 30 ms delay before jumping to user mode1) 2)

88H 35 ms delay before jumping to user mode1) 2)

89H 40 ms delay before jumping to user mode1) 2)

8AH 45 ms delay before jumping to user mode1) 2)

8BH 50 ms delay before jumping to user mode1) 2)

8CH 55 ms delay before jumping to user mode1) 2)

8DH - FFH, 80H Wait forever for the first UART frame
User Manual 62 V 2.60, 2012-05

 TLE983x BC- Step BootROM
UART BSL mode
5.4 WDT1 refreshing
After a reset the WDT1 is starting with a long open window. WDT1 keeps on running
while waiting for first UART frame. In case during the UART BSL waiting time, defined
by NAC, a UART communication is detected, WTD1 is disabled and its status frozen.
Subsequently, before exiting to XRAM or NVM in UART BSL modes 1 and 3 the
watchdog is re-enabled and starts from the previously frozen state. The WDT1 is then
still in long open window and the remaining valid time is equal to long open window
minus the time between reset release and first UART communication. User program
needs to trigger the WDT1 refresh accordingly.
User Manual 63 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
6 NVM
Non Volatile Memory (NVM) is the flash module of the TLE983x which partly supports
EEPROM emulation.

6.1 NVM overview
The NVM is a single block of NVM memory of up to 64 kBytes separated into Code and
Data space. The TLE983x device family provides products with different NVM size (24,
36, 48 and 64 kBytes) all sharing the same architecture and features. The following table
shows the NVM address range for all the supported sizes.

6.1.1 NVM organisation
The NVM has 2 types of memory configuration, Code and Data. It is organised in sectors.
Each NVM Sector is a block of 4 kBytes organised into blocks of 128 Bytes called Page.
Each update to the NVM, even when targeting 1 Byte only, accesses 1 page (128 Bytes).
With this NVM structure, writing to the NVM can be any data size, up to 128 Bytes.
Table 6-2 shows the sector address organisation of 36 kBytes NVM. Sector organization
for other NVM sizes can be simply derived per extension of the reported scheme.
Table 6-3 shows the page address organisation of NVM Sector 1 and is can be used as
e reference for page organization of any NVM Sector.

Table 6-1 NVM address range for different NVM module sizes
Address Address Range Size (kBytes)
 0’0000H to 0’5FFFH NVM memory 24
 0’0000H to 0’8FFFH NVM memory 36
 0’0000H to 0’BFFFH NVM memory 48
 0’0000H to 0’FFFFH NVM memory 64
User Manual 64 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
Note: The lower 32 kBytes (Sector 1 to 8) are always located and can be accessed in
the lower half (0000H to 7FFFH) of each bank in the code area (except for Bank A).

Table 6-2 NVM memory sector organisation (example for a 36 kByte module)
Address NVM sector number
 0’0000H to 0’0FFFH 1
 0’1000H to 0’1FFFH 2
 0’2000H to 0’2FFFH 3
 0’3000H to 0’3FFFH 4
 0’4000H to 0’4FFFH 5
 0’5000H to 0’5FFFH 6
 0’6000H to 0’6FFFH 7
 0’7000H to 0’7FFFH 8
 0’8000H to 0’8FFFH 9

Table 6-3 NVM memory sector 1 page organisation
Address Page number of NVM sector
 0’0000H to 0’007FH 0
 0’0080H to 0’00FFH 1
 0’0100H to 0’017FH 2
 0’0180H to 0’01FFH 3
 0’0200H to 0’027FH 4
 0’0280H to 0’02FFH 5
 0’0300H to 0’037FH 6
 0’0380H to 0’03FFH 7
 0’0400H to 0’047FH 8
 0’0480H to 0’04FFH 9
 0’0500H to 0’057FH 10
 0’0580H to 0’05FFH 11
 0’0600H to 0’067FH 12
 0’0680H to 0’06FFH 13
 0’0700H to 0’077FH 14
 0’0780H to 0’07FFH 15
User Manual 65 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
6.2 NVM configuration sectors organisation
The configuration sector contains important user data needed for proper system
initialization.

6.2.1 100 Time Programmable data
User has 4 100 time programmable pages. The first one is used to store user
configuration parameters for measurement interface and sense amplifier as well as
ADC1 calibration parameters. These parameters are usually determined in the user
application and might require several iterations before the best fit is found.
The values of the first page, from offset 0FH to 3EH, are automatically copied into the
dedicated XSFR registers of e.g. the Measurement Interface after every power on reset,
brown out reset or wake-up reset from sleep mode thus replacing the registers default
reset values. If the user wants to check them, he could do it by reading the dedicated
XSFRs. The data stored in this first 100 time programmable page can be found in
Table 6-4.
To read data stored in the 100TP pages, refer to Section 6.3.23.

 0’0800H to 0’087FH 16
 0’0880H to 0’08FFH 17
 0’0900H to 0’097FH 18
 0’0980H to 0’09FFH 19
 0’0A00H to 0’0A7FH 20
 0’0A80H to 0’0AFFH 21
 0’0B00H to 0’0B7FH 22
 0’0B80H to 0’0BFFH 23
 0’0C00H to 0’0C7FH 24
 0’0C80H to 0’0CFFH 25
 0’0D00H to 0’0D7FH 26
 0’0D80H to 0’0DFFH 27
 0’0E00H to 0’0E7FH 28
 0’0E80H to 0’0EFFH 29
 0’0F00H to 0’0F7FH 30
 0’0F80H to 0’0FFFH 31

Table 6-3 NVM memory sector 1 page organisation
User Manual 66 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
To perform the programming of these pages, the user will need to preload the contents
to be programmed into the XRAM as listed in Table 6-5. The offset entered for the
programming does not need to be in sequential order. Once a page has been
programmed 100 times, no further programming on that page is allowed. In the last Byte
of each 100TP page a program counter is stored (not changeable by user).
For further information regarding programming data into the 100TP pages, refer to
Section 6.3.24.

Table 6-4 100 Time Programmable page 1
Data Offset XSFR/

Variable Name
Description Default

Value
00H GAIN_VS_10B Calibration gain for 10-bit ADC

Vs measurement
Chip
Individual

01H OFFSET_VS_10B Calibration offset for 10-bit ADC
Vs measurement

Chip
Individual

02H GAIN_VBAT_SENSE_
10B

Calibration gain for 10-bit ADC
VBAT_SENSE measurement

Chip
Individual

03H
OFFSET_VBAT_SENS
E_10B

Calibration offset for 10-bit ADC
VBAT_SENSE measurement

Chip
Individual

04H GAIN_VMON_ATT_1_
5

Calibration gain for 10-bit ADC
VMON_ATT 1 to 5
measurement

Chip
Individual

05H OFFSET_VMON_ATT_
1_5

Calibration offset for 10-bit ADC
VMON_ATT 1 to 5
measurement

Chip
Individual

06H to 0CH Reserved Reserved 00H

0DH ADC2_CNT0_LOWER Refer to user manual 12H

0EH ADC2_CNT4_LOWER Refer to user manual 0AH

0FH MEAS_ADC2_SQ1 Refer to TLE983x User´s
Manual

37H

10H MEAS_ADC2_SQ2 Refer to TLE983x User´s
Manual

28H

11H MEAS_ADC2_SQ3 Refer to TLE983x User´s
Manual

36H

12H MEAS_ADC2_SQ4 Refer to TLE983x User´s
Manual

29H
User Manual 67 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
13H MEAS_ADC2_SQ5 Refer to TLE983x User´s
Manual

36H

14H MEAS_ADC2_SQ6 Refer to TLE983x User´s
Manual

28H

15H MEAS_ADC2_SQ7 Refer to TLE983x User´s
Manual

37H

16H MEAS_ADC2_SQ8 Refer to TLE983x User´s
Manual

28H

17H MEAS_ADC2_SQ9 Refer to TLE983x User´s
Manual

36H

18H MEAS_ADC2_SQ10 Refer to TLE983x User´s
Manual

29H

19H ADC2_FILTCOEFF0_3 Refer to TLE983x User´s
Manual

AAH

1AH ADC2_FILTCOEFF4_5 Refer to TLE983x User´s
Manual

AAH

1BH ADC2_TH0_UPPER Refer to TLE983x User´s
Manual

EAH

1CH ADC2_CNT0_UPPER Refer to TLE983x User´s
Manual

1AH

1DH ADC2_CNT1_UPPER Refer to TLE983x User´s
Manual

1BH

1EH ADC2_CNT2_UPPER Refer to TLE983x User´s
Manual

13H

1FH ADC2_CNT3_UPPER Refer to TLE983x User´s
Manual

12H

20H ADC2_CNT4_UPPER Refer to TLE983x User´s
Manual

12H

21H ADC2_TH0_LOWER Refer to TLE983x User´s
Manual

4EH

22H ADC2_CNT5_UPPER Refer to TLE983x User´s
Manual

12H

23H ADC2_CNT8_UPPER Refer to TLE983x User´s
Manual

1AH

24H ADC2_CNT9_UPPER Refer to TLE983x User´s
Manual

1AH

Table 6-4 100 Time Programmable page 1
User Manual 68 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
25H ADC2_TH5_LOWER Refer to TLE983x User´s
Manual

32H

26H ADC2_TH6_LOWER Refer to TLE983x User´s
Manual

39H

27H ADC2_TH7_LOWER Refer to TLE983x User´s
Manual

39H

28H ADC2_TH8_LOWER Refer to TLE983x User´s
Manual

BAH

29H ADC2_TH9_LOWER Refer to TLE983x User´s
Manual

C6H

2AH ADC2_CNT5_LOWER Refer to TLE983x User´s
Manual

0AH

2BH ADC2_CNT6_LOWER Refer to TLE983x User´s
Manual

0AH

2CH ADC2_CNT7_LOWER Refer to TLE983x User´s
Manual

0AH

2DH ADC2_CNT8_LOWER Refer to TLE983x User´s
Manual

0AH

2EH ADC2_CNT9_LOWER Refer to TLE983x User´s
Manual

0AH

2FH ADC2_CALOFFS_CH0 Refer to TLE983x User´s
Manual

00H

30H ADC2_CALGAIN_CH0 Refer to TLE983x User´s
Manual

00H

31H ADC2_CALOFFS_CH1 Refer to TLE983x User´s
Manual

00H

32H ADC2_CALGAIN_CH1 Refer to TLE983x User´s
Manual

00H

33H ADC2_CALOFFS_CH2 Refer to TLE983x User´s
Manual

00H

34H ADC2_CALGAIN_CH2 Refer to TLE983x User´s
Manual

00H

35H ADC2_CALOFFS_CH3 Refer to TLE983x User´s
Manual

00H

36H ADC2_CALGAIN_CH3 Refer to TLE983x User´s
Manual

00H

Table 6-4 100 Time Programmable page 1
User Manual 69 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
37H ADC2_CALOFFS_CH4 Refer to TLE983x User´s
Manual

00H

38H ADC2_CALGAIN_CH4 Refer to TLE983x User´s
Manual

00H

39H ADC2_CALOFFS_CH5 Refer to TLE983x User´s
Manual

00H

3AH ADC2_CALGAIN_CH5 Refer to TLE983x User´s
Manual

00H

3BH ADC2_CALOFFS_CH8 Refer to TLE983x User´s
Manual

00H

3CH ADC2_CALGAIN_CH8 Refer to TLE983x User´s
Manual

00H

3DH ADC2_CALOFFS_CH9 Refer to TLE983x User´s
Manual

00H

3EH ADC2_CALGAIN_CH9 Refer to TLE983x User´s
Manual

00H

3FH to 73H Reserved Reserved 00H

74H CS_XRAM_MBIST_ST
ARTUP_EN

Enable Byte for XRAM MBIST
during startup flow. If Value =
C3H then the MBIST is enabled

00H

75H CS_XRAM_MBIST_LO
W_BOUND_H

High Byte of the starting
address of the XRAM range to
be checked during XRAM
MBIST at startup. (F0H for
XRAM initial address)

00H

76H CS_XRAM_MBIST_LO
W_BOUND_L

Low Byte of the starting address
of the XRAM range to be
checked during XRAM MBIST
at startup. (00H for XRAM initial
address)

00H

77H CS_XRAM_MBIST_HI
GH_BOUND_H

High Byte of the ending address
of the XRAM range to be
checked during XRAM MBIST
at startup. (FBH for XRAM initial
address)

00H

Table 6-4 100 Time Programmable page 1
User Manual 70 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
78H CS_XRAM_MBIST_HI
GH_BOUND_L

Low Byte of the ending address
of the XRAM range to be
checked during XRAM MBIST
at startup. (FFH for XRAM initial
address)

00H

79H CS_USER_CAL_STAR
TUP_EN

Enable Byte for user calibration
data download during startup. If
value=C3H then the download
is enabled

00H

7AH CS_USER_CAL_XADD
H

High Byte of the XRAM starting
address where downloaded
data has to be stored(F0H for
XRAM initial address)

00H

7BH CS_USER_CAL_XADD
L

Low Byte of the XRAM starting
address where downloaded
data has to be stored(00H for
XRAM initial address)

00H

7CH CS_USER_CAL_CS_P
AGE

CS page where calibration data
has to be downloaded from. By
default 100TP page1 should be
used (Value=11H)

00H

7DH CS_USER_CAL_NUM Number of Bytes to be
downloaded starting from the
first Byte of the selected CS
page.

00H

7EH Checksum_100TP_P1 Checksum_100TP_P1, XOR
first 126 Bytes of 100TP page 1

7FH PROG_TIMES This reflects the number of
times that this page has been
programmed. (Up to a
maximum of 100 times.)

00H

Table 6-5 XRAM preloading for 100 Time Programmable page programming
XRAM Address Function

F000H Number of Bytes to be programmed (i.e. N, up to a
maximum of 127 Bytes)

F001H 100TP offset 1

Table 6-4 100 Time Programmable page 1
User Manual 71 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
6.2.2 One-Time Programmable (OTP)
The TLE983x contains 4 one-time programmable (OTP) pages. The user can program
up to 128 Bytes into each of these pages. However, the programming of these pages
can only be done once. Thereafter, no further programming will be possible. To complete
the programming, the user will need to preload the contents to be programmed into the
XRAM as listed in Table 6-6. The offset entered for the programming does not need to
be in sequential order.
For further information regarding OTP page program, refer to Section 6.3.19.
For further information regarding OTP page read, refer to Section 6.3.18.
OTP pages are not used during the startup flow and content definition is completely left
to the user.

6.3 NVM user routines organisation
The NVM user routines are BootROM routines called by user and placed from 2’E830H
to 2’E88FH. The complete list of NVM user routines can be found in Table 6-7.

F002H 100TP data 1 to be programmed
F003H 100TP offset 2
F004H 100TP data 2 to be programmed
.....
F001H + ((N-1) x 2) 100TP offset N
F002H + ((N-1) x 2) 100TP data N to be programmed

Table 6-6 XRAM preloading for OTP
XRAM Address Function

F000H Number of Bytes to be programmed (i.e. N, up to a
maximum of 128 Bytes)

F001H OTP offset 1
F002H OTP data 1 to be programmed
F003H OTP offset 2
F004H OTP data 2 to be programmed
.....
F001H + ((N-1) x 2) OTP offset N
F002H + ((N-1) x 2) OTP data N to be programmed

Table 6-5 XRAM preloading for 100 Time Programmable page programming
User Manual 72 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
Table 6-7 NVM user routines list
S/N Address Routine Description
1 2’E88DH USER_OPENAB To open the assembly buffer

for writing
2 2’E88AH USER_PROG To program the NVM
3 2’E887H USER_ERASEPG To erase an NVM page
4 2’E884H USER_ABORTPROG To abort the NVM

programming by closing the
assembly buffer

5 2’E881H USER_NVMRDY To access if the NVM is in
ready to read status

6 2’E87EH USER_READ_CAL To read the NVM calibration
data.

7 2’E87BH USER_NVM_CONFIG To read the NVM
configuration status

8 2’E878H USER_NVM_ECC2ADDR To read the NVM ECC2
address

9 2’E875H USER_NVMPROT_STATUS To check for the NVM
protection status

10 2’E872H USER_SET_PRGPROT_CODE To set the protection against
programming for NVM code
area

11 2’E86FH USER_CLR_PRGPROT_CODE To clear the protection
against programming for NVM
code area

12 2’E86CH USER_SET_RDPROT_CODE To set the protection against
reading for NVM code area

13 2’E869H USER_CLR_RDPROT_CODE To clear the protection
against reading for NVM code
area

14 2’E866H USER_SET_PRGPROT_DATA To set the protection against
programming for NVM data
area

15 2’E863H USER_CLR_PRGPROT_DATA To clear the protection
against programming for NVM
data area
User Manual 73 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
6.3.1 Opening assembly buffer routine
The NVM programming routine consists of two parts: The assembly buffer opening
routine, and the programming and verification routine. In between calling of the routines
the user software can adapt the page data to be programmed to the memory field. This
assembly buffer opening routine needs to be executed successfully before the NVM

16 2’E860H USER_SET_RDPROT_DATA To set the protection against
reading for NVM data area

17 2’E85DH USER_CLR_RDPROT_DATA To clear the protection
against reading for NVM data
area

18 2’E85AH USER_READ_OTP To read the NVM OTP data
19 2’E857H USER_OTP_PROG To perform the OTP program.

(This can be used only once
per OTP page)

20 2’E854H USER_LIN_AUTOBAUD To perform LIN autobaud
21 2’E851H USER_UART_AUTOBAUD To perform UART autobaud
22 2’E84EH USER_XRAM_DOWNLOAD To perform an XRAM

download
23 2’E84BH USER_READ_100TP To read the NVM 100TP

parameter data
24 2’E848H USER_100TP_PROG To perform the 100TP

program. (This can be used
used 100 times per 100TP
page)

25 2’E845H USER_ERASE_SECTOR To erase an NVM Sector
26 2’E83FH USER_SET_USER_CLK To set system clock

frequency
27 2’E83CH USER_NVMCLKFAC_SET To set NVMCLKFAC Bit in

SYSCON0
28 2’E833H USER_XRAM_MBIST_START To start a sequential

checkerboard and inverted
checkerboard test on the
XRAM

29 2’E830H USER_XRAM_MBIST_CHECK To check the result of the
XRAM MBIST test

Table 6-7 NVM user routines list
User Manual 74 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
programming routine can be called. Once the assembly buffer is successfully opened,
the user can load the user contents into the assembly buffer.

Note: Once assembly buffer is opened, user must either proceed with the standard
program flow (refer to Figure 6-4) or close the assembly buffer using the
dedicated abort programming user routine (refer to Chapter 6.3.4). All other
sequences are not allowed and might lead to loss of data.

6.3.2 NVM programming routine
There are 2 types of programming available, Type 1 or Type 2 (Type 1 without or Type
2 with XRAM background activity during NVM operation).
For Type 1 programming, the flow control is always kept by the BootROM NVM
programming routine. Consequently, no other operations can be run in parallel thus
avoiding making use of the NVM operation waiting time. In Type 2 programming, the
BootROM routine starts the write operation and then gives back control to the user
software by jumping (via call) to an address provided by the user. In this scenario, the
user software needs to reside in XRAM because no access to the NVM is possible while
internal program sequence is on-going. The user software needs to hand back the
control to the NVM programming routine (via return), which continues with polling the
busy Bit.
A description of the BootROM programming routine is provided in the following Table 6-
9. More information on the support for background activity during NVM operation can be
found in Section 6.4.2.

Table 6-8 Opening assembly buffer subroutine
Subroutine 2’E88DH: USER_OPENAB
Input R6(High Byte), R7(Low Byte): Address of NVM page.
Output PSW.CY

0 = Assembly Buffer is successfully opened
1 = Assembly Buffer cannot be opened.

Possible reasons of failure:
- Assembly Buffer is already opened.
- The range of the address is protected.
- The range of the address is incorrect.

Stack size required 6
Resource used/
destroyed

R0,R1,R2,R3,R4
User Manual 75 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
6.3.3 NVM page erasing routine
Similarly, there are 2 types of erasing available, Type 1 or Type 2 (Type 1 without or Type
2 with XRAM background activity during NVM operation). Details in the following table.

Table 6-9 Programming subroutine
Subroutine 2’E88AH: USER_PROG;
Input R7[0]: To control XRAM routine branching.

0: No XRAM routine branching enabled.
1: XRAM routine branching enabled.

R7[1]: To enable corrective activities (i.e. disturb handling and
retries sequences)
0: No corrective activities enabled.
1: Corrective activities are enabled.

R7[2]: To disable erasing of a failing page when addressing
non-linearly mapped sector (refer to Chapter 6.4.4.2 for more
details)
0: Programmed data erased in case of fail. If page was already
used, old data are kept.
1: Programmed data are not erased even in case of fail. If page
was already used, old data are not kept and the new data are
accessible by reading the page.

Output PSW.CY
0 = Programming completed successfully.
1 = Programming failed.

Possible reasons of failure:
- This is the 2nd time this routine is called.
- The range of the address is incorrect.
- This is a protected range.
- The internal verify, using special read margin, fails

Note: No NVM prog or erase routine can be called until this NVM
operation is completed.

Stack size required 16
Resource used/
destroyed

R0, R1, R2, R3, R4, R5, DPTR
User Manual 76 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
6.3.4 Abort NVM programming routine
This user routine aborts the NVM programming by closing an opened assembly buffer.
Please, note that every time assembly buffer is opened it should be then closed either
by calling the program routine or the abort program routine. Any other sequence might
leave the assembly buffer opened thus potentially corrupting data.

Table 6-10 Page erasing subroutine
Subroutine 2’E887H: USER_ERASEPG;
Input R6(High Byte), R7(Low Byte): Address of NVM page

R5[0]: Input to control XRAM routine branching.
0: No XRAM routine branching enabled.
1: XRAM routine branching enabled.

Output PSW.CY
0 = Erasing completed successfully.
1 = Erasing failed.

Possible reasons of failure:
- This is the 2nd time this routine is called.
- The range of the address is incorrect.
- This is a protected range.

Note: No NVM prog or erase routine can be called until this NVM
operation is completed.

Stack size required 10
Resource used/
destroyed

R0,R3,R4,R5, DPTR

Table 6-11 Abort NVM programming subroutine
Subroutine 2’E884H: USER_ABORTPROG
Input --
Output PSW.CY

0 = Abort successfully, assembly buffer closed.
1 = Abort failed as programming already started.

Possible reason of failure:
- Programming already started.
User Manual 77 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
6.3.5 Read NVM status routine
This user routine checks for the NVM status.

6.3.6 Read user calibration data
All data stored in user accessible config sector pages (OTP and 100TP) can be
downloaded into the XRAM using this routine. In particular, this routine has been
developed to help user in downloading the ADC1 calibration parameters stored at the
beginning of 100TP page 1 (See Table 6-4) to an easily accessible data space (XRAM).
To download the data, the user needs to provide the config sector page where data has
to be read from, number of Bytes to be copied, and the XRAM address where data has
to be copied to. The routine will copy the specified number of Bytes from the selected
page (starting always from first Byte in the page) into the XRAM (starting at the given
address).

Stack size required 3
Resource used/
destroyed

R4

Table 6-12 Read NVM status subroutine
Subroutine 2’E881H: USER_NVMRDY
Input --
Output PSW.CY

0 = NVM is not busy.
1 = NVM is busy now.

Stack size required 3
Resource used/
destroyed

--

Table 6-13 Read user calibration data subroutine
Subroutine 2’E87EH: USER_READ_CAL
Input R7: Number of Bytes to be copied into the XRAM (01H to 80H).

R6: user CS page to take data from (refer to Figure 6-1).
R4,R5: High-Low XRAM address to copy data to (F000H <
R4,R5 < (R4,R5) + R7 < FC00H).

Table 6-11 Abort NVM programming subroutine (cont’d)
User Manual 78 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
6.3.7 Read NVM config status routine
This routine reads the NVM Configuration Status. Details in the following table.

6.3.8 Read NVM ECC2 address routine
This routine returns the result of the last NVM address accessed with double ECC error.
Details in the following table.

Output PSW.CY
0 = Read is successful.
1 = Read is not successful due to invalid input values.

Stack size required 4
Resource used/
destroyed

R0, DPTR

Table 6-14 Read NVM config status subroutine
Subroutine 2’E87BH: USER_NVM_CONFIG
Input --
Output R0: Number of available sectors of the code area (4 kBytes

each)
R1: Number of available sectors of the data area (4 kBytes
each)
PSW.CY
0 = NVM status successfully read
1 = NVM status cannot be read.

Possible reason of failure:
- NVM Linear sector is set as 00H.

Stack size required 3
Resource used/
destroyed

--

Table 6-15 Read NVM ECC2 address subroutine
Subroutine 2’E878H: USER_NVM_ECC2ADDR
Input --

Table 6-13 Read user calibration data subroutine (cont’d)
User Manual 79 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
6.3.9 Read NVM protection status routine
This user routine returns the NVM protection status. Details in the following table.

Output R0: Last ECC2 address failing.(High Byte)
R1: Last ECC2 address failing.(Low Byte)

PSW.CY
0 = No NVM ECC2 detected
1 = NVM ECC2 address detected

Stack size required 3
Resource used/
destroyed

--

Table 6-16 Read NVM protection status subroutine
Subroutine 2’E875H: USER_NVMPROT_STATUS
Input --
Output ACC: NVM Protection status. Refer to Table 6-17.
Stack size required 2
Resource used/
destroyed

--

Table 6-17 NVM protection status
Field Bits Function
RD_CODE 3 Status of code area

This Bit shows the read protection status of the code area.
0 Reading of code area is not permitted.
1 Reading of code area is permitted.

RD_DATA 2 Status of data area
This Bit shows the read protection status of the data area.
0 Reading of data area is not permitted.
1 Reading of data area is permitted.

PRG_CODE 1 Status of code area
This Bit shows the program protection status of the code area.
0 Programming of code area is not permitted.
1 Programming of code area is permitted.

Table 6-15 Read NVM ECC2 address subroutine (cont’d)
User Manual 80 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
For the NVM protection mechanism, user configuration sector pages (OTP and 100TP)
are considered being part of the NVM code area.
Note: Copying code from NVM to XRAM requires a normal NVM read execution and so

is blocked in case NVM Read Protection is enabled.

Read protection does not block code fetching.

6.3.10 Set NVM program protection (code) routine
This user routine sets the write protection on the NVM code area. Details in the following
table.

Note: For the NVM protection mechanism, user configuration sector pages (OTP and
100TP) are considered being part of the NVM code area.

Note: This routine can be used to temporarily set write protection on the NVM code area.
It will overwrite the default setting controlled by NVM_PASSWORD and is only
valid till next power on reset, brown-out reset or wake-up from sleep mode occurs.

6.3.11 Clear NVM program protection (code) routine
This user routine removes the write protection on the NVM code area. Details in the
following table.

PRG_DATA 0 Status of data area
This Bit shows the program protection status of the data area.
0 Programming of data area is not permitted.
1 Programming of data area is permitted.

Reserved 7:4 Reserved, always read ‘0’

Table 6-18 Set NVM program protection (code) subroutine
Subroutine 2’E872H: USER_SET_PRGPROT_CODE
Input --
Output --
Stack size required 2
Resource used/
destroyed

--

Table 6-17 NVM protection status
User Manual 81 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
Note: For the NVM protection mechanism, user configuration sector pages (OTP and
100TP) are considered being part of the NVM code area.

Note: This routine can be used to temporarily remove write protection on the NVM code
area. It will overwrite the default setting controlled by NVM_PASSWORD and is
only valid till next power on reset, brown-out reset or wake-up from sleep mode
occurs.

6.3.12 Set NVM read protection (code) routine
This user routine sets the read protection on the NVM code area. Details in the following
table.

Note: For the NVM protection mechanism, user configuration sector pages (OTP and
100TP) are considered being part of the NVM code area.

Note: This routine can be used to temporarily set read protection on the NVM code area.
It will overwrite the default setting controlled by NVM_PASSWORD and is only
valid till next power on reset, brown-out reset or wake-up from sleep mode occurs.

6.3.13 Clear NVM read protection (code) routine
This user routine removes the read protection on the NVM code area. Details in the
following table.

Table 6-19 Clear NVM program protection (code) subroutine
Subroutine 2’E86FH: USER_CLR_PRGPROT_CODE
Input --
Output --
Stack size required 2
Resource used/
destroyed

--

Table 6-20 Set NVM read protection (code) subroutine
Subroutine 2’E86CH: USER_SET_RDPROT_CODE
Input --
Output --
Stack size required 2
Resource used/
destroyed

--
User Manual 82 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
Note: For the NVM protection mechanism, user configuration sector pages (OTP and
100TP) are considered being part of the NVM code area.

Note: This routine can be used to temporarily remove read protection on the NVM code
area. It will overwrite the default setting controlled by NVM_PASSWORD and is
only valid till next power on reset, brown-out reset or wake-up from sleep mode
occurs.

6.3.14 Set NVM program protection (data) routine
This user routine sets the write protection on the NVM data area. Details in the following
table.

Note: This routine can be used to temporarily set write protection on the NVM data area.
It will overwrite the default setting controlled by NVM_PASSWORD and is only
valid till next power on reset, brown-out reset or wake-up from sleep mode occurs.

6.3.15 Clear NVM program protection (data) routine
This user routine removes the write protection on the NVM data area. Details in the
following table.

Table 6-21 Clear NVM read protection (code) subroutine
Subroutine 2’E869H: USER_CLR_RDPROT_CODE
Input --
Output --
Stack size required 2
Resource used/
destroyed

--

Table 6-22 Set NVM program protection (data) subroutine
Subroutine 2’E866H: USER_SET_PRGPROT_DATA
Input --
Output --
Stack size required 2
Resource used/
destroyed

--
User Manual 83 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
Note: This routine can be used to temporarily remove write protection on the NVM data
area. It will overwrite the default setting controlled by NVM_PASSWORD and is
only valid till next power on reset, brown-out reset or wake-up from sleep mode
occurs.

6.3.16 Set NVM read protection (data) routine
This user routine sets the read protection on the NVM data area. Details in the following
table.

Note: This routine can be used to temporarily set read protection on the NVM data area.
It will overwrite the default setting controlled by NVM_PASSWORD and is only
valid till next power on reset, brown-out reset or wake-up from sleep mode occurs.

6.3.17 Clear NVM read protection (data) routine
This user routine removes the read protection on the NVM data area. Details in the
following table.

Table 6-23 Clear NVM program protection (data) subroutine
Subroutine 2’E863H: USER_CLR_PRGPROT_DATA
Input --
Output --
Stack size required 2
Resource used/
destroyed

--

Table 6-24 Set NVM read protection (data) subroutine
Subroutine 2’E860H: USER_SET_RDPROT_DATA
Input --
Output --
Stack size required 2
Resource used/
destroyed

--

Table 6-25 Clear NVM read protection (data) subroutine
Subroutine 2’E85DH: USER_CLR_RDPROT_DATA
Input --
User Manual 84 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
Note: This routine can be used to temporarily remove read protection on the NVM data
area. It will overwrite the default setting controlled by NVM_PASSWORD and is
only valid till next power on reset, brown-out reset or wake-up from sleep mode
occurs.

6.3.18 Read OTP data routine
This routine reads the OTP data. Details in the following table.

Output --
Stack size required 2
Resource used/
destroyed

--

Table 6-26 Read OTP subroutine
Subroutine 2’E85AH: USER_READ_OTP
Input R7: Data Offset (00H to 7FH)

R6: OTP page selection Byte (CS_Byte, refer to Figure 6-1)
Output ACC = OTP Data

PSW.CY
0 = Read is successful.
1 = Read is not successful due to invalid range selected.

Stack size required 2
Resource used/
destroyed

R0, DPTR

Table 6-25 Clear NVM read protection (data) subroutine (cont’d)
User Manual 85 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
Figure 6-1 User configuration sector pages address Byte description

6.3.19 Program OTP routine
This routine programs data into the OTP pages. The OTP contents to be programmed
are preloaded into the XRAM. The details can be found in Section 6.2.2.

Table 6-27 Program OTP subroutine
Subroutine 2’E857H: USER_OTP_PROG
Input R7: OTP page selection Byte (CS_Byte, refer to Figure 6-1)

XRAM preloaded with the OTP data to be programmed.
Output PSW.CY

0 = Program completed successfully
1 = Program failed.

Possible reasons of failure:
- The NVM code area is protected against programming.
- The OTP page is already programmed.

Stack size required 11
Resource used/
destroyed

R0, R5, R6, R7, DPTR

CS_Byte
High nibble:
OTP/100TP

selection

CS_Byte
Low nibble :

Page
selection

1

2

3

4

0

1

2

3

4

1

Reserved

OTP page 1

OTP page 2

OTP page 3

OTP page 4

Reserved

100TP page 1

100TP page 2

100TP page 3

100TP page 4

Reserved
User Manual 86 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
6.3.20 LIN autobaud routine
This user routine configures the device baud rate and is provided to facilitate the LIN
activity. The routine calculates the baud rate upon receiving of a valid LIN SYN Break
and SYN Char and sets the device baud rate generator accordingly. User can use this
routine as part of LIN software driver. The routine does not use the fractional divider. The
frame type information can be found in LIN BSL chapter (refer to Section 4.3 for further
details).

6.3.21 UART autobaud routine
This user routine configures the UART for data transmission. After calling this routine,
the host needs to send a frame containing 80H to start the autobaud process. Once the
operation is completed successfully, a response frame of 55H will be received.

Table 6-28 LIN autobaud subroutine
Subroutine 2’E854H: USER_LIN_AUTOBAUD
Input LIN frame
Output --
Stack size required 6
Resource used/
destroyed

R0, R1, R2, R3, R4, DPTR, MEX2, MEX3, UART registers
Timer 0 and 2 is used for timeout and baud rate calculation.
User Manual 87 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
6.3.22 User XRAM download routine
This routine allows user to download code into the XRAM starting from address F000H.
To prepare for the download, the user will need to call the USER_UART_AUTOBAUD
routine to configure the UART port settings for the download. Thereafter, calling this
routine, the host will need to send the code in data frames of 64 Bytes each. To terminate
the download and execute the downloaded code, an EOT frame needs to be sent.
Information of Data and EOT frame is available in UART BSL chapter.

6.3.23 Read 100 Time Programmable parameter data routine
This routine reads the 100TP page content. For the 100TP page 1, the data offset range
is listed in Table 6-4. Details in the following table.

Table 6-29 UART autobaud subroutine
Subroutine 2’E851H: USER_UART_AUTOBAUD
Input 80H (Same protocol used in UART BSL)
Output Response code of 55H is sent to host
Stack size required 8
Resource used/
destroyed

--

Table 6-30 User XRAM download subroutine
Subroutine 2’E84EH: USER_XRAM_DOWNLOAD
Input Data frames of 64 Bytes each

(Protocol used same as UART BSL)
Output Code is downloaded into XRAM and jumps to XRAM code after

receiving an EOT frame.
Stack size required 9
Resource used/
destroyed

--
User Manual 88 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
6.3.24 Program 100 Time Programmable routine
This routine programs data into the 100TP pages. The 100TP content to be programmed
has to be preloaded into the XRAM. The details can be found in Section 6.2.1.

6.3.25 Sector Erasing Routine
This routine is used to perform an erase of a NVM sector.

Table 6-31 Read 100 Time Programmable subroutine
Subroutine 2’E84BH: USER_READ_100TP
Input R7: Data Offset (00H to 7FH)

R6: 100TP page selection Byte (CS_Byte, refer to Figure 6-1)
Output ACC = 100TP Data

PSW.CY
0 = Read is successful.
1 = Read is not successful due to invalid range selected.

Stack size required 2
Resource used/
destroyed

R0, DPTR

Table 6-32 Program 100 Time Programmable subroutine
Subroutine 2’E848H: USER_100TP_PROG
Input R7: 100TP page selection Byte (CS_Byte, refer to Figure 6-1)

XRAM preloaded with the 100TP data to be programmed.
Output PSW.CY

0 = Program completed successfully
1 = Program failed.

Possible reasons of failure:
- The NVM code area is protected against programming.
- The 100TP page is already programmed to a maximum of 100
times.

Stack size required 11
Resource used/
destroyed

R0, R5, R6, R7, DPTR
User Manual 89 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
6.3.26 User clock setting routine
This routine is used to change the system clock frequency. 3 possible predetermined
clock frequencies are supported: 24 MHz, 32 MHz and 40 MHz. The routine uses internal
low precision clock as intermediate clock while changing PLL settings and waiting for the
lock. In case PLL does not lock within 1 ms, a fail is reported and the system will go on
running using the low precision clock. The routine will change analog module clocks
frequency according to the new system frequency.

6.3.27 NVMCLKFAC setting routine
This routine is used to write the NVMCLKFAC Bit in SYSCON0 register.

Table 6-33 Sector Erasing Subroutine
Subroutine 2’E845H: USER_ERASE_SECTOR
Input R6(high Byte), R7(low Byte): NVM Sector address
Output PSW.CY

0 = Erasing completed successfully.
1 = Erasing failed.

Stack size required 8
Resource used/
destroyed

R0, R3, R4

Table 6-34 Clock setting routine
Subroutine 2’E83FH: USER_SET_USER_CLK
Input R7: Clock Frequency Selection Byte:

 = 03H: 40 MHz
 = 02H: 32 MHz
 = All other Values: 24 MHz

Output None
Stack size required 10
Resource used/
destroyed

R0, R7
User Manual 90 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
6.3.28 XRAM MBIST starting routine
This routine is used to start a XRAM test. A linear write/read algorithm using alternating
data is executed on a XRAM range specified by the start and stop addresses given as
input parameters. When starting a MBIST test, standard XRAM interface is disabled.
Therefore data stored into it will not be accessible and data stored in the memory range
under test will be destroyed. The standard interface will be re-enabled by the XRAM
MBIST check routine in case the test is completed.

Note: While test is running, no XRAM access should be attempted on the whole XRAM.

No breakpoints between a call to the XRAM MBIST start routine and a call to XRAM
MBIST check routine resulting in a completed test are allowed.

6.3.29 XRAM MBIST check routine
This routine checks the result of the MBIST test. It returns a fail in case the test is
completed with errors, the test is still running or no test has been started. The routine will
re-enable the standard XRAM interface and clear the result of the test in case it is
completed.

Table 6-35 NVMCLKFAC setting subroutine
Subroutine 2’E83CH: USER_NVMCLKFAC_SET
Input R7[0]: NVMCLKFAC value to be written in SYSCON0.

Output --
Stack size required 1
Resource used/
destroyed

R0, R7

Table 6-36 XRAM MBIST start subroutine
Subroutine 2’E833H: USER_XRAM_MBIST_START
Input R4(High Byte), R5(Low Byte): Stop address of XRAM range.

R6(High Byte), R7(Low Byte): Start address of XRAM range.
Output PSW.CY

0 = Pass, address range valid.
1 = Fail, address range invalid

Stack size required 9
Resource used/
destroyed

R4, R5, R6, R7, DPTR
User Manual 91 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
6.4 NVM user applications
The NVM user routines application is described in this section.

6.4.1 NVM integrity handling (Service Algorithm)

Upon reset, NVM initialisation of the NVM data space is started in the startup routine.
The NVM initialisation includes any repair to the data space by Service Algorithm (SA).
The repair by the SA may include erasing of faulty NVM pages or double mapped NVM
pages. The outcome of the NVM initialisation is reported to MEMSTAT at the end of the
startup routine. The user is recommended to check this SFR.
In the event of an SA failure, the user will need to be informed once the startup is
completed, as the failing sector could be a critical sector. In such a case, the user can
choose either to reset the system to perform the NVM re-initialisation again or to erase
the failing NVM sector to recover the NVM. In both cases of the SA execution, regardless
of the execution status, the last access sector information will be stored in
SECTORINFO. The user is recommended to check the SECTORINFO for the repair

Table 6-37 XRAM MBIST check subroutine
Subroutine 2’E830H: USER_XRAM_MBIST_CHECK
Input R7 [0]: XRAM range initialization with zeros option.

 0 = XRAM range initialization disabled.
 1 = XRAM range initialization enabled.

Output R7 [0]
 0 = MBIST test pass
 1 = MBIST test fail
R7 [1]
 0 = MBIST test started
 1 = MBIST test not started
R7 [2]
 0 = MBIST test completed
 1 = MBIST test running
PSW.CY: Overall pass/ fail indicator.
 OR of Bits R7[0], R7[1] and R7[2]
 0 = Test passing
 1 = Check fails

Stack size required 9
Resource used/
destroyed

R7, DPTR
User Manual 92 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
sector information. This is to ensure that recovery procedures can be executed in user
code for any critical user information that may be affected by the SA repair.
Detailed description of the MEMSTAT register can be found in the user manual.

6.4.2 Supporting background NVM operation
To support other user activities while NVM is busy, the BootROM can direct code
execution to XRAM after triggering time consuming NVM operations like program and
erase. This type of background code execution is known as Type 2 NVM operations.
When active, BootROM routine will jump to the 3rd last Byte of the XRAM area (FBFDH)
every time it has to wait for NVM internal operation to be finished. Table 6-38 shows
XRAM branching address and provides an example for the XRAM code preparing for a
branch to the user code at F000H. At the end of the user defined code, a RET instruction
needs to be present for the normal NVM operation to be completed. Figure 6-2 shows
how background programming can be supported during calls to an NVM programming
routine.
There is only one NVM module present in TLE983x. When NVM is busy executing
internal operations (e.g. cells programming or erasing, data verify), no other activities
within NVM can be executed. Although the NVM programming or erasing is handled by
the NVM module, the user code cannot be read or executed as the NVM module is busy.
For this reason interrupts can only be serviced when the NVM is free if the interrupt
vector table or interrupt service routines are located in the NVM. A NVM program
operation can take from 7.4 ms to 22.2 ms to be completed. Therefore there is a need to
support the user for critical activities, e.g watchdog refreshing.

Table 6-38 XRAM contents for branching to user code at F000H

XRAM Address XRAM contents to support jump to user code located at
F000H

F000H Start of user defined code
End of user defined
code location

22H (RET)

FBFDH 02H (LJMP)
FBFEH F0H (user defined code address high Byte)
FBFFH 00H (user defined code address low Byte)
User Manual 93 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
Figure 6-2 Background NVM programming operation with jumps to XRAM code
(example for non-linearly mapped sector)

6.4.3 Emergency operation handling
To ensure that NVM is functioning correctly, all NVM operations (i.e. program or erase)
are to be completed before a new NVM operation is started. In addition, corrective
activities such as retries and disturb handling are added in an NVM program routine and
could add additional time. In an emergency situation, where the system needs to save
important user data in the shortest time possible, this becomes critical. Therefore, a
mechanism to bypass these corrective activities as well as to inform that a new NVM
sequence will not be started, is needed. To support an emergency situation, the following
steps are recommended in the code whenever the NVM programming is called.

6.4.3.1 Emergency operation handling - Type 1 routines

For Type 1 routines (including both program and erase), an emergency programming
may only be handled with the interrupt enabled shown in Table 6-39.

NVM FSM started for
programming

Start

NVM FSM started for
Erasing Spare page

XRAM check
enabled?

End

Call to XRAM
routine @CA1

Yes

Yes

CA1 label in XRAM
- Perform important user task
- Refresh watchdog window
- RET to BootROM

Note: CA1 is a fixed label.
BootROM has set this branch
to last 3 bytes of the XRAM.

NVM ready?

No

XRAM check
enabled?

Call to XRAM
routine @CA1

Yes

NVM ready?

No

Yes

.

User Manual 94 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
6.4.3.2 Emergency operation handling - Type 2 routines

For Type 2 routines (including both program and erase), an emergency programming
may be handled with or without the interrupt enabled. In the case with interrupt enabled,
it is similar to Type 1 Routines shown in Table 6-39. For the case without interrupt
enabled, it is shown in Table 6-40.

Table 6-39 Emergency operation handling in Type 1 routines
Step Description
1 User code enables interrupt and sets MEMSTAT.NVMPROP before calling

NVM (Program/Erase) routines.
2 While the NVM operation is on-going, an event occurs triggering an interrupt.
3 Interrupt subroutine (ISR) is serviced immediately when the NVM is free.
4 ISR has to check for the MEMSTAT.NVMPROP status. If this Bit is set,

MEMSTAT.EMPROP has to be set and ISR has to be exited.
5 With control returned to the BootROM, the NVM routines will be executed

bypassing the corrective activities. This ensures that the routines are
completed in the shortest time possible

6 Exiting the NVM routines, the user code checks the MEMSTAT.EMPROP.
Since it is set, the code can branch to execute a user defined emergency
sequence and clear the Bits MEMSTAT.NVMPROP and MEMSTAT.EMPROP.
These activities can include the programming of the critical data.
User Manual 95 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
6.4.3.3 Emergency operation handling timing

In this chapter some information about overall emergency operation worst case timing
is provided.
Table 6-41 describes the case in which user data has to be saved into the linear sector
due to an emergency event. Flow for programming the critical information in the not lin-
early mapped region of the NVM is similar (step 6 and 7 are inverted and a few us have
to be added for mapram update) and overall worst case time is the same.

Table 6-40 Emergency operation handling in Type 2 routines (No interrupt)
Step Description
1 User code sets MEMSTAT.NVMPROP before calling NVM (Program/Erase)

routines.
2 While the NVM operation is started, the BootROM jumps to execute a user

defined code in the XRAM. Within this code, the user checks periodically for
critical events.

3 During the checking, an emergency event occurs. The code has to set
MEMSTAT.EMPROP and give back control to BootROM.

4 With control returned to the BootROM, the NVM routines will be executed
bypassing the corrective activities. This ensures that the routines are
completed in the shortest time possible

5 Exiting the NVM routines, the user code checks the MEMSTAT.EMPROP.
Since it is set, the code can branch to execute a user defined emergency
sequence and clear the Bits MEMSTAT.NVMPROP and MEMSTAT.EMPROP.
These activities can include the programming of the critical data.
User Manual 96 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
The Table 6-41 refers to the type 1 routines but data are similar for type 2 routines as
well.

Figure 6-3 Worst case emergency handling timing when linear sector is used

Worst case time, shown in Figure 6-3, is then 13.5 ms. This does not include time for
user code execution. It can be reduced by about 4.1 ms if the user ensures that the page
used for critical data saving is erased.

Table 6-41 Emergency operation handling in Type 1 routines
Phase Description
1 User code enables interrupt and sets MEMSTAT.NVMPROP before calling

NVM (Program/Erase) routines.
2 While the NVM operation is on-going, an event occurs triggering an interrupt.

In the worst case interrupt comes soon after a new erase was started.
3 Interrupt subroutine (ISR) is serviced immediately when the NVM is free.
4 With control returned to the BootROM, the NVM routines will be executed

bypassing the corrective activities. This ensures that the routines will end in
the shortest time possible even if a successful execution of the on going NVM
operation is not ensured.

5 Exiting the NVM routines, the user code checks the MEMSTAT.EMPROP.
Since it is set, the code can branch to execute a user defined emergency
sequence. First step is open AB and load user relevant data.

6 Before programming new data, if target page is already used, a preliminary
erase performed.

7 User critical data are programmed in the target page.

Phase 1 Phase 2

Interrupt
event

occurring

ISR

Waiting for NVM
available, erase just

started

4100 us

Phase 3

x us

Phase 4

300 us

BootROM
routine

completion

Open AB
and load

critical data

2000 us +
x us user

code

Erasing
used page

4100 us

Critical data
program

3000 us

Phase 5 Phase 6 Phase 7
User Manual 97 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
6.4.4 NVM user routines operation
This section describes the application of some NVM user routines.

6.4.4.1 NVM user programming operation
In TLE983x, the NVM supports programming of up to 128 Bytes of data at once. The user
can execute the following sequence illustrated in Figure 6-4 for NVM user programming.
Once the assembly buffer has been successfully opened, the user can load the
assembly buffer with the user defined contents. This can be achieved by a “MOVC
(@DPTR++), A” instruction. The details of this instruction can be found in Table 6-42.

This instruction “MOVC (@DPTR++), A” is XC800-specific, therefore will not be
supported by standard 8051 assembler. For this reason, it has to be explicitly invoked in
user application code according to the example reported in the Table 6-42
Note: This instruction shares the same opcode with another XC800-specific instruction

TRAP. MOVC is selected only if EO.TRAP_EN = 0.

Table 6-42 Write code Byte instruction: MOVC (@DPTR++), A
Description Store the Byte content of accumulator to program memory. The

address in program memory is pointed to by the data pointer.
The data pointer is incremented by hardware, after the write. No
flags are affected.

Example Store value E4H to program memory at 1000H.

MOV A, #E4H
MOV DPTR, #1000H
ANL EO, #11101000B ; select MOVC instruction
DB 0A5H ; MOVC (@DPTR++), A
ORL EO,#00010000B ; select TRAP instruction
User Manual 98 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
Figure 6-4 NVM user program

6.4.4.2 Tearing-safe Programming
In TLE983x, the mapping mechanism of the non-linearly mapped sector is used like a
log-structured file system. When a page is programmed in this sector, the old values are
not physically overwritten, but a different physical page (spare page) in the same sector
is programmed. If the programming fails, the old values are still present in the sector and
user can decided, by means of an specific input parameters of the user programming
routine (refer to Table 6-9), whether the old values or the new failing values should be
physically kept in the sector.
When an erase or write procedure is interrupted by a power down, this is identified during
the reconstruction of the map-RAM content after the next reset. In this case, the service
algorithm routine is automatically started and repairs the NVM state exploiting the fact
that either the old or the new data (or both) are fully valid

6.4.4.3 NVM user erase operation
The user can execute the following sequence illustrated in Figure 6-5 for NVM user
erase.

User calls
“USER_OPENAB” Routine

User calls “USER_PROG”
Routine

End

Start

Load the assembly buffer

User will load the assembly
buffer with the following

instruction.
MOVC (@DPTR++), A
User Manual 99 V 2.60, 2012-05

TLE983x BC- Step BootROM
NVM
Figure 6-5 NVM user erase

6.4.4.4 NVM user programming abort operation
The user can execute the following sequence illustrated in Figure 6-6 for NVM user
programming abort.

Figure 6-6 NVM user abort program

6.4.5 Protection mechanism on NVM
User can use BSL mode 6 (LIN or UART), to control the NVM protection. Once the
password is programmed, program and read protection on the NVM is enabled upon
startup. During normal operation, if user wishes to program or read the NVM memories,
he can temporarily disable the NVM protection using the user routines provided for their
intended operation.

User calls
“USER_ERASEPG”

Routine

End

Start

User calls
“USER_OPENAB” Routine

User calls
“USER_ABORTPROG”

Routine

End

Start

Load the assembly buffer

User will load the assembly
buffer with the following

instruction.
MOVC (@DPTR++), A
User Manual 100 V 2.60, 2012-05

w w w . i n f i n e o n . c o m

Published by Infineon Technologies AG

http://www.infineon.com

	1 Introduction
	1.1 Purpose
	1.2 Scope
	1.3 Abbreviations and special terms

	2 Overview
	2.1 Firmware architecture
	2.2 Program structure

	3 Startup procedure
	3.1 Program structure
	3.1.1 Test and initialisation of IRAM and XRAM
	3.1.2 NVM initialisation routine
	3.1.3 NVM map-RAM initialisation
	3.1.4 Oscillator trimming and system clock selection
	3.1.5 Analog module trimming
	3.1.6 User configuration data download
	3.1.7 User / BSL mode entry
	3.1.7.1 NAC definition

	4 LIN BSL mode
	4.1 LIN BSL features
	4.2 LIN BSL mode overview
	4.3 Phase I: Automatic synchronization to the host
	4.3.1 General description
	4.3.2 Calculation of BR_VALUE and PRE values

	4.4 Phase II: LIN BSL communication protocol and the working modes
	4.4.1 Node Address for Diagnostic (NAD)
	4.4.2 Block type
	4.4.3 Checksum
	4.4.3.1 Classic / LIN checksum
	4.4.3.2 Programming checksum

	4.4.4 Mode selection
	4.4.4.1 Receiving the header block
	4.4.4.2 The activation of working mode 0, 2 and 8
	4.4.4.3 The activation of working mode 1, 3 and 9
	4.4.4.4 The activation of working mode 4
	4.4.4.5 The activation of working mode 6
	4.4.4.6 The activation of working mode A

	4.5 Phase III: Response protocol to the host
	4.5.1 Acknowledgement response
	4.5.2 Error response
	4.5.2.1 Block Type Error (FFH)
	4.5.2.2 Checksum Error (FEH)
	4.5.2.3 Protection Error (FDH)
	4.5.2.4 Response overview

	4.5.3 Mode A response

	4.6 Fast LIN BSL
	4.6.1 Entering Fast LIN BSL

	4.7 After-Reset conditions
	4.8 User defined parameters for LIN BSL
	4.8.1 Programming NAC and NAD

	4.9 WDT1 refreshing

	5 UART BSL mode
	5.1 Phase I: Automatic serial synchronization to the host
	5.1.1 General description
	5.1.2 Calculation of BR_VALUE and PRE values

	5.2 Phase II: Serial communication protocol and the working modes
	5.2.1 Serial communication protocol
	5.2.1.1 Transfer block structure
	5.2.1.2 Transfer block type
	5.2.1.3 Response codes to the host

	5.2.2 The selection of working modes
	5.2.2.1 Receiving the header block
	5.2.2.2 The activation of working mode 0
	5.2.2.3 The activation of working mode 1
	5.2.2.4 The activation of working mode 2
	5.2.2.5 The activation of working mode 3
	5.2.2.6 The activation of working mode 4
	5.2.2.7 The activation of working mode 6
	5.2.2.8 The activation of working mode A

	5.3 User defined parameters for UART mode
	5.3.1 Programming NAC

	5.4 WDT1 refreshing

	6 NVM
	6.1 NVM overview
	6.1.1 NVM organisation

	6.2 NVM configuration sectors organisation
	6.2.1 100 Time Programmable data
	6.2.2 One-Time Programmable (OTP)

	6.3 NVM user routines organisation
	6.3.1 Opening assembly buffer routine
	6.3.2 NVM programming routine
	6.3.3 NVM page erasing routine
	6.3.4 Abort NVM programming routine
	6.3.5 Read NVM status routine
	6.3.6 Read user calibration data
	6.3.7 Read NVM config status routine
	6.3.8 Read NVM ECC2 address routine
	6.3.9 Read NVM protection status routine
	6.3.10 Set NVM program protection (code) routine
	6.3.11 Clear NVM program protection (code) routine
	6.3.12 Set NVM read protection (code) routine
	6.3.13 Clear NVM read protection (code) routine
	6.3.14 Set NVM program protection (data) routine
	6.3.15 Clear NVM program protection (data) routine
	6.3.16 Set NVM read protection (data) routine
	6.3.17 Clear NVM read protection (data) routine
	6.3.18 Read OTP data routine
	6.3.19 Program OTP routine
	6.3.20 LIN autobaud routine
	6.3.21 UART autobaud routine
	6.3.22 User XRAM download routine
	6.3.23 Read 100 Time Programmable parameter data routine
	6.3.24 Program 100 Time Programmable routine
	6.3.25 Sector Erasing Routine
	6.3.26 User clock setting routine
	6.3.27 NVMCLKFAC setting routine
	6.3.28 XRAM MBIST starting routine
	6.3.29 XRAM MBIST check routine

	6.4 NVM user applications
	6.4.1 NVM integrity handling (Service Algorithm)
	6.4.2 Supporting background NVM operation
	6.4.3 Emergency operation handling
	6.4.3.1 Emergency operation handling - Type 1 routines
	6.4.3.2 Emergency operation handling - Type 2 routines
	6.4.3.3 Emergency operation handling timing

	6.4.4 NVM user routines operation
	6.4.4.1 NVM user programming operation
	6.4.4.2 Tearing-safe Programming
	6.4.4.3 NVM user erase operation
	6.4.4.4 NVM user programming abort operation

	6.4.5 Protection mechanism on NVM

